blob: dadf9d3cc52f22371d6467d22b6341de3a9984d3 [file] [log] [blame]
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14// http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/ABI.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33
34#define MANGLE_CHECKER 0
35
36#if MANGLE_CHECKER
37#include <cxxabi.h>
38#endif
39
40using namespace clang;
41
42namespace {
43
44/// \brief Retrieve the declaration context that should be used when mangling
45/// the given declaration.
46static const DeclContext *getEffectiveDeclContext(const Decl *D) {
47 // The ABI assumes that lambda closure types that occur within
48 // default arguments live in the context of the function. However, due to
49 // the way in which Clang parses and creates function declarations, this is
50 // not the case: the lambda closure type ends up living in the context
51 // where the function itself resides, because the function declaration itself
52 // had not yet been created. Fix the context here.
53 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
54 if (RD->isLambda())
55 if (ParmVarDecl *ContextParam
56 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
57 return ContextParam->getDeclContext();
58 }
59
60 return D->getDeclContext();
61}
62
63static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
64 return getEffectiveDeclContext(cast<Decl>(DC));
65}
66
67static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
68 const DeclContext *DC = dyn_cast<DeclContext>(ND);
69 if (!DC)
70 DC = getEffectiveDeclContext(ND);
71 while (!DC->isNamespace() && !DC->isTranslationUnit()) {
72 const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
73 if (isa<FunctionDecl>(Parent))
74 return dyn_cast<CXXRecordDecl>(DC);
75 DC = Parent;
76 }
77 return 0;
78}
79
80static const FunctionDecl *getStructor(const FunctionDecl *fn) {
81 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
82 return ftd->getTemplatedDecl();
83
84 return fn;
85}
86
87static const NamedDecl *getStructor(const NamedDecl *decl) {
88 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
89 return (fn ? getStructor(fn) : decl);
90}
91
92static const unsigned UnknownArity = ~0U;
93
94class ItaniumMangleContext : public MangleContext {
95 llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
96 unsigned Discriminator;
97 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
98
99public:
100 explicit ItaniumMangleContext(ASTContext &Context,
101 DiagnosticsEngine &Diags)
102 : MangleContext(Context, Diags) { }
103
104 uint64_t getAnonymousStructId(const TagDecl *TD) {
105 std::pair<llvm::DenseMap<const TagDecl *,
106 uint64_t>::iterator, bool> Result =
107 AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
108 return Result.first->second;
109 }
110
111 void startNewFunction() {
112 MangleContext::startNewFunction();
113 mangleInitDiscriminator();
114 }
115
116 /// @name Mangler Entry Points
117 /// @{
118
119 bool shouldMangleDeclName(const NamedDecl *D);
120 void mangleName(const NamedDecl *D, raw_ostream &);
121 void mangleThunk(const CXXMethodDecl *MD,
122 const ThunkInfo &Thunk,
123 raw_ostream &);
124 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
125 const ThisAdjustment &ThisAdjustment,
126 raw_ostream &);
127 void mangleReferenceTemporary(const VarDecl *D,
128 raw_ostream &);
129 void mangleCXXVTable(const CXXRecordDecl *RD,
130 raw_ostream &);
131 void mangleCXXVTT(const CXXRecordDecl *RD,
132 raw_ostream &);
133 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
134 const CXXRecordDecl *Type,
135 raw_ostream &);
136 void mangleCXXRTTI(QualType T, raw_ostream &);
137 void mangleCXXRTTIName(QualType T, raw_ostream &);
138 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
139 raw_ostream &);
140 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
141 raw_ostream &);
142
143 void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
144
145 void mangleInitDiscriminator() {
146 Discriminator = 0;
147 }
148
149 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
150 // Lambda closure types with external linkage (indicated by a
151 // non-zero lambda mangling number) have their own numbering scheme, so
152 // they do not need a discriminator.
153 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
154 if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
155 return false;
156
157 unsigned &discriminator = Uniquifier[ND];
158 if (!discriminator)
159 discriminator = ++Discriminator;
160 if (discriminator == 1)
161 return false;
162 disc = discriminator-2;
163 return true;
164 }
165 /// @}
166};
167
168/// CXXNameMangler - Manage the mangling of a single name.
169class CXXNameMangler {
170 ItaniumMangleContext &Context;
171 raw_ostream &Out;
172
173 /// The "structor" is the top-level declaration being mangled, if
174 /// that's not a template specialization; otherwise it's the pattern
175 /// for that specialization.
176 const NamedDecl *Structor;
177 unsigned StructorType;
178
179 /// SeqID - The next subsitution sequence number.
180 unsigned SeqID;
181
182 class FunctionTypeDepthState {
183 unsigned Bits;
184
185 enum { InResultTypeMask = 1 };
186
187 public:
188 FunctionTypeDepthState() : Bits(0) {}
189
190 /// The number of function types we're inside.
191 unsigned getDepth() const {
192 return Bits >> 1;
193 }
194
195 /// True if we're in the return type of the innermost function type.
196 bool isInResultType() const {
197 return Bits & InResultTypeMask;
198 }
199
200 FunctionTypeDepthState push() {
201 FunctionTypeDepthState tmp = *this;
202 Bits = (Bits & ~InResultTypeMask) + 2;
203 return tmp;
204 }
205
206 void enterResultType() {
207 Bits |= InResultTypeMask;
208 }
209
210 void leaveResultType() {
211 Bits &= ~InResultTypeMask;
212 }
213
214 void pop(FunctionTypeDepthState saved) {
215 assert(getDepth() == saved.getDepth() + 1);
216 Bits = saved.Bits;
217 }
218
219 } FunctionTypeDepth;
220
221 llvm::DenseMap<uintptr_t, unsigned> Substitutions;
222
223 ASTContext &getASTContext() const { return Context.getASTContext(); }
224
225public:
226 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
227 const NamedDecl *D = 0)
228 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
229 SeqID(0) {
230 // These can't be mangled without a ctor type or dtor type.
231 assert(!D || (!isa<CXXDestructorDecl>(D) &&
232 !isa<CXXConstructorDecl>(D)));
233 }
234 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
235 const CXXConstructorDecl *D, CXXCtorType Type)
236 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
237 SeqID(0) { }
238 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
239 const CXXDestructorDecl *D, CXXDtorType Type)
240 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
241 SeqID(0) { }
242
243#if MANGLE_CHECKER
244 ~CXXNameMangler() {
245 if (Out.str()[0] == '\01')
246 return;
247
248 int status = 0;
249 char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
250 assert(status == 0 && "Could not demangle mangled name!");
251 free(result);
252 }
253#endif
254 raw_ostream &getStream() { return Out; }
255
256 void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
257 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
258 void mangleNumber(const llvm::APSInt &I);
259 void mangleNumber(int64_t Number);
260 void mangleFloat(const llvm::APFloat &F);
261 void mangleFunctionEncoding(const FunctionDecl *FD);
262 void mangleName(const NamedDecl *ND);
263 void mangleType(QualType T);
264 void mangleNameOrStandardSubstitution(const NamedDecl *ND);
265
266private:
267 bool mangleSubstitution(const NamedDecl *ND);
268 bool mangleSubstitution(QualType T);
269 bool mangleSubstitution(TemplateName Template);
270 bool mangleSubstitution(uintptr_t Ptr);
271
272 void mangleExistingSubstitution(QualType type);
273 void mangleExistingSubstitution(TemplateName name);
274
275 bool mangleStandardSubstitution(const NamedDecl *ND);
276
277 void addSubstitution(const NamedDecl *ND) {
278 ND = cast<NamedDecl>(ND->getCanonicalDecl());
279
280 addSubstitution(reinterpret_cast<uintptr_t>(ND));
281 }
282 void addSubstitution(QualType T);
283 void addSubstitution(TemplateName Template);
284 void addSubstitution(uintptr_t Ptr);
285
286 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
287 NamedDecl *firstQualifierLookup,
288 bool recursive = false);
289 void mangleUnresolvedName(NestedNameSpecifier *qualifier,
290 NamedDecl *firstQualifierLookup,
291 DeclarationName name,
292 unsigned KnownArity = UnknownArity);
293
294 void mangleName(const TemplateDecl *TD,
295 const TemplateArgument *TemplateArgs,
296 unsigned NumTemplateArgs);
297 void mangleUnqualifiedName(const NamedDecl *ND) {
298 mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
299 }
300 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
301 unsigned KnownArity);
302 void mangleUnscopedName(const NamedDecl *ND);
303 void mangleUnscopedTemplateName(const TemplateDecl *ND);
304 void mangleUnscopedTemplateName(TemplateName);
305 void mangleSourceName(const IdentifierInfo *II);
306 void mangleLocalName(const NamedDecl *ND);
307 void mangleLambda(const CXXRecordDecl *Lambda);
308 void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
309 bool NoFunction=false);
310 void mangleNestedName(const TemplateDecl *TD,
311 const TemplateArgument *TemplateArgs,
312 unsigned NumTemplateArgs);
313 void manglePrefix(NestedNameSpecifier *qualifier);
314 void manglePrefix(const DeclContext *DC, bool NoFunction=false);
315 void manglePrefix(QualType type);
316 void mangleTemplatePrefix(const TemplateDecl *ND);
317 void mangleTemplatePrefix(TemplateName Template);
318 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
319 void mangleQualifiers(Qualifiers Quals);
320 void mangleRefQualifier(RefQualifierKind RefQualifier);
321
322 void mangleObjCMethodName(const ObjCMethodDecl *MD);
323
324 // Declare manglers for every type class.
325#define ABSTRACT_TYPE(CLASS, PARENT)
326#define NON_CANONICAL_TYPE(CLASS, PARENT)
327#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
328#include "clang/AST/TypeNodes.def"
329
330 void mangleType(const TagType*);
331 void mangleType(TemplateName);
332 void mangleBareFunctionType(const FunctionType *T,
333 bool MangleReturnType);
334 void mangleNeonVectorType(const VectorType *T);
335
336 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
337 void mangleMemberExpr(const Expr *base, bool isArrow,
338 NestedNameSpecifier *qualifier,
339 NamedDecl *firstQualifierLookup,
340 DeclarationName name,
341 unsigned knownArity);
342 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
343 void mangleCXXCtorType(CXXCtorType T);
344 void mangleCXXDtorType(CXXDtorType T);
345
346 void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
347 void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
348 unsigned NumTemplateArgs);
349 void mangleTemplateArgs(const TemplateArgumentList &AL);
350 void mangleTemplateArg(TemplateArgument A);
351
352 void mangleTemplateParameter(unsigned Index);
353
354 void mangleFunctionParam(const ParmVarDecl *parm);
355};
356
357}
358
359static bool isInCLinkageSpecification(const Decl *D) {
360 D = D->getCanonicalDecl();
361 for (const DeclContext *DC = getEffectiveDeclContext(D);
362 !DC->isTranslationUnit(); DC = getEffectiveParentContext(DC)) {
363 if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
364 return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
365 }
366
367 return false;
368}
369
370bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
371 // In C, functions with no attributes never need to be mangled. Fastpath them.
372 if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
373 return false;
374
375 // Any decl can be declared with __asm("foo") on it, and this takes precedence
376 // over all other naming in the .o file.
377 if (D->hasAttr<AsmLabelAttr>())
378 return true;
379
380 // Clang's "overloadable" attribute extension to C/C++ implies name mangling
381 // (always) as does passing a C++ member function and a function
382 // whose name is not a simple identifier.
383 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
384 if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
385 !FD->getDeclName().isIdentifier()))
386 return true;
387
388 // Otherwise, no mangling is done outside C++ mode.
389 if (!getASTContext().getLangOpts().CPlusPlus)
390 return false;
391
392 // Variables at global scope with non-internal linkage are not mangled
393 if (!FD) {
394 const DeclContext *DC = getEffectiveDeclContext(D);
395 // Check for extern variable declared locally.
396 if (DC->isFunctionOrMethod() && D->hasLinkage())
397 while (!DC->isNamespace() && !DC->isTranslationUnit())
398 DC = getEffectiveParentContext(DC);
399 if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
400 return false;
401 }
402
403 // Class members are always mangled.
404 if (getEffectiveDeclContext(D)->isRecord())
405 return true;
406
407 // C functions and "main" are not mangled.
408 if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
409 return false;
410
411 return true;
412}
413
414void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
415 // Any decl can be declared with __asm("foo") on it, and this takes precedence
416 // over all other naming in the .o file.
417 if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
418 // If we have an asm name, then we use it as the mangling.
419
420 // Adding the prefix can cause problems when one file has a "foo" and
421 // another has a "\01foo". That is known to happen on ELF with the
422 // tricks normally used for producing aliases (PR9177). Fortunately the
423 // llvm mangler on ELF is a nop, so we can just avoid adding the \01
424 // marker. We also avoid adding the marker if this is an alias for an
425 // LLVM intrinsic.
426 StringRef UserLabelPrefix =
427 getASTContext().getTargetInfo().getUserLabelPrefix();
428 if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
429 Out << '\01'; // LLVM IR Marker for __asm("foo")
430
431 Out << ALA->getLabel();
432 return;
433 }
434
435 // <mangled-name> ::= _Z <encoding>
436 // ::= <data name>
437 // ::= <special-name>
438 Out << Prefix;
439 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
440 mangleFunctionEncoding(FD);
441 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
442 mangleName(VD);
443 else
444 mangleName(cast<FieldDecl>(D));
445}
446
447void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
448 // <encoding> ::= <function name> <bare-function-type>
449 mangleName(FD);
450
451 // Don't mangle in the type if this isn't a decl we should typically mangle.
452 if (!Context.shouldMangleDeclName(FD))
453 return;
454
455 // Whether the mangling of a function type includes the return type depends on
456 // the context and the nature of the function. The rules for deciding whether
457 // the return type is included are:
458 //
459 // 1. Template functions (names or types) have return types encoded, with
460 // the exceptions listed below.
461 // 2. Function types not appearing as part of a function name mangling,
462 // e.g. parameters, pointer types, etc., have return type encoded, with the
463 // exceptions listed below.
464 // 3. Non-template function names do not have return types encoded.
465 //
466 // The exceptions mentioned in (1) and (2) above, for which the return type is
467 // never included, are
468 // 1. Constructors.
469 // 2. Destructors.
470 // 3. Conversion operator functions, e.g. operator int.
471 bool MangleReturnType = false;
472 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
473 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
474 isa<CXXConversionDecl>(FD)))
475 MangleReturnType = true;
476
477 // Mangle the type of the primary template.
