Shih-wei Liao | f8fd82b | 2010-02-10 11:10:31 -0800 | [diff] [blame^] | 1 | //===--- Expr.cpp - Expression AST Node Implementation --------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the Expr class and subclasses. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "clang/AST/Expr.h" |
| 15 | #include "clang/AST/ExprCXX.h" |
| 16 | #include "clang/AST/APValue.h" |
| 17 | #include "clang/AST/ASTContext.h" |
| 18 | #include "clang/AST/DeclObjC.h" |
| 19 | #include "clang/AST/DeclCXX.h" |
| 20 | #include "clang/AST/DeclTemplate.h" |
| 21 | #include "clang/AST/RecordLayout.h" |
| 22 | #include "clang/AST/StmtVisitor.h" |
| 23 | #include "clang/Basic/Builtins.h" |
| 24 | #include "clang/Basic/TargetInfo.h" |
| 25 | #include "llvm/Support/ErrorHandling.h" |
| 26 | #include "llvm/Support/raw_ostream.h" |
| 27 | #include <algorithm> |
| 28 | using namespace clang; |
| 29 | |
| 30 | //===----------------------------------------------------------------------===// |
| 31 | // Primary Expressions. |
| 32 | //===----------------------------------------------------------------------===// |
| 33 | |
| 34 | void ExplicitTemplateArgumentList::initializeFrom( |
| 35 | const TemplateArgumentListInfo &Info) { |
| 36 | LAngleLoc = Info.getLAngleLoc(); |
| 37 | RAngleLoc = Info.getRAngleLoc(); |
| 38 | NumTemplateArgs = Info.size(); |
| 39 | |
| 40 | TemplateArgumentLoc *ArgBuffer = getTemplateArgs(); |
| 41 | for (unsigned i = 0; i != NumTemplateArgs; ++i) |
| 42 | new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]); |
| 43 | } |
| 44 | |
| 45 | void ExplicitTemplateArgumentList::copyInto( |
| 46 | TemplateArgumentListInfo &Info) const { |
| 47 | Info.setLAngleLoc(LAngleLoc); |
| 48 | Info.setRAngleLoc(RAngleLoc); |
| 49 | for (unsigned I = 0; I != NumTemplateArgs; ++I) |
| 50 | Info.addArgument(getTemplateArgs()[I]); |
| 51 | } |
| 52 | |
| 53 | std::size_t ExplicitTemplateArgumentList::sizeFor( |
| 54 | const TemplateArgumentListInfo &Info) { |
| 55 | return sizeof(ExplicitTemplateArgumentList) + |
| 56 | sizeof(TemplateArgumentLoc) * Info.size(); |
| 57 | } |
| 58 | |
| 59 | void DeclRefExpr::computeDependence() { |
| 60 | TypeDependent = false; |
| 61 | ValueDependent = false; |
| 62 | |
| 63 | NamedDecl *D = getDecl(); |
| 64 | |
| 65 | // (TD) C++ [temp.dep.expr]p3: |
| 66 | // An id-expression is type-dependent if it contains: |
| 67 | // |
| 68 | // and |
| 69 | // |
| 70 | // (VD) C++ [temp.dep.constexpr]p2: |
| 71 | // An identifier is value-dependent if it is: |
| 72 | |
| 73 | // (TD) - an identifier that was declared with dependent type |
| 74 | // (VD) - a name declared with a dependent type, |
| 75 | if (getType()->isDependentType()) { |
| 76 | TypeDependent = true; |
| 77 | ValueDependent = true; |
| 78 | } |
| 79 | // (TD) - a conversion-function-id that specifies a dependent type |
| 80 | else if (D->getDeclName().getNameKind() |
| 81 | == DeclarationName::CXXConversionFunctionName && |
| 82 | D->getDeclName().getCXXNameType()->isDependentType()) { |
| 83 | TypeDependent = true; |
| 84 | ValueDependent = true; |
| 85 | } |
| 86 | // (TD) - a template-id that is dependent, |
| 87 | else if (hasExplicitTemplateArgumentList() && |
| 88 | TemplateSpecializationType::anyDependentTemplateArguments( |
| 89 | getTemplateArgs(), |
| 90 | getNumTemplateArgs())) { |
| 91 | TypeDependent = true; |
| 92 | ValueDependent = true; |
| 93 | } |
| 94 | // (VD) - the name of a non-type template parameter, |
| 95 | else if (isa<NonTypeTemplateParmDecl>(D)) |
| 96 | ValueDependent = true; |
| 97 | // (VD) - a constant with integral or enumeration type and is |
| 98 | // initialized with an expression that is value-dependent. |
| 99 | else if (VarDecl *Var = dyn_cast<VarDecl>(D)) { |
| 100 | if (Var->getType()->isIntegralType() && |
| 101 | Var->getType().getCVRQualifiers() == Qualifiers::Const) { |
| 102 | if (const Expr *Init = Var->getAnyInitializer()) |
| 103 | if (Init->isValueDependent()) |
| 104 | ValueDependent = true; |
| 105 | } |
| 106 | } |
| 107 | // (TD) - a nested-name-specifier or a qualified-id that names a |
| 108 | // member of an unknown specialization. |
| 109 | // (handled by DependentScopeDeclRefExpr) |
| 110 | } |
| 111 | |
| 112 | DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier, |
| 113 | SourceRange QualifierRange, |
| 114 | ValueDecl *D, SourceLocation NameLoc, |
| 115 | const TemplateArgumentListInfo *TemplateArgs, |
| 116 | QualType T) |
| 117 | : Expr(DeclRefExprClass, T, false, false), |
| 118 | DecoratedD(D, |
| 119 | (Qualifier? HasQualifierFlag : 0) | |
| 120 | (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)), |
| 121 | Loc(NameLoc) { |
| 122 | if (Qualifier) { |
| 123 | NameQualifier *NQ = getNameQualifier(); |
| 124 | NQ->NNS = Qualifier; |
| 125 | NQ->Range = QualifierRange; |
| 126 | } |
| 127 | |
| 128 | if (TemplateArgs) |
| 129 | getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs); |
| 130 | |
| 131 | computeDependence(); |
| 132 | } |
| 133 | |
| 134 | DeclRefExpr *DeclRefExpr::Create(ASTContext &Context, |
| 135 | NestedNameSpecifier *Qualifier, |
| 136 | SourceRange QualifierRange, |
| 137 | ValueDecl *D, |
| 138 | SourceLocation NameLoc, |
| 139 | QualType T, |
| 140 | const TemplateArgumentListInfo *TemplateArgs) { |
| 141 | std::size_t Size = sizeof(DeclRefExpr); |
| 142 | if (Qualifier != 0) |
| 143 | Size += sizeof(NameQualifier); |
| 144 | |
| 145 | if (TemplateArgs) |
| 146 | Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs); |
| 147 | |
| 148 | void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>()); |
| 149 | return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc, |
| 150 | TemplateArgs, T); |
| 151 | } |
| 152 | |
| 153 | SourceRange DeclRefExpr::getSourceRange() const { |
| 154 | // FIXME: Does not handle multi-token names well, e.g., operator[]. |
| 155 | SourceRange R(Loc); |
| 156 | |
| 157 | if (hasQualifier()) |
| 158 | R.setBegin(getQualifierRange().getBegin()); |
| 159 | if (hasExplicitTemplateArgumentList()) |
| 160 | R.setEnd(getRAngleLoc()); |
| 161 | return R; |
| 162 | } |
| 163 | |
| 164 | // FIXME: Maybe this should use DeclPrinter with a special "print predefined |
| 165 | // expr" policy instead. |
| 166 | std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentType IT, |
| 167 | const Decl *CurrentDecl) { |
| 168 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { |
| 169 | if (IT != PrettyFunction) |
| 170 | return FD->getNameAsString(); |
| 171 | |
| 172 | llvm::SmallString<256> Name; |
| 173 | llvm::raw_svector_ostream Out(Name); |
| 174 | |
| 175 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| 176 | if (MD->isVirtual()) |
| 177 | Out << "virtual "; |
| 178 | if (MD->isStatic()) |
| 179 | Out << "static "; |
| 180 | } |
| 181 | |
| 182 | PrintingPolicy Policy(Context.getLangOptions()); |
| 183 | Policy.SuppressTagKind = true; |
| 184 | |
| 185 | std::string Proto = FD->getQualifiedNameAsString(Policy); |
| 186 | |
| 187 | const FunctionType *AFT = FD->getType()->getAs<FunctionType>(); |
| 188 | const FunctionProtoType *FT = 0; |
| 189 | if (FD->hasWrittenPrototype()) |
| 190 | FT = dyn_cast<FunctionProtoType>(AFT); |
| 191 | |
| 192 | Proto += "("; |
| 193 | if (FT) { |
| 194 | llvm::raw_string_ostream POut(Proto); |
| 195 | for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { |
| 196 | if (i) POut << ", "; |
| 197 | std::string Param; |
| 198 | FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy); |
| 199 | POut << Param; |
| 200 | } |
| 201 | |
| 202 | if (FT->isVariadic()) { |
| 203 | if (FD->getNumParams()) POut << ", "; |
| 204 | POut << "..."; |
| 205 | } |
| 206 | } |
| 207 | Proto += ")"; |
| 208 | |
| 209 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| 210 | Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers()); |
| 211 | if (ThisQuals.hasConst()) |
| 212 | Proto += " const"; |
| 213 | if (ThisQuals.hasVolatile()) |
| 214 | Proto += " volatile"; |
| 215 | } |
| 216 | |
| 217 | if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) |
| 218 | AFT->getResultType().getAsStringInternal(Proto, Policy); |
| 219 | |
| 220 | Out << Proto; |
| 221 | |
| 222 | Out.flush(); |
| 223 | return Name.str().str(); |
| 224 | } |
| 225 | if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { |
| 226 | llvm::SmallString<256> Name; |
| 227 | llvm::raw_svector_ostream Out(Name); |
| 228 | Out << (MD->isInstanceMethod() ? '-' : '+'); |
| 229 | Out << '['; |
| 230 | Out << MD->getClassInterface()->getNameAsString(); |
| 231 | if (const ObjCCategoryImplDecl *CID = |
| 232 | dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) { |
| 233 | Out << '('; |
| 234 | Out << CID->getNameAsString(); |
| 235 | Out << ')'; |
| 236 | } |
| 237 | Out << ' '; |
| 238 | Out << MD->getSelector().getAsString(); |
| 239 | Out << ']'; |
| 240 | |
| 241 | Out.flush(); |
| 242 | return Name.str().str(); |
| 243 | } |
| 244 | if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { |
| 245 | // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. |
| 246 | return "top level"; |
| 247 | } |
| 248 | return ""; |
| 249 | } |
| 250 | |
| 251 | /// getValueAsApproximateDouble - This returns the value as an inaccurate |
| 252 | /// double. Note that this may cause loss of precision, but is useful for |
| 253 | /// debugging dumps, etc. |
| 254 | double FloatingLiteral::getValueAsApproximateDouble() const { |
| 255 | llvm::APFloat V = getValue(); |
| 256 | bool ignored; |
| 257 | V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, |
| 258 | &ignored); |
| 259 | return V.convertToDouble(); |
| 260 | } |
| 261 | |
| 262 | StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData, |
| 263 | unsigned ByteLength, bool Wide, |
| 264 | QualType Ty, |
| 265 | const SourceLocation *Loc, |
| 266 | unsigned NumStrs) { |
| 267 | // Allocate enough space for the StringLiteral plus an array of locations for |
| 268 | // any concatenated string tokens. |
| 269 | void *Mem = C.Allocate(sizeof(StringLiteral)+ |
| 270 | sizeof(SourceLocation)*(NumStrs-1), |
| 271 | llvm::alignof<StringLiteral>()); |
| 272 | StringLiteral *SL = new (Mem) StringLiteral(Ty); |
| 273 | |
| 274 | // OPTIMIZE: could allocate this appended to the StringLiteral. |
| 275 | char *AStrData = new (C, 1) char[ByteLength]; |
| 276 | memcpy(AStrData, StrData, ByteLength); |
| 277 | SL->StrData = AStrData; |
| 278 | SL->ByteLength = ByteLength; |
| 279 | SL->IsWide = Wide; |
| 280 | SL->TokLocs[0] = Loc[0]; |
| 281 | SL->NumConcatenated = NumStrs; |
| 282 | |
| 283 | if (NumStrs != 1) |
| 284 | memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); |
| 285 | return SL; |
| 286 | } |
| 287 | |
| 288 | StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) { |
| 289 | void *Mem = C.Allocate(sizeof(StringLiteral)+ |
| 290 | sizeof(SourceLocation)*(NumStrs-1), |
| 291 | llvm::alignof<StringLiteral>()); |
| 292 | StringLiteral *SL = new (Mem) StringLiteral(QualType()); |
| 293 | SL->StrData = 0; |
| 294 | SL->ByteLength = 0; |
| 295 | SL->NumConcatenated = NumStrs; |
| 296 | return SL; |
| 297 | } |
| 298 | |
| 299 | void StringLiteral::DoDestroy(ASTContext &C) { |
| 300 | C.Deallocate(const_cast<char*>(StrData)); |
| 301 | Expr::DoDestroy(C); |
| 302 | } |
| 303 | |
| 304 | void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) { |
| 305 | if (StrData) |
| 306 | C.Deallocate(const_cast<char*>(StrData)); |
| 307 | |
| 308 | char *AStrData = new (C, 1) char[Str.size()]; |
| 309 | memcpy(AStrData, Str.data(), Str.size()); |
| 310 | StrData = AStrData; |
| 311 | ByteLength = Str.size(); |
| 312 | } |
| 313 | |
| 314 | /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it |
| 315 | /// corresponds to, e.g. "sizeof" or "[pre]++". |
| 316 | const char *UnaryOperator::getOpcodeStr(Opcode Op) { |
| 317 | switch (Op) { |
| 318 | default: assert(0 && "Unknown unary operator"); |
| 319 | case PostInc: return "++"; |
| 320 | case PostDec: return "--"; |
| 321 | case PreInc: return "++"; |
| 322 | case PreDec: return "--"; |
| 323 | case AddrOf: return "&"; |
| 324 | case Deref: return "*"; |
| 325 | case Plus: return "+"; |
| 326 | case Minus: return "-"; |
| 327 | case Not: return "~"; |
| 328 | case LNot: return "!"; |
| 329 | case Real: return "__real"; |
| 330 | case Imag: return "__imag"; |
| 331 | case Extension: return "__extension__"; |
| 332 | case OffsetOf: return "__builtin_offsetof"; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | UnaryOperator::Opcode |
| 337 | UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { |
| 338 | switch (OO) { |
| 339 | default: assert(false && "No unary operator for overloaded function"); |
| 340 | case OO_PlusPlus: return Postfix ? PostInc : PreInc; |
| 341 | case OO_MinusMinus: return Postfix ? PostDec : PreDec; |
| 342 | case OO_Amp: return AddrOf; |
| 343 | case OO_Star: return Deref; |
| 344 | case OO_Plus: return Plus; |
| 345 | case OO_Minus: return Minus; |
| 346 | case OO_Tilde: return Not; |
| 347 | case OO_Exclaim: return LNot; |
| 348 | } |
| 349 | } |
| 350 | |
| 351 | OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { |
| 352 | switch (Opc) { |
| 353 | case PostInc: case PreInc: return OO_PlusPlus; |
| 354 | case PostDec: case PreDec: return OO_MinusMinus; |
| 355 | case AddrOf: return OO_Amp; |
| 356 | case Deref: return OO_Star; |
| 357 | case Plus: return OO_Plus; |
| 358 | case Minus: return OO_Minus; |
| 359 | case Not: return OO_Tilde; |
| 360 | case LNot: return OO_Exclaim; |
