blob: 7912a93421f193cb14dd8e8dbda98d2484726353 [file] [log] [blame]
Shih-wei Liaof8fd82b2010-02-10 11:10:31 -08001//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "RecordLayoutBuilder.h"
31
32using namespace clang;
33
34enum FloatingRank {
35 FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39 const TargetInfo &t,
40 IdentifierTable &idents, SelectorTable &sels,
41 Builtin::Context &builtins,
42 bool FreeMem, unsigned size_reserve) :
43 GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
44 ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
45 sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
46 SourceMgr(SM), LangOpts(LOpts),
47 LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
48 Idents(idents), Selectors(sels),
49 BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
50 ObjCIdRedefinitionType = QualType();
51 ObjCClassRedefinitionType = QualType();
52 ObjCSelRedefinitionType = QualType();
53 if (size_reserve > 0) Types.reserve(size_reserve);
54 TUDecl = TranslationUnitDecl::Create(*this);
55 InitBuiltinTypes();
56}
57
58ASTContext::~ASTContext() {
59 if (FreeMemory) {
60 // Deallocate all the types.
61 while (!Types.empty()) {
62 Types.back()->Destroy(*this);
63 Types.pop_back();
64 }
65
66 for (llvm::FoldingSet<ExtQuals>::iterator
67 I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
68 // Increment in loop to prevent using deallocated memory.
69 Deallocate(&*I++);
70 }
71 }
72
73 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
74 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
75 // Increment in loop to prevent using deallocated memory.
76 ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
77 delete R;
78 }
79
80 for (llvm::DenseMap<const ObjCContainerDecl*,
81 const ASTRecordLayout*>::iterator
82 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
83 // Increment in loop to prevent using deallocated memory.
84 ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
85 delete R;
86 }
87
88 // Destroy nested-name-specifiers.
89 for (llvm::FoldingSet<NestedNameSpecifier>::iterator
90 NNS = NestedNameSpecifiers.begin(),
91 NNSEnd = NestedNameSpecifiers.end();
92 NNS != NNSEnd; ) {
93 // Increment in loop to prevent using deallocated memory.
94 (*NNS++).Destroy(*this);
95 }
96
97 if (GlobalNestedNameSpecifier)
98 GlobalNestedNameSpecifier->Destroy(*this);
99
100 TUDecl->Destroy(*this);
101}
102
103void
104ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
105 ExternalSource.reset(Source.take());
106}
107
108void ASTContext::PrintStats() const {
109 fprintf(stderr, "*** AST Context Stats:\n");
110 fprintf(stderr, " %d types total.\n", (int)Types.size());
111
112 unsigned counts[] = {
113#define TYPE(Name, Parent) 0,
114#define ABSTRACT_TYPE(Name, Parent)
115#include "clang/AST/TypeNodes.def"
116 0 // Extra
117 };
118
119 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
120 Type *T = Types[i];
121 counts[(unsigned)T->getTypeClass()]++;
122 }
123
124 unsigned Idx = 0;
125 unsigned TotalBytes = 0;
126#define TYPE(Name, Parent) \
127 if (counts[Idx]) \
128 fprintf(stderr, " %d %s types\n", (int)counts[Idx], #Name); \
129 TotalBytes += counts[Idx] * sizeof(Name##Type); \
130 ++Idx;
131#define ABSTRACT_TYPE(Name, Parent)
132#include "clang/AST/TypeNodes.def"
133
134 fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
135
136 if (ExternalSource.get()) {
137 fprintf(stderr, "\n");
138 ExternalSource->PrintStats();
139 }
140}
141
142
143void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
144 BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
145 R = CanQualType::CreateUnsafe(QualType(Ty, 0));
146 Types.push_back(Ty);
147}
148
149void ASTContext::InitBuiltinTypes() {
150 assert(VoidTy.isNull() && "Context reinitialized?");
151
152 // C99 6.2.5p19.
153 InitBuiltinType(VoidTy, BuiltinType::Void);
154
155 // C99 6.2.5p2.
156 InitBuiltinType(BoolTy, BuiltinType::Bool);
157 // C99 6.2.5p3.
158 if (LangOpts.CharIsSigned)
159 InitBuiltinType(CharTy, BuiltinType::Char_S);
160 else
161 InitBuiltinType(CharTy, BuiltinType::Char_U);
162 // C99 6.2.5p4.
163 InitBuiltinType(SignedCharTy, BuiltinType::SChar);
164 InitBuiltinType(ShortTy, BuiltinType::Short);
165 InitBuiltinType(IntTy, BuiltinType::Int);
166 InitBuiltinType(LongTy, BuiltinType::Long);
167 InitBuiltinType(LongLongTy, BuiltinType::LongLong);
168
169 // C99 6.2.5p6.
170 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
171 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
172 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
173 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
174 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
175
176 // C99 6.2.5p10.
177 InitBuiltinType(FloatTy, BuiltinType::Float);
178 InitBuiltinType(DoubleTy, BuiltinType::Double);
179 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
180
181 // GNU extension, 128-bit integers.
182 InitBuiltinType(Int128Ty, BuiltinType::Int128);
183 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
184
185 if (LangOpts.CPlusPlus) // C++ 3.9.1p5
186 InitBuiltinType(WCharTy, BuiltinType::WChar);
187 else // C99
188 WCharTy = getFromTargetType(Target.getWCharType());
189
190 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
191 InitBuiltinType(Char16Ty, BuiltinType::Char16);
192 else // C99
193 Char16Ty = getFromTargetType(Target.getChar16Type());
194
195 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
196 InitBuiltinType(Char32Ty, BuiltinType::Char32);
197 else // C99
198 Char32Ty = getFromTargetType(Target.getChar32Type());
199
200 // Placeholder type for functions.
201 InitBuiltinType(OverloadTy, BuiltinType::Overload);
202
203 // Placeholder type for type-dependent expressions whose type is
204 // completely unknown. No code should ever check a type against
205 // DependentTy and users should never see it; however, it is here to
206 // help diagnose failures to properly check for type-dependent
207 // expressions.
208 InitBuiltinType(DependentTy, BuiltinType::Dependent);
209
210 // Placeholder type for C++0x auto declarations whose real type has
211 // not yet been deduced.
212 InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
213
214 // C99 6.2.5p11.
215 FloatComplexTy = getComplexType(FloatTy);
216 DoubleComplexTy = getComplexType(DoubleTy);
217 LongDoubleComplexTy = getComplexType(LongDoubleTy);
218
219 BuiltinVaListType = QualType();
220
221 // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
222 ObjCIdTypedefType = QualType();
223 ObjCClassTypedefType = QualType();
224 ObjCSelTypedefType = QualType();
225
226 // Builtin types for 'id', 'Class', and 'SEL'.
227 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
228 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
229 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
230
231 ObjCConstantStringType = QualType();
232
233 // void * type
234 VoidPtrTy = getPointerType(VoidTy);
235
236 // nullptr type (C++0x 2.14.7)
237 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
238}
239
240MemberSpecializationInfo *
241ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
242 assert(Var->isStaticDataMember() && "Not a static data member");
243 llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
244 = InstantiatedFromStaticDataMember.find(Var);
245 if (Pos == InstantiatedFromStaticDataMember.end())
246 return 0;
247
248 return Pos->second;
249}
250
251void
252ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
253 TemplateSpecializationKind TSK) {
254 assert(Inst->isStaticDataMember() && "Not a static data member");
255 assert(Tmpl->isStaticDataMember() && "Not a static data member");
256 assert(!InstantiatedFromStaticDataMember[Inst] &&
257 "Already noted what static data member was instantiated from");
258 InstantiatedFromStaticDataMember[Inst]
259 = new (*this) MemberSpecializationInfo(Tmpl, TSK);
260}
261
262NamedDecl *
263ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
264 llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
265 = InstantiatedFromUsingDecl.find(UUD);
266 if (Pos == InstantiatedFromUsingDecl.end())
267 return 0;
268
269 return Pos->second;
270}
271
272void
273ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
274 assert((isa<UsingDecl>(Pattern) ||
275 isa<UnresolvedUsingValueDecl>(Pattern) ||
276 isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
277 "pattern decl is not a using decl");
278 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
279 InstantiatedFromUsingDecl[Inst] = Pattern;
280}
281
282UsingShadowDecl *
283ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
284 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
285 = InstantiatedFromUsingShadowDecl.find(Inst);
286 if (Pos == InstantiatedFromUsingShadowDecl.end())
287 return 0;
288
289 return Pos->second;
290}
291
292void
293ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
294 UsingShadowDecl *Pattern) {
295 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
296 InstantiatedFromUsingShadowDecl[Inst] = Pattern;
297}
298
299FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
300 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
301 = InstantiatedFromUnnamedFieldDecl.find(Field);
302 if (Pos == InstantiatedFromUnnamedFieldDecl.end())
303 return 0;
304
305 return Pos->second;
306}
307
308void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
309 FieldDecl *Tmpl) {
310 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
311 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
312 assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
313 "Already noted what unnamed field was instantiated from");
314
315 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
316}
317
318namespace {
319 class BeforeInTranslationUnit
320 : std::binary_function<SourceRange, SourceRange, bool> {
321 SourceManager *SourceMgr;
322
323 public:
324 explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
325
326 bool operator()(SourceRange X, SourceRange Y) {
327 return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
328 }
329 };
330}
331
332/// \brief Determine whether the given comment is a Doxygen-style comment.
333///
334/// \param Start the start of the comment text.
335///
336/// \param End the end of the comment text.
337///
338/// \param Member whether we want to check whether this is a member comment
339/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
340/// we only return true when we find a non-member comment.
341static bool
342isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
343 bool Member = false) {
344 const char *BufferStart
345 = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
346 const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
347 const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
348
349 if (End - Start < 4)
350 return false;
351
352 assert(Start[0] == '/' && "Not a comment?");
353 if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
354 return false;
355 if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
356 return false;
357
358 return (Start[3] == '<') == Member;
359}
360
361/// \brief Retrieve the comment associated with the given declaration, if
362/// it has one.
363const char *ASTContext::getCommentForDecl(const Decl *D) {
364 if (!D)
365 return 0;
366
367 // Check whether we have cached a comment string for this declaration
368 // already.
369 llvm::DenseMap<const Decl *, std::string>::iterator Pos
370 = DeclComments.find(D);
371 if (Pos != DeclComments.end())
372 return Pos->second.c_str();
373
374 // If we have an external AST source and have not yet loaded comments from
375 // that source, do so now.
376 if (ExternalSource && !LoadedExternalComments) {
377 std::vector<SourceRange> LoadedComments;
378 ExternalSource->ReadComments(LoadedComments);
379
380 if (!LoadedComments.empty())
381 Comments.insert(Comments.begin(), LoadedComments.begin(),
382 LoadedComments.end());
383
384 LoadedExternalComments = true;
385 }
386
387 // If there are no comments anywhere, we won't find anything.
388 if (Comments.empty())
389 return 0;
390
391 // If the declaration doesn't map directly to a location in a file, we
392 // can't find the comment.
393 SourceLocation DeclStartLoc = D->getLocStart();
394 if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
395 return 0;
396
397 // Find the comment that occurs just before this declaration.
398 std::vector<SourceRange>::iterator LastComment
399 = std::lower_bound(Comments.begin(), Comments.end(),
400 SourceRange(DeclStartLoc),
401 BeforeInTranslationUnit(&SourceMgr));
402
403 // Decompose the location for the start of the declaration and find the
404 // beginning of the file buffer.
405 std::pair<FileID, unsigned> DeclStartDecomp
406 = SourceMgr.getDecomposedLoc(DeclStartLoc);
407 const char *FileBufferStart
408 = SourceMgr.getBufferData(DeclStartDecomp.first).first;
409
410 // First check whether we have a comment for a member.
411 if (LastComment != Comments.end() &&
412 !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
413 isDoxygenComment(SourceMgr, *LastComment, true)) {
414 std::pair<FileID, unsigned> LastCommentEndDecomp
415 = SourceMgr.getDecomposedLoc(LastComment->getEnd());
416 if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
417 SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
418 == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
419 LastCommentEndDecomp.second)) {
420 // The Doxygen member comment comes after the declaration starts and
421 // is on the same line and in the same file as the declaration. This
422 // is the comment we want.
423 std::string &Result = DeclComments[D];
424 Result.append(FileBufferStart +
425 SourceMgr.getFileOffset(LastComment->getBegin()),
426 FileBufferStart + LastCommentEndDecomp.second + 1);
427 return Result.c_str();
428 }
429 }
430
431 if (LastComment == Comments.begin())
432 return 0;
433 --LastComment;
434
435 // Decompose the end of the comment.
436 std::pair<FileID, unsigned> LastCommentEndDecomp
437 = SourceMgr.getDecomposedLoc(LastComment->getEnd());
438
439 // If the comment and the declaration aren't in the same file, then they
440 // aren't related.
441 if (DeclStartDecomp.first != LastCommentEndDecomp.first)
442 return 0;
443
444 // Check that we actually have a Doxygen comment.
445 if (!isDoxygenComment(SourceMgr, *LastComment))
446 return 0;
447
448 // Compute the starting line for the declaration and for the end of the
449 // comment (this is expensive).
450 unsigned DeclStartLine
451 = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
452 unsigned CommentEndLine
453 = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
454 LastCommentEndDecomp.second);
455
456 // If the comment does not end on the line prior to the declaration, then
457 // the comment is not associated with the declaration at all.
458 if (CommentEndLine + 1 != DeclStartLine)
459 return 0;
460
461 // We have a comment, but there may be more comments on the previous lines.
462 // Keep looking so long as the comments are still Doxygen comments and are
463 // still adjacent.
464 unsigned ExpectedLine
465 = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
466 std::vector<SourceRange>::iterator FirstComment = LastComment;
467 while (FirstComment != Comments.begin()) {
468 // Look at the previous comment
469 --FirstComment;
470 std::pair<FileID, unsigned> Decomp
471 = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
472
473 // If this previous comment is in a different file, we're done.
474 if (Decomp.first != DeclStartDecomp.first) {
475 ++FirstComment;
476 break;
477 }
478
479 // If this comment is not a Doxygen comment, we're done.
480 if (!isDoxygenComment(SourceMgr, *FirstComment)) {
481 ++FirstComment;
482 break;
483 }
484
485 // If the line number is not what we expected, we're done.
486 unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
487 if (Line != ExpectedLine) {
488 ++FirstComment;
489 break;
490 }
491
492 // Set the next expected line number.
493 ExpectedLine
494 = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
495 }
496
497 // The iterator range [FirstComment, LastComment] contains all of the
498 // BCPL comments that, together, are associated with this declaration.
499 // Form a single comment block string for this declaration that concatenates
500 // all of these comments.
501 std::string &Result = DeclComments[D];
502 while (FirstComment != LastComment) {
503 std::pair<FileID, unsigned> DecompStart
504 = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
505 std::pair<FileID, unsigned> DecompEnd
506 = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
507 Result.append(FileBufferStart + DecompStart.second,
508 FileBufferStart + DecompEnd.second + 1);
509 ++FirstComment;
510 }
511
512 // Append the last comment line.
513 Result.append(FileBufferStart +
514 SourceMgr.getFileOffset(LastComment->getBegin()),
515 FileBufferStart + LastCommentEndDecomp.second + 1);
516 return Result.c_str();
517}
518
519//===----------------------------------------------------------------------===//
520// Type Sizing and Analysis
521//===----------------------------------------------------------------------===//
522
523/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
524/// scalar floating point type.
525const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
526 const BuiltinType *BT = T->getAs<BuiltinType>();
527 assert(BT && "Not a floating point type!");
528 switch (BT->getKind()) {
529 default: assert(0 && "Not a floating point type!");
530 case BuiltinType::Float: return Target.getFloatFormat();
531 case BuiltinType::Double: return Target.getDoubleFormat();
532 case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
533 }
534}
535
536/// getDeclAlign - Return a conservative estimate of the alignment of the
537/// specified decl. Note that bitfields do not have a valid alignment, so
538/// this method will assert on them.
539/// If @p RefAsPointee, references are treated like their underlying type
540/// (for alignof), else they're treated like pointers (for CodeGen).
541CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
542 unsigned Align = Target.getCharWidth();
543
544 if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
545 Align = std::max(Align, AA->getMaxAlignment());
546
547 if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
548 QualType T = VD->getType();
549 if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
550 if (RefAsPointee)
551 T = RT->getPointeeType();
552 else
553 T = getPointerType(RT->getPointeeType());
554 }
555 if (!T->isIncompleteType() && !T->isFunctionType()) {
556 // Incomplete or function types default to 1.
557 while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
558 T = cast<ArrayType>(T)->getElementType();
559
560 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
561 }
562 }
563
564 return CharUnits::fromQuantity(Align / Target.getCharWidth());
565}
566
567/// getTypeSize - Return the size of the specified type, in bits. This method
568/// does not work on incomplete types.
569///
570/// FIXME: Pointers into different addr spaces could have different sizes and
571/// alignment requirements: getPointerInfo should take an AddrSpace, this
572/// should take a QualType, &c.
573std::pair<uint64_t, unsigned>
574ASTContext::getTypeInfo(const Type *T) {
575 uint64_t Width=0;
576 unsigned Align=8;
577 switch (T->getTypeClass()) {
578#define TYPE(Class, Base)
579#define ABSTRACT_TYPE(Class, Base)
580#define NON_CANONICAL_TYPE(Class, Base)
581#define DEPENDENT_TYPE(Class, Base) case Type::Class:
582#include "clang/AST/TypeNodes.def"
583 assert(false && "Should not see dependent types");
584 break;
585
586 case Type::FunctionNoProto:
587 case Type::FunctionProto:
588 // GCC extension: alignof(function) = 32 bits
589 Width = 0;
590 Align = 32;
591 break;
592
593 case Type::IncompleteArray:
594 case Type::VariableArray:
595 Width = 0;
596 Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
597 break;
598
599 case Type::ConstantArray: {
600 const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
601
602 std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
603 Width = EltInfo.first*CAT->getSize().getZExtValue();
604 Align = EltInfo.second;
605 break;
606 }
607 case Type::ExtVector:
608 case Type::Vector: {
609 const VectorType *VT = cast<VectorType>(T);
610 std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
611 Width = EltInfo.first*VT->getNumElements();
612 Align = Width;
613 // If the alignment is not a power of 2, round up to the next power of 2.
614 // This happens for non-power-of-2 length vectors.
615 if (VT->getNumElements() & (VT->getNumElements()-1)) {
616 Align = llvm::NextPowerOf2(Align);
617 Width = llvm::RoundUpToAlignment(Width, Align);
618 }
619 break;
620 }
621
622 case Type::Builtin:
623 switch (cast<BuiltinType>(T)->getKind()) {
624 default: assert(0 && "Unknown builtin type!");
625 case BuiltinType::Void:
626 // GCC extension: alignof(void) = 8 bits.
627 Width = 0;
628 Align = 8;
629 break;
630
631 case BuiltinType::Bool:
632 Width = Target.getBoolWidth();
633 Align = Target.getBoolAlign();
634 break;
635 case BuiltinType::Char_S:
636 case BuiltinType::Char_U:
637 case BuiltinType::UChar:
638 case BuiltinType::SChar:
639 Width = Target.getCharWidth();
640 Align = Target.getCharAlign();
641 break;
642 case BuiltinType::WChar:
643 Width = Target.getWCharWidth();
644 Align = Target.getWCharAlign();
645 break;
646 case BuiltinType::Char16:
647 Width = Target.getChar16Width();
648 Align = Target.getChar16Align();
649 break;
650 case BuiltinType::Char32:
651 Width = Target.getChar32Width();
652 Align = Target.getChar32Align();
653 break;
654 case BuiltinType::UShort:
655 case BuiltinType::Short:
656 Width = Target.getShortWidth();
657 Align = Target.getShortAlign();
658 break;
659 case BuiltinType::UInt:
660 case BuiltinType::Int:
661 Width = Target.getIntWidth();
662 Align = Target.getIntAlign();
663 break;
664 case BuiltinType::ULong:
665 case BuiltinType::Long:
666 Width = Target.getLongWidth();
667 Align = Target.getLongAlign();
668 break;
669 case BuiltinType::ULongLong:
670 case BuiltinType::LongLong:
671 Width = Target.getLongLongWidth();
672 Align = Target.getLongLongAlign();
673 break;
674 case BuiltinType::Int128:
675 case BuiltinType::UInt128:
676 Width = 128;
677 Align = 128; // int128_t is 128-bit aligned on all targets.
678 break;
679 case BuiltinType::Float:
680 Width = Target.getFloatWidth();
681 Align = Target.getFloatAlign();
682 break;
683 case BuiltinType::Double:
684 Width = Target.getDoubleWidth();
685 Align = Target.getDoubleAlign();
686 break;
687 case BuiltinType::LongDouble:
688 Width = Target.getLongDoubleWidth();
689 Align = Target.getLongDoubleAlign();
690 break;
691 case BuiltinType::NullPtr:
692 Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
693 Align = Target.getPointerAlign(0); // == sizeof(void*)
694 break;
695 }
696 break;
697 case Type::ObjCObjectPointer:
698 Width = Target.getPointerWidth(0);
699 Align = Target.getPointerAlign(0);
700 break;
701 case Type::BlockPointer: {
702 unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
703 Width = Target.getPointerWidth(AS);
704 Align = Target.getPointerAlign(AS);
705 break;
706 }
707 case Type::LValueReference:
708 case Type::RValueReference: {
709 // alignof and sizeof should never enter this code path here, so we go
710 // the pointer route.
