blob: 008a480b9c121af0fccb6cb76f9639f5988b9a87 [file] [log] [blame]
Shih-wei Liaof8fd82b2010-02-10 11:10:31 -08001//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Stmt nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGDebugInfo.h"
15#include "CodeGenModule.h"
16#include "CodeGenFunction.h"
17#include "clang/AST/StmtVisitor.h"
18#include "clang/Basic/PrettyStackTrace.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/InlineAsm.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/Target/TargetData.h"
24using namespace clang;
25using namespace CodeGen;
26
27//===----------------------------------------------------------------------===//
28// Statement Emission
29//===----------------------------------------------------------------------===//
30
31void CodeGenFunction::EmitStopPoint(const Stmt *S) {
32 if (CGDebugInfo *DI = getDebugInfo()) {
33 DI->setLocation(S->getLocStart());
34 DI->EmitStopPoint(CurFn, Builder);
35 }
36}
37
38void CodeGenFunction::EmitStmt(const Stmt *S) {
39 assert(S && "Null statement?");
40
41 // Check if we can handle this without bothering to generate an
42 // insert point or debug info.
43 if (EmitSimpleStmt(S))
44 return;
45
46 // Check if we are generating unreachable code.
47 if (!HaveInsertPoint()) {
48 // If so, and the statement doesn't contain a label, then we do not need to
49 // generate actual code. This is safe because (1) the current point is
50 // unreachable, so we don't need to execute the code, and (2) we've already
51 // handled the statements which update internal data structures (like the
52 // local variable map) which could be used by subsequent statements.
53 if (!ContainsLabel(S)) {
54 // Verify that any decl statements were handled as simple, they may be in
55 // scope of subsequent reachable statements.
56 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
57 return;
58 }
59
60 // Otherwise, make a new block to hold the code.
61 EnsureInsertPoint();
62 }
63
64 // Generate a stoppoint if we are emitting debug info.
65 EmitStopPoint(S);
66
67 switch (S->getStmtClass()) {
68 default:
69 // Must be an expression in a stmt context. Emit the value (to get
70 // side-effects) and ignore the result.
71 if (!isa<Expr>(S))
72 ErrorUnsupported(S, "statement");
73
74 EmitAnyExpr(cast<Expr>(S), 0, false, true);
75
76 // Expression emitters don't handle unreachable blocks yet, so look for one
77 // explicitly here. This handles the common case of a call to a noreturn
78 // function.
79 if (llvm::BasicBlock *CurBB = Builder.GetInsertBlock()) {
80 if (CurBB->empty() && CurBB->use_empty()) {
81 CurBB->eraseFromParent();
82 Builder.ClearInsertionPoint();
83 }
84 }
85 break;
86 case Stmt::IndirectGotoStmtClass:
87 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
88
89 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break;
90 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break;
91 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break;
92 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break;
93
94 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break;
95
96 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break;
97 case Stmt::AsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break;
98
99 case Stmt::ObjCAtTryStmtClass:
100 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
101 break;
102 case Stmt::ObjCAtCatchStmtClass:
103 assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt");
104 break;
105 case Stmt::ObjCAtFinallyStmtClass:
106 assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt");
107 break;
108 case Stmt::ObjCAtThrowStmtClass:
109 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
110 break;
111 case Stmt::ObjCAtSynchronizedStmtClass:
112 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
113 break;
114 case Stmt::ObjCForCollectionStmtClass:
115 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
116 break;
117
118 case Stmt::CXXTryStmtClass:
119 EmitCXXTryStmt(cast<CXXTryStmt>(*S));
120 break;
121 }
122}
123
124bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
125 switch (S->getStmtClass()) {
126 default: return false;
127 case Stmt::NullStmtClass: break;
128 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
129 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break;
130 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break;
131 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break;
132 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break;
133 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
134 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break;
135 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break;
136 }
137
138 return true;
139}
140
141/// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true,
142/// this captures the expression result of the last sub-statement and returns it
143/// (for use by the statement expression extension).
144RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
145 llvm::Value *AggLoc, bool isAggVol) {
146 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
147 "LLVM IR generation of compound statement ('{}')");
148
149 CGDebugInfo *DI = getDebugInfo();
150 if (DI) {
151 DI->setLocation(S.getLBracLoc());
152 DI->EmitRegionStart(CurFn, Builder);
153 }
154
155 // Keep track of the current cleanup stack depth.