| 361 | default: return OO_None; |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | |
| 366 | //===----------------------------------------------------------------------===// |
| 367 | // Postfix Operators. |
| 368 | //===----------------------------------------------------------------------===// |
| 369 | |
| 370 | CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, |
| 371 | unsigned numargs, QualType t, SourceLocation rparenloc) |
| 372 | : Expr(SC, t, |
| 373 | fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs), |
| 374 | fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)), |
| 375 | NumArgs(numargs) { |
| 376 | |
| 377 | SubExprs = new (C) Stmt*[numargs+1]; |
| 378 | SubExprs[FN] = fn; |
| 379 | for (unsigned i = 0; i != numargs; ++i) |
| 380 | SubExprs[i+ARGS_START] = args[i]; |
| 381 | |
| 382 | RParenLoc = rparenloc; |
| 383 | } |
| 384 | |
| 385 | CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, |
| 386 | QualType t, SourceLocation rparenloc) |
| 387 | : Expr(CallExprClass, t, |
| 388 | fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs), |
| 389 | fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)), |
| 390 | NumArgs(numargs) { |
| 391 | |
| 392 | SubExprs = new (C) Stmt*[numargs+1]; |
| 393 | SubExprs[FN] = fn; |
| 394 | for (unsigned i = 0; i != numargs; ++i) |
| 395 | SubExprs[i+ARGS_START] = args[i]; |
| 396 | |
| 397 | RParenLoc = rparenloc; |
| 398 | } |
| 399 | |
| 400 | CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty) |
| 401 | : Expr(SC, Empty), SubExprs(0), NumArgs(0) { |
| 402 | SubExprs = new (C) Stmt*[1]; |
| 403 | } |
| 404 | |
| 405 | void CallExpr::DoDestroy(ASTContext& C) { |
| 406 | DestroyChildren(C); |
| 407 | if (SubExprs) C.Deallocate(SubExprs); |
| 408 | this->~CallExpr(); |
| 409 | C.Deallocate(this); |
| 410 | } |
| 411 | |
| 412 | Decl *CallExpr::getCalleeDecl() { |
| 413 | Expr *CEE = getCallee()->IgnoreParenCasts(); |
| 414 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) |
| 415 | return DRE->getDecl(); |
| 416 | if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) |
| 417 | return ME->getMemberDecl(); |
| 418 | |
| 419 | return 0; |
| 420 | } |
| 421 | |
| 422 | FunctionDecl *CallExpr::getDirectCallee() { |
| 423 | return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); |
| 424 | } |
| 425 | |
| 426 | /// setNumArgs - This changes the number of arguments present in this call. |
| 427 | /// Any orphaned expressions are deleted by this, and any new operands are set |
| 428 | /// to null. |
| 429 | void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) { |
| 430 | // No change, just return. |
| 431 | if (NumArgs == getNumArgs()) return; |
| 432 | |
| 433 | // If shrinking # arguments, just delete the extras and forgot them. |
| 434 | if (NumArgs < getNumArgs()) { |
| 435 | for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i) |
| 436 | getArg(i)->Destroy(C); |
| 437 | this->NumArgs = NumArgs; |
| 438 | return; |
| 439 | } |
| 440 | |
| 441 | // Otherwise, we are growing the # arguments. New an bigger argument array. |
| 442 | Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1]; |
| 443 | // Copy over args. |
| 444 | for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i) |
| 445 | NewSubExprs[i] = SubExprs[i]; |
| 446 | // Null out new args. |
| 447 | for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i) |
| 448 | NewSubExprs[i] = 0; |
| 449 | |
| 450 | if (SubExprs) C.Deallocate(SubExprs); |
| 451 | SubExprs = NewSubExprs; |
| 452 | this->NumArgs = NumArgs; |
| 453 | } |
| 454 | |
| 455 | /// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If |
| 456 | /// not, return 0. |
| 457 | unsigned CallExpr::isBuiltinCall(ASTContext &Context) const { |
| 458 | // All simple function calls (e.g. func()) are implicitly cast to pointer to |
| 459 | // function. As a result, we try and obtain the DeclRefExpr from the |
| 460 | // ImplicitCastExpr. |
| 461 | const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); |
| 462 | if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). |
| 463 | return 0; |
| 464 | |
| 465 | const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); |
| 466 | if (!DRE) |
| 467 | return 0; |
| 468 | |
| 469 | const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); |
| 470 | if (!FDecl) |
| 471 | return 0; |
| 472 | |
| 473 | if (!FDecl->getIdentifier()) |
| 474 | return 0; |
| 475 | |
| 476 | return FDecl->getBuiltinID(); |
| 477 | } |
| 478 | |
| 479 | QualType CallExpr::getCallReturnType() const { |
| 480 | QualType CalleeType = getCallee()->getType(); |
| 481 | if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>()) |
| 482 | CalleeType = FnTypePtr->getPointeeType(); |
| 483 | else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>()) |
| 484 | CalleeType = BPT->getPointeeType(); |
| 485 | |
| 486 | const FunctionType *FnType = CalleeType->getAs<FunctionType>(); |
| 487 | return FnType->getResultType(); |
| 488 | } |
| 489 | |
| 490 | MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual, |
| 491 | SourceRange qualrange, ValueDecl *memberdecl, |
| 492 | SourceLocation l, const TemplateArgumentListInfo *targs, |
| 493 | QualType ty) |
| 494 | : Expr(MemberExprClass, ty, |
| 495 | base->isTypeDependent() || (qual && qual->isDependent()), |
| 496 | base->isValueDependent() || (qual && qual->isDependent())), |
| 497 | Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow), |
| 498 | HasQualifier(qual != 0), HasExplicitTemplateArgumentList(targs) { |
| 499 | // Initialize the qualifier, if any. |
| 500 | if (HasQualifier) { |
| 501 | NameQualifier *NQ = getMemberQualifier(); |
| 502 | NQ->NNS = qual; |
| 503 | NQ->Range = qualrange; |
| 504 | } |
| 505 | |
| 506 | // Initialize the explicit template argument list, if any. |
| 507 | if (targs) |
| 508 | getExplicitTemplateArgumentList()->initializeFrom(*targs); |
| 509 | } |
| 510 | |
| 511 | MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow, |
| 512 | NestedNameSpecifier *qual, |
| 513 | SourceRange qualrange, |
| 514 | ValueDecl *memberdecl, |
| 515 | SourceLocation l, |
| 516 | const TemplateArgumentListInfo *targs, |
| 517 | QualType ty) { |
| 518 | std::size_t Size = sizeof(MemberExpr); |
| 519 | if (qual != 0) |
| 520 | Size += sizeof(NameQualifier); |
| 521 | |
| 522 | if (targs) |
| 523 | Size += ExplicitTemplateArgumentList::sizeFor(*targs); |
| 524 | |
| 525 | void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>()); |
| 526 | return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l, |
| 527 | targs, ty); |
| 528 | } |
| 529 | |
| 530 | const char *CastExpr::getCastKindName() const { |
| 531 | switch (getCastKind()) { |
| 532 | case CastExpr::CK_Unknown: |
| 533 | return "Unknown"; |
| 534 | case CastExpr::CK_BitCast: |
| 535 | return "BitCast"; |
| 536 | case CastExpr::CK_NoOp: |
| 537 | return "NoOp"; |
| 538 | case CastExpr::CK_BaseToDerived: |
| 539 | return "BaseToDerived"; |
| 540 | case CastExpr::CK_DerivedToBase: |
| 541 | return "DerivedToBase"; |
| 542 | case CastExpr::CK_Dynamic: |
| 543 | return "Dynamic"; |
| 544 | case CastExpr::CK_ToUnion: |
| 545 | return "ToUnion"; |
| 546 | case CastExpr::CK_ArrayToPointerDecay: |
| 547 | return "ArrayToPointerDecay"; |
| 548 | case CastExpr::CK_FunctionToPointerDecay: |
| 549 | return "FunctionToPointerDecay"; |
| 550 | case CastExpr::CK_NullToMemberPointer: |
| 551 | return "NullToMemberPointer"; |
| 552 | case CastExpr::CK_BaseToDerivedMemberPointer: |
| 553 | return "BaseToDerivedMemberPointer"; |
| 554 | case CastExpr::CK_DerivedToBaseMemberPointer: |
| 555 | return "DerivedToBaseMemberPointer"; |
| 556 | case CastExpr::CK_UserDefinedConversion: |
| 557 | return "UserDefinedConversion"; |
| 558 | case CastExpr::CK_ConstructorConversion: |
| 559 | return "ConstructorConversion"; |
| 560 | case CastExpr::CK_IntegralToPointer: |
| 561 | return "IntegralToPointer"; |
| 562 | case CastExpr::CK_PointerToIntegral: |
| 563 | return "PointerToIntegral"; |
| 564 | case CastExpr::CK_ToVoid: |
| 565 | return "ToVoid"; |
| 566 | case CastExpr::CK_VectorSplat: |
| 567 | return "VectorSplat"; |
| 568 | case CastExpr::CK_IntegralCast: |
| 569 | return "IntegralCast"; |
| 570 | case CastExpr::CK_IntegralToFloating: |
| 571 | return "IntegralToFloating"; |
| 572 | case CastExpr::CK_FloatingToIntegral: |
| 573 | return "FloatingToIntegral"; |
| 574 | case CastExpr::CK_FloatingCast: |
| 575 | return "FloatingCast"; |
| 576 | case CastExpr::CK_MemberPointerToBoolean: |
| 577 | return "MemberPointerToBoolean"; |
| 578 | case CastExpr::CK_AnyPointerToObjCPointerCast: |
| 579 | return "AnyPointerToObjCPointerCast"; |
| 580 | case CastExpr::CK_AnyPointerToBlockPointerCast: |
| 581 | return "AnyPointerToBlockPointerCast"; |
| 582 | } |
| 583 | |
| 584 | assert(0 && "Unhandled cast kind!"); |
| 585 | return 0; |
| 586 | } |
| 587 | |
| 588 | Expr *CastExpr::getSubExprAsWritten() { |
| 589 | Expr *SubExpr = 0; |
| 590 | CastExpr *E = this; |
| 591 | do { |
| 592 | SubExpr = E->getSubExpr(); |
| 593 | |
| 594 | // Skip any temporary bindings; they're implicit. |
| 595 | if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) |
| 596 | SubExpr = Binder->getSubExpr(); |
| 597 | |
| 598 | // Conversions by constructor and conversion functions have a |
| 599 | // subexpression describing the call; strip it off. |
| 600 | if (E->getCastKind() == CastExpr::CK_ConstructorConversion) |
| 601 | SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0); |
| 602 | else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion) |
| 603 | SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); |
| 604 | |
| 605 | // If the subexpression we're left with is an implicit cast, look |
| 606 | // through that, too. |
| 607 | } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); |
| 608 | |
| 609 | return SubExpr; |
| 610 | } |
| 611 | |
| 612 | /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it |
| 613 | /// corresponds to, e.g. "<<=". |
| 614 | const char *BinaryOperator::getOpcodeStr(Opcode Op) { |
| 615 | switch (Op) { |
| 616 | case PtrMemD: return ".*"; |
| 617 | case PtrMemI: return "->*"; |
| 618 | case Mul: return "*"; |
| 619 | case Div: return "/"; |
| 620 | case Rem: return "%"; |
| 621 | case Add: return "+"; |
| 622 | case Sub: return "-"; |
| 623 | case Shl: return "<<"; |
| 624 | case Shr: return ">>"; |
| 625 | case LT: return "<"; |
| 626 | case GT: return ">"; |
| 627 | case LE: return "<="; |
| 628 | case GE: return ">="; |
| 629 | case EQ: return "=="; |
| 630 | case NE: return "!="; |
| 631 | case And: return "&"; |
| 632 | case Xor: return "^"; |
| 633 | case Or: return "|"; |
| 634 | case LAnd: return "&&"; |
| 635 | case LOr: return "||"; |
| 636 | case Assign: return "="; |
| 637 | case MulAssign: return "*="; |
| 638 | case DivAssign: return "/="; |
| 639 | case RemAssign: return "%="; |
| 640 | case AddAssign: return "+="; |
| 641 | case SubAssign: return "-="; |
| 642 | case ShlAssign: return "<<="; |
| 643 | case ShrAssign: return ">>="; |
| 644 | case AndAssign: return "&="; |
| 645 | case XorAssign: return "^="; |
| 646 | case OrAssign: return "|="; |
| 647 | case Comma: return ","; |
| 648 | } |
| 649 | |
| 650 | return ""; |
| 651 | } |
| 652 | |
| 653 | BinaryOperator::Opcode |
| 654 | BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { |
| 655 | switch (OO) { |
| 656 | default: assert(false && "Not an overloadable binary operator"); |
| 657 | case OO_Plus: return Add; |
| 658 | case OO_Minus: return Sub; |
| 659 | case OO_Star: return Mul; |
| 660 | case OO_Slash: return Div; |
| 661 | case OO_Percent: return Rem; |
| 662 | case OO_Caret: return Xor; |
| 663 | case OO_Amp: return And; |
| 664 | case OO_Pipe: return Or; |
| 665 | case OO_Equal: return Assign; |
| 666 | case OO_Less: return LT; |
| 667 | case OO_Greater: return GT; |
| 668 | case OO_PlusEqual: return AddAssign; |
| 669 | case OO_MinusEqual: return SubAssign; |
| 670 | case OO_StarEqual: return MulAssign; |
| 671 | case OO_SlashEqual: return DivAssign; |
| 672 | case OO_PercentEqual: return RemAssign; |
| 673 | case OO_CaretEqual: return XorAssign; |
| 674 | case OO_AmpEqual: return AndAssign; |
| 675 | case OO_PipeEqual: return OrAssign; |
| 676 | case OO_LessLess: return Shl; |
| 677 | case OO_GreaterGreater: return Shr; |
| 678 | case OO_LessLessEqual: return ShlAssign; |
| 679 | case OO_GreaterGreaterEqual: return ShrAssign; |
| 680 | case OO_EqualEqual: return EQ; |
| 681 | case OO_ExclaimEqual: return NE; |
| 682 | case OO_LessEqual: return LE; |
| 683 | case OO_GreaterEqual: return GE; |
| 684 | case OO_AmpAmp: return LAnd; |
| 685 | case OO_PipePipe: return LOr; |
| 686 | case OO_Comma: return Comma; |
| 687 | case OO_ArrowStar: return PtrMemI; |
| 688 | } |
| 689 | } |
| 690 | |
| 691 | OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { |
| 692 | static const OverloadedOperatorKind OverOps[] = { |
| 693 | /* .* Cannot be overloaded */OO_None, OO_ArrowStar, |
| 694 | OO_Star, OO_Slash, OO_Percent, |
| 695 | OO_Plus, OO_Minus, |
| 696 | OO_LessLess, OO_GreaterGreater, |
| 697 | OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, |
| 698 | OO_EqualEqual, OO_ExclaimEqual, |
| 699 | OO_Amp, |
| 700 | OO_Caret, |
| 701 | OO_Pipe, |
| 702 | OO_AmpAmp, |
| 703 | OO_PipePipe, |
| 704 | OO_Equal, OO_StarEqual, |
| 705 | OO_SlashEqual, OO_PercentEqual, |
| 706 | OO_PlusEqual, OO_MinusEqual, |
| 707 | OO_LessLessEqual, OO_GreaterGreaterEqual, |
| 708 | OO_AmpEqual, OO_CaretEqual, |
| 709 | OO_PipeEqual, |