711 unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
712 Width = Target.getPointerWidth(AS);
713 Align = Target.getPointerAlign(AS);
714 break;
715 }
716 case Type::Pointer: {
717 unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
718 Width = Target.getPointerWidth(AS);
719 Align = Target.getPointerAlign(AS);
720 break;
721 }
722 case Type::MemberPointer: {
723 QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
724 std::pair<uint64_t, unsigned> PtrDiffInfo =
725 getTypeInfo(getPointerDiffType());
726 Width = PtrDiffInfo.first;
727 if (Pointee->isFunctionType())
728 Width *= 2;
729 Align = PtrDiffInfo.second;
730 break;
731 }
732 case Type::Complex: {
733 // Complex types have the same alignment as their elements, but twice the
734 // size.
735 std::pair<uint64_t, unsigned> EltInfo =
736 getTypeInfo(cast<ComplexType>(T)->getElementType());
737 Width = EltInfo.first*2;
738 Align = EltInfo.second;
739 break;
740 }
741 case Type::ObjCInterface: {
742 const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
743 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
744 Width = Layout.getSize();
745 Align = Layout.getAlignment();
746 break;
747 }
748 case Type::Record:
749 case Type::Enum: {
750 const TagType *TT = cast<TagType>(T);
751
752 if (TT->getDecl()->isInvalidDecl()) {
753 Width = 1;
754 Align = 1;
755 break;
756 }
757
758 if (const EnumType *ET = dyn_cast<EnumType>(TT))
759 return getTypeInfo(ET->getDecl()->getIntegerType());
760
761 const RecordType *RT = cast<RecordType>(TT);
762 const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
763 Width = Layout.getSize();
764 Align = Layout.getAlignment();
765 break;
766 }
767
768 case Type::SubstTemplateTypeParm:
769 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
770 getReplacementType().getTypePtr());
771
772 case Type::Elaborated:
773 return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
774 .getTypePtr());
775
776 case Type::Typedef: {
777 const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
778 if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
779 Align = std::max(Aligned->getMaxAlignment(),
780 getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
781 Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
782 } else
783 return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
784 break;
785 }
786
787 case Type::TypeOfExpr:
788 return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
789 .getTypePtr());
790
791 case Type::TypeOf:
792 return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
793
794 case Type::Decltype:
795 return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
796 .getTypePtr());
797
798 case Type::QualifiedName:
799 return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
800
801 case Type::TemplateSpecialization:
802 assert(getCanonicalType(T) != T &&
803 "Cannot request the size of a dependent type");
804 // FIXME: this is likely to be wrong once we support template
805 // aliases, since a template alias could refer to a typedef that
806 // has an __aligned__ attribute on it.
807 return getTypeInfo(getCanonicalType(T));
808 }
809
810 assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
811 return std::make_pair(Width, Align);
812}
813
814/// getTypeSizeInChars - Return the size of the specified type, in characters.
815/// This method does not work on incomplete types.
816CharUnits ASTContext::getTypeSizeInChars(QualType T) {
817 return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
818}
819CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
820 return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
821}
822
823/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
824/// characters. This method does not work on incomplete types.
825CharUnits ASTContext::getTypeAlignInChars(QualType T) {
826 return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
827}
828CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
829 return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
830}
831
832/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
833/// type for the current target in bits. This can be different than the ABI
834/// alignment in cases where it is beneficial for performance to overalign
835/// a data type.
836unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
837 unsigned ABIAlign = getTypeAlign(T);
838
839 // Double and long long should be naturally aligned if possible.
840 if (const ComplexType* CT = T->getAs<ComplexType>())
841 T = CT->getElementType().getTypePtr();
842 if (T->isSpecificBuiltinType(BuiltinType::Double) ||
843 T->isSpecificBuiltinType(BuiltinType::LongLong))
844 return std::max(ABIAlign, (unsigned)getTypeSize(T));
845
846 return ABIAlign;
847}
848
849static void CollectLocalObjCIvars(ASTContext *Ctx,
850 const ObjCInterfaceDecl *OI,
851 llvm::SmallVectorImpl<FieldDecl*> &Fields) {
852 for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
853 E = OI->ivar_end(); I != E; ++I) {
854 ObjCIvarDecl *IVDecl = *I;
855 if (!IVDecl->isInvalidDecl())
856 Fields.push_back(cast<FieldDecl>(IVDecl));
857 }
858}
859
860void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
861 llvm::SmallVectorImpl<FieldDecl*> &Fields) {
862 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
863 CollectObjCIvars(SuperClass, Fields);
864 CollectLocalObjCIvars(this, OI, Fields);
865}
866
867/// ShallowCollectObjCIvars -
868/// Collect all ivars, including those synthesized, in the current class.
869///
870void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
871 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
872 bool CollectSynthesized) {
873 for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
874 E = OI->ivar_end(); I != E; ++I) {
875 Ivars.push_back(*I);
876 }
877 if (CollectSynthesized)
878 CollectSynthesizedIvars(OI, Ivars);
879}
880
881void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
882 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
883 for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
884 E = PD->prop_end(); I != E; ++I)
885 if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
886 Ivars.push_back(Ivar);
887
888 // Also look into nested protocols.
889 for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
890 E = PD->protocol_end(); P != E; ++P)
891 CollectProtocolSynthesizedIvars(*P, Ivars);
892}
893
894/// CollectSynthesizedIvars -
895/// This routine collect synthesized ivars for the designated class.
896///
897void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
898 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
899 for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
900 E = OI->prop_end(); I != E; ++I) {
901 if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
902 Ivars.push_back(Ivar);
903 }
904 // Also look into interface's protocol list for properties declared
905 // in the protocol and whose ivars are synthesized.
906 for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
907 PE = OI->protocol_end(); P != PE; ++P) {
908 ObjCProtocolDecl *PD = (*P);
909 CollectProtocolSynthesizedIvars(PD, Ivars);
910 }
911}
912
913/// CollectInheritedProtocols - Collect all protocols in current class and
914/// those inherited by it.
915void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
916 llvm::SmallVectorImpl<ObjCProtocolDecl*> &Protocols) {
917 if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
918 for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
919 PE = OI->protocol_end(); P != PE; ++P) {
920 ObjCProtocolDecl *Proto = (*P);
921 Protocols.push_back(Proto);
922 for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
923 PE = Proto->protocol_end(); P != PE; ++P)
924 CollectInheritedProtocols(*P, Protocols);
925 }
926
927 // Categories of this Interface.
928 for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
929 CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
930 CollectInheritedProtocols(CDeclChain, Protocols);
931 if (ObjCInterfaceDecl *SD = OI->getSuperClass())
932 while (SD) {
933 CollectInheritedProtocols(SD, Protocols);
934 SD = SD->getSuperClass();
935 }
936 return;
937 }
938 if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
939 for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
940 PE = OC->protocol_end(); P != PE; ++P) {
941 ObjCProtocolDecl *Proto = (*P);
942 Protocols.push_back(Proto);
943 for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
944 PE = Proto->protocol_end(); P != PE; ++P)
945 CollectInheritedProtocols(*P, Protocols);
946 }
947 return;
948 }
949 if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
950 for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
951 PE = OP->protocol_end(); P != PE; ++P) {
952 ObjCProtocolDecl *Proto = (*P);
953 Protocols.push_back(Proto);
954 for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
955 PE = Proto->protocol_end(); P != PE; ++P)
956 CollectInheritedProtocols(*P, Protocols);
957 }
958 return;
959 }
960}
961
962unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
963 unsigned count = 0;
964 for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
965 E = PD->prop_end(); I != E; ++I)
966 if ((*I)->getPropertyIvarDecl())
967 ++count;
968
969 // Also look into nested protocols.
970 for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
971 E = PD->protocol_end(); P != E; ++P)
972 count += CountProtocolSynthesizedIvars(*P);
973 return count;
974}
975
976unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
977 unsigned count = 0;
978 for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
979 E = OI->prop_end(); I != E; ++I) {
980 if ((*I)->getPropertyIvarDecl())
981 ++count;
982 }
983 // Also look into interface's protocol list for properties declared
984 // in the protocol and whose ivars are synthesized.
985 for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
986 PE = OI->protocol_end(); P != PE; ++P) {
987 ObjCProtocolDecl *PD = (*P);
988 count += CountProtocolSynthesizedIvars(PD);
989 }
990 return count;
991}
992
993/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
994ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
995 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
996 I = ObjCImpls.find(D);
997 if (I != ObjCImpls.end())
998 return cast<ObjCImplementationDecl>(I->second);
999 return 0;
1000}
1001/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1002ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1003 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1004 I = ObjCImpls.find(D);
1005 if (I != ObjCImpls.end())
1006 return cast<ObjCCategoryImplDecl>(I->second);
1007 return 0;
1008}
1009
1010/// \brief Set the implementation of ObjCInterfaceDecl.
1011void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1012 ObjCImplementationDecl *ImplD) {
1013 assert(IFaceD && ImplD && "Passed null params");
1014 ObjCImpls[IFaceD] = ImplD;
1015}
1016/// \brief Set the implementation of ObjCCategoryDecl.
1017void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1018 ObjCCategoryImplDecl *ImplD) {
1019 assert(CatD && ImplD && "Passed null params");
1020 ObjCImpls[CatD] = ImplD;
1021}
1022
1023/// \brief Allocate an uninitialized TypeSourceInfo.
1024///
1025/// The caller should initialize the memory held by TypeSourceInfo using
1026/// the TypeLoc wrappers.
1027///
1028/// \param T the type that will be the basis for type source info. This type
1029/// should refer to how the declarator was written in source code, not to
1030/// what type semantic analysis resolved the declarator to.
1031TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1032 unsigned DataSize) {
1033 if (!DataSize)
1034 DataSize = TypeLoc::getFullDataSizeForType(T);
1035 else
1036 assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1037 "incorrect data size provided to CreateTypeSourceInfo!");
1038
1039 TypeSourceInfo *TInfo =
1040 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1041 new (TInfo) TypeSourceInfo(T);
1042 return TInfo;
1043}
1044
1045TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1046 SourceLocation L) {
1047 TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1048 DI->getTypeLoc().initialize(L);
1049 return DI;
1050}
1051
1052/// getInterfaceLayoutImpl - Get or compute information about the
1053/// layout of the given interface.
1054///
1055/// \param Impl - If given, also include the layout of the interface's
1056/// implementation. This may differ by including synthesized ivars.
1057const ASTRecordLayout &
1058ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
1059 const ObjCImplementationDecl *Impl) {
1060 assert(!D->isForwardDecl() && "Invalid interface decl!");
1061
1062 // Look up this layout, if already laid out, return what we have.
1063 ObjCContainerDecl *Key =
1064 Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
1065 if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
1066 return *Entry;
1067
1068 // Add in synthesized ivar count if laying out an implementation.
1069 if (Impl) {
1070 unsigned SynthCount = CountSynthesizedIvars(D);
1071 // If there aren't any sythesized ivars then reuse the interface
1072 // entry. Note we can't cache this because we simply free all
1073 // entries later; however we shouldn't look up implementations
1074 // frequently.
1075 if (SynthCount == 0)
1076 return getObjCLayout(D, 0);
1077 }
1078
1079 const ASTRecordLayout *NewEntry =
1080 ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
1081 ObjCLayouts[Key] = NewEntry;
1082
1083 return *NewEntry;
1084}
1085
1086const ASTRecordLayout &
1087ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1088 return getObjCLayout(D, 0);
1089}
1090
1091const ASTRecordLayout &
1092ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1093 return getObjCLayout(D->getClassInterface(), D);
1094}
1095
1096/// getASTRecordLayout - Get or compute information about the layout of the
1097/// specified record (struct/union/class), which indicates its size and field
1098/// position information.
1099const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1100 D = D->getDefinition(*this);
1101 assert(D && "Cannot get layout of forward declarations!");
1102
1103 // Look up this layout, if already laid out, return what we have.
1104 // Note that we can't save a reference to the entry because this function
1105 // is recursive.
1106 const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1107 if (Entry) return *Entry;
1108
1109 const ASTRecordLayout *NewEntry =
1110 ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1111 ASTRecordLayouts[D] = NewEntry;
1112
1113 return *NewEntry;
1114}
1115
1116const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
1117 RD = cast<CXXRecordDecl>(RD->getDefinition(*this));
1118 assert(RD && "Cannot get key function for forward declarations!");
1119
1120 const CXXMethodDecl *&Entry = KeyFunctions[RD];
1121 if (!Entry)
1122 Entry = ASTRecordLayoutBuilder::ComputeKeyFunction(RD);
1123 else
1124 assert(Entry == ASTRecordLayoutBuilder::ComputeKeyFunction(RD) &&
1125 "Key function changed!");
1126
1127 return Entry;
1128}
1129
1130//===----------------------------------------------------------------------===//
1131// Type creation/memoization methods
1132//===----------------------------------------------------------------------===//
1133
1134QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1135 unsigned Fast = Quals.getFastQualifiers();
1136 Quals.removeFastQualifiers();
1137
1138 // Check if we've already instantiated this type.
1139 llvm::FoldingSetNodeID ID;
1140 ExtQuals::Profile(ID, TypeNode, Quals);
1141 void *InsertPos = 0;
1142 if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1143 assert(EQ->getQualifiers() == Quals);
1144 QualType T = QualType(EQ, Fast);
1145 return T;
1146 }
1147
1148 ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1149 ExtQualNodes.InsertNode(New, InsertPos);
1150 QualType T = QualType(New, Fast);
1151 return T;
1152}
1153
1154QualType ASTContext::getVolatileType(QualType T) {
1155 QualType CanT = getCanonicalType(T);
1156 if (CanT.isVolatileQualified()) return T;
1157
1158 QualifierCollector Quals;
1159 const Type *TypeNode = Quals.strip(T);
1160 Quals.addVolatile();
1161
1162 return getExtQualType(TypeNode, Quals);
1163}
1164
1165QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1166 QualType CanT = getCanonicalType(T);
1167 if (CanT.getAddressSpace() == AddressSpace)
1168 return T;
1169
1170 // If we are composing extended qualifiers together, merge together
1171 // into one ExtQuals node.
1172 QualifierCollector Quals;
1173 const Type *TypeNode = Quals.strip(T);
1174
1175 // If this type already has an address space specified, it cannot get
1176 // another one.
1177 assert(!Quals.hasAddressSpace() &&
1178 "Type cannot be in multiple addr spaces!");
1179 Quals.addAddressSpace(AddressSpace);
1180
1181 return getExtQualType(TypeNode, Quals);
1182}
1183
1184QualType ASTContext::getObjCGCQualType(QualType T,
1185 Qualifiers::GC GCAttr) {
1186 QualType CanT = getCanonicalType(T);
1187 if (CanT.getObjCGCAttr() == GCAttr)
1188 return T;
1189
1190 if (T->isPointerType()) {
1191 QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1192 if (Pointee->isAnyPointerType()) {
1193 QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1194 return getPointerType(ResultType);
1195 }
1196 }
1197
1198 // If we are composing extended qualifiers together, merge together
1199 // into one ExtQuals node.
1200 QualifierCollector Quals;
1201 const Type *TypeNode = Quals.strip(T);
1202
1203 // If this type already has an ObjCGC specified, it cannot get
1204 // another one.
1205 assert(!Quals.hasObjCGCAttr() &&
1206 "Type cannot have multiple ObjCGCs!");
1207 Quals.addObjCGCAttr(GCAttr);
1208
1209 return getExtQualType(TypeNode, Quals);
1210}
1211
1212static QualType getNoReturnCallConvType(ASTContext& Context, QualType T,
1213 bool AddNoReturn,
1214 CallingConv CallConv) {
1215 QualType ResultType;
1216 if (const PointerType *Pointer = T->getAs<PointerType>()) {
1217 QualType Pointee = Pointer->getPointeeType();
1218 ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1219 CallConv);
1220 if (ResultType == Pointee)
1221 return T;
1222
1223 ResultType = Context.getPointerType(ResultType);
1224 } else if (const BlockPointerType *BlockPointer
1225 = T->getAs<BlockPointerType>()) {
1226 QualType Pointee = BlockPointer->getPointeeType();
1227 ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1228 CallConv);
1229 if (ResultType == Pointee)
1230 return T;
1231
1232 ResultType = Context.getBlockPointerType(ResultType);
1233 } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1234 if (F->getNoReturnAttr() == AddNoReturn && F->getCallConv() == CallConv)
1235 return T;
1236
1237 if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1238 ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1239 AddNoReturn, CallConv);
1240 } else {
1241 const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1242 ResultType
1243 = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1244 FPT->getNumArgs(), FPT->isVariadic(),
1245 FPT->getTypeQuals(),
1246 FPT->hasExceptionSpec(),
1247 FPT->hasAnyExceptionSpec(),
1248 FPT->getNumExceptions(),
1249 FPT->exception_begin(),
1250 AddNoReturn, CallConv);
1251 }
1252 } else
1253 return T;
1254
1255 return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1256}
1257
1258QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1259 return getNoReturnCallConvType(*this, T, AddNoReturn, T.getCallConv());
1260}
1261
1262QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1263 return getNoReturnCallConvType(*this, T, T.getNoReturnAttr(), CallConv);
1264}
1265
1266/// getComplexType - Return the uniqued reference to the type for a complex
1267/// number with the specified element type.
1268QualType ASTContext::getComplexType(QualType T) {
1269 // Unique pointers, to guarantee there is only one pointer of a particular
1270 // structure.
1271 llvm::FoldingSetNodeID ID;
1272 ComplexType::Profile(ID, T);
1273
1274 void *InsertPos = 0;
1275 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1276 return QualType(CT, 0);
1277
1278 // If the pointee type isn't canonical, this won't be a canonical type either,
1279 // so fill in the canonical type field.
1280 QualType Canonical;
1281 if (!T.isCanonical()) {
1282 Canonical = getComplexType(getCanonicalType(T));
1283
1284 // Get the new insert position for the node we care about.
1285 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1286 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1287 }
1288 ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1289 Types.push_back(New);
1290 ComplexTypes.InsertNode(New, InsertPos);
1291 return QualType(New, 0);
1292}
1293
1294/// getPointerType - Return the uniqued reference to the type for a pointer to
1295/// the specified type.
1296QualType ASTContext::getPointerType(QualType T) {
1297 // Unique pointers, to guarantee there is only one pointer of a particular
1298 // structure.
1299 llvm::FoldingSetNodeID ID;
1300 PointerType::Profile(ID, T);
1301
1302 void *InsertPos = 0;
1303 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1304 return QualType(PT, 0);
1305
1306 // If the pointee type isn't canonical, this won't be a canonical type either,
1307 // so fill in the canonical type field.
1308 QualType Canonical;
1309 if (!T.isCanonical()) {
1310 Canonical = getPointerType(getCanonicalType(T));
1311
1312 // Get the new insert position for the node we care about.
1313 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1314 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1315 }
1316 PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1317 Types.push_back(New);
1318 PointerTypes.InsertNode(New, InsertPos);
1319 return QualType(New, 0);
1320}
1321
1322/// getBlockPointerType - Return the uniqued reference to the type for
1323/// a pointer to the specified block.
