blob: 43e06867c60d521d68fff797de1727ed67d0c7a8 [file] [log] [blame]
Chris Lattner4b009652007-07-25 00:24:17 +00001//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Decl.h"
17#include "clang/AST/Expr.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/Lex/LiteralSupport.h"
20#include "clang/Basic/SourceManager.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/SmallString.h"
Chris Lattner2e64c072007-08-10 20:18:51 +000025#include "llvm/ADT/StringExtras.h"
Chris Lattner4b009652007-07-25 00:24:17 +000026using namespace clang;
27
28/// ParseStringLiteral - The specified tokens were lexed as pasted string
29/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
30/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
31/// multiple tokens. However, the common case is that StringToks points to one
32/// string.
33///
34Action::ExprResult
35Sema::ParseStringLiteral(const Token *StringToks, unsigned NumStringToks) {
36 assert(NumStringToks && "Must have at least one string!");
37
38 StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
39 if (Literal.hadError)
40 return ExprResult(true);
41
42 llvm::SmallVector<SourceLocation, 4> StringTokLocs;
43 for (unsigned i = 0; i != NumStringToks; ++i)
44 StringTokLocs.push_back(StringToks[i].getLocation());
45
46 // FIXME: handle wchar_t
47 QualType t = Context.getPointerType(Context.CharTy);
48
49 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
50 return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
51 Literal.AnyWide, t, StringToks[0].getLocation(),
52 StringToks[NumStringToks-1].getLocation());
53}
54
55
56/// ParseIdentifierExpr - The parser read an identifier in expression context,
57/// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this
58/// identifier is used in an function call context.
59Sema::ExprResult Sema::ParseIdentifierExpr(Scope *S, SourceLocation Loc,
60 IdentifierInfo &II,
61 bool HasTrailingLParen) {
62 // Could be enum-constant or decl.
63 Decl *D = LookupScopedDecl(&II, Decl::IDNS_Ordinary, Loc, S);
64 if (D == 0) {
65 // Otherwise, this could be an implicitly declared function reference (legal
66 // in C90, extension in C99).
67 if (HasTrailingLParen &&
68 // Not in C++.
69 !getLangOptions().CPlusPlus)
70 D = ImplicitlyDefineFunction(Loc, II, S);
71 else {
72 // If this name wasn't predeclared and if this is not a function call,
73 // diagnose the problem.
74 return Diag(Loc, diag::err_undeclared_var_use, II.getName());
75 }
76 }
Chris Lattner4b009652007-07-25 00:24:17 +000077 if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
78 return new DeclRefExpr(VD, VD->getType(), Loc);
79 if (isa<TypedefDecl>(D))
80 return Diag(Loc, diag::err_unexpected_typedef, II.getName());
81
82 assert(0 && "Invalid decl");
83 abort();
84}
85
86Sema::ExprResult Sema::ParsePreDefinedExpr(SourceLocation Loc,
87 tok::TokenKind Kind) {
88 PreDefinedExpr::IdentType IT;
89
90 switch (Kind) {
91 default:
92 assert(0 && "Unknown simple primary expr!");
93 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
94 IT = PreDefinedExpr::Func;
95 break;
96 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
97 IT = PreDefinedExpr::Function;
98 break;
99 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
100 IT = PreDefinedExpr::PrettyFunction;
101 break;
102 }
103
104 // Pre-defined identifiers are always of type char *.
105 return new PreDefinedExpr(Loc, Context.getPointerType(Context.CharTy), IT);
106}
107
108Sema::ExprResult Sema::ParseCharacterConstant(const Token &Tok) {
109 llvm::SmallString<16> CharBuffer;
110 CharBuffer.resize(Tok.getLength());
111 const char *ThisTokBegin = &CharBuffer[0];
112 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
113
114 CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
115 Tok.getLocation(), PP);
116 if (Literal.hadError())
117 return ExprResult(true);
118 return new CharacterLiteral(Literal.getValue(), Context.IntTy,
119 Tok.getLocation());
120}
121
122Action::ExprResult Sema::ParseNumericConstant(const Token &Tok) {
123 // fast path for a single digit (which is quite common). A single digit
124 // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
125 if (Tok.getLength() == 1) {
126 const char *t = PP.getSourceManager().getCharacterData(Tok.getLocation());
127
128 unsigned IntSize = Context.getTypeSize(Context.IntTy, Tok.getLocation());
129 return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *t-'0'),
130 Context.IntTy,
131 Tok.getLocation()));
132 }
133 llvm::SmallString<512> IntegerBuffer;
134 IntegerBuffer.resize(Tok.getLength());
135 const char *ThisTokBegin = &IntegerBuffer[0];
136
137 // Get the spelling of the token, which eliminates trigraphs, etc.
138 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
139 NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
140 Tok.getLocation(), PP);
141 if (Literal.hadError)
142 return ExprResult(true);
143
144 if (Literal.isIntegerLiteral()) {
145 QualType t;
146
147 // Get the value in the widest-possible width.
148 llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(Tok.getLocation()), 0);
149
150 if (Literal.GetIntegerValue(ResultVal)) {
151 // If this value didn't fit into uintmax_t, warn and force to ull.
152 Diag(Tok.getLocation(), diag::warn_integer_too_large);
153 t = Context.UnsignedLongLongTy;
154 assert(Context.getTypeSize(t, Tok.getLocation()) ==
155 ResultVal.getBitWidth() && "long long is not intmax_t?");
156 } else {
157 // If this value fits into a ULL, try to figure out what else it fits into
158 // according to the rules of C99 6.4.4.1p5.
159
160 // Octal, Hexadecimal, and integers with a U suffix are allowed to
161 // be an unsigned int.
162 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
163
164 // Check from smallest to largest, picking the smallest type we can.
165 if (!Literal.isLong) { // Are int/unsigned possibilities?
166 unsigned IntSize = Context.getTypeSize(Context.IntTy,Tok.getLocation());
167 // Does it fit in a unsigned int?
168 if (ResultVal.isIntN(IntSize)) {
169 // Does it fit in a signed int?
170 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
171 t = Context.IntTy;
172 else if (AllowUnsigned)
173 t = Context.UnsignedIntTy;
174 }
175
176 if (!t.isNull())
177 ResultVal.trunc(IntSize);
178 }
179
180 // Are long/unsigned long possibilities?
181 if (t.isNull() && !Literal.isLongLong) {
182 unsigned LongSize = Context.getTypeSize(Context.LongTy,
183 Tok.getLocation());
184
185 // Does it fit in a unsigned long?
186 if (ResultVal.isIntN(LongSize)) {
187 // Does it fit in a signed long?
188 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
189 t = Context.LongTy;
190 else if (AllowUnsigned)
191 t = Context.UnsignedLongTy;
192 }
193 if (!t.isNull())
194 ResultVal.trunc(LongSize);
195 }
196
197 // Finally, check long long if needed.
198 if (t.isNull()) {
199 unsigned LongLongSize =
200 Context.getTypeSize(Context.LongLongTy, Tok.getLocation());
201
202 // Does it fit in a unsigned long long?
203 if (ResultVal.isIntN(LongLongSize)) {
204 // Does it fit in a signed long long?
205 if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
206 t = Context.LongLongTy;
207 else if (AllowUnsigned)
208 t = Context.UnsignedLongLongTy;
209 }
210 }
211
212 // If we still couldn't decide a type, we probably have something that
213 // does not fit in a signed long long, but has no U suffix.
214 if (t.isNull()) {
215 Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
216 t = Context.UnsignedLongLongTy;
217 }
218 }
219
220 return new IntegerLiteral(ResultVal, t, Tok.getLocation());
221 } else if (Literal.isFloatingLiteral()) {
222 // FIXME: handle float values > 32 (including compute the real type...).
223 return new FloatingLiteral(Literal.GetFloatValue(), Context.FloatTy,
224 Tok.getLocation());
225 }
226 return ExprResult(true);
227}
228
229Action::ExprResult Sema::ParseParenExpr(SourceLocation L, SourceLocation R,
230 ExprTy *Val) {
231 Expr *e = (Expr *)Val;
232 assert((e != 0) && "ParseParenExpr() missing expr");
233 return new ParenExpr(L, R, e);
234}
235
236/// The UsualUnaryConversions() function is *not* called by this routine.
237/// See C99 6.3.2.1p[2-4] for more details.
238QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
239 SourceLocation OpLoc, bool isSizeof) {
240 // C99 6.5.3.4p1:
241 if (isa<FunctionType>(exprType) && isSizeof)
242 // alignof(function) is allowed.
