blob: 32a5194cec4c572b9f2e67f626e37028de585373 [file] [log] [blame]
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +00001//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis member access expressions.
11//
12//===----------------------------------------------------------------------===//
13#include "clang/Sema/SemaInternal.h"
14#include "clang/Sema/Lookup.h"
15#include "clang/Sema/Scope.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Lex/Preprocessor.h"
22
23using namespace clang;
24using namespace sema;
25
26/// Determines if the given class is provably not derived from all of
27/// the prospective base classes.
28static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
29 CXXRecordDecl *Record,
30 const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
31 if (Bases.count(Record->getCanonicalDecl()))
32 return false;
33
34 RecordDecl *RD = Record->getDefinition();
35 if (!RD) return false;
36 Record = cast<CXXRecordDecl>(RD);
37
38 for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
39 E = Record->bases_end(); I != E; ++I) {
40 CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
41 CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
42 if (!BaseRT) return false;
43
44 CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
45 if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
46 return false;
47 }
48
49 return true;
50}
51
52enum IMAKind {
53 /// The reference is definitely not an instance member access.
54 IMA_Static,
55
56 /// The reference may be an implicit instance member access.
57 IMA_Mixed,
58
59 /// The reference may be to an instance member, but it is invalid if
60 /// so, because the context is not an instance method.
61 IMA_Mixed_StaticContext,
62
63 /// The reference may be to an instance member, but it is invalid if
64 /// so, because the context is from an unrelated class.
65 IMA_Mixed_Unrelated,
66
67 /// The reference is definitely an implicit instance member access.
68 IMA_Instance,
69
70 /// The reference may be to an unresolved using declaration.
71 IMA_Unresolved,
72
73 /// The reference may be to an unresolved using declaration and the
74 /// context is not an instance method.
75 IMA_Unresolved_StaticContext,
76
77 /// All possible referrents are instance members and the current
78 /// context is not an instance method.
79 IMA_Error_StaticContext,
80
81 /// All possible referrents are instance members of an unrelated
82 /// class.
83 IMA_Error_Unrelated
84};
85
86/// The given lookup names class member(s) and is not being used for
87/// an address-of-member expression. Classify the type of access
88/// according to whether it's possible that this reference names an
89/// instance member. This is best-effort; it is okay to
90/// conservatively answer "yes", in which case some errors will simply
91/// not be caught until template-instantiation.
92static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
93 Scope *CurScope,
94 const LookupResult &R) {
95 assert(!R.empty() && (*R.begin())->isCXXClassMember());
96
97 DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
98
99 bool isStaticContext =
100 (!isa<CXXMethodDecl>(DC) ||
101 cast<CXXMethodDecl>(DC)->isStatic());
102
103 // C++0x [expr.prim]p4:
104 // Otherwise, if a member-declarator declares a non-static data member
105 // of a class X, the expression this is a prvalue of type "pointer to X"
106 // within the optional brace-or-equal-initializer.
107 if (CurScope->getFlags() & Scope::ThisScope)
108 isStaticContext = false;
109
110 if (R.isUnresolvableResult())
111 return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
112
113 // Collect all the declaring classes of instance members we find.
114 bool hasNonInstance = false;
115 bool hasField = false;
116 llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
117 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
118 NamedDecl *D = *I;
119
120 if (D->isCXXInstanceMember()) {
121 if (dyn_cast<FieldDecl>(D))
122 hasField = true;
123
124 CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
125 Classes.insert(R->getCanonicalDecl());
126 }
127 else
128 hasNonInstance = true;
129 }
130
131 // If we didn't find any instance members, it can't be an implicit
132 // member reference.
133 if (Classes.empty())
134 return IMA_Static;
135
136 // If the current context is not an instance method, it can't be
137 // an implicit member reference.
138 if (isStaticContext) {
139 if (hasNonInstance)
140 return IMA_Mixed_StaticContext;
141
142 if (SemaRef.getLangOptions().CPlusPlus0x && hasField) {
143 // C++0x [expr.prim.general]p10:
144 // An id-expression that denotes a non-static data member or non-static
145 // member function of a class can only be used:
146 // (...)
147 // - if that id-expression denotes a non-static data member and it
148 // appears in an unevaluated operand.
149 const Sema::ExpressionEvaluationContextRecord& record
150 = SemaRef.ExprEvalContexts.back();
151 bool isUnevaluatedExpression = (record.Context == Sema::Unevaluated);
152 if (isUnevaluatedExpression)
153 return IMA_Mixed_StaticContext;
154 }
155
156 return IMA_Error_StaticContext;
157 }
158
159 CXXRecordDecl *contextClass;
160 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
161 contextClass = MD->getParent()->getCanonicalDecl();
162 else
163 contextClass = cast<CXXRecordDecl>(DC);
164
165 // [class.mfct.non-static]p3:
166 // ...is used in the body of a non-static member function of class X,
167 // if name lookup (3.4.1) resolves the name in the id-expression to a
168 // non-static non-type member of some class C [...]
169 // ...if C is not X or a base class of X, the class member access expression
170 // is ill-formed.
171 if (R.getNamingClass() &&
172 contextClass != R.getNamingClass()->getCanonicalDecl() &&
173 contextClass->isProvablyNotDerivedFrom(R.getNamingClass()))
174 return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
175
176 // If we can prove that the current context is unrelated to all the
177 // declaring classes, it can't be an implicit member reference (in
178 // which case it's an error if any of those members are selected).
179 if (IsProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
180 return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
181
182 return (hasNonInstance ? IMA_Mixed : IMA_Instance);
183}
184
185/// Diagnose a reference to a field with no object available.
186static void DiagnoseInstanceReference(Sema &SemaRef,
187 const CXXScopeSpec &SS,
188 NamedDecl *rep,
189 const DeclarationNameInfo &nameInfo) {
190 SourceLocation Loc = nameInfo.getLoc();
191 SourceRange Range(Loc);
192 if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
193
194 if (isa<FieldDecl>(rep) || isa<IndirectFieldDecl>(rep)) {
195 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
196 if (MD->isStatic()) {
197 // "invalid use of member 'x' in static member function"
198 SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
199 << Range << nameInfo.getName();
200 return;
201 }
202 }
203
204 SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
205 << nameInfo.getName() << Range;
206 return;
207 }
208
209 SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
210}
211
212/// Builds an expression which might be an implicit member expression.
