blob: 52e9e9bc87ef2f10982ebc7a97775fb5010214d4 [file] [log] [blame]
Shih-wei Liaof8fd82b2010-02-10 11:10:31 -08001//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements C++ semantic analysis for scope specifiers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Parse/DeclSpec.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25
26/// \brief Find the current instantiation that associated with the given type.
27static CXXRecordDecl *
28getCurrentInstantiationOf(ASTContext &Context, DeclContext *CurContext,
29 QualType T) {
30 if (T.isNull())
31 return 0;
32
33 T = Context.getCanonicalType(T).getUnqualifiedType();
34
35 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
36 // If we've hit a namespace or the global scope, then the
37 // nested-name-specifier can't refer to the current instantiation.
38 if (Ctx->isFileContext())
39 return 0;
40
41 // Skip non-class contexts.
42 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
43 if (!Record)
44 continue;
45
46 // If this record type is not dependent,
47 if (!Record->isDependentType())
48 return 0;
49
50 // C++ [temp.dep.type]p1:
51 //
52 // In the definition of a class template, a nested class of a
53 // class template, a member of a class template, or a member of a
54 // nested class of a class template, a name refers to the current
55 // instantiation if it is
56 // -- the injected-class-name (9) of the class template or
57 // nested class,
58 // -- in the definition of a primary class template, the name
59 // of the class template followed by the template argument
60 // list of the primary template (as described below)
61 // enclosed in <>,
62 // -- in the definition of a nested class of a class template,
63 // the name of the nested class referenced as a member of
64 // the current instantiation, or
65 // -- in the definition of a partial specialization, the name
66 // of the class template followed by the template argument
67 // list of the partial specialization enclosed in <>. If
68 // the nth template parameter is a parameter pack, the nth
69 // template argument is a pack expansion (14.6.3) whose
70 // pattern is the name of the parameter pack.
71 // (FIXME: parameter packs)
72 //
73 // All of these options come down to having the
74 // nested-name-specifier type that is equivalent to the
75 // injected-class-name of one of the types that is currently in
76 // our context.
77 if (Context.getCanonicalType(Context.getTypeDeclType(Record)) == T)
78 return Record;
79
80 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) {
81 QualType InjectedClassName
82 = Template->getInjectedClassNameType(Context);
83 if (T == Context.getCanonicalType(InjectedClassName))
84 return Template->getTemplatedDecl();
85 }
86 // FIXME: check for class template partial specializations
87 }
88
89 return 0;
90}
91
92/// \brief Compute the DeclContext that is associated with the given type.
93///
94/// \param T the type for which we are attempting to find a DeclContext.
95///
96/// \returns the declaration context represented by the type T,
97/// or NULL if the declaration context cannot be computed (e.g., because it is
98/// dependent and not the current instantiation).
99DeclContext *Sema::computeDeclContext(QualType T) {
100 if (const TagType *Tag = T->getAs<TagType>())
101 return Tag->getDecl();
102
103 return ::getCurrentInstantiationOf(Context, CurContext, T);
104}
105
106/// \brief Compute the DeclContext that is associated with the given
107/// scope specifier.
108///
109/// \param SS the C++ scope specifier as it appears in the source
110///
111/// \param EnteringContext when true, we will be entering the context of
112/// this scope specifier, so we can retrieve the declaration context of a
113/// class template or class template partial specialization even if it is
114/// not the current instantiation.
115///
116/// \returns the declaration context represented by the scope specifier @p SS,
117/// or NULL if the declaration context cannot be computed (e.g., because it is
118/// dependent and not the current instantiation).
119DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
120 bool EnteringContext) {
121 if (!SS.isSet() || SS.isInvalid())
122 return 0;
123
124 NestedNameSpecifier *NNS
125 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
126 if (NNS->isDependent()) {
127 // If this nested-name-specifier refers to the current
128 // instantiation, return its DeclContext.
129 if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
130 return Record;
131
132 if (EnteringContext) {
133 if (const TemplateSpecializationType *SpecType
134 = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
135 // We are entering the context of the nested name specifier, so try to
136 // match the nested name specifier to either a primary class template
137 // or a class template partial specialization.
138 if (ClassTemplateDecl *ClassTemplate
139 = dyn_cast_or_null<ClassTemplateDecl>(
140 SpecType->getTemplateName().getAsTemplateDecl())) {
141 QualType ContextType
142 = Context.getCanonicalType(QualType(SpecType, 0));
143
144 // If the type of the nested name specifier is the same as the
145 // injected class name of the named class template, we're entering
146 // into that class template definition.
