Shih-wei Liao | f8fd82b | 2010-02-10 11:10:31 -0800 | [diff] [blame^] | 1 | //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This contains code to emit Stmt nodes as LLVM code. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "CGDebugInfo.h" |
| 15 | #include "CodeGenModule.h" |
| 16 | #include "CodeGenFunction.h" |
| 17 | #include "clang/AST/StmtVisitor.h" |
| 18 | #include "clang/Basic/PrettyStackTrace.h" |
| 19 | #include "clang/Basic/TargetInfo.h" |
| 20 | #include "llvm/ADT/StringExtras.h" |
| 21 | #include "llvm/InlineAsm.h" |
| 22 | #include "llvm/Intrinsics.h" |
| 23 | #include "llvm/Target/TargetData.h" |
| 24 | using namespace clang; |
| 25 | using namespace CodeGen; |
| 26 | |
| 27 | //===----------------------------------------------------------------------===// |
| 28 | // Statement Emission |
| 29 | //===----------------------------------------------------------------------===// |
| 30 | |
| 31 | void CodeGenFunction::EmitStopPoint(const Stmt *S) { |
| 32 | if (CGDebugInfo *DI = getDebugInfo()) { |
| 33 | DI->setLocation(S->getLocStart()); |
| 34 | DI->EmitStopPoint(CurFn, Builder); |
| 35 | } |
| 36 | } |
| 37 | |
| 38 | void CodeGenFunction::EmitStmt(const Stmt *S) { |
| 39 | assert(S && "Null statement?"); |
| 40 | |
| 41 | // Check if we can handle this without bothering to generate an |
| 42 | // insert point or debug info. |
| 43 | if (EmitSimpleStmt(S)) |
| 44 | return; |
| 45 | |
| 46 | // Check if we are generating unreachable code. |
| 47 | if (!HaveInsertPoint()) { |
| 48 | // If so, and the statement doesn't contain a label, then we do not need to |
| 49 | // generate actual code. This is safe because (1) the current point is |
| 50 | // unreachable, so we don't need to execute the code, and (2) we've already |
| 51 | // handled the statements which update internal data structures (like the |
| 52 | // local variable map) which could be used by subsequent statements. |
| 53 | if (!ContainsLabel(S)) { |
| 54 | // Verify that any decl statements were handled as simple, they may be in |
| 55 | // scope of subsequent reachable statements. |
| 56 | assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); |
| 57 | return; |
| 58 | } |
| 59 | |
| 60 | // Otherwise, make a new block to hold the code. |
| 61 | EnsureInsertPoint(); |
| 62 | } |
| 63 | |
| 64 | // Generate a stoppoint if we are emitting debug info. |
| 65 | EmitStopPoint(S); |
| 66 | |
| 67 | switch (S->getStmtClass()) { |
| 68 | default: |
| 69 | // Must be an expression in a stmt context. Emit the value (to get |
| 70 | // side-effects) and ignore the result. |
| 71 | if (!isa<Expr>(S)) |
| 72 | ErrorUnsupported(S, "statement"); |
| 73 | |
| 74 | EmitAnyExpr(cast<Expr>(S), 0, false, true); |
| 75 | |
| 76 | // Expression emitters don't handle unreachable blocks yet, so look for one |
| 77 | // explicitly here. This handles the common case of a call to a noreturn |
| 78 | // function. |
| 79 | if (llvm::BasicBlock *CurBB = Builder.GetInsertBlock()) { |
| 80 | if (CurBB->empty() && CurBB->use_empty()) { |
| 81 | CurBB->eraseFromParent(); |
| 82 | Builder.ClearInsertionPoint(); |
| 83 | } |
| 84 | } |
| 85 | break; |
| 86 | case Stmt::IndirectGotoStmtClass: |
| 87 | EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; |
| 88 | |
| 89 | case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; |
| 90 | case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; |
| 91 | case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; |
| 92 | case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; |
| 93 | |
| 94 | case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; |
| 95 | |
| 96 | case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; |
| 97 | case Stmt::AsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; |
| 98 | |
| 99 | case Stmt::ObjCAtTryStmtClass: |
| 100 | EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); |
| 101 | break; |
| 102 | case Stmt::ObjCAtCatchStmtClass: |
| 103 | assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt"); |
| 104 | break; |
| 105 | case Stmt::ObjCAtFinallyStmtClass: |
| 106 | assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt"); |
| 107 | break; |
| 108 | case Stmt::ObjCAtThrowStmtClass: |
| 109 | EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); |
| 110 | break; |
| 111 | case Stmt::ObjCAtSynchronizedStmtClass: |
| 112 | EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); |
| 113 | break; |
| 114 | case Stmt::ObjCForCollectionStmtClass: |
| 115 | EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); |
| 116 | break; |
| 117 | |
| 118 | case Stmt::CXXTryStmtClass: |
| 119 | EmitCXXTryStmt(cast<CXXTryStmt>(*S)); |
| 120 | break; |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { |
| 125 | switch (S->getStmtClass()) { |
| 126 | default: return false; |
| 127 | case Stmt::NullStmtClass: break; |
| 128 | case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; |
| 129 | case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; |
| 130 | case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; |
| 131 | case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; |
| 132 | case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; |
| 133 | case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; |
| 134 | case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; |
| 135 | case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; |
| 136 | } |
| 137 | |
| 138 | return true; |
| 139 | } |
| 140 | |
| 141 | /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, |
| 142 | /// this captures the expression result of the last sub-statement and returns it |
| 143 | /// (for use by the statement expression extension). |
| 144 | RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, |