1324QualType ASTContext::getBlockPointerType(QualType T) {
1325 assert(T->isFunctionType() && "block of function types only");
1326 // Unique pointers, to guarantee there is only one block of a particular
1327 // structure.
1328 llvm::FoldingSetNodeID ID;
1329 BlockPointerType::Profile(ID, T);
1330
1331 void *InsertPos = 0;
1332 if (BlockPointerType *PT =
1333 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1334 return QualType(PT, 0);
1335
1336 // If the block pointee type isn't canonical, this won't be a canonical
1337 // type either so fill in the canonical type field.
1338 QualType Canonical;
1339 if (!T.isCanonical()) {
1340 Canonical = getBlockPointerType(getCanonicalType(T));
1341
1342 // Get the new insert position for the node we care about.
1343 BlockPointerType *NewIP =
1344 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1345 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1346 }
1347 BlockPointerType *New
1348 = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1349 Types.push_back(New);
1350 BlockPointerTypes.InsertNode(New, InsertPos);
1351 return QualType(New, 0);
1352}
1353
1354/// getLValueReferenceType - Return the uniqued reference to the type for an
1355/// lvalue reference to the specified type.
1356QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1357 // Unique pointers, to guarantee there is only one pointer of a particular
1358 // structure.
1359 llvm::FoldingSetNodeID ID;
1360 ReferenceType::Profile(ID, T, SpelledAsLValue);
1361
1362 void *InsertPos = 0;
1363 if (LValueReferenceType *RT =
1364 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1365 return QualType(RT, 0);
1366
1367 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1368
1369 // If the referencee type isn't canonical, this won't be a canonical type
1370 // either, so fill in the canonical type field.
1371 QualType Canonical;
1372 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1373 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1374 Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1375
1376 // Get the new insert position for the node we care about.
1377 LValueReferenceType *NewIP =
1378 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1379 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1380 }
1381
1382 LValueReferenceType *New
1383 = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1384 SpelledAsLValue);
1385 Types.push_back(New);
1386 LValueReferenceTypes.InsertNode(New, InsertPos);
1387
1388 return QualType(New, 0);
1389}
1390
1391/// getRValueReferenceType - Return the uniqued reference to the type for an
1392/// rvalue reference to the specified type.
1393QualType ASTContext::getRValueReferenceType(QualType T) {
1394 // Unique pointers, to guarantee there is only one pointer of a particular
1395 // structure.
1396 llvm::FoldingSetNodeID ID;
1397 ReferenceType::Profile(ID, T, false);
1398
1399 void *InsertPos = 0;
1400 if (RValueReferenceType *RT =
1401 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1402 return QualType(RT, 0);
1403
1404 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1405
1406 // If the referencee type isn't canonical, this won't be a canonical type
1407 // either, so fill in the canonical type field.
1408 QualType Canonical;
1409 if (InnerRef || !T.isCanonical()) {
1410 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1411 Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1412
1413 // Get the new insert position for the node we care about.
1414 RValueReferenceType *NewIP =
1415 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1416 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1417 }
1418
1419 RValueReferenceType *New
1420 = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1421 Types.push_back(New);
1422 RValueReferenceTypes.InsertNode(New, InsertPos);
1423 return QualType(New, 0);
1424}
1425
1426/// getMemberPointerType - Return the uniqued reference to the type for a
1427/// member pointer to the specified type, in the specified class.
1428QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1429 // Unique pointers, to guarantee there is only one pointer of a particular
1430 // structure.
1431 llvm::FoldingSetNodeID ID;
1432 MemberPointerType::Profile(ID, T, Cls);
1433
1434 void *InsertPos = 0;
1435 if (MemberPointerType *PT =
1436 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1437 return QualType(PT, 0);
1438
1439 // If the pointee or class type isn't canonical, this won't be a canonical
1440 // type either, so fill in the canonical type field.
1441 QualType Canonical;
1442 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1443 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1444
1445 // Get the new insert position for the node we care about.
1446 MemberPointerType *NewIP =
1447 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1448 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1449 }
1450 MemberPointerType *New
1451 = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1452 Types.push_back(New);
1453 MemberPointerTypes.InsertNode(New, InsertPos);
1454 return QualType(New, 0);
1455}
1456
1457/// getConstantArrayType - Return the unique reference to the type for an
1458/// array of the specified element type.
1459QualType ASTContext::getConstantArrayType(QualType EltTy,
1460 const llvm::APInt &ArySizeIn,
1461 ArrayType::ArraySizeModifier ASM,
1462 unsigned EltTypeQuals) {
1463 assert((EltTy->isDependentType() ||
1464 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1465 "Constant array of VLAs is illegal!");
1466
1467 // Convert the array size into a canonical width matching the pointer size for
1468 // the target.
1469 llvm::APInt ArySize(ArySizeIn);
1470 ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1471
1472 llvm::FoldingSetNodeID ID;
1473 ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1474
1475 void *InsertPos = 0;
1476 if (ConstantArrayType *ATP =
1477 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1478 return QualType(ATP, 0);
1479
1480 // If the element type isn't canonical, this won't be a canonical type either,
1481 // so fill in the canonical type field.
1482 QualType Canonical;
1483 if (!EltTy.isCanonical()) {
1484 Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1485 ASM, EltTypeQuals);
1486 // Get the new insert position for the node we care about.
1487 ConstantArrayType *NewIP =
1488 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1489 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1490 }
1491
1492 ConstantArrayType *New = new(*this,TypeAlignment)
1493 ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1494 ConstantArrayTypes.InsertNode(New, InsertPos);
1495 Types.push_back(New);
1496 return QualType(New, 0);
1497}
1498
1499/// getVariableArrayType - Returns a non-unique reference to the type for a
1500/// variable array of the specified element type.
1501QualType ASTContext::getVariableArrayType(QualType EltTy,
1502 Expr *NumElts,
1503 ArrayType::ArraySizeModifier ASM,
1504 unsigned EltTypeQuals,
1505 SourceRange Brackets) {
1506 // Since we don't unique expressions, it isn't possible to unique VLA's
1507 // that have an expression provided for their size.
1508
1509 VariableArrayType *New = new(*this, TypeAlignment)
1510 VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1511
1512 VariableArrayTypes.push_back(New);
1513 Types.push_back(New);
1514 return QualType(New, 0);
1515}
1516
1517/// getDependentSizedArrayType - Returns a non-unique reference to
1518/// the type for a dependently-sized array of the specified element
1519/// type.
1520QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1521 Expr *NumElts,
1522 ArrayType::ArraySizeModifier ASM,
1523 unsigned EltTypeQuals,
1524 SourceRange Brackets) {
1525 assert((!NumElts || NumElts->isTypeDependent() ||
1526 NumElts->isValueDependent()) &&
1527 "Size must be type- or value-dependent!");
1528
1529 void *InsertPos = 0;
1530 DependentSizedArrayType *Canon = 0;
1531 llvm::FoldingSetNodeID ID;
1532
1533 if (NumElts) {
1534 // Dependently-sized array types that do not have a specified
1535 // number of elements will have their sizes deduced from an
1536 // initializer.
1537 DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1538 EltTypeQuals, NumElts);
1539
1540 Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1541 }
1542
1543 DependentSizedArrayType *New;
1544 if (Canon) {
1545 // We already have a canonical version of this array type; use it as
1546 // the canonical type for a newly-built type.
1547 New = new (*this, TypeAlignment)
1548 DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1549 NumElts, ASM, EltTypeQuals, Brackets);
1550 } else {
1551 QualType CanonEltTy = getCanonicalType(EltTy);
1552 if (CanonEltTy == EltTy) {
1553 New = new (*this, TypeAlignment)
1554 DependentSizedArrayType(*this, EltTy, QualType(),
1555 NumElts, ASM, EltTypeQuals, Brackets);
1556
1557 if (NumElts) {
1558 DependentSizedArrayType *CanonCheck
1559 = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1560 assert(!CanonCheck && "Dependent-sized canonical array type broken");
1561 (void)CanonCheck;
1562 DependentSizedArrayTypes.InsertNode(New, InsertPos);
1563 }
1564 } else {
1565 QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1566 ASM, EltTypeQuals,
1567 SourceRange());
1568 New = new (*this, TypeAlignment)
1569 DependentSizedArrayType(*this, EltTy, Canon,
1570 NumElts, ASM, EltTypeQuals, Brackets);
1571 }
1572 }
1573
1574 Types.push_back(New);
1575 return QualType(New, 0);
1576}
1577
1578QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1579 ArrayType::ArraySizeModifier ASM,
1580 unsigned EltTypeQuals) {
1581 llvm::FoldingSetNodeID ID;
1582 IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1583
1584 void *InsertPos = 0;
1585 if (IncompleteArrayType *ATP =
1586 IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1587 return QualType(ATP, 0);
1588
1589 // If the element type isn't canonical, this won't be a canonical type
1590 // either, so fill in the canonical type field.
1591 QualType Canonical;
1592
1593 if (!EltTy.isCanonical()) {
1594 Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1595 ASM, EltTypeQuals);
1596
1597 // Get the new insert position for the node we care about.
1598 IncompleteArrayType *NewIP =
1599 IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1600 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1601 }
1602
1603 IncompleteArrayType *New = new (*this, TypeAlignment)
1604 IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1605
1606 IncompleteArrayTypes.InsertNode(New, InsertPos);
1607 Types.push_back(New);
1608 return QualType(New, 0);
1609}
1610
1611/// getVectorType - Return the unique reference to a vector type of
1612/// the specified element type and size. VectorType must be a built-in type.
1613QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1614 bool IsAltiVec, bool IsPixel) {
1615 BuiltinType *baseType;
1616
1617 baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1618 assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1619
1620 // Check if we've already instantiated a vector of this type.
1621 llvm::FoldingSetNodeID ID;
1622 VectorType::Profile(ID, vecType, NumElts, Type::Vector,
1623 IsAltiVec, IsPixel);
1624 void *InsertPos = 0;
1625 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1626 return QualType(VTP, 0);
1627
1628 // If the element type isn't canonical, this won't be a canonical type either,
1629 // so fill in the canonical type field.
1630 QualType Canonical;
1631 if (!vecType.isCanonical() || IsAltiVec || IsPixel) {
1632 Canonical = getVectorType(getCanonicalType(vecType),
1633 NumElts, false, false);
1634
1635 // Get the new insert position for the node we care about.
1636 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1637 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1638 }
1639 VectorType *New = new (*this, TypeAlignment)
1640 VectorType(vecType, NumElts, Canonical, IsAltiVec, IsPixel);
1641 VectorTypes.InsertNode(New, InsertPos);
1642 Types.push_back(New);
1643 return QualType(New, 0);
1644}
1645
1646/// getExtVectorType - Return the unique reference to an extended vector type of
1647/// the specified element type and size. VectorType must be a built-in type.
1648QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1649 BuiltinType *baseType;
1650
1651 baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1652 assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1653
1654 // Check if we've already instantiated a vector of this type.
1655 llvm::FoldingSetNodeID ID;
1656 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, false, false);
1657 void *InsertPos = 0;
1658 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1659 return QualType(VTP, 0);
1660
1661 // If the element type isn't canonical, this won't be a canonical type either,
1662 // so fill in the canonical type field.
1663 QualType Canonical;
1664 if (!vecType.isCanonical()) {
1665 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1666
1667 // Get the new insert position for the node we care about.
1668 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1669 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1670 }
1671 ExtVectorType *New = new (*this, TypeAlignment)
1672 ExtVectorType(vecType, NumElts, Canonical);
1673 VectorTypes.InsertNode(New, InsertPos);
1674 Types.push_back(New);
1675 return QualType(New, 0);
1676}
1677
1678QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1679 Expr *SizeExpr,
1680 SourceLocation AttrLoc) {
1681 llvm::FoldingSetNodeID ID;
1682 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1683 SizeExpr);
1684
1685 void *InsertPos = 0;
1686 DependentSizedExtVectorType *Canon
1687 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1688 DependentSizedExtVectorType *New;
1689 if (Canon) {
1690 // We already have a canonical version of this array type; use it as
1691 // the canonical type for a newly-built type.
1692 New = new (*this, TypeAlignment)
1693 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1694 SizeExpr, AttrLoc);
1695 } else {
1696 QualType CanonVecTy = getCanonicalType(vecType);
1697 if (CanonVecTy == vecType) {
1698 New = new (*this, TypeAlignment)
1699 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1700 AttrLoc);
1701
1702 DependentSizedExtVectorType *CanonCheck
1703 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1704 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1705 (void)CanonCheck;
1706 DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1707 } else {
1708 QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1709 SourceLocation());
1710 New = new (*this, TypeAlignment)
1711 DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1712 }
1713 }
1714
1715 Types.push_back(New);
1716 return QualType(New, 0);
1717}
1718
1719/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1720///
1721QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn,
1722 CallingConv CallConv) {
1723 // Unique functions, to guarantee there is only one function of a particular
1724 // structure.
1725 llvm::FoldingSetNodeID ID;
1726 FunctionNoProtoType::Profile(ID, ResultTy, NoReturn, CallConv);
1727
1728 void *InsertPos = 0;
1729 if (FunctionNoProtoType *FT =
1730 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1731 return QualType(FT, 0);
1732
1733 QualType Canonical;
1734 if (!ResultTy.isCanonical() ||
1735 getCanonicalCallConv(CallConv) != CallConv) {
1736 Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn,
1737 getCanonicalCallConv(CallConv));
1738
1739 // Get the new insert position for the node we care about.
1740 FunctionNoProtoType *NewIP =
1741 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1742 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1743 }
1744
1745 FunctionNoProtoType *New = new (*this, TypeAlignment)
1746 FunctionNoProtoType(ResultTy, Canonical, NoReturn, CallConv);
1747 Types.push_back(New);
1748 FunctionNoProtoTypes.InsertNode(New, InsertPos);
1749 return QualType(New, 0);
1750}
1751
1752/// getFunctionType - Return a normal function type with a typed argument
1753/// list. isVariadic indicates whether the argument list includes '...'.
1754QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1755 unsigned NumArgs, bool isVariadic,
1756 unsigned TypeQuals, bool hasExceptionSpec,
1757 bool hasAnyExceptionSpec, unsigned NumExs,
1758 const QualType *ExArray, bool NoReturn,
1759 CallingConv CallConv) {
1760 // Unique functions, to guarantee there is only one function of a particular
1761 // structure.
1762 llvm::FoldingSetNodeID ID;
1763 FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1764 TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1765 NumExs, ExArray, NoReturn, CallConv);
1766
1767 void *InsertPos = 0;
1768 if (FunctionProtoType *FTP =
1769 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1770 return QualType(FTP, 0);
1771
1772 // Determine whether the type being created is already canonical or not.
1773 bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1774 for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1775 if (!ArgArray[i].isCanonicalAsParam())
1776 isCanonical = false;
1777
1778 // If this type isn't canonical, get the canonical version of it.
1779 // The exception spec is not part of the canonical type.
1780 QualType Canonical;
1781 if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1782 llvm::SmallVector<QualType, 16> CanonicalArgs;
1783 CanonicalArgs.reserve(NumArgs);
1784 for (unsigned i = 0; i != NumArgs; ++i)
1785 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1786
1787 Canonical = getFunctionType(getCanonicalType(ResultTy),
1788 CanonicalArgs.data(), NumArgs,
1789 isVariadic, TypeQuals, false,
1790 false, 0, 0, NoReturn,
1791 getCanonicalCallConv(CallConv));
1792
1793 // Get the new insert position for the node we care about.
1794 FunctionProtoType *NewIP =
1795 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1796 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1797 }
1798
1799 // FunctionProtoType objects are allocated with extra bytes after them
1800 // for two variable size arrays (for parameter and exception types) at the
1801 // end of them.
1802 FunctionProtoType *FTP =
1803 (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1804 NumArgs*sizeof(QualType) +
1805 NumExs*sizeof(QualType), TypeAlignment);
1806 new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1807 TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1808 ExArray, NumExs, Canonical, NoReturn, CallConv);
1809 Types.push_back(FTP);
1810 FunctionProtoTypes.InsertNode(FTP, InsertPos);
1811 return QualType(FTP, 0);
1812}
1813
1814/// getTypeDeclType - Return the unique reference to the type for the
1815/// specified type declaration.
1816QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1817 assert(Decl && "Passed null for Decl param");
1818 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1819
1820 if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1821 return getTypedefType(Typedef);
1822 else if (isa<TemplateTypeParmDecl>(Decl)) {
1823 assert(false && "Template type parameter types are always available.");
1824 } else if (ObjCInterfaceDecl *ObjCInterface
1825 = dyn_cast<ObjCInterfaceDecl>(Decl))
1826 return getObjCInterfaceType(ObjCInterface);
1827
1828 if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1829 if (PrevDecl)
1830 Decl->TypeForDecl = PrevDecl->TypeForDecl;
1831 else
1832 Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1833 } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1834 if (PrevDecl)
1835 Decl->TypeForDecl = PrevDecl->TypeForDecl;
1836 else
1837 Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1838 } else if (UnresolvedUsingTypenameDecl *Using =
1839 dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1840 Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1841 } else
1842 assert(false && "TypeDecl without a type?");
1843
1844 if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1845 return QualType(Decl->TypeForDecl, 0);
1846}
1847
1848/// getTypedefType - Return the unique reference to the type for the
1849/// specified typename decl.
1850QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1851 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1852
1853 QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1854 Decl->TypeForDecl = new(*this, TypeAlignment)
1855 TypedefType(Type::Typedef, Decl, Canonical);
1856 Types.push_back(Decl->TypeForDecl);
1857 return QualType(Decl->TypeForDecl, 0);
1858}
1859
1860/// \brief Retrieve a substitution-result type.
1861QualType
1862ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1863 QualType Replacement) {
1864 assert(Replacement.isCanonical()
1865 && "replacement types must always be canonical");
1866
1867 llvm::FoldingSetNodeID ID;
1868 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1869 void *InsertPos = 0;
1870 SubstTemplateTypeParmType *SubstParm
1871 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1872
1873 if (!SubstParm) {
1874 SubstParm = new (*this, TypeAlignment)
1875 SubstTemplateTypeParmType(Parm, Replacement);
1876 Types.push_back(SubstParm);
1877 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1878 }
1879
1880 return QualType(SubstParm, 0);
1881}
1882
1883/// \brief Retrieve the template type parameter type for a template
1884/// parameter or parameter pack with the given depth, index, and (optionally)
1885/// name.
1886QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1887 bool ParameterPack,
1888 IdentifierInfo *Name) {
1889 llvm::FoldingSetNodeID ID;
1890 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1891 void *InsertPos = 0;
1892 TemplateTypeParmType *TypeParm
1893 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1894
1895 if (TypeParm)
1896 return QualType(TypeParm, 0);
1897
1898 if (Name) {
1899 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1900 TypeParm = new (*this, TypeAlignment)
1901 TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1902
1903 TemplateTypeParmType *TypeCheck
1904 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1905 assert(!TypeCheck && "Template type parameter canonical type broken");
1906 (void)TypeCheck;
1907 } else
1908 TypeParm = new (*this, TypeAlignment)
1909 TemplateTypeParmType(Depth, Index, ParameterPack);
1910
1911 Types.push_back(TypeParm);
1912 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1913
1914 return QualType(TypeParm, 0);
1915}
1916
1917QualType
1918ASTContext::getTemplateSpecializationType(TemplateName Template,
1919 const TemplateArgumentListInfo &Args,
1920 QualType Canon) {
1921 unsigned NumArgs = Args.size();
1922
1923 llvm::SmallVector<TemplateArgument, 4> ArgVec;
1924 ArgVec.reserve(NumArgs);
1925 for (unsigned i = 0; i != NumArgs; ++i)
1926 ArgVec.push_back(Args[i].getArgument());
1927
1928 return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
1929}
1930
1931QualType
1932ASTContext::getTemplateSpecializationType(TemplateName Template,
1933 const TemplateArgument *Args,
1934 unsigned NumArgs,
1935 QualType Canon) {
1936 if (!Canon.isNull())
1937 Canon = getCanonicalType(Canon);
1938 else {
1939 // Build the canonical template specialization type.
