blob: 70c9ee7ef9a2796197887d826e996b19bcb53ac7 [file] [log] [blame]
Douglas Gregord2baafd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregorbb461502008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregor70d26122008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregor10f3c502008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregor70d26122008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregor3d4492e2008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregorddfd9d52008-12-23 00:26:44 +000023#include "llvm/ADT/STLExtras.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000024#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33 static const ImplicitConversionCategory
34 Category[(int)ICK_Num_Conversion_Kinds] = {
35 ICC_Identity,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Lvalue_Transformation,
39 ICC_Qualification_Adjustment,
40 ICC_Promotion,
41 ICC_Promotion,
Douglas Gregore819caf2009-02-12 00:15:05 +000042 ICC_Promotion,
43 ICC_Conversion,
44 ICC_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000045 ICC_Conversion,
46 ICC_Conversion,
47 ICC_Conversion,
48 ICC_Conversion,
49 ICC_Conversion,
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000050 ICC_Conversion,
Douglas Gregorfcb19192009-02-11 23:02:49 +000051 ICC_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000052 ICC_Conversion
53 };
54 return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60 static const ImplicitConversionRank
61 Rank[(int)ICK_Num_Conversion_Kinds] = {
62 ICR_Exact_Match,
63 ICR_Exact_Match,
64 ICR_Exact_Match,
65 ICR_Exact_Match,
66 ICR_Exact_Match,
67 ICR_Promotion,
68 ICR_Promotion,
Douglas Gregore819caf2009-02-12 00:15:05 +000069 ICR_Promotion,
70 ICR_Conversion,
71 ICR_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000072 ICR_Conversion,
73 ICR_Conversion,
74 ICR_Conversion,
75 ICR_Conversion,
76 ICR_Conversion,
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000077 ICR_Conversion,
Douglas Gregorfcb19192009-02-11 23:02:49 +000078 ICR_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000079 ICR_Conversion
80 };
81 return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88 "No conversion",
89 "Lvalue-to-rvalue",
90 "Array-to-pointer",
91 "Function-to-pointer",
92 "Qualification",
93 "Integral promotion",
94 "Floating point promotion",
Douglas Gregore819caf2009-02-12 00:15:05 +000095 "Complex promotion",
Douglas Gregord2baafd2008-10-21 16:13:35 +000096 "Integral conversion",
97 "Floating conversion",
Douglas Gregore819caf2009-02-12 00:15:05 +000098 "Complex conversion",
Douglas Gregord2baafd2008-10-21 16:13:35 +000099 "Floating-integral conversion",
Douglas Gregore819caf2009-02-12 00:15:05 +0000100 "Complex-real conversion",
Douglas Gregord2baafd2008-10-21 16:13:35 +0000101 "Pointer conversion",
102 "Pointer-to-member conversion",
Douglas Gregor2aecd1f2008-10-29 02:00:59 +0000103 "Boolean conversion",
Douglas Gregorfcb19192009-02-11 23:02:49 +0000104 "Compatible-types conversion",
Douglas Gregor2aecd1f2008-10-29 02:00:59 +0000105 "Derived-to-base conversion"
Douglas Gregord2baafd2008-10-21 16:13:35 +0000106 };
107 return Name[Kind];
108}
109
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113 First = ICK_Identity;
114 Second = ICK_Identity;
115 Third = ICK_Identity;
116 Deprecated = false;
117 ReferenceBinding = false;
118 DirectBinding = false;
Sebastian Redl9bc16ad2009-03-29 22:46:24 +0000119 RRefBinding = false;
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000120 CopyConstructor = 0;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000121}
122
Douglas Gregord2baafd2008-10-21 16:13:35 +0000123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127 ImplicitConversionRank Rank = ICR_Exact_Match;
128 if (GetConversionRank(First) > Rank)
129 Rank = GetConversionRank(First);
130 if (GetConversionRank(Second) > Rank)
131 Rank = GetConversionRank(Second);
132 if (GetConversionRank(Third) > Rank)
133 Rank = GetConversionRank(Third);
134 return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146 // Note that FromType has not necessarily been transformed by the
147 // array-to-pointer or function-to-pointer implicit conversions, so
148 // check for their presence as well as checking whether FromType is
149 // a pointer.
150 if (ToType->isBooleanType() &&
Douglas Gregor80402cf2008-12-23 00:53:59 +0000151 (FromType->isPointerType() || FromType->isBlockPointerType() ||
Douglas Gregord2baafd2008-10-21 16:13:35 +0000152 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153 return true;
154
155 return false;
156}
157
Douglas Gregor14046502008-10-23 00:40:37 +0000158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169 // Note that FromType has not necessarily been transformed by the
170 // array-to-pointer implicit conversion, so check for its presence
171 // and redo the conversion to get a pointer.
172 if (First == ICK_Array_To_Pointer)
173 FromType = Context.getArrayDecayedType(FromType);
174
175 if (Second == ICK_Pointer_Conversion)
176 if (const PointerType* ToPtrType = ToType->getAsPointerType())
177 return ToPtrType->getPointeeType()->isVoidType();
178
179 return false;
180}
181
Douglas Gregord2baafd2008-10-21 16:13:35 +0000182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185 bool PrintedSomething = false;
186 if (First != ICK_Identity) {
187 fprintf(stderr, "%s", GetImplicitConversionName(First));
188 PrintedSomething = true;
189 }
190
191 if (Second != ICK_Identity) {
192 if (PrintedSomething) {
193 fprintf(stderr, " -> ");
194 }
195 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000196
197 if (CopyConstructor) {
198 fprintf(stderr, " (by copy constructor)");
199 } else if (DirectBinding) {
200 fprintf(stderr, " (direct reference binding)");
201 } else if (ReferenceBinding) {
202 fprintf(stderr, " (reference binding)");
203 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000204 PrintedSomething = true;
205 }
206
207 if (Third != ICK_Identity) {
208 if (PrintedSomething) {
209 fprintf(stderr, " -> ");
210 }
211 fprintf(stderr, "%s", GetImplicitConversionName(Third));
212 PrintedSomething = true;
213 }
214
215 if (!PrintedSomething) {
216 fprintf(stderr, "No conversions required");
217 }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223 if (Before.First || Before.Second || Before.Third) {
224 Before.DebugPrint();
225 fprintf(stderr, " -> ");
226 }
Chris Lattner271d4c22008-11-24 05:29:24 +0000227 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregord2baafd2008-10-21 16:13:35 +0000228 if (After.First || After.Second || After.Third) {
229 fprintf(stderr, " -> ");
230 After.DebugPrint();
231 }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237 switch (ConversionKind) {
238 case StandardConversion:
239 fprintf(stderr, "Standard conversion: ");
240 Standard.DebugPrint();
241 break;
242 case UserDefinedConversion:
243 fprintf(stderr, "User-defined conversion: ");
244 UserDefined.DebugPrint();
245 break;
246 case EllipsisConversion:
247 fprintf(stderr, "Ellipsis conversion");
248 break;
249 case BadConversion:
250 fprintf(stderr, "Bad conversion");
251 break;
252 }
253
254 fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267// void f(int, float); // #1
268// void f(int, int); // #2
269// int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1. By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290 // Is this new function an overload of every function in the
291 // overload set?
292 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293 FuncEnd = Ovl->function_end();
294 for (; Func != FuncEnd; ++Func) {
295 if (!IsOverload(New, *Func, MatchedDecl)) {
296 MatchedDecl = Func;
297 return false;
298 }
299 }
300
301 // This function overloads every function in the overload set.
302 return true;
303 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
304 // Is the function New an overload of the function Old?
305 QualType OldQType = Context.getCanonicalType(Old->getType());
306 QualType NewQType = Context.getCanonicalType(New->getType());
307
308 // Compare the signatures (C++ 1.3.10) of the two functions to
309 // determine whether they are overloads. If we find any mismatch
310 // in the signature, they are overloads.
311
312 // If either of these functions is a K&R-style function (no
313 // prototype), then we consider them to have matching signatures.
Douglas Gregor4fa58902009-02-26 23:50:07 +0000314 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
315 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
Douglas Gregord2baafd2008-10-21 16:13:35 +0000316 return false;
317
Douglas Gregor4fa58902009-02-26 23:50:07 +0000318 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType.getTypePtr());
319 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType.getTypePtr());
Douglas Gregord2baafd2008-10-21 16:13:35 +0000320
321 // The signature of a function includes the types of its
322 // parameters (C++ 1.3.10), which includes the presence or absence
323 // of the ellipsis; see C++ DR 357).
324 if (OldQType != NewQType &&
325 (OldType->getNumArgs() != NewType->getNumArgs() ||
326 OldType->isVariadic() != NewType->isVariadic() ||
327 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
328 NewType->arg_type_begin())))
329 return true;
330
331 // If the function is a class member, its signature includes the
332 // cv-qualifiers (if any) on the function itself.
333 //
334 // As part of this, also check whether one of the member functions
335 // is static, in which case they are not overloads (C++
336 // 13.1p2). While not part of the definition of the signature,
337 // this check is important to determine whether these functions
338 // can be overloaded.
339 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
340 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
341 if (OldMethod && NewMethod &&
342 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregora7b56a32008-11-21 15:36:28 +0000343 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregord2baafd2008-10-21 16:13:35 +0000344 return true;
345
346 // The signatures match; this is not an overload.
347 return false;
348 } else {
349 // (C++ 13p1):
350 // Only function declarations can be overloaded; object and type
351 // declarations cannot be overloaded.
352 return false;
353 }
354}
355
Douglas Gregor81c29152008-10-29 00:13:59 +0000356/// TryImplicitConversion - Attempt to perform an implicit conversion
357/// from the given expression (Expr) to the given type (ToType). This
358/// function returns an implicit conversion sequence that can be used
359/// to perform the initialization. Given
Douglas Gregord2baafd2008-10-21 16:13:35 +0000360///
361/// void f(float f);
362/// void g(int i) { f(i); }
363///
364/// this routine would produce an implicit conversion sequence to
365/// describe the initialization of f from i, which will be a standard
366/// conversion sequence containing an lvalue-to-rvalue conversion (C++
367/// 4.1) followed by a floating-integral conversion (C++ 4.9).
368//
369/// Note that this routine only determines how the conversion can be
370/// performed; it does not actually perform the conversion. As such,
371/// it will not produce any diagnostics if no conversion is available,
372/// but will instead return an implicit conversion sequence of kind
373/// "BadConversion".
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000374///
375/// If @p SuppressUserConversions, then user-defined conversions are
376/// not permitted.
Douglas Gregor6214d8a2009-01-14 15:45:31 +0000377/// If @p AllowExplicit, then explicit user-defined conversions are
378/// permitted.
Sebastian Redla55834a2009-04-12 17:16:29 +0000379/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
380/// no matter its actual lvalueness.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000381ImplicitConversionSequence
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000382Sema::TryImplicitConversion(Expr* From, QualType ToType,
Douglas Gregor6214d8a2009-01-14 15:45:31 +0000383 bool SuppressUserConversions,
Sebastian Redla55834a2009-04-12 17:16:29 +0000384 bool AllowExplicit, bool ForceRValue)
Douglas Gregord2baafd2008-10-21 16:13:35 +0000385{
386 ImplicitConversionSequence ICS;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000387 if (IsStandardConversion(From, ToType, ICS.Standard))
388 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregorfcb19192009-02-11 23:02:49 +0000389 else if (getLangOptions().CPlusPlus &&
390 IsUserDefinedConversion(From, ToType, ICS.UserDefined,
Sebastian Redla55834a2009-04-12 17:16:29 +0000391 !SuppressUserConversions, AllowExplicit,
392 ForceRValue)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000393 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregore640ab62008-11-03 17:51:48 +0000394 // C++ [over.ics.user]p4:
395 // A conversion of an expression of class type to the same class
396 // type is given Exact Match rank, and a conversion of an
397 // expression of class type to a base class of that type is
398 // given Conversion rank, in spite of the fact that a copy
399 // constructor (i.e., a user-defined conversion function) is
400 // called for those cases.
401 if (CXXConstructorDecl *Constructor
402 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
Douglas Gregord9176392009-02-02 22:11:10 +0000403 QualType FromCanon
404 = Context.getCanonicalType(From->getType().getUnqualifiedType());
405 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
406 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000407 // Turn this into a "standard" conversion sequence, so that it
408 // gets ranked with standard conversion sequences.
Douglas Gregore640ab62008-11-03 17:51:48 +0000409 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
410 ICS.Standard.setAsIdentityConversion();
411 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
412 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000413 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregord9176392009-02-02 22:11:10 +0000414 if (ToCanon != FromCanon)
Douglas Gregore640ab62008-11-03 17:51:48 +0000415 ICS.Standard.Second = ICK_Derived_To_Base;
416 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000417 }
Douglas Gregorb206cc42009-01-30 23:27:23 +0000418
419 // C++ [over.best.ics]p4:
420 // However, when considering the argument of a user-defined
421 // conversion function that is a candidate by 13.3.1.3 when
422 // invoked for the copying of the temporary in the second step
423 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
424 // 13.3.1.6 in all cases, only standard conversion sequences and
425 // ellipsis conversion sequences are allowed.
426 if (SuppressUserConversions &&
427 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
428 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregore640ab62008-11-03 17:51:48 +0000429 } else
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000430 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000431
432 return ICS;
433}
434
435/// IsStandardConversion - Determines whether there is a standard
436/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
437/// expression From to the type ToType. Standard conversion sequences
438/// only consider non-class types; for conversions that involve class
439/// types, use TryImplicitConversion. If a conversion exists, SCS will
440/// contain the standard conversion sequence required to perform this
441/// conversion and this routine will return true. Otherwise, this
442/// routine will return false and the value of SCS is unspecified.
443bool
444Sema::IsStandardConversion(Expr* From, QualType ToType,
445 StandardConversionSequence &SCS)
446{
Douglas Gregord2baafd2008-10-21 16:13:35 +0000447 QualType FromType = From->getType();
448
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000449 // Standard conversions (C++ [conv])
Douglas Gregor70d26122008-11-12 17:17:38 +0000450 SCS.setAsIdentityConversion();
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000451 SCS.Deprecated = false;
Douglas Gregor6fd35572008-12-19 17:40:08 +0000452 SCS.IncompatibleObjC = false;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000453 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000454 SCS.CopyConstructor = 0;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000455
Douglas Gregorfcb19192009-02-11 23:02:49 +0000456 // There are no standard conversions for class types in C++, so
457 // abort early. When overloading in C, however, we do permit
458 if (FromType->isRecordType() || ToType->isRecordType()) {
459 if (getLangOptions().CPlusPlus)
460 return false;
461
462 // When we're overloading in C, we allow, as standard conversions,
463 }
464
Douglas Gregord2baafd2008-10-21 16:13:35 +0000465 // The first conversion can be an lvalue-to-rvalue conversion,
466 // array-to-pointer conversion, or function-to-pointer conversion
467 // (C++ 4p1).
468
469 // Lvalue-to-rvalue conversion (C++ 4.1):
470 // An lvalue (3.10) of a non-function, non-array type T can be
471 // converted to an rvalue.
472 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
473 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor45014fd2008-11-10 20:40:00 +0000474 !FromType->isFunctionType() && !FromType->isArrayType() &&
Douglas Gregor00fe3f62009-03-13 18:40:31 +0000475 Context.getCanonicalType(FromType) != Context.OverloadTy) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000476 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000477
478 // If T is a non-class type, the type of the rvalue is the
479 // cv-unqualified version of T. Otherwise, the type of the rvalue
Douglas Gregorfcb19192009-02-11 23:02:49 +0000480 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
481 // just strip the qualifiers because they don't matter.
482
483 // FIXME: Doesn't see through to qualifiers behind a typedef!
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000484 FromType = FromType.getUnqualifiedType();
Douglas Gregord2baafd2008-10-21 16:13:35 +0000485 }
486 // Array-to-pointer conversion (C++ 4.2)
487 else if (FromType->isArrayType()) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000488 SCS.First = ICK_Array_To_Pointer;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000489
490 // An lvalue or rvalue of type "array of N T" or "array of unknown
491 // bound of T" can be converted to an rvalue of type "pointer to
492 // T" (C++ 4.2p1).
493 FromType = Context.getArrayDecayedType(FromType);
494
495 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
496 // This conversion is deprecated. (C++ D.4).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000497 SCS.Deprecated = true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000498
499 // For the purpose of ranking in overload resolution
500 // (13.3.3.1.1), this conversion is considered an
501 // array-to-pointer conversion followed by a qualification
502 // conversion (4.4). (C++ 4.2p2)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000503 SCS.Second = ICK_Identity;
504 SCS.Third = ICK_Qualification;
505 SCS.ToTypePtr = ToType.getAsOpaquePtr();
506 return true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000507 }
508 }
509 // Function-to-pointer conversion (C++ 4.3).
510 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000511 SCS.First = ICK_Function_To_Pointer;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000512
513 // An lvalue of function type T can be converted to an rvalue of
514 // type "pointer to T." The result is a pointer to the
515 // function. (C++ 4.3p1).
516 FromType = Context.getPointerType(FromType);
Sebastian Redl7434fc32009-02-04 21:23:32 +0000517 }
Douglas Gregor45014fd2008-11-10 20:40:00 +0000518 // Address of overloaded function (C++ [over.over]).
519 else if (FunctionDecl *Fn
520 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
521 SCS.First = ICK_Function_To_Pointer;
522
523 // We were able to resolve the address of the overloaded function,
524 // so we can convert to the type of that function.
525 FromType = Fn->getType();
Sebastian Redlce6fff02009-03-16 23:22:08 +0000526 if (ToType->isLValueReferenceType())
527 FromType = Context.getLValueReferenceType(FromType);
528 else if (ToType->isRValueReferenceType())
529 FromType = Context.getRValueReferenceType(FromType);
Sebastian Redl7434fc32009-02-04 21:23:32 +0000530 else if (ToType->isMemberPointerType()) {
531 // Resolve address only succeeds if both sides are member pointers,
532 // but it doesn't have to be the same class. See DR 247.
533 // Note that this means that the type of &Derived::fn can be
534 // Ret (Base::*)(Args) if the fn overload actually found is from the
535 // base class, even if it was brought into the derived class via a
536 // using declaration. The standard isn't clear on this issue at all.
537 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
538 FromType = Context.getMemberPointerType(FromType,
539 Context.getTypeDeclType(M->getParent()).getTypePtr());
540 } else
Douglas Gregor45014fd2008-11-10 20:40:00 +0000541 FromType = Context.getPointerType(FromType);
542 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000543 // We don't require any conversions for the first step.
544 else {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000545 SCS.First = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000546 }
547
548 // The second conversion can be an integral promotion, floating
549 // point promotion, integral conversion, floating point conversion,
550 // floating-integral conversion, pointer conversion,
551 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
Douglas Gregorfcb19192009-02-11 23:02:49 +0000552 // For overloading in C, this can also be a "compatible-type"
553 // conversion.
Douglas Gregor6fd35572008-12-19 17:40:08 +0000554 bool IncompatibleObjC = false;
Douglas Gregorfcb19192009-02-11 23:02:49 +0000555 if (Context.hasSameUnqualifiedType(FromType, ToType)) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000556 // The unqualified versions of the types are the same: there's no
557 // conversion to do.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000558 SCS.Second = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000559 }
560 // Integral promotion (C++ 4.5).
561 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000562 SCS.Second = ICK_Integral_Promotion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000563 FromType = ToType.getUnqualifiedType();
564 }
565 // Floating point promotion (C++ 4.6).
566 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000567 SCS.Second = ICK_Floating_Promotion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000568 FromType = ToType.getUnqualifiedType();
569 }
Douglas Gregore819caf2009-02-12 00:15:05 +0000570 // Complex promotion (Clang extension)
571 else if (IsComplexPromotion(FromType, ToType)) {
572 SCS.Second = ICK_Complex_Promotion;
573 FromType = ToType.getUnqualifiedType();
574 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000575 // Integral conversions (C++ 4.7).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000576 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000577 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000578 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000579 SCS.Second = ICK_Integral_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000580 FromType = ToType.getUnqualifiedType();
581 }
582 // Floating point conversions (C++ 4.8).
583 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000584 SCS.Second = ICK_Floating_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000585 FromType = ToType.getUnqualifiedType();
586 }
Douglas Gregore819caf2009-02-12 00:15:05 +0000587 // Complex conversions (C99 6.3.1.6)
588 else if (FromType->isComplexType() && ToType->isComplexType()) {
589 SCS.Second = ICK_Complex_Conversion;
590 FromType = ToType.getUnqualifiedType();
591 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000592 // Floating-integral conversions (C++ 4.9).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000593 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000594 else if ((FromType->isFloatingType() &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000595 ToType->isIntegralType() && !ToType->isBooleanType() &&
596 !ToType->isEnumeralType()) ||
Douglas Gregord2baafd2008-10-21 16:13:35 +0000597 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
598 ToType->isFloatingType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000599 SCS.Second = ICK_Floating_Integral;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000600 FromType = ToType.getUnqualifiedType();
601 }
Douglas Gregore819caf2009-02-12 00:15:05 +0000602 // Complex-real conversions (C99 6.3.1.7)
603 else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
604 (ToType->isComplexType() && FromType->isArithmeticType())) {
605 SCS.Second = ICK_Complex_Real;
606 FromType = ToType.getUnqualifiedType();
607 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000608 // Pointer conversions (C++ 4.10).