| 145 | llvm::Value *AggLoc, bool isAggVol) { |
| 146 | PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), |
| 147 | "LLVM IR generation of compound statement ('{}')"); |
| 148 | |
| 149 | CGDebugInfo *DI = getDebugInfo(); |
| 150 | if (DI) { |
| 151 | DI->setLocation(S.getLBracLoc()); |
| 152 | DI->EmitRegionStart(CurFn, Builder); |
| 153 | } |
| 154 | |
| 155 | // Keep track of the current cleanup stack depth. |
| 156 | CleanupScope Scope(*this); |
| 157 | |
| 158 | for (CompoundStmt::const_body_iterator I = S.body_begin(), |
| 159 | E = S.body_end()-GetLast; I != E; ++I) |
| 160 | EmitStmt(*I); |
| 161 | |
| 162 | if (DI) { |
| 163 | DI->setLocation(S.getLBracLoc()); |
| 164 | DI->EmitRegionEnd(CurFn, Builder); |
| 165 | } |
| 166 | |
| 167 | RValue RV; |
| 168 | if (!GetLast) |
| 169 | RV = RValue::get(0); |
| 170 | else { |
| 171 | // We have to special case labels here. They are statements, but when put |
| 172 | // at the end of a statement expression, they yield the value of their |
| 173 | // subexpression. Handle this by walking through all labels we encounter, |
| 174 | // emitting them before we evaluate the subexpr. |
| 175 | const Stmt *LastStmt = S.body_back(); |
| 176 | while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { |
| 177 | EmitLabel(*LS); |
| 178 | LastStmt = LS->getSubStmt(); |
| 179 | } |
| 180 | |
| 181 | EnsureInsertPoint(); |
| 182 | |
| 183 | RV = EmitAnyExpr(cast<Expr>(LastStmt), AggLoc); |
| 184 | } |
| 185 | |
| 186 | return RV; |
| 187 | } |
| 188 | |
| 189 | void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { |
| 190 | llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); |
| 191 | |
| 192 | // If there is a cleanup stack, then we it isn't worth trying to |
| 193 | // simplify this block (we would need to remove it from the scope map |
| 194 | // and cleanup entry). |
| 195 | if (!CleanupEntries.empty()) |
| 196 | return; |
| 197 | |
| 198 | // Can only simplify direct branches. |
| 199 | if (!BI || !BI->isUnconditional()) |
| 200 | return; |
| 201 | |
| 202 | BB->replaceAllUsesWith(BI->getSuccessor(0)); |
| 203 | BI->eraseFromParent(); |
| 204 | BB->eraseFromParent(); |
| 205 | } |
| 206 | |
| 207 | void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { |
| 208 | // Fall out of the current block (if necessary). |
| 209 | EmitBranch(BB); |
| 210 | |
| 211 | if (IsFinished && BB->use_empty()) { |
| 212 | delete BB; |
| 213 | return; |
| 214 | } |
| 215 | |
| 216 | // If necessary, associate the block with the cleanup stack size. |
| 217 | if (!CleanupEntries.empty()) { |
| 218 | // Check if the basic block has already been inserted. |
| 219 | BlockScopeMap::iterator I = BlockScopes.find(BB); |
| 220 | if (I != BlockScopes.end()) { |
| 221 | assert(I->second == CleanupEntries.size() - 1); |
| 222 | } else { |
| 223 | BlockScopes[BB] = CleanupEntries.size() - 1; |
| 224 | CleanupEntries.back().Blocks.push_back(BB); |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | CurFn->getBasicBlockList().push_back(BB); |
| 229 | Builder.SetInsertPoint(BB); |
| 230 | } |
| 231 | |
| 232 | void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { |
| 233 | // Emit a branch from the current block to the target one if this |
| 234 | // was a real block. If this was just a fall-through block after a |
| 235 | // terminator, don't emit it. |
| 236 | llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); |
| 237 | |
| 238 | if (!CurBB || CurBB->getTerminator()) { |
| 239 | // If there is no insert point or the previous block is already |
| 240 | // terminated, don't touch it. |
| 241 | } else { |
| 242 | // Otherwise, create a fall-through branch. |
| 243 | Builder.CreateBr(Target); |
| 244 | } |
| 245 | |
| 246 | Builder.ClearInsertionPoint(); |
| 247 | } |
| 248 | |
| 249 | void CodeGenFunction::EmitLabel(const LabelStmt &S) { |
| 250 | EmitBlock(getBasicBlockForLabel(&S)); |
| 251 | } |
| 252 | |
| 253 | |
| 254 | void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { |
| 255 | EmitLabel(S); |
| 256 | EmitStmt(S.getSubStmt()); |
| 257 | } |
| 258 | |
| 259 | void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { |
| 260 | // If this code is reachable then emit a stop point (if generating |
| 261 | // debug info). We have to do this ourselves because we are on the |
| 262 | // "simple" statement path. |
| 263 | if (HaveInsertPoint()) |
| 264 | EmitStopPoint(&S); |
| 265 | |
| 266 | EmitBranchThroughCleanup(getBasicBlockForLabel(S.getLabel())); |
| 267 | } |
| 268 | |
| 269 | |
| 270 | void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { |
| 271 | // Ensure that we have an i8* for our PHI node. |
| 272 | llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), |
| 273 | llvm::Type::getInt8PtrTy(VMContext), |
| 274 | "addr"); |
| 275 | llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); |
| 276 | |
| 277 | |
| 278 | // Get the basic block for the indirect goto. |
| 279 | llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); |
| 280 | |
| 281 | // The first instruction in the block has to be the PHI for the switch dest, |
| 282 | // add an entry for this branch. |
| 283 | cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); |
| 284 | |
| 285 | EmitBranch(IndGotoBB); |
| 286 | } |
| 287 | |
| 288 | void CodeGenFunction::EmitIfStmt(const IfStmt &S) { |
| 289 | // C99 6.8.4.1: The first substatement is executed if the expression compares |
| 290 | // unequal to 0. The condition must be a scalar type. |
| 291 | CleanupScope ConditionScope(*this); |
| 292 | |
| 293 | if (S.getConditionVariable()) |
| 294 | EmitLocalBlockVarDecl(*S.getConditionVariable()); |
| 295 | |
| 296 | // If the condition constant folds and can be elided, try to avoid emitting |
| 297 | // the condition and the dead arm of the if/else. |
