blob: 50479a9b8168eef0b66c8d8b3b019735f204a310 [file] [log] [blame]
Shih-wei Liaof8fd82b2010-02-10 11:10:31 -08001//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/StmtObjC.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Lex/Preprocessor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/SmallVector.h"
27using namespace clang;
28
29Sema::OwningStmtResult Sema::ActOnExprStmt(FullExprArg expr) {
30 Expr *E = expr->takeAs<Expr>();
31 assert(E && "ActOnExprStmt(): missing expression");
32 if (E->getType()->isObjCInterfaceType()) {
33 if (LangOpts.ObjCNonFragileABI)
34 Diag(E->getLocEnd(), diag::err_indirection_requires_nonfragile_object)
35 << E->getType();
36 else
37 Diag(E->getLocEnd(), diag::err_direct_interface_unsupported)
38 << E->getType();
39 return StmtError();
40 }
41 // C99 6.8.3p2: The expression in an expression statement is evaluated as a
42 // void expression for its side effects. Conversion to void allows any
43 // operand, even incomplete types.
44
45 // Same thing in for stmt first clause (when expr) and third clause.
46 return Owned(static_cast<Stmt*>(E));
47}
48
49
50Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
51 return Owned(new (Context) NullStmt(SemiLoc));
52}
53
54Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
55 SourceLocation StartLoc,
56 SourceLocation EndLoc) {
57 DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
58
59 // If we have an invalid decl, just return an error.
60 if (DG.isNull()) return StmtError();
61
62 return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
63}
64
65void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
66 DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
67
68 // If we have an invalid decl, just return.
69 if (DG.isNull() || !DG.isSingleDecl()) return;
70 // suppress any potential 'unused variable' warning.
71 DG.getSingleDecl()->setUsed();
72}
73
74void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
75 const Expr *E = dyn_cast_or_null<Expr>(S);
76 if (!E)
77 return;
78
79 // Ignore expressions that have void type.
80 if (E->getType()->isVoidType())
81 return;
82
83 SourceLocation Loc;
84 SourceRange R1, R2;
85 if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
86 return;
87
88 // Okay, we have an unused result. Depending on what the base expression is,
89 // we might want to make a more specific diagnostic. Check for one of these
90 // cases now.
91 unsigned DiagID = diag::warn_unused_expr;
92 E = E->IgnoreParens();
93 if (isa<ObjCImplicitSetterGetterRefExpr>(E))
94 DiagID = diag::warn_unused_property_expr;
95
96 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
97 // If the callee has attribute pure, const, or warn_unused_result, warn with
98 // a more specific message to make it clear what is happening.
99 if (const Decl *FD = CE->getCalleeDecl()) {
100 if (FD->getAttr<WarnUnusedResultAttr>()) {
101 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
102 return;
103 }
104 if (FD->getAttr<PureAttr>()) {
105 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
106 return;
107 }
108 if (FD->getAttr<ConstAttr>()) {
109 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
110 return;
111 }
112 }
113 }
114
115 Diag(Loc, DiagID) << R1 << R2;
116}
117
118Action::OwningStmtResult
119Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
120 MultiStmtArg elts, bool isStmtExpr) {
121 unsigned NumElts = elts.size();
122 Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
123 // If we're in C89 mode, check that we don't have any decls after stmts. If
124 // so, emit an extension diagnostic.
125 if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
126 // Note that __extension__ can be around a decl.
127 unsigned i = 0;
128 // Skip over all declarations.
129 for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
130 /*empty*/;
131
132 // We found the end of the list or a statement. Scan for another declstmt.
133 for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
134 /*empty*/;
135
136 if (i != NumElts) {
137 Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
138 Diag(D->getLocation(), diag::ext_mixed_decls_code);
139 }
140 }
141 // Warn about unused expressions in statements.
142 for (unsigned i = 0; i != NumElts; ++i) {
143 // Ignore statements that are last in a statement expression.
144 if (isStmtExpr && i == NumElts - 1)
145 continue;
146
147 DiagnoseUnusedExprResult(Elts[i]);
148 }
149
150 return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
151}
152
153Action::OwningStmtResult
154Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
155 SourceLocation DotDotDotLoc, ExprArg rhsval,
156 SourceLocation ColonLoc) {
157 assert((lhsval.get() != 0) && "missing expression in case statement");
158
159 // C99 6.8.4.2p3: The expression shall be an integer constant.
160 // However, GCC allows any evaluatable integer expression.
161 Expr *LHSVal = static_cast<Expr*>(lhsval.get());
162 if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
163 VerifyIntegerConstantExpression(LHSVal))
164 return StmtError();
165
166 // GCC extension: The expression shall be an integer constant.
167
168 Expr *RHSVal = static_cast<Expr*>(rhsval.get());
169 if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
170 VerifyIntegerConstantExpression(RHSVal)) {
171 RHSVal = 0; // Recover by just forgetting about it.
172 rhsval = 0;
173 }
174
175 if (getSwitchStack().empty()) {
176 Diag(CaseLoc, diag::err_case_not_in_switch);
177 return StmtError();
178 }
179
180 // Only now release the smart pointers.
181 lhsval.release();
182 rhsval.release();
183 CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
184 ColonLoc);
185 getSwitchStack().back()->addSwitchCase(CS);
186 return Owned(CS);
187}
188
189/// ActOnCaseStmtBody - This installs a statement as the body of a case.
190void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) {
191 CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
192 Stmt *SubStmt = subStmt.takeAs<Stmt>();
193 CS->setSubStmt(SubStmt);
194}
195
196Action::OwningStmtResult
197Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
198 StmtArg subStmt, Scope *CurScope) {
199 Stmt *SubStmt = subStmt.takeAs<Stmt>();
200
201 if (getSwitchStack().empty()) {
202 Diag(DefaultLoc, diag::err_default_not_in_switch);
203 return Owned(SubStmt);
204 }
205
206 DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
207 getSwitchStack().back()->addSwitchCase(DS);
208 return Owned(DS);
209}
210
211Action::OwningStmtResult
212Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
213 SourceLocation ColonLoc, StmtArg subStmt) {
214 Stmt *SubStmt = subStmt.takeAs<Stmt>();
215 // Look up the record for this label identifier.
216 LabelStmt *&LabelDecl = getLabelMap()[II];
217
218 // If not forward referenced or defined already, just create a new LabelStmt.
219 if (LabelDecl == 0)
220 return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
221
222 assert(LabelDecl->getID() == II && "Label mismatch!");
223
224 // Otherwise, this label was either forward reference or multiply defined. If
225 // multiply defined, reject it now.
226 if (LabelDecl->getSubStmt()) {
227 Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
228 Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
229 return Owned(SubStmt);
230 }
231
232 // Otherwise, this label was forward declared, and we just found its real
233 // definition. Fill in the forward definition and return it.