| 710 | OO_Comma |
| 711 | }; |
| 712 | return OverOps[Opc]; |
| 713 | } |
| 714 | |
| 715 | InitListExpr::InitListExpr(SourceLocation lbraceloc, |
| 716 | Expr **initExprs, unsigned numInits, |
| 717 | SourceLocation rbraceloc) |
| 718 | : Expr(InitListExprClass, QualType(), false, false), |
| 719 | LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0), |
| 720 | UnionFieldInit(0), HadArrayRangeDesignator(false) |
| 721 | { |
| 722 | for (unsigned I = 0; I != numInits; ++I) { |
| 723 | if (initExprs[I]->isTypeDependent()) |
| 724 | TypeDependent = true; |
| 725 | if (initExprs[I]->isValueDependent()) |
| 726 | ValueDependent = true; |
| 727 | } |
| 728 | |
| 729 | InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits); |
| 730 | } |
| 731 | |
| 732 | void InitListExpr::reserveInits(unsigned NumInits) { |
| 733 | if (NumInits > InitExprs.size()) |
| 734 | InitExprs.reserve(NumInits); |
| 735 | } |
| 736 | |
| 737 | void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) { |
| 738 | for (unsigned Idx = NumInits, LastIdx = InitExprs.size(); |
| 739 | Idx < LastIdx; ++Idx) |
| 740 | InitExprs[Idx]->Destroy(Context); |
| 741 | InitExprs.resize(NumInits, 0); |
| 742 | } |
| 743 | |
| 744 | Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) { |
| 745 | if (Init >= InitExprs.size()) { |
| 746 | InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0); |
| 747 | InitExprs.back() = expr; |
| 748 | return 0; |
| 749 | } |
| 750 | |
| 751 | Expr *Result = cast_or_null<Expr>(InitExprs[Init]); |
| 752 | InitExprs[Init] = expr; |
| 753 | return Result; |
| 754 | } |
| 755 | |
| 756 | /// getFunctionType - Return the underlying function type for this block. |
| 757 | /// |
| 758 | const FunctionType *BlockExpr::getFunctionType() const { |
| 759 | return getType()->getAs<BlockPointerType>()-> |
| 760 | getPointeeType()->getAs<FunctionType>(); |
| 761 | } |
| 762 | |
| 763 | SourceLocation BlockExpr::getCaretLocation() const { |
| 764 | return TheBlock->getCaretLocation(); |
| 765 | } |
| 766 | const Stmt *BlockExpr::getBody() const { |
| 767 | return TheBlock->getBody(); |
| 768 | } |
| 769 | Stmt *BlockExpr::getBody() { |
| 770 | return TheBlock->getBody(); |
| 771 | } |
| 772 | |
| 773 | |
| 774 | //===----------------------------------------------------------------------===// |
| 775 | // Generic Expression Routines |
| 776 | //===----------------------------------------------------------------------===// |
| 777 | |
| 778 | /// isUnusedResultAWarning - Return true if this immediate expression should |
| 779 | /// be warned about if the result is unused. If so, fill in Loc and Ranges |
| 780 | /// with location to warn on and the source range[s] to report with the |
| 781 | /// warning. |
| 782 | bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1, |
| 783 | SourceRange &R2, ASTContext &Ctx) const { |
| 784 | // Don't warn if the expr is type dependent. The type could end up |
| 785 | // instantiating to void. |
| 786 | if (isTypeDependent()) |
| 787 | return false; |
| 788 | |
| 789 | switch (getStmtClass()) { |
| 790 | default: |
| 791 | Loc = getExprLoc(); |
| 792 | R1 = getSourceRange(); |
| 793 | return true; |
| 794 | case ParenExprClass: |
| 795 | return cast<ParenExpr>(this)->getSubExpr()-> |
| 796 | isUnusedResultAWarning(Loc, R1, R2, Ctx); |
| 797 | case UnaryOperatorClass: { |
| 798 | const UnaryOperator *UO = cast<UnaryOperator>(this); |
| 799 | |
| 800 | switch (UO->getOpcode()) { |
| 801 | default: break; |
| 802 | case UnaryOperator::PostInc: |
| 803 | case UnaryOperator::PostDec: |
| 804 | case UnaryOperator::PreInc: |
| 805 | case UnaryOperator::PreDec: // ++/-- |
| 806 | return false; // Not a warning. |
| 807 | case UnaryOperator::Deref: |
| 808 | // Dereferencing a volatile pointer is a side-effect. |
| 809 | if (Ctx.getCanonicalType(getType()).isVolatileQualified()) |
| 810 | return false; |
| 811 | break; |
| 812 | case UnaryOperator::Real: |
| 813 | case UnaryOperator::Imag: |
| 814 | // accessing a piece of a volatile complex is a side-effect. |
| 815 | if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) |
| 816 | .isVolatileQualified()) |
| 817 | return false; |
| 818 | break; |
| 819 | case UnaryOperator::Extension: |
| 820 | return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx); |
| 821 | } |
| 822 | Loc = UO->getOperatorLoc(); |
| 823 | R1 = UO->getSubExpr()->getSourceRange(); |
| 824 | return true; |
| 825 | } |
| 826 | case BinaryOperatorClass: { |
| 827 | const BinaryOperator *BO = cast<BinaryOperator>(this); |
| 828 | // Consider comma to have side effects if the LHS or RHS does. |
| 829 | if (BO->getOpcode() == BinaryOperator::Comma) |
| 830 | return (BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) || |
| 831 | BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| 832 | |
| 833 | if (BO->isAssignmentOp()) |
| 834 | return false; |
| 835 | Loc = BO->getOperatorLoc(); |
| 836 | R1 = BO->getLHS()->getSourceRange(); |
| 837 | R2 = BO->getRHS()->getSourceRange(); |
| 838 | return true; |
| 839 | } |
| 840 | case CompoundAssignOperatorClass: |
| 841 | return false; |
| 842 | |
| 843 | case ConditionalOperatorClass: { |
| 844 | // The condition must be evaluated, but if either the LHS or RHS is a |
| 845 | // warning, warn about them. |
| 846 | const ConditionalOperator *Exp = cast<ConditionalOperator>(this); |
| 847 | if (Exp->getLHS() && |
| 848 | Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)) |
| 849 | return true; |
| 850 | return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx); |
| 851 | } |
| 852 | |
| 853 | case MemberExprClass: |
| 854 | // If the base pointer or element is to a volatile pointer/field, accessing |
| 855 | // it is a side effect. |
| 856 | if (Ctx.getCanonicalType(getType()).isVolatileQualified()) |
| 857 | return false; |
| 858 | Loc = cast<MemberExpr>(this)->getMemberLoc(); |
| 859 | R1 = SourceRange(Loc, Loc); |
| 860 | R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); |
| 861 | return true; |
| 862 | |
| 863 | case ArraySubscriptExprClass: |
| 864 | // If the base pointer or element is to a volatile pointer/field, accessing |
| 865 | // it is a side effect. |
| 866 | if (Ctx.getCanonicalType(getType()).isVolatileQualified()) |
| 867 | return false; |
| 868 | Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); |
| 869 | R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); |
| 870 | R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); |
| 871 | return true; |
| 872 | |
| 873 | case CallExprClass: |
| 874 | case CXXOperatorCallExprClass: |
| 875 | case CXXMemberCallExprClass: { |
| 876 | // If this is a direct call, get the callee. |
| 877 | const CallExpr *CE = cast<CallExpr>(this); |
| 878 | if (const Decl *FD = CE->getCalleeDecl()) { |
| 879 | // If the callee has attribute pure, const, or warn_unused_result, warn |
| 880 | // about it. void foo() { strlen("bar"); } should warn. |
| 881 | // |
| 882 | // Note: If new cases are added here, DiagnoseUnusedExprResult should be |
| 883 | // updated to match for QoI. |
| 884 | if (FD->getAttr<WarnUnusedResultAttr>() || |
| 885 | FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) { |
| 886 | Loc = CE->getCallee()->getLocStart(); |
| 887 | R1 = CE->getCallee()->getSourceRange(); |
| 888 | |
| 889 | if (unsigned NumArgs = CE->getNumArgs()) |
| 890 | R2 = SourceRange(CE->getArg(0)->getLocStart(), |
| 891 | CE->getArg(NumArgs-1)->getLocEnd()); |
| 892 | return true; |
| 893 | } |
| 894 | } |
| 895 | return false; |
| 896 | } |
| 897 | |
| 898 | case CXXTemporaryObjectExprClass: |
| 899 | case CXXConstructExprClass: |
| 900 | return false; |
| 901 | |
| 902 | case ObjCMessageExprClass: |
| 903 | return false; |
| 904 | |
| 905 | case ObjCImplicitSetterGetterRefExprClass: { // Dot syntax for message send. |
| 906 | #if 0 |
| 907 | const ObjCImplicitSetterGetterRefExpr *Ref = |
| 908 | cast<ObjCImplicitSetterGetterRefExpr>(this); |
| 909 | // FIXME: We really want the location of the '.' here. |
| 910 | Loc = Ref->getLocation(); |
| 911 | R1 = SourceRange(Ref->getLocation(), Ref->getLocation()); |
| 912 | if (Ref->getBase()) |
| 913 | R2 = Ref->getBase()->getSourceRange(); |
| 914 | #else |
| 915 | Loc = getExprLoc(); |
| 916 | R1 = getSourceRange(); |
| 917 | #endif |
| 918 | return true; |
| 919 | } |
| 920 | case StmtExprClass: { |
| 921 | // Statement exprs don't logically have side effects themselves, but are |
| 922 | // sometimes used in macros in ways that give them a type that is unused. |
| 923 | // For example ({ blah; foo(); }) will end up with a type if foo has a type. |
| 924 | // however, if the result of the stmt expr is dead, we don't want to emit a |
| 925 | // warning. |
| 926 | const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); |
| 927 | if (!CS->body_empty()) |
| 928 | if (const Expr *E = dyn_cast<Expr>(CS->body_back())) |
| 929 | return E->isUnusedResultAWarning(Loc, R1, R2, Ctx); |
| 930 | |
| 931 | Loc = cast<StmtExpr>(this)->getLParenLoc(); |
| 932 | R1 = getSourceRange(); |
| 933 | return true; |
| 934 | } |
| 935 | case CStyleCastExprClass: |
| 936 | // If this is an explicit cast to void, allow it. People do this when they |
| 937 | // think they know what they're doing :). |
| 938 | if (getType()->isVoidType()) |
| 939 | return false; |
| 940 | Loc = cast<CStyleCastExpr>(this)->getLParenLoc(); |
| 941 | R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange(); |
| 942 | return true; |
| 943 | case CXXFunctionalCastExprClass: { |
| 944 | const CastExpr *CE = cast<CastExpr>(this); |
| 945 | |
| 946 | // If this is a cast to void or a constructor conversion, check the operand. |
| 947 | // Otherwise, the result of the cast is unused. |
| 948 | if (CE->getCastKind() == CastExpr::CK_ToVoid || |
| 949 | CE->getCastKind() == CastExpr::CK_ConstructorConversion) |
| 950 | return (cast<CastExpr>(this)->getSubExpr() |
| 951 | ->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| 952 | Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc(); |
| 953 | R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange(); |
| 954 | return true; |
| 955 | } |
| 956 | |
| 957 | case ImplicitCastExprClass: |
| 958 | // Check the operand, since implicit casts are inserted by Sema |
| 959 | return (cast<ImplicitCastExpr>(this) |
| 960 | ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| 961 | |
| 962 | case CXXDefaultArgExprClass: |
| 963 | return (cast<CXXDefaultArgExpr>(this) |
| 964 | ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| 965 | |
| 966 | case CXXNewExprClass: |
| 967 | // FIXME: In theory, there might be new expressions that don't have side |
| 968 | // effects (e.g. a placement new with an uninitialized POD). |
| 969 | case CXXDeleteExprClass: |
| 970 | return false; |
| 971 | case CXXBindTemporaryExprClass: |
| 972 | return (cast<CXXBindTemporaryExpr>(this) |
| 973 | ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| 974 | case CXXExprWithTemporariesClass: |
| 975 | return (cast<CXXExprWithTemporaries>(this) |
| 976 | ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| 977 | } |
| 978 | } |
| 979 | |
| 980 | /// DeclCanBeLvalue - Determine whether the given declaration can be |
| 981 | /// an lvalue. This is a helper routine for isLvalue. |
| 982 | static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) { |
| 983 | // C++ [temp.param]p6: |
| 984 | // A non-type non-reference template-parameter is not an lvalue. |
| 985 | if (const NonTypeTemplateParmDecl *NTTParm |
| 986 | = dyn_cast<NonTypeTemplateParmDecl>(Decl)) |
| 987 | return NTTParm->getType()->isReferenceType(); |
| 988 | |
| 989 | return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) || |
| 990 | // C++ 3.10p2: An lvalue refers to an object or function. |
| 991 | (Ctx.getLangOptions().CPlusPlus && |
| 992 | (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl))); |
| 993 | } |
| 994 | |
| 995 | /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an |
| 996 | /// incomplete type other than void. Nonarray expressions that can be lvalues: |
| 997 | /// - name, where name must be a variable |
| 998 | /// - e[i] |
| 999 | /// - (e), where e must be an lvalue |
| 1000 | /// - e.name, where e must be an lvalue |
| 1001 | /// - e->name |
| 1002 | /// - *e, the type of e cannot be a function type |
| 1003 | /// - string-constant |
| 1004 | /// - (__real__ e) and (__imag__ e) where e is an lvalue [GNU extension] |
| 1005 | /// - reference type [C++ [expr]] |
| 1006 | /// |
| 1007 | Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const { |
| 1008 | assert(!TR->isReferenceType() && "Expressions can't have reference type."); |
| 1009 | |
| 1010 | isLvalueResult Res = isLvalueInternal(Ctx); |
| 1011 | if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus) |
| 1012 | return Res; |
| 1013 | |
| 1014 | // first, check the type (C99 6.3.2.1). Expressions with function |
| 1015 | // type in C are not lvalues, but they can be lvalues in C++. |
| 1016 | if (TR->isFunctionType() || TR == Ctx.OverloadTy) |
| 1017 | return LV_NotObjectType; |
| 1018 | |
| 1019 | // Allow qualified void which is an incomplete type other than void (yuck). |
| 1020 | if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers()) |
| 1021 | return LV_IncompleteVoidType; |
| 1022 | |
| 1023 | return LV_Valid; |
| 1024 | } |
| 1025 | |
| 1026 | // Check whether the expression can be sanely treated like an l-value |
| 1027 | Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const { |