147 QualType Injected = ClassTemplate->getInjectedClassNameType(Context);
148 if (Context.hasSameType(Injected, ContextType))
149 return ClassTemplate->getTemplatedDecl();
150
151 // If the type of the nested name specifier is the same as the
152 // type of one of the class template's class template partial
153 // specializations, we're entering into the definition of that
154 // class template partial specialization.
155 if (ClassTemplatePartialSpecializationDecl *PartialSpec
156 = ClassTemplate->findPartialSpecialization(ContextType))
157 return PartialSpec;
158 }
159 } else if (const RecordType *RecordT
160 = dyn_cast_or_null<RecordType>(NNS->getAsType())) {
161 // The nested name specifier refers to a member of a class template.
162 return RecordT->getDecl();
163 }
164 }
165
166 return 0;
167 }
168
169 switch (NNS->getKind()) {
170 case NestedNameSpecifier::Identifier:
171 assert(false && "Dependent nested-name-specifier has no DeclContext");
172 break;
173
174 case NestedNameSpecifier::Namespace:
175 return NNS->getAsNamespace();
176
177 case NestedNameSpecifier::TypeSpec:
178 case NestedNameSpecifier::TypeSpecWithTemplate: {
179 const TagType *Tag = NNS->getAsType()->getAs<TagType>();
180 assert(Tag && "Non-tag type in nested-name-specifier");
181 return Tag->getDecl();
182 } break;
183
184 case NestedNameSpecifier::Global:
185 return Context.getTranslationUnitDecl();
186 }
187
188 // Required to silence a GCC warning.
189 return 0;
190}
191
192bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
193 if (!SS.isSet() || SS.isInvalid())
194 return false;
195
196 NestedNameSpecifier *NNS
197 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
198 return NNS->isDependent();
199}
200
201// \brief Determine whether this C++ scope specifier refers to an
202// unknown specialization, i.e., a dependent type that is not the
203// current instantiation.
204bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
205 if (!isDependentScopeSpecifier(SS))
206 return false;
207
208 NestedNameSpecifier *NNS
209 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
210 return getCurrentInstantiationOf(NNS) == 0;
211}
212
213/// \brief If the given nested name specifier refers to the current
214/// instantiation, return the declaration that corresponds to that
215/// current instantiation (C++0x [temp.dep.type]p1).
216///
217/// \param NNS a dependent nested name specifier.
218CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
219 assert(getLangOptions().CPlusPlus && "Only callable in C++");
220 assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
221
222 if (!NNS->getAsType())
223 return 0;
224
225 QualType T = QualType(NNS->getAsType(), 0);
226 return ::getCurrentInstantiationOf(Context, CurContext, T);
227}
228
229/// \brief Require that the context specified by SS be complete.
230///
231/// If SS refers to a type, this routine checks whether the type is
232/// complete enough (or can be made complete enough) for name lookup
233/// into the DeclContext. A type that is not yet completed can be
234/// considered "complete enough" if it is a class/struct/union/enum
235/// that is currently being defined. Or, if we have a type that names
236/// a class template specialization that is not a complete type, we
237/// will attempt to instantiate that class template.
238bool Sema::RequireCompleteDeclContext(const CXXScopeSpec &SS) {
239 if (!SS.isSet() || SS.isInvalid())
240 return false;
241
242 DeclContext *DC = computeDeclContext(SS, true);
243 if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
244 // If this is a dependent type, then we consider it complete.
245 if (Tag->isDependentContext())
246 return false;
247
248 // If we're currently defining this type, then lookup into the
249 // type is okay: don't complain that it isn't complete yet.
250 const TagType *TagT = Context.getTypeDeclType(Tag)->getAs<TagType>();
251 if (TagT->isBeingDefined())
252 return false;
253
254 // The type must be complete.
255 return RequireCompleteType(SS.getRange().getBegin(),
256 Context.getTypeDeclType(Tag),
257 PDiag(diag::err_incomplete_nested_name_spec)
258 << SS.getRange());
259 }
260
261 return false;
262}
263
264/// ActOnCXXGlobalScopeSpecifier - Return the object that represents the
265/// global scope ('::').
266Sema::CXXScopeTy *Sema::ActOnCXXGlobalScopeSpecifier(Scope *S,
267 SourceLocation CCLoc) {
268 return NestedNameSpecifier::GlobalSpecifier(Context);
269}
270
271/// \brief Determines whether the given declaration is an valid acceptable
272/// result for name lookup of a nested-name-specifier.
273bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
274 if (!SD)
275 return false;
276
277 // Namespace and namespace aliases are fine.