478 FD = PrimaryTemplate->getTemplatedDecl();
479 }
480
481 mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
482 MangleReturnType);
483}
484
485static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
486 while (isa<LinkageSpecDecl>(DC)) {
487 DC = getEffectiveParentContext(DC);
488 }
489
490 return DC;
491}
492
493/// isStd - Return whether a given namespace is the 'std' namespace.
494static bool isStd(const NamespaceDecl *NS) {
495 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
496 ->isTranslationUnit())
497 return false;
498
499 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
500 return II && II->isStr("std");
501}
502
503// isStdNamespace - Return whether a given decl context is a toplevel 'std'
504// namespace.
505static bool isStdNamespace(const DeclContext *DC) {
506 if (!DC->isNamespace())
507 return false;
508
509 return isStd(cast<NamespaceDecl>(DC));
510}
511
512static const TemplateDecl *
513isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
514 // Check if we have a function template.
515 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
516 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
517 TemplateArgs = FD->getTemplateSpecializationArgs();
518 return TD;
519 }
520 }
521
522 // Check if we have a class template.
523 if (const ClassTemplateSpecializationDecl *Spec =
524 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
525 TemplateArgs = &Spec->getTemplateArgs();
526 return Spec->getSpecializedTemplate();
527 }
528
529 return 0;
530}
531
532static bool isLambda(const NamedDecl *ND) {
533 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
534 if (!Record)
535 return false;
536
537 return Record->isLambda();
538}
539
540void CXXNameMangler::mangleName(const NamedDecl *ND) {
541 // <name> ::= <nested-name>
542 // ::= <unscoped-name>
543 // ::= <unscoped-template-name> <template-args>
544 // ::= <local-name>
545 //
546 const DeclContext *DC = getEffectiveDeclContext(ND);
547
548 // If this is an extern variable declared locally, the relevant DeclContext
549 // is that of the containing namespace, or the translation unit.
550 // FIXME: This is a hack; extern variables declared locally should have
551 // a proper semantic declaration context!
552 if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND))
553 while (!DC->isNamespace() && !DC->isTranslationUnit())
554 DC = getEffectiveParentContext(DC);
555 else if (GetLocalClassDecl(ND)) {
556 mangleLocalName(ND);
557 return;
558 }
559
560 DC = IgnoreLinkageSpecDecls(DC);
561
562 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
563 // Check if we have a template.
564 const TemplateArgumentList *TemplateArgs = 0;
565 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
566 mangleUnscopedTemplateName(TD);
567 mangleTemplateArgs(*TemplateArgs);
568 return;
569 }
570
571 mangleUnscopedName(ND);
572 return;
573 }
574
575 if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
576 mangleLocalName(ND);
577 return;
578 }
579
580 mangleNestedName(ND, DC);
581}
582void CXXNameMangler::mangleName(const TemplateDecl *TD,
583 const TemplateArgument *TemplateArgs,
584 unsigned NumTemplateArgs) {
585 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
586
587 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
588 mangleUnscopedTemplateName(TD);
589 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
590 } else {
591 mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
592 }
593}
594
595void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
596 // <unscoped-name> ::= <unqualified-name>
597 // ::= St <unqualified-name> # ::std::
598
599 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
600 Out << "St";
601
602 mangleUnqualifiedName(ND);
603}
604
605void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
606 // <unscoped-template-name> ::= <unscoped-name>
607 // ::= <substitution>
608 if (mangleSubstitution(ND))
609 return;
610
611 // <template-template-param> ::= <template-param>
612 if (const TemplateTemplateParmDecl *TTP
613 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
614 mangleTemplateParameter(TTP->getIndex());
615 return;
616 }
617
618 mangleUnscopedName(ND->getTemplatedDecl());
619 addSubstitution(ND);
620}
621
622void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
623 // <unscoped-template-name> ::= <unscoped-name>
624 // ::= <substitution>
625 if (TemplateDecl *TD = Template.getAsTemplateDecl())
626 return mangleUnscopedTemplateName(TD);
627
628 if (mangleSubstitution(Template))
629 return;
630
631 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
632 assert(Dependent && "Not a dependent template name?");
633 if (const IdentifierInfo *Id = Dependent->getIdentifier())
634 mangleSourceName(Id);
635 else
636 mangleOperatorName(Dependent->getOperator(), UnknownArity);
637
638 addSubstitution(Template);
639}
640
641void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
642 // ABI:
643 // Floating-point literals are encoded using a fixed-length
644 // lowercase hexadecimal string corresponding to the internal
645 // representation (IEEE on Itanium), high-order bytes first,
646 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
647 // on Itanium.
648 // The 'without leading zeroes' thing seems to be an editorial
649 // mistake; see the discussion on cxx-abi-dev beginning on
650 // 2012-01-16.
651
652 // Our requirements here are just barely weird enough to justify
653 // using a custom algorithm instead of post-processing APInt::toString().
654
655 llvm::APInt valueBits = f.bitcastToAPInt();
656 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
657 assert(numCharacters != 0);
658
659 // Allocate a buffer of the right number of characters.
Dmitri Gribenkocfa88f82013-01-12 19:30:44 +0000660 SmallVector<char, 20> buffer;
Guy Benyei7f92f2d2012-12-18 14:30:41 +0000661 buffer.set_size(numCharacters);
662
663 // Fill the buffer left-to-right.
664 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
665 // The bit-index of the next hex digit.
666 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
667
668 // Project out 4 bits starting at 'digitIndex'.
669 llvm::integerPart hexDigit
670 = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
671 hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
672 hexDigit &= 0xF;
673
674 // Map that over to a lowercase hex digit.
675 static const char charForHex[16] = {
676 '0', '1', '2', '3', '4', '5', '6', '7',
677 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
678 };
679 buffer[stringIndex] = charForHex[hexDigit];
680 }
681
682 Out.write(buffer.data(), numCharacters);
683}
684
685void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
686 if (Value.isSigned() && Value.isNegative()) {
687 Out << 'n';
688 Value.abs().print(Out, /*signed*/ false);
689 } else {
690 Value.print(Out, /*signed*/ false);
691 }
692}
693
694void CXXNameMangler::mangleNumber(int64_t Number) {
695 // <number> ::= [n] <non-negative decimal integer>
696 if (Number < 0) {
697 Out << 'n';
698 Number = -Number;
699 }
700
701 Out << Number;
702}
703
704void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
705 // <call-offset> ::= h <nv-offset> _
706 // ::= v <v-offset> _
707 // <nv-offset> ::= <offset number> # non-virtual base override
708 // <v-offset> ::= <offset number> _ <virtual offset number>
709 // # virtual base override, with vcall offset
710 if (!Virtual) {
711 Out << 'h';
712 mangleNumber(NonVirtual);
713 Out << '_';
714 return;
715 }
716
717 Out << 'v';
718 mangleNumber(NonVirtual);
719 Out << '_';
720 mangleNumber(Virtual);
721 Out << '_';
722}
723
724void CXXNameMangler::manglePrefix(QualType type) {
725 if (const TemplateSpecializationType *TST =
726 type->getAs<TemplateSpecializationType>()) {
727 if (!mangleSubstitution(QualType(TST, 0))) {
728 mangleTemplatePrefix(TST->getTemplateName());
729
730 // FIXME: GCC does not appear to mangle the template arguments when
731 // the template in question is a dependent template name. Should we
732 // emulate that badness?
733 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
734 addSubstitution(QualType(TST, 0));
735 }
736 } else if (const DependentTemplateSpecializationType *DTST
737 = type->getAs<DependentTemplateSpecializationType>()) {
738 TemplateName Template
739 = getASTContext().getDependentTemplateName(DTST->getQualifier(),
740 DTST->getIdentifier());
741 mangleTemplatePrefix(Template);
742
743 // FIXME: GCC does not appear to mangle the template arguments when
744 // the template in question is a dependent template name. Should we
745 // emulate that badness?
746 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
747 } else {
748 // We use the QualType mangle type variant here because it handles
749 // substitutions.
750 mangleType(type);
751 }
752}
753
754/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
755///
756/// \param firstQualifierLookup - the entity found by unqualified lookup
757/// for the first name in the qualifier, if this is for a member expression
758/// \param recursive - true if this is being called recursively,
759/// i.e. if there is more prefix "to the right".
760void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
761 NamedDecl *firstQualifierLookup,
762 bool recursive) {
763
764 // x, ::x
765 // <unresolved-name> ::= [gs] <base-unresolved-name>
766
767 // T::x / decltype(p)::x
768 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
769
770 // T::N::x /decltype(p)::N::x
771 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
772 // <base-unresolved-name>
773
774 // A::x, N::y, A<T>::z; "gs" means leading "::"
775 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
776 // <base-unresolved-name>
777
778 switch (qualifier->getKind()) {
779 case NestedNameSpecifier::Global:
780 Out << "gs";
781
782 // We want an 'sr' unless this is the entire NNS.
783 if (recursive)
784 Out << "sr";
785
786 // We never want an 'E' here.
787 return;
788
789 case NestedNameSpecifier::Namespace:
790 if (qualifier->getPrefix())
791 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
792 /*recursive*/ true);
793 else
794 Out << "sr";
795 mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
796 break;
797 case NestedNameSpecifier::NamespaceAlias:
798 if (qualifier->getPrefix())
799 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
800 /*recursive*/ true);
801 else
802 Out << "sr";
803 mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
804 break;
805
806 case NestedNameSpecifier::TypeSpec:
807 case NestedNameSpecifier::TypeSpecWithTemplate: {
808 const Type *type = qualifier->getAsType();
809
810 // We only want to use an unresolved-type encoding if this is one of:
811 // - a decltype
812 // - a template type parameter
813 // - a template template parameter with arguments
814 // In all of these cases, we should have no prefix.
815 if (qualifier->getPrefix()) {
816 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
817 /*recursive*/ true);
818 } else {
819 // Otherwise, all the cases want this.
820 Out << "sr";
821 }
822
823 // Only certain other types are valid as prefixes; enumerate them.
824 switch (type->getTypeClass()) {
825 case Type::Builtin:
826 case Type::Complex:
827 case Type::Pointer:
828 case Type::BlockPointer:
829 case Type::LValueReference:
830 case Type::RValueReference:
831 case Type::MemberPointer:
832 case Type::ConstantArray:
833 case Type::IncompleteArray:
834 case Type::VariableArray:
835 case Type::DependentSizedArray:
836 case Type::DependentSizedExtVector:
837 case Type::Vector:
838 case Type::ExtVector:
839 case Type::FunctionProto:
840 case Type::FunctionNoProto:
841 case Type::Enum:
842 case Type::Paren:
843 case Type::Elaborated:
844 case Type::Attributed:
845 case Type::Auto:
846 case Type::PackExpansion:
847 case Type::ObjCObject:
848 case Type::ObjCInterface:
849 case Type::ObjCObjectPointer:
850 case Type::Atomic:
851 llvm_unreachable("type is illegal as a nested name specifier");
852
853 case Type::SubstTemplateTypeParmPack:
854 // FIXME: not clear how to mangle this!
855 // template <class T...> class A {
856 // template <class U...> void foo(decltype(T::foo(U())) x...);
857 // };
858 Out << "_SUBSTPACK_";
859 break;
860
861 // <unresolved-type> ::= <template-param>
862 // ::= <decltype>
863 // ::= <template-template-param> <template-args>
864 // (this last is not official yet)
865 case Type::TypeOfExpr:
866 case Type::TypeOf:
867 case Type::Decltype:
868 case Type::TemplateTypeParm:
869 case Type::UnaryTransform:
870 case Type::SubstTemplateTypeParm:
871 unresolvedType:
872 assert(!qualifier->getPrefix());
873
874 // We only get here recursively if we're followed by identifiers.
875 if (recursive) Out << 'N';
876
877 // This seems to do everything we want. It's not really
878 // sanctioned for a substituted template parameter, though.
879 mangleType(QualType(type, 0));
880
881 // We never want to print 'E' directly after an unresolved-type,
882 // so we return directly.
883 return;
884
885 case Type::Typedef:
886 mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
887 break;
888
889 case Type::UnresolvedUsing:
890 mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
891 ->getIdentifier());
892 break;
893
894 case Type::Record:
895 mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
896 break;
897
898 case Type::TemplateSpecialization: {
899 const TemplateSpecializationType *tst
900 = cast<TemplateSpecializationType>(type);
901 TemplateName name = tst->getTemplateName();
902 switch (name.getKind()) {
903 case TemplateName::Template:
904 case TemplateName::QualifiedTemplate: {
905 TemplateDecl *temp = name.getAsTemplateDecl();
906
907 // If the base is a template template parameter, this is an
908 // unresolved type.
909 assert(temp && "no template for template specialization type");
910 if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
911
912 mangleSourceName(temp->getIdentifier());
913 break;
914 }
915
916 case TemplateName::OverloadedTemplate:
917 case TemplateName::DependentTemplate:
918 llvm_unreachable("invalid base for a template specialization type");
919
920 case TemplateName::SubstTemplateTemplateParm: {
921 SubstTemplateTemplateParmStorage *subst
922 = name.getAsSubstTemplateTemplateParm();
923 mangleExistingSubstitution(subst->getReplacement());
924 break;
925 }
926
927 case TemplateName::SubstTemplateTemplateParmPack: {
928 // FIXME: not clear how to mangle this!
929 // template <template <class U> class T...> class A {
930 // template <class U...> void foo(decltype(T<U>::foo) x...);
931 // };
932 Out << "_SUBSTPACK_";
933 break;
934 }
935 }
936
937 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
938 break;
939 }
940
941 case Type::InjectedClassName:
942 mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
943 ->getIdentifier());
944 break;
945
946 case Type::DependentName:
947 mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
948 break;
949
950 case Type::DependentTemplateSpecialization: {
951 const DependentTemplateSpecializationType *tst
952 = cast<DependentTemplateSpecializationType>(type);
953 mangleSourceName(tst->getIdentifier());
954 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
955 break;
956 }
957 }
958 break;
959 }
960
961 case NestedNameSpecifier::Identifier:
962 // Member expressions can have these without prefixes.
963 if (qualifier->getPrefix()) {
964 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
965 /*recursive*/ true);
966 } else if (firstQualifierLookup) {
967
968 // Try to make a proper qualifier out of the lookup result, and
969 // then just recurse on that.
970 NestedNameSpecifier *newQualifier;
971 if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
972 QualType type = getASTContext().getTypeDeclType(typeDecl);
973
974 // Pretend we had a different nested name specifier.
