blob: df4d4a828d4803637e0dd57945cf7cfb18d6df46 [file] [log] [blame]
Shih-wei Liaof8fd82b2010-02-10 11:10:31 -08001//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9// This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===/
12
13#include "Sema.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclTemplate.h"
16#include "clang/AST/StmtVisitor.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/Parse/DeclSpec.h"
20#include <algorithm>
21
22namespace clang {
23 /// \brief Various flags that control template argument deduction.
24 ///
25 /// These flags can be bitwise-OR'd together.
26 enum TemplateDeductionFlags {
27 /// \brief No template argument deduction flags, which indicates the
28 /// strictest results for template argument deduction (as used for, e.g.,
29 /// matching class template partial specializations).
30 TDF_None = 0,
31 /// \brief Within template argument deduction from a function call, we are
32 /// matching with a parameter type for which the original parameter was
33 /// a reference.
34 TDF_ParamWithReferenceType = 0x1,
35 /// \brief Within template argument deduction from a function call, we
36 /// are matching in a case where we ignore cv-qualifiers.
37 TDF_IgnoreQualifiers = 0x02,
38 /// \brief Within template argument deduction from a function call,
39 /// we are matching in a case where we can perform template argument
40 /// deduction from a template-id of a derived class of the argument type.
41 TDF_DerivedClass = 0x04,
42 /// \brief Allow non-dependent types to differ, e.g., when performing
43 /// template argument deduction from a function call where conversions
44 /// may apply.
45 TDF_SkipNonDependent = 0x08
46 };
47}
48
49using namespace clang;
50
51static Sema::TemplateDeductionResult
52DeduceTemplateArguments(Sema &S,
53 TemplateParameterList *TemplateParams,
54 const TemplateArgument &Param,
55 const TemplateArgument &Arg,
56 Sema::TemplateDeductionInfo &Info,
57 llvm::SmallVectorImpl<TemplateArgument> &Deduced);
58
59/// \brief If the given expression is of a form that permits the deduction
60/// of a non-type template parameter, return the declaration of that
61/// non-type template parameter.
62static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
63 if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
64 E = IC->getSubExpr();
65
66 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
67 return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
68
69 return 0;
70}
71
72/// \brief Deduce the value of the given non-type template parameter
73/// from the given constant.
74static Sema::TemplateDeductionResult
75DeduceNonTypeTemplateArgument(Sema &S,
76 NonTypeTemplateParmDecl *NTTP,
77 llvm::APSInt Value,
78 Sema::TemplateDeductionInfo &Info,
79 llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
80 assert(NTTP->getDepth() == 0 &&
81 "Cannot deduce non-type template argument with depth > 0");
82
83 if (Deduced[NTTP->getIndex()].isNull()) {
84 QualType T = NTTP->getType();
85
86 // FIXME: Make sure we didn't overflow our data type!
87 unsigned AllowedBits = S.Context.getTypeSize(T);
88 if (Value.getBitWidth() != AllowedBits)
89 Value.extOrTrunc(AllowedBits);
90 Value.setIsSigned(T->isSignedIntegerType());
91
92 Deduced[NTTP->getIndex()] = TemplateArgument(Value, T);
93 return Sema::TDK_Success;
94 }
95
96 assert(Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral);
97
98 // If the template argument was previously deduced to a negative value,
99 // then our deduction fails.
100 const llvm::APSInt *PrevValuePtr = Deduced[NTTP->getIndex()].getAsIntegral();
101 if (PrevValuePtr->isNegative()) {
102 Info.Param = NTTP;
103 Info.FirstArg = Deduced[NTTP->getIndex()];
104 Info.SecondArg = TemplateArgument(Value, NTTP->getType());
105 return Sema::TDK_Inconsistent;
106 }
107
108 llvm::APSInt PrevValue = *PrevValuePtr;
109 if (Value.getBitWidth() > PrevValue.getBitWidth())
110 PrevValue.zext(Value.getBitWidth());
111 else if (Value.getBitWidth() < PrevValue.getBitWidth())
112 Value.zext(PrevValue.getBitWidth());
113
114 if (Value != PrevValue) {
115 Info.Param = NTTP;
116 Info.FirstArg = Deduced[NTTP->getIndex()];
117 Info.SecondArg = TemplateArgument(Value, NTTP->getType());
118 return Sema::TDK_Inconsistent;
119 }
120
121 return Sema::TDK_Success;
122}
123
124/// \brief Deduce the value of the given non-type template parameter
125/// from the given type- or value-dependent expression.
126///
127/// \returns true if deduction succeeded, false otherwise.
128static Sema::TemplateDeductionResult
129DeduceNonTypeTemplateArgument(Sema &S,
130 NonTypeTemplateParmDecl *NTTP,
131 Expr *Value,
132 Sema::TemplateDeductionInfo &Info,
133 llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
134 assert(NTTP->getDepth() == 0 &&
135 "Cannot deduce non-type template argument with depth > 0");
136 assert((Value->isTypeDependent() || Value->isValueDependent()) &&
137 "Expression template argument must be type- or value-dependent.");
138
139 if (Deduced[NTTP->getIndex()].isNull()) {
140 // FIXME: Clone the Value?
141 Deduced[NTTP->getIndex()] = TemplateArgument(Value);
142 return Sema::TDK_Success;
143 }
144
145 if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral) {
146 // Okay, we deduced a constant in one case and a dependent expression
147 // in another case. FIXME: Later, we will check that instantiating the
148 // dependent expression gives us the constant value.
149 return Sema::TDK_Success;
150 }
151
152 if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
153 // Compare the expressions for equality
154 llvm::FoldingSetNodeID ID1, ID2;
155 Deduced[NTTP->getIndex()].getAsExpr()->Profile(ID1, S.Context, true);
156 Value->Profile(ID2, S.Context, true);
157 if (ID1 == ID2)
158 return Sema::TDK_Success;
159
160 // FIXME: Fill in argument mismatch information
161 return Sema::TDK_NonDeducedMismatch;
162 }
163
164 return Sema::TDK_Success;
165}
166
167/// \brief Deduce the value of the given non-type template parameter
168/// from the given declaration.
169///
170/// \returns true if deduction succeeded, false otherwise.
171static Sema::TemplateDeductionResult
172DeduceNonTypeTemplateArgument(Sema &S,
173 NonTypeTemplateParmDecl *NTTP,
174 Decl *D,
175 Sema::TemplateDeductionInfo &Info,
176 llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
177 assert(NTTP->getDepth() == 0 &&
178 "Cannot deduce non-type template argument with depth > 0");
179
180 if (Deduced[NTTP->getIndex()].isNull()) {
181 Deduced[NTTP->getIndex()] = TemplateArgument(D->getCanonicalDecl());
182 return Sema::TDK_Success;
183 }
184
185 if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
186 // Okay, we deduced a declaration in one case and a dependent expression
187 // in another case.
188 return Sema::TDK_Success;
189 }
190
191 if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Declaration) {
192 // Compare the declarations for equality
193 if (Deduced[NTTP->getIndex()].getAsDecl()->getCanonicalDecl() ==
194 D->getCanonicalDecl())
195 return Sema::TDK_Success;
196
197 // FIXME: Fill in argument mismatch information
198 return Sema::TDK_NonDeducedMismatch;
199 }
200
201 return Sema::TDK_Success;
202}
203
204static Sema::TemplateDeductionResult
205DeduceTemplateArguments(Sema &S,
206 TemplateParameterList *TemplateParams,
207 TemplateName Param,
208 TemplateName Arg,
209 Sema::TemplateDeductionInfo &Info,
210 llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
211 TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
212 if (!ParamDecl) {
213 // The parameter type is dependent and is not a template template parameter,
214 // so there is nothing that we can deduce.
215 return Sema::TDK_Success;
216 }
217
218 if (TemplateTemplateParmDecl *TempParam
219 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
220 // Bind the template template parameter to the given template name.
221 TemplateArgument &ExistingArg = Deduced[TempParam->getIndex()];
222 if (ExistingArg.isNull()) {
223 // This is the first deduction for this template template parameter.
224 ExistingArg = TemplateArgument(S.Context.getCanonicalTemplateName(Arg));
225 return Sema::TDK_Success;
226 }
227
228 // Verify that the previous binding matches this deduction.
229 assert(ExistingArg.getKind() == TemplateArgument::Template);
230 if (S.Context.hasSameTemplateName(ExistingArg.getAsTemplate(), Arg))
231 return Sema::TDK_Success;
232
233 // Inconsistent deduction.
234 Info.Param = TempParam;
235 Info.FirstArg = ExistingArg;
236 Info.SecondArg = TemplateArgument(Arg);
237 return Sema::TDK_Inconsistent;
238 }
239
240 // Verify that the two template names are equivalent.
241 if (S.Context.hasSameTemplateName(Param, Arg))
242 return Sema::TDK_Success;
243
244 // Mismatch of non-dependent template parameter to argument.
245 Info.FirstArg = TemplateArgument(Param);
246 Info.SecondArg = TemplateArgument(Arg);
247 return Sema::TDK_NonDeducedMismatch;
248}
249
250/// \brief Deduce the template arguments by comparing the template parameter
251/// type (which is a template-id) with the template argument type.
252///
253/// \param S the Sema
254///
255/// \param TemplateParams the template parameters that we are deducing
256///
257/// \param Param the parameter type
258///
259/// \param Arg the argument type
260///
261/// \param Info information about the template argument deduction itself
262///
263/// \param Deduced the deduced template arguments
264///
265/// \returns the result of template argument deduction so far. Note that a
266/// "success" result means that template argument deduction has not yet failed,
267/// but it may still fail, later, for other reasons.
268static Sema::TemplateDeductionResult
269DeduceTemplateArguments(Sema &S,
270 TemplateParameterList *TemplateParams,
271 const TemplateSpecializationType *Param,
272 QualType Arg,
273 Sema::TemplateDeductionInfo &Info,
274 llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
275 assert(Arg.isCanonical() && "Argument type must be canonical");
276
277 // Check whether the template argument is a dependent template-id.
278 if (const TemplateSpecializationType *SpecArg
279 = dyn_cast<TemplateSpecializationType>(Arg)) {
280 // Perform template argument deduction for the template name.
281 if (Sema::TemplateDeductionResult Result
282 = DeduceTemplateArguments(S, TemplateParams,
283 Param->getTemplateName(),
284 SpecArg->getTemplateName(),
285 Info, Deduced))
286 return Result;
287
288
289 // Perform template argument deduction on each template
290 // argument.
291 unsigned NumArgs = std::min(SpecArg->getNumArgs(), Param->getNumArgs());
292 for (unsigned I = 0; I != NumArgs; ++I)
293 if (Sema::TemplateDeductionResult Result
294 = DeduceTemplateArguments(S, TemplateParams,
295 Param->getArg(I),
296 SpecArg->getArg(I),
297 Info, Deduced))
298 return Result;
299
300 return Sema::TDK_Success;
301 }
302
303 // If the argument type is a class template specialization, we
304 // perform template argument deduction using its template
305 // arguments.
306 const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
307 if (!RecordArg)
308 return Sema::TDK_NonDeducedMismatch;
309
310 ClassTemplateSpecializationDecl *SpecArg
311 = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
312 if (!SpecArg)
313 return Sema::TDK_NonDeducedMismatch;
314
315 // Perform template argument deduction for the template name.