243 Diag(OpLoc, diag::ext_sizeof_function_type);
244 else if (exprType->isVoidType())
245 Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof");
246 else if (exprType->isIncompleteType()) {
247 Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
248 diag::err_alignof_incomplete_type,
249 exprType.getAsString());
250 return QualType(); // error
251 }
252 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
253 return Context.getSizeType();
254}
255
256Action::ExprResult Sema::
257ParseSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
258 SourceLocation LPLoc, TypeTy *Ty,
259 SourceLocation RPLoc) {
260 // If error parsing type, ignore.
261 if (Ty == 0) return true;
262
263 // Verify that this is a valid expression.
264 QualType ArgTy = QualType::getFromOpaquePtr(Ty);
265
266 QualType resultType = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, isSizeof);
267
268 if (resultType.isNull())
269 return true;
270 return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
271}
272
273
274Action::ExprResult Sema::ParsePostfixUnaryOp(SourceLocation OpLoc,
275 tok::TokenKind Kind,
276 ExprTy *Input) {
277 UnaryOperator::Opcode Opc;
278 switch (Kind) {
279 default: assert(0 && "Unknown unary op!");
280 case tok::plusplus: Opc = UnaryOperator::PostInc; break;
281 case tok::minusminus: Opc = UnaryOperator::PostDec; break;
282 }
283 QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
284 if (result.isNull())
285 return true;
286 return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
287}
288
289Action::ExprResult Sema::
290ParseArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
291 ExprTy *Idx, SourceLocation RLoc) {
292 Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
293
294 // Perform default conversions.
295 DefaultFunctionArrayConversion(LHSExp);
296 DefaultFunctionArrayConversion(RHSExp);
297
298 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
299
300 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
301 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
302 // in the subscript position. As a result, we need to derive the array base
303 // and index from the expression types.
304 Expr *BaseExpr, *IndexExpr;
305 QualType ResultType;
Chris Lattner7931f4a2007-07-31 16:53:04 +0000306 if (const PointerType *PTy = LHSTy->getAsPointerType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000307 BaseExpr = LHSExp;
308 IndexExpr = RHSExp;
309 // FIXME: need to deal with const...
310 ResultType = PTy->getPointeeType();
Chris Lattner7931f4a2007-07-31 16:53:04 +0000311 } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000312 // Handle the uncommon case of "123[Ptr]".
313 BaseExpr = RHSExp;
314 IndexExpr = LHSExp;
315 // FIXME: need to deal with const...
316 ResultType = PTy->getPointeeType();
Chris Lattnere35a1042007-07-31 19:29:30 +0000317 } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
318 BaseExpr = LHSExp; // vectors: V[123]
Chris Lattner4b009652007-07-25 00:24:17 +0000319 IndexExpr = RHSExp;
Steve Naroff89345522007-08-03 22:40:33 +0000320
321 // Component access limited to variables (reject vec4.rg[1]).
322 if (!isa<DeclRefExpr>(BaseExpr))
323 return Diag(LLoc, diag::err_ocuvector_component_access,
324 SourceRange(LLoc, RLoc));
Chris Lattner4b009652007-07-25 00:24:17 +0000325 // FIXME: need to deal with const...
326 ResultType = VTy->getElementType();
327 } else {
328 return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
329 RHSExp->getSourceRange());
330 }
331 // C99 6.5.2.1p1
332 if (!IndexExpr->getType()->isIntegerType())
333 return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
334 IndexExpr->getSourceRange());
335
336 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice,
337 // the following check catches trying to index a pointer to a function (e.g.
338 // void (*)(int)). Functions are not objects in C99.
339 if (!ResultType->isObjectType())
340 return Diag(BaseExpr->getLocStart(),
341 diag::err_typecheck_subscript_not_object,
342 BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
343
344 return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
345}
346
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000347QualType Sema::
348CheckOCUVectorComponent(QualType baseType, SourceLocation OpLoc,
349 IdentifierInfo &CompName, SourceLocation CompLoc) {
Chris Lattnere35a1042007-07-31 19:29:30 +0000350 const OCUVectorType *vecType = baseType->getAsOCUVectorType();
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000351
352 // The vector accessor can't exceed the number of elements.
353 const char *compStr = CompName.getName();
354 if (strlen(compStr) > vecType->getNumElements()) {
355 Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
356 baseType.getAsString(), SourceRange(CompLoc));
357 return QualType();
358 }
359 // The component names must come from the same set.
Chris Lattner9096b792007-08-02 22:33:49 +0000360 if (vecType->getPointAccessorIdx(*compStr) != -1) {
361 do
362 compStr++;
363 while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
364 } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
365 do
366 compStr++;
367 while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
368 } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
369 do
370 compStr++;
371 while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
372 }
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000373
374 if (*compStr) {
375 // We didn't get to the end of the string. This means the component names
376 // didn't come from the same set *or* we encountered an illegal name.
377 Diag(OpLoc, diag::err_ocuvector_component_name_illegal,
378 std::string(compStr,compStr+1), SourceRange(CompLoc));
379 return QualType();
380 }
381 // Each component accessor can't exceed the vector type.
382 compStr = CompName.getName();
383 while (*compStr) {
384 if (vecType->isAccessorWithinNumElements(*compStr))
385 compStr++;
386 else
387 break;
388 }
389 if (*compStr) {
390 // We didn't get to the end of the string. This means a component accessor
391 // exceeds the number of elements in the vector.
392 Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
393 baseType.getAsString(), SourceRange(CompLoc));
394 return QualType();
395 }
396 // The component accessor looks fine - now we need to compute the actual type.
397 // The vector type is implied by the component accessor. For example,
398 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
399 unsigned CompSize = strlen(CompName.getName());
400 if (CompSize == 1)
401 return vecType->getElementType();
Steve Naroff82113e32007-07-29 16:33:31 +0000402
403 QualType VT = Context.getOCUVectorType(vecType->getElementType(), CompSize);
404 // Now look up the TypeDefDecl from the vector type. Without this,
405 // diagostics look bad. We want OCU vector types to appear built-in.
406 for (unsigned i = 0, e = OCUVectorDecls.size(); i != e; ++i) {
407 if (OCUVectorDecls[i]->getUnderlyingType() == VT)
408 return Context.getTypedefType(OCUVectorDecls[i]);
409 }
410 return VT; // should never get here (a typedef type should always be found).
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000411}
412
Chris Lattner4b009652007-07-25 00:24:17 +0000413Action::ExprResult Sema::
414ParseMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
415 tok::TokenKind OpKind, SourceLocation MemberLoc,
416 IdentifierInfo &Member) {
Steve Naroff2cb66382007-07-26 03:11:44 +0000417 Expr *BaseExpr = static_cast<Expr *>(Base);
418 assert(BaseExpr && "no record expression");
Chris Lattner4b009652007-07-25 00:24:17 +0000419
Steve Naroff2cb66382007-07-26 03:11:44 +0000420 QualType BaseType = BaseExpr->getType();
421 assert(!BaseType.isNull() && "no type for member expression");
Chris Lattner4b009652007-07-25 00:24:17 +0000422
Chris Lattner4b009652007-07-25 00:24:17 +0000423 if (OpKind == tok::arrow) {
Chris Lattner7931f4a2007-07-31 16:53:04 +0000424 if (const PointerType *PT = BaseType->getAsPointerType())
Steve Naroff2cb66382007-07-26 03:11:44 +0000425 BaseType = PT->getPointeeType();
426 else
427 return Diag(OpLoc, diag::err_typecheck_member_reference_arrow,
428 SourceRange(MemberLoc));
Chris Lattner4b009652007-07-25 00:24:17 +0000429 }
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000430 // The base type is either a record or an OCUVectorType.
Chris Lattnere35a1042007-07-31 19:29:30 +0000431 if (const RecordType *RTy = BaseType->getAsRecordType()) {
Steve Naroff2cb66382007-07-26 03:11:44 +0000432 RecordDecl *RDecl = RTy->getDecl();
433 if (RTy->isIncompleteType())
434 return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
435 BaseExpr->getSourceRange());
436 // The record definition is complete, now make sure the member is valid.
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000437 FieldDecl *MemberDecl = RDecl->getMember(&Member);
438 if (!MemberDecl)
Steve Naroff2cb66382007-07-26 03:11:44 +0000439 return Diag(OpLoc, diag::err_typecheck_no_member, Member.getName(),
440 SourceRange(MemberLoc));
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000441 return new MemberExpr(BaseExpr, OpKind==tok::arrow, MemberDecl, MemberLoc);
442 } else if (BaseType->isOCUVectorType() && OpKind == tok::period) {
Steve Naroff89345522007-08-03 22:40:33 +0000443 // Component access limited to variables (reject vec4.rg.g).