| 1028 | switch (getStmtClass()) { |
| 1029 | case ObjCIsaExprClass: |
| 1030 | case StringLiteralClass: // C99 6.5.1p4 |
| 1031 | case ObjCEncodeExprClass: // @encode behaves like its string in every way. |
| 1032 | return LV_Valid; |
| 1033 | case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2)))) |
| 1034 | // For vectors, make sure base is an lvalue (i.e. not a function call). |
| 1035 | if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType()) |
| 1036 | return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx); |
| 1037 | return LV_Valid; |
| 1038 | case DeclRefExprClass: { // C99 6.5.1p2 |
| 1039 | const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl(); |
| 1040 | if (DeclCanBeLvalue(RefdDecl, Ctx)) |
| 1041 | return LV_Valid; |
| 1042 | break; |
| 1043 | } |
| 1044 | case BlockDeclRefExprClass: { |
| 1045 | const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this); |
| 1046 | if (isa<VarDecl>(BDR->getDecl())) |
| 1047 | return LV_Valid; |
| 1048 | break; |
| 1049 | } |
| 1050 | case MemberExprClass: { |
| 1051 | const MemberExpr *m = cast<MemberExpr>(this); |
| 1052 | if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4: |
| 1053 | NamedDecl *Member = m->getMemberDecl(); |
| 1054 | // C++ [expr.ref]p4: |
| 1055 | // If E2 is declared to have type "reference to T", then E1.E2 |
| 1056 | // is an lvalue. |
| 1057 | if (ValueDecl *Value = dyn_cast<ValueDecl>(Member)) |
| 1058 | if (Value->getType()->isReferenceType()) |
| 1059 | return LV_Valid; |
| 1060 | |
| 1061 | // -- If E2 is a static data member [...] then E1.E2 is an lvalue. |
| 1062 | if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord()) |
| 1063 | return LV_Valid; |
| 1064 | |
| 1065 | // -- If E2 is a non-static data member [...]. If E1 is an |
| 1066 | // lvalue, then E1.E2 is an lvalue. |
| 1067 | if (isa<FieldDecl>(Member)) { |
| 1068 | if (m->isArrow()) |
| 1069 | return LV_Valid; |
| 1070 | Expr *BaseExp = m->getBase(); |
| 1071 | return (BaseExp->getStmtClass() == ObjCPropertyRefExprClass) ? |
| 1072 | LV_SubObjCPropertySetting : BaseExp->isLvalue(Ctx); |
| 1073 | } |
| 1074 | |
| 1075 | // -- If it refers to a static member function [...], then |
| 1076 | // E1.E2 is an lvalue. |
| 1077 | // -- Otherwise, if E1.E2 refers to a non-static member |
| 1078 | // function [...], then E1.E2 is not an lvalue. |
| 1079 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) |
| 1080 | return Method->isStatic()? LV_Valid : LV_MemberFunction; |
| 1081 | |
| 1082 | // -- If E2 is a member enumerator [...], the expression E1.E2 |
| 1083 | // is not an lvalue. |
| 1084 | if (isa<EnumConstantDecl>(Member)) |
| 1085 | return LV_InvalidExpression; |
| 1086 | |
| 1087 | // Not an lvalue. |
| 1088 | return LV_InvalidExpression; |
| 1089 | } |
| 1090 | |
| 1091 | // C99 6.5.2.3p4 |
| 1092 | if (m->isArrow()) |
| 1093 | return LV_Valid; |
| 1094 | Expr *BaseExp = m->getBase(); |
| 1095 | return (BaseExp->getStmtClass() == ObjCPropertyRefExprClass) ? |
| 1096 | LV_SubObjCPropertySetting : BaseExp->isLvalue(Ctx); |
| 1097 | } |
| 1098 | case UnaryOperatorClass: |
| 1099 | if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref) |
| 1100 | return LV_Valid; // C99 6.5.3p4 |
| 1101 | |
| 1102 | if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real || |
| 1103 | cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag || |
| 1104 | cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension) |
| 1105 | return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx); // GNU. |
| 1106 | |
| 1107 | if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1 |
| 1108 | (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc || |
| 1109 | cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec)) |
| 1110 | return LV_Valid; |
| 1111 | break; |
| 1112 | case ImplicitCastExprClass: |
| 1113 | return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid |
| 1114 | : LV_InvalidExpression; |
| 1115 | case ParenExprClass: // C99 6.5.1p5 |
| 1116 | return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx); |
| 1117 | case BinaryOperatorClass: |
| 1118 | case CompoundAssignOperatorClass: { |
| 1119 | const BinaryOperator *BinOp = cast<BinaryOperator>(this); |
| 1120 | |
| 1121 | if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1 |
| 1122 | BinOp->getOpcode() == BinaryOperator::Comma) |
| 1123 | return BinOp->getRHS()->isLvalue(Ctx); |
| 1124 | |
| 1125 | // C++ [expr.mptr.oper]p6 |
| 1126 | // The result of a .* expression is an lvalue only if its first operand is |
| 1127 | // an lvalue and its second operand is a pointer to data member. |
| 1128 | if (BinOp->getOpcode() == BinaryOperator::PtrMemD && |
| 1129 | !BinOp->getType()->isFunctionType()) |
| 1130 | return BinOp->getLHS()->isLvalue(Ctx); |
| 1131 | |
| 1132 | // The result of an ->* expression is an lvalue only if its second operand |
| 1133 | // is a pointer to data member. |
| 1134 | if (BinOp->getOpcode() == BinaryOperator::PtrMemI && |
| 1135 | !BinOp->getType()->isFunctionType()) { |
| 1136 | QualType Ty = BinOp->getRHS()->getType(); |
| 1137 | if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType()) |
| 1138 | return LV_Valid; |
| 1139 | } |
| 1140 | |
| 1141 | if (!BinOp->isAssignmentOp()) |
| 1142 | return LV_InvalidExpression; |
| 1143 | |
| 1144 | if (Ctx.getLangOptions().CPlusPlus) |
| 1145 | // C++ [expr.ass]p1: |
| 1146 | // The result of an assignment operation [...] is an lvalue. |
| 1147 | return LV_Valid; |
| 1148 | |
| 1149 | |
| 1150 | // C99 6.5.16: |
| 1151 | // An assignment expression [...] is not an lvalue. |
| 1152 | return LV_InvalidExpression; |
| 1153 | } |
| 1154 | case CallExprClass: |
| 1155 | case CXXOperatorCallExprClass: |
| 1156 | case CXXMemberCallExprClass: { |
| 1157 | // C++0x [expr.call]p10 |
| 1158 | // A function call is an lvalue if and only if the result type |
| 1159 | // is an lvalue reference. |
| 1160 | QualType ReturnType = cast<CallExpr>(this)->getCallReturnType(); |
| 1161 | if (ReturnType->isLValueReferenceType()) |
| 1162 | return LV_Valid; |
| 1163 | |
| 1164 | break; |
| 1165 | } |
| 1166 | case CompoundLiteralExprClass: // C99 6.5.2.5p5 |
| 1167 | return LV_Valid; |
| 1168 | case ChooseExprClass: |
| 1169 | // __builtin_choose_expr is an lvalue if the selected operand is. |
| 1170 | return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx); |
| 1171 | case ExtVectorElementExprClass: |
| 1172 | if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements()) |
| 1173 | return LV_DuplicateVectorComponents; |
| 1174 | return LV_Valid; |
| 1175 | case ObjCIvarRefExprClass: // ObjC instance variables are lvalues. |
| 1176 | return LV_Valid; |
| 1177 | case ObjCPropertyRefExprClass: // FIXME: check if read-only property. |
| 1178 | return LV_Valid; |
| 1179 | case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property. |
| 1180 | return LV_Valid; |
| 1181 | case PredefinedExprClass: |
| 1182 | return LV_Valid; |
| 1183 | case UnresolvedLookupExprClass: |
| 1184 | return LV_Valid; |
| 1185 | case CXXDefaultArgExprClass: |
| 1186 | return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx); |
| 1187 | case CStyleCastExprClass: |
| 1188 | case CXXFunctionalCastExprClass: |
| 1189 | case CXXStaticCastExprClass: |
| 1190 | case CXXDynamicCastExprClass: |
| 1191 | case CXXReinterpretCastExprClass: |
| 1192 | case CXXConstCastExprClass: |
| 1193 | // The result of an explicit cast is an lvalue if the type we are |
| 1194 | // casting to is an lvalue reference type. See C++ [expr.cast]p1, |
| 1195 | // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2, |
| 1196 | // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1. |
| 1197 | if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()-> |
| 1198 | isLValueReferenceType()) |
| 1199 | return LV_Valid; |
| 1200 | break; |
| 1201 | case CXXTypeidExprClass: |
| 1202 | // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ... |
| 1203 | return LV_Valid; |
| 1204 | case CXXBindTemporaryExprClass: |
| 1205 | return cast<CXXBindTemporaryExpr>(this)->getSubExpr()-> |
| 1206 | isLvalueInternal(Ctx); |
| 1207 | case CXXBindReferenceExprClass: |
| 1208 | // Something that's bound to a reference is always an lvalue. |
| 1209 | return LV_Valid; |
| 1210 | case ConditionalOperatorClass: { |
| 1211 | // Complicated handling is only for C++. |
| 1212 | if (!Ctx.getLangOptions().CPlusPlus) |
| 1213 | return LV_InvalidExpression; |
| 1214 | |
| 1215 | // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is |
| 1216 | // everywhere there's an object converted to an rvalue. Also, any other |
| 1217 | // casts should be wrapped by ImplicitCastExprs. There's just the special |
| 1218 | // case involving throws to work out. |
| 1219 | const ConditionalOperator *Cond = cast<ConditionalOperator>(this); |
| 1220 | Expr *True = Cond->getTrueExpr(); |
| 1221 | Expr *False = Cond->getFalseExpr(); |
| 1222 | // C++0x 5.16p2 |
| 1223 | // If either the second or the third operand has type (cv) void, [...] |
| 1224 | // the result [...] is an rvalue. |
| 1225 | if (True->getType()->isVoidType() || False->getType()->isVoidType()) |
| 1226 | return LV_InvalidExpression; |
| 1227 | |
| 1228 | // Both sides must be lvalues for the result to be an lvalue. |
| 1229 | if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid) |
| 1230 | return LV_InvalidExpression; |
| 1231 | |
| 1232 | // That's it. |
| 1233 | return LV_Valid; |
| 1234 | } |
| 1235 | |
| 1236 | case Expr::CXXExprWithTemporariesClass: |
| 1237 | return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx); |
| 1238 | |
| 1239 | case Expr::ObjCMessageExprClass: |
| 1240 | if (const ObjCMethodDecl *Method |
| 1241 | = cast<ObjCMessageExpr>(this)->getMethodDecl()) |
| 1242 | if (Method->getResultType()->isLValueReferenceType()) |
| 1243 | return LV_Valid; |
| 1244 | break; |
| 1245 | |
| 1246 | default: |
| 1247 | break; |
| 1248 | } |
| 1249 | return LV_InvalidExpression; |
| 1250 | } |
| 1251 | |
| 1252 | /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type, |
| 1253 | /// does not have an incomplete type, does not have a const-qualified type, and |
| 1254 | /// if it is a structure or union, does not have any member (including, |
| 1255 | /// recursively, any member or element of all contained aggregates or unions) |
| 1256 | /// with a const-qualified type. |
| 1257 | Expr::isModifiableLvalueResult |
| 1258 | Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const { |
| 1259 | isLvalueResult lvalResult = isLvalue(Ctx); |
| 1260 | |
| 1261 | switch (lvalResult) { |
| 1262 | case LV_Valid: |
| 1263 | // C++ 3.10p11: Functions cannot be modified, but pointers to |
| 1264 | // functions can be modifiable. |
| 1265 | if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType()) |
| 1266 | return MLV_NotObjectType; |
| 1267 | break; |
| 1268 | |
| 1269 | case LV_NotObjectType: return MLV_NotObjectType; |
| 1270 | case LV_IncompleteVoidType: return MLV_IncompleteVoidType; |
| 1271 | case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents; |
| 1272 | case LV_InvalidExpression: |
| 1273 | // If the top level is a C-style cast, and the subexpression is a valid |
| 1274 | // lvalue, then this is probably a use of the old-school "cast as lvalue" |
| 1275 | // GCC extension. We don't support it, but we want to produce good |
| 1276 | // diagnostics when it happens so that the user knows why. |
| 1277 | if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) { |
| 1278 | if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) { |
| 1279 | if (Loc) |
| 1280 | *Loc = CE->getLParenLoc(); |
| 1281 | return MLV_LValueCast; |
| 1282 | } |
| 1283 | } |
| 1284 | return MLV_InvalidExpression; |
| 1285 | case LV_MemberFunction: return MLV_MemberFunction; |
| 1286 | case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting; |
| 1287 | } |
| 1288 | |
| 1289 | // The following is illegal: |
| 1290 | // void takeclosure(void (^C)(void)); |
| 1291 | // void func() { int x = 1; takeclosure(^{ x = 7; }); } |
| 1292 | // |
| 1293 | if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) { |
| 1294 | if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl())) |
| 1295 | return MLV_NotBlockQualified; |
| 1296 | } |
| 1297 | |
| 1298 | // Assigning to an 'implicit' property? |
| 1299 | if (const ObjCImplicitSetterGetterRefExpr* Expr = |
| 1300 | dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) { |
| 1301 | if (Expr->getSetterMethod() == 0) |
| 1302 | return MLV_NoSetterProperty; |
| 1303 | } |
| 1304 | |
| 1305 | QualType CT = Ctx.getCanonicalType(getType()); |
| 1306 | |
| 1307 | if (CT.isConstQualified()) |
| 1308 | return MLV_ConstQualified; |
| 1309 | if (CT->isArrayType()) |
| 1310 | return MLV_ArrayType; |
| 1311 | if (CT->isIncompleteType()) |
| 1312 | return MLV_IncompleteType; |
| 1313 | |
| 1314 | if (const RecordType *r = CT->getAs<RecordType>()) { |
| 1315 | if (r->hasConstFields()) |
| 1316 | return MLV_ConstQualified; |
| 1317 | } |
| 1318 | |
| 1319 | return MLV_Valid; |
| 1320 | } |
| 1321 | |
| 1322 | /// isOBJCGCCandidate - Check if an expression is objc gc'able. |
| 1323 | /// returns true, if it is; false otherwise. |
| 1324 | bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { |
| 1325 | switch (getStmtClass()) { |
| 1326 | default: |
| 1327 | return false; |
| 1328 | case ObjCIvarRefExprClass: |
| 1329 | return true; |
| 1330 | case Expr::UnaryOperatorClass: |