975 newQualifier = NestedNameSpecifier::Create(getASTContext(),
976 /*prefix*/ 0,
977 /*template*/ false,
978 type.getTypePtr());
979 } else if (NamespaceDecl *nspace =
980 dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
981 newQualifier = NestedNameSpecifier::Create(getASTContext(),
982 /*prefix*/ 0,
983 nspace);
984 } else if (NamespaceAliasDecl *alias =
985 dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
986 newQualifier = NestedNameSpecifier::Create(getASTContext(),
987 /*prefix*/ 0,
988 alias);
989 } else {
990 // No sensible mangling to do here.
991 newQualifier = 0;
992 }
993
994 if (newQualifier)
995 return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
996
997 } else {
998 Out << "sr";
999 }
1000
1001 mangleSourceName(qualifier->getAsIdentifier());
1002 break;
1003 }
1004
1005 // If this was the innermost part of the NNS, and we fell out to
1006 // here, append an 'E'.
1007 if (!recursive)
1008 Out << 'E';
1009}
1010
1011/// Mangle an unresolved-name, which is generally used for names which
1012/// weren't resolved to specific entities.
1013void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1014 NamedDecl *firstQualifierLookup,
1015 DeclarationName name,
1016 unsigned knownArity) {
1017 if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1018 mangleUnqualifiedName(0, name, knownArity);
1019}
1020
1021static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1022 assert(RD->isAnonymousStructOrUnion() &&
1023 "Expected anonymous struct or union!");
1024
1025 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1026 I != E; ++I) {
1027 if (I->getIdentifier())
1028 return *I;
1029
1030 if (const RecordType *RT = I->getType()->getAs<RecordType>())
1031 if (const FieldDecl *NamedDataMember =
1032 FindFirstNamedDataMember(RT->getDecl()))
1033 return NamedDataMember;
1034 }
1035
1036 // We didn't find a named data member.
1037 return 0;
1038}
1039
1040void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1041 DeclarationName Name,
1042 unsigned KnownArity) {
1043 // <unqualified-name> ::= <operator-name>
1044 // ::= <ctor-dtor-name>
1045 // ::= <source-name>
1046 switch (Name.getNameKind()) {
1047 case DeclarationName::Identifier: {
1048 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1049 // We must avoid conflicts between internally- and externally-
1050 // linked variable and function declaration names in the same TU:
1051 // void test() { extern void foo(); }
1052 // static void foo();
1053 // This naming convention is the same as that followed by GCC,
1054 // though it shouldn't actually matter.
1055 if (ND && ND->getLinkage() == InternalLinkage &&
1056 getEffectiveDeclContext(ND)->isFileContext())
1057 Out << 'L';
1058
1059 mangleSourceName(II);
1060 break;
1061 }
1062
1063 // Otherwise, an anonymous entity. We must have a declaration.
1064 assert(ND && "mangling empty name without declaration");
1065
1066 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1067 if (NS->isAnonymousNamespace()) {
1068 // This is how gcc mangles these names.
1069 Out << "12_GLOBAL__N_1";
1070 break;
1071 }
1072 }
1073
1074 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1075 // We must have an anonymous union or struct declaration.
1076 const RecordDecl *RD =
1077 cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1078
1079 // Itanium C++ ABI 5.1.2:
1080 //
1081 // For the purposes of mangling, the name of an anonymous union is
1082 // considered to be the name of the first named data member found by a
1083 // pre-order, depth-first, declaration-order walk of the data members of
1084 // the anonymous union. If there is no such data member (i.e., if all of
1085 // the data members in the union are unnamed), then there is no way for
1086 // a program to refer to the anonymous union, and there is therefore no
1087 // need to mangle its name.
1088 const FieldDecl *FD = FindFirstNamedDataMember(RD);
1089
1090 // It's actually possible for various reasons for us to get here
1091 // with an empty anonymous struct / union. Fortunately, it
1092 // doesn't really matter what name we generate.
1093 if (!FD) break;
1094 assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1095
1096 mangleSourceName(FD->getIdentifier());
1097 break;
1098 }
1099
1100 // We must have an anonymous struct.
1101 const TagDecl *TD = cast<TagDecl>(ND);
1102 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1103 assert(TD->getDeclContext() == D->getDeclContext() &&
1104 "Typedef should not be in another decl context!");
1105 assert(D->getDeclName().getAsIdentifierInfo() &&
1106 "Typedef was not named!");
1107 mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1108 break;
1109 }
1110
1111 // <unnamed-type-name> ::= <closure-type-name>
1112 //
1113 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1114 // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
1115 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1116 if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1117 mangleLambda(Record);
1118 break;
1119 }
1120 }
1121
1122 int UnnamedMangle = Context.getASTContext().getUnnamedTagManglingNumber(TD);
1123 if (UnnamedMangle != -1) {
1124 Out << "Ut";
1125 if (UnnamedMangle != 0)
1126 Out << llvm::utostr(UnnamedMangle - 1);
1127 Out << '_';
1128 break;
1129 }
1130
1131 // Get a unique id for the anonymous struct.
1132 uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1133
1134 // Mangle it as a source name in the form
1135 // [n] $_<id>
1136 // where n is the length of the string.
1137 SmallString<8> Str;
1138 Str += "$_";
1139 Str += llvm::utostr(AnonStructId);
1140
1141 Out << Str.size();
1142 Out << Str.str();
1143 break;
1144 }
1145
1146 case DeclarationName::ObjCZeroArgSelector:
1147 case DeclarationName::ObjCOneArgSelector:
1148 case DeclarationName::ObjCMultiArgSelector:
1149 llvm_unreachable("Can't mangle Objective-C selector names here!");
1150
1151 case DeclarationName::CXXConstructorName:
1152 if (ND == Structor)
1153 // If the named decl is the C++ constructor we're mangling, use the type
1154 // we were given.
1155 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1156 else
1157 // Otherwise, use the complete constructor name. This is relevant if a
1158 // class with a constructor is declared within a constructor.
1159 mangleCXXCtorType(Ctor_Complete);
1160 break;
1161
1162 case DeclarationName::CXXDestructorName:
1163 if (ND == Structor)
1164 // If the named decl is the C++ destructor we're mangling, use the type we
1165 // were given.
1166 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1167 else
1168 // Otherwise, use the complete destructor name. This is relevant if a
1169 // class with a destructor is declared within a destructor.
1170 mangleCXXDtorType(Dtor_Complete);
1171 break;
1172
1173 case DeclarationName::CXXConversionFunctionName:
1174 // <operator-name> ::= cv <type> # (cast)
1175 Out << "cv";
1176 mangleType(Name.getCXXNameType());
1177 break;
1178
1179 case DeclarationName::CXXOperatorName: {
1180 unsigned Arity;
1181 if (ND) {
1182 Arity = cast<FunctionDecl>(ND)->getNumParams();
1183
1184 // If we have a C++ member function, we need to include the 'this' pointer.
1185 // FIXME: This does not make sense for operators that are static, but their
1186 // names stay the same regardless of the arity (operator new for instance).
1187 if (isa<CXXMethodDecl>(ND))
1188 Arity++;
1189 } else
1190 Arity = KnownArity;
1191
1192 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1193 break;
1194 }
1195
1196 case DeclarationName::CXXLiteralOperatorName:
1197 // FIXME: This mangling is not yet official.
1198 Out << "li";
1199 mangleSourceName(Name.getCXXLiteralIdentifier());
1200 break;
1201
1202 case DeclarationName::CXXUsingDirective:
1203 llvm_unreachable("Can't mangle a using directive name!");
1204 }
1205}
1206
1207void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1208 // <source-name> ::= <positive length number> <identifier>
1209 // <number> ::= [n] <non-negative decimal integer>
1210 // <identifier> ::= <unqualified source code identifier>
1211 Out << II->getLength() << II->getName();
1212}
1213
1214void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1215 const DeclContext *DC,
1216 bool NoFunction) {
1217 // <nested-name>
1218 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1219 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1220 // <template-args> E
1221
1222 Out << 'N';
1223 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1224 mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1225 mangleRefQualifier(Method->getRefQualifier());
1226 }
1227
1228 // Check if we have a template.
1229 const TemplateArgumentList *TemplateArgs = 0;
1230 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1231 mangleTemplatePrefix(TD);
1232 mangleTemplateArgs(*TemplateArgs);
1233 }
1234 else {
1235 manglePrefix(DC, NoFunction);
1236 mangleUnqualifiedName(ND);
1237 }
1238
1239 Out << 'E';
1240}
1241void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1242 const TemplateArgument *TemplateArgs,
1243 unsigned NumTemplateArgs) {
1244 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1245
1246 Out << 'N';
1247
1248 mangleTemplatePrefix(TD);
1249 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1250
1251 Out << 'E';
1252}
1253
1254void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
1255 // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1256 // := Z <function encoding> E s [<discriminator>]
1257 // <local-name> := Z <function encoding> E d [ <parameter number> ]
1258 // _ <entity name>
1259 // <discriminator> := _ <non-negative number>
1260 const DeclContext *DC = getEffectiveDeclContext(ND);
1261 if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
1262 // Don't add objc method name mangling to locally declared function
1263 mangleUnqualifiedName(ND);
1264 return;
1265 }
1266
1267 Out << 'Z';
1268
1269 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
1270 mangleObjCMethodName(MD);
1271 } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
1272 mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
1273 Out << 'E';
1274
1275 // The parameter number is omitted for the last parameter, 0 for the
1276 // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1277 // <entity name> will of course contain a <closure-type-name>: Its
1278 // numbering will be local to the particular argument in which it appears
1279 // -- other default arguments do not affect its encoding.
1280 bool SkipDiscriminator = false;
1281 if (RD->isLambda()) {
1282 if (const ParmVarDecl *Parm
1283 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
1284 if (const FunctionDecl *Func
1285 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1286 Out << 'd';
1287 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1288 if (Num > 1)
1289 mangleNumber(Num - 2);
1290 Out << '_';
1291 SkipDiscriminator = true;
1292 }
1293 }
1294 }
1295
1296 // Mangle the name relative to the closest enclosing function.
1297 if (ND == RD) // equality ok because RD derived from ND above
1298 mangleUnqualifiedName(ND);
1299 else
1300 mangleNestedName(ND, DC, true /*NoFunction*/);
1301
1302 if (!SkipDiscriminator) {
1303 unsigned disc;
1304 if (Context.getNextDiscriminator(RD, disc)) {
1305 if (disc < 10)
1306 Out << '_' << disc;
1307 else
1308 Out << "__" << disc << '_';
1309 }
1310 }
1311
1312 return;
1313 }
1314 else
1315 mangleFunctionEncoding(cast<FunctionDecl>(DC));
1316
1317 Out << 'E';
1318 mangleUnqualifiedName(ND);
1319}
1320
1321void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1322 // If the context of a closure type is an initializer for a class member
1323 // (static or nonstatic), it is encoded in a qualified name with a final
1324 // <prefix> of the form:
1325 //
1326 // <data-member-prefix> := <member source-name> M
1327 //
1328 // Technically, the data-member-prefix is part of the <prefix>. However,
1329 // since a closure type will always be mangled with a prefix, it's easier
1330 // to emit that last part of the prefix here.
1331 if (Decl *Context = Lambda->getLambdaContextDecl()) {
1332 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1333 Context->getDeclContext()->isRecord()) {
1334 if (const IdentifierInfo *Name
1335 = cast<NamedDecl>(Context)->getIdentifier()) {
1336 mangleSourceName(Name);
1337 Out << 'M';
1338 }
1339 }
1340 }
1341
1342 Out << "Ul";
1343 const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1344 getAs<FunctionProtoType>();
1345 mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1346 Out << "E";
1347
1348 // The number is omitted for the first closure type with a given
1349 // <lambda-sig> in a given context; it is n-2 for the nth closure type
1350 // (in lexical order) with that same <lambda-sig> and context.
1351 //
1352 // The AST keeps track of the number for us.
1353 unsigned Number = Lambda->getLambdaManglingNumber();
1354 assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1355 if (Number > 1)
1356 mangleNumber(Number - 2);
1357 Out << '_';
1358}
1359
1360void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1361 switch (qualifier->getKind()) {
1362 case NestedNameSpecifier::Global:
1363 // nothing
1364 return;
1365
1366 case NestedNameSpecifier::Namespace:
1367 mangleName(qualifier->getAsNamespace());
1368 return;
1369
1370 case NestedNameSpecifier::NamespaceAlias:
1371 mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1372 return;
1373
1374 case NestedNameSpecifier::TypeSpec:
1375 case NestedNameSpecifier::TypeSpecWithTemplate:
1376 manglePrefix(QualType(qualifier->getAsType(), 0));
1377 return;
1378
1379 case NestedNameSpecifier::Identifier:
1380 // Member expressions can have these without prefixes, but that
1381 // should end up in mangleUnresolvedPrefix instead.
1382 assert(qualifier->getPrefix());
1383 manglePrefix(qualifier->getPrefix());
1384
1385 mangleSourceName(qualifier->getAsIdentifier());
1386 return;
1387 }
1388
1389 llvm_unreachable("unexpected nested name specifier");
1390}
1391
1392void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1393 // <prefix> ::= <prefix> <unqualified-name>
1394 // ::= <template-prefix> <template-args>
1395 // ::= <template-param>
1396 // ::= # empty
1397 // ::= <substitution>
1398
1399 DC = IgnoreLinkageSpecDecls(DC);
1400
1401 if (DC->isTranslationUnit())
1402 return;
1403
1404 if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
1405 manglePrefix(getEffectiveParentContext(DC), NoFunction);
1406 SmallString<64> Name;
1407 llvm::raw_svector_ostream NameStream(Name);
1408 Context.mangleBlock(Block, NameStream);
1409 NameStream.flush();
1410 Out << Name.size() << Name;
1411 return;
1412 }
1413
1414 const NamedDecl *ND = cast<NamedDecl>(DC);
1415 if (mangleSubstitution(ND))
1416 return;
1417
1418 // Check if we have a template.