213ExprResult
214Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
215 LookupResult &R,
216 const TemplateArgumentListInfo *TemplateArgs) {
217 switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
218 case IMA_Instance:
219 return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
220
221 case IMA_Mixed:
222 case IMA_Mixed_Unrelated:
223 case IMA_Unresolved:
224 return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
225
226 case IMA_Static:
227 case IMA_Mixed_StaticContext:
228 case IMA_Unresolved_StaticContext:
229 if (TemplateArgs)
230 return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
231 return BuildDeclarationNameExpr(SS, R, false);
232
233 case IMA_Error_StaticContext:
234 case IMA_Error_Unrelated:
235 DiagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
236 R.getLookupNameInfo());
237 return ExprError();
238 }
239
240 llvm_unreachable("unexpected instance member access kind");
241 return ExprError();
242}
243
244/// Check an ext-vector component access expression.
245///
246/// VK should be set in advance to the value kind of the base
247/// expression.
248static QualType
249CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
250 SourceLocation OpLoc, const IdentifierInfo *CompName,
251 SourceLocation CompLoc) {
252 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
253 // see FIXME there.
254 //
255 // FIXME: This logic can be greatly simplified by splitting it along
256 // halving/not halving and reworking the component checking.
257 const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
258
259 // The vector accessor can't exceed the number of elements.
260 const char *compStr = CompName->getNameStart();
261
262 // This flag determines whether or not the component is one of the four
263 // special names that indicate a subset of exactly half the elements are
264 // to be selected.
265 bool HalvingSwizzle = false;
266
267 // This flag determines whether or not CompName has an 's' char prefix,
268 // indicating that it is a string of hex values to be used as vector indices.
269 bool HexSwizzle = *compStr == 's' || *compStr == 'S';
270
271 bool HasRepeated = false;
272 bool HasIndex[16] = {};
273
274 int Idx;
275
276 // Check that we've found one of the special components, or that the component
277 // names must come from the same set.
278 if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
279 !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
280 HalvingSwizzle = true;
281 } else if (!HexSwizzle &&
282 (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
283 do {
284 if (HasIndex[Idx]) HasRepeated = true;
285 HasIndex[Idx] = true;
286 compStr++;
287 } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
288 } else {
289 if (HexSwizzle) compStr++;
290 while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
291 if (HasIndex[Idx]) HasRepeated = true;
292 HasIndex[Idx] = true;
293 compStr++;
294 }
295 }
296
297 if (!HalvingSwizzle && *compStr) {
298 // We didn't get to the end of the string. This means the component names
299 // didn't come from the same set *or* we encountered an illegal name.
300 S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
Chris Lattner5f9e2722011-07-23 10:55:15 +0000301 << StringRef(compStr, 1) << SourceRange(CompLoc);
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +0000302 return QualType();
303 }
304
305 // Ensure no component accessor exceeds the width of the vector type it
306 // operates on.
307 if (!HalvingSwizzle) {
308 compStr = CompName->getNameStart();
309
310 if (HexSwizzle)
311 compStr++;
312
313 while (*compStr) {
314 if (!vecType->isAccessorWithinNumElements(*compStr++)) {
315 S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
316 << baseType << SourceRange(CompLoc);
317 return QualType();
318 }
319 }
320 }
321
322 // The component accessor looks fine - now we need to compute the actual type.
323 // The vector type is implied by the component accessor. For example,
324 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
325 // vec4.s0 is a float, vec4.s23 is a vec3, etc.
326 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
327 unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
328 : CompName->getLength();
329 if (HexSwizzle)
330 CompSize--;
331
332 if (CompSize == 1)
333 return vecType->getElementType();
334
335 if (HasRepeated) VK = VK_RValue;
336
337 QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
338 // Now look up the TypeDefDecl from the vector type. Without this,
339 // diagostics look bad. We want extended vector types to appear built-in.
Douglas Gregord58a0a52011-07-28 00:39:29 +0000340 for (Sema::ExtVectorDeclsType::iterator
341 I = S.ExtVectorDecls.begin(S.ExternalSource),
342 E = S.ExtVectorDecls.end();
343 I != E; ++I) {
344 if ((*I)->getUnderlyingType() == VT)
345 return S.Context.getTypedefType(*I);
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +0000346 }
Douglas Gregord58a0a52011-07-28 00:39:29 +0000347
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +0000348 return VT; // should never get here (a typedef type should always be found).
349}
350
351static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
352 IdentifierInfo *Member,
353 const Selector &Sel,
354 ASTContext &Context) {
355 if (Member)
356 if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
357 return PD;
358 if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
359 return OMD;
360
361 for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
362 E = PDecl->protocol_end(); I != E; ++I) {
363 if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
364 Context))
365 return D;
366 }
367 return 0;
368}
369
370static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
371 IdentifierInfo *Member,
372 const Selector &Sel,
373 ASTContext &Context) {
374 // Check protocols on qualified interfaces.
375 Decl *GDecl = 0;
376 for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
377 E = QIdTy->qual_end(); I != E; ++I) {
378 if (Member)
379 if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
380 GDecl = PD;
381 break;
382 }
383 // Also must look for a getter or setter name which uses property syntax.
384 if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
385 GDecl = OMD;
386 break;
387 }
388 }
389 if (!GDecl) {
390 for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
391 E = QIdTy->qual_end(); I != E; ++I) {
392 // Search in the protocol-qualifier list of current protocol.
393 GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
394 Context);
395 if (GDecl)
396 return GDecl;
397 }
398 }
399 return GDecl;
400}
401
402ExprResult
403Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
404 bool IsArrow, SourceLocation OpLoc,
405 const CXXScopeSpec &SS,
406 NamedDecl *FirstQualifierInScope,
407 const DeclarationNameInfo &NameInfo,
408 const TemplateArgumentListInfo *TemplateArgs) {
409 // Even in dependent contexts, try to diagnose base expressions with
410 // obviously wrong types, e.g.:
411 //
412 // T* t;
413 // t.f;
414 //
415 // In Obj-C++, however, the above expression is valid, since it could be
416 // accessing the 'f' property if T is an Obj-C interface. The extra check
417 // allows this, while still reporting an error if T is a struct pointer.
418 if (!IsArrow) {
419 const PointerType *PT = BaseType->getAs<PointerType>();
420 if (PT && (!getLangOptions().ObjC1 ||
421 PT->getPointeeType()->isRecordType())) {
422 assert(BaseExpr && "cannot happen with implicit member accesses");
423 Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
424 << BaseType << BaseExpr->getSourceRange();
425 return ExprError();
426 }
427 }
428
429 assert(BaseType->isDependentType() ||
430 NameInfo.getName().isDependentName() ||
431 isDependentScopeSpecifier(SS));
432
433 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
434 // must have pointer type, and the accessed type is the pointee.
435 return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
436 IsArrow, OpLoc,
437 SS.getWithLocInContext(Context),
438 FirstQualifierInScope,
439 NameInfo, TemplateArgs));
440}
441
442/// We know that the given qualified member reference points only to
443/// declarations which do not belong to the static type of the base
444/// expression. Diagnose the problem.