156 CleanupScope Scope(*this);
157
158 for (CompoundStmt::const_body_iterator I = S.body_begin(),
159 E = S.body_end()-GetLast; I != E; ++I)
160 EmitStmt(*I);
161
162 if (DI) {
163 DI->setLocation(S.getLBracLoc());
164 DI->EmitRegionEnd(CurFn, Builder);
165 }
166
167 RValue RV;
168 if (!GetLast)
169 RV = RValue::get(0);
170 else {
171 // We have to special case labels here. They are statements, but when put
172 // at the end of a statement expression, they yield the value of their
173 // subexpression. Handle this by walking through all labels we encounter,
174 // emitting them before we evaluate the subexpr.
175 const Stmt *LastStmt = S.body_back();
176 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
177 EmitLabel(*LS);
178 LastStmt = LS->getSubStmt();
179 }
180
181 EnsureInsertPoint();
182
183 RV = EmitAnyExpr(cast<Expr>(LastStmt), AggLoc);
184 }
185
186 return RV;
187}
188
189void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
190 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
191
192 // If there is a cleanup stack, then we it isn't worth trying to
193 // simplify this block (we would need to remove it from the scope map
194 // and cleanup entry).
195 if (!CleanupEntries.empty())
196 return;
197
198 // Can only simplify direct branches.
199 if (!BI || !BI->isUnconditional())
200 return;
201
202 BB->replaceAllUsesWith(BI->getSuccessor(0));
203 BI->eraseFromParent();
204 BB->eraseFromParent();
205}
206
207void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
208 // Fall out of the current block (if necessary).
209 EmitBranch(BB);
210
211 if (IsFinished && BB->use_empty()) {
212 delete BB;
213 return;
214 }
215
216 // If necessary, associate the block with the cleanup stack size.
217 if (!CleanupEntries.empty()) {
218 // Check if the basic block has already been inserted.
219 BlockScopeMap::iterator I = BlockScopes.find(BB);
220 if (I != BlockScopes.end()) {
221 assert(I->second == CleanupEntries.size() - 1);
222 } else {
223 BlockScopes[BB] = CleanupEntries.size() - 1;
224 CleanupEntries.back().Blocks.push_back(BB);
225 }
226 }
227
228 CurFn->getBasicBlockList().push_back(BB);
229 Builder.SetInsertPoint(BB);
230}
231
232void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
233 // Emit a branch from the current block to the target one if this
234 // was a real block. If this was just a fall-through block after a
235 // terminator, don't emit it.
236 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
237
238 if (!CurBB || CurBB->getTerminator()) {
239 // If there is no insert point or the previous block is already
240 // terminated, don't touch it.
241 } else {
242 // Otherwise, create a fall-through branch.
243 Builder.CreateBr(Target);
244 }
245
246 Builder.ClearInsertionPoint();
247}
248
249void CodeGenFunction::EmitLabel(const LabelStmt &S) {
250 EmitBlock(getBasicBlockForLabel(&S));
251}
252
253
254void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
255 EmitLabel(S);
256 EmitStmt(S.getSubStmt());
257}
258
259void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
260 // If this code is reachable then emit a stop point (if generating
261 // debug info). We have to do this ourselves because we are on the
262 // "simple" statement path.
263 if (HaveInsertPoint())
264 EmitStopPoint(&S);
265
266 EmitBranchThroughCleanup(getBasicBlockForLabel(S.getLabel()));
267}
268
269
270void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
271 // Ensure that we have an i8* for our PHI node.
272 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
273 llvm::Type::getInt8PtrTy(VMContext),
274 "addr");
275 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
276
277
278 // Get the basic block for the indirect goto.
279 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
280
281 // The first instruction in the block has to be the PHI for the switch dest,
282 // add an entry for this branch.
283 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
284
285 EmitBranch(IndGotoBB);
286}
287
288void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
289 // C99 6.8.4.1: The first substatement is executed if the expression compares
290 // unequal to 0. The condition must be a scalar type.
291 CleanupScope ConditionScope(*this);
292
293 if (S.getConditionVariable())
294 EmitLocalBlockVarDecl(*S.getConditionVariable());
295
296 // If the condition constant folds and can be elided, try to avoid emitting
297 // the condition and the dead arm of the if/else.
298 if (int Cond = ConstantFoldsToSimpleInteger(S.getCond())) {
299 // Figure out which block (then or else) is executed.
300 const Stmt *Executed = S.getThen(), *Skipped = S.getElse();
301 if (Cond == -1) // Condition false?
302 std::swap(Executed, Skipped);
303
304 // If the skipped block has no labels in it, just emit the executed block.
305 // This avoids emitting dead code and simplifies the CFG substantially.
306 if (!ContainsLabel(Skipped)) {
307 if (Executed) {
308 CleanupScope ExecutedScope(*this);
309 EmitStmt(Executed);
310 }
311 return;
312 }
313 }
314
315 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit
316 // the conditional branch.