Douglas Gregor6fd35572008-12-19 17:40:08 +0000609 else if (IsPointerConversion(From, FromType, ToType, FromType,
610 IncompatibleObjC)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000611 SCS.Second = ICK_Pointer_Conversion;
Douglas Gregor6fd35572008-12-19 17:40:08 +0000612 SCS.IncompatibleObjC = IncompatibleObjC;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000613 }
Sebastian Redlba387562009-01-25 19:43:20 +0000614 // Pointer to member conversions (4.11).
615 else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
616 SCS.Second = ICK_Pointer_Member;
617 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000618 // Boolean conversions (C++ 4.12).
Douglas Gregord2baafd2008-10-21 16:13:35 +0000619 else if (ToType->isBooleanType() &&
620 (FromType->isArithmeticType() ||
621 FromType->isEnumeralType() ||
Douglas Gregor80402cf2008-12-23 00:53:59 +0000622 FromType->isPointerType() ||
Sebastian Redlba387562009-01-25 19:43:20 +0000623 FromType->isBlockPointerType() ||
624 FromType->isMemberPointerType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000625 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000626 FromType = Context.BoolTy;
Douglas Gregorfcb19192009-02-11 23:02:49 +0000627 }
628 // Compatible conversions (Clang extension for C function overloading)
629 else if (!getLangOptions().CPlusPlus &&
630 Context.typesAreCompatible(ToType, FromType)) {
631 SCS.Second = ICK_Compatible_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000632 } else {
633 // No second conversion required.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000634 SCS.Second = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000635 }
636
Douglas Gregor81c29152008-10-29 00:13:59 +0000637 QualType CanonFrom;
638 QualType CanonTo;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000639 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000640 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000641 SCS.Third = ICK_Qualification;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000642 FromType = ToType;
Douglas Gregor81c29152008-10-29 00:13:59 +0000643 CanonFrom = Context.getCanonicalType(FromType);
644 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000645 } else {
646 // No conversion required
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000647 SCS.Third = ICK_Identity;
648
649 // C++ [over.best.ics]p6:
650 // [...] Any difference in top-level cv-qualification is
651 // subsumed by the initialization itself and does not constitute
652 // a conversion. [...]
Douglas Gregor81c29152008-10-29 00:13:59 +0000653 CanonFrom = Context.getCanonicalType(FromType);
654 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000655 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor81c29152008-10-29 00:13:59 +0000656 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
657 FromType = ToType;
658 CanonFrom = CanonTo;
659 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000660 }
661
662 // If we have not converted the argument type to the parameter type,
663 // this is a bad conversion sequence.
Douglas Gregor81c29152008-10-29 00:13:59 +0000664 if (CanonFrom != CanonTo)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000665 return false;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000666
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000667 SCS.ToTypePtr = FromType.getAsOpaquePtr();
668 return true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000669}
670
671/// IsIntegralPromotion - Determines whether the conversion from the
672/// expression From (whose potentially-adjusted type is FromType) to
673/// ToType is an integral promotion (C++ 4.5). If so, returns true and
674/// sets PromotedType to the promoted type.
675bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
676{
677 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redl12aee862008-11-04 15:59:10 +0000678 // All integers are built-in.
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000679 if (!To) {
680 return false;
681 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000682
683 // An rvalue of type char, signed char, unsigned char, short int, or
684 // unsigned short int can be converted to an rvalue of type int if
685 // int can represent all the values of the source type; otherwise,
686 // the source rvalue can be converted to an rvalue of type unsigned
687 // int (C++ 4.5p1).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000688 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000689 if (// We can promote any signed, promotable integer type to an int
690 (FromType->isSignedIntegerType() ||
691 // We can promote any unsigned integer type whose size is
692 // less than int to an int.
693 (!FromType->isSignedIntegerType() &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000694 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000695 return To->getKind() == BuiltinType::Int;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000696 }
697
Douglas Gregord2baafd2008-10-21 16:13:35 +0000698 return To->getKind() == BuiltinType::UInt;
699 }
700
701 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
702 // can be converted to an rvalue of the first of the following types
703 // that can represent all the values of its underlying type: int,
704 // unsigned int, long, or unsigned long (C++ 4.5p2).
705 if ((FromType->isEnumeralType() || FromType->isWideCharType())
706 && ToType->isIntegerType()) {
707 // Determine whether the type we're converting from is signed or
708 // unsigned.
709 bool FromIsSigned;
710 uint64_t FromSize = Context.getTypeSize(FromType);
711 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
712 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
713 FromIsSigned = UnderlyingType->isSignedIntegerType();
714 } else {
715 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
716 FromIsSigned = true;
717 }
718
719 // The types we'll try to promote to, in the appropriate
720 // order. Try each of these types.
Douglas Gregor6b5e34f2008-12-12 02:00:36 +0000721 QualType PromoteTypes[6] = {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000722 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregor6b5e34f2008-12-12 02:00:36 +0000723 Context.LongTy, Context.UnsignedLongTy ,
724 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregord2baafd2008-10-21 16:13:35 +0000725 };
Douglas Gregor6b5e34f2008-12-12 02:00:36 +0000726 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000727 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
728 if (FromSize < ToSize ||
729 (FromSize == ToSize &&
730 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
731 // We found the type that we can promote to. If this is the
732 // type we wanted, we have a promotion. Otherwise, no
733 // promotion.
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000734 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregord2baafd2008-10-21 16:13:35 +0000735 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
736 }
737 }
738 }
739
740 // An rvalue for an integral bit-field (9.6) can be converted to an
741 // rvalue of type int if int can represent all the values of the
742 // bit-field; otherwise, it can be converted to unsigned int if
743 // unsigned int can represent all the values of the bit-field. If
744 // the bit-field is larger yet, no integral promotion applies to
745 // it. If the bit-field has an enumerated type, it is treated as any
746 // other value of that type for promotion purposes (C++ 4.5p3).
Douglas Gregor4ff48512009-02-12 00:26:06 +0000747 // FIXME: We should delay checking of bit-fields until we actually
748 // perform the conversion.
749 if (MemberExpr *MemRef = dyn_cast_or_null<MemberExpr>(From)) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000750 using llvm::APSInt;
Douglas Gregor82d44772008-12-20 23:49:58 +0000751 if (FieldDecl *MemberDecl = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) {
752 APSInt BitWidth;
753 if (MemberDecl->isBitField() &&
754 FromType->isIntegralType() && !FromType->isEnumeralType() &&
755 From->isIntegerConstantExpr(BitWidth, Context)) {
756 APSInt ToSize(Context.getTypeSize(ToType));
757
758 // Are we promoting to an int from a bitfield that fits in an int?
759 if (BitWidth < ToSize ||
760 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
761 return To->getKind() == BuiltinType::Int;
762 }
763
764 // Are we promoting to an unsigned int from an unsigned bitfield
765 // that fits into an unsigned int?
766 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
767 return To->getKind() == BuiltinType::UInt;
768 }
769
770 return false;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000771 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000772 }
773 }
774
775 // An rvalue of type bool can be converted to an rvalue of type int,
776 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000777 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000778 return true;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000779 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000780
781 return false;
782}
783
784/// IsFloatingPointPromotion - Determines whether the conversion from
785/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
786/// returns true and sets PromotedType to the promoted type.
787bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
788{
789 /// An rvalue of type float can be converted to an rvalue of type
790 /// double. (C++ 4.6p1).
791 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
Douglas Gregore819caf2009-02-12 00:15:05 +0000792 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000793 if (FromBuiltin->getKind() == BuiltinType::Float &&
794 ToBuiltin->getKind() == BuiltinType::Double)
795 return true;
796
Douglas Gregore819caf2009-02-12 00:15:05 +0000797 // C99 6.3.1.5p1:
798 // When a float is promoted to double or long double, or a
799 // double is promoted to long double [...].
800 if (!getLangOptions().CPlusPlus &&
801 (FromBuiltin->getKind() == BuiltinType::Float ||
802 FromBuiltin->getKind() == BuiltinType::Double) &&
803 (ToBuiltin->getKind() == BuiltinType::LongDouble))
804 return true;
805 }
806
Douglas Gregord2baafd2008-10-21 16:13:35 +0000807 return false;
808}
809
Douglas Gregore819caf2009-02-12 00:15:05 +0000810/// \brief Determine if a conversion is a complex promotion.
811///
812/// A complex promotion is defined as a complex -> complex conversion
813/// where the conversion between the underlying real types is a
Douglas Gregor4ff48512009-02-12 00:26:06 +0000814/// floating-point or integral promotion.
Douglas Gregore819caf2009-02-12 00:15:05 +0000815bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
816 const ComplexType *FromComplex = FromType->getAsComplexType();
817 if (!FromComplex)
818 return false;
819
820 const ComplexType *ToComplex = ToType->getAsComplexType();
821 if (!ToComplex)
822 return false;
823
824 return IsFloatingPointPromotion(FromComplex->getElementType(),
Douglas Gregor4ff48512009-02-12 00:26:06 +0000825 ToComplex->getElementType()) ||
826 IsIntegralPromotion(0, FromComplex->getElementType(),
827 ToComplex->getElementType());
Douglas Gregore819caf2009-02-12 00:15:05 +0000828}
829
Douglas Gregor24a90a52008-11-26 23:31:11 +0000830/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
831/// the pointer type FromPtr to a pointer to type ToPointee, with the
832/// same type qualifiers as FromPtr has on its pointee type. ToType,
833/// if non-empty, will be a pointer to ToType that may or may not have
834/// the right set of qualifiers on its pointee.
835static QualType
836BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
837 QualType ToPointee, QualType ToType,
838 ASTContext &Context) {
839 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
840 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
841 unsigned Quals = CanonFromPointee.getCVRQualifiers();
842
843 // Exact qualifier match -> return the pointer type we're converting to.
844 if (CanonToPointee.getCVRQualifiers() == Quals) {
845 // ToType is exactly what we need. Return it.
846 if (ToType.getTypePtr())
847 return ToType;
848
849 // Build a pointer to ToPointee. It has the right qualifiers
850 // already.
851 return Context.getPointerType(ToPointee);
852 }
853
854 // Just build a canonical type that has the right qualifiers.
855 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
856}
857
Douglas Gregord2baafd2008-10-21 16:13:35 +0000858/// IsPointerConversion - Determines whether the conversion of the
859/// expression From, which has the (possibly adjusted) type FromType,
860/// can be converted to the type ToType via a pointer conversion (C++
861/// 4.10). If so, returns true and places the converted type (that
862/// might differ from ToType in its cv-qualifiers at some level) into
863/// ConvertedType.
Douglas Gregor9036ef72008-11-27 00:15:41 +0000864///
Douglas Gregor3f5a00c2008-11-27 01:19:21 +0000865/// This routine also supports conversions to and from block pointers
866/// and conversions with Objective-C's 'id', 'id<protocols...>', and
867/// pointers to interfaces. FIXME: Once we've determined the
868/// appropriate overloading rules for Objective-C, we may want to
869/// split the Objective-C checks into a different routine; however,
870/// GCC seems to consider all of these conversions to be pointer
Douglas Gregor6fd35572008-12-19 17:40:08 +0000871/// conversions, so for now they live here. IncompatibleObjC will be
872/// set if the conversion is an allowed Objective-C conversion that
873/// should result in a warning.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000874bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
Douglas Gregor6fd35572008-12-19 17:40:08 +0000875 QualType& ConvertedType,
876 bool &IncompatibleObjC)
Douglas Gregord2baafd2008-10-21 16:13:35 +0000877{
Douglas Gregor6fd35572008-12-19 17:40:08 +0000878 IncompatibleObjC = false;
Douglas Gregor932778b2008-12-19 19:13:09 +0000879 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
880 return true;
Douglas Gregor6fd35572008-12-19 17:40:08 +0000881
Douglas Gregorf1d75712008-12-22 20:51:52 +0000882 // Conversion from a null pointer constant to any Objective-C pointer type.
883 if (Context.isObjCObjectPointerType(ToType) &&
884 From->isNullPointerConstant(Context)) {
885 ConvertedType = ToType;
886 return true;
887 }
888
Douglas Gregor9036ef72008-11-27 00:15:41 +0000889 // Blocks: Block pointers can be converted to void*.
890 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
891 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
892 ConvertedType = ToType;
893 return true;
894 }
895 // Blocks: A null pointer constant can be converted to a block
896 // pointer type.
897 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
898 ConvertedType = ToType;
899 return true;
900 }
901
Douglas Gregord2baafd2008-10-21 16:13:35 +0000902 const PointerType* ToTypePtr = ToType->getAsPointerType();
903 if (!ToTypePtr)
904 return false;
905
906 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
907 if (From->isNullPointerConstant(Context)) {
908 ConvertedType = ToType;
909 return true;
910 }
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000911
Douglas Gregor24a90a52008-11-26 23:31:11 +0000912 // Beyond this point, both types need to be pointers.
913 const PointerType *FromTypePtr = FromType->getAsPointerType();
914 if (!FromTypePtr)
915 return false;
916
917 QualType FromPointeeType = FromTypePtr->getPointeeType();
918 QualType ToPointeeType = ToTypePtr->getPointeeType();
919
Douglas Gregord2baafd2008-10-21 16:13:35 +0000920 // An rvalue of type "pointer to cv T," where T is an object type,
921 // can be converted to an rvalue of type "pointer to cv void" (C++
922 // 4.10p2).
Douglas Gregor26ea1222009-03-24 20:32:41 +0000923 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +0000924 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
925 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +0000926 ToType, Context);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000927 return true;
928 }
929
Douglas Gregorfcb19192009-02-11 23:02:49 +0000930 // When we're overloading in C, we allow a special kind of pointer
931 // conversion for compatible-but-not-identical pointee types.
932 if (!getLangOptions().CPlusPlus &&
933 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
934 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
935 ToPointeeType,
936 ToType, Context);
937 return true;
938 }
939
Douglas Gregor14046502008-10-23 00:40:37 +0000940 // C++ [conv.ptr]p3:
941 //
942 // An rvalue of type "pointer to cv D," where D is a class type,
943 // can be converted to an rvalue of type "pointer to cv B," where
944 // B is a base class (clause 10) of D. If B is an inaccessible
945 // (clause 11) or ambiguous (10.2) base class of D, a program that
946 // necessitates this conversion is ill-formed. The result of the
947 // conversion is a pointer to the base class sub-object of the
948 // derived class object. The null pointer value is converted to
949 // the null pointer value of the destination type.
950 //
Douglas Gregorbb461502008-10-24 04:54:22 +0000951 // Note that we do not check for ambiguity or inaccessibility
952 // here. That is handled by CheckPointerConversion.
Douglas Gregorfcb19192009-02-11 23:02:49 +0000953 if (getLangOptions().CPlusPlus &&
954 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
Douglas Gregor24a90a52008-11-26 23:31:11 +0000955 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +0000956 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
957 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +0000958 ToType, Context);
959 return true;
960 }
Douglas Gregor14046502008-10-23 00:40:37 +0000961
Douglas Gregor932778b2008-12-19 19:13:09 +0000962 return false;
963}
964
965/// isObjCPointerConversion - Determines whether this is an
966/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
967/// with the same arguments and return values.
968bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
969 QualType& ConvertedType,
970 bool &IncompatibleObjC) {
971 if (!getLangOptions().ObjC1)
972 return false;
973
974 // Conversions with Objective-C's id<...>.
975 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
976 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
977 ConvertedType = ToType;
978 return true;
979 }
980
Douglas Gregor80402cf2008-12-23 00:53:59 +0000981 // Beyond this point, both types need to be pointers or block pointers.
982 QualType ToPointeeType;
Douglas Gregor932778b2008-12-19 19:13:09 +0000983 const PointerType* ToTypePtr = ToType->getAsPointerType();
Douglas Gregor80402cf2008-12-23 00:53:59 +0000984 if (ToTypePtr)
985 ToPointeeType = ToTypePtr->getPointeeType();
986 else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
987 ToPointeeType = ToBlockPtr->getPointeeType();
988 else
Douglas Gregor932778b2008-12-19 19:13:09 +0000989 return false;
990
Douglas Gregor80402cf2008-12-23 00:53:59 +0000991 QualType FromPointeeType;
Douglas Gregor932778b2008-12-19 19:13:09 +0000992 const PointerType *FromTypePtr = FromType->getAsPointerType();
Douglas Gregor80402cf2008-12-23 00:53:59 +0000993 if (FromTypePtr)
994 FromPointeeType = FromTypePtr->getPointeeType();
995 else if (const BlockPointerType *FromBlockPtr
996 = FromType->getAsBlockPointerType())
997 FromPointeeType = FromBlockPtr->getPointeeType();
998 else
Douglas Gregor932778b2008-12-19 19:13:09 +0000999 return false;
1000
Douglas Gregor24a90a52008-11-26 23:31:11 +00001001 // Objective C++: We're able to convert from a pointer to an
1002 // interface to a pointer to a different interface.
1003 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
1004 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
1005 if (FromIface && ToIface &&
1006 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregor80402cf2008-12-23 00:53:59 +00001007 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregor8bb7ad82008-11-27 00:52:49 +00001008 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +00001009 ToType, Context);
1010 return true;
1011 }
1012
Douglas Gregor6fd35572008-12-19 17:40:08 +00001013 if (FromIface && ToIface &&
1014 Context.canAssignObjCInterfaces(FromIface, ToIface)) {
1015 // Okay: this is some kind of implicit downcast of Objective-C
1016 // interfaces, which is permitted. However, we're going to
1017 // complain about it.
1018 IncompatibleObjC = true;
Douglas Gregor80402cf2008-12-23 00:53:59 +00001019 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregor6fd35572008-12-19 17:40:08 +00001020 ToPointeeType,
1021 ToType, Context);
1022 return true;
1023 }
1024
Douglas Gregor24a90a52008-11-26 23:31:11 +00001025 // Objective C++: We're able to convert between "id" and a pointer
1026 // to any interface (in both directions).
Steve Naroff17c03822009-02-12 17:52:19 +00001027 if ((FromIface && Context.isObjCIdStructType(ToPointeeType))
1028 || (ToIface && Context.isObjCIdStructType(FromPointeeType))) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +00001029 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1030 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +00001031 ToType, Context);
1032 return true;
1033 }
Douglas Gregor14046502008-10-23 00:40:37 +00001034
Douglas Gregord0c653a2008-12-18 23:43:31 +00001035 // Objective C++: Allow conversions between the Objective-C "id" and
1036 // "Class", in either direction.
Steve Naroff17c03822009-02-12 17:52:19 +00001037 if ((Context.isObjCIdStructType(FromPointeeType) &&
1038 Context.isObjCClassStructType(ToPointeeType)) ||
1039 (Context.isObjCClassStructType(FromPointeeType) &&
1040 Context.isObjCIdStructType(ToPointeeType))) {
Douglas Gregord0c653a2008-12-18 23:43:31 +00001041 ConvertedType = ToType;
1042 return true;
1043 }
1044
Douglas Gregor932778b2008-12-19 19:13:09 +00001045 // If we have pointers to pointers, recursively check whether this
1046 // is an Objective-C conversion.
1047 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1048 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1049 IncompatibleObjC)) {
1050 // We always complain about this conversion.
1051 IncompatibleObjC = true;
1052 ConvertedType = ToType;
1053 return true;
1054 }
1055
Douglas Gregor80402cf2008-12-23 00:53:59 +00001056 // If we have pointers to functions or blocks, check whether the only
Douglas Gregor932778b2008-12-19 19:13:09 +00001057 // differences in the argument and result types are in Objective-C
1058 // pointer conversions. If so, we permit the conversion (but
1059 // complain about it).
Douglas Gregor4fa58902009-02-26 23:50:07 +00001060 const FunctionProtoType *FromFunctionType
1061 = FromPointeeType->getAsFunctionProtoType();
1062 const FunctionProtoType *ToFunctionType
1063 = ToPointeeType->getAsFunctionProtoType();
Douglas Gregor932778b2008-12-19 19:13:09 +00001064 if (FromFunctionType && ToFunctionType) {
1065 // If the function types are exactly the same, this isn't an
1066 // Objective-C pointer conversion.
1067 if (Context.getCanonicalType(FromPointeeType)
1068 == Context.getCanonicalType(ToPointeeType))
1069 return false;
1070
1071 // Perform the quick checks that will tell us whether these
1072 // function types are obviously different.
1073 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1074 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1075 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1076 return false;
1077
1078 bool HasObjCConversion = false;
1079 if (Context.getCanonicalType(FromFunctionType->getResultType())
1080 == Context.getCanonicalType(ToFunctionType->getResultType())) {
1081 // Okay, the types match exactly. Nothing to do.
1082 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1083 ToFunctionType->getResultType(),
1084 ConvertedType, IncompatibleObjC)) {
1085 // Okay, we have an Objective-C pointer conversion.
1086 HasObjCConversion = true;
1087 } else {
1088 // Function types are too different. Abort.
1089 return false;
1090 }
1091
1092 // Check argument types.
1093 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1094 ArgIdx != NumArgs; ++ArgIdx) {
1095 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1096 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1097 if (Context.getCanonicalType(FromArgType)
1098 == Context.getCanonicalType(ToArgType)) {
1099 // Okay, the types match exactly. Nothing to do.
1100 } else if (isObjCPointerConversion(FromArgType, ToArgType,
1101 ConvertedType, IncompatibleObjC)) {
1102 // Okay, we have an Objective-C pointer conversion.
1103 HasObjCConversion = true;
1104 } else {
1105 // Argument types are too different. Abort.
1106 return false;
1107 }
1108 }
1109
1110 if (HasObjCConversion) {
1111 // We had an Objective-C conversion. Allow this pointer
1112 // conversion, but complain about it.