445static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
446 Expr *BaseExpr,
447 QualType BaseType,
448 const CXXScopeSpec &SS,
449 NamedDecl *rep,
450 const DeclarationNameInfo &nameInfo) {
451 // If this is an implicit member access, use a different set of
452 // diagnostics.
453 if (!BaseExpr)
454 return DiagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
455
456 SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
457 << SS.getRange() << rep << BaseType;
458}
459
460// Check whether the declarations we found through a nested-name
461// specifier in a member expression are actually members of the base
462// type. The restriction here is:
463//
464// C++ [expr.ref]p2:
465// ... In these cases, the id-expression shall name a
466// member of the class or of one of its base classes.
467//
468// So it's perfectly legitimate for the nested-name specifier to name
469// an unrelated class, and for us to find an overload set including
470// decls from classes which are not superclasses, as long as the decl
471// we actually pick through overload resolution is from a superclass.
472bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
473 QualType BaseType,
474 const CXXScopeSpec &SS,
475 const LookupResult &R) {
476 const RecordType *BaseRT = BaseType->getAs<RecordType>();
477 if (!BaseRT) {
478 // We can't check this yet because the base type is still
479 // dependent.
480 assert(BaseType->isDependentType());
481 return false;
482 }
483 CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
484
485 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
486 // If this is an implicit member reference and we find a
487 // non-instance member, it's not an error.
488 if (!BaseExpr && !(*I)->isCXXInstanceMember())
489 return false;
490
491 // Note that we use the DC of the decl, not the underlying decl.
492 DeclContext *DC = (*I)->getDeclContext();
493 while (DC->isTransparentContext())
494 DC = DC->getParent();
495
496 if (!DC->isRecord())
497 continue;
498
499 llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
500 MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
501
502 if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
503 return false;
504 }
505
506 DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
507 R.getRepresentativeDecl(),
508 R.getLookupNameInfo());
509 return true;
510}
511
512static bool
513LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
514 SourceRange BaseRange, const RecordType *RTy,
515 SourceLocation OpLoc, CXXScopeSpec &SS,
516 bool HasTemplateArgs) {
517 RecordDecl *RDecl = RTy->getDecl();
518 if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
519 SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
520 << BaseRange))
521 return true;
522
523 if (HasTemplateArgs) {
524 // LookupTemplateName doesn't expect these both to exist simultaneously.
525 QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
526
527 bool MOUS;
528 SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
529 return false;
530 }
531
532 DeclContext *DC = RDecl;
533 if (SS.isSet()) {
534 // If the member name was a qualified-id, look into the
535 // nested-name-specifier.
536 DC = SemaRef.computeDeclContext(SS, false);
537
538 if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
539 SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
540 << SS.getRange() << DC;
541 return true;
542 }
543
544 assert(DC && "Cannot handle non-computable dependent contexts in lookup");
545
546 if (!isa<TypeDecl>(DC)) {
547 SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
548 << DC << SS.getRange();
549 return true;
550 }
551 }
552
553 // The record definition is complete, now look up the member.
554 SemaRef.LookupQualifiedName(R, DC);
555
556 if (!R.empty())
557 return false;
558
559 // We didn't find anything with the given name, so try to correct
560 // for typos.
561 DeclarationName Name = R.getLookupName();
Douglas Gregord8bba9c2011-06-28 16:20:02 +0000562 TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
563 R.getLookupKind(), NULL,
564 &SS, DC, false,
565 Sema::CTC_MemberLookup);
566 NamedDecl *ND = Corrected.getCorrectionDecl();
567 R.clear();
568 if (ND && (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))) {
569 std::string CorrectedStr(
570 Corrected.getAsString(SemaRef.getLangOptions()));
571 std::string CorrectedQuotedStr(
572 Corrected.getQuoted(SemaRef.getLangOptions()));
573 R.setLookupName(Corrected.getCorrection());
574 R.addDecl(ND);
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +0000575 SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
Douglas Gregord8bba9c2011-06-28 16:20:02 +0000576 << Name << DC << CorrectedQuotedStr << SS.getRange()
577 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
578 SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
579 << ND->getDeclName();
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +0000580 }
581
582 return false;
583}
584
585ExprResult
586Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
587 SourceLocation OpLoc, bool IsArrow,
588 CXXScopeSpec &SS,
589 NamedDecl *FirstQualifierInScope,
590 const DeclarationNameInfo &NameInfo,
591 const TemplateArgumentListInfo *TemplateArgs) {
592 if (BaseType->isDependentType() ||
593 (SS.isSet() && isDependentScopeSpecifier(SS)))
594 return ActOnDependentMemberExpr(Base, BaseType,
595 IsArrow, OpLoc,
596 SS, FirstQualifierInScope,
597 NameInfo, TemplateArgs);
598
599 LookupResult R(*this, NameInfo, LookupMemberName);
600
601 // Implicit member accesses.
602 if (!Base) {
603 QualType RecordTy = BaseType;
604 if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
605 if (LookupMemberExprInRecord(*this, R, SourceRange(),
606 RecordTy->getAs<RecordType>(),
607 OpLoc, SS, TemplateArgs != 0))
608 return ExprError();
609
610 // Explicit member accesses.
611 } else {
612 ExprResult BaseResult = Owned(Base);
613 ExprResult Result =
614 LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
615 SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
616
617 if (BaseResult.isInvalid())
618 return ExprError();
619 Base = BaseResult.take();
620
621 if (Result.isInvalid()) {
622 Owned(Base);
623 return ExprError();
624 }
625
626 if (Result.get())
627 return move(Result);
628
629 // LookupMemberExpr can modify Base, and thus change BaseType
630 BaseType = Base->getType();
631 }
632
633 return BuildMemberReferenceExpr(Base, BaseType,
634 OpLoc, IsArrow, SS, FirstQualifierInScope,
635 R, TemplateArgs);
636}
637
638static ExprResult
639BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
640 const CXXScopeSpec &SS, FieldDecl *Field,
641 DeclAccessPair FoundDecl,
642 const DeclarationNameInfo &MemberNameInfo);
643
644ExprResult
645Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
646 SourceLocation loc,
647 IndirectFieldDecl *indirectField,
648 Expr *baseObjectExpr,
649 SourceLocation opLoc) {
650 // First, build the expression that refers to the base object.
651
652 bool baseObjectIsPointer = false;
653 Qualifiers baseQuals;
654
655 // Case 1: the base of the indirect field is not a field.
656 VarDecl *baseVariable = indirectField->getVarDecl();
657 CXXScopeSpec EmptySS;
658 if (baseVariable) {
659 assert(baseVariable->getType()->isRecordType());
660
661 // In principle we could have a member access expression that
662 // accesses an anonymous struct/union that's a static member of
663 // the base object's class. However, under the current standard,
664 // static data members cannot be anonymous structs or unions.