316 if (Sema::TemplateDeductionResult Result
317 = DeduceTemplateArguments(S,
318 TemplateParams,
319 Param->getTemplateName(),
320 TemplateName(SpecArg->getSpecializedTemplate()),
321 Info, Deduced))
322 return Result;
323
324 unsigned NumArgs = Param->getNumArgs();
325 const TemplateArgumentList &ArgArgs = SpecArg->getTemplateArgs();
326 if (NumArgs != ArgArgs.size())
327 return Sema::TDK_NonDeducedMismatch;
328
329 for (unsigned I = 0; I != NumArgs; ++I)
330 if (Sema::TemplateDeductionResult Result
331 = DeduceTemplateArguments(S, TemplateParams,
332 Param->getArg(I),
333 ArgArgs.get(I),
334 Info, Deduced))
335 return Result;
336
337 return Sema::TDK_Success;
338}
339
340/// \brief Deduce the template arguments by comparing the parameter type and
341/// the argument type (C++ [temp.deduct.type]).
342///
343/// \param S the semantic analysis object within which we are deducing
344///
345/// \param TemplateParams the template parameters that we are deducing
346///
347/// \param ParamIn the parameter type
348///
349/// \param ArgIn the argument type
350///
351/// \param Info information about the template argument deduction itself
352///
353/// \param Deduced the deduced template arguments
354///
355/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
356/// how template argument deduction is performed.
357///
358/// \returns the result of template argument deduction so far. Note that a
359/// "success" result means that template argument deduction has not yet failed,
360/// but it may still fail, later, for other reasons.
361static Sema::TemplateDeductionResult
362DeduceTemplateArguments(Sema &S,
363 TemplateParameterList *TemplateParams,
364 QualType ParamIn, QualType ArgIn,
365 Sema::TemplateDeductionInfo &Info,
366 llvm::SmallVectorImpl<TemplateArgument> &Deduced,
367 unsigned TDF) {
368 // We only want to look at the canonical types, since typedefs and
369 // sugar are not part of template argument deduction.
370 QualType Param = S.Context.getCanonicalType(ParamIn);
371 QualType Arg = S.Context.getCanonicalType(ArgIn);
372
373 // C++0x [temp.deduct.call]p4 bullet 1:
374 // - If the original P is a reference type, the deduced A (i.e., the type
375 // referred to by the reference) can be more cv-qualified than the
376 // transformed A.
377 if (TDF & TDF_ParamWithReferenceType) {
378 Qualifiers Quals;
379 QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
380 Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
381 Arg.getCVRQualifiersThroughArrayTypes());
382 Param = S.Context.getQualifiedType(UnqualParam, Quals);
383 }
384
385 // If the parameter type is not dependent, there is nothing to deduce.
386 if (!Param->isDependentType()) {
387 if (!(TDF & TDF_SkipNonDependent) && Param != Arg) {
388
389 return Sema::TDK_NonDeducedMismatch;
390 }
391
392 return Sema::TDK_Success;
393 }
394
395 // C++ [temp.deduct.type]p9:
396 // A template type argument T, a template template argument TT or a
397 // template non-type argument i can be deduced if P and A have one of
398 // the following forms:
399 //
400 // T
401 // cv-list T
402 if (const TemplateTypeParmType *TemplateTypeParm
403 = Param->getAs<TemplateTypeParmType>()) {
404 unsigned Index = TemplateTypeParm->getIndex();
405 bool RecanonicalizeArg = false;
406
407 // If the argument type is an array type, move the qualifiers up to the
408 // top level, so they can be matched with the qualifiers on the parameter.
409 // FIXME: address spaces, ObjC GC qualifiers
410 if (isa<ArrayType>(Arg)) {
411 Qualifiers Quals;
412 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
413 if (Quals) {
414 Arg = S.Context.getQualifiedType(Arg, Quals);
415 RecanonicalizeArg = true;
416 }
417 }
418
419 // The argument type can not be less qualified than the parameter
420 // type.
421 if (Param.isMoreQualifiedThan(Arg) && !(TDF & TDF_IgnoreQualifiers)) {
422 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
423 Info.FirstArg = Deduced[Index];
424 Info.SecondArg = TemplateArgument(Arg);
425 return Sema::TDK_InconsistentQuals;
426 }
427
428 assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
429 assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
430 QualType DeducedType = Arg;
431 DeducedType.removeCVRQualifiers(Param.getCVRQualifiers());
432 if (RecanonicalizeArg)
433 DeducedType = S.Context.getCanonicalType(DeducedType);
434
435 if (Deduced[Index].isNull())
436 Deduced[Index] = TemplateArgument(DeducedType);
437 else {
438 // C++ [temp.deduct.type]p2:
439 // [...] If type deduction cannot be done for any P/A pair, or if for
440 // any pair the deduction leads to more than one possible set of
441 // deduced values, or if different pairs yield different deduced
442 // values, or if any template argument remains neither deduced nor
443 // explicitly specified, template argument deduction fails.
444 if (Deduced[Index].getAsType() != DeducedType) {
445 Info.Param
446 = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
447 Info.FirstArg = Deduced[Index];
448 Info.SecondArg = TemplateArgument(Arg);
449 return Sema::TDK_Inconsistent;
450 }
451 }
452 return Sema::TDK_Success;
453 }
454
455 // Set up the template argument deduction information for a failure.
456 Info.FirstArg = TemplateArgument(ParamIn);
457 Info.SecondArg = TemplateArgument(ArgIn);
458
459 // Check the cv-qualifiers on the parameter and argument types.
460 if (!(TDF & TDF_IgnoreQualifiers)) {
461 if (TDF & TDF_ParamWithReferenceType) {
462 if (Param.isMoreQualifiedThan(Arg))
463 return Sema::TDK_NonDeducedMismatch;
464 } else {
465 if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
466 return Sema::TDK_NonDeducedMismatch;
467 }
468 }
469
470 switch (Param->getTypeClass()) {
471 // No deduction possible for these types
472 case Type::Builtin:
473 return Sema::TDK_NonDeducedMismatch;
474
475 // T *
476 case Type::Pointer: {
477 const PointerType *PointerArg = Arg->getAs<PointerType>();
478 if (!PointerArg)
479 return Sema::TDK_NonDeducedMismatch;
480
481 unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
482 return DeduceTemplateArguments(S, TemplateParams,
483 cast<PointerType>(Param)->getPointeeType(),
484 PointerArg->getPointeeType(),
485 Info, Deduced, SubTDF);
486 }
487
488 // T &
489 case Type::LValueReference: {
490 const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
491 if (!ReferenceArg)
492 return Sema::TDK_NonDeducedMismatch;
493
494 return DeduceTemplateArguments(S, TemplateParams,
495 cast<LValueReferenceType>(Param)->getPointeeType(),
496 ReferenceArg->getPointeeType(),
497 Info, Deduced, 0);
498 }
499
500 // T && [C++0x]
501 case Type::RValueReference: {
502 const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
503 if (!ReferenceArg)
504 return Sema::TDK_NonDeducedMismatch;
505
506 return DeduceTemplateArguments(S, TemplateParams,
507 cast<RValueReferenceType>(Param)->getPointeeType(),
508 ReferenceArg->getPointeeType(),
509 Info, Deduced, 0);
510 }
511
512 // T [] (implied, but not stated explicitly)
513 case Type::IncompleteArray: {
514 const IncompleteArrayType *IncompleteArrayArg =
515 S.Context.getAsIncompleteArrayType(Arg);
516 if (!IncompleteArrayArg)
517 return Sema::TDK_NonDeducedMismatch;
518
519 return DeduceTemplateArguments(S, TemplateParams,
520 S.Context.getAsIncompleteArrayType(Param)->getElementType(),
521 IncompleteArrayArg->getElementType(),
522 Info, Deduced, 0);
523 }
524
525 // T [integer-constant]
526 case Type::ConstantArray: {
527 const ConstantArrayType *ConstantArrayArg =
528 S.Context.getAsConstantArrayType(Arg);
529 if (!ConstantArrayArg)
530 return Sema::TDK_NonDeducedMismatch;
531
532 const ConstantArrayType *ConstantArrayParm =
533 S.Context.getAsConstantArrayType(Param);
534 if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
535 return Sema::TDK_NonDeducedMismatch;
536
537 return DeduceTemplateArguments(S, TemplateParams,
538 ConstantArrayParm->getElementType(),
539 ConstantArrayArg->getElementType(),
540 Info, Deduced, 0);
541 }
542
543 // type [i]
544 case Type::DependentSizedArray: {
545 const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
546 if (!ArrayArg)
547 return Sema::TDK_NonDeducedMismatch;
548
549 // Check the element type of the arrays
550 const DependentSizedArrayType *DependentArrayParm
551 = S.Context.getAsDependentSizedArrayType(Param);
552 if (Sema::TemplateDeductionResult Result
553 = DeduceTemplateArguments(S, TemplateParams,
554 DependentArrayParm->getElementType(),
555 ArrayArg->getElementType(),
556 Info, Deduced, 0))
557 return Result;
558
559 // Determine the array bound is something we can deduce.
560 NonTypeTemplateParmDecl *NTTP
561 = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
562 if (!NTTP)
563 return Sema::TDK_Success;
564
565 // We can perform template argument deduction for the given non-type
566 // template parameter.
567 assert(NTTP->getDepth() == 0 &&
568 "Cannot deduce non-type template argument at depth > 0");
569 if (const ConstantArrayType *ConstantArrayArg
570 = dyn_cast<ConstantArrayType>(ArrayArg)) {
571 llvm::APSInt Size(ConstantArrayArg->getSize());
572 return DeduceNonTypeTemplateArgument(S, NTTP, Size,
573 Info, Deduced);
574 }
575 if (const DependentSizedArrayType *DependentArrayArg
576 = dyn_cast<DependentSizedArrayType>(ArrayArg))
577 return DeduceNonTypeTemplateArgument(S, NTTP,
578 DependentArrayArg->getSizeExpr(),
579 Info, Deduced);
580
581 // Incomplete type does not match a dependently-sized array type
582 return Sema::TDK_NonDeducedMismatch;
583 }
584
585 // type(*)(T)
586 // T(*)()
587 // T(*)(T)
588 case Type::FunctionProto: {
589 const FunctionProtoType *FunctionProtoArg =
590 dyn_cast<FunctionProtoType>(Arg);
591 if (!FunctionProtoArg)
592 return Sema::TDK_NonDeducedMismatch;
593
594 const FunctionProtoType *FunctionProtoParam =
595 cast<FunctionProtoType>(Param);
596
597 if (FunctionProtoParam->getTypeQuals() !=
598 FunctionProtoArg->getTypeQuals())
599 return Sema::TDK_NonDeducedMismatch;
600
601 if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs())
602 return Sema::TDK_NonDeducedMismatch;
603
604 if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
605 return Sema::TDK_NonDeducedMismatch;
606
607 // Check return types.
608 if (Sema::TemplateDeductionResult Result
609 = DeduceTemplateArguments(S, TemplateParams,
610 FunctionProtoParam->getResultType(),
611 FunctionProtoArg->getResultType(),
612 Info, Deduced, 0))
613 return Result;
614
615 for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) {
616 // Check argument types.
