blob: 4e6cdcab0044c78994c6aaa1dda083d62a92432b [file] [log] [blame]
Shih-wei Liaof8fd82b2010-02-10 11:10:31 -08001//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Primary Expressions.
32//===----------------------------------------------------------------------===//
33
34void ExplicitTemplateArgumentList::initializeFrom(
35 const TemplateArgumentListInfo &Info) {
36 LAngleLoc = Info.getLAngleLoc();
37 RAngleLoc = Info.getRAngleLoc();
38 NumTemplateArgs = Info.size();
39
40 TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
41 for (unsigned i = 0; i != NumTemplateArgs; ++i)
42 new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
43}
44
45void ExplicitTemplateArgumentList::copyInto(
46 TemplateArgumentListInfo &Info) const {
47 Info.setLAngleLoc(LAngleLoc);
48 Info.setRAngleLoc(RAngleLoc);
49 for (unsigned I = 0; I != NumTemplateArgs; ++I)
50 Info.addArgument(getTemplateArgs()[I]);
51}
52
53std::size_t ExplicitTemplateArgumentList::sizeFor(
54 const TemplateArgumentListInfo &Info) {
55 return sizeof(ExplicitTemplateArgumentList) +
56 sizeof(TemplateArgumentLoc) * Info.size();
57}
58
59void DeclRefExpr::computeDependence() {
60 TypeDependent = false;
61 ValueDependent = false;
62
63 NamedDecl *D = getDecl();
64
65 // (TD) C++ [temp.dep.expr]p3:
66 // An id-expression is type-dependent if it contains:
67 //
68 // and
69 //
70 // (VD) C++ [temp.dep.constexpr]p2:
71 // An identifier is value-dependent if it is:
72
73 // (TD) - an identifier that was declared with dependent type
74 // (VD) - a name declared with a dependent type,
75 if (getType()->isDependentType()) {
76 TypeDependent = true;
77 ValueDependent = true;
78 }
79 // (TD) - a conversion-function-id that specifies a dependent type
80 else if (D->getDeclName().getNameKind()
81 == DeclarationName::CXXConversionFunctionName &&
82 D->getDeclName().getCXXNameType()->isDependentType()) {
83 TypeDependent = true;
84 ValueDependent = true;
85 }
86 // (TD) - a template-id that is dependent,
87 else if (hasExplicitTemplateArgumentList() &&
88 TemplateSpecializationType::anyDependentTemplateArguments(
89 getTemplateArgs(),
90 getNumTemplateArgs())) {
91 TypeDependent = true;
92 ValueDependent = true;
93 }
94 // (VD) - the name of a non-type template parameter,
95 else if (isa<NonTypeTemplateParmDecl>(D))
96 ValueDependent = true;
97 // (VD) - a constant with integral or enumeration type and is
98 // initialized with an expression that is value-dependent.
99 else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
100 if (Var->getType()->isIntegralType() &&
101 Var->getType().getCVRQualifiers() == Qualifiers::Const) {
102 if (const Expr *Init = Var->getAnyInitializer())
103 if (Init->isValueDependent())
104 ValueDependent = true;
105 }
106 }
107 // (TD) - a nested-name-specifier or a qualified-id that names a
108 // member of an unknown specialization.
109 // (handled by DependentScopeDeclRefExpr)
110}
111
112DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
113 SourceRange QualifierRange,
114 ValueDecl *D, SourceLocation NameLoc,
115 const TemplateArgumentListInfo *TemplateArgs,
116 QualType T)
117 : Expr(DeclRefExprClass, T, false, false),
118 DecoratedD(D,
119 (Qualifier? HasQualifierFlag : 0) |
120 (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
121 Loc(NameLoc) {
122 if (Qualifier) {
123 NameQualifier *NQ = getNameQualifier();
124 NQ->NNS = Qualifier;
125 NQ->Range = QualifierRange;
126 }
127
128 if (TemplateArgs)
129 getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
130
131 computeDependence();
132}
133
134DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
135 NestedNameSpecifier *Qualifier,
136 SourceRange QualifierRange,
137 ValueDecl *D,
138 SourceLocation NameLoc,
139 QualType T,
140 const TemplateArgumentListInfo *TemplateArgs) {
141 std::size_t Size = sizeof(DeclRefExpr);
142 if (Qualifier != 0)
143 Size += sizeof(NameQualifier);
144
145 if (TemplateArgs)
146 Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
147
148 void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
149 return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
150 TemplateArgs, T);
151}
152
153SourceRange DeclRefExpr::getSourceRange() const {
154 // FIXME: Does not handle multi-token names well, e.g., operator[].
155 SourceRange R(Loc);
156
157 if (hasQualifier())
158 R.setBegin(getQualifierRange().getBegin());
159 if (hasExplicitTemplateArgumentList())
160 R.setEnd(getRAngleLoc());
161 return R;
162}
163
164// FIXME: Maybe this should use DeclPrinter with a special "print predefined
165// expr" policy instead.
166std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentType IT,
167 const Decl *CurrentDecl) {
168 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
169 if (IT != PrettyFunction)
170 return FD->getNameAsString();
171
172 llvm::SmallString<256> Name;
173 llvm::raw_svector_ostream Out(Name);
174
175 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
176 if (MD->isVirtual())
177 Out << "virtual ";
178 if (MD->isStatic())
179 Out << "static ";
180 }
181
182 PrintingPolicy Policy(Context.getLangOptions());
183 Policy.SuppressTagKind = true;
184
185 std::string Proto = FD->getQualifiedNameAsString(Policy);
186
187 const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
188 const FunctionProtoType *FT = 0;
189 if (FD->hasWrittenPrototype())
190 FT = dyn_cast<FunctionProtoType>(AFT);
191
192 Proto += "(";
193 if (FT) {
194 llvm::raw_string_ostream POut(Proto);
195 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
196 if (i) POut << ", ";
197 std::string Param;
198 FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
199 POut << Param;
200 }
201
202 if (FT->isVariadic()) {
203 if (FD->getNumParams()) POut << ", ";
204 POut << "...";
205 }
206 }
207 Proto += ")";
208
209 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
210 Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
211 if (ThisQuals.hasConst())
212 Proto += " const";
213 if (ThisQuals.hasVolatile())
214 Proto += " volatile";
215 }
216
217 if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
218 AFT->getResultType().getAsStringInternal(Proto, Policy);
219
220 Out << Proto;
221
222 Out.flush();
223 return Name.str().str();
224 }
225 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
226 llvm::SmallString<256> Name;
227 llvm::raw_svector_ostream Out(Name);
228 Out << (MD->isInstanceMethod() ? '-' : '+');
229 Out << '[';
230 Out << MD->getClassInterface()->getNameAsString();
231 if (const ObjCCategoryImplDecl *CID =
232 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
233 Out << '(';
234 Out << CID->getNameAsString();
235 Out << ')';
236 }
237 Out << ' ';
238 Out << MD->getSelector().getAsString();
239 Out << ']';
240
241 Out.flush();
242 return Name.str().str();
243 }
244 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
245 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
246 return "top level";
247 }
248 return "";
249}
250
251/// getValueAsApproximateDouble - This returns the value as an inaccurate
252/// double. Note that this may cause loss of precision, but is useful for
253/// debugging dumps, etc.
254double FloatingLiteral::getValueAsApproximateDouble() const {
255 llvm::APFloat V = getValue();
256 bool ignored;
257 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
258 &ignored);
259 return V.convertToDouble();
260}
261
262StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
263 unsigned ByteLength, bool Wide,
264 QualType Ty,
265 const SourceLocation *Loc,
266 unsigned NumStrs) {
267 // Allocate enough space for the StringLiteral plus an array of locations for
268 // any concatenated string tokens.
269 void *Mem = C.Allocate(sizeof(StringLiteral)+
270 sizeof(SourceLocation)*(NumStrs-1),
271 llvm::alignof<StringLiteral>());
272 StringLiteral *SL = new (Mem) StringLiteral(Ty);
273
274 // OPTIMIZE: could allocate this appended to the StringLiteral.
275 char *AStrData = new (C, 1) char[ByteLength];
276 memcpy(AStrData, StrData, ByteLength);
277 SL->StrData = AStrData;
278 SL->ByteLength = ByteLength;
279 SL->IsWide = Wide;
280 SL->TokLocs[0] = Loc[0];
281 SL->NumConcatenated = NumStrs;
282
283 if (NumStrs != 1)
284 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
285 return SL;
286}
287
288StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
289 void *Mem = C.Allocate(sizeof(StringLiteral)+
290 sizeof(SourceLocation)*(NumStrs-1),
291 llvm::alignof<StringLiteral>());
292 StringLiteral *SL = new (Mem) StringLiteral(QualType());
293 SL->StrData = 0;
294 SL->ByteLength = 0;
295 SL->NumConcatenated = NumStrs;
296 return SL;
297}
298
299void StringLiteral::DoDestroy(ASTContext &C) {
300 C.Deallocate(const_cast<char*>(StrData));
301 Expr::DoDestroy(C);
302}
303
304void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
305 if (StrData)
306 C.Deallocate(const_cast<char*>(StrData));
307
308 char *AStrData = new (C, 1) char[Str.size()];
309 memcpy(AStrData, Str.data(), Str.size());
310 StrData = AStrData;
311 ByteLength = Str.size();
312}
313
314/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
315/// corresponds to, e.g. "sizeof" or "[pre]++".
316const char *UnaryOperator::getOpcodeStr(Opcode Op) {
317 switch (Op) {
318 default: assert(0 && "Unknown unary operator");
319 case PostInc: return "++";
320 case PostDec: return "--";
321 case PreInc: return "++";
322 case PreDec: return "--";
323 case AddrOf: return "&";
324 case Deref: return "*";
325 case Plus: return "+";
326 case Minus: return "-";
327 case Not: return "~";
328 case LNot: return "!";
329 case Real: return "__real";
330 case Imag: return "__imag";
331 case Extension: return "__extension__";
332 case OffsetOf: return "__builtin_offsetof";
333 }
334}
335
336UnaryOperator::Opcode
337UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
338 switch (OO) {
339 default: assert(false && "No unary operator for overloaded function");
340 case OO_PlusPlus: return Postfix ? PostInc : PreInc;
341 case OO_MinusMinus: return Postfix ? PostDec : PreDec;
342 case OO_Amp: return AddrOf;
343 case OO_Star: return Deref;
344 case OO_Plus: return Plus;
345 case OO_Minus: return Minus;
346 case OO_Tilde: return Not;
347 case OO_Exclaim: return LNot;
348 }
349}
350
351OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
352 switch (Opc) {
353 case PostInc: case PreInc: return OO_PlusPlus;
354 case PostDec: case PreDec: return OO_MinusMinus;
355 case AddrOf: return OO_Amp;
356 case Deref: return OO_Star;
357 case Plus: return OO_Plus;
358 case Minus: return OO_Minus;
359 case Not: return OO_Tilde;
360 case LNot: return OO_Exclaim;
361 default: return OO_None;
362 }
363}
364
365
366//===----------------------------------------------------------------------===//
367// Postfix Operators.