665 // Supporting this is as easy as building a MemberExpr here.
666 assert(!baseObjectExpr && "anonymous struct/union is static data member?");
667
668 DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
669
670 ExprResult result
671 = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
672 if (result.isInvalid()) return ExprError();
673
674 baseObjectExpr = result.take();
675 baseObjectIsPointer = false;
676 baseQuals = baseObjectExpr->getType().getQualifiers();
677
678 // Case 2: the base of the indirect field is a field and the user
679 // wrote a member expression.
680 } else if (baseObjectExpr) {
681 // The caller provided the base object expression. Determine
682 // whether its a pointer and whether it adds any qualifiers to the
683 // anonymous struct/union fields we're looking into.
684 QualType objectType = baseObjectExpr->getType();
685
686 if (const PointerType *ptr = objectType->getAs<PointerType>()) {
687 baseObjectIsPointer = true;
688 objectType = ptr->getPointeeType();
689 } else {
690 baseObjectIsPointer = false;
691 }
692 baseQuals = objectType.getQualifiers();
693
694 // Case 3: the base of the indirect field is a field and we should
695 // build an implicit member access.
696 } else {
697 // We've found a member of an anonymous struct/union that is
698 // inside a non-anonymous struct/union, so in a well-formed
699 // program our base object expression is "this".
700 QualType ThisTy = getAndCaptureCurrentThisType();
701 if (ThisTy.isNull()) {
702 Diag(loc, diag::err_invalid_member_use_in_static_method)
703 << indirectField->getDeclName();
704 return ExprError();
705 }
706
707 // Our base object expression is "this".
708 baseObjectExpr
709 = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
710 baseObjectIsPointer = true;
711 baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
712 }
713
714 // Build the implicit member references to the field of the
715 // anonymous struct/union.
716 Expr *result = baseObjectExpr;
717 IndirectFieldDecl::chain_iterator
718 FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
719
720 // Build the first member access in the chain with full information.
721 if (!baseVariable) {
722 FieldDecl *field = cast<FieldDecl>(*FI);
723
724 // FIXME: use the real found-decl info!
725 DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
726
727 // Make a nameInfo that properly uses the anonymous name.
728 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
729
730 result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
731 EmptySS, field, foundDecl,
732 memberNameInfo).take();
733 baseObjectIsPointer = false;
734
735 // FIXME: check qualified member access
736 }
737
738 // In all cases, we should now skip the first declaration in the chain.
739 ++FI;
740
741 while (FI != FEnd) {
742 FieldDecl *field = cast<FieldDecl>(*FI++);
743
744 // FIXME: these are somewhat meaningless
745 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
746 DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
747
748 result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
749 (FI == FEnd? SS : EmptySS), field,
750 foundDecl, memberNameInfo).take();
751 }
752
753 return Owned(result);
754}
755
756/// \brief Build a MemberExpr AST node.
757static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
758 const CXXScopeSpec &SS, ValueDecl *Member,
759 DeclAccessPair FoundDecl,
760 const DeclarationNameInfo &MemberNameInfo,
761 QualType Ty,
762 ExprValueKind VK, ExprObjectKind OK,
763 const TemplateArgumentListInfo *TemplateArgs = 0) {
764 return MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
765 Member, FoundDecl, MemberNameInfo,
766 TemplateArgs, Ty, VK, OK);
767}
768
769ExprResult
770Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
771 SourceLocation OpLoc, bool IsArrow,
772 const CXXScopeSpec &SS,
773 NamedDecl *FirstQualifierInScope,
774 LookupResult &R,
775 const TemplateArgumentListInfo *TemplateArgs,
776 bool SuppressQualifierCheck) {
777 QualType BaseType = BaseExprType;
778 if (IsArrow) {
779 assert(BaseType->isPointerType());
780 BaseType = BaseType->getAs<PointerType>()->getPointeeType();
781 }
782 R.setBaseObjectType(BaseType);
783
784 const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
785 DeclarationName MemberName = MemberNameInfo.getName();
786 SourceLocation MemberLoc = MemberNameInfo.getLoc();
787
788 if (R.isAmbiguous())
789 return ExprError();
790
791 if (R.empty()) {
792 // Rederive where we looked up.
793 DeclContext *DC = (SS.isSet()
794 ? computeDeclContext(SS, false)
795 : BaseType->getAs<RecordType>()->getDecl());
796
797 Diag(R.getNameLoc(), diag::err_no_member)
798 << MemberName << DC
799 << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
800 return ExprError();
801 }
802
803 // Diagnose lookups that find only declarations from a non-base
804 // type. This is possible for either qualified lookups (which may
805 // have been qualified with an unrelated type) or implicit member
806 // expressions (which were found with unqualified lookup and thus
807 // may have come from an enclosing scope). Note that it's okay for
808 // lookup to find declarations from a non-base type as long as those
809 // aren't the ones picked by overload resolution.
810 if ((SS.isSet() || !BaseExpr ||
811 (isa<CXXThisExpr>(BaseExpr) &&
812 cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
813 !SuppressQualifierCheck &&
814 CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
815 return ExprError();
Fariborz Jahaniand1250502011-10-17 21:00:22 +0000816
817 // Perform a property load on the base regardless of whether we
818 // actually need it for the declaration.
819 if (BaseExpr && BaseExpr->getObjectKind() == OK_ObjCProperty) {
820 ExprResult Result = ConvertPropertyForRValue(BaseExpr);
821 if (Result.isInvalid())
822 return ExprError();
823 BaseExpr = Result.take();
824 }
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +0000825
826 // Construct an unresolved result if we in fact got an unresolved
827 // result.
828 if (R.isOverloadedResult() || R.isUnresolvableResult()) {
829 // Suppress any lookup-related diagnostics; we'll do these when we
830 // pick a member.
831 R.suppressDiagnostics();
832
833 UnresolvedMemberExpr *MemExpr
834 = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
835 BaseExpr, BaseExprType,
836 IsArrow, OpLoc,
837 SS.getWithLocInContext(Context),
838 MemberNameInfo,
839 TemplateArgs, R.begin(), R.end());
840
841 return Owned(MemExpr);
842 }
843
844 assert(R.isSingleResult());
845 DeclAccessPair FoundDecl = R.begin().getPair();
846 NamedDecl *MemberDecl = R.getFoundDecl();
847
848 // FIXME: diagnose the presence of template arguments now.
849
850 // If the decl being referenced had an error, return an error for this
851 // sub-expr without emitting another error, in order to avoid cascading
852 // error cases.
853 if (MemberDecl->isInvalidDecl())
854 return ExprError();
855
856 // Handle the implicit-member-access case.