| 298 | if (int Cond = ConstantFoldsToSimpleInteger(S.getCond())) { |
| 299 | // Figure out which block (then or else) is executed. |
| 300 | const Stmt *Executed = S.getThen(), *Skipped = S.getElse(); |
| 301 | if (Cond == -1) // Condition false? |
| 302 | std::swap(Executed, Skipped); |
| 303 | |
| 304 | // If the skipped block has no labels in it, just emit the executed block. |
| 305 | // This avoids emitting dead code and simplifies the CFG substantially. |
| 306 | if (!ContainsLabel(Skipped)) { |
| 307 | if (Executed) { |
| 308 | CleanupScope ExecutedScope(*this); |
| 309 | EmitStmt(Executed); |
| 310 | } |
| 311 | return; |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | // Otherwise, the condition did not fold, or we couldn't elide it. Just emit |
| 316 | // the conditional branch. |
| 317 | llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); |
| 318 | llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); |
| 319 | llvm::BasicBlock *ElseBlock = ContBlock; |
| 320 | if (S.getElse()) |
| 321 | ElseBlock = createBasicBlock("if.else"); |
| 322 | EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock); |
| 323 | |
| 324 | // Emit the 'then' code. |
| 325 | EmitBlock(ThenBlock); |
| 326 | { |
| 327 | CleanupScope ThenScope(*this); |
| 328 | EmitStmt(S.getThen()); |
| 329 | } |
| 330 | EmitBranch(ContBlock); |
| 331 | |
| 332 | // Emit the 'else' code if present. |
| 333 | if (const Stmt *Else = S.getElse()) { |
| 334 | EmitBlock(ElseBlock); |
| 335 | { |
| 336 | CleanupScope ElseScope(*this); |
| 337 | EmitStmt(Else); |
| 338 | } |
| 339 | EmitBranch(ContBlock); |
| 340 | } |
| 341 | |
| 342 | // Emit the continuation block for code after the if. |
| 343 | EmitBlock(ContBlock, true); |
| 344 | } |
| 345 | |
| 346 | void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) { |
| 347 | // Emit the header for the loop, insert it, which will create an uncond br to |
| 348 | // it. |
| 349 | llvm::BasicBlock *LoopHeader = createBasicBlock("while.cond"); |
| 350 | EmitBlock(LoopHeader); |
| 351 | |
| 352 | // Create an exit block for when the condition fails, create a block for the |
| 353 | // body of the loop. |
| 354 | llvm::BasicBlock *ExitBlock = createBasicBlock("while.end"); |
| 355 | llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); |
| 356 | llvm::BasicBlock *CleanupBlock = 0; |
| 357 | llvm::BasicBlock *EffectiveExitBlock = ExitBlock; |
| 358 | |
| 359 | // Store the blocks to use for break and continue. |
| 360 | BreakContinueStack.push_back(BreakContinue(ExitBlock, LoopHeader)); |
| 361 | |
| 362 | // C++ [stmt.while]p2: |
| 363 | // When the condition of a while statement is a declaration, the |
| 364 | // scope of the variable that is declared extends from its point |
| 365 | // of declaration (3.3.2) to the end of the while statement. |
| 366 | // [...] |
| 367 | // The object created in a condition is destroyed and created |
| 368 | // with each iteration of the loop. |
| 369 | CleanupScope ConditionScope(*this); |
| 370 | |
| 371 | if (S.getConditionVariable()) { |
| 372 | EmitLocalBlockVarDecl(*S.getConditionVariable()); |
| 373 | |
| 374 | // If this condition variable requires cleanups, create a basic |
| 375 | // block to handle those cleanups. |
| 376 | if (ConditionScope.requiresCleanups()) { |
| 377 | CleanupBlock = createBasicBlock("while.cleanup"); |
| 378 | EffectiveExitBlock = CleanupBlock; |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | // Evaluate the conditional in the while header. C99 6.8.5.1: The |
| 383 | // evaluation of the controlling expression takes place before each |
| 384 | // execution of the loop body. |
| 385 | llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); |
| 386 | |
| 387 | // while(1) is common, avoid extra exit blocks. Be sure |
| 388 | // to correctly handle break/continue though. |
| 389 | bool EmitBoolCondBranch = true; |
| 390 | if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) |
| 391 | if (C->isOne()) |
| 392 | EmitBoolCondBranch = false; |
| 393 | |
| 394 | // As long as the condition is true, go to the loop body. |
| 395 | if (EmitBoolCondBranch) |
| 396 | Builder.CreateCondBr(BoolCondVal, LoopBody, EffectiveExitBlock); |
| 397 | |
| 398 | // Emit the loop body. |
| 399 | { |
| 400 | CleanupScope BodyScope(*this); |
| 401 | EmitBlock(LoopBody); |
| 402 | EmitStmt(S.getBody()); |
| 403 | } |
| 404 | |
| 405 | BreakContinueStack.pop_back(); |
| 406 | |
| 407 | if (CleanupBlock) { |
| 408 | // If we have a cleanup block, jump there to perform cleanups |
| 409 | // before looping. |
| 410 | EmitBranch(CleanupBlock); |
| 411 | |
| 412 | // Emit the cleanup block, performing cleanups for the condition |
| 413 | // and then jumping to either the loop header or the exit block. |
| 414 | EmitBlock(CleanupBlock); |
| 415 | ConditionScope.ForceCleanup(); |
| 416 | Builder.CreateCondBr(BoolCondVal, LoopHeader, ExitBlock); |
| 417 | } else { |
| 418 | // Cycle to the condition. |
| 419 | EmitBranch(LoopHeader); |
| 420 | } |
| 421 | |
| 422 | // Emit the exit block. |
| 423 | EmitBlock(ExitBlock, true); |
| 424 | |
| 425 | |
| 426 | // The LoopHeader typically is just a branch if we skipped emitting |
| 427 | // a branch, try to erase it. |
| 428 | if (!EmitBoolCondBranch && !CleanupBlock) |
| 429 | SimplifyForwardingBlocks(LoopHeader); |
| 430 | } |
| 431 | |
| 432 | void CodeGenFunction::EmitDoStmt(const DoStmt &S) { |
| 433 | // Emit the body for the loop, insert it, which will create an uncond br to |
| 434 | // it. |
| 435 | llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); |
| 436 | llvm::BasicBlock *AfterDo = createBasicBlock("do.end"); |
| 437 | EmitBlock(LoopBody); |
| 438 | |
| 439 | llvm::BasicBlock *DoCond = createBasicBlock("do.cond"); |
| 440 | |