444 if (!isa<DeclRefExpr>(BaseExpr))
445 return Diag(OpLoc, diag::err_ocuvector_component_access,
446 SourceRange(MemberLoc));
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000447 QualType ret = CheckOCUVectorComponent(BaseType, OpLoc, Member, MemberLoc);
448 if (ret.isNull())
449 return true;
Chris Lattnera0d03a72007-08-03 17:31:20 +0000450 return new OCUVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
Steve Naroff2cb66382007-07-26 03:11:44 +0000451 } else
452 return Diag(OpLoc, diag::err_typecheck_member_reference_structUnion,
453 SourceRange(MemberLoc));
Chris Lattner4b009652007-07-25 00:24:17 +0000454}
455
456/// ParseCallExpr - Handle a call to Fn with the specified array of arguments.
457/// This provides the location of the left/right parens and a list of comma
458/// locations.
459Action::ExprResult Sema::
460ParseCallExpr(ExprTy *fn, SourceLocation LParenLoc,
461 ExprTy **args, unsigned NumArgsInCall,
462 SourceLocation *CommaLocs, SourceLocation RParenLoc) {
463 Expr *Fn = static_cast<Expr *>(fn);
464 Expr **Args = reinterpret_cast<Expr**>(args);
465 assert(Fn && "no function call expression");
466
467 UsualUnaryConversions(Fn);
468 QualType funcType = Fn->getType();
469
470 // C99 6.5.2.2p1 - "The expression that denotes the called function shall have
471 // type pointer to function".
Chris Lattner71225142007-07-31 21:27:01 +0000472 const PointerType *PT = funcType->getAsPointerType();
Chris Lattner4b009652007-07-25 00:24:17 +0000473 if (PT == 0)
474 return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
475 SourceRange(Fn->getLocStart(), RParenLoc));
476
Chris Lattner71225142007-07-31 21:27:01 +0000477 const FunctionType *funcT = PT->getPointeeType()->getAsFunctionType();
Chris Lattner4b009652007-07-25 00:24:17 +0000478 if (funcT == 0)
479 return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
480 SourceRange(Fn->getLocStart(), RParenLoc));
481
482 // If a prototype isn't declared, the parser implicitly defines a func decl
483 QualType resultType = funcT->getResultType();
484
485 if (const FunctionTypeProto *proto = dyn_cast<FunctionTypeProto>(funcT)) {
486 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
487 // assignment, to the types of the corresponding parameter, ...
488
489 unsigned NumArgsInProto = proto->getNumArgs();
490 unsigned NumArgsToCheck = NumArgsInCall;
491
492 if (NumArgsInCall < NumArgsInProto)
493 Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
494 Fn->getSourceRange());
495 else if (NumArgsInCall > NumArgsInProto) {
496 if (!proto->isVariadic()) {
497 Diag(Args[NumArgsInProto]->getLocStart(),
498 diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
499 SourceRange(Args[NumArgsInProto]->getLocStart(),
500 Args[NumArgsInCall-1]->getLocEnd()));
501 }
502 NumArgsToCheck = NumArgsInProto;
503 }
504 // Continue to check argument types (even if we have too few/many args).
505 for (unsigned i = 0; i < NumArgsToCheck; i++) {
506 Expr *argExpr = Args[i];
507 assert(argExpr && "ParseCallExpr(): missing argument expression");
508
509 QualType lhsType = proto->getArgType(i);
510 QualType rhsType = argExpr->getType();
511
Steve Naroff75644062007-07-25 20:45:33 +0000512 // If necessary, apply function/array conversion. C99 6.7.5.3p[7,8].
Chris Lattnere35a1042007-07-31 19:29:30 +0000513 if (const ArrayType *ary = lhsType->getAsArrayType())
Chris Lattner4b009652007-07-25 00:24:17 +0000514 lhsType = Context.getPointerType(ary->getElementType());
Steve Naroff75644062007-07-25 20:45:33 +0000515 else if (lhsType->isFunctionType())
Chris Lattner4b009652007-07-25 00:24:17 +0000516 lhsType = Context.getPointerType(lhsType);
517
518 AssignmentCheckResult result = CheckSingleAssignmentConstraints(lhsType,
519 argExpr);
520 SourceLocation l = argExpr->getLocStart();
521
522 // decode the result (notice that AST's are still created for extensions).
523 switch (result) {
524 case Compatible:
525 break;
526 case PointerFromInt:
527 // check for null pointer constant (C99 6.3.2.3p3)
528 if (!argExpr->isNullPointerConstant(Context)) {
529 Diag(l, diag::ext_typecheck_passing_pointer_int,
530 lhsType.getAsString(), rhsType.getAsString(),
531 Fn->getSourceRange(), argExpr->getSourceRange());
532 }
533 break;
534 case IntFromPointer:
535 Diag(l, diag::ext_typecheck_passing_pointer_int,
536 lhsType.getAsString(), rhsType.getAsString(),
537 Fn->getSourceRange(), argExpr->getSourceRange());
538 break;
539 case IncompatiblePointer:
540 Diag(l, diag::ext_typecheck_passing_incompatible_pointer,
541 rhsType.getAsString(), lhsType.getAsString(),
542 Fn->getSourceRange(), argExpr->getSourceRange());
543 break;
544 case CompatiblePointerDiscardsQualifiers:
545 Diag(l, diag::ext_typecheck_passing_discards_qualifiers,
546 rhsType.getAsString(), lhsType.getAsString(),
547 Fn->getSourceRange(), argExpr->getSourceRange());
548 break;
549 case Incompatible:
550 return Diag(l, diag::err_typecheck_passing_incompatible,
551 rhsType.getAsString(), lhsType.getAsString(),
552 Fn->getSourceRange(), argExpr->getSourceRange());
553 }
554 }
555 // Even if the types checked, bail if we had the wrong number of arguments.
556 if (NumArgsInCall != NumArgsInProto && !proto->isVariadic())
557 return true;
558 }
Chris Lattner2e64c072007-08-10 20:18:51 +0000559
560 // Do special checking on direct calls to functions.
561 if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
562 if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
563 if (FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl()))
Ted Kremenek081ed872007-08-14 17:39:48 +0000564 CheckFunctionCall(Fn, LParenLoc, RParenLoc, FDecl, Args, NumArgsInCall);
Chris Lattner2e64c072007-08-10 20:18:51 +0000565
Chris Lattner4b009652007-07-25 00:24:17 +0000566 return new CallExpr(Fn, Args, NumArgsInCall, resultType, RParenLoc);
567}
568
569Action::ExprResult Sema::
570ParseCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
571 SourceLocation RParenLoc, ExprTy *InitExpr) {
572 assert((Ty != 0) && "ParseCompoundLiteral(): missing type");
573 QualType literalType = QualType::getFromOpaquePtr(Ty);
574 // FIXME: put back this assert when initializers are worked out.
575 //assert((InitExpr != 0) && "ParseCompoundLiteral(): missing expression");
576 Expr *literalExpr = static_cast<Expr*>(InitExpr);
577
578 // FIXME: add semantic analysis (C99 6.5.2.5).
579 return new CompoundLiteralExpr(literalType, literalExpr);
580}
581
582Action::ExprResult Sema::
583ParseInitList(SourceLocation LParenLoc, ExprTy **InitList, unsigned NumInit,
584 SourceLocation RParenLoc) {
585 // FIXME: add semantic analysis (C99 6.7.8). This involves
586 // knowledge of the object being intialized. As a result, the code for
587 // doing the semantic analysis will likely be located elsewhere (i.e. in
588 // consumers of InitListExpr (e.g. ParseDeclarator, ParseCompoundLiteral).
589 return false; // FIXME instantiate an InitListExpr.
590}
591
592Action::ExprResult Sema::
593ParseCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
594 SourceLocation RParenLoc, ExprTy *Op) {
595 assert((Ty != 0) && (Op != 0) && "ParseCastExpr(): missing type or expr");
596
597 Expr *castExpr = static_cast<Expr*>(Op);
598 QualType castType = QualType::getFromOpaquePtr(Ty);
599
600 // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
601 // type needs to be scalar.
602 if (!castType->isScalarType() && !castType->isVoidType()) {
603 return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar,
604 castType.getAsString(), SourceRange(LParenLoc, RParenLoc));
605 }
606 if (!castExpr->getType()->isScalarType()) {
607 return Diag(castExpr->getLocStart(),
608 diag::err_typecheck_expect_scalar_operand,
609 castExpr->getType().getAsString(), castExpr->getSourceRange());
610 }
611 return new CastExpr(castType, castExpr, LParenLoc);
612}
613
614inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
615 Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
616 UsualUnaryConversions(cond);
617 UsualUnaryConversions(lex);
618 UsualUnaryConversions(rex);
619 QualType condT = cond->getType();
620 QualType lexT = lex->getType();
621 QualType rexT = rex->getType();
622
623 // first, check the condition.