1419 const TemplateArgumentList *TemplateArgs = 0;
1420 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1421 mangleTemplatePrefix(TD);
1422 mangleTemplateArgs(*TemplateArgs);
1423 }
1424 else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
1425 return;
1426 else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
1427 mangleObjCMethodName(Method);
1428 else {
1429 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1430 mangleUnqualifiedName(ND);
1431 }
1432
1433 addSubstitution(ND);
1434}
1435
1436void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1437 // <template-prefix> ::= <prefix> <template unqualified-name>
1438 // ::= <template-param>
1439 // ::= <substitution>
1440 if (TemplateDecl *TD = Template.getAsTemplateDecl())
1441 return mangleTemplatePrefix(TD);
1442
1443 if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1444 manglePrefix(Qualified->getQualifier());
1445
1446 if (OverloadedTemplateStorage *Overloaded
1447 = Template.getAsOverloadedTemplate()) {
1448 mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1449 UnknownArity);
1450 return;
1451 }
1452
1453 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1454 assert(Dependent && "Unknown template name kind?");
1455 manglePrefix(Dependent->getQualifier());
1456 mangleUnscopedTemplateName(Template);
1457}
1458
1459void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
1460 // <template-prefix> ::= <prefix> <template unqualified-name>
1461 // ::= <template-param>
1462 // ::= <substitution>
1463 // <template-template-param> ::= <template-param>
1464 // <substitution>
1465
1466 if (mangleSubstitution(ND))
1467 return;
1468
1469 // <template-template-param> ::= <template-param>
1470 if (const TemplateTemplateParmDecl *TTP
1471 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1472 mangleTemplateParameter(TTP->getIndex());
1473 return;
1474 }
1475
1476 manglePrefix(getEffectiveDeclContext(ND));
1477 mangleUnqualifiedName(ND->getTemplatedDecl());
1478 addSubstitution(ND);
1479}
1480
1481/// Mangles a template name under the production <type>. Required for
1482/// template template arguments.
1483/// <type> ::= <class-enum-type>
1484/// ::= <template-param>
1485/// ::= <substitution>
1486void CXXNameMangler::mangleType(TemplateName TN) {
1487 if (mangleSubstitution(TN))
1488 return;
1489
1490 TemplateDecl *TD = 0;
1491
1492 switch (TN.getKind()) {
1493 case TemplateName::QualifiedTemplate:
1494 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1495 goto HaveDecl;
1496
1497 case TemplateName::Template:
1498 TD = TN.getAsTemplateDecl();
1499 goto HaveDecl;
1500
1501 HaveDecl:
1502 if (isa<TemplateTemplateParmDecl>(TD))
1503 mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1504 else
1505 mangleName(TD);
1506 break;
1507
1508 case TemplateName::OverloadedTemplate:
1509 llvm_unreachable("can't mangle an overloaded template name as a <type>");
1510
1511 case TemplateName::DependentTemplate: {
1512 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1513 assert(Dependent->isIdentifier());
1514
1515 // <class-enum-type> ::= <name>
1516 // <name> ::= <nested-name>
1517 mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1518 mangleSourceName(Dependent->getIdentifier());
1519 break;
1520 }
1521
1522 case TemplateName::SubstTemplateTemplateParm: {
1523 // Substituted template parameters are mangled as the substituted
1524 // template. This will check for the substitution twice, which is
1525 // fine, but we have to return early so that we don't try to *add*
1526 // the substitution twice.
1527 SubstTemplateTemplateParmStorage *subst
1528 = TN.getAsSubstTemplateTemplateParm();
1529 mangleType(subst->getReplacement());
1530 return;
1531 }
1532
1533 case TemplateName::SubstTemplateTemplateParmPack: {
1534 // FIXME: not clear how to mangle this!
1535 // template <template <class> class T...> class A {
1536 // template <template <class> class U...> void foo(B<T,U> x...);
1537 // };
1538 Out << "_SUBSTPACK_";
1539 break;
1540 }
1541 }
1542
1543 addSubstitution(TN);
1544}
1545
1546void
1547CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1548 switch (OO) {
1549 // <operator-name> ::= nw # new
1550 case OO_New: Out << "nw"; break;
1551 // ::= na # new[]
1552 case OO_Array_New: Out << "na"; break;
1553 // ::= dl # delete
1554 case OO_Delete: Out << "dl"; break;
1555 // ::= da # delete[]
1556 case OO_Array_Delete: Out << "da"; break;
1557 // ::= ps # + (unary)
1558 // ::= pl # + (binary or unknown)
1559 case OO_Plus:
1560 Out << (Arity == 1? "ps" : "pl"); break;
1561 // ::= ng # - (unary)
1562 // ::= mi # - (binary or unknown)
1563 case OO_Minus:
1564 Out << (Arity == 1? "ng" : "mi"); break;
1565 // ::= ad # & (unary)
1566 // ::= an # & (binary or unknown)
1567 case OO_Amp:
1568 Out << (Arity == 1? "ad" : "an"); break;
1569 // ::= de # * (unary)
1570 // ::= ml # * (binary or unknown)
1571 case OO_Star:
1572 // Use binary when unknown.
1573 Out << (Arity == 1? "de" : "ml"); break;
1574 // ::= co # ~
1575 case OO_Tilde: Out << "co"; break;
1576 // ::= dv # /
1577 case OO_Slash: Out << "dv"; break;
1578 // ::= rm # %
1579 case OO_Percent: Out << "rm"; break;
1580 // ::= or # |
1581 case OO_Pipe: Out << "or"; break;
1582 // ::= eo # ^
1583 case OO_Caret: Out << "eo"; break;
1584 // ::= aS # =
1585 case OO_Equal: Out << "aS"; break;
1586 // ::= pL # +=
1587 case OO_PlusEqual: Out << "pL"; break;
1588 // ::= mI # -=
1589 case OO_MinusEqual: Out << "mI"; break;
1590 // ::= mL # *=
1591 case OO_StarEqual: Out << "mL"; break;
1592 // ::= dV # /=
1593 case OO_SlashEqual: Out << "dV"; break;
1594 // ::= rM # %=
1595 case OO_PercentEqual: Out << "rM"; break;
1596 // ::= aN # &=
1597 case OO_AmpEqual: Out << "aN"; break;
1598 // ::= oR # |=
1599 case OO_PipeEqual: Out << "oR"; break;
1600 // ::= eO # ^=
1601 case OO_CaretEqual: Out << "eO"; break;
1602 // ::= ls # <<
1603 case OO_LessLess: Out << "ls"; break;
1604 // ::= rs # >>
1605 case OO_GreaterGreater: Out << "rs"; break;
1606 // ::= lS # <<=
1607 case OO_LessLessEqual: Out << "lS"; break;
1608 // ::= rS # >>=
1609 case OO_GreaterGreaterEqual: Out << "rS"; break;
1610 // ::= eq # ==
1611 case OO_EqualEqual: Out << "eq"; break;
1612 // ::= ne # !=
1613 case OO_ExclaimEqual: Out << "ne"; break;
1614 // ::= lt # <
1615 case OO_Less: Out << "lt"; break;
1616 // ::= gt # >
1617 case OO_Greater: Out << "gt"; break;
1618 // ::= le # <=
1619 case OO_LessEqual: Out << "le"; break;
1620 // ::= ge # >=
1621 case OO_GreaterEqual: Out << "ge"; break;
1622 // ::= nt # !
1623 case OO_Exclaim: Out << "nt"; break;
1624 // ::= aa # &&
1625 case OO_AmpAmp: Out << "aa"; break;
1626 // ::= oo # ||
1627 case OO_PipePipe: Out << "oo"; break;
1628 // ::= pp # ++
1629 case OO_PlusPlus: Out << "pp"; break;
1630 // ::= mm # --
1631 case OO_MinusMinus: Out << "mm"; break;
1632 // ::= cm # ,
1633 case OO_Comma: Out << "cm"; break;
1634 // ::= pm # ->*
1635 case OO_ArrowStar: Out << "pm"; break;
1636 // ::= pt # ->
1637 case OO_Arrow: Out << "pt"; break;
1638 // ::= cl # ()
1639 case OO_Call: Out << "cl"; break;
1640 // ::= ix # []
1641 case OO_Subscript: Out << "ix"; break;
1642
1643 // ::= qu # ?
1644 // The conditional operator can't be overloaded, but we still handle it when
1645 // mangling expressions.
1646 case OO_Conditional: Out << "qu"; break;
1647
1648 case OO_None:
1649 case NUM_OVERLOADED_OPERATORS:
1650 llvm_unreachable("Not an overloaded operator");
1651 }
1652}
1653
1654void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1655 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
1656 if (Quals.hasRestrict())
1657 Out << 'r';
1658 if (Quals.hasVolatile())
1659 Out << 'V';
1660 if (Quals.hasConst())
1661 Out << 'K';
1662
1663 if (Quals.hasAddressSpace()) {
1664 // Extension:
1665 //
1666 // <type> ::= U <address-space-number>
1667 //
1668 // where <address-space-number> is a source name consisting of 'AS'
1669 // followed by the address space <number>.
1670 SmallString<64> ASString;
Tanya Lattnerf21107b2013-02-08 01:07:32 +00001671 ASString = "AS" + llvm::utostr_32(
1672 Context.getASTContext().getTargetAddressSpace(Quals.getAddressSpace()));
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001673 Out << 'U' << ASString.size() << ASString;
1674 }
1675
1676 StringRef LifetimeName;
1677 switch (Quals.getObjCLifetime()) {
1678 // Objective-C ARC Extension:
1679 //
1680 // <type> ::= U "__strong"
1681 // <type> ::= U "__weak"
1682 // <type> ::= U "__autoreleasing"
1683 case Qualifiers::OCL_None:
1684 break;
1685
1686 case Qualifiers::OCL_Weak:
1687 LifetimeName = "__weak";
1688 break;
1689
1690 case Qualifiers::OCL_Strong:
1691 LifetimeName = "__strong";
1692 break;
1693
1694 case Qualifiers::OCL_Autoreleasing:
1695 LifetimeName = "__autoreleasing";
1696 break;
1697
1698 case Qualifiers::OCL_ExplicitNone:
1699 // The __unsafe_unretained qualifier is *not* mangled, so that
1700 // __unsafe_unretained types in ARC produce the same manglings as the
1701 // equivalent (but, naturally, unqualified) types in non-ARC, providing
1702 // better ABI compatibility.
1703 //
1704 // It's safe to do this because unqualified 'id' won't show up
1705 // in any type signatures that need to be mangled.
1706 break;
1707 }
1708 if (!LifetimeName.empty())
1709 Out << 'U' << LifetimeName.size() << LifetimeName;
1710}
1711
1712void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1713 // <ref-qualifier> ::= R # lvalue reference
1714 // ::= O # rvalue-reference
1715 // Proposal to Itanium C++ ABI list on 1/26/11
1716 switch (RefQualifier) {
1717 case RQ_None:
1718 break;
1719
1720 case RQ_LValue:
1721 Out << 'R';
1722 break;
1723
1724 case RQ_RValue:
1725 Out << 'O';
1726 break;
1727 }
1728}
1729
1730void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1731 Context.mangleObjCMethodName(MD, Out);
1732}
1733
1734void CXXNameMangler::mangleType(QualType T) {
1735 // If our type is instantiation-dependent but not dependent, we mangle
1736 // it as it was written in the source, removing any top-level sugar.
1737 // Otherwise, use the canonical type.
1738 //
1739 // FIXME: This is an approximation of the instantiation-dependent name
1740 // mangling rules, since we should really be using the type as written and
1741 // augmented via semantic analysis (i.e., with implicit conversions and
1742 // default template arguments) for any instantiation-dependent type.
1743 // Unfortunately, that requires several changes to our AST:
1744 // - Instantiation-dependent TemplateSpecializationTypes will need to be
1745 // uniqued, so that we can handle substitutions properly
1746 // - Default template arguments will need to be represented in the
1747 // TemplateSpecializationType, since they need to be mangled even though
1748 // they aren't written.
1749 // - Conversions on non-type template arguments need to be expressed, since
1750 // they can affect the mangling of sizeof/alignof.
1751 if (!T->isInstantiationDependentType() || T->isDependentType())
1752 T = T.getCanonicalType();
1753 else {
1754 // Desugar any types that are purely sugar.
1755 do {
1756 // Don't desugar through template specialization types that aren't
1757 // type aliases. We need to mangle the template arguments as written.
1758 if (const TemplateSpecializationType *TST
1759 = dyn_cast<TemplateSpecializationType>(T))
1760 if (!TST->isTypeAlias())
1761 break;
1762
1763 QualType Desugared
1764 = T.getSingleStepDesugaredType(Context.getASTContext());
1765 if (Desugared == T)
1766 break;
1767
1768 T = Desugared;
1769 } while (true);
1770 }
1771 SplitQualType split = T.split();
1772 Qualifiers quals = split.Quals;
1773 const Type *ty = split.Ty;
1774
1775 bool isSubstitutable = quals || !isa<BuiltinType>(T);
1776 if (isSubstitutable && mangleSubstitution(T))
1777 return;
1778
1779 // If we're mangling a qualified array type, push the qualifiers to
1780 // the element type.
1781 if (quals && isa<ArrayType>(T)) {
1782 ty = Context.getASTContext().getAsArrayType(T);
1783 quals = Qualifiers();
1784
1785 // Note that we don't update T: we want to add the
1786 // substitution at the original type.
1787 }
1788
1789 if (quals) {
1790 mangleQualifiers(quals);
1791 // Recurse: even if the qualified type isn't yet substitutable,
1792 // the unqualified type might be.
1793 mangleType(QualType(ty, 0));
1794 } else {
1795 switch (ty->getTypeClass()) {
1796#define ABSTRACT_TYPE(CLASS, PARENT)
1797#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1798 case Type::CLASS: \
1799 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1800 return;
1801#define TYPE(CLASS, PARENT) \
1802 case Type::CLASS: \
1803 mangleType(static_cast<const CLASS##Type*>(ty)); \
1804 break;
1805#include "clang/AST/TypeNodes.def"
1806 }
1807 }
1808
1809 // Add the substitution.