| 441 | // Store the blocks to use for break and continue. |
| 442 | BreakContinueStack.push_back(BreakContinue(AfterDo, DoCond)); |
| 443 | |
| 444 | // Emit the body of the loop into the block. |
| 445 | EmitStmt(S.getBody()); |
| 446 | |
| 447 | BreakContinueStack.pop_back(); |
| 448 | |
| 449 | EmitBlock(DoCond); |
| 450 | |
| 451 | // C99 6.8.5.2: "The evaluation of the controlling expression takes place |
| 452 | // after each execution of the loop body." |
| 453 | |
| 454 | // Evaluate the conditional in the while header. |
| 455 | // C99 6.8.5p2/p4: The first substatement is executed if the expression |
| 456 | // compares unequal to 0. The condition must be a scalar type. |
| 457 | llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); |
| 458 | |
| 459 | // "do {} while (0)" is common in macros, avoid extra blocks. Be sure |
| 460 | // to correctly handle break/continue though. |
| 461 | bool EmitBoolCondBranch = true; |
| 462 | if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) |
| 463 | if (C->isZero()) |
| 464 | EmitBoolCondBranch = false; |
| 465 | |
| 466 | // As long as the condition is true, iterate the loop. |
| 467 | if (EmitBoolCondBranch) |
| 468 | Builder.CreateCondBr(BoolCondVal, LoopBody, AfterDo); |
| 469 | |
| 470 | // Emit the exit block. |
| 471 | EmitBlock(AfterDo); |
| 472 | |
| 473 | // The DoCond block typically is just a branch if we skipped |
| 474 | // emitting a branch, try to erase it. |
| 475 | if (!EmitBoolCondBranch) |
| 476 | SimplifyForwardingBlocks(DoCond); |
| 477 | } |
| 478 | |
| 479 | void CodeGenFunction::EmitForStmt(const ForStmt &S) { |
| 480 | // FIXME: What do we do if the increment (f.e.) contains a stmt expression, |
| 481 | // which contains a continue/break? |
| 482 | CleanupScope ForScope(*this); |
| 483 | |
| 484 | // Evaluate the first part before the loop. |
| 485 | if (S.getInit()) |
| 486 | EmitStmt(S.getInit()); |
| 487 | |
| 488 | // Start the loop with a block that tests the condition. |
| 489 | llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); |
| 490 | llvm::BasicBlock *AfterFor = createBasicBlock("for.end"); |
| 491 | llvm::BasicBlock *IncBlock = 0; |
| 492 | llvm::BasicBlock *CondCleanup = 0; |
| 493 | llvm::BasicBlock *EffectiveExitBlock = AfterFor; |
| 494 | EmitBlock(CondBlock); |
| 495 | |
| 496 | // Create a cleanup scope for the condition variable cleanups. |
| 497 | CleanupScope ConditionScope(*this); |
| 498 | |
| 499 | llvm::Value *BoolCondVal = 0; |
| 500 | if (S.getCond()) { |
| 501 | // If the for statement has a condition scope, emit the local variable |
| 502 | // declaration. |
| 503 | if (S.getConditionVariable()) { |
| 504 | EmitLocalBlockVarDecl(*S.getConditionVariable()); |
| 505 | |
| 506 | if (ConditionScope.requiresCleanups()) { |
| 507 | CondCleanup = createBasicBlock("for.cond.cleanup"); |
| 508 | EffectiveExitBlock = CondCleanup; |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | // As long as the condition is true, iterate the loop. |
| 513 | llvm::BasicBlock *ForBody = createBasicBlock("for.body"); |
| 514 | |
| 515 | // C99 6.8.5p2/p4: The first substatement is executed if the expression |
| 516 | // compares unequal to 0. The condition must be a scalar type. |
| 517 | BoolCondVal = EvaluateExprAsBool(S.getCond()); |
| 518 | Builder.CreateCondBr(BoolCondVal, ForBody, EffectiveExitBlock); |
| 519 | |
| 520 | EmitBlock(ForBody); |
| 521 | } else { |
| 522 | // Treat it as a non-zero constant. Don't even create a new block for the |
| 523 | // body, just fall into it. |
| 524 | } |
| 525 | |
| 526 | // If the for loop doesn't have an increment we can just use the |
| 527 | // condition as the continue block. |
| 528 | llvm::BasicBlock *ContinueBlock; |
| 529 | if (S.getInc()) |
| 530 | ContinueBlock = IncBlock = createBasicBlock("for.inc"); |
| 531 | else |
| 532 | ContinueBlock = CondBlock; |
| 533 | |
| 534 | // Store the blocks to use for break and continue. |
| 535 | BreakContinueStack.push_back(BreakContinue(AfterFor, ContinueBlock)); |
| 536 | |
| 537 | // If the condition is true, execute the body of the for stmt. |
| 538 | CGDebugInfo *DI = getDebugInfo(); |
| 539 | if (DI) { |
| 540 | DI->setLocation(S.getSourceRange().getBegin()); |
| 541 | DI->EmitRegionStart(CurFn, Builder); |
| 542 | } |
| 543 | |
| 544 | { |
| 545 | // Create a separate cleanup scope for the body, in case it is not |
| 546 | // a compound statement. |
| 547 | CleanupScope BodyScope(*this); |
| 548 | EmitStmt(S.getBody()); |
| 549 | } |
| 550 | |
| 551 | BreakContinueStack.pop_back(); |
| 552 | |
| 553 | // If there is an increment, emit it next. |
| 554 | if (S.getInc()) { |
| 555 | EmitBlock(IncBlock); |
| 556 | EmitStmt(S.getInc()); |
| 557 | } |
| 558 | |
| 559 | // Finally, branch back up to the condition for the next iteration. |
| 560 | if (CondCleanup) { |
| 561 | // Branch to the cleanup block. |
| 562 | EmitBranch(CondCleanup); |
| 563 | |
| 564 | // Emit the cleanup block, which branches back to the loop body or |
| 565 | // outside of the for statement once it is done. |
| 566 | EmitBlock(CondCleanup); |
| 567 | ConditionScope.ForceCleanup(); |
| 568 | Builder.CreateCondBr(BoolCondVal, CondBlock, AfterFor); |
| 569 | } else |
| 570 | EmitBranch(CondBlock); |
| 571 | if (DI) { |
| 572 | DI->setLocation(S.getSourceRange().getEnd()); |
| 573 | DI->EmitRegionEnd(CurFn, Builder); |
| 574 | } |
| 575 | |
| 576 | // Emit the fall-through block. |
| 577 | EmitBlock(AfterFor, true); |
| 578 | } |
| 579 | |
| 580 | void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { |
| 581 | if (RV.isScalar()) { |
| 582 | Builder.CreateStore(RV.getScalarVal(), ReturnValue); |
| 583 | } else if (RV.isAggregate()) { |
| 584 | EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); |
| 585 | } else { |