368//===----------------------------------------------------------------------===//
369
370CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
371 unsigned numargs, QualType t, SourceLocation rparenloc)
372 : Expr(SC, t,
373 fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
374 fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
375 NumArgs(numargs) {
376
377 SubExprs = new (C) Stmt*[numargs+1];
378 SubExprs[FN] = fn;
379 for (unsigned i = 0; i != numargs; ++i)
380 SubExprs[i+ARGS_START] = args[i];
381
382 RParenLoc = rparenloc;
383}
384
385CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
386 QualType t, SourceLocation rparenloc)
387 : Expr(CallExprClass, t,
388 fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
389 fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
390 NumArgs(numargs) {
391
392 SubExprs = new (C) Stmt*[numargs+1];
393 SubExprs[FN] = fn;
394 for (unsigned i = 0; i != numargs; ++i)
395 SubExprs[i+ARGS_START] = args[i];
396
397 RParenLoc = rparenloc;
398}
399
400CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
401 : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
402 SubExprs = new (C) Stmt*[1];
403}
404
405void CallExpr::DoDestroy(ASTContext& C) {
406 DestroyChildren(C);
407 if (SubExprs) C.Deallocate(SubExprs);
408 this->~CallExpr();
409 C.Deallocate(this);
410}
411
412Decl *CallExpr::getCalleeDecl() {
413 Expr *CEE = getCallee()->IgnoreParenCasts();
414 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
415 return DRE->getDecl();
416 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
417 return ME->getMemberDecl();
418
419 return 0;
420}
421
422FunctionDecl *CallExpr::getDirectCallee() {
423 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
424}
425
426/// setNumArgs - This changes the number of arguments present in this call.
427/// Any orphaned expressions are deleted by this, and any new operands are set
428/// to null.
429void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
430 // No change, just return.
431 if (NumArgs == getNumArgs()) return;
432
433 // If shrinking # arguments, just delete the extras and forgot them.
434 if (NumArgs < getNumArgs()) {
435 for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
436 getArg(i)->Destroy(C);
437 this->NumArgs = NumArgs;
438 return;
439 }
440
441 // Otherwise, we are growing the # arguments. New an bigger argument array.
442 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
443 // Copy over args.
444 for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
445 NewSubExprs[i] = SubExprs[i];
446 // Null out new args.
447 for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
448 NewSubExprs[i] = 0;
449
450 if (SubExprs) C.Deallocate(SubExprs);
451 SubExprs = NewSubExprs;
452 this->NumArgs = NumArgs;
453}
454
455/// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If
456/// not, return 0.
457unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
458 // All simple function calls (e.g. func()) are implicitly cast to pointer to
459 // function. As a result, we try and obtain the DeclRefExpr from the
460 // ImplicitCastExpr.
461 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
462 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
463 return 0;
464
465 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
466 if (!DRE)
467 return 0;
468
469 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
470 if (!FDecl)
471 return 0;
472
473 if (!FDecl->getIdentifier())
474 return 0;
475
476 return FDecl->getBuiltinID();
477}
478
479QualType CallExpr::getCallReturnType() const {
480 QualType CalleeType = getCallee()->getType();
481 if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
482 CalleeType = FnTypePtr->getPointeeType();
483 else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
484 CalleeType = BPT->getPointeeType();
485
486 const FunctionType *FnType = CalleeType->getAs<FunctionType>();
487 return FnType->getResultType();
488}
489
490MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
491 SourceRange qualrange, ValueDecl *memberdecl,
492 SourceLocation l, const TemplateArgumentListInfo *targs,
493 QualType ty)
494 : Expr(MemberExprClass, ty,
495 base->isTypeDependent() || (qual && qual->isDependent()),
496 base->isValueDependent() || (qual && qual->isDependent())),
497 Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
498 HasQualifier(qual != 0), HasExplicitTemplateArgumentList(targs) {
499 // Initialize the qualifier, if any.
500 if (HasQualifier) {
501 NameQualifier *NQ = getMemberQualifier();
502 NQ->NNS = qual;
503 NQ->Range = qualrange;
504 }
505
506 // Initialize the explicit template argument list, if any.
507 if (targs)
508 getExplicitTemplateArgumentList()->initializeFrom(*targs);
509}
510
511MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
512 NestedNameSpecifier *qual,
513 SourceRange qualrange,
514 ValueDecl *memberdecl,
515 SourceLocation l,
516 const TemplateArgumentListInfo *targs,
517 QualType ty) {
518 std::size_t Size = sizeof(MemberExpr);
519 if (qual != 0)
520 Size += sizeof(NameQualifier);
521
522 if (targs)
523 Size += ExplicitTemplateArgumentList::sizeFor(*targs);
524
525 void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
526 return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l,
527 targs, ty);
528}
529
530const char *CastExpr::getCastKindName() const {
531 switch (getCastKind()) {
532 case CastExpr::CK_Unknown:
533 return "Unknown";
534 case CastExpr::CK_BitCast:
535 return "BitCast";
536 case CastExpr::CK_NoOp:
537 return "NoOp";
538 case CastExpr::CK_BaseToDerived:
539 return "BaseToDerived";
540 case CastExpr::CK_DerivedToBase:
541 return "DerivedToBase";
542 case CastExpr::CK_Dynamic:
543 return "Dynamic";
544 case CastExpr::CK_ToUnion:
545 return "ToUnion";
546 case CastExpr::CK_ArrayToPointerDecay:
547 return "ArrayToPointerDecay";
548 case CastExpr::CK_FunctionToPointerDecay:
549 return "FunctionToPointerDecay";
550 case CastExpr::CK_NullToMemberPointer:
551 return "NullToMemberPointer";
552 case CastExpr::CK_BaseToDerivedMemberPointer:
553 return "BaseToDerivedMemberPointer";
554 case CastExpr::CK_DerivedToBaseMemberPointer:
555 return "DerivedToBaseMemberPointer";
556 case CastExpr::CK_UserDefinedConversion:
557 return "UserDefinedConversion";
558 case CastExpr::CK_ConstructorConversion:
559 return "ConstructorConversion";
560 case CastExpr::CK_IntegralToPointer:
561 return "IntegralToPointer";
562 case CastExpr::CK_PointerToIntegral:
563 return "PointerToIntegral";
564 case CastExpr::CK_ToVoid:
565 return "ToVoid";
566 case CastExpr::CK_VectorSplat:
567 return "VectorSplat";
568 case CastExpr::CK_IntegralCast:
569 return "IntegralCast";
570 case CastExpr::CK_IntegralToFloating:
571 return "IntegralToFloating";
572 case CastExpr::CK_FloatingToIntegral:
573 return "FloatingToIntegral";
574 case CastExpr::CK_FloatingCast:
575 return "FloatingCast";
576 case CastExpr::CK_MemberPointerToBoolean:
577 return "MemberPointerToBoolean";
578 case CastExpr::CK_AnyPointerToObjCPointerCast:
579 return "AnyPointerToObjCPointerCast";
580 case CastExpr::CK_AnyPointerToBlockPointerCast:
581 return "AnyPointerToBlockPointerCast";
582 }
583
584 assert(0 && "Unhandled cast kind!");
585 return 0;
586}
587
588Expr *CastExpr::getSubExprAsWritten() {
589 Expr *SubExpr = 0;
590 CastExpr *E = this;
591 do {
592 SubExpr = E->getSubExpr();
593
594 // Skip any temporary bindings; they're implicit.
595 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
596 SubExpr = Binder->getSubExpr();
597
598 // Conversions by constructor and conversion functions have a
599 // subexpression describing the call; strip it off.
600 if (E->getCastKind() == CastExpr::CK_ConstructorConversion)
601 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
602 else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion)
603 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
604
605 // If the subexpression we're left with is an implicit cast, look
606 // through that, too.
607 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
608
609 return SubExpr;
610}
611
612/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
613/// corresponds to, e.g. "<<=".