617 if (Sema::TemplateDeductionResult Result
618 = DeduceTemplateArguments(S, TemplateParams,
619 FunctionProtoParam->getArgType(I),
620 FunctionProtoArg->getArgType(I),
621 Info, Deduced, 0))
622 return Result;
623 }
624
625 return Sema::TDK_Success;
626 }
627
628 // template-name<T> (where template-name refers to a class template)
629 // template-name<i>
630 // TT<T>
631 // TT<i>
632 // TT<>
633 case Type::TemplateSpecialization: {
634 const TemplateSpecializationType *SpecParam
635 = cast<TemplateSpecializationType>(Param);
636
637 // Try to deduce template arguments from the template-id.
638 Sema::TemplateDeductionResult Result
639 = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
640 Info, Deduced);
641
642 if (Result && (TDF & TDF_DerivedClass)) {
643 // C++ [temp.deduct.call]p3b3:
644 // If P is a class, and P has the form template-id, then A can be a
645 // derived class of the deduced A. Likewise, if P is a pointer to a
646 // class of the form template-id, A can be a pointer to a derived
647 // class pointed to by the deduced A.
648 //
649 // More importantly:
650 // These alternatives are considered only if type deduction would
651 // otherwise fail.
652 if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
653 // We cannot inspect base classes as part of deduction when the type
654 // is incomplete, so either instantiate any templates necessary to
655 // complete the type, or skip over it if it cannot be completed.
656 if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
657 return Result;
658
659 // Use data recursion to crawl through the list of base classes.
660 // Visited contains the set of nodes we have already visited, while
661 // ToVisit is our stack of records that we still need to visit.
662 llvm::SmallPtrSet<const RecordType *, 8> Visited;
663 llvm::SmallVector<const RecordType *, 8> ToVisit;
664 ToVisit.push_back(RecordT);
665 bool Successful = false;
666 while (!ToVisit.empty()) {
667 // Retrieve the next class in the inheritance hierarchy.
668 const RecordType *NextT = ToVisit.back();
669 ToVisit.pop_back();
670
671 // If we have already seen this type, skip it.
672 if (!Visited.insert(NextT))
673 continue;
674
675 // If this is a base class, try to perform template argument
676 // deduction from it.
677 if (NextT != RecordT) {
678 Sema::TemplateDeductionResult BaseResult
679 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
680 QualType(NextT, 0), Info, Deduced);
681
682 // If template argument deduction for this base was successful,
683 // note that we had some success.
684 if (BaseResult == Sema::TDK_Success)
685 Successful = true;
686 }
687
688 // Visit base classes
689 CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
690 for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
691 BaseEnd = Next->bases_end();
692 Base != BaseEnd; ++Base) {
693 assert(Base->getType()->isRecordType() &&
694 "Base class that isn't a record?");
695 ToVisit.push_back(Base->getType()->getAs<RecordType>());
696 }
697 }
698
699 if (Successful)
700 return Sema::TDK_Success;
701 }
702
703 }
704
705 return Result;
706 }
707
708 // T type::*
709 // T T::*
710 // T (type::*)()
711 // type (T::*)()
712 // type (type::*)(T)
713 // type (T::*)(T)
714 // T (type::*)(T)
715 // T (T::*)()
716 // T (T::*)(T)
717 case Type::MemberPointer: {
718 const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
719 const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
720 if (!MemPtrArg)
721 return Sema::TDK_NonDeducedMismatch;
722
723 if (Sema::TemplateDeductionResult Result
724 = DeduceTemplateArguments(S, TemplateParams,
725 MemPtrParam->getPointeeType(),
726 MemPtrArg->getPointeeType(),
727 Info, Deduced,
728 TDF & TDF_IgnoreQualifiers))
729 return Result;
730
731 return DeduceTemplateArguments(S, TemplateParams,
732 QualType(MemPtrParam->getClass(), 0),
733 QualType(MemPtrArg->getClass(), 0),
734 Info, Deduced, 0);
735 }
736
737 // (clang extension)
738 //
739 // type(^)(T)
740 // T(^)()
741 // T(^)(T)
742 case Type::BlockPointer: {
743 const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
744 const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
745
746 if (!BlockPtrArg)
747 return Sema::TDK_NonDeducedMismatch;
748
749 return DeduceTemplateArguments(S, TemplateParams,
750 BlockPtrParam->getPointeeType(),
751 BlockPtrArg->getPointeeType(), Info,
752 Deduced, 0);
753 }
754
755 case Type::TypeOfExpr:
756 case Type::TypeOf:
757 case Type::Typename:
758 // No template argument deduction for these types
759 return Sema::TDK_Success;
760
761 default:
762 break;
763 }
764
765 // FIXME: Many more cases to go (to go).
766 return Sema::TDK_Success;
767}
768
769static Sema::TemplateDeductionResult
770DeduceTemplateArguments(Sema &S,
771 TemplateParameterList *TemplateParams,
772 const TemplateArgument &Param,
773 const TemplateArgument &Arg,
774 Sema::TemplateDeductionInfo &Info,
775 llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
776 switch (Param.getKind()) {
777 case TemplateArgument::Null:
778 assert(false && "Null template argument in parameter list");
779 break;
780
781 case TemplateArgument::Type:
782 if (Arg.getKind() == TemplateArgument::Type)
783 return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(),
784 Arg.getAsType(), Info, Deduced, 0);
785 Info.FirstArg = Param;
786 Info.SecondArg = Arg;
787 return Sema::TDK_NonDeducedMismatch;
788
789 case TemplateArgument::Template:
790 if (Arg.getKind() == TemplateArgument::Template)
791 return DeduceTemplateArguments(S, TemplateParams,
792 Param.getAsTemplate(),
793 Arg.getAsTemplate(), Info, Deduced);
794 Info.FirstArg = Param;
795 Info.SecondArg = Arg;
796 return Sema::TDK_NonDeducedMismatch;
797
798 case TemplateArgument::Declaration:
799 if (Arg.getKind() == TemplateArgument::Declaration &&
800 Param.getAsDecl()->getCanonicalDecl() ==
801 Arg.getAsDecl()->getCanonicalDecl())
802 return Sema::TDK_Success;
803
804 Info.FirstArg = Param;
805 Info.SecondArg = Arg;
806 return Sema::TDK_NonDeducedMismatch;
807
808 case TemplateArgument::Integral:
809 if (Arg.getKind() == TemplateArgument::Integral) {
810 // FIXME: Zero extension + sign checking here?
811 if (*Param.getAsIntegral() == *Arg.getAsIntegral())
812 return Sema::TDK_Success;
813
814 Info.FirstArg = Param;
815 Info.SecondArg = Arg;
816 return Sema::TDK_NonDeducedMismatch;
817 }
818
819 if (Arg.getKind() == TemplateArgument::Expression) {
820 Info.FirstArg = Param;
821 Info.SecondArg = Arg;
822 return Sema::TDK_NonDeducedMismatch;
823 }
824
825 assert(false && "Type/value mismatch");
826 Info.FirstArg = Param;
827 Info.SecondArg = Arg;
828 return Sema::TDK_NonDeducedMismatch;
829
830 case TemplateArgument::Expression: {
831 if (NonTypeTemplateParmDecl *NTTP
832 = getDeducedParameterFromExpr(Param.getAsExpr())) {
833 if (Arg.getKind() == TemplateArgument::Integral)
834 // FIXME: Sign problems here
835 return DeduceNonTypeTemplateArgument(S, NTTP,
836 *Arg.getAsIntegral(),
837 Info, Deduced);
838 if (Arg.getKind() == TemplateArgument::Expression)
839 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
840 Info, Deduced);
841 if (Arg.getKind() == TemplateArgument::Declaration)
842 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
843 Info, Deduced);
844
845 assert(false && "Type/value mismatch");
846 Info.FirstArg = Param;
847 Info.SecondArg = Arg;
848 return Sema::TDK_NonDeducedMismatch;
849 }
850
851 // Can't deduce anything, but that's okay.
852 return Sema::TDK_Success;
853 }
854 case TemplateArgument::Pack:
855 assert(0 && "FIXME: Implement!");
856 break;
857 }
858
859 return Sema::TDK_Success;
860}
861
862static Sema::TemplateDeductionResult
863DeduceTemplateArguments(Sema &S,
864 TemplateParameterList *TemplateParams,
865 const TemplateArgumentList &ParamList,
866 const TemplateArgumentList &ArgList,
867 Sema::TemplateDeductionInfo &Info,
868 llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
869 assert(ParamList.size() == ArgList.size());
870 for (unsigned I = 0, N = ParamList.size(); I != N; ++I) {
871 if (Sema::TemplateDeductionResult Result
872 = DeduceTemplateArguments(S, TemplateParams,
873 ParamList[I], ArgList[I],
874 Info, Deduced))
875 return Result;
876 }
877 return Sema::TDK_Success;
878}
879
880/// \brief Determine whether two template arguments are the same.
881static bool isSameTemplateArg(ASTContext &Context,
882 const TemplateArgument &X,
883 const TemplateArgument &Y) {
884 if (X.getKind() != Y.getKind())
885 return false;
886
887 switch (X.getKind()) {
888 case TemplateArgument::Null:
889 assert(false && "Comparing NULL template argument");
890 break;
891
892 case TemplateArgument::Type:
893 return Context.getCanonicalType(X.getAsType()) ==
894 Context.getCanonicalType(Y.getAsType());
895
896 case TemplateArgument::Declaration:
897 return X.getAsDecl()->getCanonicalDecl() ==
898 Y.getAsDecl()->getCanonicalDecl();
899
900 case TemplateArgument::Template:
901 return Context.getCanonicalTemplateName(X.getAsTemplate())
902 .getAsVoidPointer() ==
903 Context.getCanonicalTemplateName(Y.getAsTemplate())
904 .getAsVoidPointer();
905
906 case TemplateArgument::Integral:
907 return *X.getAsIntegral() == *Y.getAsIntegral();
908
909 case TemplateArgument::Expression: {
910 llvm::FoldingSetNodeID XID, YID;
911 X.getAsExpr()->Profile(XID, Context, true);
912 Y.getAsExpr()->Profile(YID, Context, true);
913 return XID == YID;
914 }
915
916 case TemplateArgument::Pack:
917 if (X.pack_size() != Y.pack_size())
918 return false;
919
920 for (TemplateArgument::pack_iterator XP = X.pack_begin(),
921 XPEnd = X.pack_end(),
922 YP = Y.pack_begin();
923 XP != XPEnd; ++XP, ++YP)
924 if (!isSameTemplateArg(Context, *XP, *YP))
925 return false;
926
927 return true;
928 }
929
930 return false;
931}
932
933/// \brief Helper function to build a TemplateParameter when we don't
934/// know its type statically.
935static TemplateParameter makeTemplateParameter(Decl *D) {
936 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
937 return TemplateParameter(TTP);
938 else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
939 return TemplateParameter(NTTP);
940
941 return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
942}
943
944/// \brief Perform template argument deduction to determine whether
945/// the given template arguments match the given class template
946/// partial specialization per C++ [temp.class.spec.match].
947Sema::TemplateDeductionResult
948Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
949 const TemplateArgumentList &TemplateArgs,
950 TemplateDeductionInfo &Info) {
951 // C++ [temp.class.spec.match]p2:
952 // A partial specialization matches a given actual template
953 // argument list if the template arguments of the partial
954 // specialization can be deduced from the actual template argument
955 // list (14.8.2).
956 SFINAETrap Trap(*this);
957 llvm::SmallVector<TemplateArgument, 4> Deduced;
958 Deduced.resize(Partial->getTemplateParameters()->size());
959 if (TemplateDeductionResult Result
960 = ::DeduceTemplateArguments(*this,
961 Partial->getTemplateParameters(),
962 Partial->getTemplateArgs(),
963 TemplateArgs, Info, Deduced))
964 return Result;
965
966 InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
967 Deduced.data(), Deduced.size());
968 if (Inst)
969 return TDK_InstantiationDepth;
970
971 // C++ [temp.deduct.type]p2:
972 // [...] or if any template argument remains neither deduced nor
973 // explicitly specified, template argument deduction fails.
974 TemplateArgumentListBuilder Builder(Partial->getTemplateParameters(),
975 Deduced.size());
976 for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
977 if (Deduced[I].isNull()) {
978 Decl *Param
979 = const_cast<NamedDecl *>(
980 Partial->getTemplateParameters()->getParam(I));
981 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
982 Info.Param = TTP;
983 else if (NonTypeTemplateParmDecl *NTTP
984 = dyn_cast<NonTypeTemplateParmDecl>(Param))
985 Info.Param = NTTP;
986 else
987 Info.Param = cast<TemplateTemplateParmDecl>(Param);
988 return TDK_Incomplete;
989 }
990
991 Builder.Append(Deduced[I]);
992 }
993
994 // Form the template argument list from the deduced template arguments.
995 TemplateArgumentList *DeducedArgumentList
996 = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
997 Info.reset(DeducedArgumentList);
998
999 // Substitute the deduced template arguments into the template
1000 // arguments of the class template partial specialization, and
1001 // verify that the instantiated template arguments are both valid
1002 // and are equivalent to the template arguments originally provided
1003 // to the class template.
1004 ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
1005 const TemplateArgumentLoc *PartialTemplateArgs
1006 = Partial->getTemplateArgsAsWritten();
1007 unsigned N = Partial->getNumTemplateArgsAsWritten();
1008
1009 // Note that we don't provide the langle and rangle locations.
1010 TemplateArgumentListInfo InstArgs;
1011
1012 for (unsigned I = 0; I != N; ++I) {
1013 Decl *Param = const_cast<NamedDecl *>(
1014 ClassTemplate->getTemplateParameters()->getParam(I));
1015 TemplateArgumentLoc InstArg;
1016 if (Subst(PartialTemplateArgs[I], InstArg,
1017 MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
1018 Info.Param = makeTemplateParameter(Param);
1019 Info.FirstArg = PartialTemplateArgs[I].getArgument();
1020 return TDK_SubstitutionFailure;
1021 }
1022 InstArgs.addArgument(InstArg);
1023 }
1024
1025 TemplateArgumentListBuilder ConvertedInstArgs(
1026 ClassTemplate->getTemplateParameters(), N);
1027
1028 if (CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
1029 InstArgs, false, ConvertedInstArgs)) {
1030 // FIXME: fail with more useful information?
1031 return TDK_SubstitutionFailure;
1032 }
1033
1034 for (unsigned I = 0, E = ConvertedInstArgs.flatSize(); I != E; ++I) {
1035 TemplateArgument InstArg = ConvertedInstArgs.getFlatArguments()[I];
1036
1037 Decl *Param = const_cast<NamedDecl *>(
1038 ClassTemplate->getTemplateParameters()->getParam(I));
1039
1040 if (InstArg.getKind() == TemplateArgument::Expression) {
1041 // When the argument is an expression, check the expression result
1042 // against the actual template parameter to get down to the canonical
1043 // template argument.
1044 Expr *InstExpr = InstArg.getAsExpr();
1045 if (NonTypeTemplateParmDecl *NTTP
1046 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1047 if (CheckTemplateArgument(NTTP, NTTP->getType(), InstExpr, InstArg)) {
1048 Info.Param = makeTemplateParameter(Param);
1049 Info.FirstArg = Partial->getTemplateArgs()[I];
1050 return TDK_SubstitutionFailure;
1051 }
1052 }
1053 }
1054
1055 if (!isSameTemplateArg(Context, TemplateArgs[I], InstArg)) {
1056 Info.Param = makeTemplateParameter(Param);
1057 Info.FirstArg = TemplateArgs[I];
1058 Info.SecondArg = InstArg;
1059 return TDK_NonDeducedMismatch;
1060 }
1061 }
1062
1063 if (Trap.hasErrorOccurred())
1064 return TDK_SubstitutionFailure;
1065
1066 return TDK_Success;
1067}
1068
1069/// \brief Determine whether the given type T is a simple-template-id type.
1070static bool isSimpleTemplateIdType(QualType T) {
1071 if (const TemplateSpecializationType *Spec
1072 = T->getAs<TemplateSpecializationType>())
1073 return Spec->getTemplateName().getAsTemplateDecl() != 0;
1074
1075 return false;
1076}
1077
1078/// \brief Substitute the explicitly-provided template arguments into the
1079/// given function template according to C++ [temp.arg.explicit].
1080///
1081/// \param FunctionTemplate the function template into which the explicit
1082/// template arguments will be substituted.
1083///
1084/// \param ExplicitTemplateArguments the explicitly-specified template
1085/// arguments.
1086///
1087/// \param Deduced the deduced template arguments, which will be populated
1088/// with the converted and checked explicit template arguments.
1089///
1090/// \param ParamTypes will be populated with the instantiated function
1091/// parameters.
1092///
1093/// \param FunctionType if non-NULL, the result type of the function template
1094/// will also be instantiated and the pointed-to value will be updated with
1095/// the instantiated function type.
1096///
1097/// \param Info if substitution fails for any reason, this object will be
1098/// populated with more information about the failure.
1099///
1100/// \returns TDK_Success if substitution was successful, or some failure
1101/// condition.
1102Sema::TemplateDeductionResult
1103Sema::SubstituteExplicitTemplateArguments(
1104 FunctionTemplateDecl *FunctionTemplate,
1105 const TemplateArgumentListInfo &ExplicitTemplateArgs,
1106 llvm::SmallVectorImpl<TemplateArgument> &Deduced,
1107 llvm::SmallVectorImpl<QualType> &ParamTypes,
1108 QualType *FunctionType,
1109 TemplateDeductionInfo &Info) {
1110 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1111 TemplateParameterList *TemplateParams
1112 = FunctionTemplate->getTemplateParameters();
1113
1114 if (ExplicitTemplateArgs.size() == 0) {
1115 // No arguments to substitute; just copy over the parameter types and
1116 // fill in the function type.
1117 for (FunctionDecl::param_iterator P = Function->param_begin(),
1118 PEnd = Function->param_end();
1119 P != PEnd;
1120 ++P)
1121 ParamTypes.push_back((*P)->getType());
1122
1123 if (FunctionType)
1124 *FunctionType = Function->getType();
1125 return TDK_Success;
1126 }
1127
1128 // Substitution of the explicit template arguments into a function template
1129 /// is a SFINAE context. Trap any errors that might occur.
1130 SFINAETrap Trap(*this);
1131
1132 // C++ [temp.arg.explicit]p3:
1133 // Template arguments that are present shall be specified in the
1134 // declaration order of their corresponding template-parameters. The
1135 // template argument list shall not specify more template-arguments than
1136 // there are corresponding template-parameters.
1137 TemplateArgumentListBuilder Builder(TemplateParams,
1138 ExplicitTemplateArgs.size());
1139
1140 // Enter a new template instantiation context where we check the
1141 // explicitly-specified template arguments against this function template,
1142 // and then substitute them into the function parameter types.
1143 InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1144 FunctionTemplate, Deduced.data(), Deduced.size(),
1145 ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution);
1146 if (Inst)
1147 return TDK_InstantiationDepth;
1148
1149 if (CheckTemplateArgumentList(FunctionTemplate,
1150 SourceLocation(),
1151 ExplicitTemplateArgs,
1152 true,
1153 Builder) || Trap.hasErrorOccurred())
1154 return TDK_InvalidExplicitArguments;
1155
1156 // Form the template argument list from the explicitly-specified
1157 // template arguments.
1158 TemplateArgumentList *ExplicitArgumentList
1159 = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
1160 Info.reset(ExplicitArgumentList);
1161
1162 // Instantiate the types of each of the function parameters given the
1163 // explicitly-specified template arguments.
1164 for (FunctionDecl::param_iterator P = Function->param_begin(),
1165 PEnd = Function->param_end();
1166 P != PEnd;
1167 ++P) {
1168 QualType ParamType
1169 = SubstType((*P)->getType(),
1170 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1171 (*P)->getLocation(), (*P)->getDeclName());
1172 if (ParamType.isNull() || Trap.hasErrorOccurred())
1173 return TDK_SubstitutionFailure;
1174
1175 ParamTypes.push_back(ParamType);
1176 }
1177
1178 // If the caller wants a full function type back, instantiate the return
1179 // type and form that function type.
1180 if (FunctionType) {
1181 // FIXME: exception-specifications?
1182 const FunctionProtoType *Proto
1183 = Function->getType()->getAs<FunctionProtoType>();
1184 assert(Proto && "Function template does not have a prototype?");
1185
1186 QualType ResultType
1187 = SubstType(Proto->getResultType(),
1188 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1189 Function->getTypeSpecStartLoc(),
1190 Function->getDeclName());
1191 if (ResultType.isNull() || Trap.hasErrorOccurred())
1192 return TDK_SubstitutionFailure;
1193
1194 *FunctionType = BuildFunctionType(ResultType,
1195 ParamTypes.data(), ParamTypes.size(),
1196 Proto->isVariadic(),
1197 Proto->getTypeQuals(),
1198 Function->getLocation(),
1199 Function->getDeclName());
1200 if (FunctionType->isNull() || Trap.hasErrorOccurred())
1201 return TDK_SubstitutionFailure;
1202 }
1203
1204 // C++ [temp.arg.explicit]p2:
1205 // Trailing template arguments that can be deduced (14.8.2) may be
1206 // omitted from the list of explicit template-arguments. If all of the
1207 // template arguments can be deduced, they may all be omitted; in this
1208 // case, the empty template argument list <> itself may also be omitted.
1209 //
1210 // Take all of the explicitly-specified arguments and put them into the
1211 // set of deduced template arguments.
1212 Deduced.reserve(TemplateParams->size());
1213 for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I)
1214 Deduced.push_back(ExplicitArgumentList->get(I));
1215
1216 return TDK_Success;
1217}
1218
1219/// \brief Finish template argument deduction for a function template,
1220/// checking the deduced template arguments for completeness and forming
1221/// the function template specialization.
1222Sema::TemplateDeductionResult
1223Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
1224 llvm::SmallVectorImpl<TemplateArgument> &Deduced,
1225 FunctionDecl *&Specialization,
1226 TemplateDeductionInfo &Info) {
1227 TemplateParameterList *TemplateParams
1228 = FunctionTemplate->getTemplateParameters();
1229
1230 // Template argument deduction for function templates in a SFINAE context.
1231 // Trap any errors that might occur.
1232 SFINAETrap Trap(*this);
1233
1234 // Enter a new template instantiation context while we instantiate the
1235 // actual function declaration.
1236 InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1237 FunctionTemplate, Deduced.data(), Deduced.size(),
1238 ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution);
1239 if (Inst)
1240 return TDK_InstantiationDepth;
1241
1242 // C++ [temp.deduct.type]p2:
1243 // [...] or if any template argument remains neither deduced nor
1244 // explicitly specified, template argument deduction fails.
1245 TemplateArgumentListBuilder Builder(TemplateParams, Deduced.size());
1246 for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
1247 if (!Deduced[I].isNull()) {
1248 Builder.Append(Deduced[I]);
1249 continue;
1250 }
1251
1252 // Substitute into the default template argument, if available.
1253 NamedDecl *Param = FunctionTemplate->getTemplateParameters()->getParam(I);
1254 TemplateArgumentLoc DefArg
1255 = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
1256 FunctionTemplate->getLocation(),
1257 FunctionTemplate->getSourceRange().getEnd(),
1258 Param,
1259 Builder);
1260
1261 // If there was no default argument, deduction is incomplete.
1262 if (DefArg.getArgument().isNull()) {
1263 Info.Param = makeTemplateParameter(
1264 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1265 return TDK_Incomplete;
1266 }
1267
1268 // Check whether we can actually use the default argument.
1269 if (CheckTemplateArgument(Param, DefArg,
1270 FunctionTemplate,
1271 FunctionTemplate->getLocation(),
1272 FunctionTemplate->getSourceRange().getEnd(),
1273 Builder)) {
1274 Info.Param = makeTemplateParameter(
1275 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1276 return TDK_SubstitutionFailure;
1277 }
1278
1279 // If we get here, we successfully used the default template argument.
1280 }
1281
1282 // Form the template argument list from the deduced template arguments.
1283 TemplateArgumentList *DeducedArgumentList
1284 = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
1285 Info.reset(DeducedArgumentList);
1286
1287 // Substitute the deduced template arguments into the function template
1288 // declaration to produce the function template specialization.
1289 Specialization = cast_or_null<FunctionDecl>(
1290 SubstDecl(FunctionTemplate->getTemplatedDecl(),
1291 FunctionTemplate->getDeclContext(),
1292 MultiLevelTemplateArgumentList(*DeducedArgumentList)));
1293 if (!Specialization)
1294 return TDK_SubstitutionFailure;
1295
1296 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
1297 FunctionTemplate->getCanonicalDecl());
1298
1299 // If the template argument list is owned by the function template
1300 // specialization, release it.
1301 if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList)
1302 Info.take();
1303
1304 // There may have been an error that did not prevent us from constructing a
1305 // declaration. Mark the declaration invalid and return with a substitution
1306 // failure.
1307 if (Trap.hasErrorOccurred()) {
1308 Specialization->setInvalidDecl(true);
1309 return TDK_SubstitutionFailure;
1310 }
1311
1312 return TDK_Success;
1313}
1314
1315static QualType GetTypeOfFunction(ASTContext &Context,
1316 bool isAddressOfOperand,
1317 FunctionDecl *Fn) {
1318 if (!isAddressOfOperand) return Fn->getType();
1319 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
1320 if (Method->isInstance())
1321 return Context.getMemberPointerType(Fn->getType(),
1322 Context.getTypeDeclType(Method->getParent()).getTypePtr());
1323 return Context.getPointerType(Fn->getType());
1324}
1325
1326/// Apply the deduction rules for overload sets.
1327///
1328/// \return the null type if this argument should be treated as an
1329/// undeduced context
1330static QualType
1331ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
1332 Expr *Arg, QualType ParamType) {
1333 llvm::PointerIntPair<OverloadExpr*,1> R = OverloadExpr::find(Arg);
1334
1335 bool isAddressOfOperand = bool(R.getInt());
1336 OverloadExpr *Ovl = R.getPointer();
1337
1338 // If there were explicit template arguments, we can only find
1339 // something via C++ [temp.arg.explicit]p3, i.e. if the arguments
1340 // unambiguously name a full specialization.
1341 if (Ovl->hasExplicitTemplateArgs()) {
1342 // But we can still look for an explicit specialization.
1343 if (FunctionDecl *ExplicitSpec
1344 = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
1345 return GetTypeOfFunction(S.Context, isAddressOfOperand, ExplicitSpec);
1346 return QualType();
1347 }
1348
1349 // C++0x [temp.deduct.call]p6:
1350 // When P is a function type, pointer to function type, or pointer
1351 // to member function type:
1352
1353 if (!ParamType->isFunctionType() &&
1354 !ParamType->isFunctionPointerType() &&
1355 !ParamType->isMemberFunctionPointerType())
1356 return QualType();
1357
1358 QualType Match;
1359 for (UnresolvedSetIterator I = Ovl->decls_begin(),
1360 E = Ovl->decls_end(); I != E; ++I) {
1361 NamedDecl *D = (*I)->getUnderlyingDecl();
1362
1363 // - If the argument is an overload set containing one or more
1364 // function templates, the parameter is treated as a
1365 // non-deduced context.
1366 if (isa<FunctionTemplateDecl>(D))
1367 return QualType();
1368
1369 FunctionDecl *Fn = cast<FunctionDecl>(D);
1370 QualType ArgType = GetTypeOfFunction(S.Context, isAddressOfOperand, Fn);
1371
1372 // - If the argument is an overload set (not containing function
1373 // templates), trial argument deduction is attempted using each
1374 // of the members of the set. If deduction succeeds for only one
1375 // of the overload set members, that member is used as the
1376 // argument value for the deduction. If deduction succeeds for
1377 // more than one member of the overload set the parameter is
1378 // treated as a non-deduced context.
1379
1380 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
1381 // Type deduction is done independently for each P/A pair, and
1382 // the deduced template argument values are then combined.
1383 // So we do not reject deductions which were made elsewhere.
1384 llvm::SmallVector<TemplateArgument, 8> Deduced(TemplateParams->size());
1385 Sema::TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
1386 unsigned TDF = 0;
1387
1388 Sema::TemplateDeductionResult Result
1389 = DeduceTemplateArguments(S, TemplateParams,
1390 ParamType, ArgType,
1391 Info, Deduced, TDF);
1392 if (Result) continue;
1393 if (!Match.isNull()) return QualType();
1394 Match = ArgType;
1395 }
1396
1397 return Match;
1398}
1399
1400/// \brief Perform template argument deduction from a function call
1401/// (C++ [temp.deduct.call]).
1402///
1403/// \param FunctionTemplate the function template for which we are performing
1404/// template argument deduction.
1405///
1406/// \param ExplicitTemplateArguments the explicit template arguments provided
1407/// for this call.
1408///
1409/// \param Args the function call arguments
1410///
1411/// \param NumArgs the number of arguments in Args
1412///
1413/// \param Name the name of the function being called. This is only significant
1414/// when the function template is a conversion function template, in which
1415/// case this routine will also perform template argument deduction based on
1416/// the function to which
1417///
1418/// \param Specialization if template argument deduction was successful,
1419/// this will be set to the function template specialization produced by
1420/// template argument deduction.
1421///
1422/// \param Info the argument will be updated to provide additional information
1423/// about template argument deduction.
1424///
1425/// \returns the result of template argument deduction.
1426Sema::TemplateDeductionResult
1427Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1428 const TemplateArgumentListInfo *ExplicitTemplateArgs,
1429 Expr **Args, unsigned NumArgs,
1430 FunctionDecl *&Specialization,
1431 TemplateDeductionInfo &Info) {
1432 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1433
1434 // C++ [temp.deduct.call]p1:
1435 // Template argument deduction is done by comparing each function template
1436 // parameter type (call it P) with the type of the corresponding argument
1437 // of the call (call it A) as described below.
1438 unsigned CheckArgs = NumArgs;
1439 if (NumArgs < Function->getMinRequiredArguments())
1440 return TDK_TooFewArguments;
1441 else if (NumArgs > Function->getNumParams()) {
1442 const FunctionProtoType *Proto
1443 = Function->getType()->getAs<FunctionProtoType>();
1444 if (!Proto->isVariadic())
1445 return TDK_TooManyArguments;
1446
1447 CheckArgs = Function->getNumParams();
1448 }
1449
1450 // The types of the parameters from which we will perform template argument
1451 // deduction.
1452 TemplateParameterList *TemplateParams
1453 = FunctionTemplate->getTemplateParameters();
1454 llvm::SmallVector<TemplateArgument, 4> Deduced;
1455 llvm::SmallVector<QualType, 4> ParamTypes;
1456 if (ExplicitTemplateArgs) {
1457 TemplateDeductionResult Result =
1458 SubstituteExplicitTemplateArguments(FunctionTemplate,
1459 *ExplicitTemplateArgs,
1460 Deduced,
1461 ParamTypes,
1462 0,
1463 Info);
1464 if (Result)
1465 return Result;
1466 } else {
1467 // Just fill in the parameter types from the function declaration.
1468 for (unsigned I = 0; I != CheckArgs; ++I)
1469 ParamTypes.push_back(Function->getParamDecl(I)->getType());
1470 }
1471
1472 // Deduce template arguments from the function parameters.
1473 Deduced.resize(TemplateParams->size());
1474 for (unsigned I = 0; I != CheckArgs; ++I) {
1475 QualType ParamType = ParamTypes[I];
1476 QualType ArgType = Args[I]->getType();
1477
1478 // Overload sets usually make this parameter an undeduced
1479 // context, but there are sometimes special circumstances.
1480 if (ArgType == Context.OverloadTy) {
1481 ArgType = ResolveOverloadForDeduction(*this, TemplateParams,
1482 Args[I], ParamType);
1483 if (ArgType.isNull())
1484 continue;
1485 }
1486
1487 // C++ [temp.deduct.call]p2:
1488 // If P is not a reference type:
1489 QualType CanonParamType = Context.getCanonicalType(ParamType);
1490 bool ParamWasReference = isa<ReferenceType>(CanonParamType);
1491 if (!ParamWasReference) {
1492 // - If A is an array type, the pointer type produced by the
1493 // array-to-pointer standard conversion (4.2) is used in place of
1494 // A for type deduction; otherwise,
1495 if (ArgType->isArrayType())
1496 ArgType = Context.getArrayDecayedType(ArgType);
1497 // - If A is a function type, the pointer type produced by the
1498 // function-to-pointer standard conversion (4.3) is used in place
1499 // of A for type deduction; otherwise,
1500 else if (ArgType->isFunctionType())
1501 ArgType = Context.getPointerType(ArgType);
1502 else {
1503 // - If A is a cv-qualified type, the top level cv-qualifiers of A’s
1504 // type are ignored for type deduction.
1505 QualType CanonArgType = Context.getCanonicalType(ArgType);
1506 if (CanonArgType.getLocalCVRQualifiers())
1507 ArgType = CanonArgType.getLocalUnqualifiedType();
1508 }
1509 }
1510
1511 // C++0x [temp.deduct.call]p3:
1512 // If P is a cv-qualified type, the top level cv-qualifiers of P’s type
1513 // are ignored for type deduction.
1514 if (CanonParamType.getLocalCVRQualifiers())
1515 ParamType = CanonParamType.getLocalUnqualifiedType();
1516 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
1517 // [...] If P is a reference type, the type referred to by P is used
1518 // for type deduction.
1519 ParamType = ParamRefType->getPointeeType();
1520
1521 // [...] If P is of the form T&&, where T is a template parameter, and
1522 // the argument is an lvalue, the type A& is used in place of A for
1523 // type deduction.
1524 if (isa<RValueReferenceType>(ParamRefType) &&
1525 ParamRefType->getAs<TemplateTypeParmType>() &&
1526 Args[I]->isLvalue(Context) == Expr::LV_Valid)
1527 ArgType = Context.getLValueReferenceType(ArgType);
1528 }
1529
1530 // C++0x [temp.deduct.call]p4:
1531 // In general, the deduction process attempts to find template argument
1532 // values that will make the deduced A identical to A (after the type A
1533 // is transformed as described above). [...]
1534 unsigned TDF = TDF_SkipNonDependent;
1535
1536 // - If the original P is a reference type, the deduced A (i.e., the
1537 // type referred to by the reference) can be more cv-qualified than
1538 // the transformed A.
1539 if (ParamWasReference)
1540 TDF |= TDF_ParamWithReferenceType;
1541 // - The transformed A can be another pointer or pointer to member
1542 // type that can be converted to the deduced A via a qualification
1543 // conversion (4.4).
1544 if (ArgType->isPointerType() || ArgType->isMemberPointerType())
1545 TDF |= TDF_IgnoreQualifiers;
1546 // - If P is a class and P has the form simple-template-id, then the
1547 // transformed A can be a derived class of the deduced A. Likewise,
1548 // if P is a pointer to a class of the form simple-template-id, the
1549 // transformed A can be a pointer to a derived class pointed to by
1550 // the deduced A.
1551 if (isSimpleTemplateIdType(ParamType) ||
1552 (isa<PointerType>(ParamType) &&
1553 isSimpleTemplateIdType(
1554 ParamType->getAs<PointerType>()->getPointeeType())))
1555 TDF |= TDF_DerivedClass;
1556
1557 if (TemplateDeductionResult Result
1558 = ::DeduceTemplateArguments(*this, TemplateParams,
1559 ParamType, ArgType, Info, Deduced,
1560 TDF))
1561 return Result;
1562
1563 // FIXME: we need to check that the deduced A is the same as A,
1564 // modulo the various allowed differences.
1565 }
1566
1567 return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
1568 Specialization, Info);
1569}
1570
1571/// \brief Deduce template arguments when taking the address of a function
1572/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
1573/// a template.
1574///
1575/// \param FunctionTemplate the function template for which we are performing
1576/// template argument deduction.
1577///
1578/// \param ExplicitTemplateArguments the explicitly-specified template
1579/// arguments.
1580///
1581/// \param ArgFunctionType the function type that will be used as the
1582/// "argument" type (A) when performing template argument deduction from the
1583/// function template's function type. This type may be NULL, if there is no
1584/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
1585///
1586/// \param Specialization if template argument deduction was successful,
1587/// this will be set to the function template specialization produced by
1588/// template argument deduction.
1589///
1590/// \param Info the argument will be updated to provide additional information
1591/// about template argument deduction.
1592///
1593/// \returns the result of template argument deduction.
1594Sema::TemplateDeductionResult
1595Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1596 const TemplateArgumentListInfo *ExplicitTemplateArgs,
1597 QualType ArgFunctionType,
1598 FunctionDecl *&Specialization,
1599 TemplateDeductionInfo &Info) {
1600 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1601 TemplateParameterList *TemplateParams
1602 = FunctionTemplate->getTemplateParameters();
1603 QualType FunctionType = Function->getType();
1604
1605 // Substitute any explicit template arguments.
1606 llvm::SmallVector<TemplateArgument, 4> Deduced;
1607 llvm::SmallVector<QualType, 4> ParamTypes;
1608 if (ExplicitTemplateArgs) {
1609 if (TemplateDeductionResult Result
1610 = SubstituteExplicitTemplateArguments(FunctionTemplate,
1611 *ExplicitTemplateArgs,
1612 Deduced, ParamTypes,
1613 &FunctionType, Info))
1614 return Result;
1615 }
1616
1617 // Template argument deduction for function templates in a SFINAE context.
1618 // Trap any errors that might occur.
1619 SFINAETrap Trap(*this);
1620
1621 Deduced.resize(TemplateParams->size());
1622
1623 if (!ArgFunctionType.isNull()) {
1624 // Deduce template arguments from the function type.
1625 if (TemplateDeductionResult Result
1626 = ::DeduceTemplateArguments(*this, TemplateParams,
1627 FunctionType, ArgFunctionType, Info,
1628 Deduced, 0))
1629 return Result;
1630 }
1631
1632 return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
1633 Specialization, Info);
1634}
1635
1636/// \brief Deduce template arguments for a templated conversion
1637/// function (C++ [temp.deduct.conv]) and, if successful, produce a
1638/// conversion function template specialization.
1639Sema::TemplateDeductionResult
1640Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1641 QualType ToType,
1642 CXXConversionDecl *&Specialization,
1643 TemplateDeductionInfo &Info) {
1644 CXXConversionDecl *Conv
1645 = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
1646 QualType FromType = Conv->getConversionType();
1647
1648 // Canonicalize the types for deduction.
1649 QualType P = Context.getCanonicalType(FromType);
1650 QualType A = Context.getCanonicalType(ToType);
1651
1652 // C++0x [temp.deduct.conv]p3:
1653 // If P is a reference type, the type referred to by P is used for
1654 // type deduction.
1655 if (const ReferenceType *PRef = P->getAs<ReferenceType>())
1656 P = PRef->getPointeeType();
1657
1658 // C++0x [temp.deduct.conv]p3:
1659 // If A is a reference type, the type referred to by A is used
1660 // for type deduction.
1661 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
1662 A = ARef->getPointeeType();
1663 // C++ [temp.deduct.conv]p2:
1664 //
1665 // If A is not a reference type:
1666 else {
1667 assert(!A->isReferenceType() && "Reference types were handled above");
1668
1669 // - If P is an array type, the pointer type produced by the
1670 // array-to-pointer standard conversion (4.2) is used in place
1671 // of P for type deduction; otherwise,
1672 if (P->isArrayType())
1673 P = Context.getArrayDecayedType(P);
1674 // - If P is a function type, the pointer type produced by the
1675 // function-to-pointer standard conversion (4.3) is used in
1676 // place of P for type deduction; otherwise,
1677 else if (P->isFunctionType())
1678 P = Context.getPointerType(P);
1679 // - If P is a cv-qualified type, the top level cv-qualifiers of
1680 // P’s type are ignored for type deduction.
1681 else
1682 P = P.getUnqualifiedType();
1683
1684 // C++0x [temp.deduct.conv]p3:
1685 // If A is a cv-qualified type, the top level cv-qualifiers of A’s
1686 // type are ignored for type deduction.
1687 A = A.getUnqualifiedType();
1688 }
1689
1690 // Template argument deduction for function templates in a SFINAE context.
1691 // Trap any errors that might occur.
1692 SFINAETrap Trap(*this);
1693
1694 // C++ [temp.deduct.conv]p1:
1695 // Template argument deduction is done by comparing the return
1696 // type of the template conversion function (call it P) with the
1697 // type that is required as the result of the conversion (call it
1698 // A) as described in 14.8.2.4.
1699 TemplateParameterList *TemplateParams
1700 = FunctionTemplate->getTemplateParameters();
1701 llvm::SmallVector<TemplateArgument, 4> Deduced;
1702 Deduced.resize(TemplateParams->size());
1703
1704 // C++0x [temp.deduct.conv]p4:
1705 // In general, the deduction process attempts to find template
1706 // argument values that will make the deduced A identical to
1707 // A. However, there are two cases that allow a difference:
1708 unsigned TDF = 0;
1709 // - If the original A is a reference type, A can be more
1710 // cv-qualified than the deduced A (i.e., the type referred to
1711 // by the reference)
1712 if (ToType->isReferenceType())
1713 TDF |= TDF_ParamWithReferenceType;
1714 // - The deduced A can be another pointer or pointer to member
1715 // type that can be converted to A via a qualification
1716 // conversion.
1717 //
1718 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
1719 // both P and A are pointers or member pointers. In this case, we
1720 // just ignore cv-qualifiers completely).
1721 if ((P->isPointerType() && A->isPointerType()) ||
1722 (P->isMemberPointerType() && P->isMemberPointerType()))
1723 TDF |= TDF_IgnoreQualifiers;
1724 if (TemplateDeductionResult Result
1725 = ::DeduceTemplateArguments(*this, TemplateParams,
1726 P, A, Info, Deduced, TDF))
1727 return Result;
1728
1729 // FIXME: we need to check that the deduced A is the same as A,
1730 // modulo the various allowed differences.
1731
1732 // Finish template argument deduction.
1733 FunctionDecl *Spec = 0;
1734 TemplateDeductionResult Result
1735 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, Spec, Info);
1736 Specialization = cast_or_null<CXXConversionDecl>(Spec);
1737 return Result;
1738}
1739
1740/// \brief Deduce template arguments for a function template when there is
1741/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
1742///
1743/// \param FunctionTemplate the function template for which we are performing
1744/// template argument deduction.
1745///
1746/// \param ExplicitTemplateArguments the explicitly-specified template
1747/// arguments.
1748///
1749/// \param Specialization if template argument deduction was successful,
1750/// this will be set to the function template specialization produced by
1751/// template argument deduction.
1752///
1753/// \param Info the argument will be updated to provide additional information
1754/// about template argument deduction.
1755///
1756/// \returns the result of template argument deduction.
1757Sema::TemplateDeductionResult
1758Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1759 const TemplateArgumentListInfo *ExplicitTemplateArgs,
1760 FunctionDecl *&Specialization,
1761 TemplateDeductionInfo &Info) {
1762 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
1763 QualType(), Specialization, Info);
1764}
1765
1766/// \brief Stores the result of comparing the qualifiers of two types.
1767enum DeductionQualifierComparison {
1768 NeitherMoreQualified = 0,
1769 ParamMoreQualified,
1770 ArgMoreQualified
1771};
1772
1773/// \brief Deduce the template arguments during partial ordering by comparing
1774/// the parameter type and the argument type (C++0x [temp.deduct.partial]).
1775///
1776/// \param S the semantic analysis object within which we are deducing
1777///
1778/// \param TemplateParams the template parameters that we are deducing
1779///
1780/// \param ParamIn the parameter type
1781///
1782/// \param ArgIn the argument type
1783///
1784/// \param Info information about the template argument deduction itself
1785///
1786/// \param Deduced the deduced template arguments
1787///
1788/// \returns the result of template argument deduction so far. Note that a
1789/// "success" result means that template argument deduction has not yet failed,
1790/// but it may still fail, later, for other reasons.
1791static Sema::TemplateDeductionResult
1792DeduceTemplateArgumentsDuringPartialOrdering(Sema &S,
1793 TemplateParameterList *TemplateParams,
1794 QualType ParamIn, QualType ArgIn,
1795 Sema::TemplateDeductionInfo &Info,
1796 llvm::SmallVectorImpl<TemplateArgument> &Deduced,
1797 llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
1798 CanQualType Param = S.Context.getCanonicalType(ParamIn);
1799 CanQualType Arg = S.Context.getCanonicalType(ArgIn);
1800
1801 // C++0x [temp.deduct.partial]p5:
1802 // Before the partial ordering is done, certain transformations are
1803 // performed on the types used for partial ordering:
1804 // - If P is a reference type, P is replaced by the type referred to.
1805 CanQual<ReferenceType> ParamRef = Param->getAs<ReferenceType>();
1806 if (!ParamRef.isNull())
1807 Param = ParamRef->getPointeeType();
1808
1809 // - If A is a reference type, A is replaced by the type referred to.
1810 CanQual<ReferenceType> ArgRef = Arg->getAs<ReferenceType>();
1811 if (!ArgRef.isNull())
1812 Arg = ArgRef->getPointeeType();
1813
1814 if (QualifierComparisons && !ParamRef.isNull() && !ArgRef.isNull()) {
1815 // C++0x [temp.deduct.partial]p6:
1816 // If both P and A were reference types (before being replaced with the
1817 // type referred to above), determine which of the two types (if any) is
1818 // more cv-qualified than the other; otherwise the types are considered to
1819 // be equally cv-qualified for partial ordering purposes. The result of this
1820 // determination will be used below.
1821 //
1822 // We save this information for later, using it only when deduction
1823 // succeeds in both directions.
1824 DeductionQualifierComparison QualifierResult = NeitherMoreQualified;
1825 if (Param.isMoreQualifiedThan(Arg))
1826 QualifierResult = ParamMoreQualified;
1827 else if (Arg.isMoreQualifiedThan(Param))
1828 QualifierResult = ArgMoreQualified;
1829 QualifierComparisons->push_back(QualifierResult);
1830 }
1831
1832 // C++0x [temp.deduct.partial]p7:
1833 // Remove any top-level cv-qualifiers:
1834 // - If P is a cv-qualified type, P is replaced by the cv-unqualified
1835 // version of P.
1836 Param = Param.getUnqualifiedType();
1837 // - If A is a cv-qualified type, A is replaced by the cv-unqualified
1838 // version of A.
1839 Arg = Arg.getUnqualifiedType();
1840
1841 // C++0x [temp.deduct.partial]p8:
1842 // Using the resulting types P and A the deduction is then done as
1843 // described in 14.9.2.5. If deduction succeeds for a given type, the type
1844 // from the argument template is considered to be at least as specialized
1845 // as the type from the parameter template.
1846 return DeduceTemplateArguments(S, TemplateParams, Param, Arg, Info,
1847 Deduced, TDF_None);
1848}
1849
1850static void
1851MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
1852 bool OnlyDeduced,
1853 unsigned Level,
1854 llvm::SmallVectorImpl<bool> &Deduced);
1855
1856/// \brief Determine whether the function template \p FT1 is at least as
1857/// specialized as \p FT2.
1858static bool isAtLeastAsSpecializedAs(Sema &S,
1859 SourceLocation Loc,
1860 FunctionTemplateDecl *FT1,
1861 FunctionTemplateDecl *FT2,
1862 TemplatePartialOrderingContext TPOC,
1863 llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
1864 FunctionDecl *FD1 = FT1->getTemplatedDecl();
1865 FunctionDecl *FD2 = FT2->getTemplatedDecl();
1866 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
1867 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
1868
1869 assert(Proto1 && Proto2 && "Function templates must have prototypes");
1870 TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
1871 llvm::SmallVector<TemplateArgument, 4> Deduced;
1872 Deduced.resize(TemplateParams->size());
1873
1874 // C++0x [temp.deduct.partial]p3:
1875 // The types used to determine the ordering depend on the context in which
1876 // the partial ordering is done:
1877 Sema::TemplateDeductionInfo Info(S.Context, Loc);
1878 switch (TPOC) {
1879 case TPOC_Call: {
1880 // - In the context of a function call, the function parameter types are
1881 // used.
1882 unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
1883 for (unsigned I = 0; I != NumParams; ++I)
1884 if (DeduceTemplateArgumentsDuringPartialOrdering(S,
1885 TemplateParams,
1886 Proto2->getArgType(I),
1887 Proto1->getArgType(I),
1888 Info,
1889 Deduced,
1890 QualifierComparisons))
1891 return false;
1892
1893 break;
1894 }
1895
1896 case TPOC_Conversion:
1897 // - In the context of a call to a conversion operator, the return types
1898 // of the conversion function templates are used.
1899 if (DeduceTemplateArgumentsDuringPartialOrdering(S,
1900 TemplateParams,
1901 Proto2->getResultType(),
1902 Proto1->getResultType(),
1903 Info,
1904 Deduced,
1905 QualifierComparisons))
1906 return false;
1907 break;
1908
1909 case TPOC_Other:
1910 // - In other contexts (14.6.6.2) the function template’s function type
1911 // is used.
1912 if (DeduceTemplateArgumentsDuringPartialOrdering(S,
1913 TemplateParams,
1914 FD2->getType(),
1915 FD1->getType(),
1916 Info,
1917 Deduced,
1918 QualifierComparisons))
1919 return false;
1920 break;
1921 }
1922
1923 // C++0x [temp.deduct.partial]p11:
1924 // In most cases, all template parameters must have values in order for
1925 // deduction to succeed, but for partial ordering purposes a template
1926 // parameter may remain without a value provided it is not used in the
1927 // types being used for partial ordering. [ Note: a template parameter used
1928 // in a non-deduced context is considered used. -end note]
1929 unsigned ArgIdx = 0, NumArgs = Deduced.size();
1930 for (; ArgIdx != NumArgs; ++ArgIdx)
1931 if (Deduced[ArgIdx].isNull())
1932 break;
1933
1934 if (ArgIdx == NumArgs) {
1935 // All template arguments were deduced. FT1 is at least as specialized
1936 // as FT2.
1937 return true;
1938 }
1939
1940 // Figure out which template parameters were used.
1941 llvm::SmallVector<bool, 4> UsedParameters;
1942 UsedParameters.resize(TemplateParams->size());
1943 switch (TPOC) {
1944 case TPOC_Call: {
1945 unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
1946 for (unsigned I = 0; I != NumParams; ++I)
1947 ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false,
1948 TemplateParams->getDepth(),
1949 UsedParameters);
1950 break;
1951 }
1952
1953 case TPOC_Conversion:
1954 ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false,
1955 TemplateParams->getDepth(),
1956 UsedParameters);
1957 break;
1958
1959 case TPOC_Other:
1960 ::MarkUsedTemplateParameters(S, FD2->getType(), false,
1961 TemplateParams->getDepth(),
1962 UsedParameters);
1963 break;
1964 }
1965
1966 for (; ArgIdx != NumArgs; ++ArgIdx)
1967 // If this argument had no value deduced but was used in one of the types
1968 // used for partial ordering, then deduction fails.
1969 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
1970 return false;
1971
1972 return true;
1973}
1974
1975
1976/// \brief Returns the more specialized function template according
1977/// to the rules of function template partial ordering (C++ [temp.func.order]).
1978///
1979/// \param FT1 the first function template
1980///
1981/// \param FT2 the second function template
1982///
1983/// \param TPOC the context in which we are performing partial ordering of
1984/// function templates.
1985///
1986/// \returns the more specialized function template. If neither
1987/// template is more specialized, returns NULL.
1988FunctionTemplateDecl *
1989Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
1990 FunctionTemplateDecl *FT2,
1991 SourceLocation Loc,
1992 TemplatePartialOrderingContext TPOC) {
1993 llvm::SmallVector<DeductionQualifierComparison, 4> QualifierComparisons;
1994 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 0);
1995 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
1996 &QualifierComparisons);
1997
1998 if (Better1 != Better2) // We have a clear winner
1999 return Better1? FT1 : FT2;
2000
2001 if (!Better1 && !Better2) // Neither is better than the other
2002 return 0;
2003
2004
2005 // C++0x [temp.deduct.partial]p10:
2006 // If for each type being considered a given template is at least as
2007 // specialized for all types and more specialized for some set of types and
2008 // the other template is not more specialized for any types or is not at
2009 // least as specialized for any types, then the given template is more
2010 // specialized than the other template. Otherwise, neither template is more
2011 // specialized than the other.
2012 Better1 = false;
2013 Better2 = false;
2014 for (unsigned I = 0, N = QualifierComparisons.size(); I != N; ++I) {
2015 // C++0x [temp.deduct.partial]p9:
2016 // If, for a given type, deduction succeeds in both directions (i.e., the
2017 // types are identical after the transformations above) and if the type
2018 // from the argument template is more cv-qualified than the type from the
2019 // parameter template (as described above) that type is considered to be
2020 // more specialized than the other. If neither type is more cv-qualified
2021 // than the other then neither type is more specialized than the other.
2022 switch (QualifierComparisons[I]) {
2023 case NeitherMoreQualified:
2024 break;
2025
2026 case ParamMoreQualified:
2027 Better1 = true;
2028 if (Better2)
2029 return 0;
2030 break;
2031
2032 case ArgMoreQualified:
2033 Better2 = true;
2034 if (Better1)
2035 return 0;
2036 break;
2037 }
2038 }
2039
2040 assert(!(Better1 && Better2) && "Should have broken out in the loop above");
2041 if (Better1)
2042 return FT1;
2043 else if (Better2)
2044 return FT2;
2045 else
2046 return 0;
2047}
2048
2049/// \brief Determine if the two templates are equivalent.
2050static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
2051 if (T1 == T2)
2052 return true;
2053
2054 if (!T1 || !T2)
2055 return false;
2056
2057 return T1->getCanonicalDecl() == T2->getCanonicalDecl();
2058}
2059
2060/// \brief Retrieve the most specialized of the given function template
2061/// specializations.
2062///
2063/// \param SpecBegin the start iterator of the function template
2064/// specializations that we will be comparing.
2065///
2066/// \param SpecEnd the end iterator of the function template
2067/// specializations, paired with \p SpecBegin.
2068///
2069/// \param TPOC the partial ordering context to use to compare the function
2070/// template specializations.
2071///
2072/// \param Loc the location where the ambiguity or no-specializations
2073/// diagnostic should occur.
2074///
2075/// \param NoneDiag partial diagnostic used to diagnose cases where there are
2076/// no matching candidates.
2077///
2078/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
2079/// occurs.
2080///
2081/// \param CandidateDiag partial diagnostic used for each function template
2082/// specialization that is a candidate in the ambiguous ordering. One parameter
2083/// in this diagnostic should be unbound, which will correspond to the string
2084/// describing the template arguments for the function template specialization.
2085///
2086/// \param Index if non-NULL and the result of this function is non-nULL,
2087/// receives the index corresponding to the resulting function template
2088/// specialization.
2089///
2090/// \returns the most specialized function template specialization, if
2091/// found. Otherwise, returns SpecEnd.
2092///
2093/// \todo FIXME: Consider passing in the "also-ran" candidates that failed
2094/// template argument deduction.
2095UnresolvedSetIterator
2096Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
2097 UnresolvedSetIterator SpecEnd,
2098 TemplatePartialOrderingContext TPOC,
2099 SourceLocation Loc,
2100 const PartialDiagnostic &NoneDiag,
2101 const PartialDiagnostic &AmbigDiag,
2102 const PartialDiagnostic &CandidateDiag) {
2103 if (SpecBegin == SpecEnd) {
2104 Diag(Loc, NoneDiag);
2105 return SpecEnd;
2106 }
2107
2108 if (SpecBegin + 1 == SpecEnd)
2109 return SpecBegin;
2110
2111 // Find the function template that is better than all of the templates it
2112 // has been compared to.