1940 TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1941 llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1942 CanonArgs.reserve(NumArgs);
1943 for (unsigned I = 0; I != NumArgs; ++I)
1944 CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1945
1946 // Determine whether this canonical template specialization type already
1947 // exists.
1948 llvm::FoldingSetNodeID ID;
1949 TemplateSpecializationType::Profile(ID, CanonTemplate,
1950 CanonArgs.data(), NumArgs, *this);
1951
1952 void *InsertPos = 0;
1953 TemplateSpecializationType *Spec
1954 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1955
1956 if (!Spec) {
1957 // Allocate a new canonical template specialization type.
1958 void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1959 sizeof(TemplateArgument) * NumArgs),
1960 TypeAlignment);
1961 Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1962 CanonArgs.data(), NumArgs,
1963 Canon);
1964 Types.push_back(Spec);
1965 TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1966 }
1967
1968 if (Canon.isNull())
1969 Canon = QualType(Spec, 0);
1970 assert(Canon->isDependentType() &&
1971 "Non-dependent template-id type must have a canonical type");
1972 }
1973
1974 // Allocate the (non-canonical) template specialization type, but don't
1975 // try to unique it: these types typically have location information that
1976 // we don't unique and don't want to lose.
1977 void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1978 sizeof(TemplateArgument) * NumArgs),
1979 TypeAlignment);
1980 TemplateSpecializationType *Spec
1981 = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1982 Canon);
1983
1984 Types.push_back(Spec);
1985 return QualType(Spec, 0);
1986}
1987
1988QualType
1989ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1990 QualType NamedType) {
1991 llvm::FoldingSetNodeID ID;
1992 QualifiedNameType::Profile(ID, NNS, NamedType);
1993
1994 void *InsertPos = 0;
1995 QualifiedNameType *T
1996 = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1997 if (T)
1998 return QualType(T, 0);
1999
2000 QualType Canon = NamedType;
2001 if (!Canon.isCanonical()) {
2002 Canon = getCanonicalType(NamedType);
2003 QualifiedNameType *CheckT
2004 = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2005 assert(!CheckT && "Qualified name canonical type broken");
2006 (void)CheckT;
2007 }
2008
2009 T = new (*this) QualifiedNameType(NNS, NamedType, Canon);
2010 Types.push_back(T);
2011 QualifiedNameTypes.InsertNode(T, InsertPos);
2012 return QualType(T, 0);
2013}
2014
2015QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
2016 const IdentifierInfo *Name,
2017 QualType Canon) {
2018 assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2019
2020 if (Canon.isNull()) {
2021 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2022 if (CanonNNS != NNS)
2023 Canon = getTypenameType(CanonNNS, Name);
2024 }
2025
2026 llvm::FoldingSetNodeID ID;
2027 TypenameType::Profile(ID, NNS, Name);
2028
2029 void *InsertPos = 0;
2030 TypenameType *T
2031 = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2032 if (T)
2033 return QualType(T, 0);
2034
2035 T = new (*this) TypenameType(NNS, Name, Canon);
2036 Types.push_back(T);
2037 TypenameTypes.InsertNode(T, InsertPos);
2038 return QualType(T, 0);
2039}
2040
2041QualType
2042ASTContext::getTypenameType(NestedNameSpecifier *NNS,
2043 const TemplateSpecializationType *TemplateId,
2044 QualType Canon) {
2045 assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2046
2047 llvm::FoldingSetNodeID ID;
2048 TypenameType::Profile(ID, NNS, TemplateId);
2049
2050 void *InsertPos = 0;
2051 TypenameType *T
2052 = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2053 if (T)
2054 return QualType(T, 0);
2055
2056 if (Canon.isNull()) {
2057 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2058 QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
2059 if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
2060 const TemplateSpecializationType *CanonTemplateId
2061 = CanonType->getAs<TemplateSpecializationType>();
2062 assert(CanonTemplateId &&
2063 "Canonical type must also be a template specialization type");
2064 Canon = getTypenameType(CanonNNS, CanonTemplateId);
2065 }
2066
2067 TypenameType *CheckT
2068 = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2069 assert(!CheckT && "Typename canonical type is broken"); (void)CheckT;
2070 }
2071
2072 T = new (*this) TypenameType(NNS, TemplateId, Canon);
2073 Types.push_back(T);
2074 TypenameTypes.InsertNode(T, InsertPos);
2075 return QualType(T, 0);
2076}
2077
2078QualType
2079ASTContext::getElaboratedType(QualType UnderlyingType,
2080 ElaboratedType::TagKind Tag) {
2081 llvm::FoldingSetNodeID ID;
2082 ElaboratedType::Profile(ID, UnderlyingType, Tag);
2083
2084 void *InsertPos = 0;
2085 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2086 if (T)
2087 return QualType(T, 0);
2088
2089 QualType Canon = UnderlyingType;
2090 if (!Canon.isCanonical()) {
2091 Canon = getCanonicalType(Canon);
2092 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2093 assert(!CheckT && "Elaborated canonical type is broken"); (void)CheckT;
2094 }
2095
2096 T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
2097 Types.push_back(T);
2098 ElaboratedTypes.InsertNode(T, InsertPos);
2099 return QualType(T, 0);
2100}
2101
2102/// CmpProtocolNames - Comparison predicate for sorting protocols
2103/// alphabetically.
2104static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2105 const ObjCProtocolDecl *RHS) {
2106 return LHS->getDeclName() < RHS->getDeclName();
2107}
2108
2109static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
2110 unsigned NumProtocols) {
2111 if (NumProtocols == 0) return true;
2112
2113 for (unsigned i = 1; i != NumProtocols; ++i)
2114 if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2115 return false;
2116 return true;
2117}
2118
2119static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2120 unsigned &NumProtocols) {
2121 ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2122
2123 // Sort protocols, keyed by name.
2124 std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2125
2126 // Remove duplicates.
2127 ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2128 NumProtocols = ProtocolsEnd-Protocols;
2129}
2130
2131/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2132/// the given interface decl and the conforming protocol list.
2133QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2134 ObjCProtocolDecl **Protocols,
2135 unsigned NumProtocols) {
2136 llvm::FoldingSetNodeID ID;
2137 ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2138
2139 void *InsertPos = 0;
2140 if (ObjCObjectPointerType *QT =
2141 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2142 return QualType(QT, 0);
2143
2144 // Sort the protocol list alphabetically to canonicalize it.
2145 QualType Canonical;
2146 if (!InterfaceT.isCanonical() ||
2147 !areSortedAndUniqued(Protocols, NumProtocols)) {
2148 if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2149 llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2150 unsigned UniqueCount = NumProtocols;
2151
2152 std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2153 SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2154
2155 Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2156 &Sorted[0], UniqueCount);
2157 } else {
2158 Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2159 Protocols, NumProtocols);
2160 }
2161
2162 // Regenerate InsertPos.
2163 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2164 }
2165
2166 // No match.
2167 unsigned Size = sizeof(ObjCObjectPointerType)
2168 + NumProtocols * sizeof(ObjCProtocolDecl *);
2169 void *Mem = Allocate(Size, TypeAlignment);
2170 ObjCObjectPointerType *QType = new (Mem) ObjCObjectPointerType(Canonical,
2171 InterfaceT,
2172 Protocols,
2173 NumProtocols);
2174
2175 Types.push_back(QType);
2176 ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2177 return QualType(QType, 0);
2178}
2179
2180/// getObjCInterfaceType - Return the unique reference to the type for the
2181/// specified ObjC interface decl. The list of protocols is optional.
2182QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2183 ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2184 llvm::FoldingSetNodeID ID;
2185 ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2186
2187 void *InsertPos = 0;
2188 if (ObjCInterfaceType *QT =
2189 ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2190 return QualType(QT, 0);
2191
2192 // Sort the protocol list alphabetically to canonicalize it.
2193 QualType Canonical;
2194 if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2195 llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2196 std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2197
2198 unsigned UniqueCount = NumProtocols;
2199 SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2200
2201 Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2202
2203 ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2204 }
2205
2206 unsigned Size = sizeof(ObjCInterfaceType)
2207 + NumProtocols * sizeof(ObjCProtocolDecl *);
2208 void *Mem = Allocate(Size, TypeAlignment);
2209 ObjCInterfaceType *QType = new (Mem) ObjCInterfaceType(Canonical,
2210 const_cast<ObjCInterfaceDecl*>(Decl),
2211 Protocols,
2212 NumProtocols);
2213
2214 Types.push_back(QType);
2215 ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2216 return QualType(QType, 0);
2217}
2218
2219/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2220/// TypeOfExprType AST's (since expression's are never shared). For example,
2221/// multiple declarations that refer to "typeof(x)" all contain different
2222/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2223/// on canonical type's (which are always unique).
2224QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2225 TypeOfExprType *toe;
2226 if (tofExpr->isTypeDependent()) {
2227 llvm::FoldingSetNodeID ID;
2228 DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2229
2230 void *InsertPos = 0;
2231 DependentTypeOfExprType *Canon
2232 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2233 if (Canon) {
2234 // We already have a "canonical" version of an identical, dependent
2235 // typeof(expr) type. Use that as our canonical type.
2236 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2237 QualType((TypeOfExprType*)Canon, 0));
2238 }
2239 else {
2240 // Build a new, canonical typeof(expr) type.
2241 Canon
2242 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2243 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2244 toe = Canon;
2245 }
2246 } else {
2247 QualType Canonical = getCanonicalType(tofExpr->getType());
2248 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2249 }
2250 Types.push_back(toe);
2251 return QualType(toe, 0);
2252}
2253
2254/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
2255/// TypeOfType AST's. The only motivation to unique these nodes would be
2256/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2257/// an issue. This doesn't effect the type checker, since it operates
2258/// on canonical type's (which are always unique).
2259QualType ASTContext::getTypeOfType(QualType tofType) {
2260 QualType Canonical = getCanonicalType(tofType);
2261 TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2262 Types.push_back(tot);
2263 return QualType(tot, 0);
2264}
2265
2266/// getDecltypeForExpr - Given an expr, will return the decltype for that
2267/// expression, according to the rules in C++0x [dcl.type.simple]p4
2268static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2269 if (e->isTypeDependent())
2270 return Context.DependentTy;
2271
2272 // If e is an id expression or a class member access, decltype(e) is defined
2273 // as the type of the entity named by e.
2274 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2275 if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2276 return VD->getType();
2277 }
2278 if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2279 if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2280 return FD->getType();
2281 }
2282 // If e is a function call or an invocation of an overloaded operator,
2283 // (parentheses around e are ignored), decltype(e) is defined as the
2284 // return type of that function.
2285 if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2286 return CE->getCallReturnType();
2287
2288 QualType T = e->getType();
2289
2290 // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2291 // defined as T&, otherwise decltype(e) is defined as T.
2292 if (e->isLvalue(Context) == Expr::LV_Valid)
2293 T = Context.getLValueReferenceType(T);
2294
2295 return T;
2296}
2297
2298/// getDecltypeType - Unlike many "get<Type>" functions, we don't unique
2299/// DecltypeType AST's. The only motivation to unique these nodes would be
2300/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2301/// an issue. This doesn't effect the type checker, since it operates
2302/// on canonical type's (which are always unique).
2303QualType ASTContext::getDecltypeType(Expr *e) {
2304 DecltypeType *dt;
2305 if (e->isTypeDependent()) {
2306 llvm::FoldingSetNodeID ID;
2307 DependentDecltypeType::Profile(ID, *this, e);
2308
2309 void *InsertPos = 0;
2310 DependentDecltypeType *Canon
2311 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2312 if (Canon) {
2313 // We already have a "canonical" version of an equivalent, dependent
2314 // decltype type. Use that as our canonical type.
2315 dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2316 QualType((DecltypeType*)Canon, 0));
2317 }
2318 else {
2319 // Build a new, canonical typeof(expr) type.
2320 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2321 DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2322 dt = Canon;
2323 }
2324 } else {
2325 QualType T = getDecltypeForExpr(e, *this);
2326 dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2327 }
2328 Types.push_back(dt);
2329 return QualType(dt, 0);
2330}
2331
2332/// getTagDeclType - Return the unique reference to the type for the
2333/// specified TagDecl (struct/union/class/enum) decl.
2334QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2335 assert (Decl);
2336 // FIXME: What is the design on getTagDeclType when it requires casting
2337 // away const? mutable?
2338 return getTypeDeclType(const_cast<TagDecl*>(Decl));
2339}
2340
2341/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2342/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2343/// needs to agree with the definition in <stddef.h>.
2344CanQualType ASTContext::getSizeType() const {
2345 return getFromTargetType(Target.getSizeType());
2346}
2347
2348/// getSignedWCharType - Return the type of "signed wchar_t".
2349/// Used when in C++, as a GCC extension.
2350QualType ASTContext::getSignedWCharType() const {
2351 // FIXME: derive from "Target" ?
2352 return WCharTy;
2353}
2354
2355/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2356/// Used when in C++, as a GCC extension.
2357QualType ASTContext::getUnsignedWCharType() const {
2358 // FIXME: derive from "Target" ?
2359 return UnsignedIntTy;
2360}
2361
2362/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2363/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2364QualType ASTContext::getPointerDiffType() const {
2365 return getFromTargetType(Target.getPtrDiffType(0));
2366}
2367
2368//===----------------------------------------------------------------------===//
2369// Type Operators
2370//===----------------------------------------------------------------------===//
2371
2372CanQualType ASTContext::getCanonicalParamType(QualType T) {
2373 // Push qualifiers into arrays, and then discard any remaining
2374 // qualifiers.
2375 T = getCanonicalType(T);
2376 const Type *Ty = T.getTypePtr();
2377
2378 QualType Result;
2379 if (isa<ArrayType>(Ty)) {
2380 Result = getArrayDecayedType(QualType(Ty,0));
2381 } else if (isa<FunctionType>(Ty)) {
2382 Result = getPointerType(QualType(Ty, 0));
2383 } else {
2384 Result = QualType(Ty, 0);
2385 }
2386
2387 return CanQualType::CreateUnsafe(Result);
2388}
2389
2390/// getCanonicalType - Return the canonical (structural) type corresponding to
2391/// the specified potentially non-canonical type. The non-canonical version
2392/// of a type may have many "decorated" versions of types. Decorators can
2393/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2394/// to be free of any of these, allowing two canonical types to be compared
2395/// for exact equality with a simple pointer comparison.
2396CanQualType ASTContext::getCanonicalType(QualType T) {
2397 QualifierCollector Quals;
2398 const Type *Ptr = Quals.strip(T);
2399 QualType CanType = Ptr->getCanonicalTypeInternal();
2400
2401 // The canonical internal type will be the canonical type *except*
2402 // that we push type qualifiers down through array types.
2403
2404 // If there are no new qualifiers to push down, stop here.
2405 if (!Quals.hasQualifiers())
2406 return CanQualType::CreateUnsafe(CanType);
2407
2408 // If the type qualifiers are on an array type, get the canonical
2409 // type of the array with the qualifiers applied to the element
2410 // type.
2411 ArrayType *AT = dyn_cast<ArrayType>(CanType);
2412 if (!AT)
2413 return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2414
2415 // Get the canonical version of the element with the extra qualifiers on it.
2416 // This can recursively sink qualifiers through multiple levels of arrays.
2417 QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2418 NewEltTy = getCanonicalType(NewEltTy);
2419
2420 if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2421 return CanQualType::CreateUnsafe(
2422 getConstantArrayType(NewEltTy, CAT->getSize(),
2423 CAT->getSizeModifier(),
2424 CAT->getIndexTypeCVRQualifiers()));
2425 if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2426 return CanQualType::CreateUnsafe(
2427 getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2428 IAT->getIndexTypeCVRQualifiers()));
2429
2430 if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2431 return CanQualType::CreateUnsafe(
2432 getDependentSizedArrayType(NewEltTy,
2433 DSAT->getSizeExpr() ?
2434 DSAT->getSizeExpr()->Retain() : 0,
2435 DSAT->getSizeModifier(),
2436 DSAT->getIndexTypeCVRQualifiers(),
2437 DSAT->getBracketsRange())->getCanonicalTypeInternal());
2438
2439 VariableArrayType *VAT = cast<VariableArrayType>(AT);
2440 return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2441 VAT->getSizeExpr() ?
2442 VAT->getSizeExpr()->Retain() : 0,
2443 VAT->getSizeModifier(),
2444 VAT->getIndexTypeCVRQualifiers(),
2445 VAT->getBracketsRange()));
2446}
2447
2448QualType ASTContext::getUnqualifiedArrayType(QualType T,
2449 Qualifiers &Quals) {
2450 Quals = T.getQualifiers();
2451 if (!isa<ArrayType>(T)) {
2452 return T.getUnqualifiedType();
2453 }
2454
2455 const ArrayType *AT = cast<ArrayType>(T);
2456 QualType Elt = AT->getElementType();
2457 QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2458 if (Elt == UnqualElt)
2459 return T;
2460
2461 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) {
2462 return getConstantArrayType(UnqualElt, CAT->getSize(),
2463 CAT->getSizeModifier(), 0);
2464 }
2465
2466 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(T)) {
2467 return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2468 }
2469
2470 const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(T);
2471 return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2472 DSAT->getSizeModifier(), 0,
2473 SourceRange());
2474}
2475
2476DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2477 if (TemplateDecl *TD = Name.getAsTemplateDecl())
2478 return TD->getDeclName();
2479
2480 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2481 if (DTN->isIdentifier()) {
2482 return DeclarationNames.getIdentifier(DTN->getIdentifier());
2483 } else {
2484 return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2485 }
2486 }
2487
2488 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2489 assert(Storage);
2490 return (*Storage->begin())->getDeclName();
2491}
2492
2493TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2494 // If this template name refers to a template, the canonical
2495 // template name merely stores the template itself.
2496 if (TemplateDecl *Template = Name.getAsTemplateDecl())
2497 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2498
2499 assert(!Name.getAsOverloadedTemplate());
2500
2501 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2502 assert(DTN && "Non-dependent template names must refer to template decls.");
2503 return DTN->CanonicalTemplateName;
2504}
2505
2506bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2507 X = getCanonicalTemplateName(X);
2508 Y = getCanonicalTemplateName(Y);
2509 return X.getAsVoidPointer() == Y.getAsVoidPointer();
2510}
2511
2512TemplateArgument
2513ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2514 switch (Arg.getKind()) {
2515 case TemplateArgument::Null:
2516 return Arg;
2517
2518 case TemplateArgument::Expression:
2519 return Arg;
2520
2521 case TemplateArgument::Declaration:
2522 return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2523
2524 case TemplateArgument::Template:
2525 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2526
2527 case TemplateArgument::Integral:
2528 return TemplateArgument(*Arg.getAsIntegral(),
2529 getCanonicalType(Arg.getIntegralType()));
2530
2531 case TemplateArgument::Type:
2532 return TemplateArgument(getCanonicalType(Arg.getAsType()));
2533
2534 case TemplateArgument::Pack: {
2535 // FIXME: Allocate in ASTContext
2536 TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2537 unsigned Idx = 0;
2538 for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2539 AEnd = Arg.pack_end();
2540 A != AEnd; (void)++A, ++Idx)
2541 CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2542
2543 TemplateArgument Result;
2544 Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2545 return Result;
2546 }
2547 }
2548
2549 // Silence GCC warning
2550 assert(false && "Unhandled template argument kind");
2551 return TemplateArgument();
2552}
2553
2554NestedNameSpecifier *
2555ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2556 if (!NNS)
2557 return 0;
2558
2559 switch (NNS->getKind()) {
2560 case NestedNameSpecifier::Identifier:
2561 // Canonicalize the prefix but keep the identifier the same.
2562 return NestedNameSpecifier::Create(*this,
2563 getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2564 NNS->getAsIdentifier());
2565
2566 case NestedNameSpecifier::Namespace:
2567 // A namespace is canonical; build a nested-name-specifier with
2568 // this namespace and no prefix.
2569 return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2570
2571 case NestedNameSpecifier::TypeSpec:
2572 case NestedNameSpecifier::TypeSpecWithTemplate: {
2573 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2574 return NestedNameSpecifier::Create(*this, 0,
2575 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2576 T.getTypePtr());
2577 }
2578
2579 case NestedNameSpecifier::Global:
2580 // The global specifier is canonical and unique.