857 if (!BaseExpr) {
858 // If this is not an instance member, convert to a non-member access.
859 if (!MemberDecl->isCXXInstanceMember())
860 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
861
862 SourceLocation Loc = R.getNameLoc();
863 if (SS.getRange().isValid())
864 Loc = SS.getRange().getBegin();
865 BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
866 }
867
868 bool ShouldCheckUse = true;
869 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
870 // Don't diagnose the use of a virtual member function unless it's
871 // explicitly qualified.
872 if (MD->isVirtual() && !SS.isSet())
873 ShouldCheckUse = false;
874 }
875
876 // Check the use of this member.
877 if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
878 Owned(BaseExpr);
879 return ExprError();
880 }
881
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +0000882 if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
883 return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
884 SS, FD, FoundDecl, MemberNameInfo);
885
886 if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
887 // We may have found a field within an anonymous union or struct
888 // (C++ [class.union]).
889 return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
890 BaseExpr, OpLoc);
891
892 if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
893 MarkDeclarationReferenced(MemberLoc, Var);
894 return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
895 Var, FoundDecl, MemberNameInfo,
896 Var->getType().getNonReferenceType(),
897 VK_LValue, OK_Ordinary));
898 }
899
900 if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
901 ExprValueKind valueKind;
902 QualType type;
903 if (MemberFn->isInstance()) {
904 valueKind = VK_RValue;
905 type = Context.BoundMemberTy;
906 } else {
907 valueKind = VK_LValue;
908 type = MemberFn->getType();
909 }
910
911 MarkDeclarationReferenced(MemberLoc, MemberDecl);
912 return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
913 MemberFn, FoundDecl, MemberNameInfo,
914 type, valueKind, OK_Ordinary));
915 }
916 assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
917
918 if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
919 MarkDeclarationReferenced(MemberLoc, MemberDecl);
920 return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
921 Enum, FoundDecl, MemberNameInfo,
922 Enum->getType(), VK_RValue, OK_Ordinary));
923 }
924
925 Owned(BaseExpr);
926
927 // We found something that we didn't expect. Complain.
928 if (isa<TypeDecl>(MemberDecl))
929 Diag(MemberLoc, diag::err_typecheck_member_reference_type)
930 << MemberName << BaseType << int(IsArrow);
931 else
932 Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
933 << MemberName << BaseType << int(IsArrow);
934
935 Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
936 << MemberName;
937 R.suppressDiagnostics();
938 return ExprError();
939}
940
941/// Given that normal member access failed on the given expression,
942/// and given that the expression's type involves builtin-id or
943/// builtin-Class, decide whether substituting in the redefinition
944/// types would be profitable. The redefinition type is whatever
945/// this translation unit tried to typedef to id/Class; we store
946/// it to the side and then re-use it in places like this.
947static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
948 const ObjCObjectPointerType *opty
949 = base.get()->getType()->getAs<ObjCObjectPointerType>();
950 if (!opty) return false;
951
952 const ObjCObjectType *ty = opty->getObjectType();
953
954 QualType redef;
955 if (ty->isObjCId()) {
Douglas Gregor01a4cf12011-08-11 20:58:55 +0000956 redef = S.Context.getObjCIdRedefinitionType();
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +0000957 } else if (ty->isObjCClass()) {
Douglas Gregor01a4cf12011-08-11 20:58:55 +0000958 redef = S.Context.getObjCClassRedefinitionType();
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +0000959 } else {
960 return false;
961 }
962
963 // Do the substitution as long as the redefinition type isn't just a
964 // possibly-qualified pointer to builtin-id or builtin-Class again.
965 opty = redef->getAs<ObjCObjectPointerType>();
966 if (opty && !opty->getObjectType()->getInterface() != 0)
967 return false;
968
969 base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
970 return true;
971}
972
John McCall6dbba4f2011-10-11 23:14:30 +0000973static bool isRecordType(QualType T) {
974 return T->isRecordType();
975}
976static bool isPointerToRecordType(QualType T) {
977 if (const PointerType *PT = T->getAs<PointerType>())
978 return PT->getPointeeType()->isRecordType();
979 return false;
980}
981
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +0000982/// Look up the given member of the given non-type-dependent
983/// expression. This can return in one of two ways:
984/// * If it returns a sentinel null-but-valid result, the caller will
985/// assume that lookup was performed and the results written into
986/// the provided structure. It will take over from there.
987/// * Otherwise, the returned expression will be produced in place of
988/// an ordinary member expression.
989///
990/// The ObjCImpDecl bit is a gross hack that will need to be properly
991/// fixed for ObjC++.
992ExprResult
993Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
994 bool &IsArrow, SourceLocation OpLoc,
995 CXXScopeSpec &SS,
996 Decl *ObjCImpDecl, bool HasTemplateArgs) {
997 assert(BaseExpr.get() && "no base expression");
998
999 // Perform default conversions.
1000 BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
John McCall6dbba4f2011-10-11 23:14:30 +00001001 if (BaseExpr.isInvalid())
1002 return ExprError();
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +00001003
1004 if (IsArrow) {
1005 BaseExpr = DefaultLvalueConversion(BaseExpr.take());
1006 if (BaseExpr.isInvalid())
1007 return ExprError();
1008 }
1009
1010 QualType BaseType = BaseExpr.get()->getType();
1011 assert(!BaseType->isDependentType());
1012
1013 DeclarationName MemberName = R.getLookupName();
1014 SourceLocation MemberLoc = R.getNameLoc();
1015
1016 // For later type-checking purposes, turn arrow accesses into dot
1017 // accesses. The only access type we support that doesn't follow
1018 // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1019 // and those never use arrows, so this is unaffected.
1020 if (IsArrow) {
1021 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1022 BaseType = Ptr->getPointeeType();
1023 else if (const ObjCObjectPointerType *Ptr
1024 = BaseType->getAs<ObjCObjectPointerType>())
1025 BaseType = Ptr->getPointeeType();
1026 else if (BaseType->isRecordType()) {
1027 // Recover from arrow accesses to records, e.g.:
1028 // struct MyRecord foo;
1029 // foo->bar
1030 // This is actually well-formed in C++ if MyRecord has an
1031 // overloaded operator->, but that should have been dealt with
1032 // by now.
1033 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1034 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1035 << FixItHint::CreateReplacement(OpLoc, ".");
1036 IsArrow = false;
1037 } else if (BaseType == Context.BoundMemberTy) {
1038 goto fail;
1039 } else {
1040 Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1041 << BaseType << BaseExpr.get()->getSourceRange();
1042 return ExprError();
1043 }
1044 }
1045
1046 // Handle field access to simple records.
1047 if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1048 if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
1049 RTy, OpLoc, SS, HasTemplateArgs))
1050 return ExprError();
1051
1052 // Returning valid-but-null is how we indicate to the caller that
1053 // the lookup result was filled in.