614const char *BinaryOperator::getOpcodeStr(Opcode Op) {
615 switch (Op) {
616 case PtrMemD: return ".*";
617 case PtrMemI: return "->*";
618 case Mul: return "*";
619 case Div: return "/";
620 case Rem: return "%";
621 case Add: return "+";
622 case Sub: return "-";
623 case Shl: return "<<";
624 case Shr: return ">>";
625 case LT: return "<";
626 case GT: return ">";
627 case LE: return "<=";
628 case GE: return ">=";
629 case EQ: return "==";
630 case NE: return "!=";
631 case And: return "&";
632 case Xor: return "^";
633 case Or: return "|";
634 case LAnd: return "&&";
635 case LOr: return "||";
636 case Assign: return "=";
637 case MulAssign: return "*=";
638 case DivAssign: return "/=";
639 case RemAssign: return "%=";
640 case AddAssign: return "+=";
641 case SubAssign: return "-=";
642 case ShlAssign: return "<<=";
643 case ShrAssign: return ">>=";
644 case AndAssign: return "&=";
645 case XorAssign: return "^=";
646 case OrAssign: return "|=";
647 case Comma: return ",";
648 }
649
650 return "";
651}
652
653BinaryOperator::Opcode
654BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
655 switch (OO) {
656 default: assert(false && "Not an overloadable binary operator");
657 case OO_Plus: return Add;
658 case OO_Minus: return Sub;
659 case OO_Star: return Mul;
660 case OO_Slash: return Div;
661 case OO_Percent: return Rem;
662 case OO_Caret: return Xor;
663 case OO_Amp: return And;
664 case OO_Pipe: return Or;
665 case OO_Equal: return Assign;
666 case OO_Less: return LT;
667 case OO_Greater: return GT;
668 case OO_PlusEqual: return AddAssign;
669 case OO_MinusEqual: return SubAssign;
670 case OO_StarEqual: return MulAssign;
671 case OO_SlashEqual: return DivAssign;
672 case OO_PercentEqual: return RemAssign;
673 case OO_CaretEqual: return XorAssign;
674 case OO_AmpEqual: return AndAssign;
675 case OO_PipeEqual: return OrAssign;
676 case OO_LessLess: return Shl;
677 case OO_GreaterGreater: return Shr;
678 case OO_LessLessEqual: return ShlAssign;
679 case OO_GreaterGreaterEqual: return ShrAssign;
680 case OO_EqualEqual: return EQ;
681 case OO_ExclaimEqual: return NE;
682 case OO_LessEqual: return LE;
683 case OO_GreaterEqual: return GE;
684 case OO_AmpAmp: return LAnd;
685 case OO_PipePipe: return LOr;
686 case OO_Comma: return Comma;
687 case OO_ArrowStar: return PtrMemI;
688 }
689}
690
691OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
692 static const OverloadedOperatorKind OverOps[] = {
693 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
694 OO_Star, OO_Slash, OO_Percent,
695 OO_Plus, OO_Minus,
696 OO_LessLess, OO_GreaterGreater,
697 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
698 OO_EqualEqual, OO_ExclaimEqual,
699 OO_Amp,
700 OO_Caret,
701 OO_Pipe,
702 OO_AmpAmp,
703 OO_PipePipe,
704 OO_Equal, OO_StarEqual,
705 OO_SlashEqual, OO_PercentEqual,
706 OO_PlusEqual, OO_MinusEqual,
707 OO_LessLessEqual, OO_GreaterGreaterEqual,
708 OO_AmpEqual, OO_CaretEqual,
709 OO_PipeEqual,
710 OO_Comma
711 };
712 return OverOps[Opc];
713}
714
715InitListExpr::InitListExpr(SourceLocation lbraceloc,
716 Expr **initExprs, unsigned numInits,
717 SourceLocation rbraceloc)
718 : Expr(InitListExprClass, QualType(), false, false),
719 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
720 UnionFieldInit(0), HadArrayRangeDesignator(false)
721{
722 for (unsigned I = 0; I != numInits; ++I) {
723 if (initExprs[I]->isTypeDependent())
724 TypeDependent = true;
725 if (initExprs[I]->isValueDependent())
726 ValueDependent = true;
727 }
728
729 InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
730}
731
732void InitListExpr::reserveInits(unsigned NumInits) {
733 if (NumInits > InitExprs.size())
734 InitExprs.reserve(NumInits);
735}
736
737void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
738 for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
739 Idx < LastIdx; ++Idx)
740 InitExprs[Idx]->Destroy(Context);
741 InitExprs.resize(NumInits, 0);
742}
743
744Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
745 if (Init >= InitExprs.size()) {
746 InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
747 InitExprs.back() = expr;
748 return 0;
749 }
750
751 Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
752 InitExprs[Init] = expr;
753 return Result;
754}
755
756/// getFunctionType - Return the underlying function type for this block.
757///
758const FunctionType *BlockExpr::getFunctionType() const {
759 return getType()->getAs<BlockPointerType>()->
760 getPointeeType()->getAs<FunctionType>();
761}
762
763SourceLocation BlockExpr::getCaretLocation() const {
764 return TheBlock->getCaretLocation();
765}
766const Stmt *BlockExpr::getBody() const {
767 return TheBlock->getBody();
768}
769Stmt *BlockExpr::getBody() {
770 return TheBlock->getBody();
771}
772
773
774//===----------------------------------------------------------------------===//
775// Generic Expression Routines
776//===----------------------------------------------------------------------===//
777
778/// isUnusedResultAWarning - Return true if this immediate expression should
779/// be warned about if the result is unused. If so, fill in Loc and Ranges
780/// with location to warn on and the source range[s] to report with the
781/// warning.
782bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
783 SourceRange &R2, ASTContext &Ctx) const {
784 // Don't warn if the expr is type dependent. The type could end up
785 // instantiating to void.
786 if (isTypeDependent())
787 return false;
788
789 switch (getStmtClass()) {
790 default:
791 Loc = getExprLoc();
792 R1 = getSourceRange();
793 return true;
794 case ParenExprClass:
795 return cast<ParenExpr>(this)->getSubExpr()->
796 isUnusedResultAWarning(Loc, R1, R2, Ctx);
797 case UnaryOperatorClass: {
798 const UnaryOperator *UO = cast<UnaryOperator>(this);
799
800 switch (UO->getOpcode()) {
801 default: break;
802 case UnaryOperator::PostInc:
803 case UnaryOperator::PostDec:
804 case UnaryOperator::PreInc:
805 case UnaryOperator::PreDec: // ++/--
806 return false; // Not a warning.
807 case UnaryOperator::Deref:
808 // Dereferencing a volatile pointer is a side-effect.
809 if (Ctx.getCanonicalType(getType()).isVolatileQualified())
810 return false;
811 break;
812 case UnaryOperator::Real:
813 case UnaryOperator::Imag:
814 // accessing a piece of a volatile complex is a side-effect.
815 if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
816 .isVolatileQualified())
817 return false;
818 break;
819 case UnaryOperator::Extension:
820 return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
821 }
822 Loc = UO->getOperatorLoc();
823 R1 = UO->getSubExpr()->getSourceRange();
824 return true;
825 }
826 case BinaryOperatorClass: {
827 const BinaryOperator *BO = cast<BinaryOperator>(this);
828 // Consider comma to have side effects if the LHS or RHS does.
829 if (BO->getOpcode() == BinaryOperator::Comma)
830 return (BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
831 BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
832
833 if (BO->isAssignmentOp())
834 return false;
835 Loc = BO->getOperatorLoc();
836 R1 = BO->getLHS()->getSourceRange();
837 R2 = BO->getRHS()->getSourceRange();
838 return true;
839 }
840 case CompoundAssignOperatorClass:
841 return false;
842
843 case ConditionalOperatorClass: {
844 // The condition must be evaluated, but if either the LHS or RHS is a
845 // warning, warn about them.
846 const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
847 if (Exp->getLHS() &&
848 Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
849 return true;
850 return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
851 }
852
853 case MemberExprClass:
854 // If the base pointer or element is to a volatile pointer/field, accessing
855 // it is a side effect.
856 if (Ctx.getCanonicalType(getType()).isVolatileQualified())
857 return false;
858 Loc = cast<MemberExpr>(this)->getMemberLoc();
859 R1 = SourceRange(Loc, Loc);
860 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
861 return true;
862
863 case ArraySubscriptExprClass:
864 // If the base pointer or element is to a volatile pointer/field, accessing
865 // it is a side effect.
866 if (Ctx.getCanonicalType(getType()).isVolatileQualified())
867 return false;
868 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
869 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
870 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
871 return true;
872
873 case CallExprClass:
874 case CXXOperatorCallExprClass:
875 case CXXMemberCallExprClass: {
876 // If this is a direct call, get the callee.
877 const CallExpr *CE = cast<CallExpr>(this);
878 if (const Decl *FD = CE->getCalleeDecl()) {
879 // If the callee has attribute pure, const, or warn_unused_result, warn
880 // about it. void foo() { strlen("bar"); } should warn.
881 //
882 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
883 // updated to match for QoI.
884 if (FD->getAttr<WarnUnusedResultAttr>() ||
885 FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
886 Loc = CE->getCallee()->getLocStart();
887 R1 = CE->getCallee()->getSourceRange();
888
889 if (unsigned NumArgs = CE->getNumArgs())
890 R2 = SourceRange(CE->getArg(0)->getLocStart(),
891 CE->getArg(NumArgs-1)->getLocEnd());
892 return true;
893 }
894 }
895 return false;
896 }
897
898 case CXXTemporaryObjectExprClass:
899 case CXXConstructExprClass:
900 return false;
901
902 case ObjCMessageExprClass:
903 return false;
904
905 case ObjCImplicitSetterGetterRefExprClass: { // Dot syntax for message send.
906#if 0
907 const ObjCImplicitSetterGetterRefExpr *Ref =
908 cast<ObjCImplicitSetterGetterRefExpr>(this);
909 // FIXME: We really want the location of the '.' here.
910 Loc = Ref->getLocation();
911 R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
912 if (Ref->getBase())
913 R2 = Ref->getBase()->getSourceRange();
914#else
915 Loc = getExprLoc();
916 R1 = getSourceRange();
917#endif
918 return true;
919 }
920 case StmtExprClass: {
921 // Statement exprs don't logically have side effects themselves, but are
922 // sometimes used in macros in ways that give them a type that is unused.
923 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
924 // however, if the result of the stmt expr is dead, we don't want to emit a
925 // warning.
926 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
927 if (!CS->body_empty())
928 if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
929 return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
930
931 Loc = cast<StmtExpr>(this)->getLParenLoc();
932 R1 = getSourceRange();
933 return true;
934 }
935 case CStyleCastExprClass:
936 // If this is an explicit cast to void, allow it. People do this when they
937 // think they know what they're doing :).
938 if (getType()->isVoidType())
939 return false;
940 Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
941 R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
942 return true;
943 case CXXFunctionalCastExprClass: {
944 const CastExpr *CE = cast<CastExpr>(this);
945
946 // If this is a cast to void or a constructor conversion, check the operand.
947 // Otherwise, the result of the cast is unused.
948 if (CE->getCastKind() == CastExpr::CK_ToVoid ||
949 CE->getCastKind() == CastExpr::CK_ConstructorConversion)
950 return (cast<CastExpr>(this)->getSubExpr()
951 ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
952 Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
953 R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
954 return true;
955 }
956
957 case ImplicitCastExprClass:
958 // Check the operand, since implicit casts are inserted by Sema
959 return (cast<ImplicitCastExpr>(this)
960 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
961
962 case CXXDefaultArgExprClass:
963 return (cast<CXXDefaultArgExpr>(this)
964 ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
965
966 case CXXNewExprClass:
967 // FIXME: In theory, there might be new expressions that don't have side
968 // effects (e.g. a placement new with an uninitialized POD).
969 case CXXDeleteExprClass:
970 return false;
971 case CXXBindTemporaryExprClass:
972 return (cast<CXXBindTemporaryExpr>(this)
973 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
974 case CXXExprWithTemporariesClass:
975 return (cast<CXXExprWithTemporaries>(this)
976 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
977 }
978}
979
980/// DeclCanBeLvalue - Determine whether the given declaration can be
981/// an lvalue. This is a helper routine for isLvalue.
982static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
983 // C++ [temp.param]p6:
984 // A non-type non-reference template-parameter is not an lvalue.
985 if (const NonTypeTemplateParmDecl *NTTParm
986 = dyn_cast<NonTypeTemplateParmDecl>(Decl))
987 return NTTParm->getType()->isReferenceType();
988
989 return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
990 // C++ 3.10p2: An lvalue refers to an object or function.