1113 ConvertedType = ToType;
1114 IncompatibleObjC = true;
1115 return true;
1116 }
1117 }
1118
Sebastian Redlba387562009-01-25 19:43:20 +00001119 return false;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001120}
1121
Douglas Gregorbb461502008-10-24 04:54:22 +00001122/// CheckPointerConversion - Check the pointer conversion from the
1123/// expression From to the type ToType. This routine checks for
1124/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1125/// conversions for which IsPointerConversion has already returned
1126/// true. It returns true and produces a diagnostic if there was an
1127/// error, or returns false otherwise.
1128bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1129 QualType FromType = From->getType();
1130
1131 if (const PointerType *FromPtrType = FromType->getAsPointerType())
1132 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Douglas Gregorbb461502008-10-24 04:54:22 +00001133 QualType FromPointeeType = FromPtrType->getPointeeType(),
1134 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregord0c653a2008-12-18 23:43:31 +00001135
1136 // Objective-C++ conversions are always okay.
1137 // FIXME: We should have a different class of conversions for
1138 // the Objective-C++ implicit conversions.
Steve Naroff17c03822009-02-12 17:52:19 +00001139 if (Context.isObjCIdStructType(FromPointeeType) ||
1140 Context.isObjCIdStructType(ToPointeeType) ||
1141 Context.isObjCClassStructType(FromPointeeType) ||
1142 Context.isObjCClassStructType(ToPointeeType))
Douglas Gregord0c653a2008-12-18 23:43:31 +00001143 return false;
1144
Douglas Gregorbb461502008-10-24 04:54:22 +00001145 if (FromPointeeType->isRecordType() &&
1146 ToPointeeType->isRecordType()) {
1147 // We must have a derived-to-base conversion. Check an
1148 // ambiguous or inaccessible conversion.
Douglas Gregor651d1cc2008-10-24 16:17:19 +00001149 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1150 From->getExprLoc(),
1151 From->getSourceRange());
Douglas Gregorbb461502008-10-24 04:54:22 +00001152 }
1153 }
1154
1155 return false;
1156}
1157
Sebastian Redlba387562009-01-25 19:43:20 +00001158/// IsMemberPointerConversion - Determines whether the conversion of the
1159/// expression From, which has the (possibly adjusted) type FromType, can be
1160/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1161/// If so, returns true and places the converted type (that might differ from
1162/// ToType in its cv-qualifiers at some level) into ConvertedType.
1163bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1164 QualType ToType, QualType &ConvertedType)
1165{
1166 const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1167 if (!ToTypePtr)
1168 return false;
1169
1170 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1171 if (From->isNullPointerConstant(Context)) {
1172 ConvertedType = ToType;
1173 return true;
1174 }
1175
1176 // Otherwise, both types have to be member pointers.
1177 const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1178 if (!FromTypePtr)
1179 return false;
1180
1181 // A pointer to member of B can be converted to a pointer to member of D,
1182 // where D is derived from B (C++ 4.11p2).
1183 QualType FromClass(FromTypePtr->getClass(), 0);
1184 QualType ToClass(ToTypePtr->getClass(), 0);
1185 // FIXME: What happens when these are dependent? Is this function even called?
1186
1187 if (IsDerivedFrom(ToClass, FromClass)) {
1188 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1189 ToClass.getTypePtr());
1190 return true;
1191 }
1192
1193 return false;
1194}
1195
1196/// CheckMemberPointerConversion - Check the member pointer conversion from the
1197/// expression From to the type ToType. This routine checks for ambiguous or
1198/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1199/// for which IsMemberPointerConversion has already returned true. It returns
1200/// true and produces a diagnostic if there was an error, or returns false
1201/// otherwise.
1202bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1203 QualType FromType = From->getType();
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001204 const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1205 if (!FromPtrType)
1206 return false;
Sebastian Redlba387562009-01-25 19:43:20 +00001207
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001208 const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1209 assert(ToPtrType && "No member pointer cast has a target type "
1210 "that is not a member pointer.");
Sebastian Redlba387562009-01-25 19:43:20 +00001211
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001212 QualType FromClass = QualType(FromPtrType->getClass(), 0);
1213 QualType ToClass = QualType(ToPtrType->getClass(), 0);
Sebastian Redlba387562009-01-25 19:43:20 +00001214
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001215 // FIXME: What about dependent types?
1216 assert(FromClass->isRecordType() && "Pointer into non-class.");
1217 assert(ToClass->isRecordType() && "Pointer into non-class.");
Sebastian Redlba387562009-01-25 19:43:20 +00001218
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001219 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1220 /*DetectVirtual=*/true);
1221 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1222 assert(DerivationOkay &&
1223 "Should not have been called if derivation isn't OK.");
1224 (void)DerivationOkay;
Sebastian Redlba387562009-01-25 19:43:20 +00001225
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001226 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1227 getUnqualifiedType())) {
1228 // Derivation is ambiguous. Redo the check to find the exact paths.
1229 Paths.clear();
1230 Paths.setRecordingPaths(true);
1231 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1232 assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1233 (void)StillOkay;
Sebastian Redlba387562009-01-25 19:43:20 +00001234
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001235 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1236 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1237 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1238 return true;
Sebastian Redlba387562009-01-25 19:43:20 +00001239 }
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001240
Douglas Gregor2e047592009-02-28 01:32:25 +00001241 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001242 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1243 << FromClass << ToClass << QualType(VBase, 0)
1244 << From->getSourceRange();
1245 return true;
1246 }
1247
Sebastian Redlba387562009-01-25 19:43:20 +00001248 return false;
1249}
1250
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001251/// IsQualificationConversion - Determines whether the conversion from
1252/// an rvalue of type FromType to ToType is a qualification conversion
1253/// (C++ 4.4).
1254bool
1255Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1256{
1257 FromType = Context.getCanonicalType(FromType);
1258 ToType = Context.getCanonicalType(ToType);
1259
1260 // If FromType and ToType are the same type, this is not a
1261 // qualification conversion.
1262 if (FromType == ToType)
1263 return false;
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001264
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001265 // (C++ 4.4p4):
1266 // A conversion can add cv-qualifiers at levels other than the first
1267 // in multi-level pointers, subject to the following rules: [...]
1268 bool PreviousToQualsIncludeConst = true;
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001269 bool UnwrappedAnyPointer = false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001270 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001271 // Within each iteration of the loop, we check the qualifiers to
1272 // determine if this still looks like a qualification
1273 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorabed2172008-10-22 17:49:05 +00001274 // pointers or pointers-to-members and do it all again
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001275 // until there are no more pointers or pointers-to-members left to
1276 // unwrap.
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001277 UnwrappedAnyPointer = true;
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001278
1279 // -- for every j > 0, if const is in cv 1,j then const is in cv
1280 // 2,j, and similarly for volatile.
Douglas Gregore5db4f72008-10-22 00:38:21 +00001281 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001282 return false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001283
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001284 // -- if the cv 1,j and cv 2,j are different, then const is in
1285 // every cv for 0 < k < j.
1286 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001287 && !PreviousToQualsIncludeConst)
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001288 return false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001289
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001290 // Keep track of whether all prior cv-qualifiers in the "to" type
1291 // include const.
1292 PreviousToQualsIncludeConst
1293 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001294 }
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001295
1296 // We are left with FromType and ToType being the pointee types
1297 // after unwrapping the original FromType and ToType the same number
1298 // of types. If we unwrapped any pointers, and if FromType and
1299 // ToType have the same unqualified type (since we checked
1300 // qualifiers above), then this is a qualification conversion.
1301 return UnwrappedAnyPointer &&
1302 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1303}
1304
Douglas Gregorb206cc42009-01-30 23:27:23 +00001305/// Determines whether there is a user-defined conversion sequence
1306/// (C++ [over.ics.user]) that converts expression From to the type
1307/// ToType. If such a conversion exists, User will contain the
1308/// user-defined conversion sequence that performs such a conversion
1309/// and this routine will return true. Otherwise, this routine returns
1310/// false and User is unspecified.
1311///
1312/// \param AllowConversionFunctions true if the conversion should
1313/// consider conversion functions at all. If false, only constructors
1314/// will be considered.
1315///
1316/// \param AllowExplicit true if the conversion should consider C++0x
1317/// "explicit" conversion functions as well as non-explicit conversion
1318/// functions (C++0x [class.conv.fct]p2).
Sebastian Redla55834a2009-04-12 17:16:29 +00001319///
1320/// \param ForceRValue true if the expression should be treated as an rvalue
1321/// for overload resolution.
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001322bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00001323 UserDefinedConversionSequence& User,
Douglas Gregorb206cc42009-01-30 23:27:23 +00001324 bool AllowConversionFunctions,
Sebastian Redla55834a2009-04-12 17:16:29 +00001325 bool AllowExplicit, bool ForceRValue)
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001326{
1327 OverloadCandidateSet CandidateSet;
Douglas Gregor2e047592009-02-28 01:32:25 +00001328 if (const RecordType *ToRecordType = ToType->getAsRecordType()) {
1329 if (CXXRecordDecl *ToRecordDecl
1330 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1331 // C++ [over.match.ctor]p1:
1332 // When objects of class type are direct-initialized (8.5), or
1333 // copy-initialized from an expression of the same or a
1334 // derived class type (8.5), overload resolution selects the
1335 // constructor. [...] For copy-initialization, the candidate
1336 // functions are all the converting constructors (12.3.1) of
1337 // that class. The argument list is the expression-list within
1338 // the parentheses of the initializer.
1339 DeclarationName ConstructorName
1340 = Context.DeclarationNames.getCXXConstructorName(
1341 Context.getCanonicalType(ToType).getUnqualifiedType());
1342 DeclContext::lookup_iterator Con, ConEnd;
Douglas Gregorc55b0b02009-04-09 21:40:53 +00001343 for (llvm::tie(Con, ConEnd)
1344 = ToRecordDecl->lookup(Context, ConstructorName);
Douglas Gregor2e047592009-02-28 01:32:25 +00001345 Con != ConEnd; ++Con) {
1346 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1347 if (Constructor->isConvertingConstructor())
1348 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
Sebastian Redla55834a2009-04-12 17:16:29 +00001349 /*SuppressUserConversions=*/true, ForceRValue);
Douglas Gregor2e047592009-02-28 01:32:25 +00001350 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001351 }
1352 }
1353
Douglas Gregorb206cc42009-01-30 23:27:23 +00001354 if (!AllowConversionFunctions) {
1355 // Don't allow any conversion functions to enter the overload set.
Douglas Gregor2e047592009-02-28 01:32:25 +00001356 } else if (const RecordType *FromRecordType
1357 = From->getType()->getAsRecordType()) {
1358 if (CXXRecordDecl *FromRecordDecl
1359 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1360 // Add all of the conversion functions as candidates.
1361 // FIXME: Look for conversions in base classes!
1362 OverloadedFunctionDecl *Conversions
1363 = FromRecordDecl->getConversionFunctions();
1364 for (OverloadedFunctionDecl::function_iterator Func
1365 = Conversions->function_begin();
1366 Func != Conversions->function_end(); ++Func) {
1367 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1368 if (AllowExplicit || !Conv->isExplicit())
1369 AddConversionCandidate(Conv, From, ToType, CandidateSet);
1370 }
Douglas Gregor60714f92008-11-07 22:36:19 +00001371 }
1372 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001373
1374 OverloadCandidateSet::iterator Best;
1375 switch (BestViableFunction(CandidateSet, Best)) {
1376 case OR_Success:
1377 // Record the standard conversion we used and the conversion function.
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001378 if (CXXConstructorDecl *Constructor
1379 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1380 // C++ [over.ics.user]p1:
1381 // If the user-defined conversion is specified by a
1382 // constructor (12.3.1), the initial standard conversion
1383 // sequence converts the source type to the type required by
1384 // the argument of the constructor.
1385 //
1386 // FIXME: What about ellipsis conversions?
1387 QualType ThisType = Constructor->getThisType(Context);
1388 User.Before = Best->Conversions[0].Standard;
1389 User.ConversionFunction = Constructor;
1390 User.After.setAsIdentityConversion();
1391 User.After.FromTypePtr
1392 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1393 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1394 return true;
Douglas Gregor60714f92008-11-07 22:36:19 +00001395 } else if (CXXConversionDecl *Conversion
1396 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1397 // C++ [over.ics.user]p1:
1398 //
1399 // [...] If the user-defined conversion is specified by a
1400 // conversion function (12.3.2), the initial standard
1401 // conversion sequence converts the source type to the
1402 // implicit object parameter of the conversion function.
1403 User.Before = Best->Conversions[0].Standard;
1404 User.ConversionFunction = Conversion;
1405
1406 // C++ [over.ics.user]p2:
1407 // The second standard conversion sequence converts the
1408 // result of the user-defined conversion to the target type
1409 // for the sequence. Since an implicit conversion sequence
1410 // is an initialization, the special rules for
1411 // initialization by user-defined conversion apply when
1412 // selecting the best user-defined conversion for a
1413 // user-defined conversion sequence (see 13.3.3 and
1414 // 13.3.3.1).
1415 User.After = Best->FinalConversion;
1416 return true;
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001417 } else {
Douglas Gregor60714f92008-11-07 22:36:19 +00001418 assert(false && "Not a constructor or conversion function?");
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001419 return false;
1420 }
1421
1422 case OR_No_Viable_Function:
Douglas Gregoraa57e862009-02-18 21:56:37 +00001423 case OR_Deleted:
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001424 // No conversion here! We're done.
1425 return false;
1426
1427 case OR_Ambiguous:
1428 // FIXME: See C++ [over.best.ics]p10 for the handling of
1429 // ambiguous conversion sequences.
1430 return false;
1431 }
1432
1433 return false;
1434}
1435
Douglas Gregord2baafd2008-10-21 16:13:35 +00001436/// CompareImplicitConversionSequences - Compare two implicit
1437/// conversion sequences to determine whether one is better than the
1438/// other or if they are indistinguishable (C++ 13.3.3.2).
1439ImplicitConversionSequence::CompareKind
1440Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1441 const ImplicitConversionSequence& ICS2)
1442{
1443 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1444 // conversion sequences (as defined in 13.3.3.1)
1445 // -- a standard conversion sequence (13.3.3.1.1) is a better
1446 // conversion sequence than a user-defined conversion sequence or
1447 // an ellipsis conversion sequence, and
1448 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1449 // conversion sequence than an ellipsis conversion sequence
1450 // (13.3.3.1.3).
1451 //
1452 if (ICS1.ConversionKind < ICS2.ConversionKind)
1453 return ImplicitConversionSequence::Better;
1454 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1455 return ImplicitConversionSequence::Worse;
1456
1457 // Two implicit conversion sequences of the same form are
1458 // indistinguishable conversion sequences unless one of the
1459 // following rules apply: (C++ 13.3.3.2p3):
1460 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1461 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1462 else if (ICS1.ConversionKind ==
1463 ImplicitConversionSequence::UserDefinedConversion) {
1464 // User-defined conversion sequence U1 is a better conversion
1465 // sequence than another user-defined conversion sequence U2 if
1466 // they contain the same user-defined conversion function or
1467 // constructor and if the second standard conversion sequence of
1468 // U1 is better than the second standard conversion sequence of
1469 // U2 (C++ 13.3.3.2p3).
1470 if (ICS1.UserDefined.ConversionFunction ==
1471 ICS2.UserDefined.ConversionFunction)
1472 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1473 ICS2.UserDefined.After);
1474 }
1475
1476 return ImplicitConversionSequence::Indistinguishable;
1477}
1478
1479/// CompareStandardConversionSequences - Compare two standard
1480/// conversion sequences to determine whether one is better than the
1481/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1482ImplicitConversionSequence::CompareKind
1483Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1484 const StandardConversionSequence& SCS2)
1485{
1486 // Standard conversion sequence S1 is a better conversion sequence
1487 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1488
1489 // -- S1 is a proper subsequence of S2 (comparing the conversion
1490 // sequences in the canonical form defined by 13.3.3.1.1,
1491 // excluding any Lvalue Transformation; the identity conversion
1492 // sequence is considered to be a subsequence of any
1493 // non-identity conversion sequence) or, if not that,
1494 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1495 // Neither is a proper subsequence of the other. Do nothing.
1496 ;
1497 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1498 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1499 (SCS1.Second == ICK_Identity &&
1500 SCS1.Third == ICK_Identity))
1501 // SCS1 is a proper subsequence of SCS2.
1502 return ImplicitConversionSequence::Better;
1503 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1504 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1505 (SCS2.Second == ICK_Identity &&
1506 SCS2.Third == ICK_Identity))
1507 // SCS2 is a proper subsequence of SCS1.
1508 return ImplicitConversionSequence::Worse;
1509
1510 // -- the rank of S1 is better than the rank of S2 (by the rules
1511 // defined below), or, if not that,
1512 ImplicitConversionRank Rank1 = SCS1.getRank();
1513 ImplicitConversionRank Rank2 = SCS2.getRank();
1514 if (Rank1 < Rank2)
1515 return ImplicitConversionSequence::Better;
1516 else if (Rank2 < Rank1)
1517 return ImplicitConversionSequence::Worse;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001518
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001519 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1520 // are indistinguishable unless one of the following rules
1521 // applies:
1522
1523 // A conversion that is not a conversion of a pointer, or
1524 // pointer to member, to bool is better than another conversion
1525 // that is such a conversion.
1526 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1527 return SCS2.isPointerConversionToBool()
1528 ? ImplicitConversionSequence::Better
1529 : ImplicitConversionSequence::Worse;
1530
Douglas Gregor14046502008-10-23 00:40:37 +00001531 // C++ [over.ics.rank]p4b2:
1532 //
1533 // If class B is derived directly or indirectly from class A,
Douglas Gregor0e343382008-10-29 14:50:44 +00001534 // conversion of B* to A* is better than conversion of B* to
1535 // void*, and conversion of A* to void* is better than conversion
1536 // of B* to void*.
Douglas Gregor14046502008-10-23 00:40:37 +00001537 bool SCS1ConvertsToVoid
1538 = SCS1.isPointerConversionToVoidPointer(Context);
1539 bool SCS2ConvertsToVoid
1540 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregor0e343382008-10-29 14:50:44 +00001541 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1542 // Exactly one of the conversion sequences is a conversion to
1543 // a void pointer; it's the worse conversion.
Douglas Gregor14046502008-10-23 00:40:37 +00001544 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1545 : ImplicitConversionSequence::Worse;
Douglas Gregor0e343382008-10-29 14:50:44 +00001546 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1547 // Neither conversion sequence converts to a void pointer; compare
1548 // their derived-to-base conversions.
Douglas Gregor14046502008-10-23 00:40:37 +00001549 if (ImplicitConversionSequence::CompareKind DerivedCK
1550 = CompareDerivedToBaseConversions(SCS1, SCS2))
1551 return DerivedCK;
Douglas Gregor0e343382008-10-29 14:50:44 +00001552 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1553 // Both conversion sequences are conversions to void
1554 // pointers. Compare the source types to determine if there's an
1555 // inheritance relationship in their sources.
1556 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1557 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1558
1559 // Adjust the types we're converting from via the array-to-pointer
1560 // conversion, if we need to.
1561 if (SCS1.First == ICK_Array_To_Pointer)
1562 FromType1 = Context.getArrayDecayedType(FromType1);
1563 if (SCS2.First == ICK_Array_To_Pointer)
1564 FromType2 = Context.getArrayDecayedType(FromType2);
1565
1566 QualType FromPointee1
1567 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1568 QualType FromPointee2
1569 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1570
1571 if (IsDerivedFrom(FromPointee2, FromPointee1))
1572 return ImplicitConversionSequence::Better;
1573 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1574 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001575
1576 // Objective-C++: If one interface is more specific than the
1577 // other, it is the better one.
1578 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1579 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1580 if (FromIface1 && FromIface1) {
1581 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1582 return ImplicitConversionSequence::Better;
1583 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1584 return ImplicitConversionSequence::Worse;
1585 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001586 }
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001587
1588 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1589 // bullet 3).
Douglas Gregor14046502008-10-23 00:40:37 +00001590 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001591 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregor14046502008-10-23 00:40:37 +00001592 return QualCK;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001593
Douglas Gregor0e343382008-10-29 14:50:44 +00001594 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
Sebastian Redl8a8b3512009-03-22 23:49:27 +00001595 // C++0x [over.ics.rank]p3b4:
1596 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1597 // implicit object parameter of a non-static member function declared
1598 // without a ref-qualifier, and S1 binds an rvalue reference to an
1599 // rvalue and S2 binds an lvalue reference.
Sebastian Redldfc30332009-03-29 15:27:50 +00001600 // FIXME: We don't know if we're dealing with the implicit object parameter,
1601 // or if the member function in this case has a ref qualifier.
1602 // (Of course, we don't have ref qualifiers yet.)
1603 if (SCS1.RRefBinding != SCS2.RRefBinding)
1604 return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1605 : ImplicitConversionSequence::Worse;
Sebastian Redl8a8b3512009-03-22 23:49:27 +00001606
1607 // C++ [over.ics.rank]p3b4:
1608 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1609 // which the references refer are the same type except for
1610 // top-level cv-qualifiers, and the type to which the reference
1611 // initialized by S2 refers is more cv-qualified than the type
1612 // to which the reference initialized by S1 refers.