2581 return NNS;
2582 }
2583
2584 // Required to silence a GCC warning
2585 return 0;
2586}
2587
2588
2589const ArrayType *ASTContext::getAsArrayType(QualType T) {
2590 // Handle the non-qualified case efficiently.
2591 if (!T.hasLocalQualifiers()) {
2592 // Handle the common positive case fast.
2593 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2594 return AT;
2595 }
2596
2597 // Handle the common negative case fast.
2598 QualType CType = T->getCanonicalTypeInternal();
2599 if (!isa<ArrayType>(CType))
2600 return 0;
2601
2602 // Apply any qualifiers from the array type to the element type. This
2603 // implements C99 6.7.3p8: "If the specification of an array type includes
2604 // any type qualifiers, the element type is so qualified, not the array type."
2605
2606 // If we get here, we either have type qualifiers on the type, or we have
2607 // sugar such as a typedef in the way. If we have type qualifiers on the type
2608 // we must propagate them down into the element type.
2609
2610 QualifierCollector Qs;
2611 const Type *Ty = Qs.strip(T.getDesugaredType());
2612
2613 // If we have a simple case, just return now.
2614 const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2615 if (ATy == 0 || Qs.empty())
2616 return ATy;
2617
2618 // Otherwise, we have an array and we have qualifiers on it. Push the
2619 // qualifiers into the array element type and return a new array type.
2620 // Get the canonical version of the element with the extra qualifiers on it.
2621 // This can recursively sink qualifiers through multiple levels of arrays.
2622 QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2623
2624 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2625 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2626 CAT->getSizeModifier(),
2627 CAT->getIndexTypeCVRQualifiers()));
2628 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2629 return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2630 IAT->getSizeModifier(),
2631 IAT->getIndexTypeCVRQualifiers()));
2632
2633 if (const DependentSizedArrayType *DSAT
2634 = dyn_cast<DependentSizedArrayType>(ATy))
2635 return cast<ArrayType>(
2636 getDependentSizedArrayType(NewEltTy,
2637 DSAT->getSizeExpr() ?
2638 DSAT->getSizeExpr()->Retain() : 0,
2639 DSAT->getSizeModifier(),
2640 DSAT->getIndexTypeCVRQualifiers(),
2641 DSAT->getBracketsRange()));
2642
2643 const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2644 return cast<ArrayType>(getVariableArrayType(NewEltTy,
2645 VAT->getSizeExpr() ?
2646 VAT->getSizeExpr()->Retain() : 0,
2647 VAT->getSizeModifier(),
2648 VAT->getIndexTypeCVRQualifiers(),
2649 VAT->getBracketsRange()));
2650}
2651
2652
2653/// getArrayDecayedType - Return the properly qualified result of decaying the
2654/// specified array type to a pointer. This operation is non-trivial when
2655/// handling typedefs etc. The canonical type of "T" must be an array type,
2656/// this returns a pointer to a properly qualified element of the array.
2657///
2658/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2659QualType ASTContext::getArrayDecayedType(QualType Ty) {
2660 // Get the element type with 'getAsArrayType' so that we don't lose any
2661 // typedefs in the element type of the array. This also handles propagation
2662 // of type qualifiers from the array type into the element type if present
2663 // (C99 6.7.3p8).
2664 const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2665 assert(PrettyArrayType && "Not an array type!");
2666
2667 QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2668
2669 // int x[restrict 4] -> int *restrict
2670 return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2671}
2672
2673QualType ASTContext::getBaseElementType(QualType QT) {
2674 QualifierCollector Qs;
2675 while (true) {
2676 const Type *UT = Qs.strip(QT);
2677 if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2678 QT = AT->getElementType();
2679 } else {
2680 return Qs.apply(QT);
2681 }
2682 }
2683}
2684
2685QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2686 QualType ElemTy = AT->getElementType();
2687
2688 if (const ArrayType *AT = getAsArrayType(ElemTy))
2689 return getBaseElementType(AT);
2690
2691 return ElemTy;
2692}
2693
2694/// getConstantArrayElementCount - Returns number of constant array elements.
2695uint64_t
2696ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
2697 uint64_t ElementCount = 1;
2698 do {
2699 ElementCount *= CA->getSize().getZExtValue();
2700 CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2701 } while (CA);
2702 return ElementCount;
2703}
2704
2705/// getFloatingRank - Return a relative rank for floating point types.
2706/// This routine will assert if passed a built-in type that isn't a float.
2707static FloatingRank getFloatingRank(QualType T) {
2708 if (const ComplexType *CT = T->getAs<ComplexType>())
2709 return getFloatingRank(CT->getElementType());
2710
2711 assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2712 switch (T->getAs<BuiltinType>()->getKind()) {
2713 default: assert(0 && "getFloatingRank(): not a floating type");
2714 case BuiltinType::Float: return FloatRank;
2715 case BuiltinType::Double: return DoubleRank;
2716 case BuiltinType::LongDouble: return LongDoubleRank;
2717 }
2718}
2719
2720/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2721/// point or a complex type (based on typeDomain/typeSize).
2722/// 'typeDomain' is a real floating point or complex type.
2723/// 'typeSize' is a real floating point or complex type.
2724QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2725 QualType Domain) const {
2726 FloatingRank EltRank = getFloatingRank(Size);
2727 if (Domain->isComplexType()) {
2728 switch (EltRank) {
2729 default: assert(0 && "getFloatingRank(): illegal value for rank");
2730 case FloatRank: return FloatComplexTy;
2731 case DoubleRank: return DoubleComplexTy;
2732 case LongDoubleRank: return LongDoubleComplexTy;
2733 }
2734 }
2735
2736 assert(Domain->isRealFloatingType() && "Unknown domain!");
2737 switch (EltRank) {
2738 default: assert(0 && "getFloatingRank(): illegal value for rank");
2739 case FloatRank: return FloatTy;
2740 case DoubleRank: return DoubleTy;
2741 case LongDoubleRank: return LongDoubleTy;
2742 }
2743}
2744
2745/// getFloatingTypeOrder - Compare the rank of the two specified floating
2746/// point types, ignoring the domain of the type (i.e. 'double' ==
2747/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
2748/// LHS < RHS, return -1.
2749int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2750 FloatingRank LHSR = getFloatingRank(LHS);
2751 FloatingRank RHSR = getFloatingRank(RHS);
2752
2753 if (LHSR == RHSR)
2754 return 0;
2755 if (LHSR > RHSR)
2756 return 1;
2757 return -1;
2758}
2759
2760/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2761/// routine will assert if passed a built-in type that isn't an integer or enum,
2762/// or if it is not canonicalized.
2763unsigned ASTContext::getIntegerRank(Type *T) {
2764 assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2765 if (EnumType* ET = dyn_cast<EnumType>(T))
2766 T = ET->getDecl()->getPromotionType().getTypePtr();
2767
2768 if (T->isSpecificBuiltinType(BuiltinType::WChar))
2769 T = getFromTargetType(Target.getWCharType()).getTypePtr();
2770
2771 if (T->isSpecificBuiltinType(BuiltinType::Char16))
2772 T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2773
2774 if (T->isSpecificBuiltinType(BuiltinType::Char32))
2775 T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2776
2777 switch (cast<BuiltinType>(T)->getKind()) {
2778 default: assert(0 && "getIntegerRank(): not a built-in integer");
2779 case BuiltinType::Bool:
2780 return 1 + (getIntWidth(BoolTy) << 3);
2781 case BuiltinType::Char_S:
2782 case BuiltinType::Char_U:
2783 case BuiltinType::SChar:
2784 case BuiltinType::UChar:
2785 return 2 + (getIntWidth(CharTy) << 3);
2786 case BuiltinType::Short:
2787 case BuiltinType::UShort:
2788 return 3 + (getIntWidth(ShortTy) << 3);
2789 case BuiltinType::Int:
2790 case BuiltinType::UInt:
2791 return 4 + (getIntWidth(IntTy) << 3);
2792 case BuiltinType::Long:
2793 case BuiltinType::ULong:
2794 return 5 + (getIntWidth(LongTy) << 3);
2795 case BuiltinType::LongLong:
2796 case BuiltinType::ULongLong:
2797 return 6 + (getIntWidth(LongLongTy) << 3);
2798 case BuiltinType::Int128:
2799 case BuiltinType::UInt128:
2800 return 7 + (getIntWidth(Int128Ty) << 3);
2801 }
2802}
2803
2804/// \brief Whether this is a promotable bitfield reference according
2805/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2806///
2807/// \returns the type this bit-field will promote to, or NULL if no
2808/// promotion occurs.
2809QualType ASTContext::isPromotableBitField(Expr *E) {
2810 FieldDecl *Field = E->getBitField();
2811 if (!Field)
2812 return QualType();
2813
2814 QualType FT = Field->getType();
2815
2816 llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2817 uint64_t BitWidth = BitWidthAP.getZExtValue();
2818 uint64_t IntSize = getTypeSize(IntTy);
2819 // GCC extension compatibility: if the bit-field size is less than or equal
2820 // to the size of int, it gets promoted no matter what its type is.
2821 // For instance, unsigned long bf : 4 gets promoted to signed int.
2822 if (BitWidth < IntSize)
2823 return IntTy;
2824
2825 if (BitWidth == IntSize)
2826 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2827
2828 // Types bigger than int are not subject to promotions, and therefore act
2829 // like the base type.
2830 // FIXME: This doesn't quite match what gcc does, but what gcc does here
2831 // is ridiculous.
2832 return QualType();
2833}
2834
2835/// getPromotedIntegerType - Returns the type that Promotable will
2836/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2837/// integer type.
2838QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2839 assert(!Promotable.isNull());
2840 assert(Promotable->isPromotableIntegerType());
2841 if (const EnumType *ET = Promotable->getAs<EnumType>())
2842 return ET->getDecl()->getPromotionType();
2843 if (Promotable->isSignedIntegerType())
2844 return IntTy;
2845 uint64_t PromotableSize = getTypeSize(Promotable);
2846 uint64_t IntSize = getTypeSize(IntTy);
2847 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2848 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2849}
2850
2851/// getIntegerTypeOrder - Returns the highest ranked integer type:
2852/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
2853/// LHS < RHS, return -1.
2854int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2855 Type *LHSC = getCanonicalType(LHS).getTypePtr();
2856 Type *RHSC = getCanonicalType(RHS).getTypePtr();
2857 if (LHSC == RHSC) return 0;
2858
2859 bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2860 bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2861
2862 unsigned LHSRank = getIntegerRank(LHSC);
2863 unsigned RHSRank = getIntegerRank(RHSC);
2864
2865 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
2866 if (LHSRank == RHSRank) return 0;
2867 return LHSRank > RHSRank ? 1 : -1;
2868 }
2869
2870 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2871 if (LHSUnsigned) {
2872 // If the unsigned [LHS] type is larger, return it.
2873 if (LHSRank >= RHSRank)
2874 return 1;
2875
2876 // If the signed type can represent all values of the unsigned type, it
2877 // wins. Because we are dealing with 2's complement and types that are
2878 // powers of two larger than each other, this is always safe.
2879 return -1;
2880 }
2881
2882 // If the unsigned [RHS] type is larger, return it.
2883 if (RHSRank >= LHSRank)
2884 return -1;
2885
2886 // If the signed type can represent all values of the unsigned type, it
2887 // wins. Because we are dealing with 2's complement and types that are
2888 // powers of two larger than each other, this is always safe.
2889 return 1;
2890}
2891
2892static RecordDecl *
2893CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2894 SourceLocation L, IdentifierInfo *Id) {
2895 if (Ctx.getLangOptions().CPlusPlus)
2896 return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2897 else
2898 return RecordDecl::Create(Ctx, TK, DC, L, Id);
2899}
2900
2901// getCFConstantStringType - Return the type used for constant CFStrings.
2902QualType ASTContext::getCFConstantStringType() {
2903 if (!CFConstantStringTypeDecl) {
2904 CFConstantStringTypeDecl =
2905 CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2906 &Idents.get("NSConstantString"));
2907 CFConstantStringTypeDecl->startDefinition();
2908
2909 QualType FieldTypes[4];
2910
2911 // const int *isa;
2912 FieldTypes[0] = getPointerType(IntTy.withConst());
2913 // int flags;
2914 FieldTypes[1] = IntTy;
2915 // const char *str;
2916 FieldTypes[2] = getPointerType(CharTy.withConst());
2917 // long length;
2918 FieldTypes[3] = LongTy;
2919
2920 // Create fields
2921 for (unsigned i = 0; i < 4; ++i) {
2922 FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2923 SourceLocation(), 0,
2924 FieldTypes[i], /*TInfo=*/0,
2925 /*BitWidth=*/0,
2926 /*Mutable=*/false);
2927 CFConstantStringTypeDecl->addDecl(Field);
2928 }
2929
2930 CFConstantStringTypeDecl->completeDefinition(*this);
2931 }
2932
2933 return getTagDeclType(CFConstantStringTypeDecl);
2934}
2935
2936void ASTContext::setCFConstantStringType(QualType T) {
2937 const RecordType *Rec = T->getAs<RecordType>();
2938 assert(Rec && "Invalid CFConstantStringType");
2939 CFConstantStringTypeDecl = Rec->getDecl();
2940}
2941
2942QualType ASTContext::getObjCFastEnumerationStateType() {
2943 if (!ObjCFastEnumerationStateTypeDecl) {
2944 ObjCFastEnumerationStateTypeDecl =
2945 CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2946 &Idents.get("__objcFastEnumerationState"));
2947 ObjCFastEnumerationStateTypeDecl->startDefinition();
2948
2949 QualType FieldTypes[] = {
2950 UnsignedLongTy,
2951 getPointerType(ObjCIdTypedefType),
2952 getPointerType(UnsignedLongTy),
2953 getConstantArrayType(UnsignedLongTy,
2954 llvm::APInt(32, 5), ArrayType::Normal, 0)
2955 };
2956
2957 for (size_t i = 0; i < 4; ++i) {
2958 FieldDecl *Field = FieldDecl::Create(*this,
2959 ObjCFastEnumerationStateTypeDecl,
2960 SourceLocation(), 0,
2961 FieldTypes[i], /*TInfo=*/0,
2962 /*BitWidth=*/0,
2963 /*Mutable=*/false);
2964 ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2965 }
2966
2967 ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2968 }
2969
2970 return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2971}
2972
2973QualType ASTContext::getBlockDescriptorType() {
2974 if (BlockDescriptorType)
2975 return getTagDeclType(BlockDescriptorType);
2976
2977 RecordDecl *T;
2978 // FIXME: Needs the FlagAppleBlock bit.
2979 T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2980 &Idents.get("__block_descriptor"));
2981 T->startDefinition();
2982
2983 QualType FieldTypes[] = {
2984 UnsignedLongTy,
2985 UnsignedLongTy,
2986 };
2987
2988 const char *FieldNames[] = {
2989 "reserved",
2990 "Size"
2991 };
2992
2993 for (size_t i = 0; i < 2; ++i) {
2994 FieldDecl *Field = FieldDecl::Create(*this,
2995 T,
2996 SourceLocation(),
2997 &Idents.get(FieldNames[i]),
2998 FieldTypes[i], /*TInfo=*/0,
2999 /*BitWidth=*/0,
3000 /*Mutable=*/false);
3001 T->addDecl(Field);
3002 }
3003
3004 T->completeDefinition(*this);
3005
3006 BlockDescriptorType = T;
3007
3008 return getTagDeclType(BlockDescriptorType);
3009}
3010
3011void ASTContext::setBlockDescriptorType(QualType T) {
3012 const RecordType *Rec = T->getAs<RecordType>();
3013 assert(Rec && "Invalid BlockDescriptorType");
3014 BlockDescriptorType = Rec->getDecl();
3015}
3016
3017QualType ASTContext::getBlockDescriptorExtendedType() {
3018 if (BlockDescriptorExtendedType)
3019 return getTagDeclType(BlockDescriptorExtendedType);
3020
3021 RecordDecl *T;
3022 // FIXME: Needs the FlagAppleBlock bit.
3023 T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3024 &Idents.get("__block_descriptor_withcopydispose"));
3025 T->startDefinition();
3026
3027 QualType FieldTypes[] = {
3028 UnsignedLongTy,
3029 UnsignedLongTy,
3030 getPointerType(VoidPtrTy),
3031 getPointerType(VoidPtrTy)
3032 };
3033
3034 const char *FieldNames[] = {
3035 "reserved",
3036 "Size",
3037 "CopyFuncPtr",
3038 "DestroyFuncPtr"
3039 };
3040
3041 for (size_t i = 0; i < 4; ++i) {
3042 FieldDecl *Field = FieldDecl::Create(*this,
3043 T,
3044 SourceLocation(),
3045 &Idents.get(FieldNames[i]),
3046 FieldTypes[i], /*TInfo=*/0,
3047 /*BitWidth=*/0,
3048 /*Mutable=*/false);
3049 T->addDecl(Field);
3050 }
3051
3052 T->completeDefinition(*this);
3053
3054 BlockDescriptorExtendedType = T;
3055
3056 return getTagDeclType(BlockDescriptorExtendedType);
3057}
3058
3059void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3060 const RecordType *Rec = T->getAs<RecordType>();
3061 assert(Rec && "Invalid BlockDescriptorType");
3062 BlockDescriptorExtendedType = Rec->getDecl();
3063}
3064
3065bool ASTContext::BlockRequiresCopying(QualType Ty) {
3066 if (Ty->isBlockPointerType())
3067 return true;
3068 if (isObjCNSObjectType(Ty))
3069 return true;
3070 if (Ty->isObjCObjectPointerType())
3071 return true;
3072 return false;
3073}
3074
3075QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
3076 // type = struct __Block_byref_1_X {
3077 // void *__isa;
3078 // struct __Block_byref_1_X *__forwarding;
3079 // unsigned int __flags;
3080 // unsigned int __size;
3081 // void *__copy_helper; // as needed
3082 // void *__destroy_help // as needed
3083 // int X;
3084 // } *
3085
3086 bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3087
3088 // FIXME: Move up
3089 static unsigned int UniqueBlockByRefTypeID = 0;
3090 llvm::SmallString<36> Name;
3091 llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3092 ++UniqueBlockByRefTypeID << '_' << DeclName;
3093 RecordDecl *T;
3094 T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3095 &Idents.get(Name.str()));
3096 T->startDefinition();
3097 QualType Int32Ty = IntTy;
3098 assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3099 QualType FieldTypes[] = {
3100 getPointerType(VoidPtrTy),
3101 getPointerType(getTagDeclType(T)),
3102 Int32Ty,
3103 Int32Ty,
3104 getPointerType(VoidPtrTy),
3105 getPointerType(VoidPtrTy),
3106 Ty
3107 };
3108
3109 const char *FieldNames[] = {
3110 "__isa",
3111 "__forwarding",
3112 "__flags",
3113 "__size",
3114 "__copy_helper",
3115 "__destroy_helper",
3116 DeclName,
3117 };
3118
3119 for (size_t i = 0; i < 7; ++i) {
3120 if (!HasCopyAndDispose && i >=4 && i <= 5)
3121 continue;
3122 FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3123 &Idents.get(FieldNames[i]),
3124 FieldTypes[i], /*TInfo=*/0,
3125 /*BitWidth=*/0, /*Mutable=*/false);
3126 T->addDecl(Field);
3127 }
3128
3129 T->completeDefinition(*this);
3130
3131 return getPointerType(getTagDeclType(T));
3132}
3133
3134
3135QualType ASTContext::getBlockParmType(
3136 bool BlockHasCopyDispose,
3137 llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
3138 // FIXME: Move up
3139 static unsigned int UniqueBlockParmTypeID = 0;
3140 llvm::SmallString<36> Name;
3141 llvm::raw_svector_ostream(Name) << "__block_literal_"
3142 << ++UniqueBlockParmTypeID;
3143 RecordDecl *T;
3144 T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3145 &Idents.get(Name.str()));
3146 T->startDefinition();
3147 QualType FieldTypes[] = {
3148 getPointerType(VoidPtrTy),
3149 IntTy,
3150 IntTy,
3151 getPointerType(VoidPtrTy),
3152 (BlockHasCopyDispose ?