317 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
318 llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
319 llvm::BasicBlock *ElseBlock = ContBlock;
320 if (S.getElse())
321 ElseBlock = createBasicBlock("if.else");
322 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
323
324 // Emit the 'then' code.
325 EmitBlock(ThenBlock);
326 {
327 CleanupScope ThenScope(*this);
328 EmitStmt(S.getThen());
329 }
330 EmitBranch(ContBlock);
331
332 // Emit the 'else' code if present.
333 if (const Stmt *Else = S.getElse()) {
334 EmitBlock(ElseBlock);
335 {
336 CleanupScope ElseScope(*this);
337 EmitStmt(Else);
338 }
339 EmitBranch(ContBlock);
340 }
341
342 // Emit the continuation block for code after the if.
343 EmitBlock(ContBlock, true);
344}
345
346void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
347 // Emit the header for the loop, insert it, which will create an uncond br to
348 // it.
349 llvm::BasicBlock *LoopHeader = createBasicBlock("while.cond");
350 EmitBlock(LoopHeader);
351
352 // Create an exit block for when the condition fails, create a block for the
353 // body of the loop.
354 llvm::BasicBlock *ExitBlock = createBasicBlock("while.end");
355 llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
356 llvm::BasicBlock *CleanupBlock = 0;
357 llvm::BasicBlock *EffectiveExitBlock = ExitBlock;
358
359 // Store the blocks to use for break and continue.
360 BreakContinueStack.push_back(BreakContinue(ExitBlock, LoopHeader));
361
362 // C++ [stmt.while]p2:
363 // When the condition of a while statement is a declaration, the
364 // scope of the variable that is declared extends from its point
365 // of declaration (3.3.2) to the end of the while statement.
366 // [...]
367 // The object created in a condition is destroyed and created
368 // with each iteration of the loop.
369 CleanupScope ConditionScope(*this);
370
371 if (S.getConditionVariable()) {
372 EmitLocalBlockVarDecl(*S.getConditionVariable());
373
374 // If this condition variable requires cleanups, create a basic
375 // block to handle those cleanups.
376 if (ConditionScope.requiresCleanups()) {
377 CleanupBlock = createBasicBlock("while.cleanup");
378 EffectiveExitBlock = CleanupBlock;
379 }
380 }
381
382 // Evaluate the conditional in the while header. C99 6.8.5.1: The
383 // evaluation of the controlling expression takes place before each
384 // execution of the loop body.
385 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
386
387 // while(1) is common, avoid extra exit blocks. Be sure
388 // to correctly handle break/continue though.
389 bool EmitBoolCondBranch = true;
390 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
391 if (C->isOne())
392 EmitBoolCondBranch = false;
393
394 // As long as the condition is true, go to the loop body.
395 if (EmitBoolCondBranch)
396 Builder.CreateCondBr(BoolCondVal, LoopBody, EffectiveExitBlock);
397
398 // Emit the loop body.
399 {
400 CleanupScope BodyScope(*this);
401 EmitBlock(LoopBody);
402 EmitStmt(S.getBody());
403 }
404
405 BreakContinueStack.pop_back();
406
407 if (CleanupBlock) {
408 // If we have a cleanup block, jump there to perform cleanups
409 // before looping.
410 EmitBranch(CleanupBlock);
411
412 // Emit the cleanup block, performing cleanups for the condition
413 // and then jumping to either the loop header or the exit block.
414 EmitBlock(CleanupBlock);
415 ConditionScope.ForceCleanup();
416 Builder.CreateCondBr(BoolCondVal, LoopHeader, ExitBlock);
417 } else {
418 // Cycle to the condition.
419 EmitBranch(LoopHeader);
420 }
421
422 // Emit the exit block.
423 EmitBlock(ExitBlock, true);
424
425
426 // The LoopHeader typically is just a branch if we skipped emitting
427 // a branch, try to erase it.
428 if (!EmitBoolCondBranch && !CleanupBlock)
429 SimplifyForwardingBlocks(LoopHeader);
430}
431
432void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
433 // Emit the body for the loop, insert it, which will create an uncond br to
434 // it.
435 llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
436 llvm::BasicBlock *AfterDo = createBasicBlock("do.end");
437 EmitBlock(LoopBody);
438
439 llvm::BasicBlock *DoCond = createBasicBlock("do.cond");
440
441 // Store the blocks to use for break and continue.
442 BreakContinueStack.push_back(BreakContinue(AfterDo, DoCond));
443
444 // Emit the body of the loop into the block.
445 EmitStmt(S.getBody());
446
447 BreakContinueStack.pop_back();
448
449 EmitBlock(DoCond);
450
451 // C99 6.8.5.2: "The evaluation of the controlling expression takes place
452 // after each execution of the loop body."