Sebastian Redldfc30332009-03-29 15:27:50 +00001613 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1614 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
Douglas Gregor0e343382008-10-29 14:50:44 +00001615 T1 = Context.getCanonicalType(T1);
1616 T2 = Context.getCanonicalType(T2);
1617 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1618 if (T2.isMoreQualifiedThan(T1))
1619 return ImplicitConversionSequence::Better;
1620 else if (T1.isMoreQualifiedThan(T2))
1621 return ImplicitConversionSequence::Worse;
1622 }
1623 }
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001624
1625 return ImplicitConversionSequence::Indistinguishable;
1626}
1627
1628/// CompareQualificationConversions - Compares two standard conversion
1629/// sequences to determine whether they can be ranked based on their
1630/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1631ImplicitConversionSequence::CompareKind
1632Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1633 const StandardConversionSequence& SCS2)
1634{
Douglas Gregor4459bbe2008-10-22 15:04:37 +00001635 // C++ 13.3.3.2p3:
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001636 // -- S1 and S2 differ only in their qualification conversion and
1637 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1638 // cv-qualification signature of type T1 is a proper subset of
1639 // the cv-qualification signature of type T2, and S1 is not the
1640 // deprecated string literal array-to-pointer conversion (4.2).
1641 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1642 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1643 return ImplicitConversionSequence::Indistinguishable;
1644
1645 // FIXME: the example in the standard doesn't use a qualification
1646 // conversion (!)
1647 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1648 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1649 T1 = Context.getCanonicalType(T1);
1650 T2 = Context.getCanonicalType(T2);
1651
1652 // If the types are the same, we won't learn anything by unwrapped
1653 // them.
1654 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1655 return ImplicitConversionSequence::Indistinguishable;
1656
1657 ImplicitConversionSequence::CompareKind Result
1658 = ImplicitConversionSequence::Indistinguishable;
1659 while (UnwrapSimilarPointerTypes(T1, T2)) {
1660 // Within each iteration of the loop, we check the qualifiers to
1661 // determine if this still looks like a qualification
1662 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorabed2172008-10-22 17:49:05 +00001663 // pointers or pointers-to-members and do it all again
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001664 // until there are no more pointers or pointers-to-members left
1665 // to unwrap. This essentially mimics what
1666 // IsQualificationConversion does, but here we're checking for a
1667 // strict subset of qualifiers.
1668 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1669 // The qualifiers are the same, so this doesn't tell us anything
1670 // about how the sequences rank.
1671 ;
1672 else if (T2.isMoreQualifiedThan(T1)) {
1673 // T1 has fewer qualifiers, so it could be the better sequence.
1674 if (Result == ImplicitConversionSequence::Worse)
1675 // Neither has qualifiers that are a subset of the other's
1676 // qualifiers.
1677 return ImplicitConversionSequence::Indistinguishable;
1678
1679 Result = ImplicitConversionSequence::Better;
1680 } else if (T1.isMoreQualifiedThan(T2)) {
1681 // T2 has fewer qualifiers, so it could be the better sequence.
1682 if (Result == ImplicitConversionSequence::Better)
1683 // Neither has qualifiers that are a subset of the other's
1684 // qualifiers.
1685 return ImplicitConversionSequence::Indistinguishable;
1686
1687 Result = ImplicitConversionSequence::Worse;
1688 } else {
1689 // Qualifiers are disjoint.
1690 return ImplicitConversionSequence::Indistinguishable;
1691 }
1692
1693 // If the types after this point are equivalent, we're done.
1694 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1695 break;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001696 }
1697
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001698 // Check that the winning standard conversion sequence isn't using
1699 // the deprecated string literal array to pointer conversion.
1700 switch (Result) {
1701 case ImplicitConversionSequence::Better:
1702 if (SCS1.Deprecated)
1703 Result = ImplicitConversionSequence::Indistinguishable;
1704 break;
1705
1706 case ImplicitConversionSequence::Indistinguishable:
1707 break;
1708
1709 case ImplicitConversionSequence::Worse:
1710 if (SCS2.Deprecated)
1711 Result = ImplicitConversionSequence::Indistinguishable;
1712 break;
1713 }
1714
1715 return Result;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001716}
1717
Douglas Gregor14046502008-10-23 00:40:37 +00001718/// CompareDerivedToBaseConversions - Compares two standard conversion
1719/// sequences to determine whether they can be ranked based on their
Douglas Gregor24a90a52008-11-26 23:31:11 +00001720/// various kinds of derived-to-base conversions (C++
1721/// [over.ics.rank]p4b3). As part of these checks, we also look at
1722/// conversions between Objective-C interface types.
Douglas Gregor14046502008-10-23 00:40:37 +00001723ImplicitConversionSequence::CompareKind
1724Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1725 const StandardConversionSequence& SCS2) {
1726 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1727 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1728 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1729 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1730
1731 // Adjust the types we're converting from via the array-to-pointer
1732 // conversion, if we need to.
1733 if (SCS1.First == ICK_Array_To_Pointer)
1734 FromType1 = Context.getArrayDecayedType(FromType1);
1735 if (SCS2.First == ICK_Array_To_Pointer)
1736 FromType2 = Context.getArrayDecayedType(FromType2);
1737
1738 // Canonicalize all of the types.
1739 FromType1 = Context.getCanonicalType(FromType1);
1740 ToType1 = Context.getCanonicalType(ToType1);
1741 FromType2 = Context.getCanonicalType(FromType2);
1742 ToType2 = Context.getCanonicalType(ToType2);
1743
Douglas Gregor0e343382008-10-29 14:50:44 +00001744 // C++ [over.ics.rank]p4b3:
Douglas Gregor14046502008-10-23 00:40:37 +00001745 //
1746 // If class B is derived directly or indirectly from class A and
1747 // class C is derived directly or indirectly from B,
Douglas Gregor24a90a52008-11-26 23:31:11 +00001748 //
1749 // For Objective-C, we let A, B, and C also be Objective-C
1750 // interfaces.
Douglas Gregor0e343382008-10-29 14:50:44 +00001751
1752 // Compare based on pointer conversions.
Douglas Gregor14046502008-10-23 00:40:37 +00001753 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor3f5a00c2008-11-27 01:19:21 +00001754 SCS2.Second == ICK_Pointer_Conversion &&
1755 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1756 FromType1->isPointerType() && FromType2->isPointerType() &&
1757 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregor14046502008-10-23 00:40:37 +00001758 QualType FromPointee1
1759 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1760 QualType ToPointee1
1761 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1762 QualType FromPointee2
1763 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1764 QualType ToPointee2
1765 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregor24a90a52008-11-26 23:31:11 +00001766
1767 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1768 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1769 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1770 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1771
Douglas Gregor0e343382008-10-29 14:50:44 +00001772 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregor14046502008-10-23 00:40:37 +00001773 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1774 if (IsDerivedFrom(ToPointee1, ToPointee2))
1775 return ImplicitConversionSequence::Better;
1776 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1777 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001778
1779 if (ToIface1 && ToIface2) {
1780 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1781 return ImplicitConversionSequence::Better;
1782 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1783 return ImplicitConversionSequence::Worse;
1784 }
Douglas Gregor14046502008-10-23 00:40:37 +00001785 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001786
1787 // -- conversion of B* to A* is better than conversion of C* to A*,
1788 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1789 if (IsDerivedFrom(FromPointee2, FromPointee1))
1790 return ImplicitConversionSequence::Better;
1791 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1792 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001793
1794 if (FromIface1 && FromIface2) {
1795 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1796 return ImplicitConversionSequence::Better;
1797 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1798 return ImplicitConversionSequence::Worse;
1799 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001800 }
Douglas Gregor14046502008-10-23 00:40:37 +00001801 }
1802
Douglas Gregor0e343382008-10-29 14:50:44 +00001803 // Compare based on reference bindings.
1804 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1805 SCS1.Second == ICK_Derived_To_Base) {
1806 // -- binding of an expression of type C to a reference of type
1807 // B& is better than binding an expression of type C to a
1808 // reference of type A&,
1809 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1810 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1811 if (IsDerivedFrom(ToType1, ToType2))
1812 return ImplicitConversionSequence::Better;
1813 else if (IsDerivedFrom(ToType2, ToType1))
1814 return ImplicitConversionSequence::Worse;
1815 }
1816
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001817 // -- binding of an expression of type B to a reference of type
1818 // A& is better than binding an expression of type C to a
1819 // reference of type A&,
Douglas Gregor0e343382008-10-29 14:50:44 +00001820 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1821 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1822 if (IsDerivedFrom(FromType2, FromType1))
1823 return ImplicitConversionSequence::Better;
1824 else if (IsDerivedFrom(FromType1, FromType2))
1825 return ImplicitConversionSequence::Worse;
1826 }
1827 }
1828
1829
1830 // FIXME: conversion of A::* to B::* is better than conversion of
1831 // A::* to C::*,
1832
1833 // FIXME: conversion of B::* to C::* is better than conversion of
1834 // A::* to C::*, and
1835
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001836 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1837 SCS1.Second == ICK_Derived_To_Base) {
1838 // -- conversion of C to B is better than conversion of C to A,
1839 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1840 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1841 if (IsDerivedFrom(ToType1, ToType2))
1842 return ImplicitConversionSequence::Better;
1843 else if (IsDerivedFrom(ToType2, ToType1))
1844 return ImplicitConversionSequence::Worse;
1845 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001846
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001847 // -- conversion of B to A is better than conversion of C to A.
1848 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1849 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1850 if (IsDerivedFrom(FromType2, FromType1))
1851 return ImplicitConversionSequence::Better;
1852 else if (IsDerivedFrom(FromType1, FromType2))
1853 return ImplicitConversionSequence::Worse;
1854 }
1855 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001856
Douglas Gregor14046502008-10-23 00:40:37 +00001857 return ImplicitConversionSequence::Indistinguishable;
1858}
1859
Douglas Gregor81c29152008-10-29 00:13:59 +00001860/// TryCopyInitialization - Try to copy-initialize a value of type
1861/// ToType from the expression From. Return the implicit conversion
1862/// sequence required to pass this argument, which may be a bad
1863/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001864/// a parameter of this type). If @p SuppressUserConversions, then we
Sebastian Redla55834a2009-04-12 17:16:29 +00001865/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1866/// then we treat @p From as an rvalue, even if it is an lvalue.
Douglas Gregor81c29152008-10-29 00:13:59 +00001867ImplicitConversionSequence
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001868Sema::TryCopyInitialization(Expr *From, QualType ToType,
Sebastian Redla55834a2009-04-12 17:16:29 +00001869 bool SuppressUserConversions, bool ForceRValue) {
Douglas Gregorfcb19192009-02-11 23:02:49 +00001870 if (ToType->isReferenceType()) {
Douglas Gregor81c29152008-10-29 00:13:59 +00001871 ImplicitConversionSequence ICS;
Sebastian Redla55834a2009-04-12 17:16:29 +00001872 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1873 /*AllowExplicit=*/false, ForceRValue);
Douglas Gregor81c29152008-10-29 00:13:59 +00001874 return ICS;
1875 } else {
Sebastian Redla55834a2009-04-12 17:16:29 +00001876 return TryImplicitConversion(From, ToType, SuppressUserConversions,
1877 ForceRValue);
Douglas Gregor81c29152008-10-29 00:13:59 +00001878 }
1879}
1880
Sebastian Redla55834a2009-04-12 17:16:29 +00001881/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1882/// the expression @p From. Returns true (and emits a diagnostic) if there was
1883/// an error, returns false if the initialization succeeded. Elidable should
1884/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1885/// differently in C++0x for this case.
Douglas Gregor81c29152008-10-29 00:13:59 +00001886bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
Sebastian Redla55834a2009-04-12 17:16:29 +00001887 const char* Flavor, bool Elidable) {
Douglas Gregor81c29152008-10-29 00:13:59 +00001888 if (!getLangOptions().CPlusPlus) {
1889 // In C, argument passing is the same as performing an assignment.
1890 QualType FromType = From->getType();
1891 AssignConvertType ConvTy =
1892 CheckSingleAssignmentConstraints(ToType, From);
1893
1894 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1895 FromType, From, Flavor);
Douglas Gregor81c29152008-10-29 00:13:59 +00001896 }
Sebastian Redla55834a2009-04-12 17:16:29 +00001897
Chris Lattner271d4c22008-11-24 05:29:24 +00001898 if (ToType->isReferenceType())
1899 return CheckReferenceInit(From, ToType);
1900
Sebastian Redla55834a2009-04-12 17:16:29 +00001901 if (!PerformImplicitConversion(From, ToType, Flavor,
1902 /*AllowExplicit=*/false, Elidable))
Chris Lattner271d4c22008-11-24 05:29:24 +00001903 return false;
Sebastian Redla55834a2009-04-12 17:16:29 +00001904
Chris Lattner271d4c22008-11-24 05:29:24 +00001905 return Diag(From->getSourceRange().getBegin(),
1906 diag::err_typecheck_convert_incompatible)
1907 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor81c29152008-10-29 00:13:59 +00001908}
1909
Douglas Gregor5ed15042008-11-18 23:14:02 +00001910/// TryObjectArgumentInitialization - Try to initialize the object
1911/// parameter of the given member function (@c Method) from the
1912/// expression @p From.
1913ImplicitConversionSequence
1914Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1915 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1916 unsigned MethodQuals = Method->getTypeQualifiers();
1917 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1918
1919 // Set up the conversion sequence as a "bad" conversion, to allow us
1920 // to exit early.
1921 ImplicitConversionSequence ICS;
1922 ICS.Standard.setAsIdentityConversion();
1923 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1924
1925 // We need to have an object of class type.
1926 QualType FromType = From->getType();
1927 if (!FromType->isRecordType())
1928 return ICS;
1929
1930 // The implicit object parmeter is has the type "reference to cv X",
1931 // where X is the class of which the function is a member
1932 // (C++ [over.match.funcs]p4). However, when finding an implicit
1933 // conversion sequence for the argument, we are not allowed to
1934 // create temporaries or perform user-defined conversions
1935 // (C++ [over.match.funcs]p5). We perform a simplified version of
1936 // reference binding here, that allows class rvalues to bind to
1937 // non-constant references.
1938
1939 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1940 // with the implicit object parameter (C++ [over.match.funcs]p5).
1941 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1942 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1943 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1944 return ICS;
1945
1946 // Check that we have either the same type or a derived type. It
1947 // affects the conversion rank.
1948 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1949 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1950 ICS.Standard.Second = ICK_Identity;
1951 else if (IsDerivedFrom(FromType, ClassType))
1952 ICS.Standard.Second = ICK_Derived_To_Base;
1953 else
1954 return ICS;
1955
1956 // Success. Mark this as a reference binding.
1957 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1958 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1959 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1960 ICS.Standard.ReferenceBinding = true;
1961 ICS.Standard.DirectBinding = true;
Sebastian Redl9bc16ad2009-03-29 22:46:24 +00001962 ICS.Standard.RRefBinding = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00001963 return ICS;
1964}
1965
1966/// PerformObjectArgumentInitialization - Perform initialization of
1967/// the implicit object parameter for the given Method with the given
1968/// expression.
1969bool
1970Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1971 QualType ImplicitParamType
1972 = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1973 ImplicitConversionSequence ICS
1974 = TryObjectArgumentInitialization(From, Method);
1975 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1976 return Diag(From->getSourceRange().getBegin(),
Chris Lattner8ba580c2008-11-19 05:08:23 +00001977 diag::err_implicit_object_parameter_init)
Chris Lattner4bfd2232008-11-24 06:25:27 +00001978 << ImplicitParamType << From->getType() << From->getSourceRange();
Douglas Gregor5ed15042008-11-18 23:14:02 +00001979
1980 if (ICS.Standard.Second == ICK_Derived_To_Base &&
1981 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1982 From->getSourceRange().getBegin(),
1983 From->getSourceRange()))
1984 return true;
1985
1986 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1987 return false;
1988}
1989
Douglas Gregor6214d8a2009-01-14 15:45:31 +00001990/// TryContextuallyConvertToBool - Attempt to contextually convert the
1991/// expression From to bool (C++0x [conv]p3).
1992ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
1993 return TryImplicitConversion(From, Context.BoolTy, false, true);
1994}
1995
1996/// PerformContextuallyConvertToBool - Perform a contextual conversion
1997/// of the expression From to bool (C++0x [conv]p3).
1998bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
1999 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2000 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2001 return false;
2002
2003 return Diag(From->getSourceRange().getBegin(),
2004 diag::err_typecheck_bool_condition)
2005 << From->getType() << From->getSourceRange();
2006}
2007
Douglas Gregord2baafd2008-10-21 16:13:35 +00002008/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002009/// candidate functions, using the given function call arguments. If
2010/// @p SuppressUserConversions, then don't allow user-defined
2011/// conversions via constructors or conversion operators.
Sebastian Redla55834a2009-04-12 17:16:29 +00002012/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2013/// hacky way to implement the overloading rules for elidable copy
2014/// initialization in C++0x (C++0x 12.8p15).
Douglas Gregord2baafd2008-10-21 16:13:35 +00002015void
2016Sema::AddOverloadCandidate(FunctionDecl *Function,
2017 Expr **Args, unsigned NumArgs,
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002018 OverloadCandidateSet& CandidateSet,
Sebastian Redla55834a2009-04-12 17:16:29 +00002019 bool SuppressUserConversions,
2020 bool ForceRValue)
Douglas Gregord2baafd2008-10-21 16:13:35 +00002021{
Douglas Gregor4fa58902009-02-26 23:50:07 +00002022 const FunctionProtoType* Proto
2023 = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
Douglas Gregord2baafd2008-10-21 16:13:35 +00002024 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregor60714f92008-11-07 22:36:19 +00002025 assert(!isa<CXXConversionDecl>(Function) &&
2026 "Use AddConversionCandidate for conversion functions");
Douglas Gregord2baafd2008-10-21 16:13:35 +00002027
Douglas Gregor3257fb52008-12-22 05:46:06 +00002028 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2029 // If we get here, it's because we're calling a member function
2030 // that is named without a member access expression (e.g.,
2031 // "this->f") that was either written explicitly or created
2032 // implicitly. This can happen with a qualified call to a member
2033 // function, e.g., X::f(). We use a NULL object as the implied
2034 // object argument (C++ [over.call.func]p3).
2035 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
Sebastian Redla55834a2009-04-12 17:16:29 +00002036 SuppressUserConversions, ForceRValue);
Douglas Gregor3257fb52008-12-22 05:46:06 +00002037 return;
2038 }
2039
2040
Douglas Gregord2baafd2008-10-21 16:13:35 +00002041 // Add this candidate
2042 CandidateSet.push_back(OverloadCandidate());
2043 OverloadCandidate& Candidate = CandidateSet.back();
2044 Candidate.Function = Function;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002045 Candidate.Viable = true;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002046 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002047 Candidate.IgnoreObjectArgument = false;
Douglas Gregord2baafd2008-10-21 16:13:35 +00002048
2049 unsigned NumArgsInProto = Proto->getNumArgs();
2050
2051 // (C++ 13.3.2p2): A candidate function having fewer than m
2052 // parameters is viable only if it has an ellipsis in its parameter
2053 // list (8.3.5).
2054 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2055 Candidate.Viable = false;
2056 return;
2057 }
2058
2059 // (C++ 13.3.2p2): A candidate function having more than m parameters
2060 // is viable only if the (m+1)st parameter has a default argument
2061 // (8.3.6). For the purposes of overload resolution, the
2062 // parameter list is truncated on the right, so that there are
2063 // exactly m parameters.
2064 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2065 if (NumArgs < MinRequiredArgs) {
2066 // Not enough arguments.
2067 Candidate.Viable = false;
2068 return;
2069 }
2070
2071 // Determine the implicit conversion sequences for each of the
2072 // arguments.
Douglas Gregord2baafd2008-10-21 16:13:35 +00002073 Candidate.Conversions.resize(NumArgs);
2074 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2075 if (ArgIdx < NumArgsInProto) {
2076 // (C++ 13.3.2p3): for F to be a viable function, there shall
2077 // exist for each argument an implicit conversion sequence
2078 // (13.3.3.1) that converts that argument to the corresponding
2079 // parameter of F.
2080 QualType ParamType = Proto->getArgType(ArgIdx);
2081 Candidate.Conversions[ArgIdx]
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002082 = TryCopyInitialization(Args[ArgIdx], ParamType,
Sebastian Redla55834a2009-04-12 17:16:29 +00002083 SuppressUserConversions, ForceRValue);
Douglas Gregord2baafd2008-10-21 16:13:35 +00002084 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor5ed15042008-11-18 23:14:02 +00002085 == ImplicitConversionSequence::BadConversion) {
Douglas Gregord2baafd2008-10-21 16:13:35 +00002086 Candidate.Viable = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002087 break;
2088 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00002089 } else {
2090 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2091 // argument for which there is no corresponding parameter is
2092 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2093 Candidate.Conversions[ArgIdx].ConversionKind
2094 = ImplicitConversionSequence::EllipsisConversion;
2095 }
2096 }
2097}
2098
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002099/// \brief Add all of the function declarations in the given function set to
2100/// the overload canddiate set.
2101void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2102 Expr **Args, unsigned NumArgs,
2103 OverloadCandidateSet& CandidateSet,
2104 bool SuppressUserConversions) {
2105 for (FunctionSet::const_iterator F = Functions.begin(),
2106 FEnd = Functions.end();
2107 F != FEnd; ++F)
2108 AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2109 SuppressUserConversions);
2110}
2111
Douglas Gregor5ed15042008-11-18 23:14:02 +00002112/// AddMethodCandidate - Adds the given C++ member function to the set
2113/// of candidate functions, using the given function call arguments
2114/// and the object argument (@c Object). For example, in a call
2115/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2116/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2117/// allow user-defined conversions via constructors or conversion
Sebastian Redla55834a2009-04-12 17:16:29 +00002118/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2119/// a slightly hacky way to implement the overloading rules for elidable copy
2120/// initialization in C++0x (C++0x 12.8p15).