624 if (!condT->isScalarType()) { // C99 6.5.15p2
625 Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
626 condT.getAsString());
627 return QualType();
628 }
629 // now check the two expressions.
630 if (lexT->isArithmeticType() && rexT->isArithmeticType()) { // C99 6.5.15p3,5
631 UsualArithmeticConversions(lex, rex);
632 return lex->getType();
633 }
Chris Lattner71225142007-07-31 21:27:01 +0000634 if (const RecordType *LHSRT = lexT->getAsRecordType()) { // C99 6.5.15p3
635 if (const RecordType *RHSRT = rexT->getAsRecordType()) {
636
637 if (LHSRT->getDecl()->getIdentifier() ==RHSRT->getDecl()->getIdentifier())
638 return lexT;
639
Chris Lattner4b009652007-07-25 00:24:17 +0000640 Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
641 lexT.getAsString(), rexT.getAsString(),
642 lex->getSourceRange(), rex->getSourceRange());
643 return QualType();
644 }
645 }
646 // C99 6.5.15p3
647 if (lexT->isPointerType() && rex->isNullPointerConstant(Context))
648 return lexT;
649 if (rexT->isPointerType() && lex->isNullPointerConstant(Context))
650 return rexT;
651
Chris Lattner71225142007-07-31 21:27:01 +0000652 if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
653 if (const PointerType *RHSPT = rexT->getAsPointerType()) {
654 // get the "pointed to" types
655 QualType lhptee = LHSPT->getPointeeType();
656 QualType rhptee = RHSPT->getPointeeType();
Chris Lattner4b009652007-07-25 00:24:17 +0000657
Chris Lattner71225142007-07-31 21:27:01 +0000658 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
659 if (lhptee->isVoidType() &&
660 (rhptee->isObjectType() || rhptee->isIncompleteType()))
661 return lexT;
662 if (rhptee->isVoidType() &&
663 (lhptee->isObjectType() || lhptee->isIncompleteType()))
664 return rexT;
Chris Lattner4b009652007-07-25 00:24:17 +0000665
Chris Lattner71225142007-07-31 21:27:01 +0000666 if (!Type::typesAreCompatible(lhptee.getUnqualifiedType(),
667 rhptee.getUnqualifiedType())) {
668 Diag(questionLoc, diag::ext_typecheck_cond_incompatible_pointers,
669 lexT.getAsString(), rexT.getAsString(),
670 lex->getSourceRange(), rex->getSourceRange());
671 return lexT; // FIXME: this is an _ext - is this return o.k?
672 }
673 // The pointer types are compatible.
674 // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
675 // differently qualified versions of compatible types, the result type is a
676 // pointer to an appropriately qualified version of the *composite* type.
677 return lexT; // FIXME: Need to return the composite type.
Chris Lattner4b009652007-07-25 00:24:17 +0000678 }
Chris Lattner4b009652007-07-25 00:24:17 +0000679 }
Chris Lattner71225142007-07-31 21:27:01 +0000680
Chris Lattner4b009652007-07-25 00:24:17 +0000681 if (lexT->isVoidType() && rexT->isVoidType()) // C99 6.5.15p3
682 return lexT;
683
684 Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
685 lexT.getAsString(), rexT.getAsString(),
686 lex->getSourceRange(), rex->getSourceRange());
687 return QualType();
688}
689
690/// ParseConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
691/// in the case of a the GNU conditional expr extension.
692Action::ExprResult Sema::ParseConditionalOp(SourceLocation QuestionLoc,
693 SourceLocation ColonLoc,
694 ExprTy *Cond, ExprTy *LHS,
695 ExprTy *RHS) {
696 Expr *CondExpr = (Expr *) Cond;
697 Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
698 QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
699 RHSExpr, QuestionLoc);
700 if (result.isNull())
701 return true;
702 return new ConditionalOperator(CondExpr, LHSExpr, RHSExpr, result);
703}
704
705// promoteExprToType - a helper function to ensure we create exactly one
706// ImplicitCastExpr. As a convenience (to the caller), we return the type.
707static void promoteExprToType(Expr *&expr, QualType type) {
708 if (ImplicitCastExpr *impCast = dyn_cast<ImplicitCastExpr>(expr))
709 impCast->setType(type);
710 else
711 expr = new ImplicitCastExpr(type, expr);
712 return;
713}
714
715/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
716void Sema::DefaultFunctionArrayConversion(Expr *&e) {
717 QualType t = e->getType();
718 assert(!t.isNull() && "DefaultFunctionArrayConversion - missing type");
719
Chris Lattnerf0c4a0a2007-07-31 16:56:34 +0000720 if (const ReferenceType *ref = t->getAsReferenceType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000721 promoteExprToType(e, ref->getReferenceeType()); // C++ [expr]
722 t = e->getType();
723 }
724 if (t->isFunctionType())
725 promoteExprToType(e, Context.getPointerType(t));
Chris Lattnere35a1042007-07-31 19:29:30 +0000726 else if (const ArrayType *ary = t->getAsArrayType())
Chris Lattner4b009652007-07-25 00:24:17 +0000727 promoteExprToType(e, Context.getPointerType(ary->getElementType()));
728}
729
730/// UsualUnaryConversion - Performs various conversions that are common to most
731/// operators (C99 6.3). The conversions of array and function types are
732/// sometimes surpressed. For example, the array->pointer conversion doesn't
733/// apply if the array is an argument to the sizeof or address (&) operators.
734/// In these instances, this routine should *not* be called.
735void Sema::UsualUnaryConversions(Expr *&expr) {
736 QualType t = expr->getType();
737 assert(!t.isNull() && "UsualUnaryConversions - missing type");
738
Chris Lattnerf0c4a0a2007-07-31 16:56:34 +0000739 if (const ReferenceType *ref = t->getAsReferenceType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000740 promoteExprToType(expr, ref->getReferenceeType()); // C++ [expr]
741 t = expr->getType();
742 }
743 if (t->isPromotableIntegerType()) // C99 6.3.1.1p2
744 promoteExprToType(expr, Context.IntTy);
745 else
746 DefaultFunctionArrayConversion(expr);
747}
748
749/// UsualArithmeticConversions - Performs various conversions that are common to
750/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
751/// routine returns the first non-arithmetic type found. The client is
752/// responsible for emitting appropriate error diagnostics.
753void Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr) {
754 UsualUnaryConversions(lhsExpr);
755 UsualUnaryConversions(rhsExpr);
756
757 QualType lhs = lhsExpr->getType();
758 QualType rhs = rhsExpr->getType();
759
760 // If both types are identical, no conversion is needed.
761 if (lhs == rhs)
762 return;
763
764 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
765 // The caller can deal with this (e.g. pointer + int).
766 if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
767 return;
768
769 // At this point, we have two different arithmetic types.
770
771 // Handle complex types first (C99 6.3.1.8p1).
772 if (lhs->isComplexType() || rhs->isComplexType()) {
773 // if we have an integer operand, the result is the complex type.
774 if (rhs->isIntegerType()) { // convert the rhs to the lhs complex type.
775 promoteExprToType(rhsExpr, lhs);
776 return;
777 }
778 if (lhs->isIntegerType()) { // convert the lhs to the rhs complex type.
779 promoteExprToType(lhsExpr, rhs);
780 return;
781 }
782 // Two complex types. Convert the smaller operand to the bigger result.
783 if (Context.maxComplexType(lhs, rhs) == lhs) { // convert the rhs
784 promoteExprToType(rhsExpr, lhs);
785 return;
786 }
787 promoteExprToType(lhsExpr, rhs); // convert the lhs
788 return;
789 }
790 // Now handle "real" floating types (i.e. float, double, long double).
791 if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
792 // if we have an integer operand, the result is the real floating type.
793 if (rhs->isIntegerType()) { // convert rhs to the lhs floating point type.
794 promoteExprToType(rhsExpr, lhs);
795 return;
796 }
797 if (lhs->isIntegerType()) { // convert lhs to the rhs floating point type.
798 promoteExprToType(lhsExpr, rhs);
799 return;
800 }
801 // We have two real floating types, float/complex combos were handled above.
802 // Convert the smaller operand to the bigger result.
803 if (Context.maxFloatingType(lhs, rhs) == lhs) { // convert the rhs
804 promoteExprToType(rhsExpr, lhs);
805 return;
806 }
807 promoteExprToType(lhsExpr, rhs); // convert the lhs
808 return;
809 }
810 // Finally, we have two differing integer types.
811 if (Context.maxIntegerType(lhs, rhs) == lhs) { // convert the rhs
812 promoteExprToType(rhsExpr, lhs);
813 return;
814 }
815 promoteExprToType(lhsExpr, rhs); // convert the lhs
816 return;
817}
818
819// CheckPointerTypesForAssignment - This is a very tricky routine (despite
820// being closely modeled after the C99 spec:-). The odd characteristic of this
821// routine is it effectively iqnores the qualifiers on the top level pointee.
822// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
823// FIXME: add a couple examples in this comment.
824Sema::AssignmentCheckResult
825Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
826 QualType lhptee, rhptee;
827
828 // get the "pointed to" type (ignoring qualifiers at the top level)
Chris Lattner71225142007-07-31 21:27:01 +0000829 lhptee = lhsType->getAsPointerType()->getPointeeType();
830 rhptee = rhsType->getAsPointerType()->getPointeeType();
Chris Lattner4b009652007-07-25 00:24:17 +0000831
832 // make sure we operate on the canonical type
833 lhptee = lhptee.getCanonicalType();
834 rhptee = rhptee.getCanonicalType();
835
836 AssignmentCheckResult r = Compatible;
837
838 // C99 6.5.16.1p1: This following citation is common to constraints
839 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
840 // qualifiers of the type *pointed to* by the right;
841 if ((lhptee.getQualifiers() & rhptee.getQualifiers()) !=
842 rhptee.getQualifiers())
843 r = CompatiblePointerDiscardsQualifiers;
844
845 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
846 // incomplete type and the other is a pointer to a qualified or unqualified
847 // version of void...
848 if (lhptee.getUnqualifiedType()->isVoidType() &&
849 (rhptee->isObjectType() || rhptee->isIncompleteType()))
850 ;
851 else if (rhptee.getUnqualifiedType()->isVoidType() &&
852 (lhptee->isObjectType() || lhptee->isIncompleteType()))
853 ;
854 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
855 // unqualified versions of compatible types, ...
856 else if (!Type::typesAreCompatible(lhptee.getUnqualifiedType(),
857 rhptee.getUnqualifiedType()))
858 r = IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
859 return r;
860}
861
862/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
863/// has code to accommodate several GCC extensions when type checking
864/// pointers. Here are some objectionable examples that GCC considers warnings:
865///
866/// int a, *pint;
867/// short *pshort;
868/// struct foo *pfoo;
869///
870/// pint = pshort; // warning: assignment from incompatible pointer type
871/// a = pint; // warning: assignment makes integer from pointer without a cast
872/// pint = a; // warning: assignment makes pointer from integer without a cast
873/// pint = pfoo; // warning: assignment from incompatible pointer type
874///
875/// As a result, the code for dealing with pointers is more complex than the
876/// C99 spec dictates.
877/// Note: the warning above turn into errors when -pedantic-errors is enabled.
878///
879Sema::AssignmentCheckResult
880Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
881 if (lhsType == rhsType) // common case, fast path...
882 return Compatible;
883
884 if (lhsType->isArithmeticType() && rhsType->isArithmeticType()) {
885 if (lhsType->isVectorType() || rhsType->isVectorType()) {
886 if (lhsType.getCanonicalType() != rhsType.getCanonicalType())
887 return Incompatible;
888 }
889 return Compatible;
890 } else if (lhsType->isPointerType()) {
891 if (rhsType->isIntegerType())
892 return PointerFromInt;
893
894 if (rhsType->isPointerType())
895 return CheckPointerTypesForAssignment(lhsType, rhsType);
896 } else if (rhsType->isPointerType()) {
897 // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
898 if ((lhsType->isIntegerType()) && (lhsType != Context.BoolTy))
899 return IntFromPointer;
900
901 if (lhsType->isPointerType())
902 return CheckPointerTypesForAssignment(lhsType, rhsType);
903 } else if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
904 if (Type::tagTypesAreCompatible(lhsType, rhsType))
905 return Compatible;
906 } else if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
907 if (Type::referenceTypesAreCompatible(lhsType, rhsType))
908 return Compatible;
909 }
910 return Incompatible;
911}
912
913Sema::AssignmentCheckResult
914Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
915 // This check seems unnatural, however it is necessary to insure the proper
916 // conversion of functions/arrays. If the conversion were done for all
917 // DeclExpr's (created by ParseIdentifierExpr), it would mess up the unary
918 // expressions that surpress this implicit conversion (&, sizeof).
919 DefaultFunctionArrayConversion(rExpr);
920
921 return CheckAssignmentConstraints(lhsType, rExpr->getType());
922}
923
924Sema::AssignmentCheckResult
925Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
926 return CheckAssignmentConstraints(lhsType, rhsType);
927}
928
929inline void Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
930 Diag(loc, diag::err_typecheck_invalid_operands,
931 lex->getType().getAsString(), rex->getType().getAsString(),
932 lex->getSourceRange(), rex->getSourceRange());
933}
934
935inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
936 Expr *&rex) {
937 QualType lhsType = lex->getType(), rhsType = rex->getType();
938
939 // make sure the vector types are identical.
940 if (lhsType == rhsType)
941 return lhsType;
942 // You cannot convert between vector values of different size.
943 Diag(loc, diag::err_typecheck_vector_not_convertable,
944 lex->getType().getAsString(), rex->getType().getAsString(),
945 lex->getSourceRange(), rex->getSourceRange());
946 return QualType();
947}
948
949inline QualType Sema::CheckMultiplyDivideOperands(
950 Expr *&lex, Expr *&rex, SourceLocation loc)
951{
952 QualType lhsType = lex->getType(), rhsType = rex->getType();
953
954 if (lhsType->isVectorType() || rhsType->isVectorType())
955 return CheckVectorOperands(loc, lex, rex);
956
957 UsualArithmeticConversions(lex, rex);
958
959 // handle the common case first (both operands are arithmetic).
960 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
961 return lex->getType();
962 InvalidOperands(loc, lex, rex);
963 return QualType();
964}
965
966inline QualType Sema::CheckRemainderOperands(
967 Expr *&lex, Expr *&rex, SourceLocation loc)
968{
969 QualType lhsType = lex->getType(), rhsType = rex->getType();
970
971 UsualArithmeticConversions(lex, rex);
972
973 // handle the common case first (both operands are arithmetic).
974 if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
975 return lex->getType();
976 InvalidOperands(loc, lex, rex);
977 return QualType();
978}
979
980inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
981 Expr *&lex, Expr *&rex, SourceLocation loc)
982{
983 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
984 return CheckVectorOperands(loc, lex, rex);
985
986 UsualArithmeticConversions(lex, rex);
987
988 // handle the common case first (both operands are arithmetic).
989 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
990 return lex->getType();
991
992 if (lex->getType()->isPointerType() && rex->getType()->isIntegerType())
993 return lex->getType();
994 if (lex->getType()->isIntegerType() && rex->getType()->isPointerType())
995 return rex->getType();
996 InvalidOperands(loc, lex, rex);
997 return QualType();
998}
999
1000inline QualType Sema::CheckSubtractionOperands( // C99 6.5.6
1001 Expr *&lex, Expr *&rex, SourceLocation loc)
1002{
1003 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1004 return CheckVectorOperands(loc, lex, rex);
1005
1006 UsualArithmeticConversions(lex, rex);
1007
1008 // handle the common case first (both operands are arithmetic).
1009 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1010 return lex->getType();
1011
1012 if (lex->getType()->isPointerType() && rex->getType()->isIntegerType())
1013 return lex->getType();
1014 if (lex->getType()->isPointerType() && rex->getType()->isPointerType())
1015 return Context.getPointerDiffType();
1016 InvalidOperands(loc, lex, rex);
1017 return QualType();
1018}
1019
1020inline QualType Sema::CheckShiftOperands( // C99 6.5.7
1021 Expr *&lex, Expr *&rex, SourceLocation loc)
1022{
1023 // FIXME: Shifts don't perform usual arithmetic conversions. This is wrong
1024 // for int << longlong -> the result type should be int, not long long.
1025 UsualArithmeticConversions(lex, rex);
1026
1027 // handle the common case first (both operands are arithmetic).
1028 if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1029 return lex->getType();
1030 InvalidOperands(loc, lex, rex);
1031 return QualType();
1032}
1033
1034inline QualType Sema::CheckRelationalOperands( // C99 6.5.8
1035 Expr *&lex, Expr *&rex, SourceLocation loc)
1036{
Steve Naroffecc4fa12007-08-10 18:26:40 +00001037 // C99 6.5.8p3
1038 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1039 UsualArithmeticConversions(lex, rex);
1040 else {
1041 UsualUnaryConversions(lex);
1042 UsualUnaryConversions(rex);
1043 }
Chris Lattner4b009652007-07-25 00:24:17 +00001044 QualType lType = lex->getType();
1045 QualType rType = rex->getType();
1046
1047 if (lType->isRealType() && rType->isRealType())
1048 return Context.IntTy;
1049
Steve Naroff4462cb02007-08-16 21:48:38 +00001050 // All of the following pointer related warnings are GCC extensions. One
1051 // day, we can consider making them errors (when -pedantic-errors is enabled).