| 1331 | return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| 1332 | case ParenExprClass: |
| 1333 | return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| 1334 | case ImplicitCastExprClass: |
| 1335 | return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| 1336 | case CStyleCastExprClass: |
| 1337 | return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| 1338 | case DeclRefExprClass: { |
| 1339 | const Decl *D = cast<DeclRefExpr>(this)->getDecl(); |
| 1340 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| 1341 | if (VD->hasGlobalStorage()) |
| 1342 | return true; |
| 1343 | QualType T = VD->getType(); |
| 1344 | // dereferencing to a pointer is always a gc'able candidate, |
| 1345 | // unless it is __weak. |
| 1346 | return T->isPointerType() && |
| 1347 | (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); |
| 1348 | } |
| 1349 | return false; |
| 1350 | } |
| 1351 | case MemberExprClass: { |
| 1352 | const MemberExpr *M = cast<MemberExpr>(this); |
| 1353 | return M->getBase()->isOBJCGCCandidate(Ctx); |
| 1354 | } |
| 1355 | case ArraySubscriptExprClass: |
| 1356 | return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx); |
| 1357 | } |
| 1358 | } |
| 1359 | Expr* Expr::IgnoreParens() { |
| 1360 | Expr* E = this; |
| 1361 | while (ParenExpr* P = dyn_cast<ParenExpr>(E)) |
| 1362 | E = P->getSubExpr(); |
| 1363 | |
| 1364 | return E; |
| 1365 | } |
| 1366 | |
| 1367 | /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr |
| 1368 | /// or CastExprs or ImplicitCastExprs, returning their operand. |
| 1369 | Expr *Expr::IgnoreParenCasts() { |
| 1370 | Expr *E = this; |
| 1371 | while (true) { |
| 1372 | if (ParenExpr *P = dyn_cast<ParenExpr>(E)) |
| 1373 | E = P->getSubExpr(); |
| 1374 | else if (CastExpr *P = dyn_cast<CastExpr>(E)) |
| 1375 | E = P->getSubExpr(); |
| 1376 | else |
| 1377 | return E; |
| 1378 | } |
| 1379 | } |
| 1380 | |
| 1381 | /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the |
| 1382 | /// value (including ptr->int casts of the same size). Strip off any |
| 1383 | /// ParenExpr or CastExprs, returning their operand. |
| 1384 | Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { |
| 1385 | Expr *E = this; |
| 1386 | while (true) { |
| 1387 | if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { |
| 1388 | E = P->getSubExpr(); |
| 1389 | continue; |
| 1390 | } |
| 1391 | |
| 1392 | if (CastExpr *P = dyn_cast<CastExpr>(E)) { |
| 1393 | // We ignore integer <-> casts that are of the same width, ptr<->ptr and |
| 1394 | // ptr<->int casts of the same width. We also ignore all identify casts. |
| 1395 | Expr *SE = P->getSubExpr(); |
| 1396 | |
| 1397 | if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { |
| 1398 | E = SE; |
| 1399 | continue; |
| 1400 | } |
| 1401 | |
| 1402 | if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) && |
| 1403 | (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) && |
| 1404 | Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { |
| 1405 | E = SE; |
| 1406 | continue; |
| 1407 | } |
| 1408 | } |
| 1409 | |
| 1410 | return E; |
| 1411 | } |
| 1412 | } |
| 1413 | |
| 1414 | bool Expr::isDefaultArgument() const { |
| 1415 | const Expr *E = this; |
| 1416 | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) |
| 1417 | E = ICE->getSubExprAsWritten(); |
| 1418 | |
| 1419 | return isa<CXXDefaultArgExpr>(E); |
| 1420 | } |
| 1421 | |
| 1422 | /// hasAnyTypeDependentArguments - Determines if any of the expressions |
| 1423 | /// in Exprs is type-dependent. |
| 1424 | bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) { |
| 1425 | for (unsigned I = 0; I < NumExprs; ++I) |
| 1426 | if (Exprs[I]->isTypeDependent()) |
| 1427 | return true; |
| 1428 | |
| 1429 | return false; |
| 1430 | } |
| 1431 | |
| 1432 | /// hasAnyValueDependentArguments - Determines if any of the expressions |
| 1433 | /// in Exprs is value-dependent. |
| 1434 | bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) { |
| 1435 | for (unsigned I = 0; I < NumExprs; ++I) |
| 1436 | if (Exprs[I]->isValueDependent()) |
| 1437 | return true; |
| 1438 | |
| 1439 | return false; |
| 1440 | } |
| 1441 | |
| 1442 | bool Expr::isConstantInitializer(ASTContext &Ctx) const { |
| 1443 | // This function is attempting whether an expression is an initializer |
| 1444 | // which can be evaluated at compile-time. isEvaluatable handles most |
| 1445 | // of the cases, but it can't deal with some initializer-specific |
| 1446 | // expressions, and it can't deal with aggregates; we deal with those here, |
| 1447 | // and fall back to isEvaluatable for the other cases. |
| 1448 | |
| 1449 | // FIXME: This function assumes the variable being assigned to |
| 1450 | // isn't a reference type! |
| 1451 | |
| 1452 | switch (getStmtClass()) { |
| 1453 | default: break; |
| 1454 | case StringLiteralClass: |
| 1455 | case ObjCStringLiteralClass: |
| 1456 | case ObjCEncodeExprClass: |
| 1457 | return true; |
| 1458 | case CompoundLiteralExprClass: { |
| 1459 | // This handles gcc's extension that allows global initializers like |
| 1460 | // "struct x {int x;} x = (struct x) {};". |
| 1461 | // FIXME: This accepts other cases it shouldn't! |
| 1462 | const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); |
| 1463 | return Exp->isConstantInitializer(Ctx); |
| 1464 | } |
| 1465 | case InitListExprClass: { |
| 1466 | // FIXME: This doesn't deal with fields with reference types correctly. |
| 1467 | // FIXME: This incorrectly allows pointers cast to integers to be assigned |
| 1468 | // to bitfields. |
| 1469 | const InitListExpr *Exp = cast<InitListExpr>(this); |
| 1470 | unsigned numInits = Exp->getNumInits(); |
| 1471 | for (unsigned i = 0; i < numInits; i++) { |
| 1472 | if (!Exp->getInit(i)->isConstantInitializer(Ctx)) |
| 1473 | return false; |
| 1474 | } |
| 1475 | return true; |
| 1476 | } |
| 1477 | case ImplicitValueInitExprClass: |
| 1478 | return true; |
| 1479 | case ParenExprClass: |
| 1480 | return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx); |
| 1481 | case UnaryOperatorClass: { |
| 1482 | const UnaryOperator* Exp = cast<UnaryOperator>(this); |
| 1483 | if (Exp->getOpcode() == UnaryOperator::Extension) |
| 1484 | return Exp->getSubExpr()->isConstantInitializer(Ctx); |
| 1485 | break; |
| 1486 | } |
| 1487 | case BinaryOperatorClass: { |
| 1488 | // Special case &&foo - &&bar. It would be nice to generalize this somehow |
| 1489 | // but this handles the common case. |
| 1490 | const BinaryOperator *Exp = cast<BinaryOperator>(this); |
| 1491 | if (Exp->getOpcode() == BinaryOperator::Sub && |
| 1492 | isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) && |
| 1493 | isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx))) |
| 1494 | return true; |
| 1495 | break; |
| 1496 | } |
| 1497 | case ImplicitCastExprClass: |
| 1498 | case CStyleCastExprClass: |
| 1499 | // Handle casts with a destination that's a struct or union; this |
| 1500 | // deals with both the gcc no-op struct cast extension and the |
| 1501 | // cast-to-union extension. |
| 1502 | if (getType()->isRecordType()) |
| 1503 | return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx); |
| 1504 | |
| 1505 | // Integer->integer casts can be handled here, which is important for |
| 1506 | // things like (int)(&&x-&&y). Scary but true. |
| 1507 | if (getType()->isIntegerType() && |
| 1508 | cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType()) |
| 1509 | return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx); |
| 1510 | |
| 1511 | break; |
| 1512 | } |
| 1513 | return isEvaluatable(Ctx); |
| 1514 | } |
| 1515 | |
| 1516 | /// isIntegerConstantExpr - this recursive routine will test if an expression is |
| 1517 | /// an integer constant expression. |
| 1518 | |
| 1519 | /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, |
| 1520 | /// comma, etc |
| 1521 | /// |
| 1522 | /// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof |
| 1523 | /// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer |
| 1524 | /// cast+dereference. |
| 1525 | |
| 1526 | // CheckICE - This function does the fundamental ICE checking: the returned |
| 1527 | // ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation. |
| 1528 | // Note that to reduce code duplication, this helper does no evaluation |
| 1529 | // itself; the caller checks whether the expression is evaluatable, and |
| 1530 | // in the rare cases where CheckICE actually cares about the evaluated |
| 1531 | // value, it calls into Evalute. |
| 1532 | // |
| 1533 | // Meanings of Val: |
| 1534 | // 0: This expression is an ICE if it can be evaluated by Evaluate. |
| 1535 | // 1: This expression is not an ICE, but if it isn't evaluated, it's |
| 1536 | // a legal subexpression for an ICE. This return value is used to handle |
| 1537 | // the comma operator in C99 mode. |
| 1538 | // 2: This expression is not an ICE, and is not a legal subexpression for one. |
| 1539 | |
| 1540 | struct ICEDiag { |
| 1541 | unsigned Val; |
| 1542 | SourceLocation Loc; |
| 1543 | |
| 1544 | public: |
| 1545 | ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {} |
| 1546 | ICEDiag() : Val(0) {} |
| 1547 | }; |
| 1548 | |
| 1549 | ICEDiag NoDiag() { return ICEDiag(); } |
| 1550 | |
| 1551 | static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) { |
| 1552 | Expr::EvalResult EVResult; |
| 1553 | if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects || |
| 1554 | !EVResult.Val.isInt()) { |
| 1555 | return ICEDiag(2, E->getLocStart()); |
| 1556 | } |
| 1557 | return NoDiag(); |
| 1558 | } |
| 1559 | |
| 1560 | static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) { |
| 1561 | assert(!E->isValueDependent() && "Should not see value dependent exprs!"); |
| 1562 | if (!E->getType()->isIntegralType()) { |
| 1563 | return ICEDiag(2, E->getLocStart()); |
| 1564 | } |
| 1565 | |
| 1566 | switch (E->getStmtClass()) { |
| 1567 | #define STMT(Node, Base) case Expr::Node##Class: |
| 1568 | #define EXPR(Node, Base) |
| 1569 | #include "clang/AST/StmtNodes.def" |
| 1570 | case Expr::PredefinedExprClass: |
| 1571 | case Expr::FloatingLiteralClass: |
| 1572 | case Expr::ImaginaryLiteralClass: |
| 1573 | case Expr::StringLiteralClass: |
| 1574 | case Expr::ArraySubscriptExprClass: |
| 1575 | case Expr::MemberExprClass: |
| 1576 | case Expr::CompoundAssignOperatorClass: |
| 1577 | case Expr::CompoundLiteralExprClass: |
| 1578 | case Expr::ExtVectorElementExprClass: |
| 1579 | case Expr::InitListExprClass: |
| 1580 | case Expr::DesignatedInitExprClass: |
| 1581 | case Expr::ImplicitValueInitExprClass: |
| 1582 | case Expr::ParenListExprClass: |
| 1583 | case Expr::VAArgExprClass: |
| 1584 | case Expr::AddrLabelExprClass: |
| 1585 | case Expr::StmtExprClass: |
| 1586 | case Expr::CXXMemberCallExprClass: |
| 1587 | case Expr::CXXDynamicCastExprClass: |
| 1588 | case Expr::CXXTypeidExprClass: |
| 1589 | case Expr::CXXNullPtrLiteralExprClass: |
| 1590 | case Expr::CXXThisExprClass: |
| 1591 | case Expr::CXXThrowExprClass: |
| 1592 | case Expr::CXXNewExprClass: |
| 1593 | case Expr::CXXDeleteExprClass: |
| 1594 | case Expr::CXXPseudoDestructorExprClass: |
| 1595 | case Expr::UnresolvedLookupExprClass: |
| 1596 | case Expr::DependentScopeDeclRefExprClass: |
| 1597 | case Expr::CXXConstructExprClass: |
| 1598 | case Expr::CXXBindTemporaryExprClass: |
| 1599 | case Expr::CXXBindReferenceExprClass: |
| 1600 | case Expr::CXXExprWithTemporariesClass: |
| 1601 | case Expr::CXXTemporaryObjectExprClass: |
| 1602 | case Expr::CXXUnresolvedConstructExprClass: |
| 1603 | case Expr::CXXDependentScopeMemberExprClass: |
| 1604 | case Expr::UnresolvedMemberExprClass: |
| 1605 | case Expr::ObjCStringLiteralClass: |
| 1606 | case Expr::ObjCEncodeExprClass: |
| 1607 | case Expr::ObjCMessageExprClass: |
| 1608 | case Expr::ObjCSelectorExprClass: |
| 1609 | case Expr::ObjCProtocolExprClass: |
| 1610 | case Expr::ObjCIvarRefExprClass: |
| 1611 | case Expr::ObjCPropertyRefExprClass: |
| 1612 | case Expr::ObjCImplicitSetterGetterRefExprClass: |
| 1613 | case Expr::ObjCSuperExprClass: |
| 1614 | case Expr::ObjCIsaExprClass: |
| 1615 | case Expr::ShuffleVectorExprClass: |
| 1616 | case Expr::BlockExprClass: |
| 1617 | case Expr::BlockDeclRefExprClass: |
| 1618 | case Expr::NoStmtClass: |
| 1619 | return ICEDiag(2, E->getLocStart()); |
| 1620 | |
| 1621 | case Expr::GNUNullExprClass: |
| 1622 | // GCC considers the GNU __null value to be an integral constant expression. |
| 1623 | return NoDiag(); |
| 1624 | |
| 1625 | case Expr::ParenExprClass: |
| 1626 | return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); |
| 1627 | case Expr::IntegerLiteralClass: |
| 1628 | case Expr::CharacterLiteralClass: |
| 1629 | case Expr::CXXBoolLiteralExprClass: |
| 1630 | case Expr::CXXZeroInitValueExprClass: |
| 1631 | case Expr::TypesCompatibleExprClass: |
| 1632 | case Expr::UnaryTypeTraitExprClass: |
| 1633 | return NoDiag(); |
| 1634 | case Expr::CallExprClass: |
| 1635 | case Expr::CXXOperatorCallExprClass: { |
| 1636 | const CallExpr *CE = cast<CallExpr>(E); |
| 1637 | if (CE->isBuiltinCall(Ctx)) |
| 1638 | return CheckEvalInICE(E, Ctx); |
| 1639 | return ICEDiag(2, E->getLocStart()); |
| 1640 | } |
| 1641 | case Expr::DeclRefExprClass: |
| 1642 | if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl())) |
| 1643 | return NoDiag(); |
| 1644 | if (Ctx.getLangOptions().CPlusPlus && |
| 1645 | E->getType().getCVRQualifiers() == Qualifiers::Const) { |
| 1646 | // C++ 7.1.5.1p2 |
| 1647 | // A variable of non-volatile const-qualified integral or enumeration |