991 (Ctx.getLangOptions().CPlusPlus &&
992 (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
993}
994
995/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
996/// incomplete type other than void. Nonarray expressions that can be lvalues:
997/// - name, where name must be a variable
998/// - e[i]
999/// - (e), where e must be an lvalue
1000/// - e.name, where e must be an lvalue
1001/// - e->name
1002/// - *e, the type of e cannot be a function type
1003/// - string-constant
1004/// - (__real__ e) and (__imag__ e) where e is an lvalue [GNU extension]
1005/// - reference type [C++ [expr]]
1006///
1007Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
1008 assert(!TR->isReferenceType() && "Expressions can't have reference type.");
1009
1010 isLvalueResult Res = isLvalueInternal(Ctx);
1011 if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
1012 return Res;
1013
1014 // first, check the type (C99 6.3.2.1). Expressions with function
1015 // type in C are not lvalues, but they can be lvalues in C++.
1016 if (TR->isFunctionType() || TR == Ctx.OverloadTy)
1017 return LV_NotObjectType;
1018
1019 // Allow qualified void which is an incomplete type other than void (yuck).
1020 if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
1021 return LV_IncompleteVoidType;
1022
1023 return LV_Valid;
1024}
1025
1026// Check whether the expression can be sanely treated like an l-value
1027Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
1028 switch (getStmtClass()) {
1029 case ObjCIsaExprClass:
1030 case StringLiteralClass: // C99 6.5.1p4
1031 case ObjCEncodeExprClass: // @encode behaves like its string in every way.
1032 return LV_Valid;
1033 case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
1034 // For vectors, make sure base is an lvalue (i.e. not a function call).
1035 if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
1036 return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
1037 return LV_Valid;
1038 case DeclRefExprClass: { // C99 6.5.1p2
1039 const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
1040 if (DeclCanBeLvalue(RefdDecl, Ctx))
1041 return LV_Valid;
1042 break;
1043 }
1044 case BlockDeclRefExprClass: {
1045 const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
1046 if (isa<VarDecl>(BDR->getDecl()))
1047 return LV_Valid;
1048 break;
1049 }
1050 case MemberExprClass: {
1051 const MemberExpr *m = cast<MemberExpr>(this);
1052 if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1053 NamedDecl *Member = m->getMemberDecl();
1054 // C++ [expr.ref]p4:
1055 // If E2 is declared to have type "reference to T", then E1.E2
1056 // is an lvalue.
1057 if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1058 if (Value->getType()->isReferenceType())
1059 return LV_Valid;
1060
1061 // -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1062 if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1063 return LV_Valid;
1064
1065 // -- If E2 is a non-static data member [...]. If E1 is an
1066 // lvalue, then E1.E2 is an lvalue.
1067 if (isa<FieldDecl>(Member)) {
1068 if (m->isArrow())
1069 return LV_Valid;
1070 Expr *BaseExp = m->getBase();
1071 return (BaseExp->getStmtClass() == ObjCPropertyRefExprClass) ?
1072 LV_SubObjCPropertySetting : BaseExp->isLvalue(Ctx);
1073 }
1074
1075 // -- If it refers to a static member function [...], then
1076 // E1.E2 is an lvalue.
1077 // -- Otherwise, if E1.E2 refers to a non-static member
1078 // function [...], then E1.E2 is not an lvalue.
1079 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1080 return Method->isStatic()? LV_Valid : LV_MemberFunction;
1081
1082 // -- If E2 is a member enumerator [...], the expression E1.E2
1083 // is not an lvalue.
1084 if (isa<EnumConstantDecl>(Member))
1085 return LV_InvalidExpression;
1086
1087 // Not an lvalue.
1088 return LV_InvalidExpression;
1089 }
1090
1091 // C99 6.5.2.3p4
1092 if (m->isArrow())
1093 return LV_Valid;
1094 Expr *BaseExp = m->getBase();
1095 return (BaseExp->getStmtClass() == ObjCPropertyRefExprClass) ?
1096 LV_SubObjCPropertySetting : BaseExp->isLvalue(Ctx);
1097 }
1098 case UnaryOperatorClass:
1099 if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1100 return LV_Valid; // C99 6.5.3p4
1101
1102 if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1103 cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1104 cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1105 return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx); // GNU.
1106
1107 if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1108 (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1109 cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1110 return LV_Valid;
1111 break;
1112 case ImplicitCastExprClass:
1113 return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
1114 : LV_InvalidExpression;
1115 case ParenExprClass: // C99 6.5.1p5
1116 return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1117 case BinaryOperatorClass:
1118 case CompoundAssignOperatorClass: {
1119 const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1120
1121 if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1122 BinOp->getOpcode() == BinaryOperator::Comma)
1123 return BinOp->getRHS()->isLvalue(Ctx);
1124
1125 // C++ [expr.mptr.oper]p6
1126 // The result of a .* expression is an lvalue only if its first operand is
1127 // an lvalue and its second operand is a pointer to data member.
1128 if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1129 !BinOp->getType()->isFunctionType())
1130 return BinOp->getLHS()->isLvalue(Ctx);
1131
1132 // The result of an ->* expression is an lvalue only if its second operand
1133 // is a pointer to data member.
1134 if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1135 !BinOp->getType()->isFunctionType()) {
1136 QualType Ty = BinOp->getRHS()->getType();
1137 if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1138 return LV_Valid;
1139 }
1140
1141 if (!BinOp->isAssignmentOp())
1142 return LV_InvalidExpression;
1143
1144 if (Ctx.getLangOptions().CPlusPlus)
1145 // C++ [expr.ass]p1:
1146 // The result of an assignment operation [...] is an lvalue.
1147 return LV_Valid;
1148
1149
1150 // C99 6.5.16:
1151 // An assignment expression [...] is not an lvalue.
1152 return LV_InvalidExpression;
1153 }
1154 case CallExprClass:
1155 case CXXOperatorCallExprClass:
1156 case CXXMemberCallExprClass: {
1157 // C++0x [expr.call]p10
1158 // A function call is an lvalue if and only if the result type
1159 // is an lvalue reference.
1160 QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1161 if (ReturnType->isLValueReferenceType())
1162 return LV_Valid;
1163
1164 break;
1165 }
1166 case CompoundLiteralExprClass: // C99 6.5.2.5p5
1167 return LV_Valid;
1168 case ChooseExprClass:
1169 // __builtin_choose_expr is an lvalue if the selected operand is.
1170 return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1171 case ExtVectorElementExprClass:
1172 if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1173 return LV_DuplicateVectorComponents;
1174 return LV_Valid;
1175 case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1176 return LV_Valid;
1177 case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1178 return LV_Valid;
1179 case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1180 return LV_Valid;
1181 case PredefinedExprClass:
1182 return LV_Valid;
1183 case UnresolvedLookupExprClass:
1184 return LV_Valid;
1185 case CXXDefaultArgExprClass:
1186 return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1187 case CStyleCastExprClass:
1188 case CXXFunctionalCastExprClass:
1189 case CXXStaticCastExprClass:
1190 case CXXDynamicCastExprClass:
1191 case CXXReinterpretCastExprClass:
1192 case CXXConstCastExprClass:
1193 // The result of an explicit cast is an lvalue if the type we are
1194 // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1195 // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1196 // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1197 if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1198 isLValueReferenceType())
1199 return LV_Valid;
1200 break;
1201 case CXXTypeidExprClass:
1202 // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1203 return LV_Valid;
1204 case CXXBindTemporaryExprClass:
1205 return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1206 isLvalueInternal(Ctx);
1207 case CXXBindReferenceExprClass:
1208 // Something that's bound to a reference is always an lvalue.
1209 return LV_Valid;
1210 case ConditionalOperatorClass: {
1211 // Complicated handling is only for C++.
1212 if (!Ctx.getLangOptions().CPlusPlus)
1213 return LV_InvalidExpression;
1214
1215 // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1216 // everywhere there's an object converted to an rvalue. Also, any other
1217 // casts should be wrapped by ImplicitCastExprs. There's just the special
1218 // case involving throws to work out.
1219 const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1220 Expr *True = Cond->getTrueExpr();
1221 Expr *False = Cond->getFalseExpr();
1222 // C++0x 5.16p2
1223 // If either the second or the third operand has type (cv) void, [...]
1224 // the result [...] is an rvalue.
1225 if (True->getType()->isVoidType() || False->getType()->isVoidType())
1226 return LV_InvalidExpression;
1227
1228 // Both sides must be lvalues for the result to be an lvalue.
1229 if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1230 return LV_InvalidExpression;
1231
1232 // That's it.
1233 return LV_Valid;
1234 }
1235
1236 case Expr::CXXExprWithTemporariesClass:
1237 return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx);
1238
1239 case Expr::ObjCMessageExprClass:
1240 if (const ObjCMethodDecl *Method
1241 = cast<ObjCMessageExpr>(this)->getMethodDecl())
1242 if (Method->getResultType()->isLValueReferenceType())
1243 return LV_Valid;
1244 break;
1245
1246 default:
1247 break;
1248 }
1249 return LV_InvalidExpression;
1250}
1251
1252/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1253/// does not have an incomplete type, does not have a const-qualified type, and
1254/// if it is a structure or union, does not have any member (including,
1255/// recursively, any member or element of all contained aggregates or unions)
1256/// with a const-qualified type.
1257Expr::isModifiableLvalueResult
1258Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1259 isLvalueResult lvalResult = isLvalue(Ctx);
1260
1261 switch (lvalResult) {
1262 case LV_Valid:
1263 // C++ 3.10p11: Functions cannot be modified, but pointers to
1264 // functions can be modifiable.
1265 if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1266 return MLV_NotObjectType;
1267 break;
1268
1269 case LV_NotObjectType: return MLV_NotObjectType;
1270 case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1271 case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1272 case LV_InvalidExpression:
1273 // If the top level is a C-style cast, and the subexpression is a valid
1274 // lvalue, then this is probably a use of the old-school "cast as lvalue"
1275 // GCC extension. We don't support it, but we want to produce good
1276 // diagnostics when it happens so that the user knows why.
1277 if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1278 if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1279 if (Loc)
1280 *Loc = CE->getLParenLoc();
1281 return MLV_LValueCast;
1282 }
1283 }
1284 return MLV_InvalidExpression;
1285 case LV_MemberFunction: return MLV_MemberFunction;
1286 case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
1287 }
1288
1289 // The following is illegal:
1290 // void takeclosure(void (^C)(void));
1291 // void func() { int x = 1; takeclosure(^{ x = 7; }); }
1292 //
1293 if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1294 if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1295 return MLV_NotBlockQualified;
1296 }
1297
1298 // Assigning to an 'implicit' property?