234 LabelDecl->setIdentLoc(IdentLoc);
235 LabelDecl->setSubStmt(SubStmt);
236 return Owned(LabelDecl);
237}
238
239Action::OwningStmtResult
240Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, DeclPtrTy CondVar,
241 StmtArg ThenVal, SourceLocation ElseLoc,
242 StmtArg ElseVal) {
243 OwningExprResult CondResult(CondVal.release());
244
245 VarDecl *ConditionVar = 0;
246 if (CondVar.get()) {
247 ConditionVar = CondVar.getAs<VarDecl>();
248 CondResult = CheckConditionVariable(ConditionVar);
249 if (CondResult.isInvalid())
250 return StmtError();
251 }
252 Expr *ConditionExpr = CondResult.takeAs<Expr>();
253 if (!ConditionExpr)
254 return StmtError();
255
256 if (CheckBooleanCondition(ConditionExpr, IfLoc)) {
257 CondResult = ConditionExpr;
258 return StmtError();
259 }
260
261 Stmt *thenStmt = ThenVal.takeAs<Stmt>();
262 DiagnoseUnusedExprResult(thenStmt);
263
264 // Warn if the if block has a null body without an else value.
265 // this helps prevent bugs due to typos, such as
266 // if (condition);
267 // do_stuff();
268 if (!ElseVal.get()) {
269 if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
270 Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
271 }
272
273 Stmt *elseStmt = ElseVal.takeAs<Stmt>();
274 DiagnoseUnusedExprResult(elseStmt);
275
276 CondResult.release();
277 return Owned(new (Context) IfStmt(IfLoc, ConditionVar, ConditionExpr,
278 thenStmt, ElseLoc, elseStmt));
279}
280
281Action::OwningStmtResult
282Sema::ActOnStartOfSwitchStmt(FullExprArg cond, DeclPtrTy CondVar) {
283 OwningExprResult CondResult(cond.release());
284
285 VarDecl *ConditionVar = 0;
286 if (CondVar.get()) {
287 ConditionVar = CondVar.getAs<VarDecl>();
288 CondResult = CheckConditionVariable(ConditionVar);
289 if (CondResult.isInvalid())
290 return StmtError();
291 }
292 SwitchStmt *SS = new (Context) SwitchStmt(ConditionVar,
293 CondResult.takeAs<Expr>());
294 getSwitchStack().push_back(SS);
295 return Owned(SS);
296}
297
298/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
299/// the specified width and sign. If an overflow occurs, detect it and emit
300/// the specified diagnostic.
301void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
302 unsigned NewWidth, bool NewSign,
303 SourceLocation Loc,
304 unsigned DiagID) {
305 // Perform a conversion to the promoted condition type if needed.
306 if (NewWidth > Val.getBitWidth()) {
307 // If this is an extension, just do it.
308 llvm::APSInt OldVal(Val);
309 Val.extend(NewWidth);
310
311 // If the input was signed and negative and the output is unsigned,
312 // warn.
313 if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
314 Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
315
316 Val.setIsSigned(NewSign);
317 } else if (NewWidth < Val.getBitWidth()) {
318 // If this is a truncation, check for overflow.
319 llvm::APSInt ConvVal(Val);
320 ConvVal.trunc(NewWidth);
321 ConvVal.setIsSigned(NewSign);
322 ConvVal.extend(Val.getBitWidth());
323 ConvVal.setIsSigned(Val.isSigned());
324 if (ConvVal != Val)
325 Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
326
327 // Regardless of whether a diagnostic was emitted, really do the
328 // truncation.
329 Val.trunc(NewWidth);
330 Val.setIsSigned(NewSign);
331 } else if (NewSign != Val.isSigned()) {
332 // Convert the sign to match the sign of the condition. This can cause
333 // overflow as well: unsigned(INTMIN)
334 llvm::APSInt OldVal(Val);
335 Val.setIsSigned(NewSign);
336
337 if (Val.isNegative()) // Sign bit changes meaning.
338 Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
339 }
340}
341
342namespace {
343 struct CaseCompareFunctor {
344 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
345 const llvm::APSInt &RHS) {
346 return LHS.first < RHS;
347 }
348 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
349 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
350 return LHS.first < RHS.first;
351 }
352 bool operator()(const llvm::APSInt &LHS,
353 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
354 return LHS < RHS.first;
355 }
356 };
357}
358
359/// CmpCaseVals - Comparison predicate for sorting case values.
360///
361static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
362 const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
363 if (lhs.first < rhs.first)
364 return true;
365
366 if (lhs.first == rhs.first &&
367 lhs.second->getCaseLoc().getRawEncoding()
368 < rhs.second->getCaseLoc().getRawEncoding())
369 return true;
370 return false;
371}
372
373/// CmpEnumVals - Comparison predicate for sorting enumeration values.
374///
375static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
376 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
377{
378 return lhs.first < rhs.first;
379}
380
381/// EqEnumVals - Comparison preficate for uniqing enumeration values.
382///
383static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
384 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
385{
386 return lhs.first == rhs.first;
387}
388
389/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
390/// potentially integral-promoted expression @p expr.
391static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
392 const ImplicitCastExpr *ImplicitCast =
393 dyn_cast_or_null<ImplicitCastExpr>(expr);
394 if (ImplicitCast != NULL) {
395 const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
396 QualType TypeBeforePromotion = ExprBeforePromotion->getType();
397 if (TypeBeforePromotion->isIntegralType()) {
398 return TypeBeforePromotion;
399 }
400 }
401 return expr->getType();
402}
403
404/// \brief Check (and possibly convert) the condition in a switch
405/// statement in C++.
406static bool CheckCXXSwitchCondition(Sema &S, SourceLocation SwitchLoc,
407 Expr *&CondExpr) {
408 if (CondExpr->isTypeDependent())
409 return false;
410
411 QualType CondType = CondExpr->getType();
412
413 // C++ 6.4.2.p2:
414 // The condition shall be of integral type, enumeration type, or of a class
415 // type for which a single conversion function to integral or enumeration
416 // type exists (12.3). If the condition is of class type, the condition is
417 // converted by calling that conversion function, and the result of the
418 // conversion is used in place of the original condition for the remainder
419 // of this section. Integral promotions are performed.
420
421 // Make sure that the condition expression has a complete type,
422 // otherwise we'll never find any conversions.
423 if (S.RequireCompleteType(SwitchLoc, CondType,
424 PDiag(diag::err_switch_incomplete_class_type)
425 << CondExpr->getSourceRange()))
426 return true;
427
428 llvm::SmallVector<CXXConversionDecl *, 4> ViableConversions;
429 llvm::SmallVector<CXXConversionDecl *, 4> ExplicitConversions;
430 if (const RecordType *RecordTy = CondType->getAs<RecordType>()) {
431 const UnresolvedSetImpl *Conversions
432 = cast<CXXRecordDecl>(RecordTy->getDecl())
433 ->getVisibleConversionFunctions();
434 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
435 E = Conversions->end(); I != E; ++I) {
436 if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(*I))
437 if (Conversion->getConversionType().getNonReferenceType()
438 ->isIntegralType()) {
439 if (Conversion->isExplicit())
440 ExplicitConversions.push_back(Conversion);
441 else
442 ViableConversions.push_back(Conversion);
443 }
444 }
445
446 switch (ViableConversions.size()) {
447 case 0:
448 if (ExplicitConversions.size() == 1) {
449 // The user probably meant to invoke the given explicit
450 // conversion; use it.
451 QualType ConvTy
452 = ExplicitConversions[0]->getConversionType()
453 .getNonReferenceType();
454 std::string TypeStr;
455 ConvTy.getAsStringInternal(TypeStr, S.Context.PrintingPolicy);
456
457 S.Diag(SwitchLoc, diag::err_switch_explicit_conversion)
458 << CondType << ConvTy << CondExpr->getSourceRange()
459 << CodeModificationHint::CreateInsertion(CondExpr->getLocStart(),
460 "static_cast<" + TypeStr + ">(")
461 << CodeModificationHint::CreateInsertion(
462 S.PP.getLocForEndOfToken(CondExpr->getLocEnd()),
463 ")");
464 S.Diag(ExplicitConversions[0]->getLocation(),
465 diag::note_switch_conversion)
466 << ConvTy->isEnumeralType() << ConvTy;
467
468 // If we aren't in a SFINAE context, build a call to the
469 // explicit conversion function.
470 if (S.isSFINAEContext())
471 return true;
472
473 CondExpr = S.BuildCXXMemberCallExpr(CondExpr, ExplicitConversions[0]);
474 }
475
476 // We'll complain below about a non-integral condition type.
477 break;
478
479 case 1:
480 // Apply this conversion.
481 CondExpr = S.BuildCXXMemberCallExpr(CondExpr, ViableConversions[0]);
482 break;
483
484 default:
485 S.Diag(SwitchLoc, diag::err_switch_multiple_conversions)
486 << CondType << CondExpr->getSourceRange();
487 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
488 QualType ConvTy
489 = ViableConversions[I]->getConversionType().getNonReferenceType();
490 S.Diag(ViableConversions[I]->getLocation(),
491 diag::note_switch_conversion)
492 << ConvTy->isEnumeralType() << ConvTy;
493 }
494 return true;
495 }
496 }
497
498 return false;
499}
500
501/// ActOnSwitchBodyError - This is called if there is an error parsing the
502/// body of the switch stmt instead of ActOnFinishSwitchStmt.
503void Sema::ActOnSwitchBodyError(SourceLocation SwitchLoc, StmtArg Switch,
504 StmtArg Body) {
505 // Keep the switch stack balanced.
506 assert(getSwitchStack().back() == (SwitchStmt*)Switch.get() &&
507 "switch stack missing push/pop!");
508 getSwitchStack().pop_back();
509}
510
511Action::OwningStmtResult
512Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
513 StmtArg Body) {
514 Stmt *BodyStmt = Body.takeAs<Stmt>();
515
516 SwitchStmt *SS = getSwitchStack().back();
517 assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
518
519 SS->setBody(BodyStmt, SwitchLoc);
520 getSwitchStack().pop_back();
521
522 if (SS->getCond() == 0) {
523 SS->Destroy(Context);
524 return StmtError();
525 }
526
527 Expr *CondExpr = SS->getCond();
528 QualType CondTypeBeforePromotion =
529 GetTypeBeforeIntegralPromotion(CondExpr);
530
531 if (getLangOptions().CPlusPlus &&
532 CheckCXXSwitchCondition(*this, SwitchLoc, CondExpr))
533 return StmtError();
534
535 // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
536 UsualUnaryConversions(CondExpr);
537 QualType CondType = CondExpr->getType();
538 SS->setCond(CondExpr);
539
540 // C++ 6.4.2.p2:
541 // Integral promotions are performed (on the switch condition).
542 //
543 // A case value unrepresentable by the original switch condition
544 // type (before the promotion) doesn't make sense, even when it can
545 // be represented by the promoted type. Therefore we need to find
546 // the pre-promotion type of the switch condition.
547 if (!CondExpr->isTypeDependent()) {
548 if (!CondType->isIntegerType()) { // C99 6.8.4.2p1
549 Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
550 << CondType << CondExpr->getSourceRange();
551 return StmtError();
552 }
553
554 if (CondTypeBeforePromotion->isBooleanType()) {
555 // switch(bool_expr) {...} is often a programmer error, e.g.
556 // switch(n && mask) { ... } // Doh - should be "n & mask".
557 // One can always use an if statement instead of switch(bool_expr).
558 Diag(SwitchLoc, diag::warn_bool_switch_condition)
559 << CondExpr->getSourceRange();
560 }
561 }
562
563 // Get the bitwidth of the switched-on value before promotions. We must
564 // convert the integer case values to this width before comparison.
565 bool HasDependentValue
566 = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
567 unsigned CondWidth
568 = HasDependentValue? 0
569 : static_cast<unsigned>(Context.getTypeSize(CondTypeBeforePromotion));
570 bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType();
571
572 // Accumulate all of the case values in a vector so that we can sort them
573 // and detect duplicates. This vector contains the APInt for the case after
574 // it has been converted to the condition type.
575 typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
576 CaseValsTy CaseVals;
577
578 // Keep track of any GNU case ranges we see. The APSInt is the low value.
579 typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
580 CaseRangesTy CaseRanges;
581
582 DefaultStmt *TheDefaultStmt = 0;
583
584 bool CaseListIsErroneous = false;
585
586 for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
587 SC = SC->getNextSwitchCase()) {
588
589 if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
590 if (TheDefaultStmt) {
591 Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
592 Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
593
594 // FIXME: Remove the default statement from the switch block so that
595 // we'll return a valid AST. This requires recursing down the AST and
596 // finding it, not something we are set up to do right now. For now,
597 // just lop the entire switch stmt out of the AST.
598 CaseListIsErroneous = true;
599 }
600 TheDefaultStmt = DS;
601
602 } else {
603 CaseStmt *CS = cast<CaseStmt>(SC);
604
605 // We already verified that the expression has a i-c-e value (C99
606 // 6.8.4.2p3) - get that value now.
607 Expr *Lo = CS->getLHS();
608
609 if (Lo->isTypeDependent() || Lo->isValueDependent()) {
610 HasDependentValue = true;
611 break;
612 }
613
614 llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
615
616 // Convert the value to the same width/sign as the condition.
617 ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
618 CS->getLHS()->getLocStart(),
619 diag::warn_case_value_overflow);
620
621 // If the LHS is not the same type as the condition, insert an implicit
622 // cast.
623 ImpCastExprToType(Lo, CondType, CastExpr::CK_IntegralCast);
624 CS->setLHS(Lo);
625
626 // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
627 if (CS->getRHS()) {
628 if (CS->getRHS()->isTypeDependent() ||
629 CS->getRHS()->isValueDependent()) {
630 HasDependentValue = true;
631 break;
632 }
633 CaseRanges.push_back(std::make_pair(LoVal, CS));
634 } else
635 CaseVals.push_back(std::make_pair(LoVal, CS));
636 }
637 }
638
639 if (!HasDependentValue) {
640 // Sort all the scalar case values so we can easily detect duplicates.
641 std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
642
643 if (!CaseVals.empty()) {
644 for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
645 if (CaseVals[i].first == CaseVals[i+1].first) {
646 // If we have a duplicate, report it.
647 Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
648 diag::err_duplicate_case) << CaseVals[i].first.toString(10);
649 Diag(CaseVals[i].second->getLHS()->getLocStart(),
650 diag::note_duplicate_case_prev);
651 // FIXME: We really want to remove the bogus case stmt from the
652 // substmt, but we have no way to do this right now.
653 CaseListIsErroneous = true;
654 }
655 }
656 }
657
658 // Detect duplicate case ranges, which usually don't exist at all in
659 // the first place.
660 if (!CaseRanges.empty()) {
661 // Sort all the case ranges by their low value so we can easily detect
662 // overlaps between ranges.
663 std::stable_sort(CaseRanges.begin(), CaseRanges.end());
664
665 // Scan the ranges, computing the high values and removing empty ranges.
666 std::vector<llvm::APSInt> HiVals;
667 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
668 CaseStmt *CR = CaseRanges[i].second;
669 Expr *Hi = CR->getRHS();
670 llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
671
672 // Convert the value to the same width/sign as the condition.
673 ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
674 CR->getRHS()->getLocStart(),
675 diag::warn_case_value_overflow);
676
677 // If the LHS is not the same type as the condition, insert an implicit
678 // cast.
679 ImpCastExprToType(Hi, CondType, CastExpr::CK_IntegralCast);
680 CR->setRHS(Hi);
681
682 // If the low value is bigger than the high value, the case is empty.
683 if (CaseRanges[i].first > HiVal) {
684 Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
685 << SourceRange(CR->getLHS()->getLocStart(),
686 CR->getRHS()->getLocEnd());
687 CaseRanges.erase(CaseRanges.begin()+i);
688 --i, --e;
689 continue;
690 }
691 HiVals.push_back(HiVal);
692 }
693
694 // Rescan the ranges, looking for overlap with singleton values and other
695 // ranges. Since the range list is sorted, we only need to compare case
696 // ranges with their neighbors.
697 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
698 llvm::APSInt &CRLo = CaseRanges[i].first;
699 llvm::APSInt &CRHi = HiVals[i];
700 CaseStmt *CR = CaseRanges[i].second;
701
702 // Check to see whether the case range overlaps with any
703 // singleton cases.
704 CaseStmt *OverlapStmt = 0;
705 llvm::APSInt OverlapVal(32);
706
707 // Find the smallest value >= the lower bound. If I is in the
708 // case range, then we have overlap.
709 CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
710 CaseVals.end(), CRLo,
711 CaseCompareFunctor());
712 if (I != CaseVals.end() && I->first < CRHi) {
713 OverlapVal = I->first; // Found overlap with scalar.
714 OverlapStmt = I->second;
715 }
716
717 // Find the smallest value bigger than the upper bound.
718 I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
719 if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
720 OverlapVal = (I-1)->first; // Found overlap with scalar.
721 OverlapStmt = (I-1)->second;
722 }
723
724 // Check to see if this case stmt overlaps with the subsequent
725 // case range.
726 if (i && CRLo <= HiVals[i-1]) {
727 OverlapVal = HiVals[i-1]; // Found overlap with range.
728 OverlapStmt = CaseRanges[i-1].second;
729 }
730
731 if (OverlapStmt) {
732 // If we have a duplicate, report it.
733 Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
734 << OverlapVal.toString(10);
735 Diag(OverlapStmt->getLHS()->getLocStart(),
736 diag::note_duplicate_case_prev);
737 // FIXME: We really want to remove the bogus case stmt from the
738 // substmt, but we have no way to do this right now.
739 CaseListIsErroneous = true;
740 }
741 }
742 }
743
744 // Check to see if switch is over an Enum and handles all of its
745 // values
746 const EnumType* ET = dyn_cast<EnumType>(CondTypeBeforePromotion);
747 // If switch has default case, then ignore it.
748 if (!CaseListIsErroneous && !TheDefaultStmt && ET) {
749 const EnumDecl *ED = ET->getDecl();
750 typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
751 EnumValsTy EnumVals;
752
753 // Gather all enum values, set their type and sort them, allowing easier comparison
754 // with CaseVals.
755 for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin(); EDI != ED->enumerator_end(); EDI++) {
756 llvm::APSInt Val = (*EDI)->getInitVal();
757 if(Val.getBitWidth() < CondWidth)
758 Val.extend(CondWidth);
759 Val.setIsSigned(CondIsSigned);
760 EnumVals.push_back(std::make_pair(Val, (*EDI)));
761 }
762 std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
763 EnumValsTy::iterator EIend = std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
764 // See which case values aren't in enum
765 EnumValsTy::const_iterator EI = EnumVals.begin();
766 for (CaseValsTy::const_iterator CI = CaseVals.begin(); CI != CaseVals.end(); CI++) {
767 while (EI != EIend && EI->first < CI->first)
768 EI++;
769 if (EI == EIend || EI->first > CI->first)
770 Diag(CI->second->getLHS()->getExprLoc(), diag::not_in_enum) << ED->getDeclName();
771 }
772 // See which of case ranges aren't in enum
773 EI = EnumVals.begin();
774 for (CaseRangesTy::const_iterator RI = CaseRanges.begin(); RI != CaseRanges.end() && EI != EIend; RI++) {
775 while (EI != EIend && EI->first < RI->first)
776 EI++;
777
778 if (EI == EIend || EI->first != RI->first) {
779 Diag(RI->second->getLHS()->getExprLoc(), diag::not_in_enum) << ED->getDeclName();
780 }
781
782 llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
783 while (EI != EIend && EI->first < Hi)
784 EI++;
785 if (EI == EIend || EI->first != Hi)
786 Diag(RI->second->getRHS()->getExprLoc(), diag::not_in_enum) << ED->getDeclName();
787 }
788 //Check which enum vals aren't in switch
789 CaseValsTy::const_iterator CI = CaseVals.begin();
790 CaseRangesTy::const_iterator RI = CaseRanges.begin();
791 EI = EnumVals.begin();
792 for (; EI != EIend; EI++) {
793 //Drop unneeded case values
794 llvm::APSInt CIVal;
795 while (CI != CaseVals.end() && CI->first < EI->first)
796 CI++;
797
798 if (CI != CaseVals.end() && CI->first == EI->first)
799 continue;
800
801 //Drop unneeded case ranges
802 for (; RI != CaseRanges.end(); RI++) {
803 llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
804 if (EI->first <= Hi)
805 break;
806 }
807
808 if (RI == CaseRanges.end() || EI->first < RI->first)
809 Diag(CondExpr->getExprLoc(), diag::warn_missing_cases) << EI->second->getDeclName();
810 }
811 }
812 }
813
814 // FIXME: If the case list was broken is some way, we don't have a good system
815 // to patch it up. Instead, just return the whole substmt as broken.
816 if (CaseListIsErroneous)
817 return StmtError();
818
819 Switch.release();
820 return Owned(SS);
821}
822
823Action::OwningStmtResult
824Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
825 DeclPtrTy CondVar, StmtArg Body) {
826 OwningExprResult CondResult(Cond.release());
827
828 VarDecl *ConditionVar = 0;
829 if (CondVar.get()) {
830 ConditionVar = CondVar.getAs<VarDecl>();
831 CondResult = CheckConditionVariable(ConditionVar);
832 if (CondResult.isInvalid())
833 return StmtError();
834 }
835 Expr *ConditionExpr = CondResult.takeAs<Expr>();
836 if (!ConditionExpr)
837 return StmtError();
838
839 if (CheckBooleanCondition(ConditionExpr, WhileLoc)) {
840 CondResult = ConditionExpr;
841 return StmtError();
842 }
843
844 Stmt *bodyStmt = Body.takeAs<Stmt>();
845 DiagnoseUnusedExprResult(bodyStmt);
846
847 CondResult.release();
848 return Owned(new (Context) WhileStmt(ConditionVar, ConditionExpr, bodyStmt,
849 WhileLoc));
850}
851
852Action::OwningStmtResult
853Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
854 SourceLocation WhileLoc, SourceLocation CondLParen,
855 ExprArg Cond, SourceLocation CondRParen) {
856 Expr *condExpr = Cond.takeAs<Expr>();
857 assert(condExpr && "ActOnDoStmt(): missing expression");
858
859 if (CheckBooleanCondition(condExpr, DoLoc)) {
860 Cond = condExpr;
861 return StmtError();
862 }
863
864 Stmt *bodyStmt = Body.takeAs<Stmt>();
865 DiagnoseUnusedExprResult(bodyStmt);
866
867 Cond.release();
868 return Owned(new (Context) DoStmt(bodyStmt, condExpr, DoLoc,
869 WhileLoc, CondRParen));
870}
871
872Action::OwningStmtResult
873Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
874 StmtArg first, FullExprArg second, DeclPtrTy secondVar,
875 FullExprArg third,
876 SourceLocation RParenLoc, StmtArg body) {
877 Stmt *First = static_cast<Stmt*>(first.get());
878
879 if (!getLangOptions().CPlusPlus) {
880 if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
881 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
882 // declare identifiers for objects having storage class 'auto' or
883 // 'register'.
884 for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
885 DI!=DE; ++DI) {
886 VarDecl *VD = dyn_cast<VarDecl>(*DI);
887 if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
888 VD = 0;
889 if (VD == 0)
890 Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
891 // FIXME: mark decl erroneous!
892 }
893 }
894 }
895
896 OwningExprResult SecondResult(second.release());
897 VarDecl *ConditionVar = 0;
898 if (secondVar.get()) {
899 ConditionVar = secondVar.getAs<VarDecl>();
900 SecondResult = CheckConditionVariable(ConditionVar);
901 if (SecondResult.isInvalid())
902 return StmtError();
903 }
904
905 Expr *Second = SecondResult.takeAs<Expr>();
906 if (Second && CheckBooleanCondition(Second, ForLoc)) {
907 SecondResult = Second;
908 return StmtError();
909 }
910
911 Expr *Third = third.release().takeAs<Expr>();
912 Stmt *Body = static_cast<Stmt*>(body.get());
913
914 DiagnoseUnusedExprResult(First);
915 DiagnoseUnusedExprResult(Third);
916 DiagnoseUnusedExprResult(Body);
917
918 first.release();
919 body.release();
920 return Owned(new (Context) ForStmt(First, Second, ConditionVar, Third, Body,
921 ForLoc, LParenLoc, RParenLoc));
922}
923
924Action::OwningStmtResult
925Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
926 SourceLocation LParenLoc,
927 StmtArg first, ExprArg second,
928 SourceLocation RParenLoc, StmtArg body) {
929 Stmt *First = static_cast<Stmt*>(first.get());
930 Expr *Second = static_cast<Expr*>(second.get());
931 Stmt *Body = static_cast<Stmt*>(body.get());
932 if (First) {
933 QualType FirstType;
934 if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
935 if (!DS->isSingleDecl())
936 return StmtError(Diag((*DS->decl_begin())->getLocation(),
937 diag::err_toomany_element_decls));
938
939 Decl *D = DS->getSingleDecl();
940 FirstType = cast<ValueDecl>(D)->getType();
941 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
942 // declare identifiers for objects having storage class 'auto' or
943 // 'register'.
944 VarDecl *VD = cast<VarDecl>(D);
945 if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
946 return StmtError(Diag(VD->getLocation(),
947 diag::err_non_variable_decl_in_for));
948 } else {
949 if (cast<Expr>(First)->isLvalue(Context) != Expr::LV_Valid)
950 return StmtError(Diag(First->getLocStart(),
951 diag::err_selector_element_not_lvalue)
952 << First->getSourceRange());
953
954 FirstType = static_cast<Expr*>(First)->getType();
955 }
956 if (!FirstType->isObjCObjectPointerType() &&
957 !FirstType->isBlockPointerType())
958 Diag(ForLoc, diag::err_selector_element_type)
959 << FirstType << First->getSourceRange();
960 }
961 if (Second) {
962 DefaultFunctionArrayLvalueConversion(Second);
963 QualType SecondType = Second->getType();
964 if (!SecondType->isObjCObjectPointerType())
965 Diag(ForLoc, diag::err_collection_expr_type)
966 << SecondType << Second->getSourceRange();
967 }
968 first.release();
969 second.release();
970 body.release();
971 return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
972 ForLoc, RParenLoc));
973}
974
975Action::OwningStmtResult
976Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
977 IdentifierInfo *LabelII) {
978 // Look up the record for this label identifier.
979 LabelStmt *&LabelDecl = getLabelMap()[LabelII];
980
981 // If we haven't seen this label yet, create a forward reference.
982 if (LabelDecl == 0)
983 LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
984
985 return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
986}
987
988Action::OwningStmtResult
989Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
990 ExprArg DestExp) {
991 // Convert operand to void*
992 Expr* E = DestExp.takeAs<Expr>();
993 if (!E->isTypeDependent()) {
994 QualType ETy = E->getType();
995 QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
996 AssignConvertType ConvTy =
997 CheckSingleAssignmentConstraints(DestTy, E);
998 if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
999 return StmtError();
1000 }
1001 return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1002}
1003
1004Action::OwningStmtResult
1005Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1006 Scope *S = CurScope->getContinueParent();
1007 if (!S) {
1008 // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1009 return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1010 }
1011
1012 return Owned(new (Context) ContinueStmt(ContinueLoc));
1013}
1014
1015Action::OwningStmtResult
1016Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1017 Scope *S = CurScope->getBreakParent();
1018 if (!S) {
1019 // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1020 return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1021 }
1022
1023 return Owned(new (Context) BreakStmt(BreakLoc));
1024}
1025
1026/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1027///
1028Action::OwningStmtResult
1029Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1030 // If this is the first return we've seen in the block, infer the type of
1031 // the block from it.
1032 if (CurBlock->ReturnType.isNull()) {
1033 if (RetValExp) {
1034 // Don't call UsualUnaryConversions(), since we don't want to do
1035 // integer promotions here.
1036 DefaultFunctionArrayLvalueConversion(RetValExp);
1037 CurBlock->ReturnType = RetValExp->getType();
1038 if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1039 // We have to remove a 'const' added to copied-in variable which was
1040 // part of the implementation spec. and not the actual qualifier for
1041 // the variable.
1042 if (CDRE->isConstQualAdded())
1043 CurBlock->ReturnType.removeConst();
1044 }
1045 } else
1046 CurBlock->ReturnType = Context.VoidTy;
1047 }
1048 QualType FnRetType = CurBlock->ReturnType;
1049
1050 if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
1051 Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1052 << getCurFunctionOrMethodDecl()->getDeclName();
1053 return StmtError();
1054 }
1055
1056 // Otherwise, verify that this result type matches the previous one. We are
1057 // pickier with blocks than for normal functions because we don't have GCC
1058 // compatibility to worry about here.
1059 if (CurBlock->ReturnType->isVoidType()) {
1060 if (RetValExp) {
1061 Diag(ReturnLoc, diag::err_return_block_has_expr);
1062 RetValExp->Destroy(Context);
1063 RetValExp = 0;
1064 }
1065 return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
1066 }
1067
1068 if (!RetValExp)
1069 return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1070
1071 if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1072 // we have a non-void block with an expression, continue checking
1073
1074 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1075 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1076 // function return.
1077
1078 // In C++ the return statement is handled via a copy initialization.
1079 // the C version of which boils down to CheckSingleAssignmentConstraints.
1080 OwningExprResult Res = PerformCopyInitialization(
1081 InitializedEntity::InitializeResult(ReturnLoc,
1082 FnRetType),
1083 SourceLocation(),
1084 Owned(RetValExp));
1085 if (Res.isInvalid()) {
1086 // FIXME: Cleanup temporaries here, anyway?
1087 return StmtError();
1088 }
1089
1090 RetValExp = Res.takeAs<Expr>();
1091 if (RetValExp)
1092 CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1093 }
1094
1095 return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
1096}
1097
1098/// IsReturnCopyElidable - Whether returning @p RetExpr from a function that
1099/// returns a @p RetType fulfills the criteria for copy elision (C++0x 12.8p15).
1100static bool IsReturnCopyElidable(ASTContext &Ctx, QualType RetType,
1101 Expr *RetExpr) {
1102 QualType ExprType = RetExpr->getType();
1103 // - in a return statement in a function with ...
1104 // ... a class return type ...
1105 if (!RetType->isRecordType())
1106 return false;
1107 // ... the same cv-unqualified type as the function return type ...
1108 if (!Ctx.hasSameUnqualifiedType(RetType, ExprType))
1109 return false;
1110 // ... the expression is the name of a non-volatile automatic object ...
1111 // We ignore parentheses here.
1112 // FIXME: Is this compliant?
1113 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
1114 if (!DR)
1115 return false;
1116 const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1117 if (!VD)
1118 return false;
1119 return VD->hasLocalStorage() && !VD->getType()->isReferenceType()
1120 && !VD->getType().isVolatileQualified();
1121}
1122
1123Action::OwningStmtResult
1124Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) {
1125 Expr *RetValExp = rex.takeAs<Expr>();
1126 if (CurBlock)
1127 return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1128
1129 QualType FnRetType;
1130 if (const FunctionDecl *FD = getCurFunctionDecl()) {
1131 FnRetType = FD->getResultType();
1132 if (FD->hasAttr<NoReturnAttr>() ||
1133 FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1134 Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1135 << getCurFunctionOrMethodDecl()->getDeclName();
1136 } else if (ObjCMethodDecl *MD = getCurMethodDecl())
1137 FnRetType = MD->getResultType();
1138 else // If we don't have a function/method context, bail.
1139 return StmtError();
1140
1141 if (FnRetType->isVoidType()) {
1142 if (RetValExp && !RetValExp->isTypeDependent()) {
1143 // C99 6.8.6.4p1 (ext_ since GCC warns)
1144 unsigned D = diag::ext_return_has_expr;
1145 if (RetValExp->getType()->isVoidType())
1146 D = diag::ext_return_has_void_expr;
1147
1148 // return (some void expression); is legal in C++.
1149 if (D != diag::ext_return_has_void_expr ||
1150 !getLangOptions().CPlusPlus) {
1151 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1152 Diag(ReturnLoc, D)
1153 << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
1154 << RetValExp->getSourceRange();
1155 }
1156
1157 RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1158 }
1159 return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
1160 }
1161
1162 if (!RetValExp && !FnRetType->isDependentType()) {
1163 unsigned DiagID = diag::warn_return_missing_expr; // C90 6.6.6.4p4
1164 // C99 6.8.6.4p1 (ext_ since GCC warns)
1165 if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1166
1167 if (FunctionDecl *FD = getCurFunctionDecl())
1168 Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1169 else
1170 Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1171 return Owned(new (Context) ReturnStmt(ReturnLoc, (Expr*)0));
1172 }
1173
1174 if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1175 // we have a non-void function with an expression, continue checking
1176
1177 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1178 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1179 // function return.
1180
1181 // C++0x 12.8p15: When certain criteria are met, an implementation is
1182 // allowed to omit the copy construction of a class object, [...]
1183 // - in a return statement in a function with a class return type, when
1184 // the expression is the name of a non-volatile automatic object with
1185 // the same cv-unqualified type as the function return type, the copy
1186 // operation can be omitted [...]
1187 // C++0x 12.8p16: When the criteria for elision of a copy operation are met
1188 // and the object to be copied is designated by an lvalue, overload
1189 // resolution to select the constructor for the copy is first performed
1190 // as if the object were designated by an rvalue.
1191 // Note that we only compute Elidable if we're in C++0x, since we don't
1192 // care otherwise.
1193 bool Elidable = getLangOptions().CPlusPlus0x ?
1194 IsReturnCopyElidable(Context, FnRetType, RetValExp) :
1195 false;
1196 // FIXME: Elidable
1197 (void)Elidable;
1198
1199 // In C++ the return statement is handled via a copy initialization.
1200 // the C version of which boils down to CheckSingleAssignmentConstraints.
1201 OwningExprResult Res = PerformCopyInitialization(
1202 InitializedEntity::InitializeResult(ReturnLoc,
1203 FnRetType),
1204 SourceLocation(),
1205 Owned(RetValExp));
1206 if (Res.isInvalid()) {
1207 // FIXME: Cleanup temporaries here, anyway?
1208 return StmtError();
1209 }
1210
1211 RetValExp = Res.takeAs<Expr>();
1212 if (RetValExp)
1213 CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1214 }
1215
1216 if (RetValExp)
1217 RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1218 return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
1219}
1220
1221/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1222/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1223/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1224/// provide a strong guidance to not use it.
1225///
1226/// This method checks to see if the argument is an acceptable l-value and
1227/// returns false if it is a case we can handle.
1228static bool CheckAsmLValue(const Expr *E, Sema &S) {
1229 // Type dependent expressions will be checked during instantiation.
1230 if (E->isTypeDependent())
1231 return false;
1232
1233 if (E->isLvalue(S.Context) == Expr::LV_Valid)
1234 return false; // Cool, this is an lvalue.
1235
1236 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1237 // are supposed to allow.
1238 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1239 if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
1240 if (!S.getLangOptions().HeinousExtensions)
1241 S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1242 << E->getSourceRange();
1243 else
1244 S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1245 << E->getSourceRange();
1246 // Accept, even if we emitted an error diagnostic.
1247 return false;
1248 }
1249
1250 // None of the above, just randomly invalid non-lvalue.
1251 return true;
1252}
1253
1254
1255Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
1256 bool IsSimple,
1257 bool IsVolatile,
1258 unsigned NumOutputs,
1259 unsigned NumInputs,
1260 IdentifierInfo **Names,
1261 MultiExprArg constraints,
1262 MultiExprArg exprs,
1263 ExprArg asmString,
1264 MultiExprArg clobbers,
1265 SourceLocation RParenLoc,
1266 bool MSAsm) {
1267 unsigned NumClobbers = clobbers.size();
1268 StringLiteral **Constraints =
1269 reinterpret_cast<StringLiteral**>(constraints.get());
1270 Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
1271 StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
1272 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1273
1274 llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1275
1276 // The parser verifies that there is a string literal here.
1277 if (AsmString->isWide())
1278 return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1279 << AsmString->getSourceRange());
1280
1281 for (unsigned i = 0; i != NumOutputs; i++) {
1282 StringLiteral *Literal = Constraints[i];
1283 if (Literal->isWide())
1284 return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1285 << Literal->getSourceRange());
1286
1287 llvm::StringRef OutputName;
1288 if (Names[i])
1289 OutputName = Names[i]->getName();
1290
1291 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
1292 if (!Context.Target.validateOutputConstraint(Info))
1293 return StmtError(Diag(Literal->getLocStart(),
1294 diag::err_asm_invalid_output_constraint)
1295 << Info.getConstraintStr());
1296
1297 // Check that the output exprs are valid lvalues.
1298 Expr *OutputExpr = Exprs[i];
1299 if (CheckAsmLValue(OutputExpr, *this)) {
1300 return StmtError(Diag(OutputExpr->getLocStart(),
1301 diag::err_asm_invalid_lvalue_in_output)
1302 << OutputExpr->getSourceRange());
1303 }
1304
1305 OutputConstraintInfos.push_back(Info);
1306 }
1307
1308 llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1309
1310 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1311 StringLiteral *Literal = Constraints[i];
1312 if (Literal->isWide())
1313 return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1314 << Literal->getSourceRange());
1315
1316 llvm::StringRef InputName;
1317 if (Names[i])
1318 InputName = Names[i]->getName();
1319
1320 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
1321 if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1322 NumOutputs, Info)) {
1323 return StmtError(Diag(Literal->getLocStart(),
1324 diag::err_asm_invalid_input_constraint)
1325 << Info.getConstraintStr());
1326 }
1327
1328 Expr *InputExpr = Exprs[i];
1329
1330 // Only allow void types for memory constraints.
1331 if (Info.allowsMemory() && !Info.allowsRegister()) {
1332 if (CheckAsmLValue(InputExpr, *this))
1333 return StmtError(Diag(InputExpr->getLocStart(),
1334 diag::err_asm_invalid_lvalue_in_input)
1335 << Info.getConstraintStr()
1336 << InputExpr->getSourceRange());
1337 }
1338
1339 if (Info.allowsRegister()) {
1340 if (InputExpr->getType()->isVoidType()) {
1341 return StmtError(Diag(InputExpr->getLocStart(),
1342 diag::err_asm_invalid_type_in_input)
1343 << InputExpr->getType() << Info.getConstraintStr()
1344 << InputExpr->getSourceRange());
1345 }
1346 }
1347
1348 DefaultFunctionArrayLvalueConversion(Exprs[i]);
1349
1350 InputConstraintInfos.push_back(Info);
1351 }
1352
1353 // Check that the clobbers are valid.
1354 for (unsigned i = 0; i != NumClobbers; i++) {
1355 StringLiteral *Literal = Clobbers[i];
1356 if (Literal->isWide())
1357 return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1358 << Literal->getSourceRange());
1359
1360 llvm::StringRef Clobber = Literal->getString();
1361
1362 if (!Context.Target.isValidGCCRegisterName(Clobber))
1363 return StmtError(Diag(Literal->getLocStart(),
1364 diag::err_asm_unknown_register_name) << Clobber);
1365 }
1366
1367 constraints.release();
1368 exprs.release();
1369 asmString.release();
1370 clobbers.release();
1371 AsmStmt *NS =
1372 new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
1373 NumOutputs, NumInputs, Names, Constraints, Exprs,
1374 AsmString, NumClobbers, Clobbers, RParenLoc);
1375 // Validate the asm string, ensuring it makes sense given the operands we
1376 // have.
1377 llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1378 unsigned DiagOffs;
1379 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1380 Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1381 << AsmString->getSourceRange();
1382 DeleteStmt(NS);
1383 return StmtError();
1384 }
1385
1386 // Validate tied input operands for type mismatches.
1387 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1388 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1389
1390 // If this is a tied constraint, verify that the output and input have
1391 // either exactly the same type, or that they are int/ptr operands with the
1392 // same size (int/long, int*/long, are ok etc).
1393 if (!Info.hasTiedOperand()) continue;
1394
1395 unsigned TiedTo = Info.getTiedOperand();
1396 Expr *OutputExpr = Exprs[TiedTo];
1397 Expr *InputExpr = Exprs[i+NumOutputs];
1398 QualType InTy = InputExpr->getType();
1399 QualType OutTy = OutputExpr->getType();
1400 if (Context.hasSameType(InTy, OutTy))
1401 continue; // All types can be tied to themselves.
1402
1403 // Int/ptr operands have some special cases that we allow.
1404 if ((OutTy->isIntegerType() || OutTy->isPointerType()) &&
1405 (InTy->isIntegerType() || InTy->isPointerType())) {
1406
1407 // They are ok if they are the same size. Tying void* to int is ok if
1408 // they are the same size, for example. This also allows tying void* to
1409 // int*.
1410 uint64_t OutSize = Context.getTypeSize(OutTy);
1411 uint64_t InSize = Context.getTypeSize(InTy);
1412 if (OutSize == InSize)
1413 continue;
1414
1415 // If the smaller input/output operand is not mentioned in the asm string,
1416 // then we can promote it and the asm string won't notice. Check this
1417 // case now.
1418 bool SmallerValueMentioned = false;
1419 for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
1420 AsmStmt::AsmStringPiece &Piece = Pieces[p];
1421 if (!Piece.isOperand()) continue;
1422
1423 // If this is a reference to the input and if the input was the smaller
1424 // one, then we have to reject this asm.
1425 if (Piece.getOperandNo() == i+NumOutputs) {
1426 if (InSize < OutSize) {
1427 SmallerValueMentioned = true;
1428 break;
1429 }
1430 }
1431
1432 // If this is a reference to the input and if the input was the smaller
1433 // one, then we have to reject this asm.
1434 if (Piece.getOperandNo() == TiedTo) {
1435 if (InSize > OutSize) {
1436 SmallerValueMentioned = true;
1437 break;
1438 }
1439 }
1440 }
1441
1442 // If the smaller value wasn't mentioned in the asm string, and if the
1443 // output was a register, just extend the shorter one to the size of the
1444 // larger one.
1445 if (!SmallerValueMentioned &&
1446 OutputConstraintInfos[TiedTo].allowsRegister())
1447 continue;
1448 }
1449
1450 Diag(InputExpr->getLocStart(),
1451 diag::err_asm_tying_incompatible_types)
1452 << InTy << OutTy << OutputExpr->getSourceRange()
1453 << InputExpr->getSourceRange();
1454 DeleteStmt(NS);
1455 return StmtError();
1456 }
1457
1458 return Owned(NS);
1459}
1460
1461Action::OwningStmtResult
1462Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
1463 SourceLocation RParen, DeclPtrTy Parm,
1464 StmtArg Body, StmtArg catchList) {
1465 Stmt *CatchList = catchList.takeAs<Stmt>();
1466 ParmVarDecl *PVD = cast_or_null<ParmVarDecl>(Parm.getAs<Decl>());
1467
1468 // PVD == 0 implies @catch(...).
1469 if (PVD) {
1470 // If we already know the decl is invalid, reject it.
1471 if (PVD->isInvalidDecl())
1472 return StmtError();
1473
1474 if (!PVD->getType()->isObjCObjectPointerType())
1475 return StmtError(Diag(PVD->getLocation(),
1476 diag::err_catch_param_not_objc_type));
1477 if (PVD->getType()->isObjCQualifiedIdType())
1478 return StmtError(Diag(PVD->getLocation(),
1479 diag::err_illegal_qualifiers_on_catch_parm));
1480 }
1481
1482 ObjCAtCatchStmt *CS = new (Context) ObjCAtCatchStmt(AtLoc, RParen,
1483 PVD, Body.takeAs<Stmt>(), CatchList);
1484 return Owned(CatchList ? CatchList : CS);
1485}
1486
1487Action::OwningStmtResult
1488Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
1489 return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
1490 static_cast<Stmt*>(Body.release())));
1491}
1492
1493Action::OwningStmtResult
1494Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
1495 StmtArg Try, StmtArg Catch, StmtArg Finally) {
1496 CurFunctionNeedsScopeChecking = true;
1497 return Owned(new (Context) ObjCAtTryStmt(AtLoc, Try.takeAs<Stmt>(),
1498 Catch.takeAs<Stmt>(),
1499 Finally.takeAs<Stmt>()));
1500}
1501
1502Action::OwningStmtResult
1503Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg expr,Scope *CurScope) {
1504 Expr *ThrowExpr = expr.takeAs<Expr>();
1505 if (!ThrowExpr) {
1506 // @throw without an expression designates a rethrow (which much occur
1507 // in the context of an @catch clause).
1508 Scope *AtCatchParent = CurScope;
1509 while (AtCatchParent && !AtCatchParent->isAtCatchScope())
1510 AtCatchParent = AtCatchParent->getParent();
1511 if (!AtCatchParent)
1512 return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
1513 } else {
1514 QualType ThrowType = ThrowExpr->getType();
1515 // Make sure the expression type is an ObjC pointer or "void *".
1516 if (!ThrowType->isObjCObjectPointerType()) {
1517 const PointerType *PT = ThrowType->getAs<PointerType>();
1518 if (!PT || !PT->getPointeeType()->isVoidType())
1519 return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1520 << ThrowExpr->getType() << ThrowExpr->getSourceRange());
1521 }
1522 }
1523 return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowExpr));
1524}
1525
1526Action::OwningStmtResult
1527Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
1528 StmtArg SynchBody) {
1529 CurFunctionNeedsScopeChecking = true;
1530
1531 // Make sure the expression type is an ObjC pointer or "void *".
1532 Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get());
1533 if (!SyncExpr->getType()->isObjCObjectPointerType()) {
1534 const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
1535 if (!PT || !PT->getPointeeType()->isVoidType())
1536 return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
1537 << SyncExpr->getType() << SyncExpr->getSourceRange());
1538 }
1539
1540 return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
1541 SynchExpr.takeAs<Stmt>(),
1542 SynchBody.takeAs<Stmt>()));
1543}
1544
1545/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1546/// and creates a proper catch handler from them.
1547Action::OwningStmtResult
1548Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl,
1549 StmtArg HandlerBlock) {
1550 // There's nothing to test that ActOnExceptionDecl didn't already test.
1551 return Owned(new (Context) CXXCatchStmt(CatchLoc,
1552 cast_or_null<VarDecl>(ExDecl.getAs<Decl>()),
1553 HandlerBlock.takeAs<Stmt>()));
1554}
1555
1556class TypeWithHandler {
1557 QualType t;
1558 CXXCatchStmt *stmt;
1559public:
1560 TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
1561 : t(type), stmt(statement) {}
1562
1563 // An arbitrary order is fine as long as it places identical
1564 // types next to each other.
1565 bool operator<(const TypeWithHandler &y) const {
1566 if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
1567 return true;
1568 if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
1569 return false;
1570 else
1571 return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
1572 }
1573
1574 bool operator==(const TypeWithHandler& other) const {
1575 return t == other.t;
1576 }
1577
1578 QualType getQualType() const { return t; }
1579 CXXCatchStmt *getCatchStmt() const { return stmt; }
1580 SourceLocation getTypeSpecStartLoc() const {
1581 return stmt->getExceptionDecl()->getTypeSpecStartLoc();
1582 }
1583};
1584
1585/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1586/// handlers and creates a try statement from them.
1587Action::OwningStmtResult
1588Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
1589 MultiStmtArg RawHandlers) {
1590 unsigned NumHandlers = RawHandlers.size();
1591 assert(NumHandlers > 0 &&
1592 "The parser shouldn't call this if there are no handlers.");
1593 Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
1594
1595 llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
1596
1597 for (unsigned i = 0; i < NumHandlers; ++i) {
1598 CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1599 if (!Handler->getExceptionDecl()) {
1600 if (i < NumHandlers - 1)
1601 return StmtError(Diag(Handler->getLocStart(),
1602 diag::err_early_catch_all));
1603
1604 continue;
1605 }
1606
1607 const QualType CaughtType = Handler->getCaughtType();
1608 const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
1609 TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
1610 }
1611
1612 // Detect handlers for the same type as an earlier one.
1613 if (NumHandlers > 1) {
1614 llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
1615
1616 TypeWithHandler prev = TypesWithHandlers[0];
1617 for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
1618 TypeWithHandler curr = TypesWithHandlers[i];
1619
1620 if (curr == prev) {
1621 Diag(curr.getTypeSpecStartLoc(),
1622 diag::warn_exception_caught_by_earlier_handler)
1623 << curr.getCatchStmt()->getCaughtType().getAsString();
1624 Diag(prev.getTypeSpecStartLoc(),
1625 diag::note_previous_exception_handler)
1626 << prev.getCatchStmt()->getCaughtType().getAsString();
1627 }
1628
1629 prev = curr;
1630 }
1631 }
1632
1633 // FIXME: We should detect handlers that cannot catch anything because an
1634 // earlier handler catches a superclass. Need to find a method that is not
1635 // quadratic for this.
1636 // Neither of these are explicitly forbidden, but every compiler detects them
1637 // and warns.
1638
1639 CurFunctionNeedsScopeChecking = true;
1640 RawHandlers.release();
1641 return Owned(CXXTryStmt::Create(Context, TryLoc,
1642 static_cast<Stmt*>(TryBlock.release()),
1643 Handlers, NumHandlers));
1644}