| 1648 | // type initialized by an ICE can be used in ICEs. |
| 1649 | if (const VarDecl *Dcl = |
| 1650 | dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) { |
| 1651 | Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers(); |
| 1652 | if (Quals.hasVolatile() || !Quals.hasConst()) |
| 1653 | return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); |
| 1654 | |
| 1655 | // Look for a declaration of this variable that has an initializer. |
| 1656 | const VarDecl *ID = 0; |
| 1657 | const Expr *Init = Dcl->getAnyInitializer(ID); |
| 1658 | if (Init) { |
| 1659 | if (ID->isInitKnownICE()) { |
| 1660 | // We have already checked whether this subexpression is an |
| 1661 | // integral constant expression. |
| 1662 | if (ID->isInitICE()) |
| 1663 | return NoDiag(); |
| 1664 | else |
| 1665 | return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); |
| 1666 | } |
| 1667 | |
| 1668 | // It's an ICE whether or not the definition we found is |
| 1669 | // out-of-line. See DR 721 and the discussion in Clang PR |
| 1670 | // 6206 for details. |
| 1671 | |
| 1672 | if (Dcl->isCheckingICE()) { |
| 1673 | return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); |
| 1674 | } |
| 1675 | |
| 1676 | Dcl->setCheckingICE(); |
| 1677 | ICEDiag Result = CheckICE(Init, Ctx); |
| 1678 | // Cache the result of the ICE test. |
| 1679 | Dcl->setInitKnownICE(Result.Val == 0); |
| 1680 | return Result; |
| 1681 | } |
| 1682 | } |
| 1683 | } |
| 1684 | return ICEDiag(2, E->getLocStart()); |
| 1685 | case Expr::UnaryOperatorClass: { |
| 1686 | const UnaryOperator *Exp = cast<UnaryOperator>(E); |
| 1687 | switch (Exp->getOpcode()) { |
| 1688 | case UnaryOperator::PostInc: |
| 1689 | case UnaryOperator::PostDec: |
| 1690 | case UnaryOperator::PreInc: |
| 1691 | case UnaryOperator::PreDec: |
| 1692 | case UnaryOperator::AddrOf: |
| 1693 | case UnaryOperator::Deref: |
| 1694 | return ICEDiag(2, E->getLocStart()); |
| 1695 | |
| 1696 | case UnaryOperator::Extension: |
| 1697 | case UnaryOperator::LNot: |
| 1698 | case UnaryOperator::Plus: |
| 1699 | case UnaryOperator::Minus: |
| 1700 | case UnaryOperator::Not: |
| 1701 | case UnaryOperator::Real: |
| 1702 | case UnaryOperator::Imag: |
| 1703 | return CheckICE(Exp->getSubExpr(), Ctx); |
| 1704 | case UnaryOperator::OffsetOf: |
| 1705 | // Note that per C99, offsetof must be an ICE. And AFAIK, using |
| 1706 | // Evaluate matches the proposed gcc behavior for cases like |
| 1707 | // "offsetof(struct s{int x[4];}, x[!.0])". This doesn't affect |
| 1708 | // compliance: we should warn earlier for offsetof expressions with |
| 1709 | // array subscripts that aren't ICEs, and if the array subscripts |
| 1710 | // are ICEs, the value of the offsetof must be an integer constant. |
| 1711 | return CheckEvalInICE(E, Ctx); |
| 1712 | } |
| 1713 | } |
| 1714 | case Expr::SizeOfAlignOfExprClass: { |
| 1715 | const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E); |
| 1716 | if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType()) |
| 1717 | return ICEDiag(2, E->getLocStart()); |
| 1718 | return NoDiag(); |
| 1719 | } |
| 1720 | case Expr::BinaryOperatorClass: { |
| 1721 | const BinaryOperator *Exp = cast<BinaryOperator>(E); |
| 1722 | switch (Exp->getOpcode()) { |
| 1723 | case BinaryOperator::PtrMemD: |
| 1724 | case BinaryOperator::PtrMemI: |
| 1725 | case BinaryOperator::Assign: |
| 1726 | case BinaryOperator::MulAssign: |
| 1727 | case BinaryOperator::DivAssign: |
| 1728 | case BinaryOperator::RemAssign: |
| 1729 | case BinaryOperator::AddAssign: |
| 1730 | case BinaryOperator::SubAssign: |
| 1731 | case BinaryOperator::ShlAssign: |
| 1732 | case BinaryOperator::ShrAssign: |
| 1733 | case BinaryOperator::AndAssign: |
| 1734 | case BinaryOperator::XorAssign: |
| 1735 | case BinaryOperator::OrAssign: |
| 1736 | return ICEDiag(2, E->getLocStart()); |
| 1737 | |
| 1738 | case BinaryOperator::Mul: |
| 1739 | case BinaryOperator::Div: |
| 1740 | case BinaryOperator::Rem: |
| 1741 | case BinaryOperator::Add: |
| 1742 | case BinaryOperator::Sub: |
| 1743 | case BinaryOperator::Shl: |
| 1744 | case BinaryOperator::Shr: |
| 1745 | case BinaryOperator::LT: |
| 1746 | case BinaryOperator::GT: |
| 1747 | case BinaryOperator::LE: |
| 1748 | case BinaryOperator::GE: |
| 1749 | case BinaryOperator::EQ: |
| 1750 | case BinaryOperator::NE: |
| 1751 | case BinaryOperator::And: |
| 1752 | case BinaryOperator::Xor: |
| 1753 | case BinaryOperator::Or: |
| 1754 | case BinaryOperator::Comma: { |
| 1755 | ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); |
| 1756 | ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); |
| 1757 | if (Exp->getOpcode() == BinaryOperator::Div || |
| 1758 | Exp->getOpcode() == BinaryOperator::Rem) { |
| 1759 | // Evaluate gives an error for undefined Div/Rem, so make sure |
| 1760 | // we don't evaluate one. |
| 1761 | if (LHSResult.Val != 2 && RHSResult.Val != 2) { |
| 1762 | llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx); |
| 1763 | if (REval == 0) |
| 1764 | return ICEDiag(1, E->getLocStart()); |
| 1765 | if (REval.isSigned() && REval.isAllOnesValue()) { |
| 1766 | llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx); |
| 1767 | if (LEval.isMinSignedValue()) |
| 1768 | return ICEDiag(1, E->getLocStart()); |
| 1769 | } |
| 1770 | } |
| 1771 | } |
| 1772 | if (Exp->getOpcode() == BinaryOperator::Comma) { |
| 1773 | if (Ctx.getLangOptions().C99) { |
| 1774 | // C99 6.6p3 introduces a strange edge case: comma can be in an ICE |
| 1775 | // if it isn't evaluated. |
| 1776 | if (LHSResult.Val == 0 && RHSResult.Val == 0) |
| 1777 | return ICEDiag(1, E->getLocStart()); |
| 1778 | } else { |
| 1779 | // In both C89 and C++, commas in ICEs are illegal. |
| 1780 | return ICEDiag(2, E->getLocStart()); |
| 1781 | } |
| 1782 | } |
| 1783 | if (LHSResult.Val >= RHSResult.Val) |
| 1784 | return LHSResult; |
| 1785 | return RHSResult; |
| 1786 | } |
| 1787 | case BinaryOperator::LAnd: |
| 1788 | case BinaryOperator::LOr: { |
| 1789 | ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); |
| 1790 | ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); |
| 1791 | if (LHSResult.Val == 0 && RHSResult.Val == 1) { |
| 1792 | // Rare case where the RHS has a comma "side-effect"; we need |
| 1793 | // to actually check the condition to see whether the side |
| 1794 | // with the comma is evaluated. |
| 1795 | if ((Exp->getOpcode() == BinaryOperator::LAnd) != |
| 1796 | (Exp->getLHS()->EvaluateAsInt(Ctx) == 0)) |
| 1797 | return RHSResult; |
| 1798 | return NoDiag(); |
| 1799 | } |
| 1800 | |
| 1801 | if (LHSResult.Val >= RHSResult.Val) |
| 1802 | return LHSResult; |
| 1803 | return RHSResult; |
| 1804 | } |
| 1805 | } |
| 1806 | } |
| 1807 | case Expr::ImplicitCastExprClass: |
| 1808 | case Expr::CStyleCastExprClass: |
| 1809 | case Expr::CXXFunctionalCastExprClass: |
| 1810 | case Expr::CXXNamedCastExprClass: |
| 1811 | case Expr::CXXStaticCastExprClass: |
| 1812 | case Expr::CXXReinterpretCastExprClass: |
| 1813 | case Expr::CXXConstCastExprClass: { |
| 1814 | const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); |
| 1815 | if (SubExpr->getType()->isIntegralType()) |
| 1816 | return CheckICE(SubExpr, Ctx); |
| 1817 | if (isa<FloatingLiteral>(SubExpr->IgnoreParens())) |
| 1818 | return NoDiag(); |
| 1819 | return ICEDiag(2, E->getLocStart()); |
| 1820 | } |
| 1821 | case Expr::ConditionalOperatorClass: { |
| 1822 | const ConditionalOperator *Exp = cast<ConditionalOperator>(E); |
| 1823 | // If the condition (ignoring parens) is a __builtin_constant_p call, |
| 1824 | // then only the true side is actually considered in an integer constant |
| 1825 | // expression, and it is fully evaluated. This is an important GNU |
| 1826 | // extension. See GCC PR38377 for discussion. |
| 1827 | if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) |
| 1828 | if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) { |
| 1829 | Expr::EvalResult EVResult; |
| 1830 | if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects || |
| 1831 | !EVResult.Val.isInt()) { |
| 1832 | return ICEDiag(2, E->getLocStart()); |
| 1833 | } |
| 1834 | return NoDiag(); |
| 1835 | } |
| 1836 | ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); |
| 1837 | ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); |
| 1838 | ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); |
| 1839 | if (CondResult.Val == 2) |
| 1840 | return CondResult; |
| 1841 | if (TrueResult.Val == 2) |
| 1842 | return TrueResult; |
| 1843 | if (FalseResult.Val == 2) |
| 1844 | return FalseResult; |
| 1845 | if (CondResult.Val == 1) |
| 1846 | return CondResult; |
| 1847 | if (TrueResult.Val == 0 && FalseResult.Val == 0) |
| 1848 | return NoDiag(); |
| 1849 | // Rare case where the diagnostics depend on which side is evaluated |
| 1850 | // Note that if we get here, CondResult is 0, and at least one of |
| 1851 | // TrueResult and FalseResult is non-zero. |
| 1852 | if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) { |
| 1853 | return FalseResult; |
| 1854 | } |
| 1855 | return TrueResult; |
| 1856 | } |
| 1857 | case Expr::CXXDefaultArgExprClass: |
| 1858 | return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); |
| 1859 | case Expr::ChooseExprClass: { |
| 1860 | return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx); |
| 1861 | } |
| 1862 | } |
| 1863 | |
| 1864 | // Silence a GCC warning |
| 1865 | return ICEDiag(2, E->getLocStart()); |
| 1866 | } |
| 1867 | |
| 1868 | bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx, |
| 1869 | SourceLocation *Loc, bool isEvaluated) const { |
| 1870 | ICEDiag d = CheckICE(this, Ctx); |
| 1871 | if (d.Val != 0) { |
| 1872 | if (Loc) *Loc = d.Loc; |
| 1873 | return false; |
| 1874 | } |
| 1875 | EvalResult EvalResult; |
| 1876 | if (!Evaluate(EvalResult, Ctx)) |
| 1877 | llvm_unreachable("ICE cannot be evaluated!"); |
| 1878 | assert(!EvalResult.HasSideEffects && "ICE with side effects!"); |
| 1879 | assert(EvalResult.Val.isInt() && "ICE that isn't integer!"); |
| 1880 | Result = EvalResult.Val.getInt(); |
| 1881 | return true; |
| 1882 | } |
| 1883 | |
| 1884 | /// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an |
| 1885 | /// integer constant expression with the value zero, or if this is one that is |
| 1886 | /// cast to void*. |
| 1887 | bool Expr::isNullPointerConstant(ASTContext &Ctx, |
| 1888 | NullPointerConstantValueDependence NPC) const { |
| 1889 | if (isValueDependent()) { |
| 1890 | switch (NPC) { |
| 1891 | case NPC_NeverValueDependent: |
| 1892 | assert(false && "Unexpected value dependent expression!"); |
| 1893 | // If the unthinkable happens, fall through to the safest alternative. |
| 1894 | |
| 1895 | case NPC_ValueDependentIsNull: |
| 1896 | return isTypeDependent() || getType()->isIntegralType(); |
| 1897 | |
| 1898 | case NPC_ValueDependentIsNotNull: |
| 1899 | return false; |
| 1900 | } |
| 1901 | } |
| 1902 | |
| 1903 | // Strip off a cast to void*, if it exists. Except in C++. |
| 1904 | if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { |
| 1905 | if (!Ctx.getLangOptions().CPlusPlus) { |
| 1906 | // Check that it is a cast to void*. |
| 1907 | if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { |
| 1908 | QualType Pointee = PT->getPointeeType(); |
| 1909 | if (!Pointee.hasQualifiers() && |
| 1910 | Pointee->isVoidType() && // to void* |
| 1911 | CE->getSubExpr()->getType()->isIntegerType()) // from int. |
| 1912 | return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
| 1913 | } |
| 1914 | } |
| 1915 | } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { |
| 1916 | // Ignore the ImplicitCastExpr type entirely. |
| 1917 | return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
| 1918 | } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { |
| 1919 | // Accept ((void*)0) as a null pointer constant, as many other |
| 1920 | // implementations do. |
| 1921 | return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
| 1922 | } else if (const CXXDefaultArgExpr *DefaultArg |
| 1923 | = dyn_cast<CXXDefaultArgExpr>(this)) { |
| 1924 | // See through default argument expressions |
| 1925 | return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); |
| 1926 | } else if (isa<GNUNullExpr>(this)) { |
| 1927 | // The GNU __null extension is always a null pointer constant. |
| 1928 | return true; |
| 1929 | } |
| 1930 | |
| 1931 | // C++0x nullptr_t is always a null pointer constant. |
| 1932 | if (getType()->isNullPtrType()) |
| 1933 | return true; |
| 1934 | |
| 1935 | // This expression must be an integer type. |
| 1936 | if (!getType()->isIntegerType() || |
| 1937 | (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType())) |
| 1938 | return false; |
| 1939 | |
| 1940 | // If we have an integer constant expression, we need to *evaluate* it and |
| 1941 | // test for the value 0. |
| 1942 | llvm::APSInt Result; |
| 1943 | return isIntegerConstantExpr(Result, Ctx) && Result == 0; |
| 1944 | } |
| 1945 | |
| 1946 | FieldDecl *Expr::getBitField() { |
| 1947 | Expr *E = this->IgnoreParens(); |
| 1948 | |
| 1949 | while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| 1950 | if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp) |
| 1951 | E = ICE->getSubExpr()->IgnoreParens(); |
| 1952 | else |
| 1953 | break; |
| 1954 | } |
| 1955 | |
| 1956 | if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) |
| 1957 | if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) |