278 if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
279 return true;
280
281 if (!isa<TypeDecl>(SD))
282 return false;
283
284 // Determine whether we have a class (or, in C++0x, an enum) or
285 // a typedef thereof. If so, build the nested-name-specifier.
286 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
287 if (T->isDependentType())
288 return true;
289 else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(SD)) {
290 if (TD->getUnderlyingType()->isRecordType() ||
291 (Context.getLangOptions().CPlusPlus0x &&
292 TD->getUnderlyingType()->isEnumeralType()))
293 return true;
294 } else if (isa<RecordDecl>(SD) ||
295 (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
296 return true;
297
298 return false;
299}
300
301/// \brief If the given nested-name-specifier begins with a bare identifier
302/// (e.g., Base::), perform name lookup for that identifier as a
303/// nested-name-specifier within the given scope, and return the result of that
304/// name lookup.
305NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
306 if (!S || !NNS)
307 return 0;
308
309 while (NNS->getPrefix())
310 NNS = NNS->getPrefix();
311
312 if (NNS->getKind() != NestedNameSpecifier::Identifier)
313 return 0;
314
315 LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
316 LookupNestedNameSpecifierName);
317 LookupName(Found, S);
318 assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
319
320 if (!Found.isSingleResult())
321 return 0;
322
323 NamedDecl *Result = Found.getFoundDecl();
324 if (isAcceptableNestedNameSpecifier(Result))
325 return Result;
326
327 return 0;
328}
329
330/// \brief Build a new nested-name-specifier for "identifier::", as described
331/// by ActOnCXXNestedNameSpecifier.
332///
333/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
334/// that it contains an extra parameter \p ScopeLookupResult, which provides
335/// the result of name lookup within the scope of the nested-name-specifier
336/// that was computed at template definition time.
337///
338/// If ErrorRecoveryLookup is true, then this call is used to improve error
339/// recovery. This means that it should not emit diagnostics, it should
340/// just return null on failure. It also means it should only return a valid
341/// scope if it *knows* that the result is correct. It should not return in a
342/// dependent context, for example.
343Sema::CXXScopeTy *Sema::BuildCXXNestedNameSpecifier(Scope *S,
344 const CXXScopeSpec &SS,
345 SourceLocation IdLoc,
346 SourceLocation CCLoc,
347 IdentifierInfo &II,
348 QualType ObjectType,
349 NamedDecl *ScopeLookupResult,
350 bool EnteringContext,
351 bool ErrorRecoveryLookup) {
352 NestedNameSpecifier *Prefix
353 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
354
355 LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
356
357 // Determine where to perform name lookup
358 DeclContext *LookupCtx = 0;
359 bool isDependent = false;
360 if (!ObjectType.isNull()) {
361 // This nested-name-specifier occurs in a member access expression, e.g.,
362 // x->B::f, and we are looking into the type of the object.
363 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
364 LookupCtx = computeDeclContext(ObjectType);
365 isDependent = ObjectType->isDependentType();
366 } else if (SS.isSet()) {
367 // This nested-name-specifier occurs after another nested-name-specifier,
368 // so long into the context associated with the prior nested-name-specifier.
369 LookupCtx = computeDeclContext(SS, EnteringContext);
370 isDependent = isDependentScopeSpecifier(SS);
371 Found.setContextRange(SS.getRange());
372 }
373
374
375 bool ObjectTypeSearchedInScope = false;
376 if (LookupCtx) {
377 // Perform "qualified" name lookup into the declaration context we
378 // computed, which is either the type of the base of a member access
379 // expression or the declaration context associated with a prior
380 // nested-name-specifier.
381
382 // The declaration context must be complete.
383 if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS))
384 return 0;
385
386 LookupQualifiedName(Found, LookupCtx);
387
388 if (!ObjectType.isNull() && Found.empty()) {
389 // C++ [basic.lookup.classref]p4:
390 // If the id-expression in a class member access is a qualified-id of
391 // the form
392 //
393 // class-name-or-namespace-name::...
394 //
395 // the class-name-or-namespace-name following the . or -> operator is
396 // looked up both in the context of the entire postfix-expression and in
397 // the scope of the class of the object expression. If the name is found
398 // only in the scope of the class of the object expression, the name
399 // shall refer to a class-name. If the name is found only in the
400 // context of the entire postfix-expression, the name shall refer to a
401 // class-name or namespace-name. [...]
402 //
403 // Qualified name lookup into a class will not find a namespace-name,
404 // so we do not need to diagnoste that case specifically. However,
405 // this qualified name lookup may find nothing. In that case, perform
406 // unqualified name lookup in the given scope (if available) or
407 // reconstruct the result from when name lookup was performed at template
408 // definition time.