1054 return Owned((Expr*) 0);
1055 }
1056
1057 // Handle ivar access to Objective-C objects.
1058 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
Douglas Gregor5a706dc2011-10-10 16:09:49 +00001059 if (!SS.isEmpty() && !SS.isInvalid()) {
Douglas Gregorb5ae92f2011-10-09 23:22:49 +00001060 Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1061 << 1 << SS.getScopeRep()
1062 << FixItHint::CreateRemoval(SS.getRange());
1063 SS.clear();
1064 }
1065
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +00001066 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1067
1068 // There are three cases for the base type:
1069 // - builtin id (qualified or unqualified)
1070 // - builtin Class (qualified or unqualified)
1071 // - an interface
1072 ObjCInterfaceDecl *IDecl = OTy->getInterface();
1073 if (!IDecl) {
1074 if (getLangOptions().ObjCAutoRefCount &&
1075 (OTy->isObjCId() || OTy->isObjCClass()))
1076 goto fail;
1077 // There's an implicit 'isa' ivar on all objects.
1078 // But we only actually find it this way on objects of type 'id',
1079 // apparently.
1080 if (OTy->isObjCId() && Member->isStr("isa"))
1081 return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
1082 Context.getObjCClassType()));
1083
1084 if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1085 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1086 ObjCImpDecl, HasTemplateArgs);
1087 goto fail;
1088 }
1089
1090 ObjCInterfaceDecl *ClassDeclared;
1091 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1092
1093 if (!IV) {
1094 // Attempt to correct for typos in ivar names.
1095 LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
1096 LookupMemberName);
Douglas Gregord8bba9c2011-06-28 16:20:02 +00001097 TypoCorrection Corrected = CorrectTypo(
1098 R.getLookupNameInfo(), LookupMemberName, NULL, NULL, IDecl, false,
1099 IsArrow ? CTC_ObjCIvarLookup : CTC_ObjCPropertyLookup);
1100 if ((IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>())) {
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +00001101 Diag(R.getNameLoc(),
1102 diag::err_typecheck_member_reference_ivar_suggest)
1103 << IDecl->getDeclName() << MemberName << IV->getDeclName()
1104 << FixItHint::CreateReplacement(R.getNameLoc(),
1105 IV->getNameAsString());
1106 Diag(IV->getLocation(), diag::note_previous_decl)
1107 << IV->getDeclName();
1108 } else {
Fariborz Jahanian6326e052011-06-28 00:00:52 +00001109 if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
1110 Diag(MemberLoc,
1111 diag::err_property_found_suggest)
1112 << Member << BaseExpr.get()->getType()
1113 << FixItHint::CreateReplacement(OpLoc, ".");
1114 return ExprError();
1115 }
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +00001116 Res.clear();
1117 Res.setLookupName(Member);
1118
1119 Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1120 << IDecl->getDeclName() << MemberName
1121 << BaseExpr.get()->getSourceRange();
1122 return ExprError();
1123 }
1124 }
1125
1126 // If the decl being referenced had an error, return an error for this
1127 // sub-expr without emitting another error, in order to avoid cascading
1128 // error cases.
1129 if (IV->isInvalidDecl())
1130 return ExprError();
1131
1132 // Check whether we can reference this field.
1133 if (DiagnoseUseOfDecl(IV, MemberLoc))
1134 return ExprError();
1135 if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1136 IV->getAccessControl() != ObjCIvarDecl::Package) {
1137 ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1138 if (ObjCMethodDecl *MD = getCurMethodDecl())
1139 ClassOfMethodDecl = MD->getClassInterface();
1140 else if (ObjCImpDecl && getCurFunctionDecl()) {
1141 // Case of a c-function declared inside an objc implementation.
1142 // FIXME: For a c-style function nested inside an objc implementation
1143 // class, there is no implementation context available, so we pass
1144 // down the context as argument to this routine. Ideally, this context
1145 // need be passed down in the AST node and somehow calculated from the
1146 // AST for a function decl.
1147 if (ObjCImplementationDecl *IMPD =
1148 dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1149 ClassOfMethodDecl = IMPD->getClassInterface();
1150 else if (ObjCCategoryImplDecl* CatImplClass =
1151 dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1152 ClassOfMethodDecl = CatImplClass->getClassInterface();
1153 }
1154
1155 if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1156 if (ClassDeclared != IDecl ||
1157 ClassOfMethodDecl != ClassDeclared)
1158 Diag(MemberLoc, diag::error_private_ivar_access)
1159 << IV->getDeclName();
1160 } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1161 // @protected
1162 Diag(MemberLoc, diag::error_protected_ivar_access)
1163 << IV->getDeclName();
1164 }
1165 if (getLangOptions().ObjCAutoRefCount) {
1166 Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1167 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1168 if (UO->getOpcode() == UO_Deref)
1169 BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1170
1171 if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1172 if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
1173 Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
1174 }
1175
1176 return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1177 MemberLoc, BaseExpr.take(),
1178 IsArrow));
1179 }
1180
1181 // Objective-C property access.
1182 const ObjCObjectPointerType *OPT;
1183 if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
Douglas Gregor5a706dc2011-10-10 16:09:49 +00001184 if (!SS.isEmpty() && !SS.isInvalid()) {
Douglas Gregorb5ae92f2011-10-09 23:22:49 +00001185 Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1186 << 0 << SS.getScopeRep()
1187 << FixItHint::CreateRemoval(SS.getRange());
1188 SS.clear();
1189 }
1190
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +00001191 // This actually uses the base as an r-value.
1192 BaseExpr = DefaultLvalueConversion(BaseExpr.take());
1193 if (BaseExpr.isInvalid())
1194 return ExprError();
1195
1196 assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));
1197
1198 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1199
1200 const ObjCObjectType *OT = OPT->getObjectType();
1201
1202 // id, with and without qualifiers.
1203 if (OT->isObjCId()) {
1204 // Check protocols on qualified interfaces.
1205 Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1206 if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
1207 if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1208 // Check the use of this declaration
1209 if (DiagnoseUseOfDecl(PD, MemberLoc))
1210 return ExprError();
1211
1212 QualType T = PD->getType();
1213 if (ObjCMethodDecl *Getter = PD->getGetterMethodDecl())
1214 T = getMessageSendResultType(BaseType, Getter, false, false);
1215
1216 return Owned(new (Context) ObjCPropertyRefExpr(PD, T,
1217 VK_LValue,
1218 OK_ObjCProperty,
1219 MemberLoc,
1220 BaseExpr.take()));
1221 }
1222
1223 if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1224 // Check the use of this method.