| 586 | StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false); |
| 587 | } |
| 588 | EmitBranchThroughCleanup(ReturnBlock); |
| 589 | } |
| 590 | |
| 591 | /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand |
| 592 | /// if the function returns void, or may be missing one if the function returns |
| 593 | /// non-void. Fun stuff :). |
| 594 | void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { |
| 595 | // Emit the result value, even if unused, to evalute the side effects. |
| 596 | const Expr *RV = S.getRetValue(); |
| 597 | |
| 598 | // FIXME: Clean this up by using an LValue for ReturnTemp, |
| 599 | // EmitStoreThroughLValue, and EmitAnyExpr. |
| 600 | if (!ReturnValue) { |
| 601 | // Make sure not to return anything, but evaluate the expression |
| 602 | // for side effects. |
| 603 | if (RV) |
| 604 | EmitAnyExpr(RV); |
| 605 | } else if (RV == 0) { |
| 606 | // Do nothing (return value is left uninitialized) |
| 607 | } else if (FnRetTy->isReferenceType()) { |
| 608 | // If this function returns a reference, take the address of the expression |
| 609 | // rather than the value. |
| 610 | Builder.CreateStore(EmitLValue(RV).getAddress(), ReturnValue); |
| 611 | } else if (!hasAggregateLLVMType(RV->getType())) { |
| 612 | Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); |
| 613 | } else if (RV->getType()->isAnyComplexType()) { |
| 614 | EmitComplexExprIntoAddr(RV, ReturnValue, false); |
| 615 | } else { |
| 616 | EmitAggExpr(RV, ReturnValue, false); |
| 617 | } |
| 618 | |
| 619 | EmitBranchThroughCleanup(ReturnBlock); |
| 620 | } |
| 621 | |
| 622 | void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { |
| 623 | // As long as debug info is modeled with instructions, we have to ensure we |
| 624 | // have a place to insert here and write the stop point here. |
| 625 | if (getDebugInfo()) { |
| 626 | EnsureInsertPoint(); |
| 627 | EmitStopPoint(&S); |
| 628 | } |
| 629 | |
| 630 | for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end(); |
| 631 | I != E; ++I) |
| 632 | EmitDecl(**I); |
| 633 | } |
| 634 | |
| 635 | void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { |
| 636 | assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); |
| 637 | |
| 638 | // If this code is reachable then emit a stop point (if generating |
| 639 | // debug info). We have to do this ourselves because we are on the |
| 640 | // "simple" statement path. |
| 641 | if (HaveInsertPoint()) |
| 642 | EmitStopPoint(&S); |
| 643 | |
| 644 | llvm::BasicBlock *Block = BreakContinueStack.back().BreakBlock; |
| 645 | EmitBranchThroughCleanup(Block); |
| 646 | } |
| 647 | |
| 648 | void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { |
| 649 | assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); |
| 650 | |
| 651 | // If this code is reachable then emit a stop point (if generating |
| 652 | // debug info). We have to do this ourselves because we are on the |
| 653 | // "simple" statement path. |
| 654 | if (HaveInsertPoint()) |
| 655 | EmitStopPoint(&S); |
| 656 | |
| 657 | llvm::BasicBlock *Block = BreakContinueStack.back().ContinueBlock; |
| 658 | EmitBranchThroughCleanup(Block); |
| 659 | } |
| 660 | |
| 661 | /// EmitCaseStmtRange - If case statement range is not too big then |
| 662 | /// add multiple cases to switch instruction, one for each value within |
| 663 | /// the range. If range is too big then emit "if" condition check. |
| 664 | void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { |
| 665 | assert(S.getRHS() && "Expected RHS value in CaseStmt"); |
| 666 | |
| 667 | llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext()); |
| 668 | llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext()); |
| 669 | |
| 670 | // Emit the code for this case. We do this first to make sure it is |
| 671 | // properly chained from our predecessor before generating the |
| 672 | // switch machinery to enter this block. |
| 673 | EmitBlock(createBasicBlock("sw.bb")); |
| 674 | llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); |
| 675 | EmitStmt(S.getSubStmt()); |
| 676 | |
| 677 | // If range is empty, do nothing. |
| 678 | if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) |
| 679 | return; |
| 680 | |
| 681 | llvm::APInt Range = RHS - LHS; |
| 682 | // FIXME: parameters such as this should not be hardcoded. |
| 683 | if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { |
| 684 | // Range is small enough to add multiple switch instruction cases. |
| 685 | for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) { |
| 686 | SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, LHS), CaseDest); |
| 687 | LHS++; |
| 688 | } |
| 689 | return; |
| 690 | } |
| 691 | |
| 692 | // The range is too big. Emit "if" condition into a new block, |
| 693 | // making sure to save and restore the current insertion point. |
| 694 | llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); |
| 695 | |
| 696 | // Push this test onto the chain of range checks (which terminates |
| 697 | // in the default basic block). The switch's default will be changed |
| 698 | // to the top of this chain after switch emission is complete. |
| 699 | llvm::BasicBlock *FalseDest = CaseRangeBlock; |
| 700 | CaseRangeBlock = createBasicBlock("sw.caserange"); |
| 701 | |
| 702 | CurFn->getBasicBlockList().push_back(CaseRangeBlock); |
| 703 | Builder.SetInsertPoint(CaseRangeBlock); |
| 704 | |
| 705 | // Emit range check. |
| 706 | llvm::Value *Diff = |
| 707 | Builder.CreateSub(SwitchInsn->getCondition(), |
| 708 | llvm::ConstantInt::get(VMContext, LHS), "tmp"); |
| 709 | llvm::Value *Cond = |
| 710 | Builder.CreateICmpULE(Diff, |
| 711 | llvm::ConstantInt::get(VMContext, Range), "tmp"); |
| 712 | Builder.CreateCondBr(Cond, CaseDest, FalseDest); |