409 if (S)
410 LookupName(Found, S);
411 else if (ScopeLookupResult)
412 Found.addDecl(ScopeLookupResult);
413
414 ObjectTypeSearchedInScope = true;
415 }
416 } else if (isDependent) {
417 // Don't speculate if we're just trying to improve error recovery.
418 if (ErrorRecoveryLookup)
419 return 0;
420
421 // We were not able to compute the declaration context for a dependent
422 // base object type or prior nested-name-specifier, so this
423 // nested-name-specifier refers to an unknown specialization. Just build
424 // a dependent nested-name-specifier.
425 if (!Prefix)
426 return NestedNameSpecifier::Create(Context, &II);
427
428 return NestedNameSpecifier::Create(Context, Prefix, &II);
429 } else {
430 // Perform unqualified name lookup in the current scope.
431 LookupName(Found, S);
432 }
433
434 // FIXME: Deal with ambiguities cleanly.
435
436 if (Found.empty() && !ErrorRecoveryLookup) {
437 // We haven't found anything, and we're not recovering from a
438 // different kind of error, so look for typos.
439 DeclarationName Name = Found.getLookupName();
440 if (CorrectTypo(Found, S, &SS, LookupCtx, EnteringContext) &&
441 Found.isSingleResult() &&
442 isAcceptableNestedNameSpecifier(Found.getAsSingle<NamedDecl>())) {
443 if (LookupCtx)
444 Diag(Found.getNameLoc(), diag::err_no_member_suggest)
445 << Name << LookupCtx << Found.getLookupName() << SS.getRange()
446 << CodeModificationHint::CreateReplacement(Found.getNameLoc(),
447 Found.getLookupName().getAsString());
448 else
449 Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
450 << Name << Found.getLookupName()
451 << CodeModificationHint::CreateReplacement(Found.getNameLoc(),
452 Found.getLookupName().getAsString());
453
454 if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
455 Diag(ND->getLocation(), diag::note_previous_decl)
456 << ND->getDeclName();
457 } else
458 Found.clear();
459 }
460
461 NamedDecl *SD = Found.getAsSingle<NamedDecl>();
462 if (isAcceptableNestedNameSpecifier(SD)) {
463 if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
464 // C++ [basic.lookup.classref]p4:
465 // [...] If the name is found in both contexts, the
466 // class-name-or-namespace-name shall refer to the same entity.
467 //
468 // We already found the name in the scope of the object. Now, look
469 // into the current scope (the scope of the postfix-expression) to
470 // see if we can find the same name there. As above, if there is no
471 // scope, reconstruct the result from the template instantiation itself.
472 NamedDecl *OuterDecl;
473 if (S) {
474 LookupResult FoundOuter(*this, &II, IdLoc, LookupNestedNameSpecifierName);
475 LookupName(FoundOuter, S);
476 OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
477 } else
478 OuterDecl = ScopeLookupResult;
479
480 if (isAcceptableNestedNameSpecifier(OuterDecl) &&
481 OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
482 (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
483 !Context.hasSameType(
484 Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
485 Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
486 if (ErrorRecoveryLookup)
487 return 0;
488
489 Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous)
490 << &II;
491 Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
492 << ObjectType;
493 Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
494
495 // Fall through so that we'll pick the name we found in the object
496 // type, since that's probably what the user wanted anyway.
497 }
498 }
499
500 if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD))
501 return NestedNameSpecifier::Create(Context, Prefix, Namespace);
502
503 // FIXME: It would be nice to maintain the namespace alias name, then
504 // see through that alias when resolving the nested-name-specifier down to
505 // a declaration context.
506 if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD))
507 return NestedNameSpecifier::Create(Context, Prefix,
508
509 Alias->getNamespace());
510
511 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
512 return NestedNameSpecifier::Create(Context, Prefix, false,
513 T.getTypePtr());
514 }
515
516 // Otherwise, we have an error case. If we don't want diagnostics, just
517 // return an error now.
518 if (ErrorRecoveryLookup)
519 return 0;
520
521 // If we didn't find anything during our lookup, try again with
522 // ordinary name lookup, which can help us produce better error
523 // messages.
524 if (Found.empty()) {
525 Found.clear(LookupOrdinaryName);
526 LookupName(Found, S);
527 }
528
529 unsigned DiagID;
530 if (!Found.empty())
531 DiagID = diag::err_expected_class_or_namespace;
532 else if (SS.isSet()) {
533 Diag(IdLoc, diag::err_no_member) << &II << LookupCtx << SS.getRange();
534 return 0;
535 } else
536 DiagID = diag::err_undeclared_var_use;
537
538 if (SS.isSet())
539 Diag(IdLoc, DiagID) << &II << SS.getRange();
540 else
541 Diag(IdLoc, DiagID) << &II;
542
543 return 0;
544}
545
546/// ActOnCXXNestedNameSpecifier - Called during parsing of a
547/// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now
548/// we want to resolve "bar::". 'SS' is empty or the previously parsed
549/// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar',
550/// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'.