3153 getPointerType(getBlockDescriptorExtendedType()) :
3154 getPointerType(getBlockDescriptorType()))
3155 };
3156
3157 const char *FieldNames[] = {
3158 "__isa",
3159 "__flags",
3160 "__reserved",
3161 "__FuncPtr",
3162 "__descriptor"
3163 };
3164
3165 for (size_t i = 0; i < 5; ++i) {
3166 FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3167 &Idents.get(FieldNames[i]),
3168 FieldTypes[i], /*TInfo=*/0,
3169 /*BitWidth=*/0, /*Mutable=*/false);
3170 T->addDecl(Field);
3171 }
3172
3173 for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3174 const Expr *E = BlockDeclRefDecls[i];
3175 const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3176 clang::IdentifierInfo *Name = 0;
3177 if (BDRE) {
3178 const ValueDecl *D = BDRE->getDecl();
3179 Name = &Idents.get(D->getName());
3180 }
3181 QualType FieldType = E->getType();
3182
3183 if (BDRE && BDRE->isByRef())
3184 FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3185 FieldType);
3186
3187 FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3188 Name, FieldType, /*TInfo=*/0,
3189 /*BitWidth=*/0, /*Mutable=*/false);
3190 T->addDecl(Field);
3191 }
3192
3193 T->completeDefinition(*this);
3194
3195 return getPointerType(getTagDeclType(T));
3196}
3197
3198void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3199 const RecordType *Rec = T->getAs<RecordType>();
3200 assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3201 ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3202}
3203
3204// This returns true if a type has been typedefed to BOOL:
3205// typedef <type> BOOL;
3206static bool isTypeTypedefedAsBOOL(QualType T) {
3207 if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3208 if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3209 return II->isStr("BOOL");
3210
3211 return false;
3212}
3213
3214/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3215/// purpose.
3216CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3217 CharUnits sz = getTypeSizeInChars(type);
3218
3219 // Make all integer and enum types at least as large as an int
3220 if (sz.isPositive() && type->isIntegralType())
3221 sz = std::max(sz, getTypeSizeInChars(IntTy));
3222 // Treat arrays as pointers, since that's how they're passed in.
3223 else if (type->isArrayType())
3224 sz = getTypeSizeInChars(VoidPtrTy);
3225 return sz;
3226}
3227
3228static inline
3229std::string charUnitsToString(const CharUnits &CU) {
3230 return llvm::itostr(CU.getQuantity());
3231}
3232
3233/// getObjCEncodingForBlockDecl - Return the encoded type for this method
3234/// declaration.
3235void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3236 std::string& S) {
3237 const BlockDecl *Decl = Expr->getBlockDecl();
3238 QualType BlockTy =
3239 Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3240 // Encode result type.
3241 getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
3242 // Compute size of all parameters.
3243 // Start with computing size of a pointer in number of bytes.
3244 // FIXME: There might(should) be a better way of doing this computation!
3245 SourceLocation Loc;
3246 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3247 CharUnits ParmOffset = PtrSize;
3248 for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3249 E = Decl->param_end(); PI != E; ++PI) {
3250 QualType PType = (*PI)->getType();
3251 CharUnits sz = getObjCEncodingTypeSize(PType);
3252 assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3253 ParmOffset += sz;
3254 }
3255 // Size of the argument frame
3256 S += charUnitsToString(ParmOffset);
3257 // Block pointer and offset.
3258 S += "@?0";
3259 ParmOffset = PtrSize;
3260
3261 // Argument types.
3262 ParmOffset = PtrSize;
3263 for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3264 Decl->param_end(); PI != E; ++PI) {
3265 ParmVarDecl *PVDecl = *PI;
3266 QualType PType = PVDecl->getOriginalType();
3267 if (const ArrayType *AT =
3268 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3269 // Use array's original type only if it has known number of
3270 // elements.
3271 if (!isa<ConstantArrayType>(AT))
3272 PType = PVDecl->getType();
3273 } else if (PType->isFunctionType())
3274 PType = PVDecl->getType();
3275 getObjCEncodingForType(PType, S);
3276 S += charUnitsToString(ParmOffset);
3277 ParmOffset += getObjCEncodingTypeSize(PType);
3278 }
3279}
3280
3281/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3282/// declaration.
3283void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3284 std::string& S) {
3285 // FIXME: This is not very efficient.
3286 // Encode type qualifer, 'in', 'inout', etc. for the return type.
3287 getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3288 // Encode result type.
3289 getObjCEncodingForType(Decl->getResultType(), S);
3290 // Compute size of all parameters.
3291 // Start with computing size of a pointer in number of bytes.
3292 // FIXME: There might(should) be a better way of doing this computation!
3293 SourceLocation Loc;
3294 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3295 // The first two arguments (self and _cmd) are pointers; account for
3296 // their size.
3297 CharUnits ParmOffset = 2 * PtrSize;
3298 for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3299 E = Decl->param_end(); PI != E; ++PI) {
3300 QualType PType = (*PI)->getType();
3301 CharUnits sz = getObjCEncodingTypeSize(PType);
3302 assert (sz.isPositive() &&
3303 "getObjCEncodingForMethodDecl - Incomplete param type");
3304 ParmOffset += sz;
3305 }
3306 S += charUnitsToString(ParmOffset);
3307 S += "@0:";
3308 S += charUnitsToString(PtrSize);
3309
3310 // Argument types.
3311 ParmOffset = 2 * PtrSize;
3312 for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3313 E = Decl->param_end(); PI != E; ++PI) {
3314 ParmVarDecl *PVDecl = *PI;
3315 QualType PType = PVDecl->getOriginalType();
3316 if (const ArrayType *AT =
3317 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3318 // Use array's original type only if it has known number of
3319 // elements.
3320 if (!isa<ConstantArrayType>(AT))
3321 PType = PVDecl->getType();
3322 } else if (PType->isFunctionType())
3323 PType = PVDecl->getType();
3324 // Process argument qualifiers for user supplied arguments; such as,
3325 // 'in', 'inout', etc.
3326 getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3327 getObjCEncodingForType(PType, S);
3328 S += charUnitsToString(ParmOffset);
3329 ParmOffset += getObjCEncodingTypeSize(PType);
3330 }
3331}
3332
3333/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3334/// property declaration. If non-NULL, Container must be either an
3335/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3336/// NULL when getting encodings for protocol properties.
3337/// Property attributes are stored as a comma-delimited C string. The simple
3338/// attributes readonly and bycopy are encoded as single characters. The
3339/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3340/// encoded as single characters, followed by an identifier. Property types
3341/// are also encoded as a parametrized attribute. The characters used to encode
3342/// these attributes are defined by the following enumeration:
3343/// @code
3344/// enum PropertyAttributes {
3345/// kPropertyReadOnly = 'R', // property is read-only.
3346/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
3347/// kPropertyByref = '&', // property is a reference to the value last assigned
3348/// kPropertyDynamic = 'D', // property is dynamic
3349/// kPropertyGetter = 'G', // followed by getter selector name
3350/// kPropertySetter = 'S', // followed by setter selector name
3351/// kPropertyInstanceVariable = 'V' // followed by instance variable name
3352/// kPropertyType = 't' // followed by old-style type encoding.
3353/// kPropertyWeak = 'W' // 'weak' property
3354/// kPropertyStrong = 'P' // property GC'able
3355/// kPropertyNonAtomic = 'N' // property non-atomic
3356/// };
3357/// @endcode
3358void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3359 const Decl *Container,
3360 std::string& S) {
3361 // Collect information from the property implementation decl(s).
3362 bool Dynamic = false;
3363 ObjCPropertyImplDecl *SynthesizePID = 0;
3364
3365 // FIXME: Duplicated code due to poor abstraction.
3366 if (Container) {
3367 if (const ObjCCategoryImplDecl *CID =
3368 dyn_cast<ObjCCategoryImplDecl>(Container)) {
3369 for (ObjCCategoryImplDecl::propimpl_iterator
3370 i = CID->propimpl_begin(), e = CID->propimpl_end();
3371 i != e; ++i) {
3372 ObjCPropertyImplDecl *PID = *i;
3373 if (PID->getPropertyDecl() == PD) {
3374 if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3375 Dynamic = true;
3376 } else {
3377 SynthesizePID = PID;
3378 }
3379 }
3380 }
3381 } else {
3382 const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3383 for (ObjCCategoryImplDecl::propimpl_iterator
3384 i = OID->propimpl_begin(), e = OID->propimpl_end();
3385 i != e; ++i) {
3386 ObjCPropertyImplDecl *PID = *i;
3387 if (PID->getPropertyDecl() == PD) {
3388 if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3389 Dynamic = true;
3390 } else {
3391 SynthesizePID = PID;
3392 }
3393 }
3394 }
3395 }
3396 }
3397
3398 // FIXME: This is not very efficient.
3399 S = "T";
3400
3401 // Encode result type.
3402 // GCC has some special rules regarding encoding of properties which
3403 // closely resembles encoding of ivars.
3404 getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3405 true /* outermost type */,
3406 true /* encoding for property */);
3407
3408 if (PD->isReadOnly()) {
3409 S += ",R";
3410 } else {
3411 switch (PD->getSetterKind()) {
3412 case ObjCPropertyDecl::Assign: break;
3413 case ObjCPropertyDecl::Copy: S += ",C"; break;
3414 case ObjCPropertyDecl::Retain: S += ",&"; break;
3415 }
3416 }
3417
3418 // It really isn't clear at all what this means, since properties
3419 // are "dynamic by default".
3420 if (Dynamic)
3421 S += ",D";
3422
3423 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3424 S += ",N";
3425
3426 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3427 S += ",G";
3428 S += PD->getGetterName().getAsString();
3429 }
3430
3431 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3432 S += ",S";
3433 S += PD->getSetterName().getAsString();
3434 }
3435
3436 if (SynthesizePID) {
3437 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3438 S += ",V";
3439 S += OID->getNameAsString();
3440 }
3441
3442 // FIXME: OBJCGC: weak & strong
3443}
3444
3445/// getLegacyIntegralTypeEncoding -
3446/// Another legacy compatibility encoding: 32-bit longs are encoded as
3447/// 'l' or 'L' , but not always. For typedefs, we need to use
3448/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3449///
3450void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3451 if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3452 if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3453 if (BT->getKind() == BuiltinType::ULong &&
3454 ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3455 PointeeTy = UnsignedIntTy;
3456 else
3457 if (BT->getKind() == BuiltinType::Long &&
3458 ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3459 PointeeTy = IntTy;
3460 }
3461 }
3462}
3463
3464void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3465 const FieldDecl *Field) {
3466 // We follow the behavior of gcc, expanding structures which are
3467 // directly pointed to, and expanding embedded structures. Note that
3468 // these rules are sufficient to prevent recursive encoding of the
3469 // same type.
3470 getObjCEncodingForTypeImpl(T, S, true, true, Field,
3471 true /* outermost type */);
3472}
3473
3474static void EncodeBitField(const ASTContext *Context, std::string& S,
3475 const FieldDecl *FD) {
3476 const Expr *E = FD->getBitWidth();
3477 assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3478 ASTContext *Ctx = const_cast<ASTContext*>(Context);
3479 unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3480 S += 'b';
3481 S += llvm::utostr(N);
3482}
3483
3484// FIXME: Use SmallString for accumulating string.
3485void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3486 bool ExpandPointedToStructures,
3487 bool ExpandStructures,
3488 const FieldDecl *FD,
3489 bool OutermostType,
3490 bool EncodingProperty) {
3491 if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3492 if (FD && FD->isBitField())
3493 return EncodeBitField(this, S, FD);
3494 char encoding;
3495 switch (BT->getKind()) {
3496 default: assert(0 && "Unhandled builtin type kind");
3497 case BuiltinType::Void: encoding = 'v'; break;
3498 case BuiltinType::Bool: encoding = 'B'; break;
3499 case BuiltinType::Char_U:
3500 case BuiltinType::UChar: encoding = 'C'; break;
3501 case BuiltinType::UShort: encoding = 'S'; break;
3502 case BuiltinType::UInt: encoding = 'I'; break;
3503 case BuiltinType::ULong:
3504 encoding =
3505 (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3506 break;
3507 case BuiltinType::UInt128: encoding = 'T'; break;
3508 case BuiltinType::ULongLong: encoding = 'Q'; break;
3509 case BuiltinType::Char_S:
3510 case BuiltinType::SChar: encoding = 'c'; break;
3511 case BuiltinType::Short: encoding = 's'; break;
3512 case BuiltinType::Int: encoding = 'i'; break;
3513 case BuiltinType::Long:
3514 encoding =
3515 (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3516 break;
3517 case BuiltinType::LongLong: encoding = 'q'; break;
3518 case BuiltinType::Int128: encoding = 't'; break;
3519 case BuiltinType::Float: encoding = 'f'; break;
3520 case BuiltinType::Double: encoding = 'd'; break;
3521 case BuiltinType::LongDouble: encoding = 'd'; break;
3522 }
3523
3524 S += encoding;
3525 return;
3526 }
3527
3528 if (const ComplexType *CT = T->getAs<ComplexType>()) {
3529 S += 'j';
3530 getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3531 false);
3532 return;
3533 }
3534
3535 if (const PointerType *PT = T->getAs<PointerType>()) {
3536 if (PT->isObjCSelType()) {
3537 S += ':';
3538 return;
3539 }
3540 QualType PointeeTy = PT->getPointeeType();
3541
3542 bool isReadOnly = false;
3543 // For historical/compatibility reasons, the read-only qualifier of the
3544 // pointee gets emitted _before_ the '^'. The read-only qualifier of
3545 // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3546 // Also, do not emit the 'r' for anything but the outermost type!
3547 if (isa<TypedefType>(T.getTypePtr())) {
3548 if (OutermostType && T.isConstQualified()) {
3549 isReadOnly = true;
3550 S += 'r';
3551 }
3552 } else if (OutermostType) {
3553 QualType P = PointeeTy;
3554 while (P->getAs<PointerType>())
3555 P = P->getAs<PointerType>()->getPointeeType();
3556 if (P.isConstQualified()) {
3557 isReadOnly = true;
3558 S += 'r';
3559 }
3560 }
3561 if (isReadOnly) {
3562 // Another legacy compatibility encoding. Some ObjC qualifier and type
3563 // combinations need to be rearranged.
3564 // Rewrite "in const" from "nr" to "rn"
3565 const char * s = S.c_str();
3566 int len = S.length();
3567 if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3568 std::string replace = "rn";
3569 S.replace(S.end()-2, S.end(), replace);
3570 }
3571 }
3572
3573 if (PointeeTy->isCharType()) {
3574 // char pointer types should be encoded as '*' unless it is a
3575 // type that has been typedef'd to 'BOOL'.
3576 if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3577 S += '*';
3578 return;
3579 }
3580 } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3581 // GCC binary compat: Need to convert "struct objc_class *" to "#".
3582 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3583 S += '#';
3584 return;
3585 }
3586 // GCC binary compat: Need to convert "struct objc_object *" to "@".
3587 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3588 S += '@';
3589 return;
3590 }
3591 // fall through...
3592 }
3593 S += '^';
3594 getLegacyIntegralTypeEncoding(PointeeTy);
3595
3596 getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3597 NULL);
3598 return;
3599 }
3600
3601 if (const ArrayType *AT =
3602 // Ignore type qualifiers etc.
3603 dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3604 if (isa<IncompleteArrayType>(AT)) {
3605 // Incomplete arrays are encoded as a pointer to the array element.
3606 S += '^';
3607
3608 getObjCEncodingForTypeImpl(AT->getElementType(), S,
3609 false, ExpandStructures, FD);
3610 } else {
3611 S += '[';
3612
3613 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3614 S += llvm::utostr(CAT->getSize().getZExtValue());
3615 else {
3616 //Variable length arrays are encoded as a regular array with 0 elements.
3617 assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3618 S += '0';
3619 }
3620
3621 getObjCEncodingForTypeImpl(AT->getElementType(), S,
3622 false, ExpandStructures, FD);
3623 S += ']';
3624 }
3625 return;
3626 }
3627
3628 if (T->getAs<FunctionType>()) {
3629 S += '?';
3630 return;
3631 }
3632
3633 if (const RecordType *RTy = T->getAs<RecordType>()) {
3634 RecordDecl *RDecl = RTy->getDecl();
3635 S += RDecl->isUnion() ? '(' : '{';
3636 // Anonymous structures print as '?'
3637 if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3638 S += II->getName();
3639 } else {
3640 S += '?';
3641 }
3642 if (ExpandStructures) {
3643 S += '=';
3644 for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3645 FieldEnd = RDecl->field_end();
3646 Field != FieldEnd; ++Field) {
3647 if (FD) {
3648 S += '"';
3649 S += Field->getNameAsString();
3650 S += '"';
3651 }
3652
3653 // Special case bit-fields.
3654 if (Field->isBitField()) {
3655 getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3656 (*Field));
3657 } else {
3658 QualType qt = Field->getType();
3659 getLegacyIntegralTypeEncoding(qt);
3660 getObjCEncodingForTypeImpl(qt, S, false, true,
3661 FD);
3662 }
3663 }
3664 }
3665 S += RDecl->isUnion() ? ')' : '}';
3666 return;
3667 }
3668
3669 if (T->isEnumeralType()) {
3670 if (FD && FD->isBitField())
3671 EncodeBitField(this, S, FD);
3672 else
3673 S += 'i';
3674 return;
3675 }
3676
3677 if (T->isBlockPointerType()) {
3678 S += "@?"; // Unlike a pointer-to-function, which is "^?".
3679 return;
3680 }
3681
3682 if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3683 // @encode(class_name)
3684 ObjCInterfaceDecl *OI = OIT->getDecl();
3685 S += '{';
3686 const IdentifierInfo *II = OI->getIdentifier();
3687 S += II->getName();
3688 S += '=';
3689 llvm::SmallVector<FieldDecl*, 32> RecFields;
3690 CollectObjCIvars(OI, RecFields);
3691 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3692 if (RecFields[i]->isBitField())
3693 getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3694 RecFields[i]);
3695 else
3696 getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3697 FD);
3698 }
3699 S += '}';
3700 return;
3701 }
3702
3703 if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3704 if (OPT->isObjCIdType()) {
3705 S += '@';
3706 return;
3707 }
3708
3709 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3710 // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3711 // Since this is a binary compatibility issue, need to consult with runtime
3712 // folks. Fortunately, this is a *very* obsure construct.
3713 S += '#';
3714 return;
3715 }
3716
3717 if (OPT->isObjCQualifiedIdType()) {
3718 getObjCEncodingForTypeImpl(getObjCIdType(), S,
3719 ExpandPointedToStructures,
3720 ExpandStructures, FD);
3721 if (FD || EncodingProperty) {
3722 // Note that we do extended encoding of protocol qualifer list
3723 // Only when doing ivar or property encoding.
3724 S += '"';
3725 for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3726 E = OPT->qual_end(); I != E; ++I) {
3727 S += '<';
3728 S += (*I)->getNameAsString();
3729 S += '>';
3730 }
3731 S += '"';
3732 }
3733 return;
3734 }
3735
3736 QualType PointeeTy = OPT->getPointeeType();
3737 if (!EncodingProperty &&
3738 isa<TypedefType>(PointeeTy.getTypePtr())) {
3739 // Another historical/compatibility reason.
3740 // We encode the underlying type which comes out as
3741 // {...};
3742 S += '^';
3743 getObjCEncodingForTypeImpl(PointeeTy, S,
3744 false, ExpandPointedToStructures,
3745 NULL);
3746 return;
3747 }
3748
3749 S += '@';
3750 if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3751 S += '"';
3752 S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3753 for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3754 E = OPT->qual_end(); I != E; ++I) {
3755 S += '<';
3756 S += (*I)->getNameAsString();
3757 S += '>';
3758 }
3759 S += '"';
3760 }
3761 return;
3762 }
3763
3764 assert(0 && "@encode for type not implemented!");
3765}
3766
3767void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3768 std::string& S) const {
3769 if (QT & Decl::OBJC_TQ_In)
3770 S += 'n';
3771 if (QT & Decl::OBJC_TQ_Inout)
3772 S += 'N';
3773 if (QT & Decl::OBJC_TQ_Out)
3774 S += 'o';
3775 if (QT & Decl::OBJC_TQ_Bycopy)
3776 S += 'O';
3777 if (QT & Decl::OBJC_TQ_Byref)
3778 S += 'R';
3779 if (QT & Decl::OBJC_TQ_Oneway)
3780 S += 'V';
3781}
3782
3783void ASTContext::setBuiltinVaListType(QualType T) {
3784 assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3785
3786 BuiltinVaListType = T;
3787}
3788
3789void ASTContext::setObjCIdType(QualType T) {
3790 ObjCIdTypedefType = T;
3791}
3792
3793void ASTContext::setObjCSelType(QualType T) {
3794 ObjCSelTypedefType = T;
3795}
3796
3797void ASTContext::setObjCProtoType(QualType QT) {
3798 ObjCProtoType = QT;
3799}
3800
3801void ASTContext::setObjCClassType(QualType T) {
3802 ObjCClassTypedefType = T;
3803}
3804
3805void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3806 assert(ObjCConstantStringType.isNull() &&
3807 "'NSConstantString' type already set!");
3808
3809 ObjCConstantStringType = getObjCInterfaceType(Decl);
3810}
3811
3812/// \brief Retrieve the template name that corresponds to a non-empty
3813/// lookup.