1299 if (const ObjCImplicitSetterGetterRefExpr* Expr =
1300 dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1301 if (Expr->getSetterMethod() == 0)
1302 return MLV_NoSetterProperty;
1303 }
1304
1305 QualType CT = Ctx.getCanonicalType(getType());
1306
1307 if (CT.isConstQualified())
1308 return MLV_ConstQualified;
1309 if (CT->isArrayType())
1310 return MLV_ArrayType;
1311 if (CT->isIncompleteType())
1312 return MLV_IncompleteType;
1313
1314 if (const RecordType *r = CT->getAs<RecordType>()) {
1315 if (r->hasConstFields())
1316 return MLV_ConstQualified;
1317 }
1318
1319 return MLV_Valid;
1320}
1321
1322/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1323/// returns true, if it is; false otherwise.
1324bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1325 switch (getStmtClass()) {
1326 default:
1327 return false;
1328 case ObjCIvarRefExprClass:
1329 return true;
1330 case Expr::UnaryOperatorClass:
1331 return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1332 case ParenExprClass:
1333 return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1334 case ImplicitCastExprClass:
1335 return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1336 case CStyleCastExprClass:
1337 return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1338 case DeclRefExprClass: {
1339 const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1340 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1341 if (VD->hasGlobalStorage())
1342 return true;
1343 QualType T = VD->getType();
1344 // dereferencing to a pointer is always a gc'able candidate,
1345 // unless it is __weak.
1346 return T->isPointerType() &&
1347 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1348 }
1349 return false;
1350 }
1351 case MemberExprClass: {
1352 const MemberExpr *M = cast<MemberExpr>(this);
1353 return M->getBase()->isOBJCGCCandidate(Ctx);
1354 }
1355 case ArraySubscriptExprClass:
1356 return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1357 }
1358}
1359Expr* Expr::IgnoreParens() {
1360 Expr* E = this;
1361 while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1362 E = P->getSubExpr();
1363
1364 return E;
1365}
1366
1367/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
1368/// or CastExprs or ImplicitCastExprs, returning their operand.
1369Expr *Expr::IgnoreParenCasts() {
1370 Expr *E = this;
1371 while (true) {
1372 if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1373 E = P->getSubExpr();
1374 else if (CastExpr *P = dyn_cast<CastExpr>(E))
1375 E = P->getSubExpr();
1376 else
1377 return E;
1378 }
1379}
1380
1381/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1382/// value (including ptr->int casts of the same size). Strip off any
1383/// ParenExpr or CastExprs, returning their operand.
1384Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1385 Expr *E = this;
1386 while (true) {
1387 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1388 E = P->getSubExpr();
1389 continue;
1390 }
1391
1392 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1393 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1394 // ptr<->int casts of the same width. We also ignore all identify casts.
1395 Expr *SE = P->getSubExpr();
1396
1397 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1398 E = SE;
1399 continue;
1400 }
1401
1402 if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1403 (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1404 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1405 E = SE;
1406 continue;
1407 }
1408 }
1409
1410 return E;
1411 }
1412}
1413
1414bool Expr::isDefaultArgument() const {
1415 const Expr *E = this;
1416 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1417 E = ICE->getSubExprAsWritten();
1418
1419 return isa<CXXDefaultArgExpr>(E);
1420}
1421
1422/// hasAnyTypeDependentArguments - Determines if any of the expressions
1423/// in Exprs is type-dependent.
1424bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1425 for (unsigned I = 0; I < NumExprs; ++I)
1426 if (Exprs[I]->isTypeDependent())
1427 return true;
1428
1429 return false;
1430}
1431
1432/// hasAnyValueDependentArguments - Determines if any of the expressions
1433/// in Exprs is value-dependent.
1434bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1435 for (unsigned I = 0; I < NumExprs; ++I)
1436 if (Exprs[I]->isValueDependent())
1437 return true;
1438
1439 return false;
1440}
1441
1442bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1443 // This function is attempting whether an expression is an initializer
1444 // which can be evaluated at compile-time. isEvaluatable handles most
1445 // of the cases, but it can't deal with some initializer-specific
1446 // expressions, and it can't deal with aggregates; we deal with those here,
1447 // and fall back to isEvaluatable for the other cases.
1448
1449 // FIXME: This function assumes the variable being assigned to
1450 // isn't a reference type!
1451
1452 switch (getStmtClass()) {
1453 default: break;
1454 case StringLiteralClass:
1455 case ObjCStringLiteralClass:
1456 case ObjCEncodeExprClass:
1457 return true;
1458 case CompoundLiteralExprClass: {
1459 // This handles gcc's extension that allows global initializers like
1460 // "struct x {int x;} x = (struct x) {};".
1461 // FIXME: This accepts other cases it shouldn't!
1462 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1463 return Exp->isConstantInitializer(Ctx);
1464 }
1465 case InitListExprClass: {
1466 // FIXME: This doesn't deal with fields with reference types correctly.
1467 // FIXME: This incorrectly allows pointers cast to integers to be assigned
1468 // to bitfields.
1469 const InitListExpr *Exp = cast<InitListExpr>(this);
1470 unsigned numInits = Exp->getNumInits();
1471 for (unsigned i = 0; i < numInits; i++) {
1472 if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1473 return false;
1474 }
1475 return true;
1476 }
1477 case ImplicitValueInitExprClass:
1478 return true;
1479 case ParenExprClass:
1480 return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1481 case UnaryOperatorClass: {
1482 const UnaryOperator* Exp = cast<UnaryOperator>(this);
1483 if (Exp->getOpcode() == UnaryOperator::Extension)
1484 return Exp->getSubExpr()->isConstantInitializer(Ctx);
1485 break;
1486 }
1487 case BinaryOperatorClass: {
1488 // Special case &&foo - &&bar. It would be nice to generalize this somehow
1489 // but this handles the common case.
1490 const BinaryOperator *Exp = cast<BinaryOperator>(this);
1491 if (Exp->getOpcode() == BinaryOperator::Sub &&
1492 isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1493 isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1494 return true;
1495 break;
1496 }
1497 case ImplicitCastExprClass:
1498 case CStyleCastExprClass:
1499 // Handle casts with a destination that's a struct or union; this
1500 // deals with both the gcc no-op struct cast extension and the
1501 // cast-to-union extension.
1502 if (getType()->isRecordType())
1503 return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1504
1505 // Integer->integer casts can be handled here, which is important for
1506 // things like (int)(&&x-&&y). Scary but true.
1507 if (getType()->isIntegerType() &&
1508 cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1509 return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1510
1511 break;
1512 }
1513 return isEvaluatable(Ctx);
1514}
1515
1516/// isIntegerConstantExpr - this recursive routine will test if an expression is
1517/// an integer constant expression.
1518
1519/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1520/// comma, etc
1521///
1522/// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof
1523/// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer
1524/// cast+dereference.
1525
1526// CheckICE - This function does the fundamental ICE checking: the returned
1527// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1528// Note that to reduce code duplication, this helper does no evaluation
1529// itself; the caller checks whether the expression is evaluatable, and
1530// in the rare cases where CheckICE actually cares about the evaluated
1531// value, it calls into Evalute.
1532//
1533// Meanings of Val:
1534// 0: This expression is an ICE if it can be evaluated by Evaluate.
1535// 1: This expression is not an ICE, but if it isn't evaluated, it's
1536// a legal subexpression for an ICE. This return value is used to handle
1537// the comma operator in C99 mode.
1538// 2: This expression is not an ICE, and is not a legal subexpression for one.
1539
1540struct ICEDiag {
1541 unsigned Val;
1542 SourceLocation Loc;
1543
1544 public:
1545 ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1546 ICEDiag() : Val(0) {}
1547};
1548
1549ICEDiag NoDiag() { return ICEDiag(); }
1550
1551static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1552 Expr::EvalResult EVResult;
1553 if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1554 !EVResult.Val.isInt()) {
1555 return ICEDiag(2, E->getLocStart());
1556 }
1557 return NoDiag();
1558}
1559
1560static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1561 assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1562 if (!E->getType()->isIntegralType()) {
1563 return ICEDiag(2, E->getLocStart());
1564 }
1565
1566 switch (E->getStmtClass()) {
1567#define STMT(Node, Base) case Expr::Node##Class:
1568#define EXPR(Node, Base)
1569#include "clang/AST/StmtNodes.def"
1570 case Expr::PredefinedExprClass:
1571 case Expr::FloatingLiteralClass:
1572 case Expr::ImaginaryLiteralClass:
1573 case Expr::StringLiteralClass:
1574 case Expr::ArraySubscriptExprClass:
1575 case Expr::MemberExprClass:
1576 case Expr::CompoundAssignOperatorClass:
1577 case Expr::CompoundLiteralExprClass:
1578 case Expr::ExtVectorElementExprClass:
1579 case Expr::InitListExprClass:
1580 case Expr::DesignatedInitExprClass:
1581 case Expr::ImplicitValueInitExprClass:
1582 case Expr::ParenListExprClass:
1583 case Expr::VAArgExprClass:
1584 case Expr::AddrLabelExprClass:
1585 case Expr::StmtExprClass:
1586 case Expr::CXXMemberCallExprClass:
1587 case Expr::CXXDynamicCastExprClass:
1588 case Expr::CXXTypeidExprClass:
1589 case Expr::CXXNullPtrLiteralExprClass:
1590 case Expr::CXXThisExprClass:
1591 case Expr::CXXThrowExprClass:
1592 case Expr::CXXNewExprClass:
1593 case Expr::CXXDeleteExprClass:
1594 case Expr::CXXPseudoDestructorExprClass:
1595 case Expr::UnresolvedLookupExprClass:
1596 case Expr::DependentScopeDeclRefExprClass:
1597 case Expr::CXXConstructExprClass:
1598 case Expr::CXXBindTemporaryExprClass:
1599 case Expr::CXXBindReferenceExprClass:
1600 case Expr::CXXExprWithTemporariesClass:
1601 case Expr::CXXTemporaryObjectExprClass:
1602 case Expr::CXXUnresolvedConstructExprClass:
1603 case Expr::CXXDependentScopeMemberExprClass:
1604 case Expr::UnresolvedMemberExprClass:
1605 case Expr::ObjCStringLiteralClass:
1606 case Expr::ObjCEncodeExprClass:
1607 case Expr::ObjCMessageExprClass:
1608 case Expr::ObjCSelectorExprClass:
1609 case Expr::ObjCProtocolExprClass:
1610 case Expr::ObjCIvarRefExprClass:
1611 case Expr::ObjCPropertyRefExprClass:
1612 case Expr::ObjCImplicitSetterGetterRefExprClass:
1613 case Expr::ObjCSuperExprClass:
1614 case Expr::ObjCIsaExprClass:
1615 case Expr::ShuffleVectorExprClass:
1616 case Expr::BlockExprClass:
1617 case Expr::BlockDeclRefExprClass:
1618 case Expr::NoStmtClass:
1619 return ICEDiag(2, E->getLocStart());
1620
1621 case Expr::GNUNullExprClass:
1622 // GCC considers the GNU __null value to be an integral constant expression.