551/// Returns a CXXScopeTy* object representing the C++ scope.
552Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
553 const CXXScopeSpec &SS,
554 SourceLocation IdLoc,
555 SourceLocation CCLoc,
556 IdentifierInfo &II,
557 TypeTy *ObjectTypePtr,
558 bool EnteringContext) {
559 return BuildCXXNestedNameSpecifier(S, SS, IdLoc, CCLoc, II,
560 QualType::getFromOpaquePtr(ObjectTypePtr),
561 /*ScopeLookupResult=*/0, EnteringContext,
562 false);
563}
564
565/// IsInvalidUnlessNestedName - This method is used for error recovery
566/// purposes to determine whether the specified identifier is only valid as
567/// a nested name specifier, for example a namespace name. It is
568/// conservatively correct to always return false from this method.
569///
570/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
571bool Sema::IsInvalidUnlessNestedName(Scope *S, const CXXScopeSpec &SS,
572 IdentifierInfo &II, TypeTy *ObjectType,
573 bool EnteringContext) {
574 return BuildCXXNestedNameSpecifier(S, SS, SourceLocation(), SourceLocation(),
575 II, QualType::getFromOpaquePtr(ObjectType),
576 /*ScopeLookupResult=*/0, EnteringContext,
577 true);
578}
579
580Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
581 const CXXScopeSpec &SS,
582 TypeTy *Ty,
583 SourceRange TypeRange,
584 SourceLocation CCLoc) {
585 NestedNameSpecifier *Prefix
586 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
587 QualType T = GetTypeFromParser(Ty);
588 return NestedNameSpecifier::Create(Context, Prefix, /*FIXME:*/false,
589 T.getTypePtr());
590}
591
592bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
593 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
594
595 NestedNameSpecifier *Qualifier =
596 static_cast<NestedNameSpecifier*>(SS.getScopeRep());
597
598 // There are only two places a well-formed program may qualify a
599 // declarator: first, when defining a namespace or class member
600 // out-of-line, and second, when naming an explicitly-qualified
601 // friend function. The latter case is governed by
602 // C++03 [basic.lookup.unqual]p10:
603 // In a friend declaration naming a member function, a name used
604 // in the function declarator and not part of a template-argument
605 // in a template-id is first looked up in the scope of the member
606 // function's class. If it is not found, or if the name is part of
607 // a template-argument in a template-id, the look up is as
608 // described for unqualified names in the definition of the class
609 // granting friendship.
610 // i.e. we don't push a scope unless it's a class member.
611
612 switch (Qualifier->getKind()) {
613 case NestedNameSpecifier::Global:
614 case NestedNameSpecifier::Namespace:
615 // These are always namespace scopes. We never want to enter a
616 // namespace scope from anything but a file context.
617 return CurContext->getLookupContext()->isFileContext();
618
619 case NestedNameSpecifier::Identifier:
620 case NestedNameSpecifier::TypeSpec:
621 case NestedNameSpecifier::TypeSpecWithTemplate:
622 // These are never namespace scopes.
623 return true;
624 }
625
626 // Silence bogus warning.
627 return false;
628}
629
630/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
631/// scope or nested-name-specifier) is parsed, part of a declarator-id.
632/// After this method is called, according to [C++ 3.4.3p3], names should be
633/// looked up in the declarator-id's scope, until the declarator is parsed and
634/// ActOnCXXExitDeclaratorScope is called.
635/// The 'SS' should be a non-empty valid CXXScopeSpec.
636bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
637 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
638
639 if (SS.isInvalid()) return true;
640
641 DeclContext *DC = computeDeclContext(SS, true);
642 if (!DC) return true;
643
644 // Before we enter a declarator's context, we need to make sure that
645 // it is a complete declaration context.
646 if (!DC->isDependentContext() && RequireCompleteDeclContext(SS))
647 return true;
648
649 EnterDeclaratorContext(S, DC);
650 return false;
651}
652
653/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
654/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
655/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
656/// Used to indicate that names should revert to being looked up in the
657/// defining scope.
658void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
659 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
660 if (SS.isInvalid())
661 return;
662 assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
663 "exiting declarator scope we never really entered");
664 ExitDeclaratorContext(S);
665}