Douglas Gregor5ed15042008-11-18 23:14:02 +00002121void
2122Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2123 Expr **Args, unsigned NumArgs,
2124 OverloadCandidateSet& CandidateSet,
Sebastian Redla55834a2009-04-12 17:16:29 +00002125 bool SuppressUserConversions, bool ForceRValue)
Douglas Gregor5ed15042008-11-18 23:14:02 +00002126{
Douglas Gregor4fa58902009-02-26 23:50:07 +00002127 const FunctionProtoType* Proto
2128 = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
Douglas Gregor5ed15042008-11-18 23:14:02 +00002129 assert(Proto && "Methods without a prototype cannot be overloaded");
2130 assert(!isa<CXXConversionDecl>(Method) &&
2131 "Use AddConversionCandidate for conversion functions");
2132
2133 // Add this candidate
2134 CandidateSet.push_back(OverloadCandidate());
2135 OverloadCandidate& Candidate = CandidateSet.back();
2136 Candidate.Function = Method;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002137 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002138 Candidate.IgnoreObjectArgument = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002139
2140 unsigned NumArgsInProto = Proto->getNumArgs();
2141
2142 // (C++ 13.3.2p2): A candidate function having fewer than m
2143 // parameters is viable only if it has an ellipsis in its parameter
2144 // list (8.3.5).
2145 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2146 Candidate.Viable = false;
2147 return;
2148 }
2149
2150 // (C++ 13.3.2p2): A candidate function having more than m parameters
2151 // is viable only if the (m+1)st parameter has a default argument
2152 // (8.3.6). For the purposes of overload resolution, the
2153 // parameter list is truncated on the right, so that there are
2154 // exactly m parameters.
2155 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2156 if (NumArgs < MinRequiredArgs) {
2157 // Not enough arguments.
2158 Candidate.Viable = false;
2159 return;
2160 }
2161
2162 Candidate.Viable = true;
2163 Candidate.Conversions.resize(NumArgs + 1);
2164
Douglas Gregor3257fb52008-12-22 05:46:06 +00002165 if (Method->isStatic() || !Object)
2166 // The implicit object argument is ignored.
2167 Candidate.IgnoreObjectArgument = true;
2168 else {
2169 // Determine the implicit conversion sequence for the object
2170 // parameter.
2171 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2172 if (Candidate.Conversions[0].ConversionKind
2173 == ImplicitConversionSequence::BadConversion) {
2174 Candidate.Viable = false;
2175 return;
2176 }
Douglas Gregor5ed15042008-11-18 23:14:02 +00002177 }
2178
2179 // Determine the implicit conversion sequences for each of the
2180 // arguments.
2181 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2182 if (ArgIdx < NumArgsInProto) {
2183 // (C++ 13.3.2p3): for F to be a viable function, there shall
2184 // exist for each argument an implicit conversion sequence
2185 // (13.3.3.1) that converts that argument to the corresponding
2186 // parameter of F.
2187 QualType ParamType = Proto->getArgType(ArgIdx);
2188 Candidate.Conversions[ArgIdx + 1]
2189 = TryCopyInitialization(Args[ArgIdx], ParamType,
Sebastian Redla55834a2009-04-12 17:16:29 +00002190 SuppressUserConversions, ForceRValue);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002191 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2192 == ImplicitConversionSequence::BadConversion) {
2193 Candidate.Viable = false;
2194 break;
2195 }
2196 } else {
2197 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2198 // argument for which there is no corresponding parameter is
2199 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2200 Candidate.Conversions[ArgIdx + 1].ConversionKind
2201 = ImplicitConversionSequence::EllipsisConversion;
2202 }
2203 }
2204}
2205
Douglas Gregor60714f92008-11-07 22:36:19 +00002206/// AddConversionCandidate - Add a C++ conversion function as a
2207/// candidate in the candidate set (C++ [over.match.conv],
2208/// C++ [over.match.copy]). From is the expression we're converting from,
2209/// and ToType is the type that we're eventually trying to convert to
2210/// (which may or may not be the same type as the type that the
2211/// conversion function produces).
2212void
2213Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2214 Expr *From, QualType ToType,
2215 OverloadCandidateSet& CandidateSet) {
2216 // Add this candidate
2217 CandidateSet.push_back(OverloadCandidate());
2218 OverloadCandidate& Candidate = CandidateSet.back();
2219 Candidate.Function = Conversion;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002220 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002221 Candidate.IgnoreObjectArgument = false;
Douglas Gregor60714f92008-11-07 22:36:19 +00002222 Candidate.FinalConversion.setAsIdentityConversion();
2223 Candidate.FinalConversion.FromTypePtr
2224 = Conversion->getConversionType().getAsOpaquePtr();
2225 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2226
Douglas Gregor5ed15042008-11-18 23:14:02 +00002227 // Determine the implicit conversion sequence for the implicit
2228 // object parameter.
Douglas Gregor60714f92008-11-07 22:36:19 +00002229 Candidate.Viable = true;
2230 Candidate.Conversions.resize(1);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002231 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregor60714f92008-11-07 22:36:19 +00002232
Douglas Gregor60714f92008-11-07 22:36:19 +00002233 if (Candidate.Conversions[0].ConversionKind
2234 == ImplicitConversionSequence::BadConversion) {
2235 Candidate.Viable = false;
2236 return;
2237 }
2238
2239 // To determine what the conversion from the result of calling the
2240 // conversion function to the type we're eventually trying to
2241 // convert to (ToType), we need to synthesize a call to the
2242 // conversion function and attempt copy initialization from it. This
2243 // makes sure that we get the right semantics with respect to
2244 // lvalues/rvalues and the type. Fortunately, we can allocate this
2245 // call on the stack and we don't need its arguments to be
2246 // well-formed.
2247 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2248 SourceLocation());
2249 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregor70d26122008-11-12 17:17:38 +00002250 &ConversionRef, false);
Ted Kremenek362abcd2009-02-09 20:51:47 +00002251
2252 // Note that it is safe to allocate CallExpr on the stack here because
2253 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2254 // allocator).
2255 CallExpr Call(Context, &ConversionFn, 0, 0,
Douglas Gregor60714f92008-11-07 22:36:19 +00002256 Conversion->getConversionType().getNonReferenceType(),
2257 SourceLocation());
2258 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2259 switch (ICS.ConversionKind) {
2260 case ImplicitConversionSequence::StandardConversion:
2261 Candidate.FinalConversion = ICS.Standard;
2262 break;
2263
2264 case ImplicitConversionSequence::BadConversion:
2265 Candidate.Viable = false;
2266 break;
2267
2268 default:
2269 assert(false &&
2270 "Can only end up with a standard conversion sequence or failure");
2271 }
2272}
2273
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002274/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2275/// converts the given @c Object to a function pointer via the
2276/// conversion function @c Conversion, and then attempts to call it
2277/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2278/// the type of function that we'll eventually be calling.
2279void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
Douglas Gregor4fa58902009-02-26 23:50:07 +00002280 const FunctionProtoType *Proto,
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002281 Expr *Object, Expr **Args, unsigned NumArgs,
2282 OverloadCandidateSet& CandidateSet) {
2283 CandidateSet.push_back(OverloadCandidate());
2284 OverloadCandidate& Candidate = CandidateSet.back();
2285 Candidate.Function = 0;
2286 Candidate.Surrogate = Conversion;
2287 Candidate.Viable = true;
2288 Candidate.IsSurrogate = true;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002289 Candidate.IgnoreObjectArgument = false;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002290 Candidate.Conversions.resize(NumArgs + 1);
2291
2292 // Determine the implicit conversion sequence for the implicit
2293 // object parameter.
2294 ImplicitConversionSequence ObjectInit
2295 = TryObjectArgumentInitialization(Object, Conversion);
2296 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2297 Candidate.Viable = false;
2298 return;
2299 }
2300
2301 // The first conversion is actually a user-defined conversion whose
2302 // first conversion is ObjectInit's standard conversion (which is
2303 // effectively a reference binding). Record it as such.
2304 Candidate.Conversions[0].ConversionKind
2305 = ImplicitConversionSequence::UserDefinedConversion;
2306 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2307 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2308 Candidate.Conversions[0].UserDefined.After
2309 = Candidate.Conversions[0].UserDefined.Before;
2310 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2311
2312 // Find the
2313 unsigned NumArgsInProto = Proto->getNumArgs();
2314
2315 // (C++ 13.3.2p2): A candidate function having fewer than m
2316 // parameters is viable only if it has an ellipsis in its parameter
2317 // list (8.3.5).
2318 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2319 Candidate.Viable = false;
2320 return;
2321 }
2322
2323 // Function types don't have any default arguments, so just check if
2324 // we have enough arguments.
2325 if (NumArgs < NumArgsInProto) {
2326 // Not enough arguments.
2327 Candidate.Viable = false;
2328 return;
2329 }
2330
2331 // Determine the implicit conversion sequences for each of the
2332 // arguments.
2333 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2334 if (ArgIdx < NumArgsInProto) {
2335 // (C++ 13.3.2p3): for F to be a viable function, there shall
2336 // exist for each argument an implicit conversion sequence
2337 // (13.3.3.1) that converts that argument to the corresponding
2338 // parameter of F.
2339 QualType ParamType = Proto->getArgType(ArgIdx);
2340 Candidate.Conversions[ArgIdx + 1]
2341 = TryCopyInitialization(Args[ArgIdx], ParamType,
2342 /*SuppressUserConversions=*/false);
2343 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2344 == ImplicitConversionSequence::BadConversion) {
2345 Candidate.Viable = false;
2346 break;
2347 }
2348 } else {
2349 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2350 // argument for which there is no corresponding parameter is
2351 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2352 Candidate.Conversions[ArgIdx + 1].ConversionKind
2353 = ImplicitConversionSequence::EllipsisConversion;
2354 }
2355 }
2356}
2357
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002358// FIXME: This will eventually be removed, once we've migrated all of
2359// the operator overloading logic over to the scheme used by binary
2360// operators, which works for template instantiation.
2361void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
Douglas Gregor48a87322009-02-04 16:44:47 +00002362 SourceLocation OpLoc,
Douglas Gregor5ed15042008-11-18 23:14:02 +00002363 Expr **Args, unsigned NumArgs,
Douglas Gregor48a87322009-02-04 16:44:47 +00002364 OverloadCandidateSet& CandidateSet,
2365 SourceRange OpRange) {
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002366
2367 FunctionSet Functions;
2368
2369 QualType T1 = Args[0]->getType();
2370 QualType T2;
2371 if (NumArgs > 1)
2372 T2 = Args[1]->getType();
2373
2374 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2375 LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2376 ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2377 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2378 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2379 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2380}
2381
2382/// \brief Add overload candidates for overloaded operators that are
2383/// member functions.
2384///
2385/// Add the overloaded operator candidates that are member functions
2386/// for the operator Op that was used in an operator expression such
2387/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2388/// CandidateSet will store the added overload candidates. (C++
2389/// [over.match.oper]).
2390void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2391 SourceLocation OpLoc,
2392 Expr **Args, unsigned NumArgs,
2393 OverloadCandidateSet& CandidateSet,
2394 SourceRange OpRange) {
Douglas Gregor5ed15042008-11-18 23:14:02 +00002395 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2396
2397 // C++ [over.match.oper]p3:
2398 // For a unary operator @ with an operand of a type whose
2399 // cv-unqualified version is T1, and for a binary operator @ with
2400 // a left operand of a type whose cv-unqualified version is T1 and
2401 // a right operand of a type whose cv-unqualified version is T2,
2402 // three sets of candidate functions, designated member
2403 // candidates, non-member candidates and built-in candidates, are
2404 // constructed as follows:
2405 QualType T1 = Args[0]->getType();
2406 QualType T2;
2407 if (NumArgs > 1)
2408 T2 = Args[1]->getType();
2409
2410 // -- If T1 is a class type, the set of member candidates is the
2411 // result of the qualified lookup of T1::operator@
2412 // (13.3.1.1.1); otherwise, the set of member candidates is
2413 // empty.
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002414 // FIXME: Lookup in base classes, too!
Douglas Gregor5ed15042008-11-18 23:14:02 +00002415 if (const RecordType *T1Rec = T1->getAsRecordType()) {
Douglas Gregorddfd9d52008-12-23 00:26:44 +00002416 DeclContext::lookup_const_iterator Oper, OperEnd;
Douglas Gregorc55b0b02009-04-09 21:40:53 +00002417 for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(Context, OpName);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00002418 Oper != OperEnd; ++Oper)
2419 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2420 Args+1, NumArgs - 1, CandidateSet,
Douglas Gregor5ed15042008-11-18 23:14:02 +00002421 /*SuppressUserConversions=*/false);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002422 }
Douglas Gregor5ed15042008-11-18 23:14:02 +00002423}
2424
Douglas Gregor70d26122008-11-12 17:17:38 +00002425/// AddBuiltinCandidate - Add a candidate for a built-in
2426/// operator. ResultTy and ParamTys are the result and parameter types
2427/// of the built-in candidate, respectively. Args and NumArgs are the
Douglas Gregorab141112009-01-13 00:52:54 +00002428/// arguments being passed to the candidate. IsAssignmentOperator
2429/// should be true when this built-in candidate is an assignment
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002430/// operator. NumContextualBoolArguments is the number of arguments
2431/// (at the beginning of the argument list) that will be contextually
2432/// converted to bool.
Douglas Gregor70d26122008-11-12 17:17:38 +00002433void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2434 Expr **Args, unsigned NumArgs,
Douglas Gregorab141112009-01-13 00:52:54 +00002435 OverloadCandidateSet& CandidateSet,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002436 bool IsAssignmentOperator,
2437 unsigned NumContextualBoolArguments) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002438 // Add this candidate
2439 CandidateSet.push_back(OverloadCandidate());
2440 OverloadCandidate& Candidate = CandidateSet.back();
2441 Candidate.Function = 0;
Douglas Gregor6b5e34f2008-12-12 02:00:36 +00002442 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002443 Candidate.IgnoreObjectArgument = false;
Douglas Gregor70d26122008-11-12 17:17:38 +00002444 Candidate.BuiltinTypes.ResultTy = ResultTy;
2445 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2446 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2447
2448 // Determine the implicit conversion sequences for each of the
2449 // arguments.
2450 Candidate.Viable = true;
2451 Candidate.Conversions.resize(NumArgs);
2452 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregorab141112009-01-13 00:52:54 +00002453 // C++ [over.match.oper]p4:
2454 // For the built-in assignment operators, conversions of the
2455 // left operand are restricted as follows:
2456 // -- no temporaries are introduced to hold the left operand, and
2457 // -- no user-defined conversions are applied to the left
2458 // operand to achieve a type match with the left-most
2459 // parameter of a built-in candidate.
2460 //
2461 // We block these conversions by turning off user-defined
2462 // conversions, since that is the only way that initialization of
2463 // a reference to a non-class type can occur from something that
2464 // is not of the same type.
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002465 if (ArgIdx < NumContextualBoolArguments) {
2466 assert(ParamTys[ArgIdx] == Context.BoolTy &&
2467 "Contextual conversion to bool requires bool type");
2468 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2469 } else {
2470 Candidate.Conversions[ArgIdx]
2471 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2472 ArgIdx == 0 && IsAssignmentOperator);
2473 }
Douglas Gregor70d26122008-11-12 17:17:38 +00002474 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor5ed15042008-11-18 23:14:02 +00002475 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002476 Candidate.Viable = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002477 break;
2478 }
Douglas Gregor70d26122008-11-12 17:17:38 +00002479 }
2480}
2481
2482/// BuiltinCandidateTypeSet - A set of types that will be used for the
2483/// candidate operator functions for built-in operators (C++
2484/// [over.built]). The types are separated into pointer types and
2485/// enumeration types.
2486class BuiltinCandidateTypeSet {
2487 /// TypeSet - A set of types.
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002488 typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
Douglas Gregor70d26122008-11-12 17:17:38 +00002489
2490 /// PointerTypes - The set of pointer types that will be used in the
2491 /// built-in candidates.
2492 TypeSet PointerTypes;
2493
2494 /// EnumerationTypes - The set of enumeration types that will be
2495 /// used in the built-in candidates.
2496 TypeSet EnumerationTypes;
2497
2498 /// Context - The AST context in which we will build the type sets.
2499 ASTContext &Context;
2500
2501 bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2502
2503public:
2504 /// iterator - Iterates through the types that are part of the set.
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002505 typedef TypeSet::iterator iterator;
Douglas Gregor70d26122008-11-12 17:17:38 +00002506
2507 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2508
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002509 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2510 bool AllowExplicitConversions);
Douglas Gregor70d26122008-11-12 17:17:38 +00002511
2512 /// pointer_begin - First pointer type found;
2513 iterator pointer_begin() { return PointerTypes.begin(); }
2514
2515 /// pointer_end - Last pointer type found;
2516 iterator pointer_end() { return PointerTypes.end(); }
2517
2518 /// enumeration_begin - First enumeration type found;
2519 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2520
2521 /// enumeration_end - Last enumeration type found;
2522 iterator enumeration_end() { return EnumerationTypes.end(); }
2523};
2524
2525/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2526/// the set of pointer types along with any more-qualified variants of
2527/// that type. For example, if @p Ty is "int const *", this routine
2528/// will add "int const *", "int const volatile *", "int const
2529/// restrict *", and "int const volatile restrict *" to the set of
2530/// pointer types. Returns true if the add of @p Ty itself succeeded,
2531/// false otherwise.
2532bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2533 // Insert this type.
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002534 if (!PointerTypes.insert(Ty))
Douglas Gregor70d26122008-11-12 17:17:38 +00002535 return false;
2536
2537 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2538 QualType PointeeTy = PointerTy->getPointeeType();
2539 // FIXME: Optimize this so that we don't keep trying to add the same types.
2540
2541 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2542 // with all pointer conversions that don't cast away constness?
2543 if (!PointeeTy.isConstQualified())
2544 AddWithMoreQualifiedTypeVariants
2545 (Context.getPointerType(PointeeTy.withConst()));
2546 if (!PointeeTy.isVolatileQualified())
2547 AddWithMoreQualifiedTypeVariants
2548 (Context.getPointerType(PointeeTy.withVolatile()));
2549 if (!PointeeTy.isRestrictQualified())
2550 AddWithMoreQualifiedTypeVariants
2551 (Context.getPointerType(PointeeTy.withRestrict()));
2552 }
2553
2554 return true;
2555}
2556
2557/// AddTypesConvertedFrom - Add each of the types to which the type @p
2558/// Ty can be implicit converted to the given set of @p Types. We're
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002559/// primarily interested in pointer types and enumeration types.
2560/// AllowUserConversions is true if we should look at the conversion
2561/// functions of a class type, and AllowExplicitConversions if we
2562/// should also include the explicit conversion functions of a class
2563/// type.
2564void
2565BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2566 bool AllowUserConversions,
2567 bool AllowExplicitConversions) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002568 // Only deal with canonical types.
2569 Ty = Context.getCanonicalType(Ty);
2570
2571 // Look through reference types; they aren't part of the type of an
2572 // expression for the purposes of conversions.
2573 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2574 Ty = RefTy->getPointeeType();
2575
2576 // We don't care about qualifiers on the type.
2577 Ty = Ty.getUnqualifiedType();
2578
2579 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2580 QualType PointeeTy = PointerTy->getPointeeType();
2581
2582 // Insert our type, and its more-qualified variants, into the set
2583 // of types.
2584 if (!AddWithMoreQualifiedTypeVariants(Ty))
2585 return;
2586
2587 // Add 'cv void*' to our set of types.
2588 if (!Ty->isVoidType()) {
2589 QualType QualVoid
2590 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2591 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2592 }
2593
2594 // If this is a pointer to a class type, add pointers to its bases
2595 // (with the same level of cv-qualification as the original
2596 // derived class, of course).
2597 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2598 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2599 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2600 Base != ClassDecl->bases_end(); ++Base) {
2601 QualType BaseTy = Context.getCanonicalType(Base->getType());
2602 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2603
2604 // Add the pointer type, recursively, so that we get all of
2605 // the indirect base classes, too.
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002606 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
Douglas Gregor70d26122008-11-12 17:17:38 +00002607 }
2608 }
2609 } else if (Ty->isEnumeralType()) {
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002610 EnumerationTypes.insert(Ty);
Douglas Gregor70d26122008-11-12 17:17:38 +00002611 } else if (AllowUserConversions) {
2612 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2613 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2614 // FIXME: Visit conversion functions in the base classes, too.
2615 OverloadedFunctionDecl *Conversions
2616 = ClassDecl->getConversionFunctions();
2617 for (OverloadedFunctionDecl::function_iterator Func
2618 = Conversions->function_begin();
2619 Func != Conversions->function_end(); ++Func) {
2620 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002621 if (AllowExplicitConversions || !Conv->isExplicit())
2622 AddTypesConvertedFrom(Conv->getConversionType(), false, false);
Douglas Gregor70d26122008-11-12 17:17:38 +00002623 }
2624 }
2625 }
2626}
2627
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002628/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2629/// operator overloads to the candidate set (C++ [over.built]), based
2630/// on the operator @p Op and the arguments given. For example, if the
2631/// operator is a binary '+', this routine might add "int
2632/// operator+(int, int)" to cover integer addition.
Douglas Gregor70d26122008-11-12 17:17:38 +00002633void
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002634Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2635 Expr **Args, unsigned NumArgs,
2636 OverloadCandidateSet& CandidateSet) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002637 // The set of "promoted arithmetic types", which are the arithmetic
2638 // types are that preserved by promotion (C++ [over.built]p2). Note
2639 // that the first few of these types are the promoted integral
2640 // types; these types need to be first.