1623 return NoDiag();
1624
1625 case Expr::ParenExprClass:
1626 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1627 case Expr::IntegerLiteralClass:
1628 case Expr::CharacterLiteralClass:
1629 case Expr::CXXBoolLiteralExprClass:
1630 case Expr::CXXZeroInitValueExprClass:
1631 case Expr::TypesCompatibleExprClass:
1632 case Expr::UnaryTypeTraitExprClass:
1633 return NoDiag();
1634 case Expr::CallExprClass:
1635 case Expr::CXXOperatorCallExprClass: {
1636 const CallExpr *CE = cast<CallExpr>(E);
1637 if (CE->isBuiltinCall(Ctx))
1638 return CheckEvalInICE(E, Ctx);
1639 return ICEDiag(2, E->getLocStart());
1640 }
1641 case Expr::DeclRefExprClass:
1642 if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1643 return NoDiag();
1644 if (Ctx.getLangOptions().CPlusPlus &&
1645 E->getType().getCVRQualifiers() == Qualifiers::Const) {
1646 // C++ 7.1.5.1p2
1647 // A variable of non-volatile const-qualified integral or enumeration
1648 // type initialized by an ICE can be used in ICEs.
1649 if (const VarDecl *Dcl =
1650 dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
1651 Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
1652 if (Quals.hasVolatile() || !Quals.hasConst())
1653 return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1654
1655 // Look for a declaration of this variable that has an initializer.
1656 const VarDecl *ID = 0;
1657 const Expr *Init = Dcl->getAnyInitializer(ID);
1658 if (Init) {
1659 if (ID->isInitKnownICE()) {
1660 // We have already checked whether this subexpression is an
1661 // integral constant expression.
1662 if (ID->isInitICE())
1663 return NoDiag();
1664 else
1665 return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1666 }
1667
1668 // It's an ICE whether or not the definition we found is
1669 // out-of-line. See DR 721 and the discussion in Clang PR
1670 // 6206 for details.
1671
1672 if (Dcl->isCheckingICE()) {
1673 return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1674 }
1675
1676 Dcl->setCheckingICE();
1677 ICEDiag Result = CheckICE(Init, Ctx);
1678 // Cache the result of the ICE test.
1679 Dcl->setInitKnownICE(Result.Val == 0);
1680 return Result;
1681 }
1682 }
1683 }
1684 return ICEDiag(2, E->getLocStart());
1685 case Expr::UnaryOperatorClass: {
1686 const UnaryOperator *Exp = cast<UnaryOperator>(E);
1687 switch (Exp->getOpcode()) {
1688 case UnaryOperator::PostInc:
1689 case UnaryOperator::PostDec:
1690 case UnaryOperator::PreInc:
1691 case UnaryOperator::PreDec:
1692 case UnaryOperator::AddrOf:
1693 case UnaryOperator::Deref:
1694 return ICEDiag(2, E->getLocStart());
1695
1696 case UnaryOperator::Extension:
1697 case UnaryOperator::LNot:
1698 case UnaryOperator::Plus:
1699 case UnaryOperator::Minus:
1700 case UnaryOperator::Not:
1701 case UnaryOperator::Real:
1702 case UnaryOperator::Imag:
1703 return CheckICE(Exp->getSubExpr(), Ctx);
1704 case UnaryOperator::OffsetOf:
1705 // Note that per C99, offsetof must be an ICE. And AFAIK, using
1706 // Evaluate matches the proposed gcc behavior for cases like
1707 // "offsetof(struct s{int x[4];}, x[!.0])". This doesn't affect
1708 // compliance: we should warn earlier for offsetof expressions with
1709 // array subscripts that aren't ICEs, and if the array subscripts
1710 // are ICEs, the value of the offsetof must be an integer constant.
1711 return CheckEvalInICE(E, Ctx);
1712 }
1713 }
1714 case Expr::SizeOfAlignOfExprClass: {
1715 const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1716 if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1717 return ICEDiag(2, E->getLocStart());
1718 return NoDiag();
1719 }
1720 case Expr::BinaryOperatorClass: {
1721 const BinaryOperator *Exp = cast<BinaryOperator>(E);
1722 switch (Exp->getOpcode()) {
1723 case BinaryOperator::PtrMemD:
1724 case BinaryOperator::PtrMemI:
1725 case BinaryOperator::Assign:
1726 case BinaryOperator::MulAssign:
1727 case BinaryOperator::DivAssign:
1728 case BinaryOperator::RemAssign:
1729 case BinaryOperator::AddAssign:
1730 case BinaryOperator::SubAssign:
1731 case BinaryOperator::ShlAssign:
1732 case BinaryOperator::ShrAssign:
1733 case BinaryOperator::AndAssign:
1734 case BinaryOperator::XorAssign:
1735 case BinaryOperator::OrAssign:
1736 return ICEDiag(2, E->getLocStart());
1737
1738 case BinaryOperator::Mul:
1739 case BinaryOperator::Div:
1740 case BinaryOperator::Rem:
1741 case BinaryOperator::Add:
1742 case BinaryOperator::Sub:
1743 case BinaryOperator::Shl:
1744 case BinaryOperator::Shr:
1745 case BinaryOperator::LT:
1746 case BinaryOperator::GT:
1747 case BinaryOperator::LE:
1748 case BinaryOperator::GE:
1749 case BinaryOperator::EQ:
1750 case BinaryOperator::NE:
1751 case BinaryOperator::And:
1752 case BinaryOperator::Xor:
1753 case BinaryOperator::Or:
1754 case BinaryOperator::Comma: {
1755 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1756 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1757 if (Exp->getOpcode() == BinaryOperator::Div ||
1758 Exp->getOpcode() == BinaryOperator::Rem) {
1759 // Evaluate gives an error for undefined Div/Rem, so make sure
1760 // we don't evaluate one.
1761 if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1762 llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1763 if (REval == 0)
1764 return ICEDiag(1, E->getLocStart());
1765 if (REval.isSigned() && REval.isAllOnesValue()) {
1766 llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1767 if (LEval.isMinSignedValue())
1768 return ICEDiag(1, E->getLocStart());
1769 }
1770 }
1771 }
1772 if (Exp->getOpcode() == BinaryOperator::Comma) {
1773 if (Ctx.getLangOptions().C99) {
1774 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1775 // if it isn't evaluated.
1776 if (LHSResult.Val == 0 && RHSResult.Val == 0)
1777 return ICEDiag(1, E->getLocStart());
1778 } else {
1779 // In both C89 and C++, commas in ICEs are illegal.
1780 return ICEDiag(2, E->getLocStart());
1781 }
1782 }
1783 if (LHSResult.Val >= RHSResult.Val)
1784 return LHSResult;
1785 return RHSResult;
1786 }
1787 case BinaryOperator::LAnd:
1788 case BinaryOperator::LOr: {
1789 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1790 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1791 if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1792 // Rare case where the RHS has a comma "side-effect"; we need
1793 // to actually check the condition to see whether the side
1794 // with the comma is evaluated.
1795 if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1796 (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1797 return RHSResult;
1798 return NoDiag();
1799 }
1800
1801 if (LHSResult.Val >= RHSResult.Val)
1802 return LHSResult;
1803 return RHSResult;
1804 }
1805 }
1806 }
1807 case Expr::ImplicitCastExprClass:
1808 case Expr::CStyleCastExprClass:
1809 case Expr::CXXFunctionalCastExprClass:
1810 case Expr::CXXNamedCastExprClass:
1811 case Expr::CXXStaticCastExprClass:
1812 case Expr::CXXReinterpretCastExprClass:
1813 case Expr::CXXConstCastExprClass: {
1814 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1815 if (SubExpr->getType()->isIntegralType())
1816 return CheckICE(SubExpr, Ctx);
1817 if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1818 return NoDiag();
1819 return ICEDiag(2, E->getLocStart());
1820 }
1821 case Expr::ConditionalOperatorClass: {
1822 const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1823 // If the condition (ignoring parens) is a __builtin_constant_p call,
1824 // then only the true side is actually considered in an integer constant
1825 // expression, and it is fully evaluated. This is an important GNU
1826 // extension. See GCC PR38377 for discussion.
1827 if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1828 if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1829 Expr::EvalResult EVResult;
1830 if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1831 !EVResult.Val.isInt()) {
1832 return ICEDiag(2, E->getLocStart());
1833 }
1834 return NoDiag();
1835 }
1836 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1837 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1838 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1839 if (CondResult.Val == 2)
1840 return CondResult;
1841 if (TrueResult.Val == 2)
1842 return TrueResult;
1843 if (FalseResult.Val == 2)
1844 return FalseResult;
1845 if (CondResult.Val == 1)
1846 return CondResult;
1847 if (TrueResult.Val == 0 && FalseResult.Val == 0)
1848 return NoDiag();
1849 // Rare case where the diagnostics depend on which side is evaluated
1850 // Note that if we get here, CondResult is 0, and at least one of
1851 // TrueResult and FalseResult is non-zero.
1852 if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1853 return FalseResult;
1854 }
1855 return TrueResult;
1856 }
1857 case Expr::CXXDefaultArgExprClass:
1858 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1859 case Expr::ChooseExprClass: {
1860 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1861 }
1862 }
1863
1864 // Silence a GCC warning
1865 return ICEDiag(2, E->getLocStart());
1866}
1867
1868bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1869 SourceLocation *Loc, bool isEvaluated) const {
1870 ICEDiag d = CheckICE(this, Ctx);
1871 if (d.Val != 0) {
1872 if (Loc) *Loc = d.Loc;
1873 return false;
1874 }
1875 EvalResult EvalResult;
1876 if (!Evaluate(EvalResult, Ctx))
1877 llvm_unreachable("ICE cannot be evaluated!");
1878 assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1879 assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1880 Result = EvalResult.Val.getInt();
1881 return true;
1882}
1883
1884/// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an
1885/// integer constant expression with the value zero, or if this is one that is
1886/// cast to void*.