1810 if (isSubstitutable)
1811 addSubstitution(T);
1812}
1813
1814void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1815 if (!mangleStandardSubstitution(ND))
1816 mangleName(ND);
1817}
1818
1819void CXXNameMangler::mangleType(const BuiltinType *T) {
1820 // <type> ::= <builtin-type>
1821 // <builtin-type> ::= v # void
1822 // ::= w # wchar_t
1823 // ::= b # bool
1824 // ::= c # char
1825 // ::= a # signed char
1826 // ::= h # unsigned char
1827 // ::= s # short
1828 // ::= t # unsigned short
1829 // ::= i # int
1830 // ::= j # unsigned int
1831 // ::= l # long
1832 // ::= m # unsigned long
1833 // ::= x # long long, __int64
1834 // ::= y # unsigned long long, __int64
1835 // ::= n # __int128
1836 // UNSUPPORTED: ::= o # unsigned __int128
1837 // ::= f # float
1838 // ::= d # double
1839 // ::= e # long double, __float80
1840 // UNSUPPORTED: ::= g # __float128
1841 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
1842 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
1843 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
1844 // ::= Dh # IEEE 754r half-precision floating point (16 bits)
1845 // ::= Di # char32_t
1846 // ::= Ds # char16_t
1847 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1848 // ::= u <source-name> # vendor extended type
1849 switch (T->getKind()) {
1850 case BuiltinType::Void: Out << 'v'; break;
1851 case BuiltinType::Bool: Out << 'b'; break;
1852 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1853 case BuiltinType::UChar: Out << 'h'; break;
1854 case BuiltinType::UShort: Out << 't'; break;
1855 case BuiltinType::UInt: Out << 'j'; break;
1856 case BuiltinType::ULong: Out << 'm'; break;
1857 case BuiltinType::ULongLong: Out << 'y'; break;
1858 case BuiltinType::UInt128: Out << 'o'; break;
1859 case BuiltinType::SChar: Out << 'a'; break;
1860 case BuiltinType::WChar_S:
1861 case BuiltinType::WChar_U: Out << 'w'; break;
1862 case BuiltinType::Char16: Out << "Ds"; break;
1863 case BuiltinType::Char32: Out << "Di"; break;
1864 case BuiltinType::Short: Out << 's'; break;
1865 case BuiltinType::Int: Out << 'i'; break;
1866 case BuiltinType::Long: Out << 'l'; break;
1867 case BuiltinType::LongLong: Out << 'x'; break;
1868 case BuiltinType::Int128: Out << 'n'; break;
1869 case BuiltinType::Half: Out << "Dh"; break;
1870 case BuiltinType::Float: Out << 'f'; break;
1871 case BuiltinType::Double: Out << 'd'; break;
1872 case BuiltinType::LongDouble: Out << 'e'; break;
1873 case BuiltinType::NullPtr: Out << "Dn"; break;
1874
1875#define BUILTIN_TYPE(Id, SingletonId)
1876#define PLACEHOLDER_TYPE(Id, SingletonId) \
1877 case BuiltinType::Id:
1878#include "clang/AST/BuiltinTypes.def"
1879 case BuiltinType::Dependent:
1880 llvm_unreachable("mangling a placeholder type");
1881 case BuiltinType::ObjCId: Out << "11objc_object"; break;
1882 case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1883 case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
Guy Benyeib13621d2012-12-18 14:38:23 +00001884 case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
1885 case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
1886 case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
1887 case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
1888 case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
1889 case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
Guy Benyei21f18c42013-02-07 10:55:47 +00001890 case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
Guy Benyeie6b9d802013-01-20 12:31:11 +00001891 case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001892 }
1893}
1894
1895// <type> ::= <function-type>
1896// <function-type> ::= [<CV-qualifiers>] F [Y]
1897// <bare-function-type> [<ref-qualifier>] E
1898// (Proposal to cxx-abi-dev, 2012-05-11)
1899void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1900 // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
1901 // e.g. "const" in "int (A::*)() const".
1902 mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
1903
1904 Out << 'F';
1905
1906 // FIXME: We don't have enough information in the AST to produce the 'Y'
1907 // encoding for extern "C" function types.
1908 mangleBareFunctionType(T, /*MangleReturnType=*/true);
1909
1910 // Mangle the ref-qualifier, if present.
1911 mangleRefQualifier(T->getRefQualifier());
1912
1913 Out << 'E';
1914}
1915void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1916 llvm_unreachable("Can't mangle K&R function prototypes");
1917}
1918void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1919 bool MangleReturnType) {
1920 // We should never be mangling something without a prototype.
1921 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1922
1923 // Record that we're in a function type. See mangleFunctionParam
1924 // for details on what we're trying to achieve here.
1925 FunctionTypeDepthState saved = FunctionTypeDepth.push();
1926
1927 // <bare-function-type> ::= <signature type>+
1928 if (MangleReturnType) {
1929 FunctionTypeDepth.enterResultType();
1930 mangleType(Proto->getResultType());
1931 FunctionTypeDepth.leaveResultType();
1932 }
1933
1934 if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1935 // <builtin-type> ::= v # void
1936 Out << 'v';
1937
1938 FunctionTypeDepth.pop(saved);
1939 return;
1940 }
1941
1942 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1943 ArgEnd = Proto->arg_type_end();
1944 Arg != ArgEnd; ++Arg)
1945 mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
1946
1947 FunctionTypeDepth.pop(saved);
1948
1949 // <builtin-type> ::= z # ellipsis
1950 if (Proto->isVariadic())
1951 Out << 'z';
1952}
1953
1954// <type> ::= <class-enum-type>
1955// <class-enum-type> ::= <name>
1956void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1957 mangleName(T->getDecl());
1958}
1959
1960// <type> ::= <class-enum-type>
1961// <class-enum-type> ::= <name>
1962void CXXNameMangler::mangleType(const EnumType *T) {
1963 mangleType(static_cast<const TagType*>(T));
1964}
1965void CXXNameMangler::mangleType(const RecordType *T) {
1966 mangleType(static_cast<const TagType*>(T));
1967}
1968void CXXNameMangler::mangleType(const TagType *T) {
1969 mangleName(T->getDecl());
1970}
1971
1972// <type> ::= <array-type>
1973// <array-type> ::= A <positive dimension number> _ <element type>
1974// ::= A [<dimension expression>] _ <element type>
1975void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1976 Out << 'A' << T->getSize() << '_';
1977 mangleType(T->getElementType());
1978}
1979void CXXNameMangler::mangleType(const VariableArrayType *T) {
1980 Out << 'A';
1981 // decayed vla types (size 0) will just be skipped.
1982 if (T->getSizeExpr())
1983 mangleExpression(T->getSizeExpr());
1984 Out << '_';
1985 mangleType(T->getElementType());
1986}
1987void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1988 Out << 'A';
1989 mangleExpression(T->getSizeExpr());
1990 Out << '_';
1991 mangleType(T->getElementType());
1992}
1993void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1994 Out << "A_";
1995 mangleType(T->getElementType());
1996}
1997
1998// <type> ::= <pointer-to-member-type>
1999// <pointer-to-member-type> ::= M <class type> <member type>
2000void CXXNameMangler::mangleType(const MemberPointerType *T) {
2001 Out << 'M';
2002 mangleType(QualType(T->getClass(), 0));
2003 QualType PointeeType = T->getPointeeType();
2004 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2005 mangleType(FPT);
2006
2007 // Itanium C++ ABI 5.1.8:
2008 //
2009 // The type of a non-static member function is considered to be different,
2010 // for the purposes of substitution, from the type of a namespace-scope or
2011 // static member function whose type appears similar. The types of two
2012 // non-static member functions are considered to be different, for the
2013 // purposes of substitution, if the functions are members of different
2014 // classes. In other words, for the purposes of substitution, the class of
2015 // which the function is a member is considered part of the type of
2016 // function.
2017
2018 // Given that we already substitute member function pointers as a
2019 // whole, the net effect of this rule is just to unconditionally
2020 // suppress substitution on the function type in a member pointer.
2021 // We increment the SeqID here to emulate adding an entry to the
2022 // substitution table.
2023 ++SeqID;
2024 } else
2025 mangleType(PointeeType);
2026}
2027
2028// <type> ::= <template-param>
2029void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2030 mangleTemplateParameter(T->getIndex());
2031}
2032
2033// <type> ::= <template-param>
2034void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2035 // FIXME: not clear how to mangle this!
2036 // template <class T...> class A {
2037 // template <class U...> void foo(T(*)(U) x...);
2038 // };
2039 Out << "_SUBSTPACK_";
2040}
2041
2042// <type> ::= P <type> # pointer-to
2043void CXXNameMangler::mangleType(const PointerType *T) {
2044 Out << 'P';
2045 mangleType(T->getPointeeType());
2046}
2047void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2048 Out << 'P';
2049 mangleType(T->getPointeeType());
2050}
2051
2052// <type> ::= R <type> # reference-to
2053void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2054 Out << 'R';
2055 mangleType(T->getPointeeType());
2056}
2057
2058// <type> ::= O <type> # rvalue reference-to (C++0x)
2059void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2060 Out << 'O';
2061 mangleType(T->getPointeeType());
2062}
2063
2064// <type> ::= C <type> # complex pair (C 2000)
2065void CXXNameMangler::mangleType(const ComplexType *T) {
2066 Out << 'C';
2067 mangleType(T->getElementType());
2068}
2069
2070// ARM's ABI for Neon vector types specifies that they should be mangled as
2071// if they are structs (to match ARM's initial implementation). The
2072// vector type must be one of the special types predefined by ARM.
2073void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2074 QualType EltType = T->getElementType();
2075 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2076 const char *EltName = 0;
2077 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2078 switch (cast<BuiltinType>(EltType)->getKind()) {
2079 case BuiltinType::SChar: EltName = "poly8_t"; break;
2080 case BuiltinType::Short: EltName = "poly16_t"; break;
2081 default: llvm_unreachable("unexpected Neon polynomial vector element type");
2082 }
2083 } else {
2084 switch (cast<BuiltinType>(EltType)->getKind()) {
2085 case BuiltinType::SChar: EltName = "int8_t"; break;
2086 case BuiltinType::UChar: EltName = "uint8_t"; break;
2087 case BuiltinType::Short: EltName = "int16_t"; break;
2088 case BuiltinType::UShort: EltName = "uint16_t"; break;
2089 case BuiltinType::Int: EltName = "int32_t"; break;
2090 case BuiltinType::UInt: EltName = "uint32_t"; break;
2091 case BuiltinType::LongLong: EltName = "int64_t"; break;
2092 case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2093 case BuiltinType::Float: EltName = "float32_t"; break;
2094 default: llvm_unreachable("unexpected Neon vector element type");
2095 }
2096 }
2097 const char *BaseName = 0;
2098 unsigned BitSize = (T->getNumElements() *
2099 getASTContext().getTypeSize(EltType));
2100 if (BitSize == 64)
2101 BaseName = "__simd64_";
2102 else {
2103 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2104 BaseName = "__simd128_";
2105 }
2106 Out << strlen(BaseName) + strlen(EltName);
2107 Out << BaseName << EltName;
2108}
2109
2110// GNU extension: vector types
2111// <type> ::= <vector-type>
2112// <vector-type> ::= Dv <positive dimension number> _
2113// <extended element type>
2114// ::= Dv [<dimension expression>] _ <element type>
2115// <extended element type> ::= <element type>
2116// ::= p # AltiVec vector pixel
2117// ::= b # Altivec vector bool
2118void CXXNameMangler::mangleType(const VectorType *T) {
2119 if ((T->getVectorKind() == VectorType::NeonVector ||
2120 T->getVectorKind() == VectorType::NeonPolyVector)) {
2121 mangleNeonVectorType(T);
2122 return;
2123 }
2124 Out << "Dv" << T->getNumElements() << '_';
2125 if (T->getVectorKind() == VectorType::AltiVecPixel)
2126 Out << 'p';
2127 else if (T->getVectorKind() == VectorType::AltiVecBool)
2128 Out << 'b';
2129 else
2130 mangleType(T->getElementType());
2131}
2132void CXXNameMangler::mangleType(const ExtVectorType *T) {
2133 mangleType(static_cast<const VectorType*>(T));
2134}
2135void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2136 Out << "Dv";
2137 mangleExpression(T->getSizeExpr());
2138 Out << '_';
2139 mangleType(T->getElementType());
2140}
2141
2142void CXXNameMangler::mangleType(const PackExpansionType *T) {
2143 // <type> ::= Dp <type> # pack expansion (C++0x)
2144 Out << "Dp";
2145 mangleType(T->getPattern());
2146}
2147
2148void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2149 mangleSourceName(T->getDecl()->getIdentifier());
2150}
2151
2152void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2153 // We don't allow overloading by different protocol qualification,
2154 // so mangling them isn't necessary.
2155 mangleType(T->getBaseType());
2156}
2157
2158void CXXNameMangler::mangleType(const BlockPointerType *T) {
2159 Out << "U13block_pointer";
2160 mangleType(T->getPointeeType());
2161}
2162
2163void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2164 // Mangle injected class name types as if the user had written the
2165 // specialization out fully. It may not actually be possible to see
2166 // this mangling, though.
2167 mangleType(T->getInjectedSpecializationType());
2168}
2169
2170void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2171 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2172 mangleName(TD, T->getArgs(), T->getNumArgs());
2173 } else {
2174 if (mangleSubstitution(QualType(T, 0)))
2175 return;
2176
2177 mangleTemplatePrefix(T->getTemplateName());
2178
2179 // FIXME: GCC does not appear to mangle the template arguments when
2180 // the template in question is a dependent template name. Should we
2181 // emulate that badness?
2182 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2183 addSubstitution(QualType(T, 0));
2184 }
2185}
2186
2187void CXXNameMangler::mangleType(const DependentNameType *T) {
2188 // Typename types are always nested
2189 Out << 'N';
2190 manglePrefix(T->getQualifier());
2191 mangleSourceName(T->getIdentifier());
2192 Out << 'E';
2193}
2194
2195void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2196 // Dependently-scoped template types are nested if they have a prefix.
2197 Out << 'N';
2198
2199 // TODO: avoid making this TemplateName.
2200 TemplateName Prefix =
2201 getASTContext().getDependentTemplateName(T->getQualifier(),
2202 T->getIdentifier());
2203 mangleTemplatePrefix(Prefix);
2204
2205 // FIXME: GCC does not appear to mangle the template arguments when
2206 // the template in question is a dependent template name. Should we
2207 // emulate that badness?
2208 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2209 Out << 'E';
2210}
2211
2212void CXXNameMangler::mangleType(const TypeOfType *T) {
2213 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2214 // "extension with parameters" mangling.
2215 Out << "u6typeof";
2216}
2217
2218void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2219 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2220 // "extension with parameters" mangling.
2221 Out << "u6typeof";
2222}
2223
2224void CXXNameMangler::mangleType(const DecltypeType *T) {
2225 Expr *E = T->getUnderlyingExpr();
2226
2227 // type ::= Dt <expression> E # decltype of an id-expression
2228 // # or class member access
2229 // ::= DT <expression> E # decltype of an expression
2230
2231 // This purports to be an exhaustive list of id-expressions and
2232 // class member accesses. Note that we do not ignore parentheses;
2233 // parentheses change the semantics of decltype for these
2234 // expressions (and cause the mangler to use the other form).