2641 // FIXME: What about complex?
2642 const unsigned FirstIntegralType = 0;
2643 const unsigned LastIntegralType = 13;
2644 const unsigned FirstPromotedIntegralType = 7,
2645 LastPromotedIntegralType = 13;
2646 const unsigned FirstPromotedArithmeticType = 7,
2647 LastPromotedArithmeticType = 16;
2648 const unsigned NumArithmeticTypes = 16;
2649 QualType ArithmeticTypes[NumArithmeticTypes] = {
2650 Context.BoolTy, Context.CharTy, Context.WCharTy,
2651 Context.SignedCharTy, Context.ShortTy,
2652 Context.UnsignedCharTy, Context.UnsignedShortTy,
2653 Context.IntTy, Context.LongTy, Context.LongLongTy,
2654 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2655 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2656 };
2657
2658 // Find all of the types that the arguments can convert to, but only
2659 // if the operator we're looking at has built-in operator candidates
2660 // that make use of these types.
2661 BuiltinCandidateTypeSet CandidateTypes(Context);
2662 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2663 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002664 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregor70d26122008-11-12 17:17:38 +00002665 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002666 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2667 (Op == OO_Star && NumArgs == 1)) {
2668 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002669 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2670 true,
2671 (Op == OO_Exclaim ||
2672 Op == OO_AmpAmp ||
2673 Op == OO_PipePipe));
Douglas Gregor70d26122008-11-12 17:17:38 +00002674 }
2675
2676 bool isComparison = false;
2677 switch (Op) {
2678 case OO_None:
2679 case NUM_OVERLOADED_OPERATORS:
2680 assert(false && "Expected an overloaded operator");
2681 break;
2682
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002683 case OO_Star: // '*' is either unary or binary
2684 if (NumArgs == 1)
2685 goto UnaryStar;
2686 else
2687 goto BinaryStar;
2688 break;
2689
2690 case OO_Plus: // '+' is either unary or binary
2691 if (NumArgs == 1)
2692 goto UnaryPlus;
2693 else
2694 goto BinaryPlus;
2695 break;
2696
2697 case OO_Minus: // '-' is either unary or binary
2698 if (NumArgs == 1)
2699 goto UnaryMinus;
2700 else
2701 goto BinaryMinus;
2702 break;
2703
2704 case OO_Amp: // '&' is either unary or binary
2705 if (NumArgs == 1)
2706 goto UnaryAmp;
2707 else
2708 goto BinaryAmp;
2709
2710 case OO_PlusPlus:
2711 case OO_MinusMinus:
2712 // C++ [over.built]p3:
2713 //
2714 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2715 // is either volatile or empty, there exist candidate operator
2716 // functions of the form
2717 //
2718 // VQ T& operator++(VQ T&);
2719 // T operator++(VQ T&, int);
2720 //
2721 // C++ [over.built]p4:
2722 //
2723 // For every pair (T, VQ), where T is an arithmetic type other
2724 // than bool, and VQ is either volatile or empty, there exist
2725 // candidate operator functions of the form
2726 //
2727 // VQ T& operator--(VQ T&);
2728 // T operator--(VQ T&, int);
2729 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2730 Arith < NumArithmeticTypes; ++Arith) {
2731 QualType ArithTy = ArithmeticTypes[Arith];
2732 QualType ParamTypes[2]
Sebastian Redlce6fff02009-03-16 23:22:08 +00002733 = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002734
2735 // Non-volatile version.
2736 if (NumArgs == 1)
2737 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2738 else
2739 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2740
2741 // Volatile version
Sebastian Redlce6fff02009-03-16 23:22:08 +00002742 ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002743 if (NumArgs == 1)
2744 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2745 else
2746 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2747 }
2748
2749 // C++ [over.built]p5:
2750 //
2751 // For every pair (T, VQ), where T is a cv-qualified or
2752 // cv-unqualified object type, and VQ is either volatile or
2753 // empty, there exist candidate operator functions of the form
2754 //
2755 // T*VQ& operator++(T*VQ&);
2756 // T*VQ& operator--(T*VQ&);
2757 // T* operator++(T*VQ&, int);
2758 // T* operator--(T*VQ&, int);
2759 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2760 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2761 // Skip pointer types that aren't pointers to object types.
Douglas Gregor26ea1222009-03-24 20:32:41 +00002762 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isObjectType())
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002763 continue;
2764
2765 QualType ParamTypes[2] = {
Sebastian Redlce6fff02009-03-16 23:22:08 +00002766 Context.getLValueReferenceType(*Ptr), Context.IntTy
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002767 };
2768
2769 // Without volatile
2770 if (NumArgs == 1)
2771 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2772 else
2773 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2774
2775 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2776 // With volatile
Sebastian Redlce6fff02009-03-16 23:22:08 +00002777 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002778 if (NumArgs == 1)
2779 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2780 else
2781 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2782 }
2783 }
2784 break;
2785
2786 UnaryStar:
2787 // C++ [over.built]p6:
2788 // For every cv-qualified or cv-unqualified object type T, there
2789 // exist candidate operator functions of the form
2790 //
2791 // T& operator*(T*);
2792 //
2793 // C++ [over.built]p7:
2794 // For every function type T, there exist candidate operator
2795 // functions of the form
2796 // T& operator*(T*);
2797 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2798 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2799 QualType ParamTy = *Ptr;
2800 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00002801 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002802 &ParamTy, Args, 1, CandidateSet);
2803 }
2804 break;
2805
2806 UnaryPlus:
2807 // C++ [over.built]p8:
2808 // For every type T, there exist candidate operator functions of
2809 // the form
2810 //
2811 // T* operator+(T*);
2812 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2813 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2814 QualType ParamTy = *Ptr;
2815 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2816 }
2817
2818 // Fall through
2819
2820 UnaryMinus:
2821 // C++ [over.built]p9:
2822 // For every promoted arithmetic type T, there exist candidate
2823 // operator functions of the form
2824 //
2825 // T operator+(T);
2826 // T operator-(T);
2827 for (unsigned Arith = FirstPromotedArithmeticType;
2828 Arith < LastPromotedArithmeticType; ++Arith) {
2829 QualType ArithTy = ArithmeticTypes[Arith];
2830 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2831 }
2832 break;
2833
2834 case OO_Tilde:
2835 // C++ [over.built]p10:
2836 // For every promoted integral type T, there exist candidate
2837 // operator functions of the form
2838 //
2839 // T operator~(T);
2840 for (unsigned Int = FirstPromotedIntegralType;
2841 Int < LastPromotedIntegralType; ++Int) {
2842 QualType IntTy = ArithmeticTypes[Int];
2843 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2844 }
2845 break;
2846
Douglas Gregor70d26122008-11-12 17:17:38 +00002847 case OO_New:
2848 case OO_Delete:
2849 case OO_Array_New:
2850 case OO_Array_Delete:
Douglas Gregor70d26122008-11-12 17:17:38 +00002851 case OO_Call:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002852 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregor70d26122008-11-12 17:17:38 +00002853 break;
2854
2855 case OO_Comma:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002856 UnaryAmp:
2857 case OO_Arrow:
Douglas Gregor70d26122008-11-12 17:17:38 +00002858 // C++ [over.match.oper]p3:
2859 // -- For the operator ',', the unary operator '&', or the
2860 // operator '->', the built-in candidates set is empty.
Douglas Gregor70d26122008-11-12 17:17:38 +00002861 break;
2862
2863 case OO_Less:
2864 case OO_Greater:
2865 case OO_LessEqual:
2866 case OO_GreaterEqual:
2867 case OO_EqualEqual:
2868 case OO_ExclaimEqual:
2869 // C++ [over.built]p15:
2870 //
2871 // For every pointer or enumeration type T, there exist
2872 // candidate operator functions of the form
2873 //
2874 // bool operator<(T, T);
2875 // bool operator>(T, T);
2876 // bool operator<=(T, T);
2877 // bool operator>=(T, T);
2878 // bool operator==(T, T);
2879 // bool operator!=(T, T);
2880 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2881 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2882 QualType ParamTypes[2] = { *Ptr, *Ptr };
2883 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2884 }
2885 for (BuiltinCandidateTypeSet::iterator Enum
2886 = CandidateTypes.enumeration_begin();
2887 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2888 QualType ParamTypes[2] = { *Enum, *Enum };
2889 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2890 }
2891
2892 // Fall through.
2893 isComparison = true;
2894
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002895 BinaryPlus:
2896 BinaryMinus:
Douglas Gregor70d26122008-11-12 17:17:38 +00002897 if (!isComparison) {
2898 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2899
2900 // C++ [over.built]p13:
2901 //
2902 // For every cv-qualified or cv-unqualified object type T
2903 // there exist candidate operator functions of the form
2904 //
2905 // T* operator+(T*, ptrdiff_t);
2906 // T& operator[](T*, ptrdiff_t); [BELOW]
2907 // T* operator-(T*, ptrdiff_t);
2908 // T* operator+(ptrdiff_t, T*);
2909 // T& operator[](ptrdiff_t, T*); [BELOW]
2910 //
2911 // C++ [over.built]p14:
2912 //
2913 // For every T, where T is a pointer to object type, there
2914 // exist candidate operator functions of the form
2915 //
2916 // ptrdiff_t operator-(T, T);
2917 for (BuiltinCandidateTypeSet::iterator Ptr
2918 = CandidateTypes.pointer_begin();
2919 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2920 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2921
2922 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2923 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2924
2925 if (Op == OO_Plus) {
2926 // T* operator+(ptrdiff_t, T*);
2927 ParamTypes[0] = ParamTypes[1];
2928 ParamTypes[1] = *Ptr;
2929 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2930 } else {
2931 // ptrdiff_t operator-(T, T);
2932 ParamTypes[1] = *Ptr;
2933 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2934 Args, 2, CandidateSet);
2935 }
2936 }
2937 }
2938 // Fall through
2939
Douglas Gregor70d26122008-11-12 17:17:38 +00002940 case OO_Slash:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002941 BinaryStar:
Douglas Gregor70d26122008-11-12 17:17:38 +00002942 // C++ [over.built]p12:
2943 //
2944 // For every pair of promoted arithmetic types L and R, there
2945 // exist candidate operator functions of the form
2946 //
2947 // LR operator*(L, R);
2948 // LR operator/(L, R);
2949 // LR operator+(L, R);
2950 // LR operator-(L, R);
2951 // bool operator<(L, R);
2952 // bool operator>(L, R);
2953 // bool operator<=(L, R);
2954 // bool operator>=(L, R);
2955 // bool operator==(L, R);
2956 // bool operator!=(L, R);
2957 //
2958 // where LR is the result of the usual arithmetic conversions
2959 // between types L and R.
2960 for (unsigned Left = FirstPromotedArithmeticType;
2961 Left < LastPromotedArithmeticType; ++Left) {
2962 for (unsigned Right = FirstPromotedArithmeticType;
2963 Right < LastPromotedArithmeticType; ++Right) {
2964 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2965 QualType Result
2966 = isComparison? Context.BoolTy
2967 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2968 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2969 }
2970 }
2971 break;
2972
2973 case OO_Percent:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002974 BinaryAmp:
Douglas Gregor70d26122008-11-12 17:17:38 +00002975 case OO_Caret:
2976 case OO_Pipe:
2977 case OO_LessLess:
2978 case OO_GreaterGreater:
2979 // C++ [over.built]p17:
2980 //
2981 // For every pair of promoted integral types L and R, there
2982 // exist candidate operator functions of the form
2983 //
2984 // LR operator%(L, R);
2985 // LR operator&(L, R);
2986 // LR operator^(L, R);
2987 // LR operator|(L, R);
2988 // L operator<<(L, R);
2989 // L operator>>(L, R);
2990 //
2991 // where LR is the result of the usual arithmetic conversions
2992 // between types L and R.
2993 for (unsigned Left = FirstPromotedIntegralType;
2994 Left < LastPromotedIntegralType; ++Left) {
2995 for (unsigned Right = FirstPromotedIntegralType;
2996 Right < LastPromotedIntegralType; ++Right) {
2997 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2998 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2999 ? LandR[0]
3000 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3001 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3002 }
3003 }
3004 break;
3005
3006 case OO_Equal:
3007 // C++ [over.built]p20:
3008 //
3009 // For every pair (T, VQ), where T is an enumeration or
3010 // (FIXME:) pointer to member type and VQ is either volatile or
3011 // empty, there exist candidate operator functions of the form
3012 //
3013 // VQ T& operator=(VQ T&, T);
3014 for (BuiltinCandidateTypeSet::iterator Enum
3015 = CandidateTypes.enumeration_begin();
3016 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3017 QualType ParamTypes[2];
3018
3019 // T& operator=(T&, T)
Sebastian Redlce6fff02009-03-16 23:22:08 +00003020 ParamTypes[0] = Context.getLValueReferenceType(*Enum);
Douglas Gregor70d26122008-11-12 17:17:38 +00003021 ParamTypes[1] = *Enum;
Douglas Gregorab141112009-01-13 00:52:54 +00003022 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003023 /*IsAssignmentOperator=*/false);
Douglas Gregor70d26122008-11-12 17:17:38 +00003024
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003025 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3026 // volatile T& operator=(volatile T&, T)
Sebastian Redlce6fff02009-03-16 23:22:08 +00003027 ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003028 ParamTypes[1] = *Enum;
Douglas Gregorab141112009-01-13 00:52:54 +00003029 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003030 /*IsAssignmentOperator=*/false);
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003031 }
Douglas Gregor70d26122008-11-12 17:17:38 +00003032 }
3033 // Fall through.
3034
3035 case OO_PlusEqual:
3036 case OO_MinusEqual:
3037 // C++ [over.built]p19:
3038 //
3039 // For every pair (T, VQ), where T is any type and VQ is either
3040 // volatile or empty, there exist candidate operator functions
3041 // of the form
3042 //
3043 // T*VQ& operator=(T*VQ&, T*);
3044 //
3045 // C++ [over.built]p21:
3046 //
3047 // For every pair (T, VQ), where T is a cv-qualified or
3048 // cv-unqualified object type and VQ is either volatile or
3049 // empty, there exist candidate operator functions of the form
3050 //
3051 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
3052 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
3053 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3054 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3055 QualType ParamTypes[2];
3056 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3057
3058 // non-volatile version
Sebastian Redlce6fff02009-03-16 23:22:08 +00003059 ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
Douglas Gregorab141112009-01-13 00:52:54 +00003060 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3061 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor70d26122008-11-12 17:17:38 +00003062
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003063 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3064 // volatile version
Sebastian Redlce6fff02009-03-16 23:22:08 +00003065 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregorab141112009-01-13 00:52:54 +00003066 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3067 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003068 }
Douglas Gregor70d26122008-11-12 17:17:38 +00003069 }
3070 // Fall through.
3071
3072 case OO_StarEqual:
3073 case OO_SlashEqual:
3074 // C++ [over.built]p18:
3075 //
3076 // For every triple (L, VQ, R), where L is an arithmetic type,
3077 // VQ is either volatile or empty, and R is a promoted
3078 // arithmetic type, there exist candidate operator functions of
3079 // the form
3080 //
3081 // VQ L& operator=(VQ L&, R);
3082 // VQ L& operator*=(VQ L&, R);
3083 // VQ L& operator/=(VQ L&, R);
3084 // VQ L& operator+=(VQ L&, R);
3085 // VQ L& operator-=(VQ L&, R);
3086 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3087 for (unsigned Right = FirstPromotedArithmeticType;
3088 Right < LastPromotedArithmeticType; ++Right) {
3089 QualType ParamTypes[2];
3090 ParamTypes[1] = ArithmeticTypes[Right];
3091
3092 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redlce6fff02009-03-16 23:22:08 +00003093 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregorab141112009-01-13 00:52:54 +00003094 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3095 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor70d26122008-11-12 17:17:38 +00003096
3097 // Add this built-in operator as a candidate (VQ is 'volatile').
3098 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003099 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregorab141112009-01-13 00:52:54 +00003100 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3101 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor70d26122008-11-12 17:17:38 +00003102 }
3103 }
3104 break;
3105
3106 case OO_PercentEqual:
3107 case OO_LessLessEqual:
3108 case OO_GreaterGreaterEqual:
3109 case OO_AmpEqual:
3110 case OO_CaretEqual:
3111 case OO_PipeEqual:
3112 // C++ [over.built]p22:
3113 //
3114 // For every triple (L, VQ, R), where L is an integral type, VQ
3115 // is either volatile or empty, and R is a promoted integral
3116 // type, there exist candidate operator functions of the form
3117 //
3118 // VQ L& operator%=(VQ L&, R);
3119 // VQ L& operator<<=(VQ L&, R);
3120 // VQ L& operator>>=(VQ L&, R);
3121 // VQ L& operator&=(VQ L&, R);
3122 // VQ L& operator^=(VQ L&, R);
3123 // VQ L& operator|=(VQ L&, R);
3124 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3125 for (unsigned Right = FirstPromotedIntegralType;
3126 Right < LastPromotedIntegralType; ++Right) {
3127 QualType ParamTypes[2];
3128 ParamTypes[1] = ArithmeticTypes[Right];
3129
3130 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redlce6fff02009-03-16 23:22:08 +00003131 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregor70d26122008-11-12 17:17:38 +00003132 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3133
3134 // Add this built-in operator as a candidate (VQ is 'volatile').
3135 ParamTypes[0] = ArithmeticTypes[Left];
3136 ParamTypes[0].addVolatile();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003137 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregor70d26122008-11-12 17:17:38 +00003138 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3139 }
3140 }
3141 break;
3142
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003143 case OO_Exclaim: {
3144 // C++ [over.operator]p23:
3145 //
3146 // There also exist candidate operator functions of the form
3147 //
3148 // bool operator!(bool);
3149 // bool operator&&(bool, bool); [BELOW]
3150 // bool operator||(bool, bool); [BELOW]
3151 QualType ParamTy = Context.BoolTy;
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003152 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3153 /*IsAssignmentOperator=*/false,
3154 /*NumContextualBoolArguments=*/1);
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003155 break;
3156 }
3157
Douglas Gregor70d26122008-11-12 17:17:38 +00003158 case OO_AmpAmp:
3159 case OO_PipePipe: {
3160 // C++ [over.operator]p23:
3161 //
3162 // There also exist candidate operator functions of the form
3163 //
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003164 // bool operator!(bool); [ABOVE]
Douglas Gregor70d26122008-11-12 17:17:38 +00003165 // bool operator&&(bool, bool);
3166 // bool operator||(bool, bool);
3167 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003168 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3169 /*IsAssignmentOperator=*/false,
3170 /*NumContextualBoolArguments=*/2);
Douglas Gregor70d26122008-11-12 17:17:38 +00003171 break;
3172 }
3173
3174 case OO_Subscript:
3175 // C++ [over.built]p13:
3176 //
3177 // For every cv-qualified or cv-unqualified object type T there
3178 // exist candidate operator functions of the form
3179 //
3180 // T* operator+(T*, ptrdiff_t); [ABOVE]
3181 // T& operator[](T*, ptrdiff_t);
3182 // T* operator-(T*, ptrdiff_t); [ABOVE]
3183 // T* operator+(ptrdiff_t, T*); [ABOVE]
3184 // T& operator[](ptrdiff_t, T*);
3185 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3186 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3187 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3188 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003189 QualType ResultTy = Context.getLValueReferenceType(PointeeType);
Douglas Gregor70d26122008-11-12 17:17:38 +00003190
3191 // T& operator[](T*, ptrdiff_t)
3192 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3193
3194 // T& operator[](ptrdiff_t, T*);
3195 ParamTypes[0] = ParamTypes[1];
3196 ParamTypes[1] = *Ptr;
3197 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3198 }
3199 break;
3200
3201 case OO_ArrowStar:
3202 // FIXME: No support for pointer-to-members yet.
3203 break;
3204 }
3205}
3206
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003207/// \brief Add function candidates found via argument-dependent lookup
3208/// to the set of overloading candidates.
3209///
3210/// This routine performs argument-dependent name lookup based on the
3211/// given function name (which may also be an operator name) and adds
3212/// all of the overload candidates found by ADL to the overload
3213/// candidate set (C++ [basic.lookup.argdep]).
3214void
3215Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3216 Expr **Args, unsigned NumArgs,
3217 OverloadCandidateSet& CandidateSet) {
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003218 FunctionSet Functions;
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003219
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003220 // Record all of the function candidates that we've already
3221 // added to the overload set, so that we don't add those same
3222 // candidates a second time.
3223 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3224 CandEnd = CandidateSet.end();
3225 Cand != CandEnd; ++Cand)
3226 if (Cand->Function)
3227 Functions.insert(Cand->Function);
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003228
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003229 ArgumentDependentLookup(Name, Args, NumArgs, Functions);
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003230
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003231 // Erase all of the candidates we already knew about.
3232 // FIXME: This is suboptimal. Is there a better way?
3233 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3234 CandEnd = CandidateSet.end();
3235 Cand != CandEnd; ++Cand)
3236 if (Cand->Function)
3237 Functions.erase(Cand->Function);
3238
3239 // For each of the ADL candidates we found, add it to the overload
3240 // set.
3241 for (FunctionSet::iterator Func = Functions.begin(),
3242 FuncEnd = Functions.end();
3243 Func != FuncEnd; ++Func)
3244 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003245}
3246
Douglas Gregord2baafd2008-10-21 16:13:35 +00003247/// isBetterOverloadCandidate - Determines whether the first overload
3248/// candidate is a better candidate than the second (C++ 13.3.3p1).
3249bool
3250Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3251 const OverloadCandidate& Cand2)
3252{
3253 // Define viable functions to be better candidates than non-viable
3254 // functions.