1052 if (lType->isPointerType() && rType->isPointerType()) {
1053 if (!Type::pointerTypesAreCompatible(lType, rType)) {
1054 Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
1055 lType.getAsString(), rType.getAsString(),
1056 lex->getSourceRange(), rex->getSourceRange());
1057 promoteExprToType(rex, lType); // promote the pointer to pointer
Chris Lattner4b009652007-07-25 00:24:17 +00001058 }
Steve Naroff4462cb02007-08-16 21:48:38 +00001059 return Context.IntTy;
1060 }
1061 if (lType->isPointerType() && rType->isIntegerType()) {
1062 if (!rex->isNullPointerConstant(Context)) {
1063 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1064 lType.getAsString(), rType.getAsString(),
1065 lex->getSourceRange(), rex->getSourceRange());
1066 promoteExprToType(rex, lType); // promote the integer to pointer
Chris Lattner4b009652007-07-25 00:24:17 +00001067 }
Steve Naroff4462cb02007-08-16 21:48:38 +00001068 return Context.IntTy;
1069 }
1070 if (lType->isIntegerType() && rType->isPointerType()) {
1071 if (!lex->isNullPointerConstant(Context)) {
1072 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1073 lType.getAsString(), rType.getAsString(),
1074 lex->getSourceRange(), rex->getSourceRange());
1075 promoteExprToType(lex, rType); // promote the integer to pointer
1076 }
1077 return Context.IntTy;
Chris Lattner4b009652007-07-25 00:24:17 +00001078 }
1079 InvalidOperands(loc, lex, rex);
1080 return QualType();
1081}
1082
1083inline QualType Sema::CheckEqualityOperands( // C99 6.5.9
1084 Expr *&lex, Expr *&rex, SourceLocation loc)
1085{
Steve Naroffecc4fa12007-08-10 18:26:40 +00001086 // C99 6.5.9p4
1087 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1088 UsualArithmeticConversions(lex, rex);
1089 else {
1090 UsualUnaryConversions(lex);
1091 UsualUnaryConversions(rex);
1092 }
Chris Lattner4b009652007-07-25 00:24:17 +00001093 QualType lType = lex->getType();
1094 QualType rType = rex->getType();
1095
1096 if (lType->isArithmeticType() && rType->isArithmeticType())
1097 return Context.IntTy;
1098
Steve Naroff4462cb02007-08-16 21:48:38 +00001099 // All of the following pointer related warnings are GCC extensions. One
1100 // day, we can consider making them errors (when -pedantic-errors is enabled).
1101 if (lType->isPointerType() && rType->isPointerType()) {
1102 if (!Type::pointerTypesAreCompatible(lType, rType)) {
1103 Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
1104 lType.getAsString(), rType.getAsString(),
1105 lex->getSourceRange(), rex->getSourceRange());
1106 promoteExprToType(rex, lType); // promote the pointer to pointer
Chris Lattner4b009652007-07-25 00:24:17 +00001107 }
Steve Naroff4462cb02007-08-16 21:48:38 +00001108 return Context.IntTy;
1109 }
1110 if (lType->isPointerType() && rType->isIntegerType()) {
1111 if (!rex->isNullPointerConstant(Context)) {
1112 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1113 lType.getAsString(), rType.getAsString(),
1114 lex->getSourceRange(), rex->getSourceRange());
1115 promoteExprToType(rex, lType); // promote the integer to pointer
Chris Lattner4b009652007-07-25 00:24:17 +00001116 }
Steve Naroff4462cb02007-08-16 21:48:38 +00001117 return Context.IntTy;
1118 }
1119 if (lType->isIntegerType() && rType->isPointerType()) {
1120 if (!lex->isNullPointerConstant(Context)) {
1121 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1122 lType.getAsString(), rType.getAsString(),
1123 lex->getSourceRange(), rex->getSourceRange());
1124 promoteExprToType(lex, rType); // promote the integer to pointer
1125 }
1126 return Context.IntTy;
Chris Lattner4b009652007-07-25 00:24:17 +00001127 }
1128 InvalidOperands(loc, lex, rex);
1129 return QualType();
1130}
1131
1132inline QualType Sema::CheckBitwiseOperands(
1133 Expr *&lex, Expr *&rex, SourceLocation loc)
1134{
1135 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1136 return CheckVectorOperands(loc, lex, rex);
1137
1138 UsualArithmeticConversions(lex, rex);
1139
1140 if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1141 return lex->getType();
1142 InvalidOperands(loc, lex, rex);
1143 return QualType();
1144}
1145
1146inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
1147 Expr *&lex, Expr *&rex, SourceLocation loc)
1148{
1149 UsualUnaryConversions(lex);
1150 UsualUnaryConversions(rex);
1151
1152 if (lex->getType()->isScalarType() || rex->getType()->isScalarType())
1153 return Context.IntTy;
1154 InvalidOperands(loc, lex, rex);
1155 return QualType();
1156}
1157
1158inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
1159 Expr *lex, Expr *rex, SourceLocation loc, QualType compoundType)
1160{
1161 QualType lhsType = lex->getType();
1162 QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
1163 bool hadError = false;
1164 Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue();
1165
1166 switch (mlval) { // C99 6.5.16p2
1167 case Expr::MLV_Valid:
1168 break;
1169 case Expr::MLV_ConstQualified:
1170 Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
1171 hadError = true;
1172 break;
1173 case Expr::MLV_ArrayType:
1174 Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
1175 lhsType.getAsString(), lex->getSourceRange());
1176 return QualType();
1177 case Expr::MLV_NotObjectType:
1178 Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
1179 lhsType.getAsString(), lex->getSourceRange());
1180 return QualType();
1181 case Expr::MLV_InvalidExpression:
1182 Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
1183 lex->getSourceRange());
1184 return QualType();
1185 case Expr::MLV_IncompleteType:
1186 case Expr::MLV_IncompleteVoidType:
1187 Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
1188 lhsType.getAsString(), lex->getSourceRange());
1189 return QualType();
Steve Naroffba67f692007-07-30 03:29:09 +00001190 case Expr::MLV_DuplicateVectorComponents:
1191 Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
1192 lex->getSourceRange());
1193 return QualType();
Chris Lattner4b009652007-07-25 00:24:17 +00001194 }
1195 AssignmentCheckResult result;
1196
1197 if (compoundType.isNull())
1198 result = CheckSingleAssignmentConstraints(lhsType, rex);
1199 else
1200 result = CheckCompoundAssignmentConstraints(lhsType, rhsType);
Steve Naroff7cbb1462007-07-31 12:34:36 +00001201
Chris Lattner4b009652007-07-25 00:24:17 +00001202 // decode the result (notice that extensions still return a type).
1203 switch (result) {
1204 case Compatible:
1205 break;
1206 case Incompatible:
1207 Diag(loc, diag::err_typecheck_assign_incompatible,
1208 lhsType.getAsString(), rhsType.getAsString(),
1209 lex->getSourceRange(), rex->getSourceRange());
1210 hadError = true;
1211 break;
1212 case PointerFromInt:
1213 // check for null pointer constant (C99 6.3.2.3p3)
1214 if (compoundType.isNull() && !rex->isNullPointerConstant(Context)) {
1215 Diag(loc, diag::ext_typecheck_assign_pointer_int,
1216 lhsType.getAsString(), rhsType.getAsString(),
1217 lex->getSourceRange(), rex->getSourceRange());
1218 }
1219 break;
1220 case IntFromPointer:
1221 Diag(loc, diag::ext_typecheck_assign_pointer_int,
1222 lhsType.getAsString(), rhsType.getAsString(),
1223 lex->getSourceRange(), rex->getSourceRange());
1224 break;
1225 case IncompatiblePointer:
1226 Diag(loc, diag::ext_typecheck_assign_incompatible_pointer,
1227 lhsType.getAsString(), rhsType.getAsString(),
1228 lex->getSourceRange(), rex->getSourceRange());
1229 break;
1230 case CompatiblePointerDiscardsQualifiers:
1231 Diag(loc, diag::ext_typecheck_assign_discards_qualifiers,
1232 lhsType.getAsString(), rhsType.getAsString(),
1233 lex->getSourceRange(), rex->getSourceRange());
1234 break;
1235 }
1236 // C99 6.5.16p3: The type of an assignment expression is the type of the
1237 // left operand unless the left operand has qualified type, in which case
1238 // it is the unqualified version of the type of the left operand.
1239 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
1240 // is converted to the type of the assignment expression (above).
1241 // C++ 5.17p1: the type of the assignment expression is that of its left oprdu.