2235 if (isa<DeclRefExpr>(E) ||
2236 isa<MemberExpr>(E) ||
2237 isa<UnresolvedLookupExpr>(E) ||
2238 isa<DependentScopeDeclRefExpr>(E) ||
2239 isa<CXXDependentScopeMemberExpr>(E) ||
2240 isa<UnresolvedMemberExpr>(E))
2241 Out << "Dt";
2242 else
2243 Out << "DT";
2244 mangleExpression(E);
2245 Out << 'E';
2246}
2247
2248void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2249 // If this is dependent, we need to record that. If not, we simply
2250 // mangle it as the underlying type since they are equivalent.
2251 if (T->isDependentType()) {
2252 Out << 'U';
2253
2254 switch (T->getUTTKind()) {
2255 case UnaryTransformType::EnumUnderlyingType:
2256 Out << "3eut";
2257 break;
2258 }
2259 }
2260
2261 mangleType(T->getUnderlyingType());
2262}
2263
2264void CXXNameMangler::mangleType(const AutoType *T) {
2265 QualType D = T->getDeducedType();
2266 // <builtin-type> ::= Da # dependent auto
2267 if (D.isNull())
2268 Out << "Da";
2269 else
2270 mangleType(D);
2271}
2272
2273void CXXNameMangler::mangleType(const AtomicType *T) {
2274 // <type> ::= U <source-name> <type> # vendor extended type qualifier
2275 // (Until there's a standardized mangling...)
2276 Out << "U7_Atomic";
2277 mangleType(T->getValueType());
2278}
2279
2280void CXXNameMangler::mangleIntegerLiteral(QualType T,
2281 const llvm::APSInt &Value) {
2282 // <expr-primary> ::= L <type> <value number> E # integer literal
2283 Out << 'L';
2284
2285 mangleType(T);
2286 if (T->isBooleanType()) {
2287 // Boolean values are encoded as 0/1.
2288 Out << (Value.getBoolValue() ? '1' : '0');
2289 } else {
2290 mangleNumber(Value);
2291 }
2292 Out << 'E';
2293
2294}
2295
2296/// Mangles a member expression.
2297void CXXNameMangler::mangleMemberExpr(const Expr *base,
2298 bool isArrow,
2299 NestedNameSpecifier *qualifier,
2300 NamedDecl *firstQualifierLookup,
2301 DeclarationName member,
2302 unsigned arity) {
2303 // <expression> ::= dt <expression> <unresolved-name>
2304 // ::= pt <expression> <unresolved-name>
2305 if (base) {
2306 if (base->isImplicitCXXThis()) {
2307 // Note: GCC mangles member expressions to the implicit 'this' as
2308 // *this., whereas we represent them as this->. The Itanium C++ ABI
2309 // does not specify anything here, so we follow GCC.
2310 Out << "dtdefpT";
2311 } else {
2312 Out << (isArrow ? "pt" : "dt");
2313 mangleExpression(base);
2314 }
2315 }
2316 mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2317}
2318
2319/// Look at the callee of the given call expression and determine if
2320/// it's a parenthesized id-expression which would have triggered ADL
2321/// otherwise.
2322static bool isParenthesizedADLCallee(const CallExpr *call) {
2323 const Expr *callee = call->getCallee();
2324 const Expr *fn = callee->IgnoreParens();
2325
2326 // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
2327 // too, but for those to appear in the callee, it would have to be
2328 // parenthesized.
2329 if (callee == fn) return false;
2330
2331 // Must be an unresolved lookup.
2332 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2333 if (!lookup) return false;
2334
2335 assert(!lookup->requiresADL());
2336
2337 // Must be an unqualified lookup.
2338 if (lookup->getQualifier()) return false;
2339
2340 // Must not have found a class member. Note that if one is a class
2341 // member, they're all class members.
2342 if (lookup->getNumDecls() > 0 &&
2343 (*lookup->decls_begin())->isCXXClassMember())
2344 return false;
2345
2346 // Otherwise, ADL would have been triggered.
2347 return true;
2348}
2349
2350void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2351 // <expression> ::= <unary operator-name> <expression>
2352 // ::= <binary operator-name> <expression> <expression>
2353 // ::= <trinary operator-name> <expression> <expression> <expression>
2354 // ::= cv <type> expression # conversion with one argument
2355 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2356 // ::= st <type> # sizeof (a type)
2357 // ::= at <type> # alignof (a type)
2358 // ::= <template-param>
2359 // ::= <function-param>
2360 // ::= sr <type> <unqualified-name> # dependent name
2361 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
2362 // ::= ds <expression> <expression> # expr.*expr
2363 // ::= sZ <template-param> # size of a parameter pack
2364 // ::= sZ <function-param> # size of a function parameter pack
2365 // ::= <expr-primary>
2366 // <expr-primary> ::= L <type> <value number> E # integer literal
2367 // ::= L <type <value float> E # floating literal
2368 // ::= L <mangled-name> E # external name
2369 // ::= fpT # 'this' expression
2370 QualType ImplicitlyConvertedToType;
2371
2372recurse:
2373 switch (E->getStmtClass()) {
2374 case Expr::NoStmtClass:
2375#define ABSTRACT_STMT(Type)
2376#define EXPR(Type, Base)
2377#define STMT(Type, Base) \
2378 case Expr::Type##Class:
2379#include "clang/AST/StmtNodes.inc"
2380 // fallthrough
2381
2382 // These all can only appear in local or variable-initialization
2383 // contexts and so should never appear in a mangling.
2384 case Expr::AddrLabelExprClass:
2385 case Expr::DesignatedInitExprClass:
2386 case Expr::ImplicitValueInitExprClass:
2387 case Expr::ParenListExprClass:
2388 case Expr::LambdaExprClass:
2389 llvm_unreachable("unexpected statement kind");
2390
2391 // FIXME: invent manglings for all these.
2392 case Expr::BlockExprClass:
2393 case Expr::CXXPseudoDestructorExprClass:
2394 case Expr::ChooseExprClass:
2395 case Expr::CompoundLiteralExprClass:
2396 case Expr::ExtVectorElementExprClass:
2397 case Expr::GenericSelectionExprClass:
2398 case Expr::ObjCEncodeExprClass:
2399 case Expr::ObjCIsaExprClass:
2400 case Expr::ObjCIvarRefExprClass:
2401 case Expr::ObjCMessageExprClass:
2402 case Expr::ObjCPropertyRefExprClass:
2403 case Expr::ObjCProtocolExprClass:
2404 case Expr::ObjCSelectorExprClass:
2405 case Expr::ObjCStringLiteralClass:
2406 case Expr::ObjCBoxedExprClass:
2407 case Expr::ObjCArrayLiteralClass:
2408 case Expr::ObjCDictionaryLiteralClass:
2409 case Expr::ObjCSubscriptRefExprClass:
2410 case Expr::ObjCIndirectCopyRestoreExprClass:
2411 case Expr::OffsetOfExprClass:
2412 case Expr::PredefinedExprClass:
2413 case Expr::ShuffleVectorExprClass:
2414 case Expr::StmtExprClass:
2415 case Expr::UnaryTypeTraitExprClass:
2416 case Expr::BinaryTypeTraitExprClass:
2417 case Expr::TypeTraitExprClass:
2418 case Expr::ArrayTypeTraitExprClass:
2419 case Expr::ExpressionTraitExprClass:
2420 case Expr::VAArgExprClass:
2421 case Expr::CXXUuidofExprClass:
2422 case Expr::CUDAKernelCallExprClass:
2423 case Expr::AsTypeExprClass:
2424 case Expr::PseudoObjectExprClass:
2425 case Expr::AtomicExprClass:
2426 {
2427 // As bad as this diagnostic is, it's better than crashing.
2428 DiagnosticsEngine &Diags = Context.getDiags();
2429 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2430 "cannot yet mangle expression type %0");
2431 Diags.Report(E->getExprLoc(), DiagID)
2432 << E->getStmtClassName() << E->getSourceRange();
2433 break;
2434 }
2435
2436 // Even gcc-4.5 doesn't mangle this.
2437 case Expr::BinaryConditionalOperatorClass: {
2438 DiagnosticsEngine &Diags = Context.getDiags();
2439 unsigned DiagID =
2440 Diags.getCustomDiagID(DiagnosticsEngine::Error,
2441 "?: operator with omitted middle operand cannot be mangled");
2442 Diags.Report(E->getExprLoc(), DiagID)
2443 << E->getStmtClassName() << E->getSourceRange();
2444 break;
2445 }
2446
2447 // These are used for internal purposes and cannot be meaningfully mangled.
2448 case Expr::OpaqueValueExprClass:
2449 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2450
2451 case Expr::InitListExprClass: {
2452 // Proposal by Jason Merrill, 2012-01-03
2453 Out << "il";
2454 const InitListExpr *InitList = cast<InitListExpr>(E);
2455 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2456 mangleExpression(InitList->getInit(i));
2457 Out << "E";
2458 break;
2459 }
2460
2461 case Expr::CXXDefaultArgExprClass:
2462 mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2463 break;
2464
2465 case Expr::SubstNonTypeTemplateParmExprClass:
2466 mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2467 Arity);
2468 break;
2469
2470 case Expr::UserDefinedLiteralClass:
2471 // We follow g++'s approach of mangling a UDL as a call to the literal
2472 // operator.
2473 case Expr::CXXMemberCallExprClass: // fallthrough
2474 case Expr::CallExprClass: {
2475 const CallExpr *CE = cast<CallExpr>(E);
2476
2477 // <expression> ::= cp <simple-id> <expression>* E
2478 // We use this mangling only when the call would use ADL except
2479 // for being parenthesized. Per discussion with David
2480 // Vandervoorde, 2011.04.25.
2481 if (isParenthesizedADLCallee(CE)) {
2482 Out << "cp";
2483 // The callee here is a parenthesized UnresolvedLookupExpr with
2484 // no qualifier and should always get mangled as a <simple-id>
2485 // anyway.
2486
2487 // <expression> ::= cl <expression>* E
2488 } else {
2489 Out << "cl";
2490 }
2491
2492 mangleExpression(CE->getCallee(), CE->getNumArgs());
2493 for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2494 mangleExpression(CE->getArg(I));
2495 Out << 'E';
2496 break;
2497 }
2498
2499 case Expr::CXXNewExprClass: {
2500 const CXXNewExpr *New = cast<CXXNewExpr>(E);
2501 if (New->isGlobalNew()) Out << "gs";
2502 Out << (New->isArray() ? "na" : "nw");
2503 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2504 E = New->placement_arg_end(); I != E; ++I)
2505 mangleExpression(*I);
2506 Out << '_';
2507 mangleType(New->getAllocatedType());
2508 if (New->hasInitializer()) {
2509 // Proposal by Jason Merrill, 2012-01-03
2510 if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2511 Out << "il";
2512 else
2513 Out << "pi";
2514 const Expr *Init = New->getInitializer();
2515 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2516 // Directly inline the initializers.
2517 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2518 E = CCE->arg_end();
2519 I != E; ++I)
2520 mangleExpression(*I);
2521 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2522 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2523 mangleExpression(PLE->getExpr(i));
2524 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2525 isa<InitListExpr>(Init)) {
2526 // Only take InitListExprs apart for list-initialization.
2527 const InitListExpr *InitList = cast<InitListExpr>(Init);
2528 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2529 mangleExpression(InitList->getInit(i));
2530 } else
2531 mangleExpression(Init);
2532 }
2533 Out << 'E';
2534 break;
2535 }
2536
2537 case Expr::MemberExprClass: {
2538 const MemberExpr *ME = cast<MemberExpr>(E);
2539 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2540 ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2541 Arity);
2542 break;
2543 }
2544
2545 case Expr::UnresolvedMemberExprClass: {
2546 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2547 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2548 ME->getQualifier(), 0, ME->getMemberName(),
2549 Arity);
2550 if (ME->hasExplicitTemplateArgs())
2551 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2552 break;
2553 }
2554
2555 case Expr::CXXDependentScopeMemberExprClass: {
2556 const CXXDependentScopeMemberExpr *ME
2557 = cast<CXXDependentScopeMemberExpr>(E);
2558 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2559 ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2560 ME->getMember(), Arity);
2561 if (ME->hasExplicitTemplateArgs())
2562 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2563 break;
2564 }
2565
2566 case Expr::UnresolvedLookupExprClass: {
2567 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2568 mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2569
2570 // All the <unresolved-name> productions end in a
2571 // base-unresolved-name, where <template-args> are just tacked
2572 // onto the end.
2573 if (ULE->hasExplicitTemplateArgs())
2574 mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2575 break;
2576 }
2577
2578 case Expr::CXXUnresolvedConstructExprClass: {
2579 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2580 unsigned N = CE->arg_size();
2581
2582 Out << "cv";
2583 mangleType(CE->getType());
2584 if (N != 1) Out << '_';
2585 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2586 if (N != 1) Out << 'E';
2587 break;
2588 }
2589
2590 case Expr::CXXTemporaryObjectExprClass:
2591 case Expr::CXXConstructExprClass: {
2592 const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2593 unsigned N = CE->getNumArgs();
2594
2595 // Proposal by Jason Merrill, 2012-01-03
2596 if (CE->isListInitialization())
2597 Out << "tl";
2598 else
2599 Out << "cv";
2600 mangleType(CE->getType());
2601 if (N != 1) Out << '_';
2602 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2603 if (N != 1) Out << 'E';
2604 break;
2605 }
2606
2607 case Expr::CXXScalarValueInitExprClass:
2608 Out <<"cv";
2609 mangleType(E->getType());
2610 Out <<"_E";
2611 break;
2612
2613 case Expr::CXXNoexceptExprClass:
2614 Out << "nx";
2615 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2616 break;
2617
2618 case Expr::UnaryExprOrTypeTraitExprClass: {
2619 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2620
2621 if (!SAE->isInstantiationDependent()) {
2622 // Itanium C++ ABI:
2623 // If the operand of a sizeof or alignof operator is not
2624 // instantiation-dependent it is encoded as an integer literal
2625 // reflecting the result of the operator.
2626 //
2627 // If the result of the operator is implicitly converted to a known
2628 // integer type, that type is used for the literal; otherwise, the type
2629 // of std::size_t or std::ptrdiff_t is used.