| 713 | |
| 714 | // Restore the appropriate insertion point. |
| 715 | if (RestoreBB) |
| 716 | Builder.SetInsertPoint(RestoreBB); |
| 717 | else |
| 718 | Builder.ClearInsertionPoint(); |
| 719 | } |
| 720 | |
| 721 | void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { |
| 722 | if (S.getRHS()) { |
| 723 | EmitCaseStmtRange(S); |
| 724 | return; |
| 725 | } |
| 726 | |
| 727 | EmitBlock(createBasicBlock("sw.bb")); |
| 728 | llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); |
| 729 | llvm::APSInt CaseVal = S.getLHS()->EvaluateAsInt(getContext()); |
| 730 | SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest); |
| 731 | |
| 732 | // Recursively emitting the statement is acceptable, but is not wonderful for |
| 733 | // code where we have many case statements nested together, i.e.: |
| 734 | // case 1: |
| 735 | // case 2: |
| 736 | // case 3: etc. |
| 737 | // Handling this recursively will create a new block for each case statement |
| 738 | // that falls through to the next case which is IR intensive. It also causes |
| 739 | // deep recursion which can run into stack depth limitations. Handle |
| 740 | // sequential non-range case statements specially. |
| 741 | const CaseStmt *CurCase = &S; |
| 742 | const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); |
| 743 | |
| 744 | // Otherwise, iteratively add consequtive cases to this switch stmt. |
| 745 | while (NextCase && NextCase->getRHS() == 0) { |
| 746 | CurCase = NextCase; |
| 747 | CaseVal = CurCase->getLHS()->EvaluateAsInt(getContext()); |
| 748 | SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest); |
| 749 | |
| 750 | NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); |
| 751 | } |
| 752 | |
| 753 | // Normal default recursion for non-cases. |
| 754 | EmitStmt(CurCase->getSubStmt()); |
| 755 | } |
| 756 | |
| 757 | void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { |
| 758 | llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); |
| 759 | assert(DefaultBlock->empty() && |
| 760 | "EmitDefaultStmt: Default block already defined?"); |
| 761 | EmitBlock(DefaultBlock); |
| 762 | EmitStmt(S.getSubStmt()); |
| 763 | } |
| 764 | |
| 765 | void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { |
| 766 | CleanupScope ConditionScope(*this); |
| 767 | |
| 768 | if (S.getConditionVariable()) |
| 769 | EmitLocalBlockVarDecl(*S.getConditionVariable()); |
| 770 | |
| 771 | llvm::Value *CondV = EmitScalarExpr(S.getCond()); |
| 772 | |
| 773 | // Handle nested switch statements. |
| 774 | llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; |
| 775 | llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; |
| 776 | |
| 777 | // Create basic block to hold stuff that comes after switch |
| 778 | // statement. We also need to create a default block now so that |
| 779 | // explicit case ranges tests can have a place to jump to on |
| 780 | // failure. |
| 781 | llvm::BasicBlock *NextBlock = createBasicBlock("sw.epilog"); |
| 782 | llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); |
| 783 | SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); |
| 784 | CaseRangeBlock = DefaultBlock; |
| 785 | |
| 786 | // Clear the insertion point to indicate we are in unreachable code. |
| 787 | Builder.ClearInsertionPoint(); |
| 788 | |
| 789 | // All break statements jump to NextBlock. If BreakContinueStack is non empty |
| 790 | // then reuse last ContinueBlock. |
| 791 | llvm::BasicBlock *ContinueBlock = 0; |
| 792 | if (!BreakContinueStack.empty()) |
| 793 | ContinueBlock = BreakContinueStack.back().ContinueBlock; |
| 794 | |
| 795 | // Ensure any vlas created between there and here, are undone |
| 796 | BreakContinueStack.push_back(BreakContinue(NextBlock, ContinueBlock)); |
| 797 | |
| 798 | // Emit switch body. |
| 799 | EmitStmt(S.getBody()); |
| 800 | |
| 801 | BreakContinueStack.pop_back(); |
| 802 | |
| 803 | // Update the default block in case explicit case range tests have |
| 804 | // been chained on top. |
| 805 | SwitchInsn->setSuccessor(0, CaseRangeBlock); |
| 806 | |
| 807 | // If a default was never emitted then reroute any jumps to it and |
| 808 | // discard. |
| 809 | if (!DefaultBlock->getParent()) { |
| 810 | DefaultBlock->replaceAllUsesWith(NextBlock); |
| 811 | delete DefaultBlock; |
| 812 | } |
| 813 | |
| 814 | // Emit continuation. |
| 815 | EmitBlock(NextBlock, true); |
| 816 | |
| 817 | SwitchInsn = SavedSwitchInsn; |
| 818 | CaseRangeBlock = SavedCRBlock; |
| 819 | } |
| 820 | |
| 821 | static std::string |
| 822 | SimplifyConstraint(const char *Constraint, const TargetInfo &Target, |
| 823 | llvm::SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) { |
| 824 | std::string Result; |
| 825 | |
| 826 | while (*Constraint) { |
| 827 | switch (*Constraint) { |
| 828 | default: |
| 829 | Result += Target.convertConstraint(*Constraint); |
| 830 | break; |
| 831 | // Ignore these |
| 832 | case '*': |
| 833 | case '?': |
| 834 | case '!': |
| 835 | break; |
| 836 | case 'g': |
| 837 | Result += "imr"; |
| 838 | break; |
| 839 | case '[': { |
| 840 | assert(OutCons && |
| 841 | "Must pass output names to constraints with a symbolic name"); |
| 842 | unsigned Index; |
| 843 | bool result = Target.resolveSymbolicName(Constraint, |
| 844 | &(*OutCons)[0], |
| 845 | OutCons->size(), Index); |
| 846 | assert(result && "Could not resolve symbolic name"); result=result; |
| 847 | Result += llvm::utostr(Index); |
| 848 | break; |
| 849 | } |
| 850 | } |
| 851 | |
| 852 | Constraint++; |
| 853 | } |
| 854 | |
| 855 | return Result; |
| 856 | } |
| 857 | |
| 858 | llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S, |
| 859 | const TargetInfo::ConstraintInfo &Info, |
| 860 | const Expr *InputExpr, |
| 861 | std::string &ConstraintStr) { |
| 862 | llvm::Value *Arg; |