453
454 // Evaluate the conditional in the while header.
455 // C99 6.8.5p2/p4: The first substatement is executed if the expression
456 // compares unequal to 0. The condition must be a scalar type.
457 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
458
459 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure
460 // to correctly handle break/continue though.
461 bool EmitBoolCondBranch = true;
462 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
463 if (C->isZero())
464 EmitBoolCondBranch = false;
465
466 // As long as the condition is true, iterate the loop.
467 if (EmitBoolCondBranch)
468 Builder.CreateCondBr(BoolCondVal, LoopBody, AfterDo);
469
470 // Emit the exit block.
471 EmitBlock(AfterDo);
472
473 // The DoCond block typically is just a branch if we skipped
474 // emitting a branch, try to erase it.
475 if (!EmitBoolCondBranch)
476 SimplifyForwardingBlocks(DoCond);
477}
478
479void CodeGenFunction::EmitForStmt(const ForStmt &S) {
480 // FIXME: What do we do if the increment (f.e.) contains a stmt expression,
481 // which contains a continue/break?
482 CleanupScope ForScope(*this);
483
484 // Evaluate the first part before the loop.
485 if (S.getInit())
486 EmitStmt(S.getInit());
487
488 // Start the loop with a block that tests the condition.
489 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
490 llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
491 llvm::BasicBlock *IncBlock = 0;
492 llvm::BasicBlock *CondCleanup = 0;
493 llvm::BasicBlock *EffectiveExitBlock = AfterFor;
494 EmitBlock(CondBlock);
495
496 // Create a cleanup scope for the condition variable cleanups.
497 CleanupScope ConditionScope(*this);
498
499 llvm::Value *BoolCondVal = 0;
500 if (S.getCond()) {
501 // If the for statement has a condition scope, emit the local variable
502 // declaration.
503 if (S.getConditionVariable()) {
504 EmitLocalBlockVarDecl(*S.getConditionVariable());
505
506 if (ConditionScope.requiresCleanups()) {
507 CondCleanup = createBasicBlock("for.cond.cleanup");
508 EffectiveExitBlock = CondCleanup;
509 }
510 }
511
512 // As long as the condition is true, iterate the loop.
513 llvm::BasicBlock *ForBody = createBasicBlock("for.body");
514
515 // C99 6.8.5p2/p4: The first substatement is executed if the expression
516 // compares unequal to 0. The condition must be a scalar type.
517 BoolCondVal = EvaluateExprAsBool(S.getCond());
518 Builder.CreateCondBr(BoolCondVal, ForBody, EffectiveExitBlock);
519
520 EmitBlock(ForBody);
521 } else {
522 // Treat it as a non-zero constant. Don't even create a new block for the
523 // body, just fall into it.
524 }
525
526 // If the for loop doesn't have an increment we can just use the
527 // condition as the continue block.
528 llvm::BasicBlock *ContinueBlock;
529 if (S.getInc())
530 ContinueBlock = IncBlock = createBasicBlock("for.inc");
531 else
532 ContinueBlock = CondBlock;
533
534 // Store the blocks to use for break and continue.
535 BreakContinueStack.push_back(BreakContinue(AfterFor, ContinueBlock));
536
537 // If the condition is true, execute the body of the for stmt.
538 CGDebugInfo *DI = getDebugInfo();
539 if (DI) {
540 DI->setLocation(S.getSourceRange().getBegin());
541 DI->EmitRegionStart(CurFn, Builder);
542 }
543
544 {
545 // Create a separate cleanup scope for the body, in case it is not
546 // a compound statement.
547 CleanupScope BodyScope(*this);
548 EmitStmt(S.getBody());
549 }
550
551 BreakContinueStack.pop_back();
552
553 // If there is an increment, emit it next.
554 if (S.getInc()) {
555 EmitBlock(IncBlock);
556 EmitStmt(S.getInc());
557 }
558
559 // Finally, branch back up to the condition for the next iteration.
560 if (CondCleanup) {
561 // Branch to the cleanup block.
562 EmitBranch(CondCleanup);
563
564 // Emit the cleanup block, which branches back to the loop body or
565 // outside of the for statement once it is done.
566 EmitBlock(CondCleanup);
567 ConditionScope.ForceCleanup();
568 Builder.CreateCondBr(BoolCondVal, CondBlock, AfterFor);
569 } else
570 EmitBranch(CondBlock);
571 if (DI) {
572 DI->setLocation(S.getSourceRange().getEnd());
573 DI->EmitRegionEnd(CurFn, Builder);
574 }
575
576 // Emit the fall-through block.
