Shih-wei Liao | f8fd82b | 2010-02-10 11:10:31 -0800 | [diff] [blame^] | 1 | //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements semantic analysis for statements. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "Sema.h" |
| 15 | #include "SemaInit.h" |
| 16 | #include "clang/AST/APValue.h" |
| 17 | #include "clang/AST/ASTContext.h" |
| 18 | #include "clang/AST/DeclObjC.h" |
| 19 | #include "clang/AST/ExprCXX.h" |
| 20 | #include "clang/AST/ExprObjC.h" |
| 21 | #include "clang/AST/StmtObjC.h" |
| 22 | #include "clang/AST/StmtCXX.h" |
| 23 | #include "clang/Lex/Preprocessor.h" |
| 24 | #include "clang/Basic/TargetInfo.h" |
| 25 | #include "llvm/ADT/STLExtras.h" |
| 26 | #include "llvm/ADT/SmallVector.h" |
| 27 | using namespace clang; |
| 28 | |
| 29 | Sema::OwningStmtResult Sema::ActOnExprStmt(FullExprArg expr) { |
| 30 | Expr *E = expr->takeAs<Expr>(); |
| 31 | assert(E && "ActOnExprStmt(): missing expression"); |
| 32 | if (E->getType()->isObjCInterfaceType()) { |
| 33 | if (LangOpts.ObjCNonFragileABI) |
| 34 | Diag(E->getLocEnd(), diag::err_indirection_requires_nonfragile_object) |
| 35 | << E->getType(); |
| 36 | else |
| 37 | Diag(E->getLocEnd(), diag::err_direct_interface_unsupported) |
| 38 | << E->getType(); |
| 39 | return StmtError(); |
| 40 | } |
| 41 | // C99 6.8.3p2: The expression in an expression statement is evaluated as a |
| 42 | // void expression for its side effects. Conversion to void allows any |
| 43 | // operand, even incomplete types. |
| 44 | |
| 45 | // Same thing in for stmt first clause (when expr) and third clause. |
| 46 | return Owned(static_cast<Stmt*>(E)); |
| 47 | } |
| 48 | |
| 49 | |
| 50 | Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) { |
| 51 | return Owned(new (Context) NullStmt(SemiLoc)); |
| 52 | } |
| 53 | |
| 54 | Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, |
| 55 | SourceLocation StartLoc, |
| 56 | SourceLocation EndLoc) { |
| 57 | DeclGroupRef DG = dg.getAsVal<DeclGroupRef>(); |
| 58 | |
| 59 | // If we have an invalid decl, just return an error. |
| 60 | if (DG.isNull()) return StmtError(); |
| 61 | |
| 62 | return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc)); |
| 63 | } |
| 64 | |
| 65 | void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) { |
| 66 | DeclGroupRef DG = dg.getAsVal<DeclGroupRef>(); |
| 67 | |
| 68 | // If we have an invalid decl, just return. |
| 69 | if (DG.isNull() || !DG.isSingleDecl()) return; |
| 70 | // suppress any potential 'unused variable' warning. |
| 71 | DG.getSingleDecl()->setUsed(); |
| 72 | } |
| 73 | |
| 74 | void Sema::DiagnoseUnusedExprResult(const Stmt *S) { |
| 75 | const Expr *E = dyn_cast_or_null<Expr>(S); |
| 76 | if (!E) |
| 77 | return; |
| 78 | |
| 79 | // Ignore expressions that have void type. |
| 80 | if (E->getType()->isVoidType()) |
| 81 | return; |
| 82 | |
| 83 | SourceLocation Loc; |
| 84 | SourceRange R1, R2; |
| 85 | if (!E->isUnusedResultAWarning(Loc, R1, R2, Context)) |
| 86 | return; |
| 87 | |
| 88 | // Okay, we have an unused result. Depending on what the base expression is, |
| 89 | // we might want to make a more specific diagnostic. Check for one of these |
| 90 | // cases now. |
| 91 | unsigned DiagID = diag::warn_unused_expr; |
| 92 | E = E->IgnoreParens(); |
| 93 | if (isa<ObjCImplicitSetterGetterRefExpr>(E)) |
| 94 | DiagID = diag::warn_unused_property_expr; |
| 95 | |
| 96 | if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { |
| 97 | // If the callee has attribute pure, const, or warn_unused_result, warn with |
| 98 | // a more specific message to make it clear what is happening. |
| 99 | if (const Decl *FD = CE->getCalleeDecl()) { |
| 100 | if (FD->getAttr<WarnUnusedResultAttr>()) { |
| 101 | Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result"; |
| 102 | return; |
| 103 | } |
| 104 | if (FD->getAttr<PureAttr>()) { |
| 105 | Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure"; |
| 106 | return; |
| 107 | } |
| 108 | if (FD->getAttr<ConstAttr>()) { |
| 109 | Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const"; |
| 110 | return; |
| 111 | } |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | Diag(Loc, DiagID) << R1 << R2; |
| 116 | } |
| 117 | |
| 118 | Action::OwningStmtResult |
| 119 | Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R, |
| 120 | MultiStmtArg elts, bool isStmtExpr) { |
| 121 | unsigned NumElts = elts.size(); |
| 122 | Stmt **Elts = reinterpret_cast<Stmt**>(elts.release()); |
| 123 | // If we're in C89 mode, check that we don't have any decls after stmts. If |
| 124 | // so, emit an extension diagnostic. |
| 125 | if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) { |
| 126 | // Note that __extension__ can be around a decl. |
| 127 | unsigned i = 0; |
| 128 | // Skip over all declarations. |
| 129 | for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i) |
| 130 | /*empty*/; |
| 131 | |
| 132 | // We found the end of the list or a statement. Scan for another declstmt. |
| 133 | for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i) |
| 134 | /*empty*/; |
| 135 | |
| 136 | if (i != NumElts) { |
| 137 | Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin(); |
| 138 | Diag(D->getLocation(), diag::ext_mixed_decls_code); |
| 139 | } |
| 140 | } |
| 141 | // Warn about unused expressions in statements. |
| 142 | for (unsigned i = 0; i != NumElts; ++i) { |
| 143 | // Ignore statements that are last in a statement expression. |
| 144 | if (isStmtExpr && i == NumElts - 1) |
| 145 | continue; |
| 146 | |
| 147 | DiagnoseUnusedExprResult(Elts[i]); |
| 148 | } |
| 149 | |
| 150 | return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R)); |
| 151 | } |
| 152 | |
| 153 | Action::OwningStmtResult |
| 154 | Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval, |
| 155 | SourceLocation DotDotDotLoc, ExprArg rhsval, |
| 156 | SourceLocation ColonLoc) { |
| 157 | assert((lhsval.get() != 0) && "missing expression in case statement"); |
| 158 | |
| 159 | // C99 6.8.4.2p3: The expression shall be an integer constant. |
| 160 | // However, GCC allows any evaluatable integer expression. |
| 161 | Expr *LHSVal = static_cast<Expr*>(lhsval.get()); |
| 162 | if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() && |
| 163 | VerifyIntegerConstantExpression(LHSVal)) |
| 164 | return StmtError(); |
| 165 | |
| 166 | // GCC extension: The expression shall be an integer constant. |
| 167 | |
| 168 | Expr *RHSVal = static_cast<Expr*>(rhsval.get()); |
| 169 | if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() && |
| 170 | VerifyIntegerConstantExpression(RHSVal)) { |
| 171 | RHSVal = 0; // Recover by just forgetting about it. |
| 172 | rhsval = 0; |
| 173 | } |
| 174 | |
| 175 | if (getSwitchStack().empty()) { |
| 176 | Diag(CaseLoc, diag::err_case_not_in_switch); |
| 177 | return StmtError(); |
| 178 | } |
| 179 | |
| 180 | // Only now release the smart pointers. |
| 181 | lhsval.release(); |
| 182 | rhsval.release(); |
| 183 | CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc, |
| 184 | ColonLoc); |
| 185 | getSwitchStack().back()->addSwitchCase(CS); |
| 186 | return Owned(CS); |
| 187 | } |
| 188 | |
| 189 | /// ActOnCaseStmtBody - This installs a statement as the body of a case. |
| 190 | void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) { |
| 191 | CaseStmt *CS = static_cast<CaseStmt*>(caseStmt); |
| 192 | Stmt *SubStmt = subStmt.takeAs<Stmt>(); |
| 193 | CS->setSubStmt(SubStmt); |
| 194 | } |
| 195 | |
| 196 | Action::OwningStmtResult |
| 197 | Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, |
| 198 | StmtArg subStmt, Scope *CurScope) { |
| 199 | Stmt *SubStmt = subStmt.takeAs<Stmt>(); |
| 200 | |
| 201 | if (getSwitchStack().empty()) { |
| 202 | Diag(DefaultLoc, diag::err_default_not_in_switch); |
| 203 | return Owned(SubStmt); |
| 204 | } |
| 205 | |
| 206 | DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt); |
| 207 | getSwitchStack().back()->addSwitchCase(DS); |
| 208 | return Owned(DS); |
| 209 | } |
| 210 | |
| 211 | Action::OwningStmtResult |
| 212 | Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II, |
| 213 | SourceLocation ColonLoc, StmtArg subStmt) { |
| 214 | Stmt *SubStmt = subStmt.takeAs<Stmt>(); |
| 215 | // Look up the record for this label identifier. |
| 216 | LabelStmt *&LabelDecl = getLabelMap()[II]; |
| 217 | |
| 218 | // If not forward referenced or defined already, just create a new LabelStmt. |
| 219 | if (LabelDecl == 0) |
| 220 | return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt)); |
| 221 | |
| 222 | assert(LabelDecl->getID() == II && "Label mismatch!"); |
| 223 | |