| 863 | if (Info.allowsRegister() || !Info.allowsMemory()) { |
| 864 | if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType())) { |
| 865 | Arg = EmitScalarExpr(InputExpr); |
| 866 | } else { |
| 867 | InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); |
| 868 | LValue Dest = EmitLValue(InputExpr); |
| 869 | |
| 870 | const llvm::Type *Ty = ConvertType(InputExpr->getType()); |
| 871 | uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty); |
| 872 | if (Size <= 64 && llvm::isPowerOf2_64(Size)) { |
| 873 | Ty = llvm::IntegerType::get(VMContext, Size); |
| 874 | Ty = llvm::PointerType::getUnqual(Ty); |
| 875 | |
| 876 | Arg = Builder.CreateLoad(Builder.CreateBitCast(Dest.getAddress(), Ty)); |
| 877 | } else { |
| 878 | Arg = Dest.getAddress(); |
| 879 | ConstraintStr += '*'; |
| 880 | } |
| 881 | } |
| 882 | } else { |
| 883 | InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); |
| 884 | LValue Dest = EmitLValue(InputExpr); |
| 885 | Arg = Dest.getAddress(); |
| 886 | ConstraintStr += '*'; |
| 887 | } |
| 888 | |
| 889 | return Arg; |
| 890 | } |
| 891 | |
| 892 | void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { |
| 893 | // Analyze the asm string to decompose it into its pieces. We know that Sema |
| 894 | // has already done this, so it is guaranteed to be successful. |
| 895 | llvm::SmallVector<AsmStmt::AsmStringPiece, 4> Pieces; |
| 896 | unsigned DiagOffs; |
| 897 | S.AnalyzeAsmString(Pieces, getContext(), DiagOffs); |
| 898 | |
| 899 | // Assemble the pieces into the final asm string. |
| 900 | std::string AsmString; |
| 901 | for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { |
| 902 | if (Pieces[i].isString()) |
| 903 | AsmString += Pieces[i].getString(); |
| 904 | else if (Pieces[i].getModifier() == '\0') |
| 905 | AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo()); |
| 906 | else |
| 907 | AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' + |
| 908 | Pieces[i].getModifier() + '}'; |
| 909 | } |
| 910 | |
| 911 | // Get all the output and input constraints together. |
| 912 | llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; |
| 913 | llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; |
| 914 | |
| 915 | for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { |
| 916 | TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), |
| 917 | S.getOutputName(i)); |
| 918 | assert(Target.validateOutputConstraint(Info) && |
| 919 | "Failed to parse output constraint"); |
| 920 | OutputConstraintInfos.push_back(Info); |
| 921 | } |
| 922 | |
| 923 | for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { |
| 924 | TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), |
| 925 | S.getInputName(i)); |
| 926 | assert(Target.validateInputConstraint(OutputConstraintInfos.data(), |
| 927 | S.getNumOutputs(), |
| 928 | Info) && |
| 929 | "Failed to parse input constraint"); |
| 930 | InputConstraintInfos.push_back(Info); |
| 931 | } |
| 932 | |
| 933 | std::string Constraints; |
| 934 | |
| 935 | std::vector<LValue> ResultRegDests; |
| 936 | std::vector<QualType> ResultRegQualTys; |
| 937 | std::vector<const llvm::Type *> ResultRegTypes; |
| 938 | std::vector<const llvm::Type *> ResultTruncRegTypes; |
| 939 | std::vector<const llvm::Type*> ArgTypes; |
| 940 | std::vector<llvm::Value*> Args; |
| 941 | |
| 942 | // Keep track of inout constraints. |
| 943 | std::string InOutConstraints; |
| 944 | std::vector<llvm::Value*> InOutArgs; |
| 945 | std::vector<const llvm::Type*> InOutArgTypes; |
| 946 | |
| 947 | for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { |
| 948 | TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; |
| 949 | |
| 950 | // Simplify the output constraint. |
| 951 | std::string OutputConstraint(S.getOutputConstraint(i)); |
| 952 | OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target); |
| 953 | |
| 954 | const Expr *OutExpr = S.getOutputExpr(i); |
| 955 | OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); |
| 956 | |
| 957 | LValue Dest = EmitLValue(OutExpr); |
| 958 | if (!Constraints.empty()) |
| 959 | Constraints += ','; |
| 960 | |
| 961 | // If this is a register output, then make the inline asm return it |
| 962 | // by-value. If this is a memory result, return the value by-reference. |
| 963 | if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) { |
| 964 | Constraints += "=" + OutputConstraint; |
| 965 | ResultRegQualTys.push_back(OutExpr->getType()); |
| 966 | ResultRegDests.push_back(Dest); |
| 967 | ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); |
| 968 | ResultTruncRegTypes.push_back(ResultRegTypes.back()); |
| 969 | |
| 970 | // If this output is tied to an input, and if the input is larger, then |
| 971 | // we need to set the actual result type of the inline asm node to be the |
| 972 | // same as the input type. |
| 973 | if (Info.hasMatchingInput()) { |
| 974 | unsigned InputNo; |
| 975 | for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { |
| 976 | TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; |
| 977 | if (Input.hasTiedOperand() && |
| 978 | Input.getTiedOperand() == i) |
| 979 | break; |
| 980 | } |
| 981 | assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); |
| 982 | |
| 983 | QualType InputTy = S.getInputExpr(InputNo)->getType(); |
| 984 | QualType OutputTy = OutExpr->getType(); |
| 985 | |
| 986 | uint64_t InputSize = getContext().getTypeSize(InputTy); |
| 987 | if (getContext().getTypeSize(OutputTy) < InputSize) { |
| 988 | // Form the asm to return the value as a larger integer type. |
| 989 | ResultRegTypes.back() = llvm::IntegerType::get(VMContext, (unsigned)InputSize); |
| 990 | } |
| 991 | } |
| 992 | } else { |
| 993 | ArgTypes.push_back(Dest.getAddress()->getType()); |
| 994 | Args.push_back(Dest.getAddress()); |