577 EmitBlock(AfterFor, true);
578}
579
580void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
581 if (RV.isScalar()) {
582 Builder.CreateStore(RV.getScalarVal(), ReturnValue);
583 } else if (RV.isAggregate()) {
584 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
585 } else {
586 StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
587 }
588 EmitBranchThroughCleanup(ReturnBlock);
589}
590
591/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
592/// if the function returns void, or may be missing one if the function returns
593/// non-void. Fun stuff :).
594void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
595 // Emit the result value, even if unused, to evalute the side effects.
596 const Expr *RV = S.getRetValue();
597
598 // FIXME: Clean this up by using an LValue for ReturnTemp,
599 // EmitStoreThroughLValue, and EmitAnyExpr.
600 if (!ReturnValue) {
601 // Make sure not to return anything, but evaluate the expression
602 // for side effects.
603 if (RV)
604 EmitAnyExpr(RV);
605 } else if (RV == 0) {
606 // Do nothing (return value is left uninitialized)
607 } else if (FnRetTy->isReferenceType()) {
608 // If this function returns a reference, take the address of the expression
609 // rather than the value.
610 Builder.CreateStore(EmitLValue(RV).getAddress(), ReturnValue);
611 } else if (!hasAggregateLLVMType(RV->getType())) {
612 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
613 } else if (RV->getType()->isAnyComplexType()) {
614 EmitComplexExprIntoAddr(RV, ReturnValue, false);
615 } else {
616 EmitAggExpr(RV, ReturnValue, false);
617 }
618
619 EmitBranchThroughCleanup(ReturnBlock);
620}
621
622void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
623 // As long as debug info is modeled with instructions, we have to ensure we
624 // have a place to insert here and write the stop point here.
625 if (getDebugInfo()) {
626 EnsureInsertPoint();
627 EmitStopPoint(&S);
628 }
629
630 for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
631 I != E; ++I)
632 EmitDecl(**I);
633}
634
635void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
636 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
637
638 // If this code is reachable then emit a stop point (if generating
639 // debug info). We have to do this ourselves because we are on the
640 // "simple" statement path.
641 if (HaveInsertPoint())
642 EmitStopPoint(&S);
643
644 llvm::BasicBlock *Block = BreakContinueStack.back().BreakBlock;
645 EmitBranchThroughCleanup(Block);
646}
647
648void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
649 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
650
651 // If this code is reachable then emit a stop point (if generating
652 // debug info). We have to do this ourselves because we are on the
653 // "simple" statement path.
654 if (HaveInsertPoint())
655 EmitStopPoint(&S);
656
657 llvm::BasicBlock *Block = BreakContinueStack.back().ContinueBlock;
658 EmitBranchThroughCleanup(Block);
659}
660
661/// EmitCaseStmtRange - If case statement range is not too big then
662/// add multiple cases to switch instruction, one for each value within
663/// the range. If range is too big then emit "if" condition check.
664void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
665 assert(S.getRHS() && "Expected RHS value in CaseStmt");
666
667 llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext());
668 llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext());
669
670 // Emit the code for this case. We do this first to make sure it is
671 // properly chained from our predecessor before generating the
672 // switch machinery to enter this block.
673 EmitBlock(createBasicBlock("sw.bb"));
674 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
675 EmitStmt(S.getSubStmt());
676
677 // If range is empty, do nothing.
678 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
679 return;
680
681 llvm::APInt Range = RHS - LHS;
682 // FIXME: parameters such as this should not be hardcoded.
683 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
684 // Range is small enough to add multiple switch instruction cases.
685 for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
686 SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, LHS), CaseDest);
687 LHS++;
688 }
689 return;
690 }
691
692 // The range is too big. Emit "if" condition into a new block,
693 // making sure to save and restore the current insertion point.
694 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
695
696 // Push this test onto the chain of range checks (which terminates
697 // in the default basic block). The switch's default will be changed
698 // to the top of this chain after switch emission is complete.
699 llvm::BasicBlock *FalseDest = CaseRangeBlock;
700 CaseRangeBlock = createBasicBlock("sw.caserange");
701
702 CurFn->getBasicBlockList().push_back(CaseRangeBlock);
703 Builder.SetInsertPoint(CaseRangeBlock);
704
705 // Emit range check.
706 llvm::Value *Diff =
707 Builder.CreateSub(SwitchInsn->getCondition(),
708 llvm::ConstantInt::get(VMContext, LHS), "tmp");
709 llvm::Value *Cond =
710 Builder.CreateICmpULE(Diff,
711 llvm::ConstantInt::get(VMContext, Range), "tmp");
712 Builder.CreateCondBr(Cond, CaseDest, FalseDest);
713
714 // Restore the appropriate insertion point.