1225 if (DiagnoseUseOfDecl(OMD, MemberLoc))
1226 return ExprError();
1227 Selector SetterSel =
1228 SelectorTable::constructSetterName(PP.getIdentifierTable(),
1229 PP.getSelectorTable(), Member);
1230 ObjCMethodDecl *SMD = 0;
1231 if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
1232 SetterSel, Context))
1233 SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1234 QualType PType = getMessageSendResultType(BaseType, OMD, false,
1235 false);
1236
1237 ExprValueKind VK = VK_LValue;
1238 if (!getLangOptions().CPlusPlus && PType.isCForbiddenLValueType())
1239 VK = VK_RValue;
1240 ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
1241
1242 return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD, PType,
1243 VK, OK,
1244 MemberLoc, BaseExpr.take()));
1245 }
1246 }
1247 // Use of id.member can only be for a property reference. Do not
1248 // use the 'id' redefinition in this case.
1249 if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1250 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1251 ObjCImpDecl, HasTemplateArgs);
1252
1253 return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1254 << MemberName << BaseType);
1255 }
1256
1257 // 'Class', unqualified only.
1258 if (OT->isObjCClass()) {
1259 // Only works in a method declaration (??!).
1260 ObjCMethodDecl *MD = getCurMethodDecl();
1261 if (!MD) {
1262 if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1263 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1264 ObjCImpDecl, HasTemplateArgs);
1265
1266 goto fail;
1267 }
1268
1269 // Also must look for a getter name which uses property syntax.
1270 Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1271 ObjCInterfaceDecl *IFace = MD->getClassInterface();
1272 ObjCMethodDecl *Getter;
1273 if ((Getter = IFace->lookupClassMethod(Sel))) {
1274 // Check the use of this method.
1275 if (DiagnoseUseOfDecl(Getter, MemberLoc))
1276 return ExprError();
1277 } else
1278 Getter = IFace->lookupPrivateMethod(Sel, false);
1279 // If we found a getter then this may be a valid dot-reference, we
1280 // will look for the matching setter, in case it is needed.
1281 Selector SetterSel =
1282 SelectorTable::constructSetterName(PP.getIdentifierTable(),
1283 PP.getSelectorTable(), Member);
1284 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1285 if (!Setter) {
1286 // If this reference is in an @implementation, also check for 'private'
1287 // methods.
1288 Setter = IFace->lookupPrivateMethod(SetterSel, false);
1289 }
1290 // Look through local category implementations associated with the class.
1291 if (!Setter)
1292 Setter = IFace->getCategoryClassMethod(SetterSel);
1293
1294 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1295 return ExprError();
1296
1297 if (Getter || Setter) {
1298 QualType PType;
1299
1300 ExprValueKind VK = VK_LValue;
1301 if (Getter) {
1302 PType = getMessageSendResultType(QualType(OT, 0), Getter, true,
1303 false);
1304 if (!getLangOptions().CPlusPlus && PType.isCForbiddenLValueType())
1305 VK = VK_RValue;
1306 } else {
1307 // Get the expression type from Setter's incoming parameter.
1308 PType = (*(Setter->param_end() -1))->getType();
1309 }
1310 ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
1311
1312 // FIXME: we must check that the setter has property type.
1313 return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
1314 PType, VK, OK,
1315 MemberLoc, BaseExpr.take()));
1316 }
1317
1318 if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1319 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1320 ObjCImpDecl, HasTemplateArgs);
1321
1322 return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1323 << MemberName << BaseType);
1324 }
1325
1326 // Normal property access.
Fariborz Jahanian6326e052011-06-28 00:00:52 +00001327 return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc,
1328 MemberName, MemberLoc,
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +00001329 SourceLocation(), QualType(), false);
1330 }
1331
1332 // Handle 'field access' to vectors, such as 'V.xx'.
1333 if (BaseType->isExtVectorType()) {
1334 // FIXME: this expr should store IsArrow.
1335 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1336 ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1337 QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
1338 Member, MemberLoc);
1339 if (ret.isNull())
1340 return ExprError();
1341
1342 return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
1343 *Member, MemberLoc));
1344 }
1345
1346 // Adjust builtin-sel to the appropriate redefinition type if that's
1347 // not just a pointer to builtin-sel again.
1348 if (IsArrow &&
1349 BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
Douglas Gregor01a4cf12011-08-11 20:58:55 +00001350 !Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1351 BaseExpr = ImpCastExprToType(BaseExpr.take(),
1352 Context.getObjCSelRedefinitionType(),
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +00001353 CK_BitCast);
1354 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1355 ObjCImpDecl, HasTemplateArgs);
1356 }
1357
1358 // Failure cases.
1359 fail:
1360
1361 // Recover from dot accesses to pointers, e.g.:
1362 // type *foo;
1363 // foo.bar
1364 // This is actually well-formed in two cases:
1365 // - 'type' is an Objective C type
1366 // - 'bar' is a pseudo-destructor name which happens to refer to
1367 // the appropriate pointer type
1368 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1369 if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1370 MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1371 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1372 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1373 << FixItHint::CreateReplacement(OpLoc, "->");
1374
1375 // Recurse as an -> access.
1376 IsArrow = true;
1377 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1378 ObjCImpDecl, HasTemplateArgs);
1379 }
1380 }
1381
1382 // If the user is trying to apply -> or . to a function name, it's probably
1383 // because they forgot parentheses to call that function.
John McCall6dbba4f2011-10-11 23:14:30 +00001384 if (tryToRecoverWithCall(BaseExpr,
1385 PDiag(diag::err_member_reference_needs_call),
1386 /*complain*/ false,
1387 IsArrow ? &isRecordType : &isPointerToRecordType)) {
1388 if (BaseExpr.isInvalid())
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +00001389 return ExprError();
John McCall6dbba4f2011-10-11 23:14:30 +00001390 BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
1391 return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1392 ObjCImpDecl, HasTemplateArgs);
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +00001393 }
1394
1395 Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
1396 << BaseType << BaseExpr.get()->getSourceRange();
1397
1398 return ExprError();
1399}
1400
1401/// The main callback when the parser finds something like
1402/// expression . [nested-name-specifier] identifier
1403/// expression -> [nested-name-specifier] identifier
1404/// where 'identifier' encompasses a fairly broad spectrum of
1405/// possibilities, including destructor and operator references.
1406///
1407/// \param OpKind either tok::arrow or tok::period
1408/// \param HasTrailingLParen whether the next token is '(', which
1409/// is used to diagnose mis-uses of special members that can
1410/// only be called
1411/// \param ObjCImpDecl the current ObjC @implementation decl;
1412/// this is an ugly hack around the fact that ObjC @implementations
1413/// aren't properly put in the context chain
1414ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1415 SourceLocation OpLoc,
1416 tok::TokenKind OpKind,
1417 CXXScopeSpec &SS,
1418 UnqualifiedId &Id,
1419 Decl *ObjCImpDecl,
1420 bool HasTrailingLParen) {
1421 if (SS.isSet() && SS.isInvalid())
1422 return ExprError();
1423
1424 // Warn about the explicit constructor calls Microsoft extension.