3814TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3815 UnresolvedSetIterator End) {
3816 unsigned size = End - Begin;
3817 assert(size > 1 && "set is not overloaded!");
3818
3819 void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3820 size * sizeof(FunctionTemplateDecl*));
3821 OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3822
3823 NamedDecl **Storage = OT->getStorage();
3824 for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3825 NamedDecl *D = *I;
3826 assert(isa<FunctionTemplateDecl>(D) ||
3827 (isa<UsingShadowDecl>(D) &&
3828 isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3829 *Storage++ = D;
3830 }
3831
3832 return TemplateName(OT);
3833}
3834
3835/// \brief Retrieve the template name that represents a qualified
3836/// template name such as \c std::vector.
3837TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3838 bool TemplateKeyword,
3839 TemplateDecl *Template) {
3840 // FIXME: Canonicalization?
3841 llvm::FoldingSetNodeID ID;
3842 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3843
3844 void *InsertPos = 0;
3845 QualifiedTemplateName *QTN =
3846 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3847 if (!QTN) {
3848 QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3849 QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3850 }
3851
3852 return TemplateName(QTN);
3853}
3854
3855/// \brief Retrieve the template name that represents a dependent
3856/// template name such as \c MetaFun::template apply.
3857TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3858 const IdentifierInfo *Name) {
3859 assert((!NNS || NNS->isDependent()) &&
3860 "Nested name specifier must be dependent");
3861
3862 llvm::FoldingSetNodeID ID;
3863 DependentTemplateName::Profile(ID, NNS, Name);
3864
3865 void *InsertPos = 0;
3866 DependentTemplateName *QTN =
3867 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3868
3869 if (QTN)
3870 return TemplateName(QTN);
3871
3872 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3873 if (CanonNNS == NNS) {
3874 QTN = new (*this,4) DependentTemplateName(NNS, Name);
3875 } else {
3876 TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3877 QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3878 DependentTemplateName *CheckQTN =
3879 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3880 assert(!CheckQTN && "Dependent type name canonicalization broken");
3881 (void)CheckQTN;
3882 }
3883
3884 DependentTemplateNames.InsertNode(QTN, InsertPos);
3885 return TemplateName(QTN);
3886}
3887
3888/// \brief Retrieve the template name that represents a dependent
3889/// template name such as \c MetaFun::template operator+.
3890TemplateName
3891ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3892 OverloadedOperatorKind Operator) {
3893 assert((!NNS || NNS->isDependent()) &&
3894 "Nested name specifier must be dependent");
3895
3896 llvm::FoldingSetNodeID ID;
3897 DependentTemplateName::Profile(ID, NNS, Operator);
3898
3899 void *InsertPos = 0;
3900 DependentTemplateName *QTN
3901 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3902
3903 if (QTN)
3904 return TemplateName(QTN);
3905
3906 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3907 if (CanonNNS == NNS) {
3908 QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3909 } else {
3910 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3911 QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3912
3913 DependentTemplateName *CheckQTN
3914 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3915 assert(!CheckQTN && "Dependent template name canonicalization broken");
3916 (void)CheckQTN;
3917 }
3918
3919 DependentTemplateNames.InsertNode(QTN, InsertPos);
3920 return TemplateName(QTN);
3921}
3922
3923/// getFromTargetType - Given one of the integer types provided by
3924/// TargetInfo, produce the corresponding type. The unsigned @p Type
3925/// is actually a value of type @c TargetInfo::IntType.
3926CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3927 switch (Type) {
3928 case TargetInfo::NoInt: return CanQualType();
3929 case TargetInfo::SignedShort: return ShortTy;
3930 case TargetInfo::UnsignedShort: return UnsignedShortTy;
3931 case TargetInfo::SignedInt: return IntTy;
3932 case TargetInfo::UnsignedInt: return UnsignedIntTy;
3933 case TargetInfo::SignedLong: return LongTy;
3934 case TargetInfo::UnsignedLong: return UnsignedLongTy;
3935 case TargetInfo::SignedLongLong: return LongLongTy;
3936 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3937 }
3938
3939 assert(false && "Unhandled TargetInfo::IntType value");
3940 return CanQualType();
3941}
3942
3943//===----------------------------------------------------------------------===//
3944// Type Predicates.
3945//===----------------------------------------------------------------------===//
3946
3947/// isObjCNSObjectType - Return true if this is an NSObject object using
3948/// NSObject attribute on a c-style pointer type.
3949/// FIXME - Make it work directly on types.
3950/// FIXME: Move to Type.
3951///
3952bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3953 if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3954 if (TypedefDecl *TD = TDT->getDecl())
3955 if (TD->getAttr<ObjCNSObjectAttr>())
3956 return true;
3957 }
3958 return false;
3959}
3960
3961/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3962/// garbage collection attribute.
3963///
3964Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3965 Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3966 if (getLangOptions().ObjC1 &&
3967 getLangOptions().getGCMode() != LangOptions::NonGC) {
3968 GCAttrs = Ty.getObjCGCAttr();
3969 // Default behavious under objective-c's gc is for objective-c pointers
3970 // (or pointers to them) be treated as though they were declared
3971 // as __strong.
3972 if (GCAttrs == Qualifiers::GCNone) {
3973 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3974 GCAttrs = Qualifiers::Strong;
3975 else if (Ty->isPointerType())
3976 return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3977 }
3978 // Non-pointers have none gc'able attribute regardless of the attribute
3979 // set on them.
3980 else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3981 return Qualifiers::GCNone;
3982 }
3983 return GCAttrs;
3984}
3985
3986//===----------------------------------------------------------------------===//
3987// Type Compatibility Testing
3988//===----------------------------------------------------------------------===//
3989
3990/// areCompatVectorTypes - Return true if the two specified vector types are
3991/// compatible.
3992static bool areCompatVectorTypes(const VectorType *LHS,
3993 const VectorType *RHS) {
3994 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
3995 return LHS->getElementType() == RHS->getElementType() &&
3996 LHS->getNumElements() == RHS->getNumElements();
3997}
3998
3999//===----------------------------------------------------------------------===//
4000// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4001//===----------------------------------------------------------------------===//
4002
4003/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4004/// inheritance hierarchy of 'rProto'.
4005bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4006 ObjCProtocolDecl *rProto) {
4007 if (lProto == rProto)
4008 return true;
4009 for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4010 E = rProto->protocol_end(); PI != E; ++PI)
4011 if (ProtocolCompatibleWithProtocol(lProto, *PI))
4012 return true;
4013 return false;
4014}
4015
4016/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4017/// return true if lhs's protocols conform to rhs's protocol; false
4018/// otherwise.
4019bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4020 if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4021 return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4022 return false;
4023}
4024
4025/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4026/// ObjCQualifiedIDType.
4027bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4028 bool compare) {
4029 // Allow id<P..> and an 'id' or void* type in all cases.
4030 if (lhs->isVoidPointerType() ||
4031 lhs->isObjCIdType() || lhs->isObjCClassType())
4032 return true;
4033 else if (rhs->isVoidPointerType() ||
4034 rhs->isObjCIdType() || rhs->isObjCClassType())
4035 return true;
4036
4037 if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4038 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4039
4040 if (!rhsOPT) return false;
4041
4042 if (rhsOPT->qual_empty()) {
4043 // If the RHS is a unqualified interface pointer "NSString*",
4044 // make sure we check the class hierarchy.
4045 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4046 for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4047 E = lhsQID->qual_end(); I != E; ++I) {
4048 // when comparing an id<P> on lhs with a static type on rhs,
4049 // see if static class implements all of id's protocols, directly or
4050 // through its super class and categories.
4051 if (!rhsID->ClassImplementsProtocol(*I, true))
4052 return false;
4053 }
4054 }
4055 // If there are no qualifiers and no interface, we have an 'id'.
4056 return true;
4057 }
4058 // Both the right and left sides have qualifiers.
4059 for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4060 E = lhsQID->qual_end(); I != E; ++I) {
4061 ObjCProtocolDecl *lhsProto = *I;
4062 bool match = false;
4063
4064 // when comparing an id<P> on lhs with a static type on rhs,
4065 // see if static class implements all of id's protocols, directly or
4066 // through its super class and categories.
4067 for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4068 E = rhsOPT->qual_end(); J != E; ++J) {
4069 ObjCProtocolDecl *rhsProto = *J;
4070 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4071 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4072 match = true;
4073 break;
4074 }
4075 }
4076 // If the RHS is a qualified interface pointer "NSString<P>*",
4077 // make sure we check the class hierarchy.
4078 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4079 for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4080 E = lhsQID->qual_end(); I != E; ++I) {
4081 // when comparing an id<P> on lhs with a static type on rhs,
4082 // see if static class implements all of id's protocols, directly or
4083 // through its super class and categories.
4084 if (rhsID->ClassImplementsProtocol(*I, true)) {
4085 match = true;
4086 break;
4087 }
4088 }
4089 }
4090 if (!match)
4091 return false;
4092 }
4093
4094 return true;
4095 }
4096
4097 const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4098 assert(rhsQID && "One of the LHS/RHS should be id<x>");
4099
4100 if (const ObjCObjectPointerType *lhsOPT =
4101 lhs->getAsObjCInterfacePointerType()) {
4102 if (lhsOPT->qual_empty()) {
4103 bool match = false;
4104 if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4105 for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4106 E = rhsQID->qual_end(); I != E; ++I) {
4107 // when comparing an id<P> on lhs with a static type on rhs,
4108 // see if static class implements all of id's protocols, directly or
4109 // through its super class and categories.
4110 if (lhsID->ClassImplementsProtocol(*I, true)) {
4111 match = true;
4112 break;
4113 }
4114 }
4115 if (!match)
4116 return false;
4117 }
4118 return true;
4119 }
4120 // Both the right and left sides have qualifiers.
4121 for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4122 E = lhsOPT->qual_end(); I != E; ++I) {
4123 ObjCProtocolDecl *lhsProto = *I;
4124 bool match = false;
4125
4126 // when comparing an id<P> on lhs with a static type on rhs,
4127 // see if static class implements all of id's protocols, directly or
4128 // through its super class and categories.
4129 for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4130 E = rhsQID->qual_end(); J != E; ++J) {
4131 ObjCProtocolDecl *rhsProto = *J;
4132 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4133 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4134 match = true;
4135 break;
4136 }
4137 }
4138 if (!match)
4139 return false;
4140 }
4141 return true;
4142 }
4143 return false;
4144}
4145
4146/// canAssignObjCInterfaces - Return true if the two interface types are
4147/// compatible for assignment from RHS to LHS. This handles validation of any
4148/// protocol qualifiers on the LHS or RHS.
4149///
4150bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4151 const ObjCObjectPointerType *RHSOPT) {
4152 // If either type represents the built-in 'id' or 'Class' types, return true.
4153 if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
4154 return true;
4155
4156 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4157 return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4158 QualType(RHSOPT,0),
4159 false);
4160
4161 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4162 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4163 if (LHS && RHS) // We have 2 user-defined types.
4164 return canAssignObjCInterfaces(LHS, RHS);
4165
4166 return false;
4167}
4168
4169/// getIntersectionOfProtocols - This routine finds the intersection of set
4170/// of protocols inherited from two distinct objective-c pointer objects.
4171/// It is used to build composite qualifier list of the composite type of
4172/// the conditional expression involving two objective-c pointer objects.
4173static
4174void getIntersectionOfProtocols(ASTContext &Context,
4175 const ObjCObjectPointerType *LHSOPT,
4176 const ObjCObjectPointerType *RHSOPT,
4177 llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4178
4179 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4180 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4181
4182 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4183 unsigned LHSNumProtocols = LHS->getNumProtocols();
4184 if (LHSNumProtocols > 0)
4185 InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4186 else {
4187 llvm::SmallVector<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4188 Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
4189 InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4190 LHSInheritedProtocols.end());
4191 }
4192
4193 unsigned RHSNumProtocols = RHS->getNumProtocols();
4194 if (RHSNumProtocols > 0) {
4195 ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
4196 for (unsigned i = 0; i < RHSNumProtocols; ++i)
4197 if (InheritedProtocolSet.count(RHSProtocols[i]))
4198 IntersectionOfProtocols.push_back(RHSProtocols[i]);
4199 }
4200 else {
4201 llvm::SmallVector<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4202 Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
4203 // FIXME. This may cause duplication of protocols in the list, but should
4204 // be harmless.
4205 for (unsigned i = 0, len = RHSInheritedProtocols.size(); i < len; ++i)
4206 if (InheritedProtocolSet.count(RHSInheritedProtocols[i]))
4207 IntersectionOfProtocols.push_back(RHSInheritedProtocols[i]);
4208 }
4209}
4210
4211/// areCommonBaseCompatible - Returns common base class of the two classes if
4212/// one found. Note that this is O'2 algorithm. But it will be called as the
4213/// last type comparison in a ?-exp of ObjC pointer types before a
4214/// warning is issued. So, its invokation is extremely rare.
4215QualType ASTContext::areCommonBaseCompatible(
4216 const ObjCObjectPointerType *LHSOPT,
4217 const ObjCObjectPointerType *RHSOPT) {
4218 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4219 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4220 if (!LHS || !RHS)
4221 return QualType();
4222
4223 while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4224 QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4225 LHS = LHSTy->getAs<ObjCInterfaceType>();
4226 if (canAssignObjCInterfaces(LHS, RHS)) {
4227 llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4228 getIntersectionOfProtocols(*this,
4229 LHSOPT, RHSOPT, IntersectionOfProtocols);
4230 if (IntersectionOfProtocols.empty())
4231 LHSTy = getObjCObjectPointerType(LHSTy);
4232 else
4233 LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4234 IntersectionOfProtocols.size());
4235 return LHSTy;
4236 }
4237 }
4238
4239 return QualType();
4240}
4241
4242bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4243 const ObjCInterfaceType *RHS) {
4244 // Verify that the base decls are compatible: the RHS must be a subclass of
4245 // the LHS.
4246 if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4247 return false;
4248
4249 // RHS must have a superset of the protocols in the LHS. If the LHS is not
4250 // protocol qualified at all, then we are good.
4251 if (LHS->getNumProtocols() == 0)
4252 return true;
4253
4254 // Okay, we know the LHS has protocol qualifiers. If the RHS doesn't, then it
4255 // isn't a superset.
4256 if (RHS->getNumProtocols() == 0)
4257 return true; // FIXME: should return false!
4258
4259 for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4260 LHSPE = LHS->qual_end();
4261 LHSPI != LHSPE; LHSPI++) {
4262 bool RHSImplementsProtocol = false;
4263
4264 // If the RHS doesn't implement the protocol on the left, the types
4265 // are incompatible.
4266 for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4267 RHSPE = RHS->qual_end();
4268 RHSPI != RHSPE; RHSPI++) {
4269 if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4270 RHSImplementsProtocol = true;
4271 break;
4272 }
4273 }
4274 // FIXME: For better diagnostics, consider passing back the protocol name.
4275 if (!RHSImplementsProtocol)
4276 return false;
4277 }
4278 // The RHS implements all protocols listed on the LHS.
4279 return true;
4280}
4281
4282bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4283 // get the "pointed to" types
4284 const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4285 const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4286
4287 if (!LHSOPT || !RHSOPT)
4288 return false;
4289
4290 return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4291 canAssignObjCInterfaces(RHSOPT, LHSOPT);
4292}
4293
4294/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4295/// both shall have the identically qualified version of a compatible type.
4296/// C99 6.2.7p1: Two types have compatible types if their types are the
4297/// same. See 6.7.[2,3,5] for additional rules.
4298bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4299 if (getLangOptions().CPlusPlus)
4300 return hasSameType(LHS, RHS);
4301
4302 return !mergeTypes(LHS, RHS).isNull();
4303}
4304
4305QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
4306 const FunctionType *lbase = lhs->getAs<FunctionType>();
4307 const FunctionType *rbase = rhs->getAs<FunctionType>();
4308 const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4309 const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4310 bool allLTypes = true;
4311 bool allRTypes = true;
4312
4313 // Check return type
4314 QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4315 if (retType.isNull()) return QualType();
4316 if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4317 allLTypes = false;
4318 if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4319 allRTypes = false;
4320 // FIXME: double check this
4321 bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
4322 if (NoReturn != lbase->getNoReturnAttr())
4323 allLTypes = false;
4324 if (NoReturn != rbase->getNoReturnAttr())
4325 allRTypes = false;
4326 CallingConv lcc = lbase->getCallConv();
4327 CallingConv rcc = rbase->getCallConv();
4328 // Compatible functions must have compatible calling conventions
4329 if (!isSameCallConv(lcc, rcc))
4330 return QualType();
4331
4332 if (lproto && rproto) { // two C99 style function prototypes
4333 assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4334 "C++ shouldn't be here");
4335 unsigned lproto_nargs = lproto->getNumArgs();
4336 unsigned rproto_nargs = rproto->getNumArgs();
4337
4338 // Compatible functions must have the same number of arguments
4339 if (lproto_nargs != rproto_nargs)
4340 return QualType();
4341
4342 // Variadic and non-variadic functions aren't compatible
4343 if (lproto->isVariadic() != rproto->isVariadic())
4344 return QualType();
4345
4346 if (lproto->getTypeQuals() != rproto->getTypeQuals())
4347 return QualType();
4348
4349 // Check argument compatibility
4350 llvm::SmallVector<QualType, 10> types;
4351 for (unsigned i = 0; i < lproto_nargs; i++) {
4352 QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4353 QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4354 QualType argtype = mergeTypes(largtype, rargtype);
4355 if (argtype.isNull()) return QualType();
4356 types.push_back(argtype);
4357 if (getCanonicalType(argtype) != getCanonicalType(largtype))
4358 allLTypes = false;
4359 if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4360 allRTypes = false;
4361 }
4362 if (allLTypes) return lhs;
4363 if (allRTypes) return rhs;
4364 return getFunctionType(retType, types.begin(), types.size(),
4365 lproto->isVariadic(), lproto->getTypeQuals(),
4366 NoReturn, lcc);
4367 }
4368
4369 if (lproto) allRTypes = false;
4370 if (rproto) allLTypes = false;
4371
4372 const FunctionProtoType *proto = lproto ? lproto : rproto;
4373 if (proto) {
4374 assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4375 if (proto->isVariadic()) return QualType();
4376 // Check that the types are compatible with the types that
4377 // would result from default argument promotions (C99 6.7.5.3p15).
4378 // The only types actually affected are promotable integer
4379 // types and floats, which would be passed as a different
4380 // type depending on whether the prototype is visible.
4381 unsigned proto_nargs = proto->getNumArgs();
4382 for (unsigned i = 0; i < proto_nargs; ++i) {
4383 QualType argTy = proto->getArgType(i);
4384
4385 // Look at the promotion type of enum types, since that is the type used
4386 // to pass enum values.