2630 QualType T = (ImplicitlyConvertedToType.isNull() ||
2631 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2632 : ImplicitlyConvertedToType;
2633 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2634 mangleIntegerLiteral(T, V);
2635 break;
2636 }
2637
2638 switch(SAE->getKind()) {
2639 case UETT_SizeOf:
2640 Out << 's';
2641 break;
2642 case UETT_AlignOf:
2643 Out << 'a';
2644 break;
2645 case UETT_VecStep:
2646 DiagnosticsEngine &Diags = Context.getDiags();
2647 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2648 "cannot yet mangle vec_step expression");
2649 Diags.Report(DiagID);
2650 return;
2651 }
2652 if (SAE->isArgumentType()) {
2653 Out << 't';
2654 mangleType(SAE->getArgumentType());
2655 } else {
2656 Out << 'z';
2657 mangleExpression(SAE->getArgumentExpr());
2658 }
2659 break;
2660 }
2661
2662 case Expr::CXXThrowExprClass: {
2663 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2664
2665 // Proposal from David Vandervoorde, 2010.06.30
2666 if (TE->getSubExpr()) {
2667 Out << "tw";
2668 mangleExpression(TE->getSubExpr());
2669 } else {
2670 Out << "tr";
2671 }
2672 break;
2673 }
2674
2675 case Expr::CXXTypeidExprClass: {
2676 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2677
2678 // Proposal from David Vandervoorde, 2010.06.30
2679 if (TIE->isTypeOperand()) {
2680 Out << "ti";
2681 mangleType(TIE->getTypeOperand());
2682 } else {
2683 Out << "te";
2684 mangleExpression(TIE->getExprOperand());
2685 }
2686 break;
2687 }
2688
2689 case Expr::CXXDeleteExprClass: {
2690 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2691
2692 // Proposal from David Vandervoorde, 2010.06.30
2693 if (DE->isGlobalDelete()) Out << "gs";
2694 Out << (DE->isArrayForm() ? "da" : "dl");
2695 mangleExpression(DE->getArgument());
2696 break;
2697 }
2698
2699 case Expr::UnaryOperatorClass: {
2700 const UnaryOperator *UO = cast<UnaryOperator>(E);
2701 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2702 /*Arity=*/1);
2703 mangleExpression(UO->getSubExpr());
2704 break;
2705 }
2706
2707 case Expr::ArraySubscriptExprClass: {
2708 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2709
2710 // Array subscript is treated as a syntactically weird form of
2711 // binary operator.
2712 Out << "ix";
2713 mangleExpression(AE->getLHS());
2714 mangleExpression(AE->getRHS());
2715 break;
2716 }
2717
2718 case Expr::CompoundAssignOperatorClass: // fallthrough
2719 case Expr::BinaryOperatorClass: {
2720 const BinaryOperator *BO = cast<BinaryOperator>(E);
2721 if (BO->getOpcode() == BO_PtrMemD)
2722 Out << "ds";
2723 else
2724 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2725 /*Arity=*/2);
2726 mangleExpression(BO->getLHS());
2727 mangleExpression(BO->getRHS());
2728 break;
2729 }
2730
2731 case Expr::ConditionalOperatorClass: {
2732 const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2733 mangleOperatorName(OO_Conditional, /*Arity=*/3);
2734 mangleExpression(CO->getCond());
2735 mangleExpression(CO->getLHS(), Arity);
2736 mangleExpression(CO->getRHS(), Arity);
2737 break;
2738 }
2739
2740 case Expr::ImplicitCastExprClass: {
2741 ImplicitlyConvertedToType = E->getType();
2742 E = cast<ImplicitCastExpr>(E)->getSubExpr();
2743 goto recurse;
2744 }
2745
2746 case Expr::ObjCBridgedCastExprClass: {
2747 // Mangle ownership casts as a vendor extended operator __bridge,
2748 // __bridge_transfer, or __bridge_retain.
2749 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2750 Out << "v1U" << Kind.size() << Kind;
2751 }
2752 // Fall through to mangle the cast itself.
2753
2754 case Expr::CStyleCastExprClass:
2755 case Expr::CXXStaticCastExprClass:
2756 case Expr::CXXDynamicCastExprClass:
2757 case Expr::CXXReinterpretCastExprClass:
2758 case Expr::CXXConstCastExprClass:
2759 case Expr::CXXFunctionalCastExprClass: {
2760 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2761 Out << "cv";
2762 mangleType(ECE->getType());
2763 mangleExpression(ECE->getSubExpr());
2764 break;
2765 }
2766
2767 case Expr::CXXOperatorCallExprClass: {
2768 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2769 unsigned NumArgs = CE->getNumArgs();
2770 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2771 // Mangle the arguments.
2772 for (unsigned i = 0; i != NumArgs; ++i)
2773 mangleExpression(CE->getArg(i));
2774 break;
2775 }
2776
2777 case Expr::ParenExprClass:
2778 mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2779 break;
2780
2781 case Expr::DeclRefExprClass: {
2782 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2783
2784 switch (D->getKind()) {
2785 default:
2786 // <expr-primary> ::= L <mangled-name> E # external name
2787 Out << 'L';
2788 mangle(D, "_Z");
2789 Out << 'E';
2790 break;
2791
2792 case Decl::ParmVar:
2793 mangleFunctionParam(cast<ParmVarDecl>(D));
2794 break;
2795
2796 case Decl::EnumConstant: {
2797 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2798 mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2799 break;
2800 }
2801
2802 case Decl::NonTypeTemplateParm: {
2803 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2804 mangleTemplateParameter(PD->getIndex());
2805 break;
2806 }
2807
2808 }
2809
2810 break;
2811 }
2812
2813 case Expr::SubstNonTypeTemplateParmPackExprClass:
2814 // FIXME: not clear how to mangle this!
2815 // template <unsigned N...> class A {
2816 // template <class U...> void foo(U (&x)[N]...);
2817 // };
2818 Out << "_SUBSTPACK_";
2819 break;
2820
2821 case Expr::FunctionParmPackExprClass: {
2822 // FIXME: not clear how to mangle this!
2823 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
2824 Out << "v110_SUBSTPACK";
2825 mangleFunctionParam(FPPE->getParameterPack());
2826 break;
2827 }
2828
2829 case Expr::DependentScopeDeclRefExprClass: {
2830 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2831 mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
2832
2833 // All the <unresolved-name> productions end in a
2834 // base-unresolved-name, where <template-args> are just tacked
2835 // onto the end.
2836 if (DRE->hasExplicitTemplateArgs())
2837 mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2838 break;
2839 }
2840
2841 case Expr::CXXBindTemporaryExprClass:
2842 mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2843 break;
2844
2845 case Expr::ExprWithCleanupsClass:
2846 mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2847 break;
2848
2849 case Expr::FloatingLiteralClass: {
2850 const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2851 Out << 'L';
2852 mangleType(FL->getType());
2853 mangleFloat(FL->getValue());
2854 Out << 'E';
2855 break;
2856 }
2857
2858 case Expr::CharacterLiteralClass:
2859 Out << 'L';
2860 mangleType(E->getType());
2861 Out << cast<CharacterLiteral>(E)->getValue();
2862 Out << 'E';
2863 break;
2864
2865 // FIXME. __objc_yes/__objc_no are mangled same as true/false
2866 case Expr::ObjCBoolLiteralExprClass:
2867 Out << "Lb";
2868 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2869 Out << 'E';
2870 break;
2871
2872 case Expr::CXXBoolLiteralExprClass:
2873 Out << "Lb";
2874 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2875 Out << 'E';
2876 break;
2877
2878 case Expr::IntegerLiteralClass: {
2879 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2880 if (E->getType()->isSignedIntegerType())
2881 Value.setIsSigned(true);
2882 mangleIntegerLiteral(E->getType(), Value);
2883 break;
2884 }
2885
2886 case Expr::ImaginaryLiteralClass: {
2887 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2888 // Mangle as if a complex literal.
2889 // Proposal from David Vandevoorde, 2010.06.30.
2890 Out << 'L';
2891 mangleType(E->getType());
2892 if (const FloatingLiteral *Imag =
2893 dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2894 // Mangle a floating-point zero of the appropriate type.
2895 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2896 Out << '_';
2897 mangleFloat(Imag->getValue());
2898 } else {
2899 Out << "0_";
2900 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2901 if (IE->getSubExpr()->getType()->isSignedIntegerType())
2902 Value.setIsSigned(true);
2903 mangleNumber(Value);
2904 }
2905 Out << 'E';
2906 break;
2907 }
2908
2909 case Expr::StringLiteralClass: {
2910 // Revised proposal from David Vandervoorde, 2010.07.15.
2911 Out << 'L';
2912 assert(isa<ConstantArrayType>(E->getType()));
2913 mangleType(E->getType());
2914 Out << 'E';
2915 break;
2916 }
2917
2918 case Expr::GNUNullExprClass:
2919 // FIXME: should this really be mangled the same as nullptr?
2920 // fallthrough
2921
2922 case Expr::CXXNullPtrLiteralExprClass: {
2923 // Proposal from David Vandervoorde, 2010.06.30, as
2924 // modified by ABI list discussion.
2925 Out << "LDnE";
2926 break;
2927 }
2928
2929 case Expr::PackExpansionExprClass:
2930 Out << "sp";
2931 mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2932 break;
2933
2934 case Expr::SizeOfPackExprClass: {
2935 Out << "sZ";
2936 const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2937 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2938 mangleTemplateParameter(TTP->getIndex());
2939 else if (const NonTypeTemplateParmDecl *NTTP
2940 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2941 mangleTemplateParameter(NTTP->getIndex());
2942 else if (const TemplateTemplateParmDecl *TempTP
2943 = dyn_cast<TemplateTemplateParmDecl>(Pack))
2944 mangleTemplateParameter(TempTP->getIndex());
2945 else
2946 mangleFunctionParam(cast<ParmVarDecl>(Pack));
2947 break;
2948 }
2949
2950 case Expr::MaterializeTemporaryExprClass: {
2951 mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
2952 break;
2953 }
2954
2955 case Expr::CXXThisExprClass:
2956 Out << "fpT";
2957 break;
2958 }
2959}
2960
2961/// Mangle an expression which refers to a parameter variable.
2962///
2963/// <expression> ::= <function-param>
2964/// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
2965/// <function-param> ::= fp <top-level CV-qualifiers>
2966/// <parameter-2 non-negative number> _ # L == 0, I > 0
2967/// <function-param> ::= fL <L-1 non-negative number>
2968/// p <top-level CV-qualifiers> _ # L > 0, I == 0
2969/// <function-param> ::= fL <L-1 non-negative number>
2970/// p <top-level CV-qualifiers>
2971/// <I-1 non-negative number> _ # L > 0, I > 0
2972///
2973/// L is the nesting depth of the parameter, defined as 1 if the
2974/// parameter comes from the innermost function prototype scope
2975/// enclosing the current context, 2 if from the next enclosing
2976/// function prototype scope, and so on, with one special case: if
2977/// we've processed the full parameter clause for the innermost
2978/// function type, then L is one less. This definition conveniently
2979/// makes it irrelevant whether a function's result type was written
2980/// trailing or leading, but is otherwise overly complicated; the
2981/// numbering was first designed without considering references to
2982/// parameter in locations other than return types, and then the
2983/// mangling had to be generalized without changing the existing
2984/// manglings.
2985///
2986/// I is the zero-based index of the parameter within its parameter
2987/// declaration clause. Note that the original ABI document describes
2988/// this using 1-based ordinals.
2989void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
2990 unsigned parmDepth = parm->getFunctionScopeDepth();
2991 unsigned parmIndex = parm->getFunctionScopeIndex();
2992
2993 // Compute 'L'.
2994 // parmDepth does not include the declaring function prototype.
2995 // FunctionTypeDepth does account for that.
2996 assert(parmDepth < FunctionTypeDepth.getDepth());
2997 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
2998 if (FunctionTypeDepth.isInResultType())
2999 nestingDepth--;
3000
3001 if (nestingDepth == 0) {
3002 Out << "fp";
3003 } else {
3004 Out << "fL" << (nestingDepth - 1) << 'p';
3005 }
3006
3007 // Top-level qualifiers. We don't have to worry about arrays here,
3008 // because parameters declared as arrays should already have been
3009 // transformed to have pointer type. FIXME: apparently these don't
3010 // get mangled if used as an rvalue of a known non-class type?
3011 assert(!parm->getType()->isArrayType()
3012 && "parameter's type is still an array type?");
3013 mangleQualifiers(parm->getType().getQualifiers());
3014
3015 // Parameter index.
3016 if (parmIndex != 0) {
3017 Out << (parmIndex - 1);
3018 }
3019 Out << '_';
3020}
3021
3022void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3023 // <ctor-dtor-name> ::= C1 # complete object constructor
3024 // ::= C2 # base object constructor
3025 // ::= C3 # complete object allocating constructor
3026 //
3027 switch (T) {
3028 case Ctor_Complete:
3029 Out << "C1";
3030 break;
3031 case Ctor_Base:
3032 Out << "C2";
3033 break;
3034 case Ctor_CompleteAllocating:
3035 Out << "C3";
3036 break;
3037 }
3038}
3039
3040void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3041 // <ctor-dtor-name> ::= D0 # deleting destructor
3042 // ::= D1 # complete object destructor
3043 // ::= D2 # base object destructor
3044 //
3045 switch (T) {
3046 case Dtor_Deleting:
3047 Out << "D0";
3048 break;
3049 case Dtor_Complete:
3050 Out << "D1";
3051 break;
3052 case Dtor_Base:
3053 Out << "D2";
3054 break;
3055 }
3056}
3057
3058void CXXNameMangler::mangleTemplateArgs(
3059 const ASTTemplateArgumentListInfo &TemplateArgs) {
3060 // <template-args> ::= I <template-arg>+ E
3061 Out << 'I';
3062 for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3063 mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3064 Out << 'E';
3065}
3066
3067void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3068 // <template-args> ::= I <template-arg>+ E
3069 Out << 'I';
3070 for (unsigned i = 0, e = AL.size(); i != e; ++i)
3071 mangleTemplateArg(AL[i]);
3072 Out << 'E';
3073}
3074
3075void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3076 unsigned NumTemplateArgs) {
3077 // <template-args> ::= I <template-arg>+ E
3078 Out << 'I';
3079 for (unsigned i = 0; i != NumTemplateArgs; ++i)
3080 mangleTemplateArg(TemplateArgs[i]);
3081 Out << 'E';
3082}
3083
3084void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3085 // <template-arg> ::= <type> # type or template
3086 // ::= X <expression> E # expression
3087 // ::= <expr-primary> # simple expressions
3088 // ::= J <template-arg>* E # argument pack
3089 // ::= sp <expression> # pack expansion of (C++0x)
3090 if (!A.isInstantiationDependent() || A.isDependent())
3091 A = Context.getASTContext().getCanonicalTemplateArgument(A);
3092
3093 switch (A.getKind()) {
3094 case TemplateArgument::Null:
3095 llvm_unreachable("Cannot mangle NULL template argument");
3096
3097 case TemplateArgument::Type:
3098 mangleType(A.getAsType());
3099 break;
3100 case TemplateArgument::Template:
3101 // This is mangled as <type>.