1242 return hadError ? QualType() : lhsType.getUnqualifiedType();
1243}
1244
1245inline QualType Sema::CheckCommaOperands( // C99 6.5.17
1246 Expr *&lex, Expr *&rex, SourceLocation loc) {
1247 UsualUnaryConversions(rex);
1248 return rex->getType();
1249}
1250
1251/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
1252/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
1253QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
1254 QualType resType = op->getType();
1255 assert(!resType.isNull() && "no type for increment/decrement expression");
1256
1257 // C99 6.5.2.4p1
1258 if (const PointerType *pt = dyn_cast<PointerType>(resType)) {
1259 if (!pt->getPointeeType()->isObjectType()) { // C99 6.5.2.4p2, 6.5.6p2
1260 Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
1261 resType.getAsString(), op->getSourceRange());
1262 return QualType();
1263 }
1264 } else if (!resType->isRealType()) {
1265 // FIXME: Allow Complex as a GCC extension.
1266 Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
1267 resType.getAsString(), op->getSourceRange());
1268 return QualType();
1269 }
1270 // At this point, we know we have a real or pointer type. Now make sure
1271 // the operand is a modifiable lvalue.
1272 Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue();
1273 if (mlval != Expr::MLV_Valid) {
1274 // FIXME: emit a more precise diagnostic...
1275 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
1276 op->getSourceRange());
1277 return QualType();
1278 }
1279 return resType;
1280}
1281
1282/// getPrimaryDeclaration - Helper function for CheckAddressOfOperand().
1283/// This routine allows us to typecheck complex/recursive expressions
1284/// where the declaration is needed for type checking. Here are some
1285/// examples: &s.xx, &s.zz[1].yy, &(1+2), &(XX), &"123"[2].
1286static Decl *getPrimaryDeclaration(Expr *e) {
1287 switch (e->getStmtClass()) {
1288 case Stmt::DeclRefExprClass:
1289 return cast<DeclRefExpr>(e)->getDecl();
1290 case Stmt::MemberExprClass:
1291 return getPrimaryDeclaration(cast<MemberExpr>(e)->getBase());
1292 case Stmt::ArraySubscriptExprClass:
1293 return getPrimaryDeclaration(cast<ArraySubscriptExpr>(e)->getBase());
1294 case Stmt::CallExprClass:
1295 return getPrimaryDeclaration(cast<CallExpr>(e)->getCallee());
1296 case Stmt::UnaryOperatorClass:
1297 return getPrimaryDeclaration(cast<UnaryOperator>(e)->getSubExpr());
1298 case Stmt::ParenExprClass:
1299 return getPrimaryDeclaration(cast<ParenExpr>(e)->getSubExpr());
1300 default:
1301 return 0;
1302 }
1303}
1304
1305/// CheckAddressOfOperand - The operand of & must be either a function
1306/// designator or an lvalue designating an object. If it is an lvalue, the
1307/// object cannot be declared with storage class register or be a bit field.
1308/// Note: The usual conversions are *not* applied to the operand of the &
1309/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
1310QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
1311 Decl *dcl = getPrimaryDeclaration(op);
1312 Expr::isLvalueResult lval = op->isLvalue();
1313
1314 if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
1315 if (dcl && isa<FunctionDecl>(dcl)) // allow function designators
1316 ;
1317 else { // FIXME: emit more specific diag...
1318 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
1319 op->getSourceRange());
1320 return QualType();
1321 }
1322 } else if (dcl) {
1323 // We have an lvalue with a decl. Make sure the decl is not declared
1324 // with the register storage-class specifier.
1325 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
1326 if (vd->getStorageClass() == VarDecl::Register) {
1327 Diag(OpLoc, diag::err_typecheck_address_of_register,
1328 op->getSourceRange());
1329 return QualType();
1330 }
1331 } else
1332 assert(0 && "Unknown/unexpected decl type");
1333
1334 // FIXME: add check for bitfields!
1335 }
1336 // If the operand has type "type", the result has type "pointer to type".
1337 return Context.getPointerType(op->getType());
1338}
1339
1340QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
1341 UsualUnaryConversions(op);
1342 QualType qType = op->getType();
1343
Chris Lattner7931f4a2007-07-31 16:53:04 +00001344 if (const PointerType *PT = qType->getAsPointerType()) {
Chris Lattner4b009652007-07-25 00:24:17 +00001345 QualType ptype = PT->getPointeeType();
1346 // C99 6.5.3.2p4. "if it points to an object,...".
1347 if (ptype->isIncompleteType()) { // An incomplete type is not an object
1348 // GCC compat: special case 'void *' (treat as warning).
1349 if (ptype->isVoidType()) {
1350 Diag(OpLoc, diag::ext_typecheck_deref_ptr_to_void,
1351 qType.getAsString(), op->getSourceRange());
1352 } else {
1353 Diag(OpLoc, diag::err_typecheck_deref_incomplete_type,
1354 ptype.getAsString(), op->getSourceRange());
1355 return QualType();
1356 }
1357 }
1358 return ptype;
1359 }
1360 Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
1361 qType.getAsString(), op->getSourceRange());
1362 return QualType();
1363}
1364
1365static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
1366 tok::TokenKind Kind) {
1367 BinaryOperator::Opcode Opc;
1368 switch (Kind) {
1369 default: assert(0 && "Unknown binop!");
1370 case tok::star: Opc = BinaryOperator::Mul; break;
1371 case tok::slash: Opc = BinaryOperator::Div; break;
1372 case tok::percent: Opc = BinaryOperator::Rem; break;
1373 case tok::plus: Opc = BinaryOperator::Add; break;
1374 case tok::minus: Opc = BinaryOperator::Sub; break;
1375 case tok::lessless: Opc = BinaryOperator::Shl; break;
1376 case tok::greatergreater: Opc = BinaryOperator::Shr; break;
1377 case tok::lessequal: Opc = BinaryOperator::LE; break;
1378 case tok::less: Opc = BinaryOperator::LT; break;
1379 case tok::greaterequal: Opc = BinaryOperator::GE; break;
1380 case tok::greater: Opc = BinaryOperator::GT; break;
1381 case tok::exclaimequal: Opc = BinaryOperator::NE; break;
1382 case tok::equalequal: Opc = BinaryOperator::EQ; break;
1383 case tok::amp: Opc = BinaryOperator::And; break;
1384 case tok::caret: Opc = BinaryOperator::Xor; break;
1385 case tok::pipe: Opc = BinaryOperator::Or; break;
1386 case tok::ampamp: Opc = BinaryOperator::LAnd; break;
1387 case tok::pipepipe: Opc = BinaryOperator::LOr; break;
1388 case tok::equal: Opc = BinaryOperator::Assign; break;
1389 case tok::starequal: Opc = BinaryOperator::MulAssign; break;
1390 case tok::slashequal: Opc = BinaryOperator::DivAssign; break;
1391 case tok::percentequal: Opc = BinaryOperator::RemAssign; break;
1392 case tok::plusequal: Opc = BinaryOperator::AddAssign; break;
1393 case tok::minusequal: Opc = BinaryOperator::SubAssign; break;
1394 case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break;
1395 case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break;
1396 case tok::ampequal: Opc = BinaryOperator::AndAssign; break;
1397 case tok::caretequal: Opc = BinaryOperator::XorAssign; break;
1398 case tok::pipeequal: Opc = BinaryOperator::OrAssign; break;
1399 case tok::comma: Opc = BinaryOperator::Comma; break;
1400 }
1401 return Opc;
1402}
1403
1404static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
1405 tok::TokenKind Kind) {
1406 UnaryOperator::Opcode Opc;
1407 switch (Kind) {
1408 default: assert(0 && "Unknown unary op!");
1409 case tok::plusplus: Opc = UnaryOperator::PreInc; break;
1410 case tok::minusminus: Opc = UnaryOperator::PreDec; break;
1411 case tok::amp: Opc = UnaryOperator::AddrOf; break;
1412 case tok::star: Opc = UnaryOperator::Deref; break;
1413 case tok::plus: Opc = UnaryOperator::Plus; break;
1414 case tok::minus: Opc = UnaryOperator::Minus; break;
1415 case tok::tilde: Opc = UnaryOperator::Not; break;
1416 case tok::exclaim: Opc = UnaryOperator::LNot; break;
1417 case tok::kw_sizeof: Opc = UnaryOperator::SizeOf; break;
1418 case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
1419 case tok::kw___real: Opc = UnaryOperator::Real; break;
1420 case tok::kw___imag: Opc = UnaryOperator::Imag; break;
1421 case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
1422 }
1423 return Opc;
1424}
1425
1426// Binary Operators. 'Tok' is the token for the operator.