| 995 | Constraints += "=*"; |
| 996 | Constraints += OutputConstraint; |
| 997 | } |
| 998 | |
| 999 | if (Info.isReadWrite()) { |
| 1000 | InOutConstraints += ','; |
| 1001 | |
| 1002 | const Expr *InputExpr = S.getOutputExpr(i); |
| 1003 | llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, InOutConstraints); |
| 1004 | |
| 1005 | if (Info.allowsRegister()) |
| 1006 | InOutConstraints += llvm::utostr(i); |
| 1007 | else |
| 1008 | InOutConstraints += OutputConstraint; |
| 1009 | |
| 1010 | InOutArgTypes.push_back(Arg->getType()); |
| 1011 | InOutArgs.push_back(Arg); |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); |
| 1016 | |
| 1017 | for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { |
| 1018 | const Expr *InputExpr = S.getInputExpr(i); |
| 1019 | |
| 1020 | TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; |
| 1021 | |
| 1022 | if (!Constraints.empty()) |
| 1023 | Constraints += ','; |
| 1024 | |
| 1025 | // Simplify the input constraint. |
| 1026 | std::string InputConstraint(S.getInputConstraint(i)); |
| 1027 | InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target, |
| 1028 | &OutputConstraintInfos); |
| 1029 | |
| 1030 | llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints); |
| 1031 | |
| 1032 | // If this input argument is tied to a larger output result, extend the |
| 1033 | // input to be the same size as the output. The LLVM backend wants to see |
| 1034 | // the input and output of a matching constraint be the same size. Note |
| 1035 | // that GCC does not define what the top bits are here. We use zext because |
| 1036 | // that is usually cheaper, but LLVM IR should really get an anyext someday. |
| 1037 | if (Info.hasTiedOperand()) { |
| 1038 | unsigned Output = Info.getTiedOperand(); |
| 1039 | QualType OutputTy = S.getOutputExpr(Output)->getType(); |
| 1040 | QualType InputTy = InputExpr->getType(); |
| 1041 | |
| 1042 | if (getContext().getTypeSize(OutputTy) > |
| 1043 | getContext().getTypeSize(InputTy)) { |
| 1044 | // Use ptrtoint as appropriate so that we can do our extension. |
| 1045 | if (isa<llvm::PointerType>(Arg->getType())) |
| 1046 | Arg = Builder.CreatePtrToInt(Arg, |
| 1047 | llvm::IntegerType::get(VMContext, LLVMPointerWidth)); |
| 1048 | unsigned OutputSize = (unsigned)getContext().getTypeSize(OutputTy); |
| 1049 | Arg = Builder.CreateZExt(Arg, llvm::IntegerType::get(VMContext, OutputSize)); |
| 1050 | } |
| 1051 | } |
| 1052 | |
| 1053 | |
| 1054 | ArgTypes.push_back(Arg->getType()); |
| 1055 | Args.push_back(Arg); |
| 1056 | Constraints += InputConstraint; |
| 1057 | } |
| 1058 | |
| 1059 | // Append the "input" part of inout constraints last. |
| 1060 | for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { |
| 1061 | ArgTypes.push_back(InOutArgTypes[i]); |
| 1062 | Args.push_back(InOutArgs[i]); |
| 1063 | } |
| 1064 | Constraints += InOutConstraints; |
| 1065 | |
| 1066 | // Clobbers |
| 1067 | for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { |
| 1068 | llvm::StringRef Clobber = S.getClobber(i)->getString(); |
| 1069 | |
| 1070 | Clobber = Target.getNormalizedGCCRegisterName(Clobber); |
| 1071 | |
| 1072 | if (i != 0 || NumConstraints != 0) |
| 1073 | Constraints += ','; |
| 1074 | |
| 1075 | Constraints += "~{"; |
| 1076 | Constraints += Clobber; |
| 1077 | Constraints += '}'; |
| 1078 | } |
| 1079 | |
| 1080 | // Add machine specific clobbers |
| 1081 | std::string MachineClobbers = Target.getClobbers(); |
| 1082 | if (!MachineClobbers.empty()) { |
| 1083 | if (!Constraints.empty()) |
| 1084 | Constraints += ','; |
| 1085 | Constraints += MachineClobbers; |
| 1086 | } |
| 1087 | |
| 1088 | const llvm::Type *ResultType; |
| 1089 | if (ResultRegTypes.empty()) |
| 1090 | ResultType = llvm::Type::getVoidTy(VMContext); |
| 1091 | else if (ResultRegTypes.size() == 1) |
| 1092 | ResultType = ResultRegTypes[0]; |
| 1093 | else |
| 1094 | ResultType = llvm::StructType::get(VMContext, ResultRegTypes); |
| 1095 | |
| 1096 | const llvm::FunctionType *FTy = |
| 1097 | llvm::FunctionType::get(ResultType, ArgTypes, false); |
| 1098 | |
| 1099 | llvm::InlineAsm *IA = |
| 1100 | llvm::InlineAsm::get(FTy, AsmString, Constraints, |
| 1101 | S.isVolatile() || S.getNumOutputs() == 0); |
| 1102 | llvm::CallInst *Result = Builder.CreateCall(IA, Args.begin(), Args.end()); |
| 1103 | Result->addAttribute(~0, llvm::Attribute::NoUnwind); |
| 1104 | |
| 1105 | |
| 1106 | // Extract all of the register value results from the asm. |
| 1107 | std::vector<llvm::Value*> RegResults; |
| 1108 | if (ResultRegTypes.size() == 1) { |
| 1109 | RegResults.push_back(Result); |
| 1110 | } else { |
| 1111 | for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { |
| 1112 | llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); |
| 1113 | RegResults.push_back(Tmp); |
| 1114 | } |
| 1115 | } |
| 1116 | |
| 1117 | for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { |
| 1118 | llvm::Value *Tmp = RegResults[i]; |
| 1119 | |
| 1120 | // If the result type of the LLVM IR asm doesn't match the result type of |
| 1121 | // the expression, do the conversion. |
| 1122 | if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { |
| 1123 | const llvm::Type *TruncTy = ResultTruncRegTypes[i]; |
| 1124 | // Truncate the integer result to the right size, note that |
| 1125 | // ResultTruncRegTypes can be a pointer. |
| 1126 | uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy); |
| 1127 | Tmp = Builder.CreateTrunc(Tmp, llvm::IntegerType::get(VMContext, (unsigned)ResSize)); |
| 1128 | |
| 1129 | if (Tmp->getType() != TruncTy) { |
| 1130 | assert(isa<llvm::PointerType>(TruncTy)); |
| 1131 | Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i], |
| 1136 | ResultRegQualTys[i]); |
| 1137 | } |
| 1138 | } |