| 1958 | if (Field->isBitField()) |
| 1959 | return Field; |
| 1960 | |
| 1961 | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) |
| 1962 | if (BinOp->isAssignmentOp() && BinOp->getLHS()) |
| 1963 | return BinOp->getLHS()->getBitField(); |
| 1964 | |
| 1965 | return 0; |
| 1966 | } |
| 1967 | |
| 1968 | bool Expr::refersToVectorElement() const { |
| 1969 | const Expr *E = this->IgnoreParens(); |
| 1970 | |
| 1971 | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| 1972 | if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp) |
| 1973 | E = ICE->getSubExpr()->IgnoreParens(); |
| 1974 | else |
| 1975 | break; |
| 1976 | } |
| 1977 | |
| 1978 | if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) |
| 1979 | return ASE->getBase()->getType()->isVectorType(); |
| 1980 | |
| 1981 | if (isa<ExtVectorElementExpr>(E)) |
| 1982 | return true; |
| 1983 | |
| 1984 | return false; |
| 1985 | } |
| 1986 | |
| 1987 | /// isArrow - Return true if the base expression is a pointer to vector, |
| 1988 | /// return false if the base expression is a vector. |
| 1989 | bool ExtVectorElementExpr::isArrow() const { |
| 1990 | return getBase()->getType()->isPointerType(); |
| 1991 | } |
| 1992 | |
| 1993 | unsigned ExtVectorElementExpr::getNumElements() const { |
| 1994 | if (const VectorType *VT = getType()->getAs<VectorType>()) |
| 1995 | return VT->getNumElements(); |
| 1996 | return 1; |
| 1997 | } |
| 1998 | |
| 1999 | /// containsDuplicateElements - Return true if any element access is repeated. |
| 2000 | bool ExtVectorElementExpr::containsDuplicateElements() const { |
| 2001 | // FIXME: Refactor this code to an accessor on the AST node which returns the |
| 2002 | // "type" of component access, and share with code below and in Sema. |
| 2003 | llvm::StringRef Comp = Accessor->getName(); |
| 2004 | |
| 2005 | // Halving swizzles do not contain duplicate elements. |
| 2006 | if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") |
| 2007 | return false; |
| 2008 | |
| 2009 | // Advance past s-char prefix on hex swizzles. |
| 2010 | if (Comp[0] == 's' || Comp[0] == 'S') |
| 2011 | Comp = Comp.substr(1); |
| 2012 | |
| 2013 | for (unsigned i = 0, e = Comp.size(); i != e; ++i) |
| 2014 | if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos) |
| 2015 | return true; |
| 2016 | |
| 2017 | return false; |
| 2018 | } |
| 2019 | |
| 2020 | /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. |
| 2021 | void ExtVectorElementExpr::getEncodedElementAccess( |
| 2022 | llvm::SmallVectorImpl<unsigned> &Elts) const { |
| 2023 | llvm::StringRef Comp = Accessor->getName(); |
| 2024 | if (Comp[0] == 's' || Comp[0] == 'S') |
| 2025 | Comp = Comp.substr(1); |
| 2026 | |
| 2027 | bool isHi = Comp == "hi"; |
| 2028 | bool isLo = Comp == "lo"; |
| 2029 | bool isEven = Comp == "even"; |
| 2030 | bool isOdd = Comp == "odd"; |
| 2031 | |
| 2032 | for (unsigned i = 0, e = getNumElements(); i != e; ++i) { |
| 2033 | uint64_t Index; |
| 2034 | |
| 2035 | if (isHi) |
| 2036 | Index = e + i; |
| 2037 | else if (isLo) |
| 2038 | Index = i; |
| 2039 | else if (isEven) |
| 2040 | Index = 2 * i; |
| 2041 | else if (isOdd) |
| 2042 | Index = 2 * i + 1; |
| 2043 | else |
| 2044 | Index = ExtVectorType::getAccessorIdx(Comp[i]); |
| 2045 | |
| 2046 | Elts.push_back(Index); |
| 2047 | } |
| 2048 | } |
| 2049 | |
| 2050 | // constructor for instance messages. |
| 2051 | ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo, |
| 2052 | QualType retType, ObjCMethodDecl *mproto, |
| 2053 | SourceLocation LBrac, SourceLocation RBrac, |
| 2054 | Expr **ArgExprs, unsigned nargs) |
| 2055 | : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo), |
| 2056 | MethodProto(mproto) { |
| 2057 | NumArgs = nargs; |
| 2058 | SubExprs = new Stmt*[NumArgs+1]; |
| 2059 | SubExprs[RECEIVER] = receiver; |
| 2060 | if (NumArgs) { |
| 2061 | for (unsigned i = 0; i != NumArgs; ++i) |
| 2062 | SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]); |
| 2063 | } |
| 2064 | LBracloc = LBrac; |
| 2065 | RBracloc = RBrac; |
| 2066 | } |
| 2067 | |
| 2068 | // constructor for class messages. |
| 2069 | // FIXME: clsName should be typed to ObjCInterfaceType |
| 2070 | ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo, |
| 2071 | QualType retType, ObjCMethodDecl *mproto, |
| 2072 | SourceLocation LBrac, SourceLocation RBrac, |
| 2073 | Expr **ArgExprs, unsigned nargs) |
| 2074 | : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo), |
| 2075 | MethodProto(mproto) { |
| 2076 | NumArgs = nargs; |
| 2077 | SubExprs = new Stmt*[NumArgs+1]; |
| 2078 | SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown); |
| 2079 | if (NumArgs) { |
| 2080 | for (unsigned i = 0; i != NumArgs; ++i) |
| 2081 | SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]); |
| 2082 | } |
| 2083 | LBracloc = LBrac; |
| 2084 | RBracloc = RBrac; |
| 2085 | } |
| 2086 | |
| 2087 | // constructor for class messages. |
| 2088 | ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo, |
| 2089 | QualType retType, ObjCMethodDecl *mproto, |
| 2090 | SourceLocation LBrac, SourceLocation RBrac, |
| 2091 | Expr **ArgExprs, unsigned nargs) |
| 2092 | : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo), |
| 2093 | MethodProto(mproto) { |
| 2094 | NumArgs = nargs; |
| 2095 | SubExprs = new Stmt*[NumArgs+1]; |
| 2096 | SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown); |
| 2097 | if (NumArgs) { |
| 2098 | for (unsigned i = 0; i != NumArgs; ++i) |
| 2099 | SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]); |
| 2100 | } |
| 2101 | LBracloc = LBrac; |
| 2102 | RBracloc = RBrac; |
| 2103 | } |
| 2104 | |
| 2105 | ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const { |
| 2106 | uintptr_t x = (uintptr_t) SubExprs[RECEIVER]; |
| 2107 | switch (x & Flags) { |
| 2108 | default: |
| 2109 | assert(false && "Invalid ObjCMessageExpr."); |
| 2110 | case IsInstMeth: |
| 2111 | return ClassInfo(0, 0); |
| 2112 | case IsClsMethDeclUnknown: |
| 2113 | return ClassInfo(0, (IdentifierInfo*) (x & ~Flags)); |
| 2114 | case IsClsMethDeclKnown: { |
| 2115 | ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags); |
| 2116 | return ClassInfo(D, D->getIdentifier()); |
| 2117 | } |
| 2118 | } |
| 2119 | } |
| 2120 | |
| 2121 | void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) { |
| 2122 | if (CI.first == 0 && CI.second == 0) |
| 2123 | SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth); |
| 2124 | else if (CI.first == 0) |
| 2125 | SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown); |
| 2126 | else |
| 2127 | SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown); |
| 2128 | } |
| 2129 | |
| 2130 | |
| 2131 | bool ChooseExpr::isConditionTrue(ASTContext &C) const { |
| 2132 | return getCond()->EvaluateAsInt(C) != 0; |
| 2133 | } |
| 2134 | |
| 2135 | void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs, |
| 2136 | unsigned NumExprs) { |
| 2137 | if (SubExprs) C.Deallocate(SubExprs); |
| 2138 | |
| 2139 | SubExprs = new (C) Stmt* [NumExprs]; |
| 2140 | this->NumExprs = NumExprs; |
| 2141 | memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs); |
| 2142 | } |
| 2143 | |
| 2144 | void ShuffleVectorExpr::DoDestroy(ASTContext& C) { |
| 2145 | DestroyChildren(C); |
| 2146 | if (SubExprs) C.Deallocate(SubExprs); |
| 2147 | this->~ShuffleVectorExpr(); |
| 2148 | C.Deallocate(this); |
| 2149 | } |
| 2150 | |
| 2151 | void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) { |
| 2152 | // Override default behavior of traversing children. If this has a type |
| 2153 | // operand and the type is a variable-length array, the child iteration |
| 2154 | // will iterate over the size expression. However, this expression belongs |
| 2155 | // to the type, not to this, so we don't want to delete it. |
| 2156 | // We still want to delete this expression. |
| 2157 | if (isArgumentType()) { |
| 2158 | this->~SizeOfAlignOfExpr(); |
| 2159 | C.Deallocate(this); |
| 2160 | } |
| 2161 | else |
| 2162 | Expr::DoDestroy(C); |
| 2163 | } |
| 2164 | |
| 2165 | //===----------------------------------------------------------------------===// |
| 2166 | // DesignatedInitExpr |
| 2167 | //===----------------------------------------------------------------------===// |
| 2168 | |
| 2169 | IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() { |
| 2170 | assert(Kind == FieldDesignator && "Only valid on a field designator"); |
| 2171 | if (Field.NameOrField & 0x01) |
| 2172 | return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); |
| 2173 | else |
| 2174 | return getField()->getIdentifier(); |
| 2175 | } |
| 2176 | |
| 2177 | DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty, |
| 2178 | unsigned NumDesignators, |
| 2179 | const Designator *Designators, |
| 2180 | SourceLocation EqualOrColonLoc, |
| 2181 | bool GNUSyntax, |
| 2182 | Expr **IndexExprs, |
| 2183 | unsigned NumIndexExprs, |
| 2184 | Expr *Init) |
| 2185 | : Expr(DesignatedInitExprClass, Ty, |
| 2186 | Init->isTypeDependent(), Init->isValueDependent()), |
| 2187 | EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), |
| 2188 | NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) { |
| 2189 | this->Designators = new (C) Designator[NumDesignators]; |
| 2190 | |
| 2191 | // Record the initializer itself. |
| 2192 | child_iterator Child = child_begin(); |
| 2193 | *Child++ = Init; |
| 2194 | |
| 2195 | // Copy the designators and their subexpressions, computing |
| 2196 | // value-dependence along the way. |
| 2197 | unsigned IndexIdx = 0; |
| 2198 | for (unsigned I = 0; I != NumDesignators; ++I) { |
| 2199 | this->Designators[I] = Designators[I]; |
| 2200 | |
| 2201 | if (this->Designators[I].isArrayDesignator()) { |
| 2202 | // Compute type- and value-dependence. |
| 2203 | Expr *Index = IndexExprs[IndexIdx]; |
| 2204 | ValueDependent = ValueDependent || |
| 2205 | Index->isTypeDependent() || Index->isValueDependent(); |
| 2206 | |
| 2207 | // Copy the index expressions into permanent storage. |
| 2208 | *Child++ = IndexExprs[IndexIdx++]; |
| 2209 | } else if (this->Designators[I].isArrayRangeDesignator()) { |
| 2210 | // Compute type- and value-dependence. |
| 2211 | Expr *Start = IndexExprs[IndexIdx]; |
| 2212 | Expr *End = IndexExprs[IndexIdx + 1]; |
| 2213 | ValueDependent = ValueDependent || |
| 2214 | Start->isTypeDependent() || Start->isValueDependent() || |
| 2215 | End->isTypeDependent() || End->isValueDependent(); |
| 2216 | |
| 2217 | // Copy the start/end expressions into permanent storage. |
| 2218 | *Child++ = IndexExprs[IndexIdx++]; |
| 2219 | *Child++ = IndexExprs[IndexIdx++]; |
| 2220 | } |
| 2221 | } |
| 2222 | |
| 2223 | assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions"); |
| 2224 | } |
| 2225 | |
| 2226 | DesignatedInitExpr * |
| 2227 | DesignatedInitExpr::Create(ASTContext &C, Designator *Designators, |
| 2228 | unsigned NumDesignators, |
| 2229 | Expr **IndexExprs, unsigned NumIndexExprs, |
| 2230 | SourceLocation ColonOrEqualLoc, |
| 2231 | bool UsesColonSyntax, Expr *Init) { |
| 2232 | void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + |
| 2233 | sizeof(Stmt *) * (NumIndexExprs + 1), 8); |
| 2234 | return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators, |
| 2235 | ColonOrEqualLoc, UsesColonSyntax, |
| 2236 | IndexExprs, NumIndexExprs, Init); |
| 2237 | } |
| 2238 | |
| 2239 | DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C, |
| 2240 | unsigned NumIndexExprs) { |
| 2241 | void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + |
| 2242 | sizeof(Stmt *) * (NumIndexExprs + 1), 8); |
| 2243 | return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); |
| 2244 | } |
| 2245 | |
| 2246 | void DesignatedInitExpr::setDesignators(ASTContext &C, |
| 2247 | const Designator *Desigs, |
| 2248 | unsigned NumDesigs) { |
| 2249 | DestroyDesignators(C); |
| 2250 | |
| 2251 | Designators = new (C) Designator[NumDesigs]; |
| 2252 | NumDesignators = NumDesigs; |
| 2253 | for (unsigned I = 0; I != NumDesigs; ++I) |
| 2254 | Designators[I] = Desigs[I]; |
| 2255 | } |
| 2256 | |
| 2257 | SourceRange DesignatedInitExpr::getSourceRange() const { |
| 2258 | SourceLocation StartLoc; |
| 2259 | Designator &First = |
| 2260 | *const_cast<DesignatedInitExpr*>(this)->designators_begin(); |
| 2261 | if (First.isFieldDesignator()) { |
| 2262 | if (GNUSyntax) |
| 2263 | StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); |
| 2264 | else |
| 2265 | StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); |
| 2266 | } else |
| 2267 | StartLoc = |
| 2268 | SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); |
| 2269 | return SourceRange(StartLoc, getInit()->getSourceRange().getEnd()); |
| 2270 | } |
| 2271 | |
| 2272 | Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) { |
| 2273 | assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); |
| 2274 | char* Ptr = static_cast<char*>(static_cast<void *>(this)); |
| 2275 | Ptr += sizeof(DesignatedInitExpr); |
| 2276 | Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); |
| 2277 | return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); |
| 2278 | } |
| 2279 | |
| 2280 | Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) { |
| 2281 | assert(D.Kind == Designator::ArrayRangeDesignator && |
| 2282 | "Requires array range designator"); |
| 2283 | char* Ptr = static_cast<char*>(static_cast<void *>(this)); |
| 2284 | Ptr += sizeof(DesignatedInitExpr); |
| 2285 | Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); |