Francois Pichet62ec1f22011-09-17 17:15:52 +00001425 if (getLangOptions().MicrosoftExt &&
Douglas Gregor2b1ad8b2011-06-23 00:49:38 +00001426 Id.getKind() == UnqualifiedId::IK_ConstructorName)
1427 Diag(Id.getSourceRange().getBegin(),
1428 diag::ext_ms_explicit_constructor_call);
1429
1430 TemplateArgumentListInfo TemplateArgsBuffer;
1431
1432 // Decompose the name into its component parts.
1433 DeclarationNameInfo NameInfo;
1434 const TemplateArgumentListInfo *TemplateArgs;
1435 DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1436 NameInfo, TemplateArgs);
1437
1438 DeclarationName Name = NameInfo.getName();
1439 bool IsArrow = (OpKind == tok::arrow);
1440
1441 NamedDecl *FirstQualifierInScope
1442 = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
1443 static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
1444
1445 // This is a postfix expression, so get rid of ParenListExprs.
1446 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1447 if (Result.isInvalid()) return ExprError();
1448 Base = Result.take();
1449
1450 if (Base->getType()->isDependentType() || Name.isDependentName() ||
1451 isDependentScopeSpecifier(SS)) {
1452 Result = ActOnDependentMemberExpr(Base, Base->getType(),
1453 IsArrow, OpLoc,
1454 SS, FirstQualifierInScope,
1455 NameInfo, TemplateArgs);
1456 } else {
1457 LookupResult R(*this, NameInfo, LookupMemberName);
1458 ExprResult BaseResult = Owned(Base);
1459 Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
1460 SS, ObjCImpDecl, TemplateArgs != 0);
1461 if (BaseResult.isInvalid())
1462 return ExprError();
1463 Base = BaseResult.take();
1464
1465 if (Result.isInvalid()) {
1466 Owned(Base);
1467 return ExprError();
1468 }
1469
1470 if (Result.get()) {
1471 // The only way a reference to a destructor can be used is to
1472 // immediately call it, which falls into this case. If the
1473 // next token is not a '(', produce a diagnostic and build the
1474 // call now.
1475 if (!HasTrailingLParen &&
1476 Id.getKind() == UnqualifiedId::IK_DestructorName)
1477 return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
1478
1479 return move(Result);
1480 }
1481
1482 Result = BuildMemberReferenceExpr(Base, Base->getType(),
1483 OpLoc, IsArrow, SS, FirstQualifierInScope,
1484 R, TemplateArgs);
1485 }
1486
1487 return move(Result);
1488}
1489
1490static ExprResult
1491BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1492 const CXXScopeSpec &SS, FieldDecl *Field,
1493 DeclAccessPair FoundDecl,
1494 const DeclarationNameInfo &MemberNameInfo) {
1495 // x.a is an l-value if 'a' has a reference type. Otherwise:
1496 // x.a is an l-value/x-value/pr-value if the base is (and note
1497 // that *x is always an l-value), except that if the base isn't
1498 // an ordinary object then we must have an rvalue.
1499 ExprValueKind VK = VK_LValue;
1500 ExprObjectKind OK = OK_Ordinary;
1501 if (!IsArrow) {
1502 if (BaseExpr->getObjectKind() == OK_Ordinary)
1503 VK = BaseExpr->getValueKind();
1504 else
1505 VK = VK_RValue;
1506 }
1507 if (VK != VK_RValue && Field->isBitField())
1508 OK = OK_BitField;
1509
1510 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1511 QualType MemberType = Field->getType();
1512 if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1513 MemberType = Ref->getPointeeType();
1514 VK = VK_LValue;
1515 } else {
1516 QualType BaseType = BaseExpr->getType();
1517 if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1518
1519 Qualifiers BaseQuals = BaseType.getQualifiers();
1520
1521 // GC attributes are never picked up by members.
1522 BaseQuals.removeObjCGCAttr();
1523
1524 // CVR attributes from the base are picked up by members,
1525 // except that 'mutable' members don't pick up 'const'.
1526 if (Field->isMutable()) BaseQuals.removeConst();
1527
1528 Qualifiers MemberQuals
1529 = S.Context.getCanonicalType(MemberType).getQualifiers();
1530
1531 // TR 18037 does not allow fields to be declared with address spaces.
1532 assert(!MemberQuals.hasAddressSpace());
1533
1534 Qualifiers Combined = BaseQuals + MemberQuals;
1535 if (Combined != MemberQuals)
1536 MemberType = S.Context.getQualifiedType(MemberType, Combined);
1537 }
1538
1539 S.MarkDeclarationReferenced(MemberNameInfo.getLoc(), Field);
1540 ExprResult Base =
1541 S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1542 FoundDecl, Field);
1543 if (Base.isInvalid())
1544 return ExprError();
1545 return S.Owned(BuildMemberExpr(S.Context, Base.take(), IsArrow, SS,
1546 Field, FoundDecl, MemberNameInfo,
1547 MemberType, VK, OK));
1548}
1549
1550/// Builds an implicit member access expression. The current context
1551/// is known to be an instance method, and the given unqualified lookup
1552/// set is known to contain only instance members, at least one of which
1553/// is from an appropriate type.
1554ExprResult
1555Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1556 LookupResult &R,
1557 const TemplateArgumentListInfo *TemplateArgs,
1558 bool IsKnownInstance) {
1559 assert(!R.empty() && !R.isAmbiguous());
1560
1561 SourceLocation loc = R.getNameLoc();
1562
1563 // We may have found a field within an anonymous union or struct
1564 // (C++ [class.union]).
1565 // FIXME: template-ids inside anonymous structs?
1566 if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
1567 return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
1568
1569 // If this is known to be an instance access, go ahead and build an
1570 // implicit 'this' expression now.
1571 // 'this' expression now.
1572 QualType ThisTy = getAndCaptureCurrentThisType();
1573 assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1574
1575 Expr *baseExpr = 0; // null signifies implicit access
1576 if (IsKnownInstance) {
1577 SourceLocation Loc = R.getNameLoc();
1578 if (SS.getRange().isValid())
1579 Loc = SS.getRange().getBegin();
1580 baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1581 }
1582
1583 return BuildMemberReferenceExpr(baseExpr, ThisTy,
1584 /*OpLoc*/ SourceLocation(),
1585 /*IsArrow*/ true,
1586 SS,
1587 /*FirstQualifierInScope*/ 0,
1588 R, TemplateArgs);
1589}