1887bool Expr::isNullPointerConstant(ASTContext &Ctx,
1888 NullPointerConstantValueDependence NPC) const {
1889 if (isValueDependent()) {
1890 switch (NPC) {
1891 case NPC_NeverValueDependent:
1892 assert(false && "Unexpected value dependent expression!");
1893 // If the unthinkable happens, fall through to the safest alternative.
1894
1895 case NPC_ValueDependentIsNull:
1896 return isTypeDependent() || getType()->isIntegralType();
1897
1898 case NPC_ValueDependentIsNotNull:
1899 return false;
1900 }
1901 }
1902
1903 // Strip off a cast to void*, if it exists. Except in C++.
1904 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1905 if (!Ctx.getLangOptions().CPlusPlus) {
1906 // Check that it is a cast to void*.
1907 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1908 QualType Pointee = PT->getPointeeType();
1909 if (!Pointee.hasQualifiers() &&
1910 Pointee->isVoidType() && // to void*
1911 CE->getSubExpr()->getType()->isIntegerType()) // from int.
1912 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1913 }
1914 }
1915 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1916 // Ignore the ImplicitCastExpr type entirely.
1917 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1918 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1919 // Accept ((void*)0) as a null pointer constant, as many other
1920 // implementations do.
1921 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1922 } else if (const CXXDefaultArgExpr *DefaultArg
1923 = dyn_cast<CXXDefaultArgExpr>(this)) {
1924 // See through default argument expressions
1925 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
1926 } else if (isa<GNUNullExpr>(this)) {
1927 // The GNU __null extension is always a null pointer constant.
1928 return true;
1929 }
1930
1931 // C++0x nullptr_t is always a null pointer constant.
1932 if (getType()->isNullPtrType())
1933 return true;
1934
1935 // This expression must be an integer type.
1936 if (!getType()->isIntegerType() ||
1937 (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
1938 return false;
1939
1940 // If we have an integer constant expression, we need to *evaluate* it and
1941 // test for the value 0.
1942 llvm::APSInt Result;
1943 return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1944}
1945
1946FieldDecl *Expr::getBitField() {
1947 Expr *E = this->IgnoreParens();
1948
1949 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1950 if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
1951 E = ICE->getSubExpr()->IgnoreParens();
1952 else
1953 break;
1954 }
1955
1956 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1957 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1958 if (Field->isBitField())
1959 return Field;
1960
1961 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1962 if (BinOp->isAssignmentOp() && BinOp->getLHS())
1963 return BinOp->getLHS()->getBitField();
1964
1965 return 0;
1966}
1967
1968bool Expr::refersToVectorElement() const {
1969 const Expr *E = this->IgnoreParens();
1970
1971 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1972 if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
1973 E = ICE->getSubExpr()->IgnoreParens();
1974 else
1975 break;
1976 }
1977
1978 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
1979 return ASE->getBase()->getType()->isVectorType();
1980
1981 if (isa<ExtVectorElementExpr>(E))
1982 return true;
1983
1984 return false;
1985}
1986
1987/// isArrow - Return true if the base expression is a pointer to vector,
1988/// return false if the base expression is a vector.
1989bool ExtVectorElementExpr::isArrow() const {
1990 return getBase()->getType()->isPointerType();
1991}
1992
1993unsigned ExtVectorElementExpr::getNumElements() const {
1994 if (const VectorType *VT = getType()->getAs<VectorType>())
1995 return VT->getNumElements();
1996 return 1;
1997}
1998
1999/// containsDuplicateElements - Return true if any element access is repeated.
2000bool ExtVectorElementExpr::containsDuplicateElements() const {
2001 // FIXME: Refactor this code to an accessor on the AST node which returns the
2002 // "type" of component access, and share with code below and in Sema.
2003 llvm::StringRef Comp = Accessor->getName();
2004
2005 // Halving swizzles do not contain duplicate elements.
2006 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2007 return false;
2008
2009 // Advance past s-char prefix on hex swizzles.
2010 if (Comp[0] == 's' || Comp[0] == 'S')
2011 Comp = Comp.substr(1);
2012
2013 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2014 if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
2015 return true;
2016
2017 return false;
2018}
2019
2020/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2021void ExtVectorElementExpr::getEncodedElementAccess(
2022 llvm::SmallVectorImpl<unsigned> &Elts) const {
2023 llvm::StringRef Comp = Accessor->getName();
2024 if (Comp[0] == 's' || Comp[0] == 'S')
2025 Comp = Comp.substr(1);
2026
2027 bool isHi = Comp == "hi";
2028 bool isLo = Comp == "lo";
2029 bool isEven = Comp == "even";
2030 bool isOdd = Comp == "odd";
2031
2032 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2033 uint64_t Index;
2034
2035 if (isHi)
2036 Index = e + i;
2037 else if (isLo)
2038 Index = i;
2039 else if (isEven)
2040 Index = 2 * i;
2041 else if (isOdd)
2042 Index = 2 * i + 1;
2043 else
2044 Index = ExtVectorType::getAccessorIdx(Comp[i]);
2045
2046 Elts.push_back(Index);
2047 }
2048}
2049
2050// constructor for instance messages.
2051ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
2052 QualType retType, ObjCMethodDecl *mproto,
2053 SourceLocation LBrac, SourceLocation RBrac,
2054 Expr **ArgExprs, unsigned nargs)
2055 : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2056 MethodProto(mproto) {
2057 NumArgs = nargs;
2058 SubExprs = new Stmt*[NumArgs+1];
2059 SubExprs[RECEIVER] = receiver;
2060 if (NumArgs) {
2061 for (unsigned i = 0; i != NumArgs; ++i)
2062 SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2063 }
2064 LBracloc = LBrac;
2065 RBracloc = RBrac;
2066}
2067
2068// constructor for class messages.
2069// FIXME: clsName should be typed to ObjCInterfaceType
2070ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
2071 QualType retType, ObjCMethodDecl *mproto,
2072 SourceLocation LBrac, SourceLocation RBrac,
2073 Expr **ArgExprs, unsigned nargs)
2074 : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2075 MethodProto(mproto) {
2076 NumArgs = nargs;
2077 SubExprs = new Stmt*[NumArgs+1];
2078 SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
2079 if (NumArgs) {
2080 for (unsigned i = 0; i != NumArgs; ++i)
2081 SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2082 }
2083 LBracloc = LBrac;
2084 RBracloc = RBrac;
2085}
2086
2087// constructor for class messages.
2088ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
2089 QualType retType, ObjCMethodDecl *mproto,
2090 SourceLocation LBrac, SourceLocation RBrac,
2091 Expr **ArgExprs, unsigned nargs)
2092: Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2093MethodProto(mproto) {
2094 NumArgs = nargs;
2095 SubExprs = new Stmt*[NumArgs+1];
2096 SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
2097 if (NumArgs) {
2098 for (unsigned i = 0; i != NumArgs; ++i)
2099 SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2100 }
2101 LBracloc = LBrac;
2102 RBracloc = RBrac;
2103}
2104
2105ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
2106 uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
2107 switch (x & Flags) {
2108 default:
2109 assert(false && "Invalid ObjCMessageExpr.");
2110 case IsInstMeth:
2111 return ClassInfo(0, 0);
2112 case IsClsMethDeclUnknown:
2113 return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
2114 case IsClsMethDeclKnown: {
2115 ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
2116 return ClassInfo(D, D->getIdentifier());
2117 }
2118 }
2119}
2120
2121void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
2122 if (CI.first == 0 && CI.second == 0)
2123 SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
2124 else if (CI.first == 0)
2125 SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
2126 else
2127 SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
2128}
2129
2130
2131bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2132 return getCond()->EvaluateAsInt(C) != 0;
2133}
2134
2135void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2136 unsigned NumExprs) {
2137 if (SubExprs) C.Deallocate(SubExprs);
2138
2139 SubExprs = new (C) Stmt* [NumExprs];
2140 this->NumExprs = NumExprs;
2141 memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2142}
2143
2144void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2145 DestroyChildren(C);
2146 if (SubExprs) C.Deallocate(SubExprs);
2147 this->~ShuffleVectorExpr();
2148 C.Deallocate(this);
2149}
2150
2151void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2152 // Override default behavior of traversing children. If this has a type
2153 // operand and the type is a variable-length array, the child iteration
2154 // will iterate over the size expression. However, this expression belongs
2155 // to the type, not to this, so we don't want to delete it.
2156 // We still want to delete this expression.
2157 if (isArgumentType()) {
2158 this->~SizeOfAlignOfExpr();
2159 C.Deallocate(this);
2160 }
2161 else
2162 Expr::DoDestroy(C);
2163}
2164
2165//===----------------------------------------------------------------------===//
2166// DesignatedInitExpr
2167//===----------------------------------------------------------------------===//
2168
2169IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2170 assert(Kind == FieldDesignator && "Only valid on a field designator");
2171 if (Field.NameOrField & 0x01)
2172 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2173 else
2174 return getField()->getIdentifier();
2175}
2176
2177DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2178 unsigned NumDesignators,
2179 const Designator *Designators,
2180 SourceLocation EqualOrColonLoc,
2181 bool GNUSyntax,
2182 Expr **IndexExprs,
2183 unsigned NumIndexExprs,
2184 Expr *Init)
2185 : Expr(DesignatedInitExprClass, Ty,
2186 Init->isTypeDependent(), Init->isValueDependent()),
2187 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2188 NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2189 this->Designators = new (C) Designator[NumDesignators];
2190
2191 // Record the initializer itself.
2192 child_iterator Child = child_begin();
2193 *Child++ = Init;
2194
2195 // Copy the designators and their subexpressions, computing
2196 // value-dependence along the way.
2197 unsigned IndexIdx = 0;
2198 for (unsigned I = 0; I != NumDesignators; ++I) {
2199 this->Designators[I] = Designators[I];
2200
2201 if (this->Designators[I].isArrayDesignator()) {
2202 // Compute type- and value-dependence.
2203 Expr *Index = IndexExprs[IndexIdx];
2204 ValueDependent = ValueDependent ||
2205 Index->isTypeDependent() || Index->isValueDependent();
2206
2207 // Copy the index expressions into permanent storage.
2208 *Child++ = IndexExprs[IndexIdx++];
2209 } else if (this->Designators[I].isArrayRangeDesignator()) {
2210 // Compute type- and value-dependence.
2211 Expr *Start = IndexExprs[IndexIdx];
2212 Expr *End = IndexExprs[IndexIdx + 1];
2213 ValueDependent = ValueDependent ||
2214 Start->isTypeDependent() || Start->isValueDependent() ||
2215 End->isTypeDependent() || End->isValueDependent();
2216
2217 // Copy the start/end expressions into permanent storage.