715 if (RestoreBB)
716 Builder.SetInsertPoint(RestoreBB);
717 else
718 Builder.ClearInsertionPoint();
719}
720
721void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
722 if (S.getRHS()) {
723 EmitCaseStmtRange(S);
724 return;
725 }
726
727 EmitBlock(createBasicBlock("sw.bb"));
728 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
729 llvm::APSInt CaseVal = S.getLHS()->EvaluateAsInt(getContext());
730 SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest);
731
732 // Recursively emitting the statement is acceptable, but is not wonderful for
733 // code where we have many case statements nested together, i.e.:
734 // case 1:
735 // case 2:
736 // case 3: etc.
737 // Handling this recursively will create a new block for each case statement
738 // that falls through to the next case which is IR intensive. It also causes
739 // deep recursion which can run into stack depth limitations. Handle
740 // sequential non-range case statements specially.
741 const CaseStmt *CurCase = &S;
742 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
743
744 // Otherwise, iteratively add consequtive cases to this switch stmt.
745 while (NextCase && NextCase->getRHS() == 0) {
746 CurCase = NextCase;
747 CaseVal = CurCase->getLHS()->EvaluateAsInt(getContext());
748 SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest);
749
750 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
751 }
752
753 // Normal default recursion for non-cases.
754 EmitStmt(CurCase->getSubStmt());
755}
756
757void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
758 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
759 assert(DefaultBlock->empty() &&
760 "EmitDefaultStmt: Default block already defined?");
761 EmitBlock(DefaultBlock);
762 EmitStmt(S.getSubStmt());
763}
764
765void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
766 CleanupScope ConditionScope(*this);
767
768 if (S.getConditionVariable())
769 EmitLocalBlockVarDecl(*S.getConditionVariable());
770
771 llvm::Value *CondV = EmitScalarExpr(S.getCond());
772
773 // Handle nested switch statements.
774 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
775 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
776
777 // Create basic block to hold stuff that comes after switch
778 // statement. We also need to create a default block now so that
779 // explicit case ranges tests can have a place to jump to on
780 // failure.
781 llvm::BasicBlock *NextBlock = createBasicBlock("sw.epilog");
782 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
783 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
784 CaseRangeBlock = DefaultBlock;
785
786 // Clear the insertion point to indicate we are in unreachable code.
787 Builder.ClearInsertionPoint();
788
789 // All break statements jump to NextBlock. If BreakContinueStack is non empty
790 // then reuse last ContinueBlock.
791 llvm::BasicBlock *ContinueBlock = 0;
792 if (!BreakContinueStack.empty())
793 ContinueBlock = BreakContinueStack.back().ContinueBlock;
794
795 // Ensure any vlas created between there and here, are undone
796 BreakContinueStack.push_back(BreakContinue(NextBlock, ContinueBlock));
797
798 // Emit switch body.
799 EmitStmt(S.getBody());
800
801 BreakContinueStack.pop_back();
802
803 // Update the default block in case explicit case range tests have
804 // been chained on top.
805 SwitchInsn->setSuccessor(0, CaseRangeBlock);
806
807 // If a default was never emitted then reroute any jumps to it and
808 // discard.
809 if (!DefaultBlock->getParent()) {
810 DefaultBlock->replaceAllUsesWith(NextBlock);
811 delete DefaultBlock;
812 }
813
814 // Emit continuation.
815 EmitBlock(NextBlock, true);
816
817 SwitchInsn = SavedSwitchInsn;
818 CaseRangeBlock = SavedCRBlock;
819}
820
821static std::string
822SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
823 llvm::SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
824 std::string Result;
825
826 while (*Constraint) {
827 switch (*Constraint) {
828 default:
829 Result += Target.convertConstraint(*Constraint);
830 break;
831 // Ignore these
832 case '*':
833 case '?':
834 case '!':
835 break;
836 case 'g':
837 Result += "imr";
838 break;
839 case '[': {
840 assert(OutCons &&
841 "Must pass output names to constraints with a symbolic name");
842 unsigned Index;
843 bool result = Target.resolveSymbolicName(Constraint,
844 &(*OutCons)[0],
845 OutCons->size(), Index);
846 assert(result && "Could not resolve symbolic name"); result=result;
847 Result += llvm::utostr(Index);
848 break;
849 }
850 }
851
852 Constraint++;
853 }
854
855 return Result;
856}
857
858llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
859 const TargetInfo::ConstraintInfo &Info,
860 const Expr *InputExpr,
861 std::string &ConstraintStr) {
862 llvm::Value *Arg;
863 if (Info.allowsRegister() || !Info.allowsMemory()) {
864 if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType())) {
865 Arg = EmitScalarExpr(InputExpr);
866 } else {
867 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
868 LValue Dest = EmitLValue(InputExpr);
869
870 const llvm::Type *Ty = ConvertType(InputExpr->getType());
871 uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
872 if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
873 Ty = llvm::IntegerType::get(VMContext, Size);
874 Ty = llvm::PointerType::getUnqual(Ty);
875
876 Arg = Builder.CreateLoad(Builder.CreateBitCast(Dest.getAddress(), Ty));
877 } else {
878 Arg = Dest.getAddress();
879 ConstraintStr += '*';
880 }
881 }
882 } else {
883 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
884 LValue Dest = EmitLValue(InputExpr);
885 Arg = Dest.getAddress();
886 ConstraintStr += '*';
887 }
888
889 return Arg;
890}
891
892void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
893 // Analyze the asm string to decompose it into its pieces. We know that Sema
894 // has already done this, so it is guaranteed to be successful.