1427Action::ExprResult Sema::ParseBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
1428 ExprTy *LHS, ExprTy *RHS) {
1429 BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
1430 Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
1431
1432 assert((lhs != 0) && "ParseBinOp(): missing left expression");
1433 assert((rhs != 0) && "ParseBinOp(): missing right expression");
1434
1435 QualType ResultTy; // Result type of the binary operator.
1436 QualType CompTy; // Computation type for compound assignments (e.g. '+=')
1437
1438 switch (Opc) {
1439 default:
1440 assert(0 && "Unknown binary expr!");
1441 case BinaryOperator::Assign:
1442 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
1443 break;
1444 case BinaryOperator::Mul:
1445 case BinaryOperator::Div:
1446 ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
1447 break;
1448 case BinaryOperator::Rem:
1449 ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
1450 break;
1451 case BinaryOperator::Add:
1452 ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
1453 break;
1454 case BinaryOperator::Sub:
1455 ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
1456 break;
1457 case BinaryOperator::Shl:
1458 case BinaryOperator::Shr:
1459 ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
1460 break;
1461 case BinaryOperator::LE:
1462 case BinaryOperator::LT:
1463 case BinaryOperator::GE:
1464 case BinaryOperator::GT:
1465 ResultTy = CheckRelationalOperands(lhs, rhs, TokLoc);
1466 break;
1467 case BinaryOperator::EQ:
1468 case BinaryOperator::NE:
1469 ResultTy = CheckEqualityOperands(lhs, rhs, TokLoc);
1470 break;
1471 case BinaryOperator::And:
1472 case BinaryOperator::Xor:
1473 case BinaryOperator::Or:
1474 ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
1475 break;
1476 case BinaryOperator::LAnd:
1477 case BinaryOperator::LOr:
1478 ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
1479 break;
1480 case BinaryOperator::MulAssign:
1481 case BinaryOperator::DivAssign:
1482 CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
1483 if (!CompTy.isNull())
1484 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1485 break;
1486 case BinaryOperator::RemAssign:
1487 CompTy = CheckRemainderOperands(lhs, rhs, TokLoc);
1488 if (!CompTy.isNull())
1489 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1490 break;
1491 case BinaryOperator::AddAssign:
1492 CompTy = CheckAdditionOperands(lhs, rhs, TokLoc);
1493 if (!CompTy.isNull())
1494 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1495 break;
1496 case BinaryOperator::SubAssign:
1497 CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
1498 if (!CompTy.isNull())
1499 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1500 break;
1501 case BinaryOperator::ShlAssign:
1502 case BinaryOperator::ShrAssign:
1503 CompTy = CheckShiftOperands(lhs, rhs, TokLoc);
1504 if (!CompTy.isNull())
1505 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1506 break;
1507 case BinaryOperator::AndAssign:
1508 case BinaryOperator::XorAssign:
1509 case BinaryOperator::OrAssign:
1510 CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
1511 if (!CompTy.isNull())
1512 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1513 break;
1514 case BinaryOperator::Comma:
1515 ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
1516 break;
1517 }
1518 if (ResultTy.isNull())
1519 return true;
1520 if (CompTy.isNull())
1521 return new BinaryOperator(lhs, rhs, Opc, ResultTy);
1522 else
1523 return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy);
1524}
1525
1526// Unary Operators. 'Tok' is the token for the operator.
1527Action::ExprResult Sema::ParseUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
1528 ExprTy *input) {
1529 Expr *Input = (Expr*)input;
1530 UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
1531 QualType resultType;
1532 switch (Opc) {
1533 default:
1534 assert(0 && "Unimplemented unary expr!");
1535 case UnaryOperator::PreInc:
1536 case UnaryOperator::PreDec:
1537 resultType = CheckIncrementDecrementOperand(Input, OpLoc);
1538 break;
1539 case UnaryOperator::AddrOf:
1540 resultType = CheckAddressOfOperand(Input, OpLoc);
1541 break;
1542 case UnaryOperator::Deref:
1543 resultType = CheckIndirectionOperand(Input, OpLoc);
1544 break;
1545 case UnaryOperator::Plus:
1546 case UnaryOperator::Minus:
1547 UsualUnaryConversions(Input);
1548 resultType = Input->getType();
1549 if (!resultType->isArithmeticType()) // C99 6.5.3.3p1
1550 return Diag(OpLoc, diag::err_typecheck_unary_expr,
1551 resultType.getAsString());
1552 break;
1553 case UnaryOperator::Not: // bitwise complement
1554 UsualUnaryConversions(Input);
1555 resultType = Input->getType();
1556 if (!resultType->isIntegerType()) // C99 6.5.3.3p1
1557 return Diag(OpLoc, diag::err_typecheck_unary_expr,
1558 resultType.getAsString());
1559 break;
1560 case UnaryOperator::LNot: // logical negation
1561 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
1562 DefaultFunctionArrayConversion(Input);
1563 resultType = Input->getType();
1564 if (!resultType->isScalarType()) // C99 6.5.3.3p1
1565 return Diag(OpLoc, diag::err_typecheck_unary_expr,
1566 resultType.getAsString());
1567 // LNot always has type int. C99 6.5.3.3p5.
1568 resultType = Context.IntTy;
1569 break;
1570 case UnaryOperator::SizeOf:
1571 resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, true);
1572 break;
1573 case UnaryOperator::AlignOf:
1574 resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, false);
1575 break;
1576 case UnaryOperator::Extension:
1577 // FIXME: does __extension__ cause any promotions? I would think not.
1578 resultType = Input->getType();
1579 break;
1580 }
1581 if (resultType.isNull())
1582 return true;
1583 return new UnaryOperator(Input, Opc, resultType, OpLoc);
1584}
1585
1586/// ParseAddrLabel - Parse the GNU address of label extension: "&&foo".
1587Sema::ExprResult Sema::ParseAddrLabel(SourceLocation OpLoc,
1588 SourceLocation LabLoc,
1589 IdentifierInfo *LabelII) {
1590 // Look up the record for this label identifier.
1591 LabelStmt *&LabelDecl = LabelMap[LabelII];
1592
1593 // If we haven't seen this label yet, create a forward reference.
1594 if (LabelDecl == 0)
1595 LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
1596
1597 // Create the AST node. The address of a label always has type 'void*'.
Chris Lattnera0d03a72007-08-03 17:31:20 +00001598 return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
1599 Context.getPointerType(Context.VoidTy));
Chris Lattner4b009652007-07-25 00:24:17 +00001600}
1601
1602Sema::ExprResult Sema::ParseStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
1603 SourceLocation RPLoc) { // "({..})"
1604 Stmt *SubStmt = static_cast<Stmt*>(substmt);
1605 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
1606 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
1607
1608 // FIXME: there are a variety of strange constraints to enforce here, for
1609 // example, it is not possible to goto into a stmt expression apparently.
1610 // More semantic analysis is needed.
1611
1612 // FIXME: the last statement in the compount stmt has its value used. We
1613 // should not warn about it being unused.
1614
1615 // If there are sub stmts in the compound stmt, take the type of the last one
1616 // as the type of the stmtexpr.
1617 QualType Ty = Context.VoidTy;
1618
1619 if (!Compound->body_empty())
1620 if (Expr *LastExpr = dyn_cast<Expr>(Compound->body_back()))
1621 Ty = LastExpr->getType();
1622
1623 return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
1624}
Steve Naroff63bad2d2007-08-01 22:05:33 +00001625
Steve Naroff5b528922007-08-01 23:45:51 +00001626Sema::ExprResult Sema::ParseTypesCompatibleExpr(SourceLocation BuiltinLoc,
Steve Naroff63bad2d2007-08-01 22:05:33 +00001627 TypeTy *arg1, TypeTy *arg2,
1628 SourceLocation RPLoc) {
1629 QualType argT1 = QualType::getFromOpaquePtr(arg1);
1630 QualType argT2 = QualType::getFromOpaquePtr(arg2);
1631
1632 assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
1633
Steve Naroff5b528922007-08-01 23:45:51 +00001634 return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2, RPLoc);
Steve Naroff63bad2d2007-08-01 22:05:33 +00001635}
1636
Steve Naroff93c53012007-08-03 21:21:27 +00001637Sema::ExprResult Sema::ParseChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
1638 ExprTy *expr1, ExprTy *expr2,
1639 SourceLocation RPLoc) {
1640 Expr *CondExpr = static_cast<Expr*>(cond);
1641 Expr *LHSExpr = static_cast<Expr*>(expr1);
1642 Expr *RHSExpr = static_cast<Expr*>(expr2);
1643
1644 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
1645
1646 // The conditional expression is required to be a constant expression.
1647 llvm::APSInt condEval(32);
1648 SourceLocation ExpLoc;
1649 if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
1650 return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
1651 CondExpr->getSourceRange());
1652
1653 // If the condition is > zero, then the AST type is the same as the LSHExpr.
1654 QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
1655 RHSExpr->getType();
1656 return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
1657}
1658