4387 if (const EnumType *Enum = argTy->getAs<EnumType>())
4388 argTy = Enum->getDecl()->getPromotionType();
4389
4390 if (argTy->isPromotableIntegerType() ||
4391 getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4392 return QualType();
4393 }
4394
4395 if (allLTypes) return lhs;
4396 if (allRTypes) return rhs;
4397 return getFunctionType(retType, proto->arg_type_begin(),
4398 proto->getNumArgs(), proto->isVariadic(),
4399 proto->getTypeQuals(), NoReturn, lcc);
4400 }
4401
4402 if (allLTypes) return lhs;
4403 if (allRTypes) return rhs;
4404 return getFunctionNoProtoType(retType, NoReturn, lcc);
4405}
4406
4407QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
4408 // C++ [expr]: If an expression initially has the type "reference to T", the
4409 // type is adjusted to "T" prior to any further analysis, the expression
4410 // designates the object or function denoted by the reference, and the
4411 // expression is an lvalue unless the reference is an rvalue reference and
4412 // the expression is a function call (possibly inside parentheses).
4413 assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4414 assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4415
4416 QualType LHSCan = getCanonicalType(LHS),
4417 RHSCan = getCanonicalType(RHS);
4418
4419 // If two types are identical, they are compatible.
4420 if (LHSCan == RHSCan)
4421 return LHS;
4422
4423 // If the qualifiers are different, the types aren't compatible... mostly.
4424 Qualifiers LQuals = LHSCan.getLocalQualifiers();
4425 Qualifiers RQuals = RHSCan.getLocalQualifiers();
4426 if (LQuals != RQuals) {
4427 // If any of these qualifiers are different, we have a type
4428 // mismatch.
4429 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4430 LQuals.getAddressSpace() != RQuals.getAddressSpace())
4431 return QualType();
4432
4433 // Exactly one GC qualifier difference is allowed: __strong is
4434 // okay if the other type has no GC qualifier but is an Objective
4435 // C object pointer (i.e. implicitly strong by default). We fix
4436 // this by pretending that the unqualified type was actually
4437 // qualified __strong.
4438 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4439 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4440 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4441
4442 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4443 return QualType();
4444
4445 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4446 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4447 }
4448 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4449 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4450 }
4451 return QualType();
4452 }
4453
4454 // Okay, qualifiers are equal.
4455
4456 Type::TypeClass LHSClass = LHSCan->getTypeClass();
4457 Type::TypeClass RHSClass = RHSCan->getTypeClass();
4458
4459 // We want to consider the two function types to be the same for these
4460 // comparisons, just force one to the other.
4461 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4462 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4463
4464 // Same as above for arrays
4465 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4466 LHSClass = Type::ConstantArray;
4467 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4468 RHSClass = Type::ConstantArray;
4469
4470 // Canonicalize ExtVector -> Vector.
4471 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4472 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4473
4474 // If the canonical type classes don't match.
4475 if (LHSClass != RHSClass) {
4476 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4477 // a signed integer type, or an unsigned integer type.
4478 // Compatibility is based on the underlying type, not the promotion
4479 // type.
4480 if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4481 if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4482 return RHS;
4483 }
4484 if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4485 if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4486 return LHS;
4487 }
4488
4489 return QualType();
4490 }
4491
4492 // The canonical type classes match.
4493 switch (LHSClass) {
4494#define TYPE(Class, Base)
4495#define ABSTRACT_TYPE(Class, Base)
4496#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4497#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4498#include "clang/AST/TypeNodes.def"
4499 assert(false && "Non-canonical and dependent types shouldn't get here");
4500 return QualType();
4501
4502 case Type::LValueReference:
4503 case Type::RValueReference:
4504 case Type::MemberPointer:
4505 assert(false && "C++ should never be in mergeTypes");
4506 return QualType();
4507
4508 case Type::IncompleteArray:
4509 case Type::VariableArray:
4510 case Type::FunctionProto:
4511 case Type::ExtVector:
4512 assert(false && "Types are eliminated above");
4513 return QualType();
4514
4515 case Type::Pointer:
4516 {
4517 // Merge two pointer types, while trying to preserve typedef info
4518 QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4519 QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4520 QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4521 if (ResultType.isNull()) return QualType();
4522 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4523 return LHS;
4524 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4525 return RHS;
4526 return getPointerType(ResultType);
4527 }
4528 case Type::BlockPointer:
4529 {
4530 // Merge two block pointer types, while trying to preserve typedef info
4531 QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4532 QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4533 QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4534 if (ResultType.isNull()) return QualType();
4535 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4536 return LHS;
4537 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4538 return RHS;
4539 return getBlockPointerType(ResultType);
4540 }
4541 case Type::ConstantArray:
4542 {
4543 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4544 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4545 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4546 return QualType();
4547
4548 QualType LHSElem = getAsArrayType(LHS)->getElementType();
4549 QualType RHSElem = getAsArrayType(RHS)->getElementType();
4550 QualType ResultType = mergeTypes(LHSElem, RHSElem);
4551 if (ResultType.isNull()) return QualType();
4552 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4553 return LHS;
4554 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4555 return RHS;
4556 if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4557 ArrayType::ArraySizeModifier(), 0);
4558 if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4559 ArrayType::ArraySizeModifier(), 0);
4560 const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4561 const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4562 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4563 return LHS;
4564 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4565 return RHS;
4566 if (LVAT) {
4567 // FIXME: This isn't correct! But tricky to implement because
4568 // the array's size has to be the size of LHS, but the type
4569 // has to be different.
4570 return LHS;
4571 }
4572 if (RVAT) {
4573 // FIXME: This isn't correct! But tricky to implement because
4574 // the array's size has to be the size of RHS, but the type
4575 // has to be different.
4576 return RHS;
4577 }
4578 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4579 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4580 return getIncompleteArrayType(ResultType,
4581 ArrayType::ArraySizeModifier(), 0);
4582 }
4583 case Type::FunctionNoProto:
4584 return mergeFunctionTypes(LHS, RHS);
4585 case Type::Record:
4586 case Type::Enum:
4587 return QualType();
4588 case Type::Builtin:
4589 // Only exactly equal builtin types are compatible, which is tested above.
4590 return QualType();
4591 case Type::Complex:
4592 // Distinct complex types are incompatible.
4593 return QualType();
4594 case Type::Vector:
4595 // FIXME: The merged type should be an ExtVector!
4596 if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4597 return LHS;
4598 return QualType();
4599 case Type::ObjCInterface: {
4600 // Check if the interfaces are assignment compatible.
4601 // FIXME: This should be type compatibility, e.g. whether
4602 // "LHS x; RHS x;" at global scope is legal.
4603 const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4604 const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4605 if (LHSIface && RHSIface &&
4606 canAssignObjCInterfaces(LHSIface, RHSIface))
4607 return LHS;
4608
4609 return QualType();
4610 }
4611 case Type::ObjCObjectPointer: {
4612 if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4613 RHS->getAs<ObjCObjectPointerType>()))
4614 return LHS;
4615
4616 return QualType();
4617 }
4618 case Type::TemplateSpecialization:
4619 assert(false && "Dependent types have no size");
4620 break;
4621 }
4622
4623 return QualType();
4624}
4625
4626//===----------------------------------------------------------------------===//
4627// Integer Predicates
4628//===----------------------------------------------------------------------===//
4629
4630unsigned ASTContext::getIntWidth(QualType T) {
4631 if (T->isBooleanType())
4632 return 1;
4633 if (EnumType *ET = dyn_cast<EnumType>(T))
4634 T = ET->getDecl()->getIntegerType();
4635 // For builtin types, just use the standard type sizing method
4636 return (unsigned)getTypeSize(T);
4637}
4638
4639QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4640 assert(T->isSignedIntegerType() && "Unexpected type");
4641
4642 // Turn <4 x signed int> -> <4 x unsigned int>
4643 if (const VectorType *VTy = T->getAs<VectorType>())
4644 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4645 VTy->getNumElements(), VTy->isAltiVec(), VTy->isPixel());
4646
4647 // For enums, we return the unsigned version of the base type.
4648 if (const EnumType *ETy = T->getAs<EnumType>())
4649 T = ETy->getDecl()->getIntegerType();
4650
4651 const BuiltinType *BTy = T->getAs<BuiltinType>();
4652 assert(BTy && "Unexpected signed integer type");
4653 switch (BTy->getKind()) {
4654 case BuiltinType::Char_S:
4655 case BuiltinType::SChar:
4656 return UnsignedCharTy;
4657 case BuiltinType::Short:
4658 return UnsignedShortTy;
4659 case BuiltinType::Int:
4660 return UnsignedIntTy;
4661 case BuiltinType::Long:
4662 return UnsignedLongTy;
4663 case BuiltinType::LongLong:
4664 return UnsignedLongLongTy;
4665 case BuiltinType::Int128:
4666 return UnsignedInt128Ty;
4667 default:
4668 assert(0 && "Unexpected signed integer type");
4669 return QualType();
4670 }
4671}
4672
4673ExternalASTSource::~ExternalASTSource() { }
4674
4675void ExternalASTSource::PrintStats() { }
4676
4677
4678//===----------------------------------------------------------------------===//
4679// Builtin Type Computation
4680//===----------------------------------------------------------------------===//
4681
4682/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4683/// pointer over the consumed characters. This returns the resultant type.
4684static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4685 ASTContext::GetBuiltinTypeError &Error,
4686 bool AllowTypeModifiers = true) {
4687 // Modifiers.
4688 int HowLong = 0;
4689 bool Signed = false, Unsigned = false;
4690
4691 // Read the modifiers first.
4692 bool Done = false;
4693 while (!Done) {
4694 switch (*Str++) {
4695 default: Done = true; --Str; break;
4696 case 'S':
4697 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4698 assert(!Signed && "Can't use 'S' modifier multiple times!");
4699 Signed = true;
4700 break;
4701 case 'U':
4702 assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4703 assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4704 Unsigned = true;
4705 break;
4706 case 'L':
4707 assert(HowLong <= 2 && "Can't have LLLL modifier");
4708 ++HowLong;
4709 break;
4710 }
4711 }
4712
4713 QualType Type;
4714
4715 // Read the base type.
4716 switch (*Str++) {
4717 default: assert(0 && "Unknown builtin type letter!");
4718 case 'v':
4719 assert(HowLong == 0 && !Signed && !Unsigned &&
4720 "Bad modifiers used with 'v'!");
4721 Type = Context.VoidTy;
4722 break;
4723 case 'f':
4724 assert(HowLong == 0 && !Signed && !Unsigned &&
4725 "Bad modifiers used with 'f'!");
4726 Type = Context.FloatTy;
4727 break;
4728 case 'd':
4729 assert(HowLong < 2 && !Signed && !Unsigned &&
4730 "Bad modifiers used with 'd'!");
4731 if (HowLong)
4732 Type = Context.LongDoubleTy;
4733 else
4734 Type = Context.DoubleTy;
4735 break;
4736 case 's':
4737 assert(HowLong == 0 && "Bad modifiers used with 's'!");
4738 if (Unsigned)
4739 Type = Context.UnsignedShortTy;
4740 else
4741 Type = Context.ShortTy;
4742 break;
4743 case 'i':
4744 if (HowLong == 3)
4745 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4746 else if (HowLong == 2)
4747 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4748 else if (HowLong == 1)
4749 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4750 else
4751 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4752 break;
4753 case 'c':
4754 assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4755 if (Signed)
4756 Type = Context.SignedCharTy;
4757 else if (Unsigned)
4758 Type = Context.UnsignedCharTy;
4759 else
4760 Type = Context.CharTy;
4761 break;
4762 case 'b': // boolean
4763 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4764 Type = Context.BoolTy;
4765 break;
4766 case 'z': // size_t.
4767 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4768 Type = Context.getSizeType();
4769 break;
4770 case 'F':
4771 Type = Context.getCFConstantStringType();
4772 break;
4773 case 'a':
4774 Type = Context.getBuiltinVaListType();
4775 assert(!Type.isNull() && "builtin va list type not initialized!");
4776 break;
4777 case 'A':
4778 // This is a "reference" to a va_list; however, what exactly
4779 // this means depends on how va_list is defined. There are two
4780 // different kinds of va_list: ones passed by value, and ones
4781 // passed by reference. An example of a by-value va_list is
4782 // x86, where va_list is a char*. An example of by-ref va_list
4783 // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4784 // we want this argument to be a char*&; for x86-64, we want
4785 // it to be a __va_list_tag*.
4786 Type = Context.getBuiltinVaListType();
4787 assert(!Type.isNull() && "builtin va list type not initialized!");
4788 if (Type->isArrayType()) {
4789 Type = Context.getArrayDecayedType(Type);
4790 } else {
4791 Type = Context.getLValueReferenceType(Type);
4792 }
4793 break;
4794 case 'V': {
4795 char *End;
4796 unsigned NumElements = strtoul(Str, &End, 10);
4797 assert(End != Str && "Missing vector size");
4798
4799 Str = End;
4800
4801 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4802 // FIXME: Don't know what to do about AltiVec.
4803 Type = Context.getVectorType(ElementType, NumElements, false, false);
4804 break;
4805 }
4806 case 'X': {
4807 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4808 Type = Context.getComplexType(ElementType);
4809 break;
4810 }
4811 case 'P':
4812 Type = Context.getFILEType();
4813 if (Type.isNull()) {
4814 Error = ASTContext::GE_Missing_stdio;
4815 return QualType();
4816 }
4817 break;
4818 case 'J':
4819 if (Signed)
4820 Type = Context.getsigjmp_bufType();
4821 else
4822 Type = Context.getjmp_bufType();
4823
4824 if (Type.isNull()) {
4825 Error = ASTContext::GE_Missing_setjmp;
4826 return QualType();
4827 }
4828 break;
4829 }
4830
4831 if (!AllowTypeModifiers)
4832 return Type;
4833
4834 Done = false;
4835 while (!Done) {
4836 switch (*Str++) {
4837 default: Done = true; --Str; break;
4838 case '*':
4839 Type = Context.getPointerType(Type);
4840 break;
4841 case '&':
4842 Type = Context.getLValueReferenceType(Type);
4843 break;
4844 // FIXME: There's no way to have a built-in with an rvalue ref arg.
4845 case 'C':
4846 Type = Type.withConst();
4847 break;
4848 case 'D':
4849 Type = Context.getVolatileType(Type);
4850 break;
4851 }
4852 }
4853
4854 return Type;
4855}
4856
4857/// GetBuiltinType - Return the type for the specified builtin.
4858QualType ASTContext::GetBuiltinType(unsigned id,
4859 GetBuiltinTypeError &Error) {
4860 const char *TypeStr = BuiltinInfo.GetTypeString(id);
4861
4862 llvm::SmallVector<QualType, 8> ArgTypes;
4863
4864 Error = GE_None;
4865 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4866 if (Error != GE_None)
4867 return QualType();
4868 while (TypeStr[0] && TypeStr[0] != '.') {
4869 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4870 if (Error != GE_None)
4871 return QualType();
4872
4873 // Do array -> pointer decay. The builtin should use the decayed type.
4874 if (Ty->isArrayType())
4875 Ty = getArrayDecayedType(Ty);
4876
4877 ArgTypes.push_back(Ty);
4878 }
4879
4880 assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4881 "'.' should only occur at end of builtin type list!");
4882
4883 // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4884 if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4885 return getFunctionNoProtoType(ResType);
4886 return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4887 TypeStr[0] == '.', 0);
4888}
4889
4890QualType
4891ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4892 // Perform the usual unary conversions. We do this early so that
4893 // integral promotions to "int" can allow us to exit early, in the
4894 // lhs == rhs check. Also, for conversion purposes, we ignore any
4895 // qualifiers. For example, "const float" and "float" are
4896 // equivalent.
4897 if (lhs->isPromotableIntegerType())
4898 lhs = getPromotedIntegerType(lhs);
4899 else
4900 lhs = lhs.getUnqualifiedType();
4901 if (rhs->isPromotableIntegerType())
4902 rhs = getPromotedIntegerType(rhs);
4903 else
4904 rhs = rhs.getUnqualifiedType();
4905
4906 // If both types are identical, no conversion is needed.
4907 if (lhs == rhs)
4908 return lhs;
4909
4910 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4911 // The caller can deal with this (e.g. pointer + int).
4912 if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4913 return lhs;
4914
4915 // At this point, we have two different arithmetic types.
4916
4917 // Handle complex types first (C99 6.3.1.8p1).
4918 if (lhs->isComplexType() || rhs->isComplexType()) {
4919 // if we have an integer operand, the result is the complex type.
4920 if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4921 // convert the rhs to the lhs complex type.
4922 return lhs;
4923 }
4924 if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4925 // convert the lhs to the rhs complex type.
4926 return rhs;
4927 }
4928 // This handles complex/complex, complex/float, or float/complex.
4929 // When both operands are complex, the shorter operand is converted to the
4930 // type of the longer, and that is the type of the result. This corresponds
4931 // to what is done when combining two real floating-point operands.
4932 // The fun begins when size promotion occur across type domains.
4933 // From H&S 6.3.4: When one operand is complex and the other is a real
4934 // floating-point type, the less precise type is converted, within it's
4935 // real or complex domain, to the precision of the other type. For example,
4936 // when combining a "long double" with a "double _Complex", the
4937 // "double _Complex" is promoted to "long double _Complex".
4938 int result = getFloatingTypeOrder(lhs, rhs);
4939
4940 if (result > 0) { // The left side is bigger, convert rhs.
4941 rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4942 } else if (result < 0) { // The right side is bigger, convert lhs.
4943 lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4944 }
4945 // At this point, lhs and rhs have the same rank/size. Now, make sure the
4946 // domains match. This is a requirement for our implementation, C99
4947 // does not require this promotion.
4948 if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4949 if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4950 return rhs;
4951 } else { // handle "_Complex double, double".
4952 return lhs;
4953 }
4954 }
4955 return lhs; // The domain/size match exactly.
4956 }
4957 // Now handle "real" floating types (i.e. float, double, long double).
4958 if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4959 // if we have an integer operand, the result is the real floating type.
4960 if (rhs->isIntegerType()) {
4961 // convert rhs to the lhs floating point type.
4962 return lhs;
4963 }
4964 if (rhs->isComplexIntegerType()) {
4965 // convert rhs to the complex floating point type.
4966 return getComplexType(lhs);
4967 }
4968 if (lhs->isIntegerType()) {
4969 // convert lhs to the rhs floating point type.
4970 return rhs;
4971 }
4972 if (lhs->isComplexIntegerType()) {
4973 // convert lhs to the complex floating point type.
4974 return getComplexType(rhs);
4975 }
4976 // We have two real floating types, float/complex combos were handled above.
4977 // Convert the smaller operand to the bigger result.
4978 int result = getFloatingTypeOrder(lhs, rhs);
4979 if (result > 0) // convert the rhs
4980 return lhs;
4981 assert(result < 0 && "illegal float comparison");
4982 return rhs; // convert the lhs
4983 }
4984 if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
4985 // Handle GCC complex int extension.
4986 const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
4987 const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
4988
4989 if (lhsComplexInt && rhsComplexInt) {
4990 if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
4991 rhsComplexInt->getElementType()) >= 0)
4992 return lhs; // convert the rhs
4993 return rhs;
4994 } else if (lhsComplexInt && rhs->isIntegerType()) {
4995 // convert the rhs to the lhs complex type.
4996 return lhs;
4997 } else if (rhsComplexInt && lhs->isIntegerType()) {
4998 // convert the lhs to the rhs complex type.
4999 return rhs;
5000 }
5001 }
5002 // Finally, we have two differing integer types.
5003 // The rules for this case are in C99 6.3.1.8
5004 int compare = getIntegerTypeOrder(lhs, rhs);
5005 bool lhsSigned = lhs->isSignedIntegerType(),
5006 rhsSigned = rhs->isSignedIntegerType();
5007 QualType destType;
5008 if (lhsSigned == rhsSigned) {
5009 // Same signedness; use the higher-ranked type
5010 destType = compare >= 0 ? lhs : rhs;
5011 } else if (compare != (lhsSigned ? 1 : -1)) {
5012 // The unsigned type has greater than or equal rank to the
5013 // signed type, so use the unsigned type
5014 destType = lhsSigned ? rhs : lhs;
5015 } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5016 // The two types are different widths; if we are here, that
5017 // means the signed type is larger than the unsigned type, so
5018 // use the signed type.
5019 destType = lhsSigned ? lhs : rhs;
5020 } else {
5021 // The signed type is higher-ranked than the unsigned type,
5022 // but isn't actually any bigger (like unsigned int and long
5023 // on most 32-bit systems). Use the unsigned type corresponding
5024 // to the signed type.
5025 destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5026 }
5027 return destType;
5028}