| 2286 | return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); |
| 2287 | } |
| 2288 | |
| 2289 | Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) { |
| 2290 | assert(D.Kind == Designator::ArrayRangeDesignator && |
| 2291 | "Requires array range designator"); |
| 2292 | char* Ptr = static_cast<char*>(static_cast<void *>(this)); |
| 2293 | Ptr += sizeof(DesignatedInitExpr); |
| 2294 | Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); |
| 2295 | return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2)); |
| 2296 | } |
| 2297 | |
| 2298 | /// \brief Replaces the designator at index @p Idx with the series |
| 2299 | /// of designators in [First, Last). |
| 2300 | void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx, |
| 2301 | const Designator *First, |
| 2302 | const Designator *Last) { |
| 2303 | unsigned NumNewDesignators = Last - First; |
| 2304 | if (NumNewDesignators == 0) { |
| 2305 | std::copy_backward(Designators + Idx + 1, |
| 2306 | Designators + NumDesignators, |
| 2307 | Designators + Idx); |
| 2308 | --NumNewDesignators; |
| 2309 | return; |
| 2310 | } else if (NumNewDesignators == 1) { |
| 2311 | Designators[Idx] = *First; |
| 2312 | return; |
| 2313 | } |
| 2314 | |
| 2315 | Designator *NewDesignators |
| 2316 | = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; |
| 2317 | std::copy(Designators, Designators + Idx, NewDesignators); |
| 2318 | std::copy(First, Last, NewDesignators + Idx); |
| 2319 | std::copy(Designators + Idx + 1, Designators + NumDesignators, |
| 2320 | NewDesignators + Idx + NumNewDesignators); |
| 2321 | DestroyDesignators(C); |
| 2322 | Designators = NewDesignators; |
| 2323 | NumDesignators = NumDesignators - 1 + NumNewDesignators; |
| 2324 | } |
| 2325 | |
| 2326 | void DesignatedInitExpr::DoDestroy(ASTContext &C) { |
| 2327 | DestroyDesignators(C); |
| 2328 | Expr::DoDestroy(C); |
| 2329 | } |
| 2330 | |
| 2331 | void DesignatedInitExpr::DestroyDesignators(ASTContext &C) { |
| 2332 | for (unsigned I = 0; I != NumDesignators; ++I) |
| 2333 | Designators[I].~Designator(); |
| 2334 | C.Deallocate(Designators); |
| 2335 | Designators = 0; |
| 2336 | } |
| 2337 | |
| 2338 | ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc, |
| 2339 | Expr **exprs, unsigned nexprs, |
| 2340 | SourceLocation rparenloc) |
| 2341 | : Expr(ParenListExprClass, QualType(), |
| 2342 | hasAnyTypeDependentArguments(exprs, nexprs), |
| 2343 | hasAnyValueDependentArguments(exprs, nexprs)), |
| 2344 | NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) { |
| 2345 | |
| 2346 | Exprs = new (C) Stmt*[nexprs]; |
| 2347 | for (unsigned i = 0; i != nexprs; ++i) |
| 2348 | Exprs[i] = exprs[i]; |
| 2349 | } |
| 2350 | |
| 2351 | void ParenListExpr::DoDestroy(ASTContext& C) { |
| 2352 | DestroyChildren(C); |
| 2353 | if (Exprs) C.Deallocate(Exprs); |
| 2354 | this->~ParenListExpr(); |
| 2355 | C.Deallocate(this); |
| 2356 | } |
| 2357 | |
| 2358 | //===----------------------------------------------------------------------===// |
| 2359 | // ExprIterator. |
| 2360 | //===----------------------------------------------------------------------===// |
| 2361 | |
| 2362 | Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); } |
| 2363 | Expr* ExprIterator::operator*() const { return cast<Expr>(*I); } |
| 2364 | Expr* ExprIterator::operator->() const { return cast<Expr>(*I); } |
| 2365 | const Expr* ConstExprIterator::operator[](size_t idx) const { |
| 2366 | return cast<Expr>(I[idx]); |
| 2367 | } |
| 2368 | const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); } |
| 2369 | const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); } |
| 2370 | |
| 2371 | //===----------------------------------------------------------------------===// |
| 2372 | // Child Iterators for iterating over subexpressions/substatements |
| 2373 | //===----------------------------------------------------------------------===// |
| 2374 | |
| 2375 | // DeclRefExpr |
| 2376 | Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); } |
| 2377 | Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); } |
| 2378 | |
| 2379 | // ObjCIvarRefExpr |
| 2380 | Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; } |
| 2381 | Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; } |
| 2382 | |
| 2383 | // ObjCPropertyRefExpr |
| 2384 | Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; } |
| 2385 | Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; } |
| 2386 | |
| 2387 | // ObjCImplicitSetterGetterRefExpr |
| 2388 | Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() { |
| 2389 | return &Base; |
| 2390 | } |
| 2391 | Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() { |
| 2392 | return &Base+1; |
| 2393 | } |
| 2394 | |
| 2395 | // ObjCSuperExpr |
| 2396 | Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); } |
| 2397 | Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); } |
| 2398 | |
| 2399 | // ObjCIsaExpr |
| 2400 | Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; } |
| 2401 | Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; } |
| 2402 | |
| 2403 | // PredefinedExpr |
| 2404 | Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); } |
| 2405 | Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); } |
| 2406 | |
| 2407 | // IntegerLiteral |
| 2408 | Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); } |
| 2409 | Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); } |
| 2410 | |
| 2411 | // CharacterLiteral |
| 2412 | Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();} |
| 2413 | Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); } |
| 2414 | |
| 2415 | // FloatingLiteral |
| 2416 | Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); } |
| 2417 | Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); } |
| 2418 | |
| 2419 | // ImaginaryLiteral |
| 2420 | Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; } |
| 2421 | Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; } |
| 2422 | |
| 2423 | // StringLiteral |
| 2424 | Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); } |
| 2425 | Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); } |
| 2426 | |
| 2427 | // ParenExpr |
| 2428 | Stmt::child_iterator ParenExpr::child_begin() { return &Val; } |
| 2429 | Stmt::child_iterator ParenExpr::child_end() { return &Val+1; } |
| 2430 | |
| 2431 | // UnaryOperator |
| 2432 | Stmt::child_iterator UnaryOperator::child_begin() { return &Val; } |
| 2433 | Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; } |
| 2434 | |
| 2435 | // SizeOfAlignOfExpr |
| 2436 | Stmt::child_iterator SizeOfAlignOfExpr::child_begin() { |
| 2437 | // If this is of a type and the type is a VLA type (and not a typedef), the |
| 2438 | // size expression of the VLA needs to be treated as an executable expression. |
| 2439 | // Why isn't this weirdness documented better in StmtIterator? |
| 2440 | if (isArgumentType()) { |
| 2441 | if (VariableArrayType* T = dyn_cast<VariableArrayType>( |
| 2442 | getArgumentType().getTypePtr())) |
| 2443 | return child_iterator(T); |
| 2444 | return child_iterator(); |
| 2445 | } |
| 2446 | return child_iterator(&Argument.Ex); |
| 2447 | } |
| 2448 | Stmt::child_iterator SizeOfAlignOfExpr::child_end() { |
| 2449 | if (isArgumentType()) |
| 2450 | return child_iterator(); |
| 2451 | return child_iterator(&Argument.Ex + 1); |
| 2452 | } |
| 2453 | |
| 2454 | // ArraySubscriptExpr |
| 2455 | Stmt::child_iterator ArraySubscriptExpr::child_begin() { |
| 2456 | return &SubExprs[0]; |
| 2457 | } |
| 2458 | Stmt::child_iterator ArraySubscriptExpr::child_end() { |
| 2459 | return &SubExprs[0]+END_EXPR; |
| 2460 | } |
| 2461 | |
| 2462 | // CallExpr |
| 2463 | Stmt::child_iterator CallExpr::child_begin() { |
| 2464 | return &SubExprs[0]; |
| 2465 | } |
| 2466 | Stmt::child_iterator CallExpr::child_end() { |
| 2467 | return &SubExprs[0]+NumArgs+ARGS_START; |
| 2468 | } |
| 2469 | |
| 2470 | // MemberExpr |
| 2471 | Stmt::child_iterator MemberExpr::child_begin() { return &Base; } |
| 2472 | Stmt::child_iterator MemberExpr::child_end() { return &Base+1; } |
| 2473 | |
| 2474 | // ExtVectorElementExpr |
| 2475 | Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; } |
| 2476 | Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; } |
| 2477 | |
| 2478 | // CompoundLiteralExpr |
| 2479 | Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; } |
| 2480 | Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; } |
| 2481 | |
| 2482 | // CastExpr |
| 2483 | Stmt::child_iterator CastExpr::child_begin() { return &Op; } |
| 2484 | Stmt::child_iterator CastExpr::child_end() { return &Op+1; } |
| 2485 | |
| 2486 | // BinaryOperator |
| 2487 | Stmt::child_iterator BinaryOperator::child_begin() { |
| 2488 | return &SubExprs[0]; |
| 2489 | } |
| 2490 | Stmt::child_iterator BinaryOperator::child_end() { |
| 2491 | return &SubExprs[0]+END_EXPR; |
| 2492 | } |
| 2493 | |
| 2494 | // ConditionalOperator |
| 2495 | Stmt::child_iterator ConditionalOperator::child_begin() { |
| 2496 | return &SubExprs[0]; |
| 2497 | } |
| 2498 | Stmt::child_iterator ConditionalOperator::child_end() { |
| 2499 | return &SubExprs[0]+END_EXPR; |
| 2500 | } |
| 2501 | |
| 2502 | // AddrLabelExpr |
| 2503 | Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); } |
| 2504 | Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); } |
| 2505 | |
| 2506 | // StmtExpr |
| 2507 | Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; } |
| 2508 | Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; } |
| 2509 | |
| 2510 | // TypesCompatibleExpr |
| 2511 | Stmt::child_iterator TypesCompatibleExpr::child_begin() { |
| 2512 | return child_iterator(); |
| 2513 | } |
| 2514 | |
| 2515 | Stmt::child_iterator TypesCompatibleExpr::child_end() { |
| 2516 | return child_iterator(); |
| 2517 | } |
| 2518 | |
| 2519 | // ChooseExpr |
| 2520 | Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; } |
| 2521 | Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; } |
| 2522 | |
| 2523 | // GNUNullExpr |
| 2524 | Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); } |
| 2525 | Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); } |
| 2526 | |
| 2527 | // ShuffleVectorExpr |
| 2528 | Stmt::child_iterator ShuffleVectorExpr::child_begin() { |
| 2529 | return &SubExprs[0]; |
| 2530 | } |
| 2531 | Stmt::child_iterator ShuffleVectorExpr::child_end() { |
| 2532 | return &SubExprs[0]+NumExprs; |
| 2533 | } |
| 2534 | |
| 2535 | // VAArgExpr |
| 2536 | Stmt::child_iterator VAArgExpr::child_begin() { return &Val; } |
| 2537 | Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; } |
| 2538 | |
| 2539 | // InitListExpr |
| 2540 | Stmt::child_iterator InitListExpr::child_begin() { |
| 2541 | return InitExprs.size() ? &InitExprs[0] : 0; |
| 2542 | } |
| 2543 | Stmt::child_iterator InitListExpr::child_end() { |
| 2544 | return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0; |
| 2545 | } |
| 2546 | |
| 2547 | // DesignatedInitExpr |
| 2548 | Stmt::child_iterator DesignatedInitExpr::child_begin() { |
| 2549 | char* Ptr = static_cast<char*>(static_cast<void *>(this)); |
| 2550 | Ptr += sizeof(DesignatedInitExpr); |
| 2551 | return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); |
| 2552 | } |
| 2553 | Stmt::child_iterator DesignatedInitExpr::child_end() { |
| 2554 | return child_iterator(&*child_begin() + NumSubExprs); |
| 2555 | } |
| 2556 | |
| 2557 | // ImplicitValueInitExpr |
| 2558 | Stmt::child_iterator ImplicitValueInitExpr::child_begin() { |
| 2559 | return child_iterator(); |
| 2560 | } |
| 2561 | |
| 2562 | Stmt::child_iterator ImplicitValueInitExpr::child_end() { |
| 2563 | return child_iterator(); |
| 2564 | } |
| 2565 | |
| 2566 | // ParenListExpr |
| 2567 | Stmt::child_iterator ParenListExpr::child_begin() { |
| 2568 | return &Exprs[0]; |
| 2569 | } |
| 2570 | Stmt::child_iterator ParenListExpr::child_end() { |
| 2571 | return &Exprs[0]+NumExprs; |
| 2572 | } |
| 2573 | |
| 2574 | // ObjCStringLiteral |
| 2575 | Stmt::child_iterator ObjCStringLiteral::child_begin() { |
| 2576 | return &String; |
| 2577 | } |
| 2578 | Stmt::child_iterator ObjCStringLiteral::child_end() { |
| 2579 | return &String+1; |
| 2580 | } |
| 2581 | |
| 2582 | // ObjCEncodeExpr |
| 2583 | Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); } |
| 2584 | Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); } |
| 2585 | |
| 2586 | // ObjCSelectorExpr |
| 2587 | Stmt::child_iterator ObjCSelectorExpr::child_begin() { |
| 2588 | return child_iterator(); |
| 2589 | } |
| 2590 | Stmt::child_iterator ObjCSelectorExpr::child_end() { |
| 2591 | return child_iterator(); |
| 2592 | } |
| 2593 | |
| 2594 | // ObjCProtocolExpr |
| 2595 | Stmt::child_iterator ObjCProtocolExpr::child_begin() { |
| 2596 | return child_iterator(); |
| 2597 | } |
| 2598 | Stmt::child_iterator ObjCProtocolExpr::child_end() { |
| 2599 | return child_iterator(); |
| 2600 | } |
| 2601 | |
| 2602 | // ObjCMessageExpr |
| 2603 | Stmt::child_iterator ObjCMessageExpr::child_begin() { |
| 2604 | return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START; |
| 2605 | } |
| 2606 | Stmt::child_iterator ObjCMessageExpr::child_end() { |
| 2607 | return &SubExprs[0]+ARGS_START+getNumArgs(); |
| 2608 | } |
| 2609 | |
| 2610 | // Blocks |
| 2611 | Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); } |
| 2612 | Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); } |
| 2613 | |
| 2614 | Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();} |
| 2615 | Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); } |