895 llvm::SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
896 unsigned DiagOffs;
897 S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
898
899 // Assemble the pieces into the final asm string.
900 std::string AsmString;
901 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
902 if (Pieces[i].isString())
903 AsmString += Pieces[i].getString();
904 else if (Pieces[i].getModifier() == '\0')
905 AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
906 else
907 AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
908 Pieces[i].getModifier() + '}';
909 }
910
911 // Get all the output and input constraints together.
912 llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
913 llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
914
915 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
916 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
917 S.getOutputName(i));
918 assert(Target.validateOutputConstraint(Info) &&
919 "Failed to parse output constraint");
920 OutputConstraintInfos.push_back(Info);
921 }
922
923 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
924 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
925 S.getInputName(i));
926 assert(Target.validateInputConstraint(OutputConstraintInfos.data(),
927 S.getNumOutputs(),
928 Info) &&
929 "Failed to parse input constraint");
930 InputConstraintInfos.push_back(Info);
931 }
932
933 std::string Constraints;
934
935 std::vector<LValue> ResultRegDests;
936 std::vector<QualType> ResultRegQualTys;
937 std::vector<const llvm::Type *> ResultRegTypes;
938 std::vector<const llvm::Type *> ResultTruncRegTypes;
939 std::vector<const llvm::Type*> ArgTypes;
940 std::vector<llvm::Value*> Args;
941
942 // Keep track of inout constraints.
943 std::string InOutConstraints;
944 std::vector<llvm::Value*> InOutArgs;
945 std::vector<const llvm::Type*> InOutArgTypes;
946
947 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
948 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
949
950 // Simplify the output constraint.
951 std::string OutputConstraint(S.getOutputConstraint(i));
952 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
953
954 const Expr *OutExpr = S.getOutputExpr(i);
955 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
956
957 LValue Dest = EmitLValue(OutExpr);
958 if (!Constraints.empty())
959 Constraints += ',';
960
961 // If this is a register output, then make the inline asm return it
962 // by-value. If this is a memory result, return the value by-reference.
963 if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
964 Constraints += "=" + OutputConstraint;
965 ResultRegQualTys.push_back(OutExpr->getType());
966 ResultRegDests.push_back(Dest);
967 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
968 ResultTruncRegTypes.push_back(ResultRegTypes.back());
969
970 // If this output is tied to an input, and if the input is larger, then
971 // we need to set the actual result type of the inline asm node to be the
972 // same as the input type.
973 if (Info.hasMatchingInput()) {
974 unsigned InputNo;
975 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
976 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
977 if (Input.hasTiedOperand() &&
978 Input.getTiedOperand() == i)
979 break;
980 }
981 assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
982
983 QualType InputTy = S.getInputExpr(InputNo)->getType();
984 QualType OutputTy = OutExpr->getType();
985
986 uint64_t InputSize = getContext().getTypeSize(InputTy);
987 if (getContext().getTypeSize(OutputTy) < InputSize) {
988 // Form the asm to return the value as a larger integer type.
989 ResultRegTypes.back() = llvm::IntegerType::get(VMContext, (unsigned)InputSize);
990 }
991 }
992 } else {
993 ArgTypes.push_back(Dest.getAddress()->getType());
994 Args.push_back(Dest.getAddress());
995 Constraints += "=*";
996 Constraints += OutputConstraint;
997 }
998
999 if (Info.isReadWrite()) {
1000 InOutConstraints += ',';
1001
1002 const Expr *InputExpr = S.getOutputExpr(i);
1003 llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, InOutConstraints);
1004
1005 if (Info.allowsRegister())
1006 InOutConstraints += llvm::utostr(i);
1007 else
1008 InOutConstraints += OutputConstraint;
1009
1010 InOutArgTypes.push_back(Arg->getType());
1011 InOutArgs.push_back(Arg);
1012 }
1013 }
1014
1015 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1016
1017 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1018 const Expr *InputExpr = S.getInputExpr(i);
1019
1020 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1021
1022 if (!Constraints.empty())
1023 Constraints += ',';
1024
1025 // Simplify the input constraint.