3255 if (!Cand2.Viable)
3256 return Cand1.Viable;
3257 else if (!Cand1.Viable)
3258 return false;
3259
Douglas Gregor3257fb52008-12-22 05:46:06 +00003260 // C++ [over.match.best]p1:
3261 //
3262 // -- if F is a static member function, ICS1(F) is defined such
3263 // that ICS1(F) is neither better nor worse than ICS1(G) for
3264 // any function G, and, symmetrically, ICS1(G) is neither
3265 // better nor worse than ICS1(F).
3266 unsigned StartArg = 0;
3267 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3268 StartArg = 1;
Douglas Gregord2baafd2008-10-21 16:13:35 +00003269
3270 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
3271 // function than another viable function F2 if for all arguments i,
3272 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
3273 // then...
3274 unsigned NumArgs = Cand1.Conversions.size();
3275 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3276 bool HasBetterConversion = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00003277 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregord2baafd2008-10-21 16:13:35 +00003278 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3279 Cand2.Conversions[ArgIdx])) {
3280 case ImplicitConversionSequence::Better:
3281 // Cand1 has a better conversion sequence.
3282 HasBetterConversion = true;
3283 break;
3284
3285 case ImplicitConversionSequence::Worse:
3286 // Cand1 can't be better than Cand2.
3287 return false;
3288
3289 case ImplicitConversionSequence::Indistinguishable:
3290 // Do nothing.
3291 break;
3292 }
3293 }
3294
3295 if (HasBetterConversion)
3296 return true;
3297
Douglas Gregor70d26122008-11-12 17:17:38 +00003298 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3299 // implemented, but they require template support.
Douglas Gregord2baafd2008-10-21 16:13:35 +00003300
Douglas Gregor60714f92008-11-07 22:36:19 +00003301 // C++ [over.match.best]p1b4:
3302 //
3303 // -- the context is an initialization by user-defined conversion
3304 // (see 8.5, 13.3.1.5) and the standard conversion sequence
3305 // from the return type of F1 to the destination type (i.e.,
3306 // the type of the entity being initialized) is a better
3307 // conversion sequence than the standard conversion sequence
3308 // from the return type of F2 to the destination type.
Douglas Gregor849ea9c2008-11-19 03:25:36 +00003309 if (Cand1.Function && Cand2.Function &&
3310 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregor60714f92008-11-07 22:36:19 +00003311 isa<CXXConversionDecl>(Cand2.Function)) {
3312 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3313 Cand2.FinalConversion)) {
3314 case ImplicitConversionSequence::Better:
3315 // Cand1 has a better conversion sequence.
3316 return true;
3317
3318 case ImplicitConversionSequence::Worse:
3319 // Cand1 can't be better than Cand2.
3320 return false;
3321
3322 case ImplicitConversionSequence::Indistinguishable:
3323 // Do nothing
3324 break;
3325 }
3326 }
3327
Douglas Gregord2baafd2008-10-21 16:13:35 +00003328 return false;
3329}
3330
3331/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
3332/// within an overload candidate set. If overloading is successful,
3333/// the result will be OR_Success and Best will be set to point to the
3334/// best viable function within the candidate set. Otherwise, one of
3335/// several kinds of errors will be returned; see
3336/// Sema::OverloadingResult.
3337Sema::OverloadingResult
3338Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3339 OverloadCandidateSet::iterator& Best)
3340{
3341 // Find the best viable function.
3342 Best = CandidateSet.end();
3343 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3344 Cand != CandidateSet.end(); ++Cand) {
3345 if (Cand->Viable) {
3346 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3347 Best = Cand;
3348 }
3349 }
3350
3351 // If we didn't find any viable functions, abort.
3352 if (Best == CandidateSet.end())
3353 return OR_No_Viable_Function;
3354
3355 // Make sure that this function is better than every other viable
3356 // function. If not, we have an ambiguity.
3357 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3358 Cand != CandidateSet.end(); ++Cand) {
3359 if (Cand->Viable &&
3360 Cand != Best &&
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003361 !isBetterOverloadCandidate(*Best, *Cand)) {
3362 Best = CandidateSet.end();
Douglas Gregord2baafd2008-10-21 16:13:35 +00003363 return OR_Ambiguous;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003364 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00003365 }
3366
3367 // Best is the best viable function.
Douglas Gregoraa57e862009-02-18 21:56:37 +00003368 if (Best->Function &&
3369 (Best->Function->isDeleted() ||
3370 Best->Function->getAttr<UnavailableAttr>()))
3371 return OR_Deleted;
3372
3373 // If Best refers to a function that is either deleted (C++0x) or
3374 // unavailable (Clang extension) report an error.
3375
Douglas Gregord2baafd2008-10-21 16:13:35 +00003376 return OR_Success;
3377}
3378
3379/// PrintOverloadCandidates - When overload resolution fails, prints
3380/// diagnostic messages containing the candidates in the candidate
3381/// set. If OnlyViable is true, only viable candidates will be printed.
3382void
3383Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3384 bool OnlyViable)
3385{
3386 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3387 LastCand = CandidateSet.end();
3388 for (; Cand != LastCand; ++Cand) {
Douglas Gregor70d26122008-11-12 17:17:38 +00003389 if (Cand->Viable || !OnlyViable) {
3390 if (Cand->Function) {
Douglas Gregoraa57e862009-02-18 21:56:37 +00003391 if (Cand->Function->isDeleted() ||
3392 Cand->Function->getAttr<UnavailableAttr>()) {
3393 // Deleted or "unavailable" function.
3394 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3395 << Cand->Function->isDeleted();
3396 } else {
3397 // Normal function
3398 // FIXME: Give a better reason!
3399 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3400 }
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003401 } else if (Cand->IsSurrogate) {
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003402 // Desugar the type of the surrogate down to a function type,
3403 // retaining as many typedefs as possible while still showing
3404 // the function type (and, therefore, its parameter types).
3405 QualType FnType = Cand->Surrogate->getConversionType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003406 bool isLValueReference = false;
3407 bool isRValueReference = false;
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003408 bool isPointer = false;
Sebastian Redlce6fff02009-03-16 23:22:08 +00003409 if (const LValueReferenceType *FnTypeRef =
3410 FnType->getAsLValueReferenceType()) {
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003411 FnType = FnTypeRef->getPointeeType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003412 isLValueReference = true;
3413 } else if (const RValueReferenceType *FnTypeRef =
3414 FnType->getAsRValueReferenceType()) {
3415 FnType = FnTypeRef->getPointeeType();
3416 isRValueReference = true;
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003417 }
3418 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3419 FnType = FnTypePtr->getPointeeType();
3420 isPointer = true;
3421 }
3422 // Desugar down to a function type.
3423 FnType = QualType(FnType->getAsFunctionType(), 0);
3424 // Reconstruct the pointer/reference as appropriate.
3425 if (isPointer) FnType = Context.getPointerType(FnType);
Sebastian Redlce6fff02009-03-16 23:22:08 +00003426 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3427 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003428
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003429 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattner4bfd2232008-11-24 06:25:27 +00003430 << FnType;
Douglas Gregor70d26122008-11-12 17:17:38 +00003431 } else {
3432 // FIXME: We need to get the identifier in here
3433 // FIXME: Do we want the error message to point at the
3434 // operator? (built-ins won't have a location)
3435 QualType FnType
3436 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3437 Cand->BuiltinTypes.ParamTypes,
3438 Cand->Conversions.size(),
3439 false, 0);
3440
Chris Lattner4bfd2232008-11-24 06:25:27 +00003441 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregor70d26122008-11-12 17:17:38 +00003442 }
3443 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00003444 }
3445}
3446
Douglas Gregor45014fd2008-11-10 20:40:00 +00003447/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3448/// an overloaded function (C++ [over.over]), where @p From is an
3449/// expression with overloaded function type and @p ToType is the type
3450/// we're trying to resolve to. For example:
3451///
3452/// @code
3453/// int f(double);
3454/// int f(int);
3455///
3456/// int (*pfd)(double) = f; // selects f(double)
3457/// @endcode
3458///
3459/// This routine returns the resulting FunctionDecl if it could be
3460/// resolved, and NULL otherwise. When @p Complain is true, this
3461/// routine will emit diagnostics if there is an error.
3462FunctionDecl *
Sebastian Redl7434fc32009-02-04 21:23:32 +00003463Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
Douglas Gregor45014fd2008-11-10 20:40:00 +00003464 bool Complain) {
3465 QualType FunctionType = ToType;
Sebastian Redl7434fc32009-02-04 21:23:32 +00003466 bool IsMember = false;
Daniel Dunbarf6c06ce2009-02-26 19:13:44 +00003467 if (const PointerType *ToTypePtr = ToType->getAsPointerType())
Douglas Gregor45014fd2008-11-10 20:40:00 +00003468 FunctionType = ToTypePtr->getPointeeType();
Daniel Dunbarf6c06ce2009-02-26 19:13:44 +00003469 else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType())
3470 FunctionType = ToTypeRef->getPointeeType();
Sebastian Redl7434fc32009-02-04 21:23:32 +00003471 else if (const MemberPointerType *MemTypePtr =
3472 ToType->getAsMemberPointerType()) {
3473 FunctionType = MemTypePtr->getPointeeType();
3474 IsMember = true;
3475 }
Douglas Gregor45014fd2008-11-10 20:40:00 +00003476
3477 // We only look at pointers or references to functions.
3478 if (!FunctionType->isFunctionType())
3479 return 0;
3480
3481 // Find the actual overloaded function declaration.
3482 OverloadedFunctionDecl *Ovl = 0;
3483
3484 // C++ [over.over]p1:
3485 // [...] [Note: any redundant set of parentheses surrounding the
3486 // overloaded function name is ignored (5.1). ]
3487 Expr *OvlExpr = From->IgnoreParens();
3488
3489 // C++ [over.over]p1:
3490 // [...] The overloaded function name can be preceded by the &
3491 // operator.
3492 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3493 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3494 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3495 }
3496
3497 // Try to dig out the overloaded function.
3498 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3499 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3500
3501 // If there's no overloaded function declaration, we're done.
3502 if (!Ovl)
3503 return 0;
3504
3505 // Look through all of the overloaded functions, searching for one
3506 // whose type matches exactly.
3507 // FIXME: When templates or using declarations come along, we'll actually
3508 // have to deal with duplicates, partial ordering, etc. For now, we
3509 // can just do a simple search.
3510 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3511 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3512 Fun != Ovl->function_end(); ++Fun) {
3513 // C++ [over.over]p3:
3514 // Non-member functions and static member functions match
Sebastian Redl3a75abf2009-02-05 12:33:33 +00003515 // targets of type "pointer-to-function" or "reference-to-function."
3516 // Nonstatic member functions match targets of
Sebastian Redl7434fc32009-02-04 21:23:32 +00003517 // type "pointer-to-member-function."
3518 // Note that according to DR 247, the containing class does not matter.
3519 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3520 // Skip non-static functions when converting to pointer, and static
3521 // when converting to member pointer.
3522 if (Method->isStatic() == IsMember)
Douglas Gregor45014fd2008-11-10 20:40:00 +00003523 continue;
Sebastian Redl7434fc32009-02-04 21:23:32 +00003524 } else if (IsMember)
3525 continue;
Douglas Gregor45014fd2008-11-10 20:40:00 +00003526
3527 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3528 return *Fun;
3529 }
3530
3531 return 0;
3532}
3533
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003534/// ResolveOverloadedCallFn - Given the call expression that calls Fn
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003535/// (which eventually refers to the declaration Func) and the call
3536/// arguments Args/NumArgs, attempt to resolve the function call down
3537/// to a specific function. If overload resolution succeeds, returns
3538/// the function declaration produced by overload
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003539/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003540/// arguments and Fn, and returns NULL.
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003541FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003542 DeclarationName UnqualifiedName,
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003543 SourceLocation LParenLoc,
3544 Expr **Args, unsigned NumArgs,
3545 SourceLocation *CommaLocs,
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003546 SourceLocation RParenLoc,
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003547 bool &ArgumentDependentLookup) {
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003548 OverloadCandidateSet CandidateSet;
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003549
3550 // Add the functions denoted by Callee to the set of candidate
3551 // functions. While we're doing so, track whether argument-dependent
3552 // lookup still applies, per:
3553 //
3554 // C++0x [basic.lookup.argdep]p3:
3555 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3556 // and let Y be the lookup set produced by argument dependent
3557 // lookup (defined as follows). If X contains
3558 //
3559 // -- a declaration of a class member, or
3560 //
3561 // -- a block-scope function declaration that is not a
3562 // using-declaration, or
3563 //
3564 // -- a declaration that is neither a function or a function
3565 // template
3566 //
3567 // then Y is empty.
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003568 if (OverloadedFunctionDecl *Ovl
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003569 = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3570 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3571 FuncEnd = Ovl->function_end();
3572 Func != FuncEnd; ++Func) {
3573 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
3574
3575 if ((*Func)->getDeclContext()->isRecord() ||
3576 (*Func)->getDeclContext()->isFunctionOrMethod())
3577 ArgumentDependentLookup = false;
3578 }
3579 } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3580 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3581
3582 if (Func->getDeclContext()->isRecord() ||
3583 Func->getDeclContext()->isFunctionOrMethod())
3584 ArgumentDependentLookup = false;
3585 }
3586
3587 if (Callee)
3588 UnqualifiedName = Callee->getDeclName();
3589
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003590 if (ArgumentDependentLookup)
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003591 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003592 CandidateSet);
3593
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003594 OverloadCandidateSet::iterator Best;
3595 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003596 case OR_Success:
3597 return Best->Function;
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003598
3599 case OR_No_Viable_Function:
Chris Lattner4a526112009-02-17 07:29:20 +00003600 Diag(Fn->getSourceRange().getBegin(),
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003601 diag::err_ovl_no_viable_function_in_call)
Chris Lattner4a526112009-02-17 07:29:20 +00003602 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003603 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3604 break;
3605
3606 case OR_Ambiguous:
3607 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003608 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003609 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3610 break;
Douglas Gregoraa57e862009-02-18 21:56:37 +00003611
3612 case OR_Deleted:
3613 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3614 << Best->Function->isDeleted()
3615 << UnqualifiedName
3616 << Fn->getSourceRange();
3617 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3618 break;
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003619 }
3620
3621 // Overload resolution failed. Destroy all of the subexpressions and
3622 // return NULL.
3623 Fn->Destroy(Context);
3624 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3625 Args[Arg]->Destroy(Context);
3626 return 0;
3627}
3628
Douglas Gregorc78182d2009-03-13 23:49:33 +00003629/// \brief Create a unary operation that may resolve to an overloaded
3630/// operator.
3631///
3632/// \param OpLoc The location of the operator itself (e.g., '*').
3633///
3634/// \param OpcIn The UnaryOperator::Opcode that describes this
3635/// operator.
3636///
3637/// \param Functions The set of non-member functions that will be
3638/// considered by overload resolution. The caller needs to build this
3639/// set based on the context using, e.g.,
3640/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3641/// set should not contain any member functions; those will be added
3642/// by CreateOverloadedUnaryOp().
3643///
3644/// \param input The input argument.
3645Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3646 unsigned OpcIn,
3647 FunctionSet &Functions,
3648 ExprArg input) {
3649 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3650 Expr *Input = (Expr *)input.get();
3651
3652 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3653 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3654 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3655
3656 Expr *Args[2] = { Input, 0 };
3657 unsigned NumArgs = 1;
3658
3659 // For post-increment and post-decrement, add the implicit '0' as
3660 // the second argument, so that we know this is a post-increment or
3661 // post-decrement.
3662 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3663 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3664 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3665 SourceLocation());
3666 NumArgs = 2;
3667 }
3668
3669 if (Input->isTypeDependent()) {
3670 OverloadedFunctionDecl *Overloads
3671 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3672 for (FunctionSet::iterator Func = Functions.begin(),
3673 FuncEnd = Functions.end();
3674 Func != FuncEnd; ++Func)
3675 Overloads->addOverload(*Func);
3676
3677 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3678 OpLoc, false, false);
3679
3680 input.release();
3681 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3682 &Args[0], NumArgs,
3683 Context.DependentTy,
3684 OpLoc));
3685 }
3686
3687 // Build an empty overload set.
3688 OverloadCandidateSet CandidateSet;
3689
3690 // Add the candidates from the given function set.
3691 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
3692
3693 // Add operator candidates that are member functions.
3694 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
3695
3696 // Add builtin operator candidates.
3697 AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
3698
3699 // Perform overload resolution.
3700 OverloadCandidateSet::iterator Best;
3701 switch (BestViableFunction(CandidateSet, Best)) {
3702 case OR_Success: {
3703 // We found a built-in operator or an overloaded operator.
3704 FunctionDecl *FnDecl = Best->Function;
3705
3706 if (FnDecl) {
3707 // We matched an overloaded operator. Build a call to that
3708 // operator.
3709
3710 // Convert the arguments.
3711 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3712 if (PerformObjectArgumentInitialization(Input, Method))
3713 return ExprError();
3714 } else {
3715 // Convert the arguments.
3716 if (PerformCopyInitialization(Input,
3717 FnDecl->getParamDecl(0)->getType(),
3718 "passing"))
3719 return ExprError();
3720 }
3721
3722 // Determine the result type
3723 QualType ResultTy
3724 = FnDecl->getType()->getAsFunctionType()->getResultType();
3725 ResultTy = ResultTy.getNonReferenceType();
3726
3727 // Build the actual expression node.
3728 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3729 SourceLocation());
3730 UsualUnaryConversions(FnExpr);
3731
3732 input.release();
3733 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
3734 &Input, 1, ResultTy,
3735 OpLoc));
3736 } else {
3737 // We matched a built-in operator. Convert the arguments, then
3738 // break out so that we will build the appropriate built-in
3739 // operator node.
3740 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
3741 Best->Conversions[0], "passing"))
3742 return ExprError();
3743
3744 break;
3745 }
3746 }
3747
3748 case OR_No_Viable_Function:
3749 // No viable function; fall through to handling this as a
3750 // built-in operator, which will produce an error message for us.
3751 break;
3752
3753 case OR_Ambiguous:
3754 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
3755 << UnaryOperator::getOpcodeStr(Opc)
3756 << Input->getSourceRange();
3757 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3758 return ExprError();
3759
3760 case OR_Deleted:
3761 Diag(OpLoc, diag::err_ovl_deleted_oper)
3762 << Best->Function->isDeleted()
3763 << UnaryOperator::getOpcodeStr(Opc)
3764 << Input->getSourceRange();
3765 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3766 return ExprError();
3767 }
3768
3769 // Either we found no viable overloaded operator or we matched a
3770 // built-in operator. In either case, fall through to trying to
3771 // build a built-in operation.
3772 input.release();
3773 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
3774}
3775
Douglas Gregor00fe3f62009-03-13 18:40:31 +00003776/// \brief Create a binary operation that may resolve to an overloaded
3777/// operator.
3778///
3779/// \param OpLoc The location of the operator itself (e.g., '+').
3780///
3781/// \param OpcIn The BinaryOperator::Opcode that describes this
3782/// operator.
3783///
3784/// \param Functions The set of non-member functions that will be
3785/// considered by overload resolution. The caller needs to build this
3786/// set based on the context using, e.g.,
3787/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3788/// set should not contain any member functions; those will be added
3789/// by CreateOverloadedBinOp().
3790///
3791/// \param LHS Left-hand argument.
3792/// \param RHS Right-hand argument.
3793Sema::OwningExprResult
3794Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
3795 unsigned OpcIn,
3796 FunctionSet &Functions,
3797 Expr *LHS, Expr *RHS) {
Douglas Gregor00fe3f62009-03-13 18:40:31 +00003798 Expr *Args[2] = { LHS, RHS };
3799
3800 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
3801 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
3802 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3803
3804 // If either side is type-dependent, create an appropriate dependent
3805 // expression.
3806 if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
3807 // .* cannot be overloaded.
3808 if (Opc == BinaryOperator::PtrMemD)
3809 return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
3810 Context.DependentTy, OpLoc));
3811
3812 OverloadedFunctionDecl *Overloads
3813 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3814 for (FunctionSet::iterator Func = Functions.begin(),
3815 FuncEnd = Functions.end();
3816 Func != FuncEnd; ++Func)
3817 Overloads->addOverload(*Func);
3818
3819 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3820 OpLoc, false, false);
3821
3822 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3823 Args, 2,
3824 Context.DependentTy,
3825 OpLoc));
3826 }
3827
3828 // If this is the .* operator, which is not overloadable, just
3829 // create a built-in binary operator.
3830 if (Opc == BinaryOperator::PtrMemD)
3831 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3832
3833 // If this is one of the assignment operators, we only perform
3834 // overload resolution if the left-hand side is a class or
3835 // enumeration type (C++ [expr.ass]p3).
3836 if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3837 !LHS->getType()->isOverloadableType())
3838 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3839
Douglas Gregorc78182d2009-03-13 23:49:33 +00003840 // Build an empty overload set.
3841 OverloadCandidateSet CandidateSet;
Douglas Gregor00fe3f62009-03-13 18:40:31 +00003842
3843 // Add the candidates from the given function set.
3844 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
3845
3846 // Add operator candidates that are member functions.
3847 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
3848
3849 // Add builtin operator candidates.
3850 AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
3851
3852 // Perform overload resolution.
3853 OverloadCandidateSet::iterator Best;
3854 switch (BestViableFunction(CandidateSet, Best)) {
3855 case OR_Success: {
3856 // We found a built-in operator or an overloaded operator.