3102 mangleType(A.getAsTemplate());
3103 break;
3104 case TemplateArgument::TemplateExpansion:
3105 // <type> ::= Dp <type> # pack expansion (C++0x)
3106 Out << "Dp";
3107 mangleType(A.getAsTemplateOrTemplatePattern());
3108 break;
3109 case TemplateArgument::Expression: {
3110 // It's possible to end up with a DeclRefExpr here in certain
3111 // dependent cases, in which case we should mangle as a
3112 // declaration.
3113 const Expr *E = A.getAsExpr()->IgnoreParens();
3114 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3115 const ValueDecl *D = DRE->getDecl();
3116 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3117 Out << "L";
3118 mangle(D, "_Z");
3119 Out << 'E';
3120 break;
3121 }
3122 }
3123
3124 Out << 'X';
3125 mangleExpression(E);
3126 Out << 'E';
3127 break;
3128 }
3129 case TemplateArgument::Integral:
3130 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3131 break;
3132 case TemplateArgument::Declaration: {
3133 // <expr-primary> ::= L <mangled-name> E # external name
3134 // Clang produces AST's where pointer-to-member-function expressions
3135 // and pointer-to-function expressions are represented as a declaration not
3136 // an expression. We compensate for it here to produce the correct mangling.
3137 ValueDecl *D = A.getAsDecl();
3138 bool compensateMangling = !A.isDeclForReferenceParam();
3139 if (compensateMangling) {
3140 Out << 'X';
3141 mangleOperatorName(OO_Amp, 1);
3142 }
3143
3144 Out << 'L';
3145 // References to external entities use the mangled name; if the name would
3146 // not normally be manged then mangle it as unqualified.
3147 //
3148 // FIXME: The ABI specifies that external names here should have _Z, but
3149 // gcc leaves this off.
3150 if (compensateMangling)
3151 mangle(D, "_Z");
3152 else
3153 mangle(D, "Z");
3154 Out << 'E';
3155
3156 if (compensateMangling)
3157 Out << 'E';
3158
3159 break;
3160 }
3161 case TemplateArgument::NullPtr: {
3162 // <expr-primary> ::= L <type> 0 E
3163 Out << 'L';
3164 mangleType(A.getNullPtrType());
3165 Out << "0E";
3166 break;
3167 }
3168 case TemplateArgument::Pack: {
3169 // Note: proposal by Mike Herrick on 12/20/10
3170 Out << 'J';
3171 for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3172 PAEnd = A.pack_end();
3173 PA != PAEnd; ++PA)
3174 mangleTemplateArg(*PA);
3175 Out << 'E';
3176 }
3177 }
3178}
3179
3180void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3181 // <template-param> ::= T_ # first template parameter
3182 // ::= T <parameter-2 non-negative number> _
3183 if (Index == 0)
3184 Out << "T_";
3185 else
3186 Out << 'T' << (Index - 1) << '_';
3187}
3188
3189void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3190 bool result = mangleSubstitution(type);
3191 assert(result && "no existing substitution for type");
3192 (void) result;
3193}
3194
3195void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3196 bool result = mangleSubstitution(tname);
3197 assert(result && "no existing substitution for template name");
3198 (void) result;
3199}
3200
3201// <substitution> ::= S <seq-id> _
3202// ::= S_
3203bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3204 // Try one of the standard substitutions first.
3205 if (mangleStandardSubstitution(ND))
3206 return true;
3207
3208 ND = cast<NamedDecl>(ND->getCanonicalDecl());
3209 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3210}
3211
3212/// \brief Determine whether the given type has any qualifiers that are
3213/// relevant for substitutions.
3214static bool hasMangledSubstitutionQualifiers(QualType T) {
3215 Qualifiers Qs = T.getQualifiers();
3216 return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3217}
3218
3219bool CXXNameMangler::mangleSubstitution(QualType T) {
3220 if (!hasMangledSubstitutionQualifiers(T)) {
3221 if (const RecordType *RT = T->getAs<RecordType>())
3222 return mangleSubstitution(RT->getDecl());
3223 }
3224
3225 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3226
3227 return mangleSubstitution(TypePtr);
3228}
3229
3230bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3231 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3232 return mangleSubstitution(TD);
3233
3234 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3235 return mangleSubstitution(
3236 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3237}
3238
3239bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3240 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3241 if (I == Substitutions.end())
3242 return false;
3243
3244 unsigned SeqID = I->second;
3245 if (SeqID == 0)
3246 Out << "S_";
3247 else {
3248 SeqID--;
3249
3250 // <seq-id> is encoded in base-36, using digits and upper case letters.
3251 char Buffer[10];
3252 char *BufferPtr = llvm::array_endof(Buffer);
3253
3254 if (SeqID == 0) *--BufferPtr = '0';
3255
3256 while (SeqID) {
3257 assert(BufferPtr > Buffer && "Buffer overflow!");
3258
3259 char c = static_cast<char>(SeqID % 36);
3260
3261 *--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10);
3262 SeqID /= 36;
3263 }
3264
3265 Out << 'S'
3266 << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3267 << '_';
3268 }
3269
3270 return true;
3271}
3272
3273static bool isCharType(QualType T) {
3274 if (T.isNull())
3275 return false;
3276
3277 return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3278 T->isSpecificBuiltinType(BuiltinType::Char_U);
3279}
3280
3281/// isCharSpecialization - Returns whether a given type is a template
3282/// specialization of a given name with a single argument of type char.
3283static bool isCharSpecialization(QualType T, const char *Name) {
3284 if (T.isNull())
3285 return false;
3286
3287 const RecordType *RT = T->getAs<RecordType>();
3288 if (!RT)
3289 return false;
3290
3291 const ClassTemplateSpecializationDecl *SD =
3292 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3293 if (!SD)
3294 return false;
3295
3296 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3297 return false;
3298
3299 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3300 if (TemplateArgs.size() != 1)
3301 return false;
3302
3303 if (!isCharType(TemplateArgs[0].getAsType()))
3304 return false;
3305
3306 return SD->getIdentifier()->getName() == Name;
3307}
3308
3309template <std::size_t StrLen>
3310static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3311 const char (&Str)[StrLen]) {
3312 if (!SD->getIdentifier()->isStr(Str))
3313 return false;
3314
3315 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3316 if (TemplateArgs.size() != 2)
3317 return false;
3318
3319 if (!isCharType(TemplateArgs[0].getAsType()))
3320 return false;
3321
3322 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3323 return false;
3324
3325 return true;
3326}
3327
3328bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3329 // <substitution> ::= St # ::std::
3330 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3331 if (isStd(NS)) {
3332 Out << "St";
3333 return true;
3334 }
3335 }
3336
3337 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3338 if (!isStdNamespace(getEffectiveDeclContext(TD)))
3339 return false;
3340
3341 // <substitution> ::= Sa # ::std::allocator
3342 if (TD->getIdentifier()->isStr("allocator")) {
3343 Out << "Sa";
3344 return true;
3345 }
3346
3347 // <<substitution> ::= Sb # ::std::basic_string
3348 if (TD->getIdentifier()->isStr("basic_string")) {
3349 Out << "Sb";
3350 return true;
3351 }
3352 }
3353
3354 if (const ClassTemplateSpecializationDecl *SD =
3355 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3356 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3357 return false;
3358
3359 // <substitution> ::= Ss # ::std::basic_string<char,
3360 // ::std::char_traits<char>,
3361 // ::std::allocator<char> >
3362 if (SD->getIdentifier()->isStr("basic_string")) {
3363 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3364
3365 if (TemplateArgs.size() != 3)
3366 return false;
3367
3368 if (!isCharType(TemplateArgs[0].getAsType()))
3369 return false;
3370
3371 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3372 return false;
3373
3374 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3375 return false;
3376
3377 Out << "Ss";
3378 return true;
3379 }
3380
3381 // <substitution> ::= Si # ::std::basic_istream<char,
3382 // ::std::char_traits<char> >
3383 if (isStreamCharSpecialization(SD, "basic_istream")) {
3384 Out << "Si";
3385 return true;
3386 }
3387
3388 // <substitution> ::= So # ::std::basic_ostream<char,
3389 // ::std::char_traits<char> >
3390 if (isStreamCharSpecialization(SD, "basic_ostream")) {
3391 Out << "So";
3392 return true;
3393 }
3394
3395 // <substitution> ::= Sd # ::std::basic_iostream<char,
3396 // ::std::char_traits<char> >
3397 if (isStreamCharSpecialization(SD, "basic_iostream")) {
3398 Out << "Sd";
3399 return true;
3400 }
3401 }
3402 return false;
3403}
3404
3405void CXXNameMangler::addSubstitution(QualType T) {
3406 if (!hasMangledSubstitutionQualifiers(T)) {
3407 if (const RecordType *RT = T->getAs<RecordType>()) {
3408 addSubstitution(RT->getDecl());
3409 return;
3410 }
3411 }
3412
3413 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3414 addSubstitution(TypePtr);
3415}
3416
3417void CXXNameMangler::addSubstitution(TemplateName Template) {
3418 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3419 return addSubstitution(TD);
3420
3421 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3422 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3423}
3424
3425void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3426 assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3427 Substitutions[Ptr] = SeqID++;
3428}
3429
3430//
3431
3432/// \brief Mangles the name of the declaration D and emits that name to the
3433/// given output stream.
3434///
3435/// If the declaration D requires a mangled name, this routine will emit that
3436/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3437/// and this routine will return false. In this case, the caller should just
3438/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3439/// name.
3440void ItaniumMangleContext::mangleName(const NamedDecl *D,
3441 raw_ostream &Out) {
3442 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3443 "Invalid mangleName() call, argument is not a variable or function!");
3444 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3445 "Invalid mangleName() call on 'structor decl!");
3446
3447 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3448 getASTContext().getSourceManager(),
3449 "Mangling declaration");
3450
3451 CXXNameMangler Mangler(*this, Out, D);
3452 return Mangler.mangle(D);
3453}
3454
3455void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3456 CXXCtorType Type,
3457 raw_ostream &Out) {
3458 CXXNameMangler Mangler(*this, Out, D, Type);
3459 Mangler.mangle(D);
3460}
3461
3462void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3463 CXXDtorType Type,
3464 raw_ostream &Out) {
3465 CXXNameMangler Mangler(*this, Out, D, Type);
3466 Mangler.mangle(D);
3467}
3468
3469void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3470 const ThunkInfo &Thunk,
3471 raw_ostream &Out) {
3472 // <special-name> ::= T <call-offset> <base encoding>
3473 // # base is the nominal target function of thunk
3474 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3475 // # base is the nominal target function of thunk
3476 // # first call-offset is 'this' adjustment
3477 // # second call-offset is result adjustment
3478
3479 assert(!isa<CXXDestructorDecl>(MD) &&
3480 "Use mangleCXXDtor for destructor decls!");
3481 CXXNameMangler Mangler(*this, Out);
3482 Mangler.getStream() << "_ZT";
3483 if (!Thunk.Return.isEmpty())
3484 Mangler.getStream() << 'c';
3485
3486 // Mangle the 'this' pointer adjustment.
3487 Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3488
3489 // Mangle the return pointer adjustment if there is one.
3490 if (!Thunk.Return.isEmpty())
3491 Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3492 Thunk.Return.VBaseOffsetOffset);
3493
3494 Mangler.mangleFunctionEncoding(MD);
3495}
3496
3497void
3498ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3499 CXXDtorType Type,
3500 const ThisAdjustment &ThisAdjustment,
3501 raw_ostream &Out) {
3502 // <special-name> ::= T <call-offset> <base encoding>
3503 // # base is the nominal target function of thunk
3504 CXXNameMangler Mangler(*this, Out, DD, Type);
3505 Mangler.getStream() << "_ZT";
3506
3507 // Mangle the 'this' pointer adjustment.
3508 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3509 ThisAdjustment.VCallOffsetOffset);
3510
3511 Mangler.mangleFunctionEncoding(DD);
3512}
3513
3514/// mangleGuardVariable - Returns the mangled name for a guard variable
3515/// for the passed in VarDecl.
3516void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3517 raw_ostream &Out) {
3518 // <special-name> ::= GV <object name> # Guard variable for one-time
3519 // # initialization
3520 CXXNameMangler Mangler(*this, Out);
3521 Mangler.getStream() << "_ZGV";
3522 Mangler.mangleName(D);
3523}
3524
3525void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3526 raw_ostream &Out) {
3527 // We match the GCC mangling here.
3528 // <special-name> ::= GR <object name>
3529 CXXNameMangler Mangler(*this, Out);
3530 Mangler.getStream() << "_ZGR";
3531 Mangler.mangleName(D);
3532}
3533
3534void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3535 raw_ostream &Out) {
3536 // <special-name> ::= TV <type> # virtual table
3537 CXXNameMangler Mangler(*this, Out);
3538 Mangler.getStream() << "_ZTV";
3539 Mangler.mangleNameOrStandardSubstitution(RD);
3540}
3541
3542void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3543 raw_ostream &Out) {
3544 // <special-name> ::= TT <type> # VTT structure
3545 CXXNameMangler Mangler(*this, Out);
3546 Mangler.getStream() << "_ZTT";
3547 Mangler.mangleNameOrStandardSubstitution(RD);
3548}
3549
3550void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3551 int64_t Offset,
3552 const CXXRecordDecl *Type,
3553 raw_ostream &Out) {
3554 // <special-name> ::= TC <type> <offset number> _ <base type>
3555 CXXNameMangler Mangler(*this, Out);
3556 Mangler.getStream() << "_ZTC";
3557 Mangler.mangleNameOrStandardSubstitution(RD);
3558 Mangler.getStream() << Offset;
3559 Mangler.getStream() << '_';
3560 Mangler.mangleNameOrStandardSubstitution(Type);
3561}
3562
3563void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3564 raw_ostream &Out) {
3565 // <special-name> ::= TI <type> # typeinfo structure
3566 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3567 CXXNameMangler Mangler(*this, Out);
3568 Mangler.getStream() << "_ZTI";
3569 Mangler.mangleType(Ty);
3570}
3571
3572void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3573 raw_ostream &Out) {
3574 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
3575 CXXNameMangler Mangler(*this, Out);
3576 Mangler.getStream() << "_ZTS";
3577 Mangler.mangleType(Ty);
3578}
3579
3580MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3581 DiagnosticsEngine &Diags) {
3582 return new ItaniumMangleContext(Context, Diags);
3583}