1026 std::string InputConstraint(S.getInputConstraint(i));
1027 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
1028 &OutputConstraintInfos);
1029
1030 llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
1031
1032 // If this input argument is tied to a larger output result, extend the
1033 // input to be the same size as the output. The LLVM backend wants to see
1034 // the input and output of a matching constraint be the same size. Note
1035 // that GCC does not define what the top bits are here. We use zext because
1036 // that is usually cheaper, but LLVM IR should really get an anyext someday.
1037 if (Info.hasTiedOperand()) {
1038 unsigned Output = Info.getTiedOperand();
1039 QualType OutputTy = S.getOutputExpr(Output)->getType();
1040 QualType InputTy = InputExpr->getType();
1041
1042 if (getContext().getTypeSize(OutputTy) >
1043 getContext().getTypeSize(InputTy)) {
1044 // Use ptrtoint as appropriate so that we can do our extension.
1045 if (isa<llvm::PointerType>(Arg->getType()))
1046 Arg = Builder.CreatePtrToInt(Arg,
1047 llvm::IntegerType::get(VMContext, LLVMPointerWidth));
1048 unsigned OutputSize = (unsigned)getContext().getTypeSize(OutputTy);
1049 Arg = Builder.CreateZExt(Arg, llvm::IntegerType::get(VMContext, OutputSize));
1050 }
1051 }
1052
1053
1054 ArgTypes.push_back(Arg->getType());
1055 Args.push_back(Arg);
1056 Constraints += InputConstraint;
1057 }
1058
1059 // Append the "input" part of inout constraints last.
1060 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1061 ArgTypes.push_back(InOutArgTypes[i]);
1062 Args.push_back(InOutArgs[i]);
1063 }
1064 Constraints += InOutConstraints;
1065
1066 // Clobbers
1067 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1068 llvm::StringRef Clobber = S.getClobber(i)->getString();
1069
1070 Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1071
1072 if (i != 0 || NumConstraints != 0)
1073 Constraints += ',';
1074
1075 Constraints += "~{";
1076 Constraints += Clobber;
1077 Constraints += '}';
1078 }
1079
1080 // Add machine specific clobbers
1081 std::string MachineClobbers = Target.getClobbers();
1082 if (!MachineClobbers.empty()) {
1083 if (!Constraints.empty())
1084 Constraints += ',';
1085 Constraints += MachineClobbers;
1086 }
1087
1088 const llvm::Type *ResultType;
1089 if (ResultRegTypes.empty())
1090 ResultType = llvm::Type::getVoidTy(VMContext);
1091 else if (ResultRegTypes.size() == 1)
1092 ResultType = ResultRegTypes[0];
1093 else
1094 ResultType = llvm::StructType::get(VMContext, ResultRegTypes);
1095
1096 const llvm::FunctionType *FTy =
1097 llvm::FunctionType::get(ResultType, ArgTypes, false);
1098
1099 llvm::InlineAsm *IA =
1100 llvm::InlineAsm::get(FTy, AsmString, Constraints,
1101 S.isVolatile() || S.getNumOutputs() == 0);
1102 llvm::CallInst *Result = Builder.CreateCall(IA, Args.begin(), Args.end());
1103 Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1104
1105
1106 // Extract all of the register value results from the asm.
1107 std::vector<llvm::Value*> RegResults;
1108 if (ResultRegTypes.size() == 1) {
1109 RegResults.push_back(Result);
1110 } else {
1111 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1112 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1113 RegResults.push_back(Tmp);
1114 }
1115 }
1116
1117 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1118 llvm::Value *Tmp = RegResults[i];
1119
1120 // If the result type of the LLVM IR asm doesn't match the result type of
1121 // the expression, do the conversion.
1122 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1123 const llvm::Type *TruncTy = ResultTruncRegTypes[i];
1124 // Truncate the integer result to the right size, note that
1125 // ResultTruncRegTypes can be a pointer.
1126 uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1127 Tmp = Builder.CreateTrunc(Tmp, llvm::IntegerType::get(VMContext, (unsigned)ResSize));
1128
1129 if (Tmp->getType() != TruncTy) {
1130 assert(isa<llvm::PointerType>(TruncTy));
1131 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1132 }
1133 }
1134
1135 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i],
1136 ResultRegQualTys[i]);
1137 }
1138}