| 224 | // Otherwise, this label was either forward reference or multiply defined. If |
| 225 | // multiply defined, reject it now. |
| 226 | if (LabelDecl->getSubStmt()) { |
| 227 | Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID(); |
| 228 | Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition); |
| 229 | return Owned(SubStmt); |
| 230 | } |
| 231 | |
| 232 | // Otherwise, this label was forward declared, and we just found its real |
| 233 | // definition. Fill in the forward definition and return it. |
| 234 | LabelDecl->setIdentLoc(IdentLoc); |
| 235 | LabelDecl->setSubStmt(SubStmt); |
| 236 | return Owned(LabelDecl); |
| 237 | } |
| 238 | |
| 239 | Action::OwningStmtResult |
| 240 | Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, DeclPtrTy CondVar, |
| 241 | StmtArg ThenVal, SourceLocation ElseLoc, |
| 242 | StmtArg ElseVal) { |
| 243 | OwningExprResult CondResult(CondVal.release()); |
| 244 | |
| 245 | VarDecl *ConditionVar = 0; |
| 246 | if (CondVar.get()) { |
| 247 | ConditionVar = CondVar.getAs<VarDecl>(); |
| 248 | CondResult = CheckConditionVariable(ConditionVar); |
| 249 | if (CondResult.isInvalid()) |
| 250 | return StmtError(); |
| 251 | } |
| 252 | Expr *ConditionExpr = CondResult.takeAs<Expr>(); |
| 253 | if (!ConditionExpr) |
| 254 | return StmtError(); |
| 255 | |
| 256 | if (CheckBooleanCondition(ConditionExpr, IfLoc)) { |
| 257 | CondResult = ConditionExpr; |
| 258 | return StmtError(); |
| 259 | } |
| 260 | |
| 261 | Stmt *thenStmt = ThenVal.takeAs<Stmt>(); |
| 262 | DiagnoseUnusedExprResult(thenStmt); |
| 263 | |
| 264 | // Warn if the if block has a null body without an else value. |
| 265 | // this helps prevent bugs due to typos, such as |
| 266 | // if (condition); |
| 267 | // do_stuff(); |
| 268 | if (!ElseVal.get()) { |
| 269 | if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt)) |
| 270 | Diag(stmt->getSemiLoc(), diag::warn_empty_if_body); |
| 271 | } |
| 272 | |
| 273 | Stmt *elseStmt = ElseVal.takeAs<Stmt>(); |
| 274 | DiagnoseUnusedExprResult(elseStmt); |
| 275 | |
| 276 | CondResult.release(); |
| 277 | return Owned(new (Context) IfStmt(IfLoc, ConditionVar, ConditionExpr, |
| 278 | thenStmt, ElseLoc, elseStmt)); |
| 279 | } |
| 280 | |
| 281 | Action::OwningStmtResult |
| 282 | Sema::ActOnStartOfSwitchStmt(FullExprArg cond, DeclPtrTy CondVar) { |
| 283 | OwningExprResult CondResult(cond.release()); |
| 284 | |
| 285 | VarDecl *ConditionVar = 0; |
| 286 | if (CondVar.get()) { |
| 287 | ConditionVar = CondVar.getAs<VarDecl>(); |
| 288 | CondResult = CheckConditionVariable(ConditionVar); |
| 289 | if (CondResult.isInvalid()) |
| 290 | return StmtError(); |
| 291 | } |
| 292 | SwitchStmt *SS = new (Context) SwitchStmt(ConditionVar, |
| 293 | CondResult.takeAs<Expr>()); |
| 294 | getSwitchStack().push_back(SS); |
| 295 | return Owned(SS); |
| 296 | } |
| 297 | |
| 298 | /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have |
| 299 | /// the specified width and sign. If an overflow occurs, detect it and emit |
| 300 | /// the specified diagnostic. |
| 301 | void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val, |
| 302 | unsigned NewWidth, bool NewSign, |
| 303 | SourceLocation Loc, |
| 304 | unsigned DiagID) { |
| 305 | // Perform a conversion to the promoted condition type if needed. |
| 306 | if (NewWidth > Val.getBitWidth()) { |
| 307 | // If this is an extension, just do it. |
| 308 | llvm::APSInt OldVal(Val); |
| 309 | Val.extend(NewWidth); |
| 310 | |
| 311 | // If the input was signed and negative and the output is unsigned, |
| 312 | // warn. |
| 313 | if (!NewSign && OldVal.isSigned() && OldVal.isNegative()) |
| 314 | Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10); |
| 315 | |
| 316 | Val.setIsSigned(NewSign); |
| 317 | } else if (NewWidth < Val.getBitWidth()) { |
| 318 | // If this is a truncation, check for overflow. |
| 319 | llvm::APSInt ConvVal(Val); |
| 320 | ConvVal.trunc(NewWidth); |
| 321 | ConvVal.setIsSigned(NewSign); |
| 322 | ConvVal.extend(Val.getBitWidth()); |
| 323 | ConvVal.setIsSigned(Val.isSigned()); |
| 324 | if (ConvVal != Val) |
| 325 | Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10); |
| 326 | |
| 327 | // Regardless of whether a diagnostic was emitted, really do the |
| 328 | // truncation. |
| 329 | Val.trunc(NewWidth); |
| 330 | Val.setIsSigned(NewSign); |
| 331 | } else if (NewSign != Val.isSigned()) { |
| 332 | // Convert the sign to match the sign of the condition. This can cause |
| 333 | // overflow as well: unsigned(INTMIN) |
| 334 | llvm::APSInt OldVal(Val); |
| 335 | Val.setIsSigned(NewSign); |
| 336 | |
| 337 | if (Val.isNegative()) // Sign bit changes meaning. |
| 338 | Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10); |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | namespace { |
| 343 | struct CaseCompareFunctor { |
| 344 | bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, |
| 345 | const llvm::APSInt &RHS) { |
| 346 | return LHS.first < RHS; |
| 347 | } |
| 348 | bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, |
| 349 | const std::pair<llvm::APSInt, CaseStmt*> &RHS) { |
| 350 | return LHS.first < RHS.first; |
| 351 | } |
| 352 | bool operator()(const llvm::APSInt &LHS, |
| 353 | const std::pair<llvm::APSInt, CaseStmt*> &RHS) { |
| 354 | return LHS < RHS.first; |
| 355 | } |
| 356 | }; |
| 357 | } |
| 358 | |
| 359 | /// CmpCaseVals - Comparison predicate for sorting case values. |
| 360 | /// |
| 361 | static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs, |
| 362 | const std::pair<llvm::APSInt, CaseStmt*>& rhs) { |
| 363 | if (lhs.first < rhs.first) |
| 364 | return true; |
| 365 | |
| 366 | if (lhs.first == rhs.first && |
| 367 | lhs.second->getCaseLoc().getRawEncoding() |
| 368 | < rhs.second->getCaseLoc().getRawEncoding()) |
| 369 | return true; |
| 370 | return false; |
| 371 | } |
| 372 | |
| 373 | /// CmpEnumVals - Comparison predicate for sorting enumeration values. |
| 374 | /// |
| 375 | static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, |
| 376 | const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) |
| 377 | { |
| 378 | return lhs.first < rhs.first; |
| 379 | } |
| 380 | |
| 381 | /// EqEnumVals - Comparison preficate for uniqing enumeration values. |
| 382 | /// |
| 383 | static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, |
| 384 | const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) |
| 385 | { |
| 386 | return lhs.first == rhs.first; |
| 387 | } |
| 388 | |
| 389 | /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of |
| 390 | /// potentially integral-promoted expression @p expr. |
| 391 | static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) { |
| 392 | const ImplicitCastExpr *ImplicitCast = |
| 393 | dyn_cast_or_null<ImplicitCastExpr>(expr); |
| 394 | if (ImplicitCast != NULL) { |
| 395 | const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr(); |
| 396 | QualType TypeBeforePromotion = ExprBeforePromotion->getType(); |
| 397 | if (TypeBeforePromotion->isIntegralType()) { |
| 398 | return TypeBeforePromotion; |
| 399 | } |
| 400 | } |
| 401 | return expr->getType(); |
| 402 | } |
| 403 | |
| 404 | /// \brief Check (and possibly convert) the condition in a switch |
| 405 | /// statement in C++. |
| 406 | static bool CheckCXXSwitchCondition(Sema &S, SourceLocation SwitchLoc, |
| 407 | Expr *&CondExpr) { |
| 408 | if (CondExpr->isTypeDependent()) |
| 409 | return false; |
| 410 | |
| 411 | QualType CondType = CondExpr->getType(); |
| 412 | |
| 413 | // C++ 6.4.2.p2: |
| 414 | // The condition shall be of integral type, enumeration type, or of a class |
| 415 | // type for which a single conversion function to integral or enumeration |
| 416 | // type exists (12.3). If the condition is of class type, the condition is |
| 417 | // converted by calling that conversion function, and the result of the |
| 418 | // conversion is used in place of the original condition for the remainder |
| 419 | // of this section. Integral promotions are performed. |
| 420 | |
| 421 | // Make sure that the condition expression has a complete type, |
| 422 | // otherwise we'll never find any conversions. |
| 423 | if (S.RequireCompleteType(SwitchLoc, CondType, |
| 424 | PDiag(diag::err_switch_incomplete_class_type) |
| 425 | << CondExpr->getSourceRange())) |
| 426 | return true; |
| 427 | |
| 428 | llvm::SmallVector<CXXConversionDecl *, 4> ViableConversions; |
| 429 | llvm::SmallVector<CXXConversionDecl *, 4> ExplicitConversions; |
| 430 | if (const RecordType *RecordTy = CondType->getAs<RecordType>()) { |
| 431 | const UnresolvedSetImpl *Conversions |
| 432 | = cast<CXXRecordDecl>(RecordTy->getDecl()) |
| 433 | ->getVisibleConversionFunctions(); |
| 434 | for (UnresolvedSetImpl::iterator I = Conversions->begin(), |
| 435 | E = Conversions->end(); I != E; ++I) { |
| 436 | if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(*I)) |
| 437 | if (Conversion->getConversionType().getNonReferenceType() |
| 438 | ->isIntegralType()) { |
| 439 | if (Conversion->isExplicit()) |
| 440 | ExplicitConversions.push_back(Conversion); |
| 441 | else |
| 442 | ViableConversions.push_back(Conversion); |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | switch (ViableConversions.size()) { |
| 447 | case 0: |
| 448 | if (ExplicitConversions.size() == 1) { |
| 449 | // The user probably meant to invoke the given explicit |
| 450 | // conversion; use it. |
| 451 | QualType ConvTy |
| 452 | = ExplicitConversions[0]->getConversionType() |
| 453 | .getNonReferenceType(); |
| 454 | std::string TypeStr; |
| 455 | ConvTy.getAsStringInternal(TypeStr, S.Context.PrintingPolicy); |
| 456 | |
| 457 | S.Diag(SwitchLoc, diag::err_switch_explicit_conversion) |
| 458 | << CondType << ConvTy << CondExpr->getSourceRange() |
| 459 | << CodeModificationHint::CreateInsertion(CondExpr->getLocStart(), |
| 460 | "static_cast<" + TypeStr + ">(") |
| 461 | << CodeModificationHint::CreateInsertion( |
| 462 | S.PP.getLocForEndOfToken(CondExpr->getLocEnd()), |
| 463 | ")"); |
| 464 | S.Diag(ExplicitConversions[0]->getLocation(), |
| 465 | diag::note_switch_conversion) |
| 466 | << ConvTy->isEnumeralType() << ConvTy; |
| 467 | |
| 468 | // If we aren't in a SFINAE context, build a call to the |
| 469 | // explicit conversion function. |
| 470 | if (S.isSFINAEContext()) |
| 471 | return true; |
| 472 | |
| 473 | CondExpr = S.BuildCXXMemberCallExpr(CondExpr, ExplicitConversions[0]); |
| 474 | } |
| 475 | |
| 476 | // We'll complain below about a non-integral condition type. |
| 477 | break; |
| 478 | |
| 479 | case 1: |
| 480 | // Apply this conversion. |
| 481 | CondExpr = S.BuildCXXMemberCallExpr(CondExpr, ViableConversions[0]); |
| 482 | break; |
| 483 | |
| 484 | default: |
| 485 | S.Diag(SwitchLoc, diag::err_switch_multiple_conversions) |
| 486 | << CondType << CondExpr->getSourceRange(); |
| 487 | for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { |
| 488 | QualType ConvTy |
| 489 | = ViableConversions[I]->getConversionType().getNonReferenceType(); |
| 490 | S.Diag(ViableConversions[I]->getLocation(), |
| 491 | diag::note_switch_conversion) |
| 492 | << ConvTy->isEnumeralType() << ConvTy; |
| 493 | } |
| 494 | return true; |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | return false; |
| 499 | } |
| 500 | |
| 501 | /// ActOnSwitchBodyError - This is called if there is an error parsing the |
| 502 | /// body of the switch stmt instead of ActOnFinishSwitchStmt. |
| 503 | void Sema::ActOnSwitchBodyError(SourceLocation SwitchLoc, StmtArg Switch, |
| 504 | StmtArg Body) { |
| 505 | // Keep the switch stack balanced. |
| 506 | assert(getSwitchStack().back() == (SwitchStmt*)Switch.get() && |
| 507 | "switch stack missing push/pop!"); |
| 508 | getSwitchStack().pop_back(); |
| 509 | } |
| 510 | |
| 511 | Action::OwningStmtResult |
| 512 | Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch, |
| 513 | StmtArg Body) { |
| 514 | Stmt *BodyStmt = Body.takeAs<Stmt>(); |
| 515 | |
| 516 | SwitchStmt *SS = getSwitchStack().back(); |
| 517 | assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!"); |
| 518 | |
| 519 | SS->setBody(BodyStmt, SwitchLoc); |
| 520 | getSwitchStack().pop_back(); |
| 521 | |
| 522 | if (SS->getCond() == 0) { |
| 523 | SS->Destroy(Context); |
| 524 | return StmtError(); |
| 525 | } |
| 526 | |
| 527 | Expr *CondExpr = SS->getCond(); |
| 528 | QualType CondTypeBeforePromotion = |
| 529 | GetTypeBeforeIntegralPromotion(CondExpr); |
| 530 | |
| 531 | if (getLangOptions().CPlusPlus && |
| 532 | CheckCXXSwitchCondition(*this, SwitchLoc, CondExpr)) |
| 533 | return StmtError(); |
| 534 | |
| 535 | // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. |
| 536 | UsualUnaryConversions(CondExpr); |
| 537 | QualType CondType = CondExpr->getType(); |
| 538 | SS->setCond(CondExpr); |
| 539 | |
| 540 | // C++ 6.4.2.p2: |
| 541 | // Integral promotions are performed (on the switch condition). |
| 542 | // |
| 543 | // A case value unrepresentable by the original switch condition |
| 544 | // type (before the promotion) doesn't make sense, even when it can |
| 545 | // be represented by the promoted type. Therefore we need to find |
| 546 | // the pre-promotion type of the switch condition. |
| 547 | if (!CondExpr->isTypeDependent()) { |
| 548 | if (!CondType->isIntegerType()) { // C99 6.8.4.2p1 |
| 549 | Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer) |
| 550 | << CondType << CondExpr->getSourceRange(); |
| 551 | return StmtError(); |
| 552 | } |
| 553 | |
| 554 | if (CondTypeBeforePromotion->isBooleanType()) { |
| 555 | // switch(bool_expr) {...} is often a programmer error, e.g. |
| 556 | // switch(n && mask) { ... } // Doh - should be "n & mask". |
| 557 | // One can always use an if statement instead of switch(bool_expr). |
| 558 | Diag(SwitchLoc, diag::warn_bool_switch_condition) |
| 559 | << CondExpr->getSourceRange(); |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | // Get the bitwidth of the switched-on value before promotions. We must |
| 564 | // convert the integer case values to this width before comparison. |
| 565 | bool HasDependentValue |
| 566 | = CondExpr->isTypeDependent() || CondExpr->isValueDependent(); |
| 567 | unsigned CondWidth |
| 568 | = HasDependentValue? 0 |
| 569 | : static_cast<unsigned>(Context.getTypeSize(CondTypeBeforePromotion)); |
| 570 | bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType(); |
| 571 | |
| 572 | // Accumulate all of the case values in a vector so that we can sort them |
| 573 | // and detect duplicates. This vector contains the APInt for the case after |
| 574 | // it has been converted to the condition type. |
| 575 | typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy; |
| 576 | CaseValsTy CaseVals; |
| 577 | |
| 578 | // Keep track of any GNU case ranges we see. The APSInt is the low value. |
| 579 | typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy; |
| 580 | CaseRangesTy CaseRanges; |
| 581 | |
| 582 | DefaultStmt *TheDefaultStmt = 0; |
| 583 | |
| 584 | bool CaseListIsErroneous = false; |
| 585 | |
| 586 | for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue; |
| 587 | SC = SC->getNextSwitchCase()) { |
| 588 | |
| 589 | if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) { |
| 590 | if (TheDefaultStmt) { |
| 591 | Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined); |
| 592 | Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev); |
| 593 | |
| 594 | // FIXME: Remove the default statement from the switch block so that |
| 595 | // we'll return a valid AST. This requires recursing down the AST and |
| 596 | // finding it, not something we are set up to do right now. For now, |
| 597 | // just lop the entire switch stmt out of the AST. |
| 598 | CaseListIsErroneous = true; |
| 599 | } |
| 600 | TheDefaultStmt = DS; |
| 601 | |
| 602 | } else { |
| 603 | CaseStmt *CS = cast<CaseStmt>(SC); |
| 604 | |
| 605 | // We already verified that the expression has a i-c-e value (C99 |
| 606 | // 6.8.4.2p3) - get that value now. |
| 607 | Expr *Lo = CS->getLHS(); |
| 608 | |
| 609 | if (Lo->isTypeDependent() || Lo->isValueDependent()) { |
| 610 | HasDependentValue = true; |
| 611 | break; |
| 612 | } |
| 613 | |
| 614 | llvm::APSInt LoVal = Lo->EvaluateAsInt(Context); |
| 615 | |
| 616 | // Convert the value to the same width/sign as the condition. |
| 617 | ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned, |
| 618 | CS->getLHS()->getLocStart(), |
| 619 | diag::warn_case_value_overflow); |
| 620 | |
| 621 | // If the LHS is not the same type as the condition, insert an implicit |
| 622 | // cast. |
| 623 | ImpCastExprToType(Lo, CondType, CastExpr::CK_IntegralCast); |
| 624 | CS->setLHS(Lo); |
| 625 | |
| 626 | // If this is a case range, remember it in CaseRanges, otherwise CaseVals. |
| 627 | if (CS->getRHS()) { |
| 628 | if (CS->getRHS()->isTypeDependent() || |
| 629 | CS->getRHS()->isValueDependent()) { |
| 630 | HasDependentValue = true; |
| 631 | break; |
| 632 | } |
| 633 | CaseRanges.push_back(std::make_pair(LoVal, CS)); |
| 634 | } else |
| 635 | CaseVals.push_back(std::make_pair(LoVal, CS)); |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | if (!HasDependentValue) { |
| 640 | // Sort all the scalar case values so we can easily detect duplicates. |
| 641 | std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals); |
| 642 | |
| 643 | if (!CaseVals.empty()) { |
| 644 | for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) { |
| 645 | if (CaseVals[i].first == CaseVals[i+1].first) { |
| 646 | // If we have a duplicate, report it. |
| 647 | Diag(CaseVals[i+1].second->getLHS()->getLocStart(), |
| 648 | diag::err_duplicate_case) << CaseVals[i].first.toString(10); |
| 649 | Diag(CaseVals[i].second->getLHS()->getLocStart(), |
| 650 | diag::note_duplicate_case_prev); |
| 651 | // FIXME: We really want to remove the bogus case stmt from the |
| 652 | // substmt, but we have no way to do this right now. |
| 653 | CaseListIsErroneous = true; |
| 654 | } |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | // Detect duplicate case ranges, which usually don't exist at all in |
| 659 | // the first place. |
| 660 | if (!CaseRanges.empty()) { |
| 661 | // Sort all the case ranges by their low value so we can easily detect |
| 662 | // overlaps between ranges. |
| 663 | std::stable_sort(CaseRanges.begin(), CaseRanges.end()); |
| 664 | |
| 665 | // Scan the ranges, computing the high values and removing empty ranges. |
| 666 | std::vector<llvm::APSInt> HiVals; |
| 667 | for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { |
| 668 | CaseStmt *CR = CaseRanges[i].second; |
| 669 | Expr *Hi = CR->getRHS(); |
| 670 | llvm::APSInt HiVal = Hi->EvaluateAsInt(Context); |
| 671 | |
| 672 | // Convert the value to the same width/sign as the condition. |
| 673 | ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned, |
| 674 | CR->getRHS()->getLocStart(), |
| 675 | diag::warn_case_value_overflow); |
| 676 | |
| 677 | // If the LHS is not the same type as the condition, insert an implicit |
| 678 | // cast. |
| 679 | ImpCastExprToType(Hi, CondType, CastExpr::CK_IntegralCast); |
| 680 | CR->setRHS(Hi); |
| 681 | |
| 682 | // If the low value is bigger than the high value, the case is empty. |
| 683 | if (CaseRanges[i].first > HiVal) { |
| 684 | Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range) |
| 685 | << SourceRange(CR->getLHS()->getLocStart(), |
| 686 | CR->getRHS()->getLocEnd()); |
| 687 | CaseRanges.erase(CaseRanges.begin()+i); |
| 688 | --i, --e; |
| 689 | continue; |
| 690 | } |
| 691 | HiVals.push_back(HiVal); |
| 692 | } |
| 693 | |
| 694 | // Rescan the ranges, looking for overlap with singleton values and other |
| 695 | // ranges. Since the range list is sorted, we only need to compare case |
| 696 | // ranges with their neighbors. |
| 697 | for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { |
| 698 | llvm::APSInt &CRLo = CaseRanges[i].first; |
| 699 | llvm::APSInt &CRHi = HiVals[i]; |
| 700 | CaseStmt *CR = CaseRanges[i].second; |
| 701 | |
| 702 | // Check to see whether the case range overlaps with any |
| 703 | // singleton cases. |
| 704 | CaseStmt *OverlapStmt = 0; |
| 705 | llvm::APSInt OverlapVal(32); |
| 706 | |
| 707 | // Find the smallest value >= the lower bound. If I is in the |
| 708 | // case range, then we have overlap. |
| 709 | CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(), |
| 710 | CaseVals.end(), CRLo, |
| 711 | CaseCompareFunctor()); |
| 712 | if (I != CaseVals.end() && I->first < CRHi) { |
| 713 | OverlapVal = I->first; // Found overlap with scalar. |
| 714 | OverlapStmt = I->second; |
| 715 | } |
| 716 | |
| 717 | // Find the smallest value bigger than the upper bound. |
| 718 | I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor()); |
| 719 | if (I != CaseVals.begin() && (I-1)->first >= CRLo) { |
| 720 | OverlapVal = (I-1)->first; // Found overlap with scalar. |
| 721 | OverlapStmt = (I-1)->second; |
| 722 | } |
| 723 | |
| 724 | // Check to see if this case stmt overlaps with the subsequent |
| 725 | // case range. |
| 726 | if (i && CRLo <= HiVals[i-1]) { |
| 727 | OverlapVal = HiVals[i-1]; // Found overlap with range. |
| 728 | OverlapStmt = CaseRanges[i-1].second; |
| 729 | } |
| 730 | |
| 731 | if (OverlapStmt) { |
| 732 | // If we have a duplicate, report it. |
| 733 | Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case) |
| 734 | << OverlapVal.toString(10); |
| 735 | Diag(OverlapStmt->getLHS()->getLocStart(), |
| 736 | diag::note_duplicate_case_prev); |
| 737 | // FIXME: We really want to remove the bogus case stmt from the |
| 738 | // substmt, but we have no way to do this right now. |
| 739 | CaseListIsErroneous = true; |
| 740 | } |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | // Check to see if switch is over an Enum and handles all of its |
| 745 | // values |
| 746 | const EnumType* ET = dyn_cast<EnumType>(CondTypeBeforePromotion); |
| 747 | // If switch has default case, then ignore it. |
| 748 | if (!CaseListIsErroneous && !TheDefaultStmt && ET) { |
| 749 | const EnumDecl *ED = ET->getDecl(); |
| 750 | typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy; |
| 751 | EnumValsTy EnumVals; |
| 752 | |
| 753 | // Gather all enum values, set their type and sort them, allowing easier comparison |
| 754 | // with CaseVals. |
| 755 | for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin(); EDI != ED->enumerator_end(); EDI++) { |
| 756 | llvm::APSInt Val = (*EDI)->getInitVal(); |
| 757 | if(Val.getBitWidth() < CondWidth) |
| 758 | Val.extend(CondWidth); |
| 759 | Val.setIsSigned(CondIsSigned); |
| 760 | EnumVals.push_back(std::make_pair(Val, (*EDI))); |
| 761 | } |
| 762 | std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals); |
| 763 | EnumValsTy::iterator EIend = std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); |
| 764 | // See which case values aren't in enum |
| 765 | EnumValsTy::const_iterator EI = EnumVals.begin(); |
| 766 | for (CaseValsTy::const_iterator CI = CaseVals.begin(); CI != CaseVals.end(); CI++) { |
| 767 | while (EI != EIend && EI->first < CI->first) |
| 768 | EI++; |
| 769 | if (EI == EIend || EI->first > CI->first) |
| 770 | Diag(CI->second->getLHS()->getExprLoc(), diag::not_in_enum) << ED->getDeclName(); |
| 771 | } |
| 772 | // See which of case ranges aren't in enum |
| 773 | EI = EnumVals.begin(); |
| 774 | for (CaseRangesTy::const_iterator RI = CaseRanges.begin(); RI != CaseRanges.end() && EI != EIend; RI++) { |
| 775 | while (EI != EIend && EI->first < RI->first) |
| 776 | EI++; |
| 777 | |
| 778 | if (EI == EIend || EI->first != RI->first) { |
| 779 | Diag(RI->second->getLHS()->getExprLoc(), diag::not_in_enum) << ED->getDeclName(); |
| 780 | } |
| 781 | |
| 782 | llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context); |
| 783 | while (EI != EIend && EI->first < Hi) |
| 784 | EI++; |
| 785 | if (EI == EIend || EI->first != Hi) |
| 786 | Diag(RI->second->getRHS()->getExprLoc(), diag::not_in_enum) << ED->getDeclName(); |
| 787 | } |
| 788 | //Check which enum vals aren't in switch |
| 789 | CaseValsTy::const_iterator CI = CaseVals.begin(); |
| 790 | CaseRangesTy::const_iterator RI = CaseRanges.begin(); |
| 791 | EI = EnumVals.begin(); |
| 792 | for (; EI != EIend; EI++) { |
| 793 | //Drop unneeded case values |
| 794 | llvm::APSInt CIVal; |
| 795 | while (CI != CaseVals.end() && CI->first < EI->first) |
| 796 | CI++; |
| 797 | |
| 798 | if (CI != CaseVals.end() && CI->first == EI->first) |
| 799 | continue; |
| 800 | |
| 801 | //Drop unneeded case ranges |
| 802 | for (; RI != CaseRanges.end(); RI++) { |
| 803 | llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context); |
| 804 | if (EI->first <= Hi) |
| 805 | break; |
| 806 | } |
| 807 | |
| 808 | if (RI == CaseRanges.end() || EI->first < RI->first) |
| 809 | Diag(CondExpr->getExprLoc(), diag::warn_missing_cases) << EI->second->getDeclName(); |
| 810 | } |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | // FIXME: If the case list was broken is some way, we don't have a good system |
| 815 | // to patch it up. Instead, just return the whole substmt as broken. |
| 816 | if (CaseListIsErroneous) |
| 817 | return StmtError(); |
| 818 | |
| 819 | Switch.release(); |
| 820 | return Owned(SS); |
| 821 | } |
| 822 | |
| 823 | Action::OwningStmtResult |
| 824 | Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond, |
| 825 | DeclPtrTy CondVar, StmtArg Body) { |
| 826 | OwningExprResult CondResult(Cond.release()); |
| 827 | |
| 828 | VarDecl *ConditionVar = 0; |
| 829 | if (CondVar.get()) { |
| 830 | ConditionVar = CondVar.getAs<VarDecl>(); |
| 831 | CondResult = CheckConditionVariable(ConditionVar); |
| 832 | if (CondResult.isInvalid()) |
| 833 | return StmtError(); |
| 834 | } |
| 835 | Expr *ConditionExpr = CondResult.takeAs<Expr>(); |
| 836 | if (!ConditionExpr) |
| 837 | return StmtError(); |
| 838 | |
| 839 | if (CheckBooleanCondition(ConditionExpr, WhileLoc)) { |
| 840 | CondResult = ConditionExpr; |
| 841 | return StmtError(); |
| 842 | } |
| 843 | |
| 844 | Stmt *bodyStmt = Body.takeAs<Stmt>(); |
| 845 | DiagnoseUnusedExprResult(bodyStmt); |
| 846 | |
| 847 | CondResult.release(); |
| 848 | return Owned(new (Context) WhileStmt(ConditionVar, ConditionExpr, bodyStmt, |
| 849 | WhileLoc)); |
| 850 | } |
| 851 | |
| 852 | Action::OwningStmtResult |
| 853 | Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body, |
| 854 | SourceLocation WhileLoc, SourceLocation CondLParen, |
| 855 | ExprArg Cond, SourceLocation CondRParen) { |
| 856 | Expr *condExpr = Cond.takeAs<Expr>(); |
| 857 | assert(condExpr && "ActOnDoStmt(): missing expression"); |
| 858 | |
| 859 | if (CheckBooleanCondition(condExpr, DoLoc)) { |
| 860 | Cond = condExpr; |
| 861 | return StmtError(); |
| 862 | } |
| 863 | |
| 864 | Stmt *bodyStmt = Body.takeAs<Stmt>(); |
| 865 | DiagnoseUnusedExprResult(bodyStmt); |
| 866 | |
| 867 | Cond.release(); |
| 868 | return Owned(new (Context) DoStmt(bodyStmt, condExpr, DoLoc, |
| 869 | WhileLoc, CondRParen)); |
| 870 | } |
| 871 | |
| 872 | Action::OwningStmtResult |
| 873 | Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, |
| 874 | StmtArg first, FullExprArg second, DeclPtrTy secondVar, |
| 875 | FullExprArg third, |
| 876 | SourceLocation RParenLoc, StmtArg body) { |
| 877 | Stmt *First = static_cast<Stmt*>(first.get()); |
| 878 | |
| 879 | if (!getLangOptions().CPlusPlus) { |
| 880 | if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) { |
| 881 | // C99 6.8.5p3: The declaration part of a 'for' statement shall only |
| 882 | // declare identifiers for objects having storage class 'auto' or |
| 883 | // 'register'. |
| 884 | for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end(); |
| 885 | DI!=DE; ++DI) { |
| 886 | VarDecl *VD = dyn_cast<VarDecl>(*DI); |
| 887 | if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage()) |
| 888 | VD = 0; |
| 889 | if (VD == 0) |
| 890 | Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for); |
| 891 | // FIXME: mark decl erroneous! |
| 892 | } |
| 893 | } |
| 894 | } |
| 895 | |
| 896 | OwningExprResult SecondResult(second.release()); |
| 897 | VarDecl *ConditionVar = 0; |
| 898 | if (secondVar.get()) { |
| 899 | ConditionVar = secondVar.getAs<VarDecl>(); |
| 900 | SecondResult = CheckConditionVariable(ConditionVar); |
| 901 | if (SecondResult.isInvalid()) |
| 902 | return StmtError(); |
| 903 | } |
| 904 | |
| 905 | Expr *Second = SecondResult.takeAs<Expr>(); |
| 906 | if (Second && CheckBooleanCondition(Second, ForLoc)) { |
| 907 | SecondResult = Second; |
| 908 | return StmtError(); |
| 909 | } |
| 910 | |
| 911 | Expr *Third = third.release().takeAs<Expr>(); |
| 912 | Stmt *Body = static_cast<Stmt*>(body.get()); |
| 913 | |
| 914 | DiagnoseUnusedExprResult(First); |
| 915 | DiagnoseUnusedExprResult(Third); |
| 916 | DiagnoseUnusedExprResult(Body); |
| 917 | |
| 918 | first.release(); |
| 919 | body.release(); |
| 920 | return Owned(new (Context) ForStmt(First, Second, ConditionVar, Third, Body, |
| 921 | ForLoc, LParenLoc, RParenLoc)); |
| 922 | } |
| 923 | |
| 924 | Action::OwningStmtResult |
| 925 | Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc, |
| 926 | SourceLocation LParenLoc, |
| 927 | StmtArg first, ExprArg second, |
| 928 | SourceLocation RParenLoc, StmtArg body) { |
| 929 | Stmt *First = static_cast<Stmt*>(first.get()); |
| 930 | Expr *Second = static_cast<Expr*>(second.get()); |
| 931 | Stmt *Body = static_cast<Stmt*>(body.get()); |
| 932 | if (First) { |
| 933 | QualType FirstType; |
| 934 | if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) { |
| 935 | if (!DS->isSingleDecl()) |
| 936 | return StmtError(Diag((*DS->decl_begin())->getLocation(), |
| 937 | diag::err_toomany_element_decls)); |
| 938 | |
| 939 | Decl *D = DS->getSingleDecl(); |
| 940 | FirstType = cast<ValueDecl>(D)->getType(); |
| 941 | // C99 6.8.5p3: The declaration part of a 'for' statement shall only |
| 942 | // declare identifiers for objects having storage class 'auto' or |
| 943 | // 'register'. |
| 944 | VarDecl *VD = cast<VarDecl>(D); |
| 945 | if (VD->isBlockVarDecl() && !VD->hasLocalStorage()) |
| 946 | return StmtError(Diag(VD->getLocation(), |
| 947 | diag::err_non_variable_decl_in_for)); |
| 948 | } else { |
| 949 | if (cast<Expr>(First)->isLvalue(Context) != Expr::LV_Valid) |
| 950 | return StmtError(Diag(First->getLocStart(), |
| 951 | diag::err_selector_element_not_lvalue) |
| 952 | << First->getSourceRange()); |
| 953 | |
| 954 | FirstType = static_cast<Expr*>(First)->getType(); |
| 955 | } |
| 956 | if (!FirstType->isObjCObjectPointerType() && |
| 957 | !FirstType->isBlockPointerType()) |
| 958 | Diag(ForLoc, diag::err_selector_element_type) |
| 959 | << FirstType << First->getSourceRange(); |
| 960 | } |
| 961 | if (Second) { |
| 962 | DefaultFunctionArrayLvalueConversion(Second); |
| 963 | QualType SecondType = Second->getType(); |
| 964 | if (!SecondType->isObjCObjectPointerType()) |
| 965 | Diag(ForLoc, diag::err_collection_expr_type) |
| 966 | << SecondType << Second->getSourceRange(); |
| 967 | } |
| 968 | first.release(); |
| 969 | second.release(); |
| 970 | body.release(); |
| 971 | return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body, |
| 972 | ForLoc, RParenLoc)); |
| 973 | } |
| 974 | |
| 975 | Action::OwningStmtResult |
| 976 | Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, |
| 977 | IdentifierInfo *LabelII) { |
| 978 | // Look up the record for this label identifier. |
| 979 | LabelStmt *&LabelDecl = getLabelMap()[LabelII]; |
| 980 | |
| 981 | // If we haven't seen this label yet, create a forward reference. |
| 982 | if (LabelDecl == 0) |
| 983 | LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0); |
| 984 | |
| 985 | return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc)); |
| 986 | } |
| 987 | |
| 988 | Action::OwningStmtResult |
| 989 | Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, |
| 990 | ExprArg DestExp) { |
| 991 | // Convert operand to void* |
| 992 | Expr* E = DestExp.takeAs<Expr>(); |
| 993 | if (!E->isTypeDependent()) { |
| 994 | QualType ETy = E->getType(); |
| 995 | QualType DestTy = Context.getPointerType(Context.VoidTy.withConst()); |
| 996 | AssignConvertType ConvTy = |
| 997 | CheckSingleAssignmentConstraints(DestTy, E); |
| 998 | if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing)) |
| 999 | return StmtError(); |
| 1000 | } |
| 1001 | return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E)); |
| 1002 | } |
| 1003 | |
| 1004 | Action::OwningStmtResult |
| 1005 | Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { |
| 1006 | Scope *S = CurScope->getContinueParent(); |
| 1007 | if (!S) { |
| 1008 | // C99 6.8.6.2p1: A break shall appear only in or as a loop body. |
| 1009 | return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop)); |
| 1010 | } |
| 1011 | |
| 1012 | return Owned(new (Context) ContinueStmt(ContinueLoc)); |
| 1013 | } |
| 1014 | |
| 1015 | Action::OwningStmtResult |
| 1016 | Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { |
| 1017 | Scope *S = CurScope->getBreakParent(); |
| 1018 | if (!S) { |
| 1019 | // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. |
| 1020 | return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch)); |
| 1021 | } |
| 1022 | |
| 1023 | return Owned(new (Context) BreakStmt(BreakLoc)); |
| 1024 | } |
| 1025 | |
| 1026 | /// ActOnBlockReturnStmt - Utility routine to figure out block's return type. |
| 1027 | /// |
| 1028 | Action::OwningStmtResult |
| 1029 | Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) { |
| 1030 | // If this is the first return we've seen in the block, infer the type of |
| 1031 | // the block from it. |
| 1032 | if (CurBlock->ReturnType.isNull()) { |
| 1033 | if (RetValExp) { |
| 1034 | // Don't call UsualUnaryConversions(), since we don't want to do |
| 1035 | // integer promotions here. |
| 1036 | DefaultFunctionArrayLvalueConversion(RetValExp); |
| 1037 | CurBlock->ReturnType = RetValExp->getType(); |
| 1038 | if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) { |
| 1039 | // We have to remove a 'const' added to copied-in variable which was |
| 1040 | // part of the implementation spec. and not the actual qualifier for |
| 1041 | // the variable. |
| 1042 | if (CDRE->isConstQualAdded()) |
| 1043 | CurBlock->ReturnType.removeConst(); |
| 1044 | } |
| 1045 | } else |
| 1046 | CurBlock->ReturnType = Context.VoidTy; |
| 1047 | } |
| 1048 | QualType FnRetType = CurBlock->ReturnType; |
| 1049 | |
| 1050 | if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) { |
| 1051 | Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr) |
| 1052 | << getCurFunctionOrMethodDecl()->getDeclName(); |
| 1053 | return StmtError(); |
| 1054 | } |
| 1055 | |
| 1056 | // Otherwise, verify that this result type matches the previous one. We are |
| 1057 | // pickier with blocks than for normal functions because we don't have GCC |
| 1058 | // compatibility to worry about here. |
| 1059 | if (CurBlock->ReturnType->isVoidType()) { |
| 1060 | if (RetValExp) { |
| 1061 | Diag(ReturnLoc, diag::err_return_block_has_expr); |
| 1062 | RetValExp->Destroy(Context); |
| 1063 | RetValExp = 0; |
| 1064 | } |
| 1065 | return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp)); |
| 1066 | } |
| 1067 | |
| 1068 | if (!RetValExp) |
| 1069 | return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr)); |
| 1070 | |
| 1071 | if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) { |
| 1072 | // we have a non-void block with an expression, continue checking |
| 1073 | |
| 1074 | // C99 6.8.6.4p3(136): The return statement is not an assignment. The |
| 1075 | // overlap restriction of subclause 6.5.16.1 does not apply to the case of |
| 1076 | // function return. |
| 1077 | |
| 1078 | // In C++ the return statement is handled via a copy initialization. |
| 1079 | // the C version of which boils down to CheckSingleAssignmentConstraints. |
| 1080 | OwningExprResult Res = PerformCopyInitialization( |
| 1081 | InitializedEntity::InitializeResult(ReturnLoc, |
| 1082 | FnRetType), |
| 1083 | SourceLocation(), |
| 1084 | Owned(RetValExp)); |
| 1085 | if (Res.isInvalid()) { |
| 1086 | // FIXME: Cleanup temporaries here, anyway? |
| 1087 | return StmtError(); |
| 1088 | } |
| 1089 | |
| 1090 | RetValExp = Res.takeAs<Expr>(); |
| 1091 | if (RetValExp) |
| 1092 | CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc); |
| 1093 | } |
| 1094 | |
| 1095 | return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp)); |
| 1096 | } |
| 1097 | |
| 1098 | /// IsReturnCopyElidable - Whether returning @p RetExpr from a function that |
| 1099 | /// returns a @p RetType fulfills the criteria for copy elision (C++0x 12.8p15). |
| 1100 | static bool IsReturnCopyElidable(ASTContext &Ctx, QualType RetType, |
| 1101 | Expr *RetExpr) { |
| 1102 | QualType ExprType = RetExpr->getType(); |
| 1103 | // - in a return statement in a function with ... |
| 1104 | // ... a class return type ... |
| 1105 | if (!RetType->isRecordType()) |
| 1106 | return false; |
| 1107 | // ... the same cv-unqualified type as the function return type ... |
| 1108 | if (!Ctx.hasSameUnqualifiedType(RetType, ExprType)) |
| 1109 | return false; |
| 1110 | // ... the expression is the name of a non-volatile automatic object ... |
| 1111 | // We ignore parentheses here. |
| 1112 | // FIXME: Is this compliant? |
| 1113 | const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens()); |
| 1114 | if (!DR) |
| 1115 | return false; |
| 1116 | const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()); |
| 1117 | if (!VD) |
| 1118 | return false; |
| 1119 | return VD->hasLocalStorage() && !VD->getType()->isReferenceType() |
| 1120 | && !VD->getType().isVolatileQualified(); |
| 1121 | } |
| 1122 | |
| 1123 | Action::OwningStmtResult |
| 1124 | Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) { |
| 1125 | Expr *RetValExp = rex.takeAs<Expr>(); |
| 1126 | if (CurBlock) |
| 1127 | return ActOnBlockReturnStmt(ReturnLoc, RetValExp); |
| 1128 | |
| 1129 | QualType FnRetType; |
| 1130 | if (const FunctionDecl *FD = getCurFunctionDecl()) { |
| 1131 | FnRetType = FD->getResultType(); |
| 1132 | if (FD->hasAttr<NoReturnAttr>() || |
| 1133 | FD->getType()->getAs<FunctionType>()->getNoReturnAttr()) |
| 1134 | Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) |
| 1135 | << getCurFunctionOrMethodDecl()->getDeclName(); |
| 1136 | } else if (ObjCMethodDecl *MD = getCurMethodDecl()) |
| 1137 | FnRetType = MD->getResultType(); |
| 1138 | else // If we don't have a function/method context, bail. |
| 1139 | return StmtError(); |
| 1140 | |
| 1141 | if (FnRetType->isVoidType()) { |
| 1142 | if (RetValExp && !RetValExp->isTypeDependent()) { |
| 1143 | // C99 6.8.6.4p1 (ext_ since GCC warns) |
| 1144 | unsigned D = diag::ext_return_has_expr; |
| 1145 | if (RetValExp->getType()->isVoidType()) |
| 1146 | D = diag::ext_return_has_void_expr; |
| 1147 | |
| 1148 | // return (some void expression); is legal in C++. |
| 1149 | if (D != diag::ext_return_has_void_expr || |
| 1150 | !getLangOptions().CPlusPlus) { |
| 1151 | NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); |
| 1152 | Diag(ReturnLoc, D) |
| 1153 | << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl) |
| 1154 | << RetValExp->getSourceRange(); |
| 1155 | } |
| 1156 | |
| 1157 | RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp); |
| 1158 | } |
| 1159 | return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp)); |
| 1160 | } |
| 1161 | |
| 1162 | if (!RetValExp && !FnRetType->isDependentType()) { |
| 1163 | unsigned DiagID = diag::warn_return_missing_expr; // C90 6.6.6.4p4 |
| 1164 | // C99 6.8.6.4p1 (ext_ since GCC warns) |
| 1165 | if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr; |
| 1166 | |
| 1167 | if (FunctionDecl *FD = getCurFunctionDecl()) |
| 1168 | Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/; |
| 1169 | else |
| 1170 | Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/; |
| 1171 | return Owned(new (Context) ReturnStmt(ReturnLoc, (Expr*)0)); |
| 1172 | } |
| 1173 | |
| 1174 | if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) { |
| 1175 | // we have a non-void function with an expression, continue checking |
| 1176 | |
| 1177 | // C99 6.8.6.4p3(136): The return statement is not an assignment. The |
| 1178 | // overlap restriction of subclause 6.5.16.1 does not apply to the case of |
| 1179 | // function return. |
| 1180 | |
| 1181 | // C++0x 12.8p15: When certain criteria are met, an implementation is |
| 1182 | // allowed to omit the copy construction of a class object, [...] |
| 1183 | // - in a return statement in a function with a class return type, when |
| 1184 | // the expression is the name of a non-volatile automatic object with |
| 1185 | // the same cv-unqualified type as the function return type, the copy |
| 1186 | // operation can be omitted [...] |
| 1187 | // C++0x 12.8p16: When the criteria for elision of a copy operation are met |
| 1188 | // and the object to be copied is designated by an lvalue, overload |
| 1189 | // resolution to select the constructor for the copy is first performed |
| 1190 | // as if the object were designated by an rvalue. |
| 1191 | // Note that we only compute Elidable if we're in C++0x, since we don't |
| 1192 | // care otherwise. |
| 1193 | bool Elidable = getLangOptions().CPlusPlus0x ? |
| 1194 | IsReturnCopyElidable(Context, FnRetType, RetValExp) : |
| 1195 | false; |
| 1196 | // FIXME: Elidable |
| 1197 | (void)Elidable; |
| 1198 | |
| 1199 | // In C++ the return statement is handled via a copy initialization. |
| 1200 | // the C version of which boils down to CheckSingleAssignmentConstraints. |
| 1201 | OwningExprResult Res = PerformCopyInitialization( |
| 1202 | InitializedEntity::InitializeResult(ReturnLoc, |
| 1203 | FnRetType), |
| 1204 | SourceLocation(), |
| 1205 | Owned(RetValExp)); |
| 1206 | if (Res.isInvalid()) { |
| 1207 | // FIXME: Cleanup temporaries here, anyway? |
| 1208 | return StmtError(); |
| 1209 | } |
| 1210 | |
| 1211 | RetValExp = Res.takeAs<Expr>(); |
| 1212 | if (RetValExp) |
| 1213 | CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc); |
| 1214 | } |
| 1215 | |
| 1216 | if (RetValExp) |
| 1217 | RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp); |
| 1218 | return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp)); |
| 1219 | } |
| 1220 | |
| 1221 | /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently |
| 1222 | /// ignore "noop" casts in places where an lvalue is required by an inline asm. |
| 1223 | /// We emulate this behavior when -fheinous-gnu-extensions is specified, but |
| 1224 | /// provide a strong guidance to not use it. |
| 1225 | /// |
| 1226 | /// This method checks to see if the argument is an acceptable l-value and |
| 1227 | /// returns false if it is a case we can handle. |
| 1228 | static bool CheckAsmLValue(const Expr *E, Sema &S) { |
| 1229 | // Type dependent expressions will be checked during instantiation. |
| 1230 | if (E->isTypeDependent()) |
| 1231 | return false; |
| 1232 | |
| 1233 | if (E->isLvalue(S.Context) == Expr::LV_Valid) |
| 1234 | return false; // Cool, this is an lvalue. |
| 1235 | |
| 1236 | // Okay, this is not an lvalue, but perhaps it is the result of a cast that we |
| 1237 | // are supposed to allow. |
| 1238 | const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); |
| 1239 | if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) { |
| 1240 | if (!S.getLangOptions().HeinousExtensions) |
| 1241 | S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue) |
| 1242 | << E->getSourceRange(); |
| 1243 | else |
| 1244 | S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue) |
| 1245 | << E->getSourceRange(); |
| 1246 | // Accept, even if we emitted an error diagnostic. |
| 1247 | return false; |
| 1248 | } |
| 1249 | |
| 1250 | // None of the above, just randomly invalid non-lvalue. |
| 1251 | return true; |
| 1252 | } |
| 1253 | |
| 1254 | |
| 1255 | Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, |
| 1256 | bool IsSimple, |
| 1257 | bool IsVolatile, |
| 1258 | unsigned NumOutputs, |
| 1259 | unsigned NumInputs, |
| 1260 | IdentifierInfo **Names, |
| 1261 | MultiExprArg constraints, |
| 1262 | MultiExprArg exprs, |
| 1263 | ExprArg asmString, |
| 1264 | MultiExprArg clobbers, |
| 1265 | SourceLocation RParenLoc, |
| 1266 | bool MSAsm) { |
| 1267 | unsigned NumClobbers = clobbers.size(); |
| 1268 | StringLiteral **Constraints = |
| 1269 | reinterpret_cast<StringLiteral**>(constraints.get()); |
| 1270 | Expr **Exprs = reinterpret_cast<Expr **>(exprs.get()); |
| 1271 | StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get()); |
| 1272 | StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get()); |
| 1273 | |
| 1274 | llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; |
| 1275 | |
| 1276 | // The parser verifies that there is a string literal here. |
| 1277 | if (AsmString->isWide()) |
| 1278 | return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character) |
| 1279 | << AsmString->getSourceRange()); |
| 1280 | |
| 1281 | for (unsigned i = 0; i != NumOutputs; i++) { |
| 1282 | StringLiteral *Literal = Constraints[i]; |
| 1283 | if (Literal->isWide()) |
| 1284 | return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) |
| 1285 | << Literal->getSourceRange()); |
| 1286 | |
| 1287 | llvm::StringRef OutputName; |
| 1288 | if (Names[i]) |
| 1289 | OutputName = Names[i]->getName(); |
| 1290 | |
| 1291 | TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); |
| 1292 | if (!Context.Target.validateOutputConstraint(Info)) |
| 1293 | return StmtError(Diag(Literal->getLocStart(), |
| 1294 | diag::err_asm_invalid_output_constraint) |
| 1295 | << Info.getConstraintStr()); |
| 1296 | |
| 1297 | // Check that the output exprs are valid lvalues. |
| 1298 | Expr *OutputExpr = Exprs[i]; |
| 1299 | if (CheckAsmLValue(OutputExpr, *this)) { |
| 1300 | return StmtError(Diag(OutputExpr->getLocStart(), |
| 1301 | diag::err_asm_invalid_lvalue_in_output) |
| 1302 | << OutputExpr->getSourceRange()); |
| 1303 | } |
| 1304 | |
| 1305 | OutputConstraintInfos.push_back(Info); |
| 1306 | } |
| 1307 | |
| 1308 | llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; |
| 1309 | |
| 1310 | for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { |
| 1311 | StringLiteral *Literal = Constraints[i]; |
| 1312 | if (Literal->isWide()) |
| 1313 | return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) |
| 1314 | << Literal->getSourceRange()); |
| 1315 | |
| 1316 | llvm::StringRef InputName; |
| 1317 | if (Names[i]) |
| 1318 | InputName = Names[i]->getName(); |
| 1319 | |
| 1320 | TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); |
| 1321 | if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(), |
| 1322 | NumOutputs, Info)) { |
| 1323 | return StmtError(Diag(Literal->getLocStart(), |
| 1324 | diag::err_asm_invalid_input_constraint) |
| 1325 | << Info.getConstraintStr()); |
| 1326 | } |
| 1327 | |
| 1328 | Expr *InputExpr = Exprs[i]; |
| 1329 | |
| 1330 | // Only allow void types for memory constraints. |
| 1331 | if (Info.allowsMemory() && !Info.allowsRegister()) { |
| 1332 | if (CheckAsmLValue(InputExpr, *this)) |
| 1333 | return StmtError(Diag(InputExpr->getLocStart(), |
| 1334 | diag::err_asm_invalid_lvalue_in_input) |
| 1335 | << Info.getConstraintStr() |
| 1336 | << InputExpr->getSourceRange()); |
| 1337 | } |
| 1338 | |
| 1339 | if (Info.allowsRegister()) { |
| 1340 | if (InputExpr->getType()->isVoidType()) { |
| 1341 | return StmtError(Diag(InputExpr->getLocStart(), |
| 1342 | diag::err_asm_invalid_type_in_input) |
| 1343 | << InputExpr->getType() << Info.getConstraintStr() |
| 1344 | << InputExpr->getSourceRange()); |
| 1345 | } |
| 1346 | } |
| 1347 | |
| 1348 | DefaultFunctionArrayLvalueConversion(Exprs[i]); |
| 1349 | |
| 1350 | InputConstraintInfos.push_back(Info); |
| 1351 | } |
| 1352 | |
| 1353 | // Check that the clobbers are valid. |
| 1354 | for (unsigned i = 0; i != NumClobbers; i++) { |
| 1355 | StringLiteral *Literal = Clobbers[i]; |
| 1356 | if (Literal->isWide()) |
| 1357 | return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) |
| 1358 | << Literal->getSourceRange()); |
| 1359 | |
| 1360 | llvm::StringRef Clobber = Literal->getString(); |
| 1361 | |
| 1362 | if (!Context.Target.isValidGCCRegisterName(Clobber)) |
| 1363 | return StmtError(Diag(Literal->getLocStart(), |
| 1364 | diag::err_asm_unknown_register_name) << Clobber); |
| 1365 | } |
| 1366 | |
| 1367 | constraints.release(); |
| 1368 | exprs.release(); |
| 1369 | asmString.release(); |
| 1370 | clobbers.release(); |
| 1371 | AsmStmt *NS = |
| 1372 | new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm, |
| 1373 | NumOutputs, NumInputs, Names, Constraints, Exprs, |
| 1374 | AsmString, NumClobbers, Clobbers, RParenLoc); |
| 1375 | // Validate the asm string, ensuring it makes sense given the operands we |
| 1376 | // have. |
| 1377 | llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces; |
| 1378 | unsigned DiagOffs; |
| 1379 | if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { |
| 1380 | Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) |
| 1381 | << AsmString->getSourceRange(); |
| 1382 | DeleteStmt(NS); |
| 1383 | return StmtError(); |
| 1384 | } |
| 1385 | |
| 1386 | // Validate tied input operands for type mismatches. |
| 1387 | for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { |
| 1388 | TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; |
| 1389 | |
| 1390 | // If this is a tied constraint, verify that the output and input have |
| 1391 | // either exactly the same type, or that they are int/ptr operands with the |
| 1392 | // same size (int/long, int*/long, are ok etc). |
| 1393 | if (!Info.hasTiedOperand()) continue; |
| 1394 | |
| 1395 | unsigned TiedTo = Info.getTiedOperand(); |
| 1396 | Expr *OutputExpr = Exprs[TiedTo]; |
| 1397 | Expr *InputExpr = Exprs[i+NumOutputs]; |
| 1398 | QualType InTy = InputExpr->getType(); |
| 1399 | QualType OutTy = OutputExpr->getType(); |
| 1400 | if (Context.hasSameType(InTy, OutTy)) |
| 1401 | continue; // All types can be tied to themselves. |
| 1402 | |
| 1403 | // Int/ptr operands have some special cases that we allow. |
| 1404 | if ((OutTy->isIntegerType() || OutTy->isPointerType()) && |
| 1405 | (InTy->isIntegerType() || InTy->isPointerType())) { |
| 1406 | |
| 1407 | // They are ok if they are the same size. Tying void* to int is ok if |
| 1408 | // they are the same size, for example. This also allows tying void* to |
| 1409 | // int*. |
| 1410 | uint64_t OutSize = Context.getTypeSize(OutTy); |
| 1411 | uint64_t InSize = Context.getTypeSize(InTy); |
| 1412 | if (OutSize == InSize) |
| 1413 | continue; |
| 1414 | |
| 1415 | // If the smaller input/output operand is not mentioned in the asm string, |
| 1416 | // then we can promote it and the asm string won't notice. Check this |
| 1417 | // case now. |
| 1418 | bool SmallerValueMentioned = false; |
| 1419 | for (unsigned p = 0, e = Pieces.size(); p != e; ++p) { |
| 1420 | AsmStmt::AsmStringPiece &Piece = Pieces[p]; |
| 1421 | if (!Piece.isOperand()) continue; |
| 1422 | |
| 1423 | // If this is a reference to the input and if the input was the smaller |
| 1424 | // one, then we have to reject this asm. |
| 1425 | if (Piece.getOperandNo() == i+NumOutputs) { |
| 1426 | if (InSize < OutSize) { |
| 1427 | SmallerValueMentioned = true; |
| 1428 | break; |
| 1429 | } |
| 1430 | } |
| 1431 | |
| 1432 | // If this is a reference to the input and if the input was the smaller |
| 1433 | // one, then we have to reject this asm. |
| 1434 | if (Piece.getOperandNo() == TiedTo) { |
| 1435 | if (InSize > OutSize) { |
| 1436 | SmallerValueMentioned = true; |
| 1437 | break; |
| 1438 | } |
| 1439 | } |
| 1440 | } |
| 1441 | |
| 1442 | // If the smaller value wasn't mentioned in the asm string, and if the |
| 1443 | // output was a register, just extend the shorter one to the size of the |
| 1444 | // larger one. |
| 1445 | if (!SmallerValueMentioned && |
| 1446 | OutputConstraintInfos[TiedTo].allowsRegister()) |
| 1447 | continue; |
| 1448 | } |
| 1449 | |
| 1450 | Diag(InputExpr->getLocStart(), |
| 1451 | diag::err_asm_tying_incompatible_types) |
| 1452 | << InTy << OutTy << OutputExpr->getSourceRange() |
| 1453 | << InputExpr->getSourceRange(); |
| 1454 | DeleteStmt(NS); |
| 1455 | return StmtError(); |
| 1456 | } |
| 1457 | |
| 1458 | return Owned(NS); |
| 1459 | } |
| 1460 | |
| 1461 | Action::OwningStmtResult |
| 1462 | Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc, |
| 1463 | SourceLocation RParen, DeclPtrTy Parm, |
| 1464 | StmtArg Body, StmtArg catchList) { |
| 1465 | Stmt *CatchList = catchList.takeAs<Stmt>(); |
| 1466 | ParmVarDecl *PVD = cast_or_null<ParmVarDecl>(Parm.getAs<Decl>()); |
| 1467 | |
| 1468 | // PVD == 0 implies @catch(...). |
| 1469 | if (PVD) { |
| 1470 | // If we already know the decl is invalid, reject it. |
| 1471 | if (PVD->isInvalidDecl()) |
| 1472 | return StmtError(); |
| 1473 | |
| 1474 | if (!PVD->getType()->isObjCObjectPointerType()) |
| 1475 | return StmtError(Diag(PVD->getLocation(), |
| 1476 | diag::err_catch_param_not_objc_type)); |
| 1477 | if (PVD->getType()->isObjCQualifiedIdType()) |
| 1478 | return StmtError(Diag(PVD->getLocation(), |
| 1479 | diag::err_illegal_qualifiers_on_catch_parm)); |
| 1480 | } |
| 1481 | |
| 1482 | ObjCAtCatchStmt *CS = new (Context) ObjCAtCatchStmt(AtLoc, RParen, |
| 1483 | PVD, Body.takeAs<Stmt>(), CatchList); |
| 1484 | return Owned(CatchList ? CatchList : CS); |
| 1485 | } |
| 1486 | |
| 1487 | Action::OwningStmtResult |
| 1488 | Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) { |
| 1489 | return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, |
| 1490 | static_cast<Stmt*>(Body.release()))); |
| 1491 | } |
| 1492 | |
| 1493 | Action::OwningStmtResult |
| 1494 | Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, |
| 1495 | StmtArg Try, StmtArg Catch, StmtArg Finally) { |
| 1496 | CurFunctionNeedsScopeChecking = true; |
| 1497 | return Owned(new (Context) ObjCAtTryStmt(AtLoc, Try.takeAs<Stmt>(), |
| 1498 | Catch.takeAs<Stmt>(), |
| 1499 | Finally.takeAs<Stmt>())); |
| 1500 | } |
| 1501 | |
| 1502 | Action::OwningStmtResult |
| 1503 | Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg expr,Scope *CurScope) { |
| 1504 | Expr *ThrowExpr = expr.takeAs<Expr>(); |
| 1505 | if (!ThrowExpr) { |
| 1506 | // @throw without an expression designates a rethrow (which much occur |
| 1507 | // in the context of an @catch clause). |
| 1508 | Scope *AtCatchParent = CurScope; |
| 1509 | while (AtCatchParent && !AtCatchParent->isAtCatchScope()) |
| 1510 | AtCatchParent = AtCatchParent->getParent(); |
| 1511 | if (!AtCatchParent) |
| 1512 | return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch)); |
| 1513 | } else { |
| 1514 | QualType ThrowType = ThrowExpr->getType(); |
| 1515 | // Make sure the expression type is an ObjC pointer or "void *". |
| 1516 | if (!ThrowType->isObjCObjectPointerType()) { |
| 1517 | const PointerType *PT = ThrowType->getAs<PointerType>(); |
| 1518 | if (!PT || !PT->getPointeeType()->isVoidType()) |
| 1519 | return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object) |
| 1520 | << ThrowExpr->getType() << ThrowExpr->getSourceRange()); |
| 1521 | } |
| 1522 | } |
| 1523 | return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowExpr)); |
| 1524 | } |
| 1525 | |
| 1526 | Action::OwningStmtResult |
| 1527 | Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr, |
| 1528 | StmtArg SynchBody) { |
| 1529 | CurFunctionNeedsScopeChecking = true; |
| 1530 | |
| 1531 | // Make sure the expression type is an ObjC pointer or "void *". |
| 1532 | Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get()); |
| 1533 | if (!SyncExpr->getType()->isObjCObjectPointerType()) { |
| 1534 | const PointerType *PT = SyncExpr->getType()->getAs<PointerType>(); |
| 1535 | if (!PT || !PT->getPointeeType()->isVoidType()) |
| 1536 | return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object) |
| 1537 | << SyncExpr->getType() << SyncExpr->getSourceRange()); |
| 1538 | } |
| 1539 | |
| 1540 | return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, |
| 1541 | SynchExpr.takeAs<Stmt>(), |
| 1542 | SynchBody.takeAs<Stmt>())); |
| 1543 | } |
| 1544 | |
| 1545 | /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block |
| 1546 | /// and creates a proper catch handler from them. |
| 1547 | Action::OwningStmtResult |
| 1548 | Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl, |
| 1549 | StmtArg HandlerBlock) { |
| 1550 | // There's nothing to test that ActOnExceptionDecl didn't already test. |
| 1551 | return Owned(new (Context) CXXCatchStmt(CatchLoc, |
| 1552 | cast_or_null<VarDecl>(ExDecl.getAs<Decl>()), |
| 1553 | HandlerBlock.takeAs<Stmt>())); |
| 1554 | } |
| 1555 | |
| 1556 | class TypeWithHandler { |
| 1557 | QualType t; |
| 1558 | CXXCatchStmt *stmt; |
| 1559 | public: |
| 1560 | TypeWithHandler(const QualType &type, CXXCatchStmt *statement) |
| 1561 | : t(type), stmt(statement) {} |
| 1562 | |
| 1563 | // An arbitrary order is fine as long as it places identical |
| 1564 | // types next to each other. |
| 1565 | bool operator<(const TypeWithHandler &y) const { |
| 1566 | if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr()) |
| 1567 | return true; |
| 1568 | if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr()) |
| 1569 | return false; |
| 1570 | else |
| 1571 | return getTypeSpecStartLoc() < y.getTypeSpecStartLoc(); |
| 1572 | } |
| 1573 | |
| 1574 | bool operator==(const TypeWithHandler& other) const { |
| 1575 | return t == other.t; |
| 1576 | } |
| 1577 | |
| 1578 | QualType getQualType() const { return t; } |
| 1579 | CXXCatchStmt *getCatchStmt() const { return stmt; } |
| 1580 | SourceLocation getTypeSpecStartLoc() const { |
| 1581 | return stmt->getExceptionDecl()->getTypeSpecStartLoc(); |
| 1582 | } |
| 1583 | }; |
| 1584 | |
| 1585 | /// ActOnCXXTryBlock - Takes a try compound-statement and a number of |
| 1586 | /// handlers and creates a try statement from them. |
| 1587 | Action::OwningStmtResult |
| 1588 | Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock, |
| 1589 | MultiStmtArg RawHandlers) { |
| 1590 | unsigned NumHandlers = RawHandlers.size(); |
| 1591 | assert(NumHandlers > 0 && |
| 1592 | "The parser shouldn't call this if there are no handlers."); |
| 1593 | Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get()); |
| 1594 | |
| 1595 | llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers; |
| 1596 | |
| 1597 | for (unsigned i = 0; i < NumHandlers; ++i) { |
| 1598 | CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]); |
| 1599 | if (!Handler->getExceptionDecl()) { |
| 1600 | if (i < NumHandlers - 1) |
| 1601 | return StmtError(Diag(Handler->getLocStart(), |
| 1602 | diag::err_early_catch_all)); |
| 1603 | |
| 1604 | continue; |
| 1605 | } |
| 1606 | |
| 1607 | const QualType CaughtType = Handler->getCaughtType(); |
| 1608 | const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType); |
| 1609 | TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler)); |
| 1610 | } |
| 1611 | |
| 1612 | // Detect handlers for the same type as an earlier one. |
| 1613 | if (NumHandlers > 1) { |
| 1614 | llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end()); |
| 1615 | |
| 1616 | TypeWithHandler prev = TypesWithHandlers[0]; |
| 1617 | for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) { |
| 1618 | TypeWithHandler curr = TypesWithHandlers[i]; |
| 1619 | |
| 1620 | if (curr == prev) { |
| 1621 | Diag(curr.getTypeSpecStartLoc(), |
| 1622 | diag::warn_exception_caught_by_earlier_handler) |
| 1623 | << curr.getCatchStmt()->getCaughtType().getAsString(); |
| 1624 | Diag(prev.getTypeSpecStartLoc(), |
| 1625 | diag::note_previous_exception_handler) |
| 1626 | << prev.getCatchStmt()->getCaughtType().getAsString(); |
| 1627 | } |
| 1628 | |
| 1629 | prev = curr; |
| 1630 | } |
| 1631 | } |
| 1632 | |
| 1633 | // FIXME: We should detect handlers that cannot catch anything because an |
| 1634 | // earlier handler catches a superclass. Need to find a method that is not |
| 1635 | // quadratic for this. |
| 1636 | // Neither of these are explicitly forbidden, but every compiler detects them |
| 1637 | // and warns. |
| 1638 | |
| 1639 | CurFunctionNeedsScopeChecking = true; |
| 1640 | RawHandlers.release(); |
| 1641 | return Owned(CXXTryStmt::Create(Context, TryLoc, |
| 1642 | static_cast<Stmt*>(TryBlock.release()), |
| 1643 | Handlers, NumHandlers)); |
| 1644 | } |