2218 *Child++ = IndexExprs[IndexIdx++];
2219 *Child++ = IndexExprs[IndexIdx++];
2220 }
2221 }
2222
2223 assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2224}
2225
2226DesignatedInitExpr *
2227DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2228 unsigned NumDesignators,
2229 Expr **IndexExprs, unsigned NumIndexExprs,
2230 SourceLocation ColonOrEqualLoc,
2231 bool UsesColonSyntax, Expr *Init) {
2232 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2233 sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2234 return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2235 ColonOrEqualLoc, UsesColonSyntax,
2236 IndexExprs, NumIndexExprs, Init);
2237}
2238
2239DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2240 unsigned NumIndexExprs) {
2241 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2242 sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2243 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2244}
2245
2246void DesignatedInitExpr::setDesignators(ASTContext &C,
2247 const Designator *Desigs,
2248 unsigned NumDesigs) {
2249 DestroyDesignators(C);
2250
2251 Designators = new (C) Designator[NumDesigs];
2252 NumDesignators = NumDesigs;
2253 for (unsigned I = 0; I != NumDesigs; ++I)
2254 Designators[I] = Desigs[I];
2255}
2256
2257SourceRange DesignatedInitExpr::getSourceRange() const {
2258 SourceLocation StartLoc;
2259 Designator &First =
2260 *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2261 if (First.isFieldDesignator()) {
2262 if (GNUSyntax)
2263 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2264 else
2265 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2266 } else
2267 StartLoc =
2268 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2269 return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2270}
2271
2272Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2273 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2274 char* Ptr = static_cast<char*>(static_cast<void *>(this));
2275 Ptr += sizeof(DesignatedInitExpr);
2276 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2277 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2278}
2279
2280Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2281 assert(D.Kind == Designator::ArrayRangeDesignator &&
2282 "Requires array range designator");
2283 char* Ptr = static_cast<char*>(static_cast<void *>(this));
2284 Ptr += sizeof(DesignatedInitExpr);
2285 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2286 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2287}
2288
2289Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2290 assert(D.Kind == Designator::ArrayRangeDesignator &&
2291 "Requires array range designator");
2292 char* Ptr = static_cast<char*>(static_cast<void *>(this));
2293 Ptr += sizeof(DesignatedInitExpr);
2294 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2295 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2296}
2297
2298/// \brief Replaces the designator at index @p Idx with the series
2299/// of designators in [First, Last).
2300void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2301 const Designator *First,
2302 const Designator *Last) {
2303 unsigned NumNewDesignators = Last - First;
2304 if (NumNewDesignators == 0) {
2305 std::copy_backward(Designators + Idx + 1,
2306 Designators + NumDesignators,
2307 Designators + Idx);
2308 --NumNewDesignators;
2309 return;
2310 } else if (NumNewDesignators == 1) {
2311 Designators[Idx] = *First;
2312 return;
2313 }
2314
2315 Designator *NewDesignators
2316 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2317 std::copy(Designators, Designators + Idx, NewDesignators);
2318 std::copy(First, Last, NewDesignators + Idx);
2319 std::copy(Designators + Idx + 1, Designators + NumDesignators,
2320 NewDesignators + Idx + NumNewDesignators);
2321 DestroyDesignators(C);
2322 Designators = NewDesignators;
2323 NumDesignators = NumDesignators - 1 + NumNewDesignators;
2324}
2325
2326void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2327 DestroyDesignators(C);
2328 Expr::DoDestroy(C);
2329}
2330
2331void DesignatedInitExpr::DestroyDesignators(ASTContext &C) {
2332 for (unsigned I = 0; I != NumDesignators; ++I)
2333 Designators[I].~Designator();
2334 C.Deallocate(Designators);
2335 Designators = 0;
2336}
2337
2338ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2339 Expr **exprs, unsigned nexprs,
2340 SourceLocation rparenloc)
2341: Expr(ParenListExprClass, QualType(),
2342 hasAnyTypeDependentArguments(exprs, nexprs),
2343 hasAnyValueDependentArguments(exprs, nexprs)),
2344 NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2345
2346 Exprs = new (C) Stmt*[nexprs];
2347 for (unsigned i = 0; i != nexprs; ++i)
2348 Exprs[i] = exprs[i];
2349}
2350
2351void ParenListExpr::DoDestroy(ASTContext& C) {
2352 DestroyChildren(C);
2353 if (Exprs) C.Deallocate(Exprs);
2354 this->~ParenListExpr();
2355 C.Deallocate(this);
2356}
2357
2358//===----------------------------------------------------------------------===//
2359// ExprIterator.
2360//===----------------------------------------------------------------------===//
2361
2362Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2363Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2364Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2365const Expr* ConstExprIterator::operator[](size_t idx) const {
2366 return cast<Expr>(I[idx]);
2367}
2368const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2369const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2370
2371//===----------------------------------------------------------------------===//
2372// Child Iterators for iterating over subexpressions/substatements
2373//===----------------------------------------------------------------------===//
2374
2375// DeclRefExpr
2376Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2377Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2378
2379// ObjCIvarRefExpr
2380Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2381Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2382
2383// ObjCPropertyRefExpr
2384Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2385Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2386
2387// ObjCImplicitSetterGetterRefExpr
2388Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2389 return &Base;
2390}
2391Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2392 return &Base+1;
2393}
2394
2395// ObjCSuperExpr
2396Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2397Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2398
2399// ObjCIsaExpr
2400Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2401Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2402
2403// PredefinedExpr
2404Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2405Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2406
2407// IntegerLiteral
2408Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2409Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2410
2411// CharacterLiteral
2412Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2413Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2414
2415// FloatingLiteral
2416Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2417Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2418
2419// ImaginaryLiteral
2420Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2421Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2422
2423// StringLiteral
2424Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2425Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2426
2427// ParenExpr
2428Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2429Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2430
2431// UnaryOperator
2432Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2433Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2434
2435// SizeOfAlignOfExpr
2436Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2437 // If this is of a type and the type is a VLA type (and not a typedef), the
2438 // size expression of the VLA needs to be treated as an executable expression.
2439 // Why isn't this weirdness documented better in StmtIterator?
2440 if (isArgumentType()) {
2441 if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2442 getArgumentType().getTypePtr()))
2443 return child_iterator(T);
2444 return child_iterator();
2445 }
2446 return child_iterator(&Argument.Ex);
2447}
2448Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2449 if (isArgumentType())
2450 return child_iterator();
2451 return child_iterator(&Argument.Ex + 1);
2452}
2453
2454// ArraySubscriptExpr
2455Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2456 return &SubExprs[0];
2457}
2458Stmt::child_iterator ArraySubscriptExpr::child_end() {
2459 return &SubExprs[0]+END_EXPR;
2460}
2461
2462// CallExpr
2463Stmt::child_iterator CallExpr::child_begin() {
2464 return &SubExprs[0];
2465}
2466Stmt::child_iterator CallExpr::child_end() {
2467 return &SubExprs[0]+NumArgs+ARGS_START;
2468}
2469
2470// MemberExpr
2471Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2472Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2473
2474// ExtVectorElementExpr
2475Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2476Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2477
2478// CompoundLiteralExpr
2479Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2480Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2481
2482// CastExpr
2483Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2484Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2485
2486// BinaryOperator
2487Stmt::child_iterator BinaryOperator::child_begin() {
2488 return &SubExprs[0];
2489}
2490Stmt::child_iterator BinaryOperator::child_end() {
2491 return &SubExprs[0]+END_EXPR;
2492}
2493
2494// ConditionalOperator
2495Stmt::child_iterator ConditionalOperator::child_begin() {
2496 return &SubExprs[0];
2497}
2498Stmt::child_iterator ConditionalOperator::child_end() {
2499 return &SubExprs[0]+END_EXPR;
2500}
2501
2502// AddrLabelExpr
2503Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2504Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2505
2506// StmtExpr
2507Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2508Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2509
2510// TypesCompatibleExpr
2511Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2512 return child_iterator();
2513}
2514
2515Stmt::child_iterator TypesCompatibleExpr::child_end() {
2516 return child_iterator();
2517}
2518
2519// ChooseExpr
2520Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2521Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2522
2523// GNUNullExpr
2524Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2525Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2526
2527// ShuffleVectorExpr
2528Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2529 return &SubExprs[0];
2530}
2531Stmt::child_iterator ShuffleVectorExpr::child_end() {
2532 return &SubExprs[0]+NumExprs;
2533}
2534
2535// VAArgExpr
2536Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2537Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2538
2539// InitListExpr
2540Stmt::child_iterator InitListExpr::child_begin() {
2541 return InitExprs.size() ? &InitExprs[0] : 0;
2542}
2543Stmt::child_iterator InitListExpr::child_end() {
2544 return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2545}
2546
2547// DesignatedInitExpr
2548Stmt::child_iterator DesignatedInitExpr::child_begin() {
2549 char* Ptr = static_cast<char*>(static_cast<void *>(this));
2550 Ptr += sizeof(DesignatedInitExpr);
2551 return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2552}
2553Stmt::child_iterator DesignatedInitExpr::child_end() {
2554 return child_iterator(&*child_begin() + NumSubExprs);
2555}
2556
2557// ImplicitValueInitExpr
2558Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2559 return child_iterator();
2560}
2561
2562Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2563 return child_iterator();
2564}
2565
2566// ParenListExpr
2567Stmt::child_iterator ParenListExpr::child_begin() {
2568 return &Exprs[0];
2569}
2570Stmt::child_iterator ParenListExpr::child_end() {
2571 return &Exprs[0]+NumExprs;
2572}
2573
2574// ObjCStringLiteral
2575Stmt::child_iterator ObjCStringLiteral::child_begin() {
2576 return &String;
2577}
2578Stmt::child_iterator ObjCStringLiteral::child_end() {
2579 return &String+1;
2580}
2581
2582// ObjCEncodeExpr
2583Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2584Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2585
2586// ObjCSelectorExpr
2587Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2588 return child_iterator();
2589}
2590Stmt::child_iterator ObjCSelectorExpr::child_end() {
2591 return child_iterator();
2592}
2593
2594// ObjCProtocolExpr
2595Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2596 return child_iterator();
2597}
2598Stmt::child_iterator ObjCProtocolExpr::child_end() {
2599 return child_iterator();
2600}
2601
2602// ObjCMessageExpr
2603Stmt::child_iterator ObjCMessageExpr::child_begin() {
2604 return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2605}
2606Stmt::child_iterator ObjCMessageExpr::child_end() {
2607 return &SubExprs[0]+ARGS_START+getNumArgs();
2608}
2609
2610// Blocks
2611Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2612Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2613
2614Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2615Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }