Shih-wei Liao | f8fd82b | 2010-02-10 11:10:31 -0800 | [diff] [blame^] | 1 | //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements semantic analysis for C++ expressions. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "Sema.h" |
| 15 | #include "SemaInit.h" |
| 16 | #include "Lookup.h" |
| 17 | #include "clang/AST/ASTContext.h" |
| 18 | #include "clang/AST/CXXInheritance.h" |
| 19 | #include "clang/AST/ExprCXX.h" |
| 20 | #include "clang/Basic/PartialDiagnostic.h" |
| 21 | #include "clang/Basic/TargetInfo.h" |
| 22 | #include "clang/Lex/Preprocessor.h" |
| 23 | #include "clang/Parse/DeclSpec.h" |
| 24 | #include "llvm/ADT/STLExtras.h" |
| 25 | using namespace clang; |
| 26 | |
| 27 | /// ActOnCXXTypeidOfType - Parse typeid( type-id ). |
| 28 | Action::OwningExprResult |
| 29 | Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, |
| 30 | bool isType, void *TyOrExpr, SourceLocation RParenLoc) { |
| 31 | if (!StdNamespace) |
| 32 | return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); |
| 33 | |
| 34 | if (isType) { |
| 35 | // C++ [expr.typeid]p4: |
| 36 | // The top-level cv-qualifiers of the lvalue expression or the type-id |
| 37 | // that is the operand of typeid are always ignored. |
| 38 | // FIXME: Preserve type source info. |
| 39 | // FIXME: Preserve the type before we stripped the cv-qualifiers? |
| 40 | QualType T = GetTypeFromParser(TyOrExpr); |
| 41 | if (T.isNull()) |
| 42 | return ExprError(); |
| 43 | |
| 44 | // C++ [expr.typeid]p4: |
| 45 | // If the type of the type-id is a class type or a reference to a class |
| 46 | // type, the class shall be completely-defined. |
| 47 | QualType CheckT = T; |
| 48 | if (const ReferenceType *RefType = CheckT->getAs<ReferenceType>()) |
| 49 | CheckT = RefType->getPointeeType(); |
| 50 | |
| 51 | if (CheckT->getAs<RecordType>() && |
| 52 | RequireCompleteType(OpLoc, CheckT, diag::err_incomplete_typeid)) |
| 53 | return ExprError(); |
| 54 | |
| 55 | TyOrExpr = T.getUnqualifiedType().getAsOpaquePtr(); |
| 56 | } |
| 57 | |
| 58 | IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); |
| 59 | LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); |
| 60 | LookupQualifiedName(R, StdNamespace); |
| 61 | RecordDecl *TypeInfoRecordDecl = R.getAsSingle<RecordDecl>(); |
| 62 | if (!TypeInfoRecordDecl) |
| 63 | return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); |
| 64 | |
| 65 | QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl); |
| 66 | |
| 67 | if (!isType) { |
| 68 | bool isUnevaluatedOperand = true; |
| 69 | Expr *E = static_cast<Expr *>(TyOrExpr); |
| 70 | if (E && !E->isTypeDependent()) { |
| 71 | QualType T = E->getType(); |
| 72 | if (const RecordType *RecordT = T->getAs<RecordType>()) { |
| 73 | CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); |
| 74 | // C++ [expr.typeid]p3: |
| 75 | // [...] If the type of the expression is a class type, the class |
| 76 | // shall be completely-defined. |
| 77 | if (RequireCompleteType(OpLoc, T, diag::err_incomplete_typeid)) |
| 78 | return ExprError(); |
| 79 | |
| 80 | // C++ [expr.typeid]p3: |
| 81 | // When typeid is applied to an expression other than an lvalue of a |
| 82 | // polymorphic class type [...] [the] expression is an unevaluated |
| 83 | // operand. [...] |
| 84 | if (RecordD->isPolymorphic() && E->isLvalue(Context) == Expr::LV_Valid) |
| 85 | isUnevaluatedOperand = false; |
| 86 | } |
| 87 | |
| 88 | // C++ [expr.typeid]p4: |
| 89 | // [...] If the type of the type-id is a reference to a possibly |
| 90 | // cv-qualified type, the result of the typeid expression refers to a |
| 91 | // std::type_info object representing the cv-unqualified referenced |
| 92 | // type. |
| 93 | if (T.hasQualifiers()) { |
| 94 | ImpCastExprToType(E, T.getUnqualifiedType(), CastExpr::CK_NoOp, |
| 95 | E->isLvalue(Context)); |
| 96 | TyOrExpr = E; |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | // If this is an unevaluated operand, clear out the set of |
| 101 | // declaration references we have been computing and eliminate any |
| 102 | // temporaries introduced in its computation. |
| 103 | if (isUnevaluatedOperand) |
| 104 | ExprEvalContexts.back().Context = Unevaluated; |
| 105 | } |
| 106 | |
| 107 | return Owned(new (Context) CXXTypeidExpr(isType, TyOrExpr, |
| 108 | TypeInfoType.withConst(), |
| 109 | SourceRange(OpLoc, RParenLoc))); |
| 110 | } |
| 111 | |
| 112 | /// ActOnCXXBoolLiteral - Parse {true,false} literals. |
| 113 | Action::OwningExprResult |
| 114 | Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { |
| 115 | assert((Kind == tok::kw_true || Kind == tok::kw_false) && |
| 116 | "Unknown C++ Boolean value!"); |
| 117 | return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true, |
| 118 | Context.BoolTy, OpLoc)); |
| 119 | } |
| 120 | |
| 121 | /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. |
| 122 | Action::OwningExprResult |
| 123 | Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { |
| 124 | return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); |
| 125 | } |
| 126 | |
| 127 | /// ActOnCXXThrow - Parse throw expressions. |
| 128 | Action::OwningExprResult |
| 129 | Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprArg E) { |
| 130 | Expr *Ex = E.takeAs<Expr>(); |
| 131 | if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex)) |
| 132 | return ExprError(); |
| 133 | return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc)); |
| 134 | } |
| 135 | |
| 136 | /// CheckCXXThrowOperand - Validate the operand of a throw. |
| 137 | bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) { |
| 138 | // C++ [except.throw]p3: |
| 139 | // A throw-expression initializes a temporary object, called the exception |
| 140 | // object, the type of which is determined by removing any top-level |
| 141 | // cv-qualifiers from the static type of the operand of throw and adjusting |
| 142 | // the type from "array of T" or "function returning T" to "pointer to T" |
| 143 | // or "pointer to function returning T", [...] |
| 144 | if (E->getType().hasQualifiers()) |
| 145 | ImpCastExprToType(E, E->getType().getUnqualifiedType(), CastExpr::CK_NoOp, |
| 146 | E->isLvalue(Context) == Expr::LV_Valid); |
| 147 | |
| 148 | DefaultFunctionArrayConversion(E); |
| 149 | |
| 150 | // If the type of the exception would be an incomplete type or a pointer |
| 151 | // to an incomplete type other than (cv) void the program is ill-formed. |
| 152 | QualType Ty = E->getType(); |
| 153 | int isPointer = 0; |
| 154 | if (const PointerType* Ptr = Ty->getAs<PointerType>()) { |
| 155 | Ty = Ptr->getPointeeType(); |
| 156 | isPointer = 1; |
| 157 | } |
| 158 | if (!isPointer || !Ty->isVoidType()) { |
| 159 | if (RequireCompleteType(ThrowLoc, Ty, |
| 160 | PDiag(isPointer ? diag::err_throw_incomplete_ptr |
| 161 | : diag::err_throw_incomplete) |
| 162 | << E->getSourceRange())) |
| 163 | return true; |
| 164 | } |
| 165 | |
| 166 | // FIXME: Construct a temporary here. |
| 167 | return false; |
| 168 | } |
| 169 | |
| 170 | Action::OwningExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) { |
| 171 | /// C++ 9.3.2: In the body of a non-static member function, the keyword this |
| 172 | /// is a non-lvalue expression whose value is the address of the object for |
| 173 | /// which the function is called. |
| 174 | |
| 175 | if (!isa<FunctionDecl>(CurContext)) |
| 176 | return ExprError(Diag(ThisLoc, diag::err_invalid_this_use)); |
| 177 | |
| 178 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) |
| 179 | if (MD->isInstance()) |
| 180 | return Owned(new (Context) CXXThisExpr(ThisLoc, |
| 181 | MD->getThisType(Context), |
| 182 | /*isImplicit=*/false)); |
| 183 | |
| 184 | return ExprError(Diag(ThisLoc, diag::err_invalid_this_use)); |
| 185 | } |
| 186 | |
| 187 | /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. |
| 188 | /// Can be interpreted either as function-style casting ("int(x)") |
| 189 | /// or class type construction ("ClassType(x,y,z)") |
| 190 | /// or creation of a value-initialized type ("int()"). |
| 191 | Action::OwningExprResult |
| 192 | Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep, |
| 193 | SourceLocation LParenLoc, |
| 194 | MultiExprArg exprs, |
| 195 | SourceLocation *CommaLocs, |
| 196 | SourceLocation RParenLoc) { |
| 197 | if (!TypeRep) |
| 198 | return ExprError(); |
| 199 | |
| 200 | TypeSourceInfo *TInfo; |
| 201 | QualType Ty = GetTypeFromParser(TypeRep, &TInfo); |
| 202 | if (!TInfo) |
| 203 | TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); |
| 204 | unsigned NumExprs = exprs.size(); |
| 205 | Expr **Exprs = (Expr**)exprs.get(); |
| 206 | SourceLocation TyBeginLoc = TypeRange.getBegin(); |
| 207 | SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc); |
| 208 | |
| 209 | if (Ty->isDependentType() || |
| 210 | CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) { |
| 211 | exprs.release(); |
| 212 | |
| 213 | return Owned(CXXUnresolvedConstructExpr::Create(Context, |
| 214 | TypeRange.getBegin(), Ty, |
| 215 | LParenLoc, |
| 216 | Exprs, NumExprs, |
| 217 | RParenLoc)); |
| 218 | } |
| 219 | |
| 220 | if (Ty->isArrayType()) |
| 221 | return ExprError(Diag(TyBeginLoc, |
| 222 | diag::err_value_init_for_array_type) << FullRange); |
| 223 | if (!Ty->isVoidType() && |
| 224 | RequireCompleteType(TyBeginLoc, Ty, |
| 225 | PDiag(diag::err_invalid_incomplete_type_use) |
| 226 | << FullRange)) |
| 227 | return ExprError(); |
| 228 | |
| 229 | if (RequireNonAbstractType(TyBeginLoc, Ty, |
| 230 | diag::err_allocation_of_abstract_type)) |
| 231 | return ExprError(); |
| 232 | |
| 233 | |
| 234 | // C++ [expr.type.conv]p1: |
| 235 | // If the expression list is a single expression, the type conversion |
| 236 | // expression is equivalent (in definedness, and if defined in meaning) to the |
| 237 | // corresponding cast expression. |
| 238 | // |
| 239 | if (NumExprs == 1) { |
| 240 | CastExpr::CastKind Kind = CastExpr::CK_Unknown; |
| 241 | CXXMethodDecl *Method = 0; |
| 242 | if (CheckCastTypes(TypeRange, Ty, Exprs[0], Kind, Method, |
| 243 | /*FunctionalStyle=*/true)) |
| 244 | return ExprError(); |
| 245 | |
| 246 | exprs.release(); |
| 247 | if (Method) { |
| 248 | OwningExprResult CastArg |
| 249 | = BuildCXXCastArgument(TypeRange.getBegin(), Ty.getNonReferenceType(), |
| 250 | Kind, Method, Owned(Exprs[0])); |
| 251 | if (CastArg.isInvalid()) |
| 252 | return ExprError(); |
| 253 | |
| 254 | Exprs[0] = CastArg.takeAs<Expr>(); |
| 255 | } |
| 256 | |
| 257 | return Owned(new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(), |
| 258 | TInfo, TyBeginLoc, Kind, |
| 259 | Exprs[0], RParenLoc)); |
| 260 | } |
| 261 | |
| 262 | if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| 263 | CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); |
| 264 | |
| 265 | if (NumExprs > 1 || !Record->hasTrivialConstructor() || |
| 266 | !Record->hasTrivialDestructor()) { |
| 267 | InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty); |
| 268 | InitializationKind Kind |
| 269 | = NumExprs ? InitializationKind::CreateDirect(TypeRange.getBegin(), |
| 270 | LParenLoc, RParenLoc) |
| 271 | : InitializationKind::CreateValue(TypeRange.getBegin(), |
| 272 | LParenLoc, RParenLoc); |
| 273 | InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs); |
| 274 | OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, |
| 275 | move(exprs)); |
| 276 | |
| 277 | // FIXME: Improve AST representation? |
| 278 | return move(Result); |
| 279 | } |
| 280 | |
| 281 | // Fall through to value-initialize an object of class type that |
| 282 | // doesn't have a user-declared default constructor. |
| 283 | } |
| 284 | |
| 285 | // C++ [expr.type.conv]p1: |
| 286 | // If the expression list specifies more than a single value, the type shall |
| 287 | // be a class with a suitably declared constructor. |
| 288 | // |
| 289 | if (NumExprs > 1) |
| 290 | return ExprError(Diag(CommaLocs[0], |
| 291 | diag::err_builtin_func_cast_more_than_one_arg) |
| 292 | << FullRange); |
| 293 | |
| 294 | assert(NumExprs == 0 && "Expected 0 expressions"); |
| 295 | // C++ [expr.type.conv]p2: |
| 296 | // The expression T(), where T is a simple-type-specifier for a non-array |
| 297 | // complete object type or the (possibly cv-qualified) void type, creates an |
| 298 | // rvalue of the specified type, which is value-initialized. |
| 299 | // |
| 300 | exprs.release(); |
| 301 | return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc)); |
| 302 | } |
| 303 | |
| 304 | |
| 305 | /// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.: |
| 306 | /// @code new (memory) int[size][4] @endcode |
| 307 | /// or |
| 308 | /// @code ::new Foo(23, "hello") @endcode |
| 309 | /// For the interpretation of this heap of arguments, consult the base version. |
| 310 | Action::OwningExprResult |
| 311 | Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, |
| 312 | SourceLocation PlacementLParen, MultiExprArg PlacementArgs, |
| 313 | SourceLocation PlacementRParen, bool ParenTypeId, |
| 314 | Declarator &D, SourceLocation ConstructorLParen, |
| 315 | MultiExprArg ConstructorArgs, |
| 316 | SourceLocation ConstructorRParen) { |
| 317 | Expr *ArraySize = 0; |
| 318 | // If the specified type is an array, unwrap it and save the expression. |
| 319 | if (D.getNumTypeObjects() > 0 && |
| 320 | D.getTypeObject(0).Kind == DeclaratorChunk::Array) { |
| 321 | DeclaratorChunk &Chunk = D.getTypeObject(0); |
| 322 | if (Chunk.Arr.hasStatic) |
| 323 | return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) |
| 324 | << D.getSourceRange()); |
| 325 | if (!Chunk.Arr.NumElts) |
| 326 | return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) |
| 327 | << D.getSourceRange()); |
| 328 | |
| 329 | if (ParenTypeId) { |
| 330 | // Can't have dynamic array size when the type-id is in parentheses. |
| 331 | Expr *NumElts = (Expr *)Chunk.Arr.NumElts; |
| 332 | if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() && |
| 333 | !NumElts->isIntegerConstantExpr(Context)) { |
| 334 | Diag(D.getTypeObject(0).Loc, diag::err_new_paren_array_nonconst) |
| 335 | << NumElts->getSourceRange(); |
| 336 | return ExprError(); |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); |
| 341 | D.DropFirstTypeObject(); |
| 342 | } |
| 343 | |
| 344 | // Every dimension shall be of constant size. |
| 345 | if (ArraySize) { |
| 346 | for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { |
| 347 | if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) |
| 348 | break; |
| 349 | |
| 350 | DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; |
| 351 | if (Expr *NumElts = (Expr *)Array.NumElts) { |
| 352 | if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() && |
| 353 | !NumElts->isIntegerConstantExpr(Context)) { |
| 354 | Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst) |
| 355 | << NumElts->getSourceRange(); |
| 356 | return ExprError(); |
| 357 | } |
| 358 | } |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | //FIXME: Store TypeSourceInfo in CXXNew expression. |
| 363 | TypeSourceInfo *TInfo = 0; |
| 364 | QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, &TInfo); |
| 365 | if (D.isInvalidType()) |
| 366 | return ExprError(); |
| 367 | |
| 368 | return BuildCXXNew(StartLoc, UseGlobal, |
| 369 | PlacementLParen, |
| 370 | move(PlacementArgs), |
| 371 | PlacementRParen, |
| 372 | ParenTypeId, |
| 373 | AllocType, |
| 374 | D.getSourceRange().getBegin(), |
| 375 | D.getSourceRange(), |
| 376 | Owned(ArraySize), |
| 377 | ConstructorLParen, |
| 378 | move(ConstructorArgs), |
| 379 | ConstructorRParen); |
| 380 | } |
| 381 | |
| 382 | Sema::OwningExprResult |
| 383 | Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal, |
| 384 | SourceLocation PlacementLParen, |
| 385 | MultiExprArg PlacementArgs, |
| 386 | SourceLocation PlacementRParen, |
| 387 | bool ParenTypeId, |
| 388 | QualType AllocType, |
| 389 | SourceLocation TypeLoc, |
| 390 | SourceRange TypeRange, |
| 391 | ExprArg ArraySizeE, |
| 392 | SourceLocation ConstructorLParen, |
| 393 | MultiExprArg ConstructorArgs, |
| 394 | SourceLocation ConstructorRParen) { |
| 395 | if (CheckAllocatedType(AllocType, TypeLoc, TypeRange)) |
| 396 | return ExprError(); |
| 397 | |
| 398 | QualType ResultType = Context.getPointerType(AllocType); |
| 399 | |
| 400 | // That every array dimension except the first is constant was already |
| 401 | // checked by the type check above. |
| 402 | |
| 403 | // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral |
| 404 | // or enumeration type with a non-negative value." |
| 405 | Expr *ArraySize = (Expr *)ArraySizeE.get(); |
| 406 | if (ArraySize && !ArraySize->isTypeDependent()) { |
| 407 | QualType SizeType = ArraySize->getType(); |
| 408 | if (!SizeType->isIntegralType() && !SizeType->isEnumeralType()) |
| 409 | return ExprError(Diag(ArraySize->getSourceRange().getBegin(), |
| 410 | diag::err_array_size_not_integral) |
| 411 | << SizeType << ArraySize->getSourceRange()); |
| 412 | // Let's see if this is a constant < 0. If so, we reject it out of hand. |
| 413 | // We don't care about special rules, so we tell the machinery it's not |
| 414 | // evaluated - it gives us a result in more cases. |
| 415 | if (!ArraySize->isValueDependent()) { |
| 416 | llvm::APSInt Value; |
| 417 | if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) { |
| 418 | if (Value < llvm::APSInt( |
| 419 | llvm::APInt::getNullValue(Value.getBitWidth()), |
| 420 | Value.isUnsigned())) |
| 421 | return ExprError(Diag(ArraySize->getSourceRange().getBegin(), |
| 422 | diag::err_typecheck_negative_array_size) |
| 423 | << ArraySize->getSourceRange()); |
| 424 | } |
| 425 | } |
| 426 | |
| 427 | ImpCastExprToType(ArraySize, Context.getSizeType(), |
| 428 | CastExpr::CK_IntegralCast); |
| 429 | } |
| 430 | |
| 431 | FunctionDecl *OperatorNew = 0; |
| 432 | FunctionDecl *OperatorDelete = 0; |
| 433 | Expr **PlaceArgs = (Expr**)PlacementArgs.get(); |
| 434 | unsigned NumPlaceArgs = PlacementArgs.size(); |
| 435 | |
| 436 | if (!AllocType->isDependentType() && |
| 437 | !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) && |
| 438 | FindAllocationFunctions(StartLoc, |
| 439 | SourceRange(PlacementLParen, PlacementRParen), |
| 440 | UseGlobal, AllocType, ArraySize, PlaceArgs, |
| 441 | NumPlaceArgs, OperatorNew, OperatorDelete)) |
| 442 | return ExprError(); |
| 443 | llvm::SmallVector<Expr *, 8> AllPlaceArgs; |
| 444 | if (OperatorNew) { |
| 445 | // Add default arguments, if any. |
| 446 | const FunctionProtoType *Proto = |
| 447 | OperatorNew->getType()->getAs<FunctionProtoType>(); |
| 448 | VariadicCallType CallType = |
| 449 | Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply; |
| 450 | bool Invalid = GatherArgumentsForCall(PlacementLParen, OperatorNew, |
| 451 | Proto, 1, PlaceArgs, NumPlaceArgs, |
| 452 | AllPlaceArgs, CallType); |
| 453 | if (Invalid) |
| 454 | return ExprError(); |
| 455 | |
| 456 | NumPlaceArgs = AllPlaceArgs.size(); |
| 457 | if (NumPlaceArgs > 0) |
| 458 | PlaceArgs = &AllPlaceArgs[0]; |
| 459 | } |
| 460 | |
| 461 | bool Init = ConstructorLParen.isValid(); |
| 462 | // --- Choosing a constructor --- |
| 463 | CXXConstructorDecl *Constructor = 0; |
| 464 | Expr **ConsArgs = (Expr**)ConstructorArgs.get(); |
| 465 | unsigned NumConsArgs = ConstructorArgs.size(); |
| 466 | ASTOwningVector<&ActionBase::DeleteExpr> ConvertedConstructorArgs(*this); |
| 467 | |
| 468 | if (!AllocType->isDependentType() && |
| 469 | !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) { |
| 470 | // C++0x [expr.new]p15: |
| 471 | // A new-expression that creates an object of type T initializes that |
| 472 | // object as follows: |
| 473 | InitializationKind Kind |
| 474 | // - If the new-initializer is omitted, the object is default- |
| 475 | // initialized (8.5); if no initialization is performed, |
| 476 | // the object has indeterminate value |
| 477 | = !Init? InitializationKind::CreateDefault(TypeLoc) |
| 478 | // - Otherwise, the new-initializer is interpreted according to the |
| 479 | // initialization rules of 8.5 for direct-initialization. |
| 480 | : InitializationKind::CreateDirect(TypeLoc, |
| 481 | ConstructorLParen, |
| 482 | ConstructorRParen); |
| 483 | |
| 484 | InitializedEntity Entity |
| 485 | = InitializedEntity::InitializeNew(StartLoc, AllocType); |
| 486 | InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs); |
| 487 | OwningExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, |
| 488 | move(ConstructorArgs)); |
| 489 | if (FullInit.isInvalid()) |
| 490 | return ExprError(); |
| 491 | |
| 492 | // FullInit is our initializer; walk through it to determine if it's a |
| 493 | // constructor call, which CXXNewExpr handles directly. |
| 494 | if (Expr *FullInitExpr = (Expr *)FullInit.get()) { |
| 495 | if (CXXBindTemporaryExpr *Binder |
| 496 | = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr)) |
| 497 | FullInitExpr = Binder->getSubExpr(); |
| 498 | if (CXXConstructExpr *Construct |
| 499 | = dyn_cast<CXXConstructExpr>(FullInitExpr)) { |
| 500 | Constructor = Construct->getConstructor(); |
| 501 | for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(), |
| 502 | AEnd = Construct->arg_end(); |
| 503 | A != AEnd; ++A) |
| 504 | ConvertedConstructorArgs.push_back(A->Retain()); |
| 505 | } else { |
| 506 | // Take the converted initializer. |
| 507 | ConvertedConstructorArgs.push_back(FullInit.release()); |
| 508 | } |
| 509 | } else { |
| 510 | // No initialization required. |
| 511 | } |
| 512 | |
| 513 | // Take the converted arguments and use them for the new expression. |
| 514 | NumConsArgs = ConvertedConstructorArgs.size(); |
| 515 | ConsArgs = (Expr **)ConvertedConstructorArgs.take(); |
| 516 | } |
| 517 | |
| 518 | // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16) |
| 519 | |
| 520 | PlacementArgs.release(); |
| 521 | ConstructorArgs.release(); |
| 522 | ArraySizeE.release(); |
| 523 | return Owned(new (Context) CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs, |
| 524 | NumPlaceArgs, ParenTypeId, ArraySize, Constructor, Init, |
| 525 | ConsArgs, NumConsArgs, OperatorDelete, ResultType, |
| 526 | StartLoc, Init ? ConstructorRParen : SourceLocation())); |
| 527 | } |
| 528 | |
| 529 | /// CheckAllocatedType - Checks that a type is suitable as the allocated type |
| 530 | /// in a new-expression. |
| 531 | /// dimension off and stores the size expression in ArraySize. |
| 532 | bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, |
| 533 | SourceRange R) { |
| 534 | // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an |
| 535 | // abstract class type or array thereof. |
| 536 | if (AllocType->isFunctionType()) |
| 537 | return Diag(Loc, diag::err_bad_new_type) |
| 538 | << AllocType << 0 << R; |
| 539 | else if (AllocType->isReferenceType()) |
| 540 | return Diag(Loc, diag::err_bad_new_type) |
| 541 | << AllocType << 1 << R; |
| 542 | else if (!AllocType->isDependentType() && |
| 543 | RequireCompleteType(Loc, AllocType, |
| 544 | PDiag(diag::err_new_incomplete_type) |
| 545 | << R)) |
| 546 | return true; |
| 547 | else if (RequireNonAbstractType(Loc, AllocType, |
| 548 | diag::err_allocation_of_abstract_type)) |
| 549 | return true; |
| 550 | |
| 551 | return false; |
| 552 | } |
| 553 | |
| 554 | /// FindAllocationFunctions - Finds the overloads of operator new and delete |
| 555 | /// that are appropriate for the allocation. |
| 556 | bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, |
| 557 | bool UseGlobal, QualType AllocType, |
| 558 | bool IsArray, Expr **PlaceArgs, |
| 559 | unsigned NumPlaceArgs, |
| 560 | FunctionDecl *&OperatorNew, |
| 561 | FunctionDecl *&OperatorDelete) { |
| 562 | // --- Choosing an allocation function --- |
| 563 | // C++ 5.3.4p8 - 14 & 18 |
| 564 | // 1) If UseGlobal is true, only look in the global scope. Else, also look |
| 565 | // in the scope of the allocated class. |
| 566 | // 2) If an array size is given, look for operator new[], else look for |
| 567 | // operator new. |
| 568 | // 3) The first argument is always size_t. Append the arguments from the |
| 569 | // placement form. |
| 570 | // FIXME: Also find the appropriate delete operator. |
| 571 | |
| 572 | llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs); |
| 573 | // We don't care about the actual value of this argument. |
| 574 | // FIXME: Should the Sema create the expression and embed it in the syntax |
| 575 | // tree? Or should the consumer just recalculate the value? |
| 576 | IntegerLiteral Size(llvm::APInt::getNullValue( |
| 577 | Context.Target.getPointerWidth(0)), |
| 578 | Context.getSizeType(), |
| 579 | SourceLocation()); |
| 580 | AllocArgs[0] = &Size; |
| 581 | std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1); |
| 582 | |
| 583 | DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( |
| 584 | IsArray ? OO_Array_New : OO_New); |
| 585 | if (AllocType->isRecordType() && !UseGlobal) { |
| 586 | CXXRecordDecl *Record |
| 587 | = cast<CXXRecordDecl>(AllocType->getAs<RecordType>()->getDecl()); |
| 588 | // FIXME: We fail to find inherited overloads. |
| 589 | if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], |
| 590 | AllocArgs.size(), Record, /*AllowMissing=*/true, |
| 591 | OperatorNew)) |
| 592 | return true; |
| 593 | } |
| 594 | if (!OperatorNew) { |
| 595 | // Didn't find a member overload. Look for a global one. |
| 596 | DeclareGlobalNewDelete(); |
| 597 | DeclContext *TUDecl = Context.getTranslationUnitDecl(); |
| 598 | if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], |
| 599 | AllocArgs.size(), TUDecl, /*AllowMissing=*/false, |
| 600 | OperatorNew)) |
| 601 | return true; |
| 602 | } |
| 603 | |
| 604 | // FindAllocationOverload can change the passed in arguments, so we need to |
| 605 | // copy them back. |
| 606 | if (NumPlaceArgs > 0) |
| 607 | std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs); |
| 608 | |
| 609 | return false; |
| 610 | } |
| 611 | |
| 612 | /// FindAllocationOverload - Find an fitting overload for the allocation |
| 613 | /// function in the specified scope. |
| 614 | bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, |
| 615 | DeclarationName Name, Expr** Args, |
| 616 | unsigned NumArgs, DeclContext *Ctx, |
| 617 | bool AllowMissing, FunctionDecl *&Operator) { |
| 618 | LookupResult R(*this, Name, StartLoc, LookupOrdinaryName); |
| 619 | LookupQualifiedName(R, Ctx); |
| 620 | if (R.empty()) { |
| 621 | if (AllowMissing) |
| 622 | return false; |
| 623 | return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) |
| 624 | << Name << Range; |
| 625 | } |
| 626 | |
| 627 | // FIXME: handle ambiguity |
| 628 | |
| 629 | OverloadCandidateSet Candidates(StartLoc); |
| 630 | for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); |
| 631 | Alloc != AllocEnd; ++Alloc) { |
| 632 | // Even member operator new/delete are implicitly treated as |
| 633 | // static, so don't use AddMemberCandidate. |
| 634 | |
| 635 | if (FunctionTemplateDecl *FnTemplate = |
| 636 | dyn_cast<FunctionTemplateDecl>((*Alloc)->getUnderlyingDecl())) { |
| 637 | AddTemplateOverloadCandidate(FnTemplate, Alloc.getAccess(), |
| 638 | /*ExplicitTemplateArgs=*/0, Args, NumArgs, |
| 639 | Candidates, |
| 640 | /*SuppressUserConversions=*/false); |
| 641 | continue; |
| 642 | } |
| 643 | |
| 644 | FunctionDecl *Fn = cast<FunctionDecl>((*Alloc)->getUnderlyingDecl()); |
| 645 | AddOverloadCandidate(Fn, Alloc.getAccess(), Args, NumArgs, Candidates, |
| 646 | /*SuppressUserConversions=*/false); |
| 647 | } |
| 648 | |
| 649 | // Do the resolution. |
| 650 | OverloadCandidateSet::iterator Best; |
| 651 | switch(BestViableFunction(Candidates, StartLoc, Best)) { |
| 652 | case OR_Success: { |
| 653 | // Got one! |
| 654 | FunctionDecl *FnDecl = Best->Function; |
| 655 | // The first argument is size_t, and the first parameter must be size_t, |
| 656 | // too. This is checked on declaration and can be assumed. (It can't be |
| 657 | // asserted on, though, since invalid decls are left in there.) |
| 658 | // Whatch out for variadic allocator function. |
| 659 | unsigned NumArgsInFnDecl = FnDecl->getNumParams(); |
| 660 | for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) { |
| 661 | if (PerformCopyInitialization(Args[i], |
| 662 | FnDecl->getParamDecl(i)->getType(), |
| 663 | AA_Passing)) |
| 664 | return true; |
| 665 | } |
| 666 | Operator = FnDecl; |
| 667 | return false; |
| 668 | } |
| 669 | |
| 670 | case OR_No_Viable_Function: |
| 671 | Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) |
| 672 | << Name << Range; |
| 673 | PrintOverloadCandidates(Candidates, OCD_AllCandidates, Args, NumArgs); |
| 674 | return true; |
| 675 | |
| 676 | case OR_Ambiguous: |
| 677 | Diag(StartLoc, diag::err_ovl_ambiguous_call) |
| 678 | << Name << Range; |
| 679 | PrintOverloadCandidates(Candidates, OCD_ViableCandidates, Args, NumArgs); |
| 680 | return true; |
| 681 | |
| 682 | case OR_Deleted: |
| 683 | Diag(StartLoc, diag::err_ovl_deleted_call) |
| 684 | << Best->Function->isDeleted() |
| 685 | << Name << Range; |
| 686 | PrintOverloadCandidates(Candidates, OCD_AllCandidates, Args, NumArgs); |
| 687 | return true; |
| 688 | } |
| 689 | assert(false && "Unreachable, bad result from BestViableFunction"); |
| 690 | return true; |
| 691 | } |
| 692 | |
| 693 | |
| 694 | /// DeclareGlobalNewDelete - Declare the global forms of operator new and |
| 695 | /// delete. These are: |
| 696 | /// @code |
| 697 | /// void* operator new(std::size_t) throw(std::bad_alloc); |
| 698 | /// void* operator new[](std::size_t) throw(std::bad_alloc); |
| 699 | /// void operator delete(void *) throw(); |
| 700 | /// void operator delete[](void *) throw(); |
| 701 | /// @endcode |
| 702 | /// Note that the placement and nothrow forms of new are *not* implicitly |
| 703 | /// declared. Their use requires including \<new\>. |
| 704 | void Sema::DeclareGlobalNewDelete() { |
| 705 | if (GlobalNewDeleteDeclared) |
| 706 | return; |
| 707 | |
| 708 | // C++ [basic.std.dynamic]p2: |
| 709 | // [...] The following allocation and deallocation functions (18.4) are |
| 710 | // implicitly declared in global scope in each translation unit of a |
| 711 | // program |
| 712 | // |
| 713 | // void* operator new(std::size_t) throw(std::bad_alloc); |
| 714 | // void* operator new[](std::size_t) throw(std::bad_alloc); |
| 715 | // void operator delete(void*) throw(); |
| 716 | // void operator delete[](void*) throw(); |
| 717 | // |
| 718 | // These implicit declarations introduce only the function names operator |
| 719 | // new, operator new[], operator delete, operator delete[]. |
| 720 | // |
| 721 | // Here, we need to refer to std::bad_alloc, so we will implicitly declare |
| 722 | // "std" or "bad_alloc" as necessary to form the exception specification. |
| 723 | // However, we do not make these implicit declarations visible to name |
| 724 | // lookup. |
| 725 | if (!StdNamespace) { |
| 726 | // The "std" namespace has not yet been defined, so build one implicitly. |
| 727 | StdNamespace = NamespaceDecl::Create(Context, |
| 728 | Context.getTranslationUnitDecl(), |
| 729 | SourceLocation(), |
| 730 | &PP.getIdentifierTable().get("std")); |
| 731 | StdNamespace->setImplicit(true); |
| 732 | } |
| 733 | |
| 734 | if (!StdBadAlloc) { |
| 735 | // The "std::bad_alloc" class has not yet been declared, so build it |
| 736 | // implicitly. |
| 737 | StdBadAlloc = CXXRecordDecl::Create(Context, TagDecl::TK_class, |
| 738 | StdNamespace, |
| 739 | SourceLocation(), |
| 740 | &PP.getIdentifierTable().get("bad_alloc"), |
| 741 | SourceLocation(), 0); |
| 742 | StdBadAlloc->setImplicit(true); |
| 743 | } |
| 744 | |
| 745 | GlobalNewDeleteDeclared = true; |
| 746 | |
| 747 | QualType VoidPtr = Context.getPointerType(Context.VoidTy); |
| 748 | QualType SizeT = Context.getSizeType(); |
| 749 | bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew; |
| 750 | |
| 751 | DeclareGlobalAllocationFunction( |
| 752 | Context.DeclarationNames.getCXXOperatorName(OO_New), |
| 753 | VoidPtr, SizeT, AssumeSaneOperatorNew); |
| 754 | DeclareGlobalAllocationFunction( |
| 755 | Context.DeclarationNames.getCXXOperatorName(OO_Array_New), |
| 756 | VoidPtr, SizeT, AssumeSaneOperatorNew); |
| 757 | DeclareGlobalAllocationFunction( |
| 758 | Context.DeclarationNames.getCXXOperatorName(OO_Delete), |
| 759 | Context.VoidTy, VoidPtr); |
| 760 | DeclareGlobalAllocationFunction( |
| 761 | Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), |
| 762 | Context.VoidTy, VoidPtr); |
| 763 | } |
| 764 | |
| 765 | /// DeclareGlobalAllocationFunction - Declares a single implicit global |
| 766 | /// allocation function if it doesn't already exist. |
| 767 | void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, |
| 768 | QualType Return, QualType Argument, |
| 769 | bool AddMallocAttr) { |
| 770 | DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); |
| 771 | |
| 772 | // Check if this function is already declared. |
| 773 | { |
| 774 | DeclContext::lookup_iterator Alloc, AllocEnd; |
| 775 | for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name); |
| 776 | Alloc != AllocEnd; ++Alloc) { |
| 777 | // Only look at non-template functions, as it is the predefined, |
| 778 | // non-templated allocation function we are trying to declare here. |
| 779 | if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { |
| 780 | QualType InitialParamType = |
| 781 | Context.getCanonicalType( |
| 782 | Func->getParamDecl(0)->getType().getUnqualifiedType()); |
| 783 | // FIXME: Do we need to check for default arguments here? |
| 784 | if (Func->getNumParams() == 1 && InitialParamType == Argument) |
| 785 | return; |
| 786 | } |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | QualType BadAllocType; |
| 791 | bool HasBadAllocExceptionSpec |
| 792 | = (Name.getCXXOverloadedOperator() == OO_New || |
| 793 | Name.getCXXOverloadedOperator() == OO_Array_New); |
| 794 | if (HasBadAllocExceptionSpec) { |
| 795 | assert(StdBadAlloc && "Must have std::bad_alloc declared"); |
| 796 | BadAllocType = Context.getTypeDeclType(StdBadAlloc); |
| 797 | } |
| 798 | |
| 799 | QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0, |
| 800 | true, false, |
| 801 | HasBadAllocExceptionSpec? 1 : 0, |
| 802 | &BadAllocType); |
| 803 | FunctionDecl *Alloc = |
| 804 | FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name, |
| 805 | FnType, /*TInfo=*/0, FunctionDecl::None, false, true); |
| 806 | Alloc->setImplicit(); |
| 807 | |
| 808 | if (AddMallocAttr) |
| 809 | Alloc->addAttr(::new (Context) MallocAttr()); |
| 810 | |
| 811 | ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(), |
| 812 | 0, Argument, /*TInfo=*/0, |
| 813 | VarDecl::None, 0); |
| 814 | Alloc->setParams(Context, &Param, 1); |
| 815 | |
| 816 | // FIXME: Also add this declaration to the IdentifierResolver, but |
| 817 | // make sure it is at the end of the chain to coincide with the |
| 818 | // global scope. |
| 819 | ((DeclContext *)TUScope->getEntity())->addDecl(Alloc); |
| 820 | } |
| 821 | |
| 822 | bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, |
| 823 | DeclarationName Name, |
| 824 | FunctionDecl* &Operator) { |
| 825 | LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); |
| 826 | // Try to find operator delete/operator delete[] in class scope. |
| 827 | LookupQualifiedName(Found, RD); |
| 828 | |
| 829 | if (Found.isAmbiguous()) |
| 830 | return true; |
| 831 | |
| 832 | for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); |
| 833 | F != FEnd; ++F) { |
| 834 | if (CXXMethodDecl *Delete = dyn_cast<CXXMethodDecl>(*F)) |
| 835 | if (Delete->isUsualDeallocationFunction()) { |
| 836 | Operator = Delete; |
| 837 | return false; |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | // We did find operator delete/operator delete[] declarations, but |
| 842 | // none of them were suitable. |
| 843 | if (!Found.empty()) { |
| 844 | Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) |
| 845 | << Name << RD; |
| 846 | |
| 847 | for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); |
| 848 | F != FEnd; ++F) { |
| 849 | Diag((*F)->getLocation(), |
| 850 | diag::note_delete_member_function_declared_here) |
| 851 | << Name; |
| 852 | } |
| 853 | |
| 854 | return true; |
| 855 | } |
| 856 | |
| 857 | // Look for a global declaration. |
| 858 | DeclareGlobalNewDelete(); |
| 859 | DeclContext *TUDecl = Context.getTranslationUnitDecl(); |
| 860 | |
| 861 | CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation()); |
| 862 | Expr* DeallocArgs[1]; |
| 863 | DeallocArgs[0] = &Null; |
| 864 | if (FindAllocationOverload(StartLoc, SourceRange(), Name, |
| 865 | DeallocArgs, 1, TUDecl, /*AllowMissing=*/false, |
| 866 | Operator)) |
| 867 | return true; |
| 868 | |
| 869 | assert(Operator && "Did not find a deallocation function!"); |
| 870 | return false; |
| 871 | } |
| 872 | |
| 873 | /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: |
| 874 | /// @code ::delete ptr; @endcode |
| 875 | /// or |
| 876 | /// @code delete [] ptr; @endcode |
| 877 | Action::OwningExprResult |
| 878 | Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, |
| 879 | bool ArrayForm, ExprArg Operand) { |
| 880 | // C++ [expr.delete]p1: |
| 881 | // The operand shall have a pointer type, or a class type having a single |
| 882 | // conversion function to a pointer type. The result has type void. |
| 883 | // |
| 884 | // DR599 amends "pointer type" to "pointer to object type" in both cases. |
| 885 | |
| 886 | FunctionDecl *OperatorDelete = 0; |
| 887 | |
| 888 | Expr *Ex = (Expr *)Operand.get(); |
| 889 | if (!Ex->isTypeDependent()) { |
| 890 | QualType Type = Ex->getType(); |
| 891 | |
| 892 | if (const RecordType *Record = Type->getAs<RecordType>()) { |
| 893 | llvm::SmallVector<CXXConversionDecl *, 4> ObjectPtrConversions; |
| 894 | CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); |
| 895 | const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions(); |
| 896 | |
| 897 | for (UnresolvedSetImpl::iterator I = Conversions->begin(), |
| 898 | E = Conversions->end(); I != E; ++I) { |
| 899 | // Skip over templated conversion functions; they aren't considered. |
| 900 | if (isa<FunctionTemplateDecl>(*I)) |
| 901 | continue; |
| 902 | |
| 903 | CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I); |
| 904 | |
| 905 | QualType ConvType = Conv->getConversionType().getNonReferenceType(); |
| 906 | if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) |
| 907 | if (ConvPtrType->getPointeeType()->isObjectType()) |
| 908 | ObjectPtrConversions.push_back(Conv); |
| 909 | } |
| 910 | if (ObjectPtrConversions.size() == 1) { |
| 911 | // We have a single conversion to a pointer-to-object type. Perform |
| 912 | // that conversion. |
| 913 | Operand.release(); |
| 914 | if (!PerformImplicitConversion(Ex, |
| 915 | ObjectPtrConversions.front()->getConversionType(), |
| 916 | AA_Converting)) { |
| 917 | Operand = Owned(Ex); |
| 918 | Type = Ex->getType(); |
| 919 | } |
| 920 | } |
| 921 | else if (ObjectPtrConversions.size() > 1) { |
| 922 | Diag(StartLoc, diag::err_ambiguous_delete_operand) |
| 923 | << Type << Ex->getSourceRange(); |
| 924 | for (unsigned i= 0; i < ObjectPtrConversions.size(); i++) { |
| 925 | CXXConversionDecl *Conv = ObjectPtrConversions[i]; |
| 926 | NoteOverloadCandidate(Conv); |
| 927 | } |
| 928 | return ExprError(); |
| 929 | } |
| 930 | } |
| 931 | |
| 932 | if (!Type->isPointerType()) |
| 933 | return ExprError(Diag(StartLoc, diag::err_delete_operand) |
| 934 | << Type << Ex->getSourceRange()); |
| 935 | |
| 936 | QualType Pointee = Type->getAs<PointerType>()->getPointeeType(); |
| 937 | if (Pointee->isFunctionType() || Pointee->isVoidType()) |
| 938 | return ExprError(Diag(StartLoc, diag::err_delete_operand) |
| 939 | << Type << Ex->getSourceRange()); |
| 940 | else if (!Pointee->isDependentType() && |
| 941 | RequireCompleteType(StartLoc, Pointee, |
| 942 | PDiag(diag::warn_delete_incomplete) |
| 943 | << Ex->getSourceRange())) |
| 944 | return ExprError(); |
| 945 | |
| 946 | // C++ [expr.delete]p2: |
| 947 | // [Note: a pointer to a const type can be the operand of a |
| 948 | // delete-expression; it is not necessary to cast away the constness |
| 949 | // (5.2.11) of the pointer expression before it is used as the operand |
| 950 | // of the delete-expression. ] |
| 951 | ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy), |
| 952 | CastExpr::CK_NoOp); |
| 953 | |
| 954 | // Update the operand. |
| 955 | Operand.take(); |
| 956 | Operand = ExprArg(*this, Ex); |
| 957 | |
| 958 | DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( |
| 959 | ArrayForm ? OO_Array_Delete : OO_Delete); |
| 960 | |
| 961 | if (const RecordType *RT = Pointee->getAs<RecordType>()) { |
| 962 | CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
| 963 | |
| 964 | if (!UseGlobal && |
| 965 | FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete)) |
| 966 | return ExprError(); |
| 967 | |
| 968 | if (!RD->hasTrivialDestructor()) |
| 969 | if (const CXXDestructorDecl *Dtor = RD->getDestructor(Context)) |
| 970 | MarkDeclarationReferenced(StartLoc, |
| 971 | const_cast<CXXDestructorDecl*>(Dtor)); |
| 972 | } |
| 973 | |
| 974 | if (!OperatorDelete) { |
| 975 | // Look for a global declaration. |
| 976 | DeclareGlobalNewDelete(); |
| 977 | DeclContext *TUDecl = Context.getTranslationUnitDecl(); |
| 978 | if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName, |
| 979 | &Ex, 1, TUDecl, /*AllowMissing=*/false, |
| 980 | OperatorDelete)) |
| 981 | return ExprError(); |
| 982 | } |
| 983 | |
| 984 | // FIXME: Check access and ambiguity of operator delete and destructor. |
| 985 | } |
| 986 | |
| 987 | Operand.release(); |
| 988 | return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm, |
| 989 | OperatorDelete, Ex, StartLoc)); |
| 990 | } |
| 991 | |
| 992 | /// \brief Check the use of the given variable as a C++ condition in an if, |
| 993 | /// while, do-while, or switch statement. |
| 994 | Action::OwningExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar) { |
| 995 | QualType T = ConditionVar->getType(); |
| 996 | |
| 997 | // C++ [stmt.select]p2: |
| 998 | // The declarator shall not specify a function or an array. |
| 999 | if (T->isFunctionType()) |
| 1000 | return ExprError(Diag(ConditionVar->getLocation(), |
| 1001 | diag::err_invalid_use_of_function_type) |
| 1002 | << ConditionVar->getSourceRange()); |
| 1003 | else if (T->isArrayType()) |
| 1004 | return ExprError(Diag(ConditionVar->getLocation(), |
| 1005 | diag::err_invalid_use_of_array_type) |
| 1006 | << ConditionVar->getSourceRange()); |
| 1007 | |
| 1008 | return Owned(DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar, |
| 1009 | ConditionVar->getLocation(), |
| 1010 | ConditionVar->getType().getNonReferenceType())); |
| 1011 | } |
| 1012 | |
| 1013 | /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. |
| 1014 | bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) { |
| 1015 | // C++ 6.4p4: |
| 1016 | // The value of a condition that is an initialized declaration in a statement |
| 1017 | // other than a switch statement is the value of the declared variable |
| 1018 | // implicitly converted to type bool. If that conversion is ill-formed, the |
| 1019 | // program is ill-formed. |
| 1020 | // The value of a condition that is an expression is the value of the |
| 1021 | // expression, implicitly converted to bool. |
| 1022 | // |
| 1023 | return PerformContextuallyConvertToBool(CondExpr); |
| 1024 | } |
| 1025 | |
| 1026 | /// Helper function to determine whether this is the (deprecated) C++ |
| 1027 | /// conversion from a string literal to a pointer to non-const char or |
| 1028 | /// non-const wchar_t (for narrow and wide string literals, |
| 1029 | /// respectively). |
| 1030 | bool |
| 1031 | Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { |
| 1032 | // Look inside the implicit cast, if it exists. |
| 1033 | if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) |
| 1034 | From = Cast->getSubExpr(); |
| 1035 | |
| 1036 | // A string literal (2.13.4) that is not a wide string literal can |
| 1037 | // be converted to an rvalue of type "pointer to char"; a wide |
| 1038 | // string literal can be converted to an rvalue of type "pointer |
| 1039 | // to wchar_t" (C++ 4.2p2). |
| 1040 | if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From)) |
| 1041 | if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) |
| 1042 | if (const BuiltinType *ToPointeeType |
| 1043 | = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { |
| 1044 | // This conversion is considered only when there is an |
| 1045 | // explicit appropriate pointer target type (C++ 4.2p2). |
| 1046 | if (!ToPtrType->getPointeeType().hasQualifiers() && |
| 1047 | ((StrLit->isWide() && ToPointeeType->isWideCharType()) || |
| 1048 | (!StrLit->isWide() && |
| 1049 | (ToPointeeType->getKind() == BuiltinType::Char_U || |
| 1050 | ToPointeeType->getKind() == BuiltinType::Char_S)))) |
| 1051 | return true; |
| 1052 | } |
| 1053 | |
| 1054 | return false; |
| 1055 | } |
| 1056 | |
| 1057 | /// PerformImplicitConversion - Perform an implicit conversion of the |
| 1058 | /// expression From to the type ToType. Returns true if there was an |
| 1059 | /// error, false otherwise. The expression From is replaced with the |
| 1060 | /// converted expression. Flavor is the kind of conversion we're |
| 1061 | /// performing, used in the error message. If @p AllowExplicit, |
| 1062 | /// explicit user-defined conversions are permitted. @p Elidable should be true |
| 1063 | /// when called for copies which may be elided (C++ 12.8p15). C++0x overload |
| 1064 | /// resolution works differently in that case. |
| 1065 | bool |
| 1066 | Sema::PerformImplicitConversion(Expr *&From, QualType ToType, |
| 1067 | AssignmentAction Action, bool AllowExplicit, |
| 1068 | bool Elidable) { |
| 1069 | ImplicitConversionSequence ICS; |
| 1070 | return PerformImplicitConversion(From, ToType, Action, AllowExplicit, |
| 1071 | Elidable, ICS); |
| 1072 | } |
| 1073 | |
| 1074 | bool |
| 1075 | Sema::PerformImplicitConversion(Expr *&From, QualType ToType, |
| 1076 | AssignmentAction Action, bool AllowExplicit, |
| 1077 | bool Elidable, |
| 1078 | ImplicitConversionSequence& ICS) { |
| 1079 | ICS.setBad(); |
| 1080 | ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType); |
| 1081 | if (Elidable && getLangOptions().CPlusPlus0x) { |
| 1082 | ICS = TryImplicitConversion(From, ToType, |
| 1083 | /*SuppressUserConversions=*/false, |
| 1084 | AllowExplicit, |
| 1085 | /*ForceRValue=*/true, |
| 1086 | /*InOverloadResolution=*/false); |
| 1087 | } |
| 1088 | if (ICS.isBad()) { |
| 1089 | ICS = TryImplicitConversion(From, ToType, |
| 1090 | /*SuppressUserConversions=*/false, |
| 1091 | AllowExplicit, |
| 1092 | /*ForceRValue=*/false, |
| 1093 | /*InOverloadResolution=*/false); |
| 1094 | } |
| 1095 | return PerformImplicitConversion(From, ToType, ICS, Action); |
| 1096 | } |
| 1097 | |
| 1098 | /// PerformImplicitConversion - Perform an implicit conversion of the |
| 1099 | /// expression From to the type ToType using the pre-computed implicit |
| 1100 | /// conversion sequence ICS. Returns true if there was an error, false |
| 1101 | /// otherwise. The expression From is replaced with the converted |
| 1102 | /// expression. Action is the kind of conversion we're performing, |
| 1103 | /// used in the error message. |
| 1104 | bool |
| 1105 | Sema::PerformImplicitConversion(Expr *&From, QualType ToType, |
| 1106 | const ImplicitConversionSequence &ICS, |
| 1107 | AssignmentAction Action, bool IgnoreBaseAccess) { |
| 1108 | switch (ICS.getKind()) { |
| 1109 | case ImplicitConversionSequence::StandardConversion: |
| 1110 | if (PerformImplicitConversion(From, ToType, ICS.Standard, Action, |
| 1111 | IgnoreBaseAccess)) |
| 1112 | return true; |
| 1113 | break; |
| 1114 | |
| 1115 | case ImplicitConversionSequence::UserDefinedConversion: { |
| 1116 | |
| 1117 | FunctionDecl *FD = ICS.UserDefined.ConversionFunction; |
| 1118 | CastExpr::CastKind CastKind = CastExpr::CK_Unknown; |
| 1119 | QualType BeforeToType; |
| 1120 | if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { |
| 1121 | CastKind = CastExpr::CK_UserDefinedConversion; |
| 1122 | |
| 1123 | // If the user-defined conversion is specified by a conversion function, |
| 1124 | // the initial standard conversion sequence converts the source type to |
| 1125 | // the implicit object parameter of the conversion function. |
| 1126 | BeforeToType = Context.getTagDeclType(Conv->getParent()); |
| 1127 | } else if (const CXXConstructorDecl *Ctor = |
| 1128 | dyn_cast<CXXConstructorDecl>(FD)) { |
| 1129 | CastKind = CastExpr::CK_ConstructorConversion; |
| 1130 | // Do no conversion if dealing with ... for the first conversion. |
| 1131 | if (!ICS.UserDefined.EllipsisConversion) { |
| 1132 | // If the user-defined conversion is specified by a constructor, the |
| 1133 | // initial standard conversion sequence converts the source type to the |
| 1134 | // type required by the argument of the constructor |
| 1135 | BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); |
| 1136 | } |
| 1137 | } |
| 1138 | else |
| 1139 | assert(0 && "Unknown conversion function kind!"); |
| 1140 | // Whatch out for elipsis conversion. |
| 1141 | if (!ICS.UserDefined.EllipsisConversion) { |
| 1142 | if (PerformImplicitConversion(From, BeforeToType, |
| 1143 | ICS.UserDefined.Before, AA_Converting, |
| 1144 | IgnoreBaseAccess)) |
| 1145 | return true; |
| 1146 | } |
| 1147 | |
| 1148 | OwningExprResult CastArg |
| 1149 | = BuildCXXCastArgument(From->getLocStart(), |
| 1150 | ToType.getNonReferenceType(), |
| 1151 | CastKind, cast<CXXMethodDecl>(FD), |
| 1152 | Owned(From)); |
| 1153 | |
| 1154 | if (CastArg.isInvalid()) |
| 1155 | return true; |
| 1156 | |
| 1157 | From = CastArg.takeAs<Expr>(); |
| 1158 | |
| 1159 | return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, |
| 1160 | AA_Converting, IgnoreBaseAccess); |
| 1161 | } |
| 1162 | |
| 1163 | case ImplicitConversionSequence::AmbiguousConversion: |
| 1164 | DiagnoseAmbiguousConversion(ICS, From->getExprLoc(), |
| 1165 | PDiag(diag::err_typecheck_ambiguous_condition) |
| 1166 | << From->getSourceRange()); |
| 1167 | return true; |
| 1168 | |
| 1169 | case ImplicitConversionSequence::EllipsisConversion: |
| 1170 | assert(false && "Cannot perform an ellipsis conversion"); |
| 1171 | return false; |
| 1172 | |
| 1173 | case ImplicitConversionSequence::BadConversion: |
| 1174 | return true; |
| 1175 | } |
| 1176 | |
| 1177 | // Everything went well. |
| 1178 | return false; |
| 1179 | } |
| 1180 | |
| 1181 | /// PerformImplicitConversion - Perform an implicit conversion of the |
| 1182 | /// expression From to the type ToType by following the standard |
| 1183 | /// conversion sequence SCS. Returns true if there was an error, false |
| 1184 | /// otherwise. The expression From is replaced with the converted |
| 1185 | /// expression. Flavor is the context in which we're performing this |
| 1186 | /// conversion, for use in error messages. |
| 1187 | bool |
| 1188 | Sema::PerformImplicitConversion(Expr *&From, QualType ToType, |
| 1189 | const StandardConversionSequence& SCS, |
| 1190 | AssignmentAction Action, bool IgnoreBaseAccess) { |
| 1191 | // Overall FIXME: we are recomputing too many types here and doing far too |
| 1192 | // much extra work. What this means is that we need to keep track of more |
| 1193 | // information that is computed when we try the implicit conversion initially, |
| 1194 | // so that we don't need to recompute anything here. |
| 1195 | QualType FromType = From->getType(); |
| 1196 | |
| 1197 | if (SCS.CopyConstructor) { |
| 1198 | // FIXME: When can ToType be a reference type? |
| 1199 | assert(!ToType->isReferenceType()); |
| 1200 | if (SCS.Second == ICK_Derived_To_Base) { |
| 1201 | ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); |
| 1202 | if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor), |
| 1203 | MultiExprArg(*this, (void **)&From, 1), |
| 1204 | /*FIXME:ConstructLoc*/SourceLocation(), |
| 1205 | ConstructorArgs)) |
| 1206 | return true; |
| 1207 | OwningExprResult FromResult = |
| 1208 | BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), |
| 1209 | ToType, SCS.CopyConstructor, |
| 1210 | move_arg(ConstructorArgs)); |
| 1211 | if (FromResult.isInvalid()) |
| 1212 | return true; |
| 1213 | From = FromResult.takeAs<Expr>(); |
| 1214 | return false; |
| 1215 | } |
| 1216 | OwningExprResult FromResult = |
| 1217 | BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), |
| 1218 | ToType, SCS.CopyConstructor, |
| 1219 | MultiExprArg(*this, (void**)&From, 1)); |
| 1220 | |
| 1221 | if (FromResult.isInvalid()) |
| 1222 | return true; |
| 1223 | |
| 1224 | From = FromResult.takeAs<Expr>(); |
| 1225 | return false; |
| 1226 | } |
| 1227 | |
| 1228 | // Perform the first implicit conversion. |
| 1229 | switch (SCS.First) { |
| 1230 | case ICK_Identity: |
| 1231 | case ICK_Lvalue_To_Rvalue: |
| 1232 | // Nothing to do. |
| 1233 | break; |
| 1234 | |
| 1235 | case ICK_Array_To_Pointer: |
| 1236 | FromType = Context.getArrayDecayedType(FromType); |
| 1237 | ImpCastExprToType(From, FromType, CastExpr::CK_ArrayToPointerDecay); |
| 1238 | break; |
| 1239 | |
| 1240 | case ICK_Function_To_Pointer: |
| 1241 | if (Context.getCanonicalType(FromType) == Context.OverloadTy) { |
| 1242 | FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true); |
| 1243 | if (!Fn) |
| 1244 | return true; |
| 1245 | |
| 1246 | if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin())) |
| 1247 | return true; |
| 1248 | |
| 1249 | From = FixOverloadedFunctionReference(From, Fn); |
| 1250 | FromType = From->getType(); |
| 1251 | |
| 1252 | // If there's already an address-of operator in the expression, we have |
| 1253 | // the right type already, and the code below would just introduce an |
| 1254 | // invalid additional pointer level. |
| 1255 | if (FromType->isPointerType() || FromType->isMemberFunctionPointerType()) |
| 1256 | break; |
| 1257 | } |
| 1258 | FromType = Context.getPointerType(FromType); |
| 1259 | ImpCastExprToType(From, FromType, CastExpr::CK_FunctionToPointerDecay); |
| 1260 | break; |
| 1261 | |
| 1262 | default: |
| 1263 | assert(false && "Improper first standard conversion"); |
| 1264 | break; |
| 1265 | } |
| 1266 | |
| 1267 | // Perform the second implicit conversion |
| 1268 | switch (SCS.Second) { |
| 1269 | case ICK_Identity: |
| 1270 | // If both sides are functions (or pointers/references to them), there could |
| 1271 | // be incompatible exception declarations. |
| 1272 | if (CheckExceptionSpecCompatibility(From, ToType)) |
| 1273 | return true; |
| 1274 | // Nothing else to do. |
| 1275 | break; |
| 1276 | |
| 1277 | case ICK_NoReturn_Adjustment: |
| 1278 | // If both sides are functions (or pointers/references to them), there could |
| 1279 | // be incompatible exception declarations. |
| 1280 | if (CheckExceptionSpecCompatibility(From, ToType)) |
| 1281 | return true; |
| 1282 | |
| 1283 | ImpCastExprToType(From, Context.getNoReturnType(From->getType(), false), |
| 1284 | CastExpr::CK_NoOp); |
| 1285 | break; |
| 1286 | |
| 1287 | case ICK_Integral_Promotion: |
| 1288 | case ICK_Integral_Conversion: |
| 1289 | ImpCastExprToType(From, ToType, CastExpr::CK_IntegralCast); |
| 1290 | break; |
| 1291 | |
| 1292 | case ICK_Floating_Promotion: |
| 1293 | case ICK_Floating_Conversion: |
| 1294 | ImpCastExprToType(From, ToType, CastExpr::CK_FloatingCast); |
| 1295 | break; |
| 1296 | |
| 1297 | case ICK_Complex_Promotion: |
| 1298 | case ICK_Complex_Conversion: |
| 1299 | ImpCastExprToType(From, ToType, CastExpr::CK_Unknown); |
| 1300 | break; |
| 1301 | |
| 1302 | case ICK_Floating_Integral: |
| 1303 | if (ToType->isFloatingType()) |
| 1304 | ImpCastExprToType(From, ToType, CastExpr::CK_IntegralToFloating); |
| 1305 | else |
| 1306 | ImpCastExprToType(From, ToType, CastExpr::CK_FloatingToIntegral); |
| 1307 | break; |
| 1308 | |
| 1309 | case ICK_Complex_Real: |
| 1310 | ImpCastExprToType(From, ToType, CastExpr::CK_Unknown); |
| 1311 | break; |
| 1312 | |
| 1313 | case ICK_Compatible_Conversion: |
| 1314 | ImpCastExprToType(From, ToType, CastExpr::CK_NoOp); |
| 1315 | break; |
| 1316 | |
| 1317 | case ICK_Pointer_Conversion: { |
| 1318 | if (SCS.IncompatibleObjC) { |
| 1319 | // Diagnose incompatible Objective-C conversions |
| 1320 | Diag(From->getSourceRange().getBegin(), |
| 1321 | diag::ext_typecheck_convert_incompatible_pointer) |
| 1322 | << From->getType() << ToType << Action |
| 1323 | << From->getSourceRange(); |
| 1324 | } |
| 1325 | |
| 1326 | |
| 1327 | CastExpr::CastKind Kind = CastExpr::CK_Unknown; |
| 1328 | if (CheckPointerConversion(From, ToType, Kind, IgnoreBaseAccess)) |
| 1329 | return true; |
| 1330 | ImpCastExprToType(From, ToType, Kind); |
| 1331 | break; |
| 1332 | } |
| 1333 | |
| 1334 | case ICK_Pointer_Member: { |
| 1335 | CastExpr::CastKind Kind = CastExpr::CK_Unknown; |
| 1336 | if (CheckMemberPointerConversion(From, ToType, Kind, IgnoreBaseAccess)) |
| 1337 | return true; |
| 1338 | if (CheckExceptionSpecCompatibility(From, ToType)) |
| 1339 | return true; |
| 1340 | ImpCastExprToType(From, ToType, Kind); |
| 1341 | break; |
| 1342 | } |
| 1343 | case ICK_Boolean_Conversion: { |
| 1344 | CastExpr::CastKind Kind = CastExpr::CK_Unknown; |
| 1345 | if (FromType->isMemberPointerType()) |
| 1346 | Kind = CastExpr::CK_MemberPointerToBoolean; |
| 1347 | |
| 1348 | ImpCastExprToType(From, Context.BoolTy, Kind); |
| 1349 | break; |
| 1350 | } |
| 1351 | |
| 1352 | case ICK_Derived_To_Base: |
| 1353 | if (CheckDerivedToBaseConversion(From->getType(), |
| 1354 | ToType.getNonReferenceType(), |
| 1355 | From->getLocStart(), |
| 1356 | From->getSourceRange(), |
| 1357 | IgnoreBaseAccess)) |
| 1358 | return true; |
| 1359 | ImpCastExprToType(From, ToType.getNonReferenceType(), |
| 1360 | CastExpr::CK_DerivedToBase); |
| 1361 | break; |
| 1362 | |
| 1363 | default: |
| 1364 | assert(false && "Improper second standard conversion"); |
| 1365 | break; |
| 1366 | } |
| 1367 | |
| 1368 | switch (SCS.Third) { |
| 1369 | case ICK_Identity: |
| 1370 | // Nothing to do. |
| 1371 | break; |
| 1372 | |
| 1373 | case ICK_Qualification: |
| 1374 | // FIXME: Not sure about lvalue vs rvalue here in the presence of rvalue |
| 1375 | // references. |
| 1376 | ImpCastExprToType(From, ToType.getNonReferenceType(), |
| 1377 | CastExpr::CK_NoOp, |
| 1378 | ToType->isLValueReferenceType()); |
| 1379 | break; |
| 1380 | |
| 1381 | default: |
| 1382 | assert(false && "Improper second standard conversion"); |
| 1383 | break; |
| 1384 | } |
| 1385 | |
| 1386 | return false; |
| 1387 | } |
| 1388 | |
| 1389 | Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT, |
| 1390 | SourceLocation KWLoc, |
| 1391 | SourceLocation LParen, |
| 1392 | TypeTy *Ty, |
| 1393 | SourceLocation RParen) { |
| 1394 | QualType T = GetTypeFromParser(Ty); |
| 1395 | |
| 1396 | // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html |
| 1397 | // all traits except __is_class, __is_enum and __is_union require a the type |
| 1398 | // to be complete. |
| 1399 | if (OTT != UTT_IsClass && OTT != UTT_IsEnum && OTT != UTT_IsUnion) { |
| 1400 | if (RequireCompleteType(KWLoc, T, |
| 1401 | diag::err_incomplete_type_used_in_type_trait_expr)) |
| 1402 | return ExprError(); |
| 1403 | } |
| 1404 | |
| 1405 | // There is no point in eagerly computing the value. The traits are designed |
| 1406 | // to be used from type trait templates, so Ty will be a template parameter |
| 1407 | // 99% of the time. |
| 1408 | return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT, T, |
| 1409 | RParen, Context.BoolTy)); |
| 1410 | } |
| 1411 | |
| 1412 | QualType Sema::CheckPointerToMemberOperands( |
| 1413 | Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect) { |
| 1414 | const char *OpSpelling = isIndirect ? "->*" : ".*"; |
| 1415 | // C++ 5.5p2 |
| 1416 | // The binary operator .* [p3: ->*] binds its second operand, which shall |
| 1417 | // be of type "pointer to member of T" (where T is a completely-defined |
| 1418 | // class type) [...] |
| 1419 | QualType RType = rex->getType(); |
| 1420 | const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>(); |
| 1421 | if (!MemPtr) { |
| 1422 | Diag(Loc, diag::err_bad_memptr_rhs) |
| 1423 | << OpSpelling << RType << rex->getSourceRange(); |
| 1424 | return QualType(); |
| 1425 | } |
| 1426 | |
| 1427 | QualType Class(MemPtr->getClass(), 0); |
| 1428 | |
| 1429 | // C++ 5.5p2 |
| 1430 | // [...] to its first operand, which shall be of class T or of a class of |
| 1431 | // which T is an unambiguous and accessible base class. [p3: a pointer to |
| 1432 | // such a class] |
| 1433 | QualType LType = lex->getType(); |
| 1434 | if (isIndirect) { |
| 1435 | if (const PointerType *Ptr = LType->getAs<PointerType>()) |
| 1436 | LType = Ptr->getPointeeType().getNonReferenceType(); |
| 1437 | else { |
| 1438 | Diag(Loc, diag::err_bad_memptr_lhs) |
| 1439 | << OpSpelling << 1 << LType |
| 1440 | << CodeModificationHint::CreateReplacement(SourceRange(Loc), ".*"); |
| 1441 | return QualType(); |
| 1442 | } |
| 1443 | } |
| 1444 | |
| 1445 | if (!Context.hasSameUnqualifiedType(Class, LType)) { |
| 1446 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, |
| 1447 | /*DetectVirtual=*/false); |
| 1448 | // FIXME: Would it be useful to print full ambiguity paths, or is that |
| 1449 | // overkill? |
| 1450 | if (!IsDerivedFrom(LType, Class, Paths) || |
| 1451 | Paths.isAmbiguous(Context.getCanonicalType(Class))) { |
| 1452 | Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling |
| 1453 | << (int)isIndirect << lex->getType(); |
| 1454 | return QualType(); |
| 1455 | } |
| 1456 | // Cast LHS to type of use. |
| 1457 | QualType UseType = isIndirect ? Context.getPointerType(Class) : Class; |
| 1458 | bool isLValue = !isIndirect && lex->isLvalue(Context) == Expr::LV_Valid; |
| 1459 | ImpCastExprToType(lex, UseType, CastExpr::CK_DerivedToBase, isLValue); |
| 1460 | } |
| 1461 | |
| 1462 | if (isa<CXXZeroInitValueExpr>(rex->IgnoreParens())) { |
| 1463 | // Diagnose use of pointer-to-member type which when used as |
| 1464 | // the functional cast in a pointer-to-member expression. |
| 1465 | Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; |
| 1466 | return QualType(); |
| 1467 | } |
| 1468 | // C++ 5.5p2 |
| 1469 | // The result is an object or a function of the type specified by the |
| 1470 | // second operand. |
| 1471 | // The cv qualifiers are the union of those in the pointer and the left side, |
| 1472 | // in accordance with 5.5p5 and 5.2.5. |
| 1473 | // FIXME: This returns a dereferenced member function pointer as a normal |
| 1474 | // function type. However, the only operation valid on such functions is |
| 1475 | // calling them. There's also a GCC extension to get a function pointer to the |
| 1476 | // thing, which is another complication, because this type - unlike the type |
| 1477 | // that is the result of this expression - takes the class as the first |
| 1478 | // argument. |
| 1479 | // We probably need a "MemberFunctionClosureType" or something like that. |
| 1480 | QualType Result = MemPtr->getPointeeType(); |
| 1481 | Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers()); |
| 1482 | return Result; |
| 1483 | } |
| 1484 | |
| 1485 | /// \brief Get the target type of a standard or user-defined conversion. |
| 1486 | static QualType TargetType(const ImplicitConversionSequence &ICS) { |
| 1487 | switch (ICS.getKind()) { |
| 1488 | case ImplicitConversionSequence::StandardConversion: |
| 1489 | return ICS.Standard.getToType(2); |
| 1490 | case ImplicitConversionSequence::UserDefinedConversion: |
| 1491 | return ICS.UserDefined.After.getToType(2); |
| 1492 | case ImplicitConversionSequence::AmbiguousConversion: |
| 1493 | return ICS.Ambiguous.getToType(); |
| 1494 | case ImplicitConversionSequence::EllipsisConversion: |
| 1495 | case ImplicitConversionSequence::BadConversion: |
| 1496 | llvm_unreachable("function not valid for ellipsis or bad conversions"); |
| 1497 | } |
| 1498 | return QualType(); // silence warnings |
| 1499 | } |
| 1500 | |
| 1501 | /// \brief Try to convert a type to another according to C++0x 5.16p3. |
| 1502 | /// |
| 1503 | /// This is part of the parameter validation for the ? operator. If either |
| 1504 | /// value operand is a class type, the two operands are attempted to be |
| 1505 | /// converted to each other. This function does the conversion in one direction. |
| 1506 | /// It emits a diagnostic and returns true only if it finds an ambiguous |
| 1507 | /// conversion. |
| 1508 | static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, |
| 1509 | SourceLocation QuestionLoc, |
| 1510 | ImplicitConversionSequence &ICS) { |
| 1511 | // C++0x 5.16p3 |
| 1512 | // The process for determining whether an operand expression E1 of type T1 |
| 1513 | // can be converted to match an operand expression E2 of type T2 is defined |
| 1514 | // as follows: |
| 1515 | // -- If E2 is an lvalue: |
| 1516 | if (To->isLvalue(Self.Context) == Expr::LV_Valid) { |
| 1517 | // E1 can be converted to match E2 if E1 can be implicitly converted to |
| 1518 | // type "lvalue reference to T2", subject to the constraint that in the |
| 1519 | // conversion the reference must bind directly to E1. |
| 1520 | if (!Self.CheckReferenceInit(From, |
| 1521 | Self.Context.getLValueReferenceType(To->getType()), |
| 1522 | To->getLocStart(), |
| 1523 | /*SuppressUserConversions=*/false, |
| 1524 | /*AllowExplicit=*/false, |
| 1525 | /*ForceRValue=*/false, |
| 1526 | &ICS)) |
| 1527 | { |
| 1528 | assert((ICS.isStandard() || ICS.isUserDefined()) && |
| 1529 | "expected a definite conversion"); |
| 1530 | bool DirectBinding = |
| 1531 | ICS.isStandard() ? ICS.Standard.DirectBinding |
| 1532 | : ICS.UserDefined.After.DirectBinding; |
| 1533 | if (DirectBinding) |
| 1534 | return false; |
| 1535 | } |
| 1536 | } |
| 1537 | ICS.setBad(); |
| 1538 | // -- If E2 is an rvalue, or if the conversion above cannot be done: |
| 1539 | // -- if E1 and E2 have class type, and the underlying class types are |
| 1540 | // the same or one is a base class of the other: |
| 1541 | QualType FTy = From->getType(); |
| 1542 | QualType TTy = To->getType(); |
| 1543 | const RecordType *FRec = FTy->getAs<RecordType>(); |
| 1544 | const RecordType *TRec = TTy->getAs<RecordType>(); |
| 1545 | bool FDerivedFromT = FRec && TRec && Self.IsDerivedFrom(FTy, TTy); |
| 1546 | if (FRec && TRec && (FRec == TRec || |
| 1547 | FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) { |
| 1548 | // E1 can be converted to match E2 if the class of T2 is the |
| 1549 | // same type as, or a base class of, the class of T1, and |
| 1550 | // [cv2 > cv1]. |
| 1551 | if ((FRec == TRec || FDerivedFromT) && TTy.isAtLeastAsQualifiedAs(FTy)) { |
| 1552 | // Could still fail if there's no copy constructor. |
| 1553 | // FIXME: Is this a hard error then, or just a conversion failure? The |
| 1554 | // standard doesn't say. |
| 1555 | ICS = Self.TryCopyInitialization(From, TTy, |
| 1556 | /*SuppressUserConversions=*/false, |
| 1557 | /*ForceRValue=*/false, |
| 1558 | /*InOverloadResolution=*/false); |
| 1559 | } |
| 1560 | } else { |
| 1561 | // -- Otherwise: E1 can be converted to match E2 if E1 can be |
| 1562 | // implicitly converted to the type that expression E2 would have |
| 1563 | // if E2 were converted to an rvalue. |
| 1564 | // First find the decayed type. |
| 1565 | if (TTy->isFunctionType()) |
| 1566 | TTy = Self.Context.getPointerType(TTy); |
| 1567 | else if (TTy->isArrayType()) |
| 1568 | TTy = Self.Context.getArrayDecayedType(TTy); |
| 1569 | |
| 1570 | // Now try the implicit conversion. |
| 1571 | // FIXME: This doesn't detect ambiguities. |
| 1572 | ICS = Self.TryImplicitConversion(From, TTy, |
| 1573 | /*SuppressUserConversions=*/false, |
| 1574 | /*AllowExplicit=*/false, |
| 1575 | /*ForceRValue=*/false, |
| 1576 | /*InOverloadResolution=*/false); |
| 1577 | } |
| 1578 | return false; |
| 1579 | } |
| 1580 | |
| 1581 | /// \brief Try to find a common type for two according to C++0x 5.16p5. |
| 1582 | /// |
| 1583 | /// This is part of the parameter validation for the ? operator. If either |
| 1584 | /// value operand is a class type, overload resolution is used to find a |
| 1585 | /// conversion to a common type. |
| 1586 | static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS, |
| 1587 | SourceLocation Loc) { |
| 1588 | Expr *Args[2] = { LHS, RHS }; |
| 1589 | OverloadCandidateSet CandidateSet(Loc); |
| 1590 | Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet); |
| 1591 | |
| 1592 | OverloadCandidateSet::iterator Best; |
| 1593 | switch (Self.BestViableFunction(CandidateSet, Loc, Best)) { |
| 1594 | case OR_Success: |
| 1595 | // We found a match. Perform the conversions on the arguments and move on. |
| 1596 | if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0], |
| 1597 | Best->Conversions[0], Sema::AA_Converting) || |
| 1598 | Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1], |
| 1599 | Best->Conversions[1], Sema::AA_Converting)) |
| 1600 | break; |
| 1601 | return false; |
| 1602 | |
| 1603 | case OR_No_Viable_Function: |
| 1604 | Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands) |
| 1605 | << LHS->getType() << RHS->getType() |
| 1606 | << LHS->getSourceRange() << RHS->getSourceRange(); |
| 1607 | return true; |
| 1608 | |
| 1609 | case OR_Ambiguous: |
| 1610 | Self.Diag(Loc, diag::err_conditional_ambiguous_ovl) |
| 1611 | << LHS->getType() << RHS->getType() |
| 1612 | << LHS->getSourceRange() << RHS->getSourceRange(); |
| 1613 | // FIXME: Print the possible common types by printing the return types of |
| 1614 | // the viable candidates. |
| 1615 | break; |
| 1616 | |
| 1617 | case OR_Deleted: |
| 1618 | assert(false && "Conditional operator has only built-in overloads"); |
| 1619 | break; |
| 1620 | } |
| 1621 | return true; |
| 1622 | } |
| 1623 | |
| 1624 | /// \brief Perform an "extended" implicit conversion as returned by |
| 1625 | /// TryClassUnification. |
| 1626 | /// |
| 1627 | /// TryClassUnification generates ICSs that include reference bindings. |
| 1628 | /// PerformImplicitConversion is not suitable for this; it chokes if the |
| 1629 | /// second part of a standard conversion is ICK_DerivedToBase. This function |
| 1630 | /// handles the reference binding specially. |
| 1631 | static bool ConvertForConditional(Sema &Self, Expr *&E, |
| 1632 | const ImplicitConversionSequence &ICS) { |
| 1633 | if (ICS.isStandard() && ICS.Standard.ReferenceBinding) { |
| 1634 | assert(ICS.Standard.DirectBinding && |
| 1635 | "TryClassUnification should never generate indirect ref bindings"); |
| 1636 | // FIXME: CheckReferenceInit should be able to reuse the ICS instead of |
| 1637 | // redoing all the work. |
| 1638 | return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType( |
| 1639 | TargetType(ICS)), |
| 1640 | /*FIXME:*/E->getLocStart(), |
| 1641 | /*SuppressUserConversions=*/false, |
| 1642 | /*AllowExplicit=*/false, |
| 1643 | /*ForceRValue=*/false); |
| 1644 | } |
| 1645 | if (ICS.isUserDefined() && ICS.UserDefined.After.ReferenceBinding) { |
| 1646 | assert(ICS.UserDefined.After.DirectBinding && |
| 1647 | "TryClassUnification should never generate indirect ref bindings"); |
| 1648 | return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType( |
| 1649 | TargetType(ICS)), |
| 1650 | /*FIXME:*/E->getLocStart(), |
| 1651 | /*SuppressUserConversions=*/false, |
| 1652 | /*AllowExplicit=*/false, |
| 1653 | /*ForceRValue=*/false); |
| 1654 | } |
| 1655 | if (Self.PerformImplicitConversion(E, TargetType(ICS), ICS, Sema::AA_Converting)) |
| 1656 | return true; |
| 1657 | return false; |
| 1658 | } |
| 1659 | |
| 1660 | /// \brief Check the operands of ?: under C++ semantics. |
| 1661 | /// |
| 1662 | /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y |
| 1663 | /// extension. In this case, LHS == Cond. (But they're not aliases.) |
| 1664 | QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, |
| 1665 | SourceLocation QuestionLoc) { |
| 1666 | // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ |
| 1667 | // interface pointers. |
| 1668 | |
| 1669 | // C++0x 5.16p1 |
| 1670 | // The first expression is contextually converted to bool. |
| 1671 | if (!Cond->isTypeDependent()) { |
| 1672 | if (CheckCXXBooleanCondition(Cond)) |
| 1673 | return QualType(); |
| 1674 | } |
| 1675 | |
| 1676 | // Either of the arguments dependent? |
| 1677 | if (LHS->isTypeDependent() || RHS->isTypeDependent()) |
| 1678 | return Context.DependentTy; |
| 1679 | |
| 1680 | CheckSignCompare(LHS, RHS, QuestionLoc, diag::warn_mixed_sign_conditional); |
| 1681 | |
| 1682 | // C++0x 5.16p2 |
| 1683 | // If either the second or the third operand has type (cv) void, ... |
| 1684 | QualType LTy = LHS->getType(); |
| 1685 | QualType RTy = RHS->getType(); |
| 1686 | bool LVoid = LTy->isVoidType(); |
| 1687 | bool RVoid = RTy->isVoidType(); |
| 1688 | if (LVoid || RVoid) { |
| 1689 | // ... then the [l2r] conversions are performed on the second and third |
| 1690 | // operands ... |
| 1691 | DefaultFunctionArrayLvalueConversion(LHS); |
| 1692 | DefaultFunctionArrayLvalueConversion(RHS); |
| 1693 | LTy = LHS->getType(); |
| 1694 | RTy = RHS->getType(); |
| 1695 | |
| 1696 | // ... and one of the following shall hold: |
| 1697 | // -- The second or the third operand (but not both) is a throw- |
| 1698 | // expression; the result is of the type of the other and is an rvalue. |
| 1699 | bool LThrow = isa<CXXThrowExpr>(LHS); |
| 1700 | bool RThrow = isa<CXXThrowExpr>(RHS); |
| 1701 | if (LThrow && !RThrow) |
| 1702 | return RTy; |
| 1703 | if (RThrow && !LThrow) |
| 1704 | return LTy; |
| 1705 | |
| 1706 | // -- Both the second and third operands have type void; the result is of |
| 1707 | // type void and is an rvalue. |
| 1708 | if (LVoid && RVoid) |
| 1709 | return Context.VoidTy; |
| 1710 | |
| 1711 | // Neither holds, error. |
| 1712 | Diag(QuestionLoc, diag::err_conditional_void_nonvoid) |
| 1713 | << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) |
| 1714 | << LHS->getSourceRange() << RHS->getSourceRange(); |
| 1715 | return QualType(); |
| 1716 | } |
| 1717 | |
| 1718 | // Neither is void. |
| 1719 | |
| 1720 | // C++0x 5.16p3 |
| 1721 | // Otherwise, if the second and third operand have different types, and |
| 1722 | // either has (cv) class type, and attempt is made to convert each of those |
| 1723 | // operands to the other. |
| 1724 | if (Context.getCanonicalType(LTy) != Context.getCanonicalType(RTy) && |
| 1725 | (LTy->isRecordType() || RTy->isRecordType())) { |
| 1726 | ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft; |
| 1727 | // These return true if a single direction is already ambiguous. |
| 1728 | if (TryClassUnification(*this, LHS, RHS, QuestionLoc, ICSLeftToRight)) |
| 1729 | return QualType(); |
| 1730 | if (TryClassUnification(*this, RHS, LHS, QuestionLoc, ICSRightToLeft)) |
| 1731 | return QualType(); |
| 1732 | |
| 1733 | bool HaveL2R = !ICSLeftToRight.isBad(); |
| 1734 | bool HaveR2L = !ICSRightToLeft.isBad(); |
| 1735 | // If both can be converted, [...] the program is ill-formed. |
| 1736 | if (HaveL2R && HaveR2L) { |
| 1737 | Diag(QuestionLoc, diag::err_conditional_ambiguous) |
| 1738 | << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange(); |
| 1739 | return QualType(); |
| 1740 | } |
| 1741 | |
| 1742 | // If exactly one conversion is possible, that conversion is applied to |
| 1743 | // the chosen operand and the converted operands are used in place of the |
| 1744 | // original operands for the remainder of this section. |
| 1745 | if (HaveL2R) { |
| 1746 | if (ConvertForConditional(*this, LHS, ICSLeftToRight)) |
| 1747 | return QualType(); |
| 1748 | LTy = LHS->getType(); |
| 1749 | } else if (HaveR2L) { |
| 1750 | if (ConvertForConditional(*this, RHS, ICSRightToLeft)) |
| 1751 | return QualType(); |
| 1752 | RTy = RHS->getType(); |
| 1753 | } |
| 1754 | } |
| 1755 | |
| 1756 | // C++0x 5.16p4 |
| 1757 | // If the second and third operands are lvalues and have the same type, |
| 1758 | // the result is of that type [...] |
| 1759 | bool Same = Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy); |
| 1760 | if (Same && LHS->isLvalue(Context) == Expr::LV_Valid && |
| 1761 | RHS->isLvalue(Context) == Expr::LV_Valid) |
| 1762 | return LTy; |
| 1763 | |
| 1764 | // C++0x 5.16p5 |
| 1765 | // Otherwise, the result is an rvalue. If the second and third operands |
| 1766 | // do not have the same type, and either has (cv) class type, ... |
| 1767 | if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { |
| 1768 | // ... overload resolution is used to determine the conversions (if any) |
| 1769 | // to be applied to the operands. If the overload resolution fails, the |
| 1770 | // program is ill-formed. |
| 1771 | if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) |
| 1772 | return QualType(); |
| 1773 | } |
| 1774 | |
| 1775 | // C++0x 5.16p6 |
| 1776 | // LValue-to-rvalue, array-to-pointer, and function-to-pointer standard |
| 1777 | // conversions are performed on the second and third operands. |
| 1778 | DefaultFunctionArrayLvalueConversion(LHS); |
| 1779 | DefaultFunctionArrayLvalueConversion(RHS); |
| 1780 | LTy = LHS->getType(); |
| 1781 | RTy = RHS->getType(); |
| 1782 | |
| 1783 | // After those conversions, one of the following shall hold: |
| 1784 | // -- The second and third operands have the same type; the result |
| 1785 | // is of that type. |
| 1786 | if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) |
| 1787 | return LTy; |
| 1788 | |
| 1789 | // -- The second and third operands have arithmetic or enumeration type; |
| 1790 | // the usual arithmetic conversions are performed to bring them to a |
| 1791 | // common type, and the result is of that type. |
| 1792 | if (LTy->isArithmeticType() && RTy->isArithmeticType()) { |
| 1793 | UsualArithmeticConversions(LHS, RHS); |
| 1794 | return LHS->getType(); |
| 1795 | } |
| 1796 | |
| 1797 | // -- The second and third operands have pointer type, or one has pointer |
| 1798 | // type and the other is a null pointer constant; pointer conversions |
| 1799 | // and qualification conversions are performed to bring them to their |
| 1800 | // composite pointer type. The result is of the composite pointer type. |
| 1801 | // -- The second and third operands have pointer to member type, or one has |
| 1802 | // pointer to member type and the other is a null pointer constant; |
| 1803 | // pointer to member conversions and qualification conversions are |
| 1804 | // performed to bring them to a common type, whose cv-qualification |
| 1805 | // shall match the cv-qualification of either the second or the third |
| 1806 | // operand. The result is of the common type. |
| 1807 | QualType Composite = FindCompositePointerType(LHS, RHS); |
| 1808 | if (!Composite.isNull()) |
| 1809 | return Composite; |
| 1810 | |
| 1811 | // Similarly, attempt to find composite type of twp objective-c pointers. |
| 1812 | Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); |
| 1813 | if (!Composite.isNull()) |
| 1814 | return Composite; |
| 1815 | |
| 1816 | Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
| 1817 | << LHS->getType() << RHS->getType() |
| 1818 | << LHS->getSourceRange() << RHS->getSourceRange(); |
| 1819 | return QualType(); |
| 1820 | } |
| 1821 | |
| 1822 | /// \brief Find a merged pointer type and convert the two expressions to it. |
| 1823 | /// |
| 1824 | /// This finds the composite pointer type (or member pointer type) for @p E1 |
| 1825 | /// and @p E2 according to C++0x 5.9p2. It converts both expressions to this |
| 1826 | /// type and returns it. |
| 1827 | /// It does not emit diagnostics. |
| 1828 | QualType Sema::FindCompositePointerType(Expr *&E1, Expr *&E2) { |
| 1829 | assert(getLangOptions().CPlusPlus && "This function assumes C++"); |
| 1830 | QualType T1 = E1->getType(), T2 = E2->getType(); |
| 1831 | |
| 1832 | if (!T1->isAnyPointerType() && !T1->isMemberPointerType() && |
| 1833 | !T2->isAnyPointerType() && !T2->isMemberPointerType()) |
| 1834 | return QualType(); |
| 1835 | |
| 1836 | // C++0x 5.9p2 |
| 1837 | // Pointer conversions and qualification conversions are performed on |
| 1838 | // pointer operands to bring them to their composite pointer type. If |
| 1839 | // one operand is a null pointer constant, the composite pointer type is |
| 1840 | // the type of the other operand. |
| 1841 | if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { |
| 1842 | if (T2->isMemberPointerType()) |
| 1843 | ImpCastExprToType(E1, T2, CastExpr::CK_NullToMemberPointer); |
| 1844 | else |
| 1845 | ImpCastExprToType(E1, T2, CastExpr::CK_IntegralToPointer); |
| 1846 | return T2; |
| 1847 | } |
| 1848 | if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { |
| 1849 | if (T1->isMemberPointerType()) |
| 1850 | ImpCastExprToType(E2, T1, CastExpr::CK_NullToMemberPointer); |
| 1851 | else |
| 1852 | ImpCastExprToType(E2, T1, CastExpr::CK_IntegralToPointer); |
| 1853 | return T1; |
| 1854 | } |
| 1855 | |
| 1856 | // Now both have to be pointers or member pointers. |
| 1857 | if ((!T1->isPointerType() && !T1->isMemberPointerType()) || |
| 1858 | (!T2->isPointerType() && !T2->isMemberPointerType())) |
| 1859 | return QualType(); |
| 1860 | |
| 1861 | // Otherwise, of one of the operands has type "pointer to cv1 void," then |
| 1862 | // the other has type "pointer to cv2 T" and the composite pointer type is |
| 1863 | // "pointer to cv12 void," where cv12 is the union of cv1 and cv2. |
| 1864 | // Otherwise, the composite pointer type is a pointer type similar to the |
| 1865 | // type of one of the operands, with a cv-qualification signature that is |
| 1866 | // the union of the cv-qualification signatures of the operand types. |
| 1867 | // In practice, the first part here is redundant; it's subsumed by the second. |
| 1868 | // What we do here is, we build the two possible composite types, and try the |
| 1869 | // conversions in both directions. If only one works, or if the two composite |
| 1870 | // types are the same, we have succeeded. |
| 1871 | // FIXME: extended qualifiers? |
| 1872 | typedef llvm::SmallVector<unsigned, 4> QualifierVector; |
| 1873 | QualifierVector QualifierUnion; |
| 1874 | typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4> |
| 1875 | ContainingClassVector; |
| 1876 | ContainingClassVector MemberOfClass; |
| 1877 | QualType Composite1 = Context.getCanonicalType(T1), |
| 1878 | Composite2 = Context.getCanonicalType(T2); |
| 1879 | do { |
| 1880 | const PointerType *Ptr1, *Ptr2; |
| 1881 | if ((Ptr1 = Composite1->getAs<PointerType>()) && |
| 1882 | (Ptr2 = Composite2->getAs<PointerType>())) { |
| 1883 | Composite1 = Ptr1->getPointeeType(); |
| 1884 | Composite2 = Ptr2->getPointeeType(); |
| 1885 | QualifierUnion.push_back( |
| 1886 | Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); |
| 1887 | MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0)); |
| 1888 | continue; |
| 1889 | } |
| 1890 | |
| 1891 | const MemberPointerType *MemPtr1, *MemPtr2; |
| 1892 | if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && |
| 1893 | (MemPtr2 = Composite2->getAs<MemberPointerType>())) { |
| 1894 | Composite1 = MemPtr1->getPointeeType(); |
| 1895 | Composite2 = MemPtr2->getPointeeType(); |
| 1896 | QualifierUnion.push_back( |
| 1897 | Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); |
| 1898 | MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(), |
| 1899 | MemPtr2->getClass())); |
| 1900 | continue; |
| 1901 | } |
| 1902 | |
| 1903 | // FIXME: block pointer types? |
| 1904 | |
| 1905 | // Cannot unwrap any more types. |
| 1906 | break; |
| 1907 | } while (true); |
| 1908 | |
| 1909 | // Rewrap the composites as pointers or member pointers with the union CVRs. |
| 1910 | ContainingClassVector::reverse_iterator MOC |
| 1911 | = MemberOfClass.rbegin(); |
| 1912 | for (QualifierVector::reverse_iterator |
| 1913 | I = QualifierUnion.rbegin(), |
| 1914 | E = QualifierUnion.rend(); |
| 1915 | I != E; (void)++I, ++MOC) { |
| 1916 | Qualifiers Quals = Qualifiers::fromCVRMask(*I); |