3857 FunctionDecl *FnDecl = Best->Function;
3858
3859 if (FnDecl) {
3860 // We matched an overloaded operator. Build a call to that
3861 // operator.
3862
3863 // Convert the arguments.
3864 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3865 if (PerformObjectArgumentInitialization(LHS, Method) ||
3866 PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
3867 "passing"))
3868 return ExprError();
3869 } else {
3870 // Convert the arguments.
3871 if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
3872 "passing") ||
3873 PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
3874 "passing"))
3875 return ExprError();
3876 }
3877
3878 // Determine the result type
3879 QualType ResultTy
3880 = FnDecl->getType()->getAsFunctionType()->getResultType();
3881 ResultTy = ResultTy.getNonReferenceType();
3882
3883 // Build the actual expression node.
3884 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3885 SourceLocation());
3886 UsualUnaryConversions(FnExpr);
3887
3888 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
3889 Args, 2, ResultTy,
3890 OpLoc));
3891 } else {
3892 // We matched a built-in operator. Convert the arguments, then
3893 // break out so that we will build the appropriate built-in
3894 // operator node.
3895 if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
3896 Best->Conversions[0], "passing") ||
3897 PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
3898 Best->Conversions[1], "passing"))
3899 return ExprError();
3900
3901 break;
3902 }
3903 }
3904
3905 case OR_No_Viable_Function:
3906 // No viable function; fall through to handling this as a
3907 // built-in operator, which will produce an error message for us.
3908 break;
3909
3910 case OR_Ambiguous:
3911 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
3912 << BinaryOperator::getOpcodeStr(Opc)
3913 << LHS->getSourceRange() << RHS->getSourceRange();
3914 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3915 return ExprError();
3916
3917 case OR_Deleted:
3918 Diag(OpLoc, diag::err_ovl_deleted_oper)
3919 << Best->Function->isDeleted()
3920 << BinaryOperator::getOpcodeStr(Opc)
3921 << LHS->getSourceRange() << RHS->getSourceRange();
3922 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3923 return ExprError();
3924 }
3925
3926 // Either we found no viable overloaded operator or we matched a
3927 // built-in operator. In either case, try to build a built-in
3928 // operation.
3929 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3930}
3931
Douglas Gregor3257fb52008-12-22 05:46:06 +00003932/// BuildCallToMemberFunction - Build a call to a member
3933/// function. MemExpr is the expression that refers to the member
3934/// function (and includes the object parameter), Args/NumArgs are the
3935/// arguments to the function call (not including the object
3936/// parameter). The caller needs to validate that the member
3937/// expression refers to a member function or an overloaded member
3938/// function.
3939Sema::ExprResult
3940Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
3941 SourceLocation LParenLoc, Expr **Args,
3942 unsigned NumArgs, SourceLocation *CommaLocs,
3943 SourceLocation RParenLoc) {
3944 // Dig out the member expression. This holds both the object
3945 // argument and the member function we're referring to.
3946 MemberExpr *MemExpr = 0;
3947 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
3948 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
3949 else
3950 MemExpr = dyn_cast<MemberExpr>(MemExprE);
3951 assert(MemExpr && "Building member call without member expression");
3952
3953 // Extract the object argument.
3954 Expr *ObjectArg = MemExpr->getBase();
3955 if (MemExpr->isArrow())
Ted Kremenek0c97e042009-02-07 01:47:29 +00003956 ObjectArg = new (Context) UnaryOperator(ObjectArg, UnaryOperator::Deref,
3957 ObjectArg->getType()->getAsPointerType()->getPointeeType(),
Douglas Gregor8d103492009-02-19 00:52:42 +00003958 ObjectArg->getLocStart());
Douglas Gregor3257fb52008-12-22 05:46:06 +00003959 CXXMethodDecl *Method = 0;
3960 if (OverloadedFunctionDecl *Ovl
3961 = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
3962 // Add overload candidates
3963 OverloadCandidateSet CandidateSet;
3964 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3965 FuncEnd = Ovl->function_end();
3966 Func != FuncEnd; ++Func) {
3967 assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
3968 Method = cast<CXXMethodDecl>(*Func);
3969 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
3970 /*SuppressUserConversions=*/false);
3971 }
3972
3973 OverloadCandidateSet::iterator Best;
3974 switch (BestViableFunction(CandidateSet, Best)) {
3975 case OR_Success:
3976 Method = cast<CXXMethodDecl>(Best->Function);
3977 break;
3978
3979 case OR_No_Viable_Function:
3980 Diag(MemExpr->getSourceRange().getBegin(),
3981 diag::err_ovl_no_viable_member_function_in_call)
Chris Lattner4a526112009-02-17 07:29:20 +00003982 << Ovl->getDeclName() << MemExprE->getSourceRange();
Douglas Gregor3257fb52008-12-22 05:46:06 +00003983 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3984 // FIXME: Leaking incoming expressions!
3985 return true;
3986
3987 case OR_Ambiguous:
3988 Diag(MemExpr->getSourceRange().getBegin(),
3989 diag::err_ovl_ambiguous_member_call)
3990 << Ovl->getDeclName() << MemExprE->getSourceRange();
3991 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3992 // FIXME: Leaking incoming expressions!
3993 return true;
Douglas Gregoraa57e862009-02-18 21:56:37 +00003994
3995 case OR_Deleted:
3996 Diag(MemExpr->getSourceRange().getBegin(),
3997 diag::err_ovl_deleted_member_call)
3998 << Best->Function->isDeleted()
3999 << Ovl->getDeclName() << MemExprE->getSourceRange();
4000 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4001 // FIXME: Leaking incoming expressions!
4002 return true;
Douglas Gregor3257fb52008-12-22 05:46:06 +00004003 }
4004
4005 FixOverloadedFunctionReference(MemExpr, Method);
4006 } else {
4007 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4008 }
4009
4010 assert(Method && "Member call to something that isn't a method?");
Ted Kremenek0c97e042009-02-07 01:47:29 +00004011 ExprOwningPtr<CXXMemberCallExpr>
Ted Kremenek362abcd2009-02-09 20:51:47 +00004012 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4013 NumArgs,
Douglas Gregor3257fb52008-12-22 05:46:06 +00004014 Method->getResultType().getNonReferenceType(),
4015 RParenLoc));
4016
4017 // Convert the object argument (for a non-static member function call).
4018 if (!Method->isStatic() &&
4019 PerformObjectArgumentInitialization(ObjectArg, Method))
4020 return true;
4021 MemExpr->setBase(ObjectArg);
4022
4023 // Convert the rest of the arguments
Douglas Gregor4fa58902009-02-26 23:50:07 +00004024 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
Douglas Gregor3257fb52008-12-22 05:46:06 +00004025 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4026 RParenLoc))
4027 return true;
4028
Sebastian Redl8b769972009-01-19 00:08:26 +00004029 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregor3257fb52008-12-22 05:46:06 +00004030}
4031
Douglas Gregor10f3c502008-11-19 21:05:33 +00004032/// BuildCallToObjectOfClassType - Build a call to an object of class
4033/// type (C++ [over.call.object]), which can end up invoking an
4034/// overloaded function call operator (@c operator()) or performing a
4035/// user-defined conversion on the object argument.
Douglas Gregor3257fb52008-12-22 05:46:06 +00004036Sema::ExprResult
Douglas Gregora133e262008-12-06 00:22:45 +00004037Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4038 SourceLocation LParenLoc,
Douglas Gregor10f3c502008-11-19 21:05:33 +00004039 Expr **Args, unsigned NumArgs,
4040 SourceLocation *CommaLocs,
4041 SourceLocation RParenLoc) {
4042 assert(Object->getType()->isRecordType() && "Requires object type argument");
4043 const RecordType *Record = Object->getType()->getAsRecordType();
4044
4045 // C++ [over.call.object]p1:
4046 // If the primary-expression E in the function call syntax
4047 // evaluates to a class object of type “cv T”, then the set of
4048 // candidate functions includes at least the function call
4049 // operators of T. The function call operators of T are obtained by
4050 // ordinary lookup of the name operator() in the context of
4051 // (E).operator().
4052 OverloadCandidateSet CandidateSet;
Douglas Gregor8acb7272008-12-11 16:49:14 +00004053 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004054 DeclContext::lookup_const_iterator Oper, OperEnd;
Douglas Gregorc55b0b02009-04-09 21:40:53 +00004055 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(Context, OpName);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004056 Oper != OperEnd; ++Oper)
4057 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4058 CandidateSet, /*SuppressUserConversions=*/false);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004059
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004060 // C++ [over.call.object]p2:
4061 // In addition, for each conversion function declared in T of the
4062 // form
4063 //
4064 // operator conversion-type-id () cv-qualifier;
4065 //
4066 // where cv-qualifier is the same cv-qualification as, or a
4067 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregor261afa72008-11-20 13:33:37 +00004068 // denotes the type "pointer to function of (P1,...,Pn) returning
4069 // R", or the type "reference to pointer to function of
4070 // (P1,...,Pn) returning R", or the type "reference to function
4071 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004072 // is also considered as a candidate function. Similarly,
4073 // surrogate call functions are added to the set of candidate
4074 // functions for each conversion function declared in an
4075 // accessible base class provided the function is not hidden
4076 // within T by another intervening declaration.
4077 //
4078 // FIXME: Look in base classes for more conversion operators!
4079 OverloadedFunctionDecl *Conversions
4080 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00004081 for (OverloadedFunctionDecl::function_iterator
4082 Func = Conversions->function_begin(),
4083 FuncEnd = Conversions->function_end();
4084 Func != FuncEnd; ++Func) {
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004085 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4086
4087 // Strip the reference type (if any) and then the pointer type (if
4088 // any) to get down to what might be a function type.
4089 QualType ConvType = Conv->getConversionType().getNonReferenceType();
4090 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
4091 ConvType = ConvPtrType->getPointeeType();
4092
Douglas Gregor4fa58902009-02-26 23:50:07 +00004093 if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004094 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4095 }
Douglas Gregor10f3c502008-11-19 21:05:33 +00004096
4097 // Perform overload resolution.
4098 OverloadCandidateSet::iterator Best;
4099 switch (BestViableFunction(CandidateSet, Best)) {
4100 case OR_Success:
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004101 // Overload resolution succeeded; we'll build the appropriate call
4102 // below.
Douglas Gregor10f3c502008-11-19 21:05:33 +00004103 break;
4104
4105 case OR_No_Viable_Function:
Sebastian Redlfd9f2ac2008-11-22 13:44:36 +00004106 Diag(Object->getSourceRange().getBegin(),
4107 diag::err_ovl_no_viable_object_call)
Chris Lattner4a526112009-02-17 07:29:20 +00004108 << Object->getType() << Object->getSourceRange();
Sebastian Redlfd9f2ac2008-11-22 13:44:36 +00004109 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004110 break;
4111
4112 case OR_Ambiguous:
4113 Diag(Object->getSourceRange().getBegin(),
4114 diag::err_ovl_ambiguous_object_call)
Chris Lattner4bfd2232008-11-24 06:25:27 +00004115 << Object->getType() << Object->getSourceRange();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004116 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4117 break;
Douglas Gregoraa57e862009-02-18 21:56:37 +00004118
4119 case OR_Deleted:
4120 Diag(Object->getSourceRange().getBegin(),
4121 diag::err_ovl_deleted_object_call)
4122 << Best->Function->isDeleted()
4123 << Object->getType() << Object->getSourceRange();
4124 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4125 break;
Douglas Gregor10f3c502008-11-19 21:05:33 +00004126 }
4127
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004128 if (Best == CandidateSet.end()) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004129 // We had an error; delete all of the subexpressions and return
4130 // the error.
Ted Kremenek0c97e042009-02-07 01:47:29 +00004131 Object->Destroy(Context);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004132 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Ted Kremenek0c97e042009-02-07 01:47:29 +00004133 Args[ArgIdx]->Destroy(Context);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004134 return true;
4135 }
4136
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004137 if (Best->Function == 0) {
4138 // Since there is no function declaration, this is one of the
4139 // surrogate candidates. Dig out the conversion function.
4140 CXXConversionDecl *Conv
4141 = cast<CXXConversionDecl>(
4142 Best->Conversions[0].UserDefined.ConversionFunction);
4143
4144 // We selected one of the surrogate functions that converts the
4145 // object parameter to a function pointer. Perform the conversion
4146 // on the object argument, then let ActOnCallExpr finish the job.
4147 // FIXME: Represent the user-defined conversion in the AST!
Sebastian Redl8b769972009-01-19 00:08:26 +00004148 ImpCastExprToType(Object,
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004149 Conv->getConversionType().getNonReferenceType(),
Sebastian Redlce6fff02009-03-16 23:22:08 +00004150 Conv->getConversionType()->isLValueReferenceType());
Sebastian Redl8b769972009-01-19 00:08:26 +00004151 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4152 MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4153 CommaLocs, RParenLoc).release();
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004154 }
4155
4156 // We found an overloaded operator(). Build a CXXOperatorCallExpr
4157 // that calls this method, using Object for the implicit object
4158 // parameter and passing along the remaining arguments.
4159 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor4fa58902009-02-26 23:50:07 +00004160 const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004161
4162 unsigned NumArgsInProto = Proto->getNumArgs();
4163 unsigned NumArgsToCheck = NumArgs;
4164
4165 // Build the full argument list for the method call (the
4166 // implicit object parameter is placed at the beginning of the
4167 // list).
4168 Expr **MethodArgs;
4169 if (NumArgs < NumArgsInProto) {
4170 NumArgsToCheck = NumArgsInProto;
4171 MethodArgs = new Expr*[NumArgsInProto + 1];
4172 } else {
4173 MethodArgs = new Expr*[NumArgs + 1];
4174 }
4175 MethodArgs[0] = Object;
4176 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4177 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4178
Ted Kremenek0c97e042009-02-07 01:47:29 +00004179 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4180 SourceLocation());
Douglas Gregor10f3c502008-11-19 21:05:33 +00004181 UsualUnaryConversions(NewFn);
4182
4183 // Once we've built TheCall, all of the expressions are properly
4184 // owned.
4185 QualType ResultTy = Method->getResultType().getNonReferenceType();
Ted Kremenek0c97e042009-02-07 01:47:29 +00004186 ExprOwningPtr<CXXOperatorCallExpr>
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004187 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4188 MethodArgs, NumArgs + 1,
Ted Kremenek0c97e042009-02-07 01:47:29 +00004189 ResultTy, RParenLoc));
Douglas Gregor10f3c502008-11-19 21:05:33 +00004190 delete [] MethodArgs;
4191
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004192 // We may have default arguments. If so, we need to allocate more
4193 // slots in the call for them.
4194 if (NumArgs < NumArgsInProto)
Ted Kremenek0c97e042009-02-07 01:47:29 +00004195 TheCall->setNumArgs(Context, NumArgsInProto + 1);
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004196 else if (NumArgs > NumArgsInProto)
4197 NumArgsToCheck = NumArgsInProto;
4198
Chris Lattner81f00ed2009-04-12 08:11:20 +00004199 bool IsError = false;
4200
Douglas Gregor10f3c502008-11-19 21:05:33 +00004201 // Initialize the implicit object parameter.
Chris Lattner81f00ed2009-04-12 08:11:20 +00004202 IsError |= PerformObjectArgumentInitialization(Object, Method);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004203 TheCall->setArg(0, Object);
4204
Chris Lattner81f00ed2009-04-12 08:11:20 +00004205
Douglas Gregor10f3c502008-11-19 21:05:33 +00004206 // Check the argument types.
4207 for (unsigned i = 0; i != NumArgsToCheck; i++) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004208 Expr *Arg;
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004209 if (i < NumArgs) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004210 Arg = Args[i];
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004211
4212 // Pass the argument.
4213 QualType ProtoArgType = Proto->getArgType(i);
Chris Lattner81f00ed2009-04-12 08:11:20 +00004214 IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004215 } else {
Ted Kremenek0c97e042009-02-07 01:47:29 +00004216 Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004217 }
Douglas Gregor10f3c502008-11-19 21:05:33 +00004218
4219 TheCall->setArg(i + 1, Arg);
4220 }
4221
4222 // If this is a variadic call, handle args passed through "...".
4223 if (Proto->isVariadic()) {
4224 // Promote the arguments (C99 6.5.2.2p7).
4225 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4226 Expr *Arg = Args[i];
Chris Lattner81f00ed2009-04-12 08:11:20 +00004227 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004228 TheCall->setArg(i + 1, Arg);
4229 }
4230 }
4231
Chris Lattner81f00ed2009-04-12 08:11:20 +00004232 if (IsError) return true;
4233
Sebastian Redl8b769972009-01-19 00:08:26 +00004234 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004235}
4236
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004237/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4238/// (if one exists), where @c Base is an expression of class type and
4239/// @c Member is the name of the member we're trying to find.
4240Action::ExprResult
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004241Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004242 SourceLocation MemberLoc,
4243 IdentifierInfo &Member) {
4244 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4245
4246 // C++ [over.ref]p1:
4247 //
4248 // [...] An expression x->m is interpreted as (x.operator->())->m
4249 // for a class object x of type T if T::operator->() exists and if
4250 // the operator is selected as the best match function by the
4251 // overload resolution mechanism (13.3).
4252 // FIXME: look in base classes.
4253 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4254 OverloadCandidateSet CandidateSet;
4255 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004256
4257 DeclContext::lookup_const_iterator Oper, OperEnd;
Douglas Gregorc55b0b02009-04-09 21:40:53 +00004258 for (llvm::tie(Oper, OperEnd)
4259 = BaseRecord->getDecl()->lookup(Context, OpName);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004260 Oper != OperEnd; ++Oper)
4261 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004262 /*SuppressUserConversions=*/false);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004263
Ted Kremenek0c97e042009-02-07 01:47:29 +00004264 ExprOwningPtr<Expr> BasePtr(this, Base);
Douglas Gregor9c690e92008-11-21 03:04:22 +00004265
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004266 // Perform overload resolution.
4267 OverloadCandidateSet::iterator Best;
4268 switch (BestViableFunction(CandidateSet, Best)) {
4269 case OR_Success:
4270 // Overload resolution succeeded; we'll build the call below.
4271 break;
4272
4273 case OR_No_Viable_Function:
4274 if (CandidateSet.empty())
4275 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattner4bfd2232008-11-24 06:25:27 +00004276 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004277 else
4278 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Chris Lattner4a526112009-02-17 07:29:20 +00004279 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004280 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004281 return true;
4282
4283 case OR_Ambiguous:
4284 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattner4bfd2232008-11-24 06:25:27 +00004285 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004286 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004287 return true;
Douglas Gregoraa57e862009-02-18 21:56:37 +00004288
4289 case OR_Deleted:
4290 Diag(OpLoc, diag::err_ovl_deleted_oper)
4291 << Best->Function->isDeleted()
4292 << "operator->" << BasePtr->getSourceRange();
4293 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4294 return true;
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004295 }
4296
4297 // Convert the object parameter.
4298 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor9c690e92008-11-21 03:04:22 +00004299 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004300 return true;
Douglas Gregor9c690e92008-11-21 03:04:22 +00004301
4302 // No concerns about early exits now.
4303 BasePtr.take();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004304
4305 // Build the operator call.
Ted Kremenek0c97e042009-02-07 01:47:29 +00004306 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4307 SourceLocation());
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004308 UsualUnaryConversions(FnExpr);
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004309 Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004310 Method->getResultType().getNonReferenceType(),
4311 OpLoc);
Sebastian Redl8b769972009-01-19 00:08:26 +00004312 return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
Chris Lattner5261d0c2009-03-28 19:18:32 +00004313 MemberLoc, Member, DeclPtrTy()).release();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004314}
4315
Douglas Gregor45014fd2008-11-10 20:40:00 +00004316/// FixOverloadedFunctionReference - E is an expression that refers to
4317/// a C++ overloaded function (possibly with some parentheses and
4318/// perhaps a '&' around it). We have resolved the overloaded function
4319/// to the function declaration Fn, so patch up the expression E to
4320/// refer (possibly indirectly) to Fn.
4321void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4322 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4323 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4324 E->setType(PE->getSubExpr()->getType());
4325 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4326 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4327 "Can only take the address of an overloaded function");
Douglas Gregor3f411962009-02-11 01:18:59 +00004328 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4329 if (Method->isStatic()) {
4330 // Do nothing: static member functions aren't any different
4331 // from non-member functions.
4332 }
4333 else if (QualifiedDeclRefExpr *DRE
4334 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4335 // We have taken the address of a pointer to member
4336 // function. Perform the computation here so that we get the
4337 // appropriate pointer to member type.
4338 DRE->setDecl(Fn);
4339 DRE->setType(Fn->getType());
4340 QualType ClassType
4341 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4342 E->setType(Context.getMemberPointerType(Fn->getType(),
4343 ClassType.getTypePtr()));
4344 return;
4345 }
4346 }
Douglas Gregor45014fd2008-11-10 20:40:00 +00004347 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
Douglas Gregor2eedd992009-02-11 00:19:33 +00004348 E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
Douglas Gregor45014fd2008-11-10 20:40:00 +00004349 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4350 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
4351 "Expected overloaded function");
4352 DR->setDecl(Fn);
4353 E->setType(Fn->getType());
Douglas Gregor3257fb52008-12-22 05:46:06 +00004354 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4355 MemExpr->setMemberDecl(Fn);
4356 E->setType(Fn->getType());
Douglas Gregor45014fd2008-11-10 20:40:00 +00004357 } else {
4358 assert(false && "Invalid reference to overloaded function");
4359 }
4360}
4361
Douglas Gregord2baafd2008-10-21 16:13:35 +00004362} // end namespace clang