| 1917 | if (MOC->first && MOC->second) { |
| 1918 | // Rebuild member pointer type |
| 1919 | Composite1 = Context.getMemberPointerType( |
| 1920 | Context.getQualifiedType(Composite1, Quals), |
| 1921 | MOC->first); |
| 1922 | Composite2 = Context.getMemberPointerType( |
| 1923 | Context.getQualifiedType(Composite2, Quals), |
| 1924 | MOC->second); |
| 1925 | } else { |
| 1926 | // Rebuild pointer type |
| 1927 | Composite1 |
| 1928 | = Context.getPointerType(Context.getQualifiedType(Composite1, Quals)); |
| 1929 | Composite2 |
| 1930 | = Context.getPointerType(Context.getQualifiedType(Composite2, Quals)); |
| 1931 | } |
| 1932 | } |
| 1933 | |
| 1934 | ImplicitConversionSequence E1ToC1 = |
| 1935 | TryImplicitConversion(E1, Composite1, |
| 1936 | /*SuppressUserConversions=*/false, |
| 1937 | /*AllowExplicit=*/false, |
| 1938 | /*ForceRValue=*/false, |
| 1939 | /*InOverloadResolution=*/false); |
| 1940 | ImplicitConversionSequence E2ToC1 = |
| 1941 | TryImplicitConversion(E2, Composite1, |
| 1942 | /*SuppressUserConversions=*/false, |
| 1943 | /*AllowExplicit=*/false, |
| 1944 | /*ForceRValue=*/false, |
| 1945 | /*InOverloadResolution=*/false); |
| 1946 | |
| 1947 | ImplicitConversionSequence E1ToC2, E2ToC2; |
| 1948 | E1ToC2.setBad(); |
| 1949 | E2ToC2.setBad(); |
| 1950 | if (Context.getCanonicalType(Composite1) != |
| 1951 | Context.getCanonicalType(Composite2)) { |
| 1952 | E1ToC2 = TryImplicitConversion(E1, Composite2, |
| 1953 | /*SuppressUserConversions=*/false, |
| 1954 | /*AllowExplicit=*/false, |
| 1955 | /*ForceRValue=*/false, |
| 1956 | /*InOverloadResolution=*/false); |
| 1957 | E2ToC2 = TryImplicitConversion(E2, Composite2, |
| 1958 | /*SuppressUserConversions=*/false, |
| 1959 | /*AllowExplicit=*/false, |
| 1960 | /*ForceRValue=*/false, |
| 1961 | /*InOverloadResolution=*/false); |
| 1962 | } |
| 1963 | |
| 1964 | bool ToC1Viable = !E1ToC1.isBad() && !E2ToC1.isBad(); |
| 1965 | bool ToC2Viable = !E1ToC2.isBad() && !E2ToC2.isBad(); |
| 1966 | if (ToC1Viable && !ToC2Viable) { |
| 1967 | if (!PerformImplicitConversion(E1, Composite1, E1ToC1, Sema::AA_Converting) && |
| 1968 | !PerformImplicitConversion(E2, Composite1, E2ToC1, Sema::AA_Converting)) |
| 1969 | return Composite1; |
| 1970 | } |
| 1971 | if (ToC2Viable && !ToC1Viable) { |
| 1972 | if (!PerformImplicitConversion(E1, Composite2, E1ToC2, Sema::AA_Converting) && |
| 1973 | !PerformImplicitConversion(E2, Composite2, E2ToC2, Sema::AA_Converting)) |
| 1974 | return Composite2; |
| 1975 | } |
| 1976 | return QualType(); |
| 1977 | } |
| 1978 | |
| 1979 | Sema::OwningExprResult Sema::MaybeBindToTemporary(Expr *E) { |
| 1980 | if (!Context.getLangOptions().CPlusPlus) |
| 1981 | return Owned(E); |
| 1982 | |
| 1983 | assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); |
| 1984 | |
| 1985 | const RecordType *RT = E->getType()->getAs<RecordType>(); |
| 1986 | if (!RT) |
| 1987 | return Owned(E); |
| 1988 | |
| 1989 | // If this is the result of a call expression, our source might |
| 1990 | // actually be a reference, in which case we shouldn't bind. |
| 1991 | if (CallExpr *CE = dyn_cast<CallExpr>(E)) { |
| 1992 | QualType Ty = CE->getCallee()->getType(); |
| 1993 | if (const PointerType *PT = Ty->getAs<PointerType>()) |
| 1994 | Ty = PT->getPointeeType(); |
| 1995 | |
| 1996 | const FunctionType *FTy = Ty->getAs<FunctionType>(); |
| 1997 | if (FTy->getResultType()->isReferenceType()) |
| 1998 | return Owned(E); |
| 1999 | } |
| 2000 | |
| 2001 | // That should be enough to guarantee that this type is complete. |
| 2002 | // If it has a trivial destructor, we can avoid the extra copy. |
| 2003 | CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
| 2004 | if (RD->hasTrivialDestructor()) |
| 2005 | return Owned(E); |
| 2006 | |
| 2007 | CXXTemporary *Temp = CXXTemporary::Create(Context, |
| 2008 | RD->getDestructor(Context)); |
| 2009 | ExprTemporaries.push_back(Temp); |
| 2010 | if (CXXDestructorDecl *Destructor = |
| 2011 | const_cast<CXXDestructorDecl*>(RD->getDestructor(Context))) |
| 2012 | MarkDeclarationReferenced(E->getExprLoc(), Destructor); |
| 2013 | // FIXME: Add the temporary to the temporaries vector. |
| 2014 | return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E)); |
| 2015 | } |
| 2016 | |
| 2017 | Expr *Sema::MaybeCreateCXXExprWithTemporaries(Expr *SubExpr) { |
| 2018 | assert(SubExpr && "sub expression can't be null!"); |
| 2019 | |
| 2020 | unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries; |
| 2021 | assert(ExprTemporaries.size() >= FirstTemporary); |
| 2022 | if (ExprTemporaries.size() == FirstTemporary) |
| 2023 | return SubExpr; |
| 2024 | |
| 2025 | Expr *E = CXXExprWithTemporaries::Create(Context, SubExpr, |
| 2026 | &ExprTemporaries[FirstTemporary], |
| 2027 | ExprTemporaries.size() - FirstTemporary); |
| 2028 | ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary, |
| 2029 | ExprTemporaries.end()); |
| 2030 | |
| 2031 | return E; |
| 2032 | } |
| 2033 | |
| 2034 | Sema::OwningExprResult |
| 2035 | Sema::MaybeCreateCXXExprWithTemporaries(OwningExprResult SubExpr) { |
| 2036 | if (SubExpr.isInvalid()) |
| 2037 | return ExprError(); |
| 2038 | |
| 2039 | return Owned(MaybeCreateCXXExprWithTemporaries(SubExpr.takeAs<Expr>())); |
| 2040 | } |
| 2041 | |
| 2042 | FullExpr Sema::CreateFullExpr(Expr *SubExpr) { |
| 2043 | unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries; |
| 2044 | assert(ExprTemporaries.size() >= FirstTemporary); |
| 2045 | |
| 2046 | unsigned NumTemporaries = ExprTemporaries.size() - FirstTemporary; |
| 2047 | CXXTemporary **Temporaries = |
| 2048 | NumTemporaries == 0 ? 0 : &ExprTemporaries[FirstTemporary]; |
| 2049 | |
| 2050 | FullExpr E = FullExpr::Create(Context, SubExpr, Temporaries, NumTemporaries); |
| 2051 | |
| 2052 | ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary, |
| 2053 | ExprTemporaries.end()); |
| 2054 | |
| 2055 | return E; |
| 2056 | } |
| 2057 | |
| 2058 | Sema::OwningExprResult |
| 2059 | Sema::ActOnStartCXXMemberReference(Scope *S, ExprArg Base, SourceLocation OpLoc, |
| 2060 | tok::TokenKind OpKind, TypeTy *&ObjectType) { |
| 2061 | // Since this might be a postfix expression, get rid of ParenListExprs. |
| 2062 | Base = MaybeConvertParenListExprToParenExpr(S, move(Base)); |
| 2063 | |
| 2064 | Expr *BaseExpr = (Expr*)Base.get(); |
| 2065 | assert(BaseExpr && "no record expansion"); |
| 2066 | |
| 2067 | QualType BaseType = BaseExpr->getType(); |
| 2068 | if (BaseType->isDependentType()) { |
| 2069 | // If we have a pointer to a dependent type and are using the -> operator, |
| 2070 | // the object type is the type that the pointer points to. We might still |
| 2071 | // have enough information about that type to do something useful. |
| 2072 | if (OpKind == tok::arrow) |
| 2073 | if (const PointerType *Ptr = BaseType->getAs<PointerType>()) |
| 2074 | BaseType = Ptr->getPointeeType(); |
| 2075 | |
| 2076 | ObjectType = BaseType.getAsOpaquePtr(); |
| 2077 | return move(Base); |
| 2078 | } |
| 2079 | |
| 2080 | // C++ [over.match.oper]p8: |
| 2081 | // [...] When operator->returns, the operator-> is applied to the value |
| 2082 | // returned, with the original second operand. |
| 2083 | if (OpKind == tok::arrow) { |
| 2084 | // The set of types we've considered so far. |
| 2085 | llvm::SmallPtrSet<CanQualType,8> CTypes; |
| 2086 | llvm::SmallVector<SourceLocation, 8> Locations; |
| 2087 | CTypes.insert(Context.getCanonicalType(BaseType)); |
| 2088 | |
| 2089 | while (BaseType->isRecordType()) { |
| 2090 | Base = BuildOverloadedArrowExpr(S, move(Base), OpLoc); |
| 2091 | BaseExpr = (Expr*)Base.get(); |
| 2092 | if (BaseExpr == NULL) |
| 2093 | return ExprError(); |
| 2094 | if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(BaseExpr)) |
| 2095 | Locations.push_back(OpCall->getDirectCallee()->getLocation()); |
| 2096 | BaseType = BaseExpr->getType(); |
| 2097 | CanQualType CBaseType = Context.getCanonicalType(BaseType); |
| 2098 | if (!CTypes.insert(CBaseType)) { |
| 2099 | Diag(OpLoc, diag::err_operator_arrow_circular); |
| 2100 | for (unsigned i = 0; i < Locations.size(); i++) |
| 2101 | Diag(Locations[i], diag::note_declared_at); |
| 2102 | return ExprError(); |
| 2103 | } |
| 2104 | } |
| 2105 | |
| 2106 | if (BaseType->isPointerType()) |
| 2107 | BaseType = BaseType->getPointeeType(); |
| 2108 | } |
| 2109 | |
| 2110 | // We could end up with various non-record types here, such as extended |
| 2111 | // vector types or Objective-C interfaces. Just return early and let |
| 2112 | // ActOnMemberReferenceExpr do the work. |
| 2113 | if (!BaseType->isRecordType()) { |
| 2114 | // C++ [basic.lookup.classref]p2: |
| 2115 | // [...] If the type of the object expression is of pointer to scalar |
| 2116 | // type, the unqualified-id is looked up in the context of the complete |
| 2117 | // postfix-expression. |
| 2118 | ObjectType = 0; |
| 2119 | return move(Base); |
| 2120 | } |
| 2121 | |
| 2122 | // The object type must be complete (or dependent). |
| 2123 | if (!BaseType->isDependentType() && |
| 2124 | RequireCompleteType(OpLoc, BaseType, |
| 2125 | PDiag(diag::err_incomplete_member_access))) |
| 2126 | return ExprError(); |
| 2127 | |
| 2128 | // C++ [basic.lookup.classref]p2: |
| 2129 | // If the id-expression in a class member access (5.2.5) is an |
| 2130 | // unqualified-id, and the type of the object expression is of a class |
| 2131 | // type C (or of pointer to a class type C), the unqualified-id is looked |
| 2132 | // up in the scope of class C. [...] |
| 2133 | ObjectType = BaseType.getAsOpaquePtr(); |
| 2134 | |
| 2135 | return move(Base); |
| 2136 | } |
| 2137 | |
| 2138 | CXXMemberCallExpr *Sema::BuildCXXMemberCallExpr(Expr *Exp, |
| 2139 | CXXMethodDecl *Method) { |
| 2140 | if (PerformObjectArgumentInitialization(Exp, Method)) |
| 2141 | assert(0 && "Calling BuildCXXMemberCallExpr with invalid call?"); |
| 2142 | |
| 2143 | MemberExpr *ME = |
| 2144 | new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method, |
| 2145 | SourceLocation(), Method->getType()); |
| 2146 | QualType ResultType = Method->getResultType().getNonReferenceType(); |
| 2147 | MarkDeclarationReferenced(Exp->getLocStart(), Method); |
| 2148 | CXXMemberCallExpr *CE = |
| 2149 | new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, |
| 2150 | Exp->getLocEnd()); |
| 2151 | return CE; |
| 2152 | } |
| 2153 | |
| 2154 | Sema::OwningExprResult Sema::BuildCXXCastArgument(SourceLocation CastLoc, |
| 2155 | QualType Ty, |
| 2156 | CastExpr::CastKind Kind, |
| 2157 | CXXMethodDecl *Method, |
| 2158 | ExprArg Arg) { |
| 2159 | Expr *From = Arg.takeAs<Expr>(); |
| 2160 | |
| 2161 | switch (Kind) { |
| 2162 | default: assert(0 && "Unhandled cast kind!"); |
| 2163 | case CastExpr::CK_ConstructorConversion: { |
| 2164 | ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); |
| 2165 | |
| 2166 | if (CompleteConstructorCall(cast<CXXConstructorDecl>(Method), |
| 2167 | MultiExprArg(*this, (void **)&From, 1), |
| 2168 | CastLoc, ConstructorArgs)) |
| 2169 | return ExprError(); |
| 2170 | |
| 2171 | OwningExprResult Result = |
| 2172 | BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method), |
| 2173 | move_arg(ConstructorArgs)); |
| 2174 | if (Result.isInvalid()) |
| 2175 | return ExprError(); |
| 2176 | |
| 2177 | return MaybeBindToTemporary(Result.takeAs<Expr>()); |
| 2178 | } |
| 2179 | |
| 2180 | case CastExpr::CK_UserDefinedConversion: { |
| 2181 | assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); |
| 2182 | |
| 2183 | // Create an implicit call expr that calls it. |
| 2184 | CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(From, Method); |
| 2185 | return MaybeBindToTemporary(CE); |
| 2186 | } |
| 2187 | } |
| 2188 | } |
| 2189 | |
| 2190 | Sema::OwningExprResult Sema::ActOnFinishFullExpr(ExprArg Arg) { |
| 2191 | Expr *FullExpr = Arg.takeAs<Expr>(); |
| 2192 | if (FullExpr) |
| 2193 | FullExpr = MaybeCreateCXXExprWithTemporaries(FullExpr); |
| 2194 | |
| 2195 | return Owned(FullExpr); |
| 2196 | } |