2113 UnresolvedSetIterator Best = SpecBegin;
2114 FunctionTemplateDecl *BestTemplate
2115 = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
2116 assert(BestTemplate && "Not a function template specialization?");
2117 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
2118 FunctionTemplateDecl *Challenger
2119 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2120 assert(Challenger && "Not a function template specialization?");
2121 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2122 Loc, TPOC),
2123 Challenger)) {
2124 Best = I;
2125 BestTemplate = Challenger;
2126 }
2127 }
2128
2129 // Make sure that the "best" function template is more specialized than all
2130 // of the others.
2131 bool Ambiguous = false;
2132 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
2133 FunctionTemplateDecl *Challenger
2134 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2135 if (I != Best &&
2136 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2137 Loc, TPOC),
2138 BestTemplate)) {
2139 Ambiguous = true;
2140 break;
2141 }
2142 }
2143
2144 if (!Ambiguous) {
2145 // We found an answer. Return it.
2146 return Best;
2147 }
2148
2149 // Diagnose the ambiguity.
2150 Diag(Loc, AmbigDiag);
2151
2152 // FIXME: Can we order the candidates in some sane way?
2153 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I)
2154 Diag((*I)->getLocation(), CandidateDiag)
2155 << getTemplateArgumentBindingsText(
2156 cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
2157 *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
2158
2159 return SpecEnd;
2160}
2161
2162/// \brief Returns the more specialized class template partial specialization
2163/// according to the rules of partial ordering of class template partial
2164/// specializations (C++ [temp.class.order]).
2165///
2166/// \param PS1 the first class template partial specialization
2167///
2168/// \param PS2 the second class template partial specialization
2169///
2170/// \returns the more specialized class template partial specialization. If
2171/// neither partial specialization is more specialized, returns NULL.
2172ClassTemplatePartialSpecializationDecl *
2173Sema::getMoreSpecializedPartialSpecialization(
2174 ClassTemplatePartialSpecializationDecl *PS1,
2175 ClassTemplatePartialSpecializationDecl *PS2,
2176 SourceLocation Loc) {
2177 // C++ [temp.class.order]p1:
2178 // For two class template partial specializations, the first is at least as
2179 // specialized as the second if, given the following rewrite to two
2180 // function templates, the first function template is at least as
2181 // specialized as the second according to the ordering rules for function
2182 // templates (14.6.6.2):
2183 // - the first function template has the same template parameters as the
2184 // first partial specialization and has a single function parameter
2185 // whose type is a class template specialization with the template
2186 // arguments of the first partial specialization, and
2187 // - the second function template has the same template parameters as the
2188 // second partial specialization and has a single function parameter
2189 // whose type is a class template specialization with the template
2190 // arguments of the second partial specialization.
2191 //
2192 // Rather than synthesize function templates, we merely perform the
2193 // equivalent partial ordering by performing deduction directly on the
2194 // template arguments of the class template partial specializations. This
2195 // computation is slightly simpler than the general problem of function
2196 // template partial ordering, because class template partial specializations
2197 // are more constrained. We know that every template parameter is deduc
2198 llvm::SmallVector<TemplateArgument, 4> Deduced;
2199 Sema::TemplateDeductionInfo Info(Context, Loc);
2200
2201 // Determine whether PS1 is at least as specialized as PS2
2202 Deduced.resize(PS2->getTemplateParameters()->size());
2203 bool Better1 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2204 PS2->getTemplateParameters(),
2205 Context.getTypeDeclType(PS2),
2206 Context.getTypeDeclType(PS1),
2207 Info,
2208 Deduced,
2209 0);
2210
2211 // Determine whether PS2 is at least as specialized as PS1
2212 Deduced.clear();
2213 Deduced.resize(PS1->getTemplateParameters()->size());
2214 bool Better2 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2215 PS1->getTemplateParameters(),
2216 Context.getTypeDeclType(PS1),
2217 Context.getTypeDeclType(PS2),
2218 Info,
2219 Deduced,
2220 0);
2221
2222 if (Better1 == Better2)
2223 return 0;
2224
2225 return Better1? PS1 : PS2;
2226}
2227
2228static void
2229MarkUsedTemplateParameters(Sema &SemaRef,
2230 const TemplateArgument &TemplateArg,
2231 bool OnlyDeduced,
2232 unsigned Depth,
2233 llvm::SmallVectorImpl<bool> &Used);
2234
2235/// \brief Mark the template parameters that are used by the given
2236/// expression.
2237static void
2238MarkUsedTemplateParameters(Sema &SemaRef,
2239 const Expr *E,
2240 bool OnlyDeduced,
2241 unsigned Depth,
2242 llvm::SmallVectorImpl<bool> &Used) {
2243 // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
2244 // find other occurrences of template parameters.
2245 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
2246 if (!DRE)
2247 return;
2248
2249 const NonTypeTemplateParmDecl *NTTP
2250 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2251 if (!NTTP)
2252 return;
2253
2254 if (NTTP->getDepth() == Depth)
2255 Used[NTTP->getIndex()] = true;
2256}
2257
2258/// \brief Mark the template parameters that are used by the given
2259/// nested name specifier.
2260static void
2261MarkUsedTemplateParameters(Sema &SemaRef,
2262 NestedNameSpecifier *NNS,
2263 bool OnlyDeduced,
2264 unsigned Depth,
2265 llvm::SmallVectorImpl<bool> &Used) {
2266 if (!NNS)
2267 return;
2268
2269 MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth,
2270 Used);
2271 MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0),
2272 OnlyDeduced, Depth, Used);
2273}
2274
2275/// \brief Mark the template parameters that are used by the given
2276/// template name.
2277static void
2278MarkUsedTemplateParameters(Sema &SemaRef,
2279 TemplateName Name,
2280 bool OnlyDeduced,
2281 unsigned Depth,
2282 llvm::SmallVectorImpl<bool> &Used) {
2283 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2284 if (TemplateTemplateParmDecl *TTP
2285 = dyn_cast<TemplateTemplateParmDecl>(Template)) {
2286 if (TTP->getDepth() == Depth)
2287 Used[TTP->getIndex()] = true;
2288 }
2289 return;
2290 }
2291
2292 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
2293 MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced,
2294 Depth, Used);
2295 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
2296 MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced,
2297 Depth, Used);
2298}
2299
2300/// \brief Mark the template parameters that are used by the given
2301/// type.
2302static void
2303MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2304 bool OnlyDeduced,
2305 unsigned Depth,
2306 llvm::SmallVectorImpl<bool> &Used) {
2307 if (T.isNull())
2308 return;
2309
2310 // Non-dependent types have nothing deducible
2311 if (!T->isDependentType())
2312 return;
2313
2314 T = SemaRef.Context.getCanonicalType(T);
2315 switch (T->getTypeClass()) {
2316 case Type::Pointer:
2317 MarkUsedTemplateParameters(SemaRef,
2318 cast<PointerType>(T)->getPointeeType(),
2319 OnlyDeduced,
2320 Depth,
2321 Used);
2322 break;
2323
2324 case Type::BlockPointer:
2325 MarkUsedTemplateParameters(SemaRef,
2326 cast<BlockPointerType>(T)->getPointeeType(),
2327 OnlyDeduced,
2328 Depth,
2329 Used);
2330 break;
2331
2332 case Type::LValueReference:
2333 case Type::RValueReference:
2334 MarkUsedTemplateParameters(SemaRef,
2335 cast<ReferenceType>(T)->getPointeeType(),
2336 OnlyDeduced,
2337 Depth,
2338 Used);
2339 break;
2340
2341 case Type::MemberPointer: {
2342 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
2343 MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced,
2344 Depth, Used);
2345 MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
2346 OnlyDeduced, Depth, Used);
2347 break;
2348 }
2349
2350 case Type::DependentSizedArray:
2351 MarkUsedTemplateParameters(SemaRef,
2352 cast<DependentSizedArrayType>(T)->getSizeExpr(),
2353 OnlyDeduced, Depth, Used);
2354 // Fall through to check the element type
2355
2356 case Type::ConstantArray:
2357 case Type::IncompleteArray:
2358 MarkUsedTemplateParameters(SemaRef,
2359 cast<ArrayType>(T)->getElementType(),
2360 OnlyDeduced, Depth, Used);
2361 break;
2362
2363 case Type::Vector:
2364 case Type::ExtVector:
2365 MarkUsedTemplateParameters(SemaRef,
2366 cast<VectorType>(T)->getElementType(),
2367 OnlyDeduced, Depth, Used);
2368 break;
2369
2370 case Type::DependentSizedExtVector: {
2371 const DependentSizedExtVectorType *VecType
2372 = cast<DependentSizedExtVectorType>(T);
2373 MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced,
2374 Depth, Used);
2375 MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced,
2376 Depth, Used);
2377 break;
2378 }
2379
2380 case Type::FunctionProto: {
2381 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2382 MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced,
2383 Depth, Used);
2384 for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
2385 MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced,
2386 Depth, Used);
2387 break;
2388 }
2389
2390 case Type::TemplateTypeParm: {
2391 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
2392 if (TTP->getDepth() == Depth)
2393 Used[TTP->getIndex()] = true;
2394 break;
2395 }
2396
2397 case Type::TemplateSpecialization: {
2398 const TemplateSpecializationType *Spec
2399 = cast<TemplateSpecializationType>(T);
2400 MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced,
2401 Depth, Used);
2402 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
2403 MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
2404 Used);
2405 break;
2406 }
2407
2408 case Type::Complex:
2409 if (!OnlyDeduced)
2410 MarkUsedTemplateParameters(SemaRef,
2411 cast<ComplexType>(T)->getElementType(),
2412 OnlyDeduced, Depth, Used);
2413 break;
2414
2415 case Type::Typename:
2416 if (!OnlyDeduced)
2417 MarkUsedTemplateParameters(SemaRef,
2418 cast<TypenameType>(T)->getQualifier(),
2419 OnlyDeduced, Depth, Used);
2420 break;
2421
2422 // None of these types have any template parameters in them.
2423 case Type::Builtin:
2424 case Type::VariableArray:
2425 case Type::FunctionNoProto:
2426 case Type::Record:
2427 case Type::Enum:
2428 case Type::ObjCInterface:
2429 case Type::ObjCObjectPointer:
2430 case Type::UnresolvedUsing:
2431#define TYPE(Class, Base)
2432#define ABSTRACT_TYPE(Class, Base)
2433#define DEPENDENT_TYPE(Class, Base)
2434#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2435#include "clang/AST/TypeNodes.def"
2436 break;
2437 }
2438}
2439
2440/// \brief Mark the template parameters that are used by this
2441/// template argument.
2442static void
2443MarkUsedTemplateParameters(Sema &SemaRef,
2444 const TemplateArgument &TemplateArg,
2445 bool OnlyDeduced,
2446 unsigned Depth,
2447 llvm::SmallVectorImpl<bool> &Used) {
2448 switch (TemplateArg.getKind()) {
2449 case TemplateArgument::Null:
2450 case TemplateArgument::Integral:
2451 case TemplateArgument::Declaration:
2452 break;
2453
2454 case TemplateArgument::Type:
2455 MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced,
2456 Depth, Used);
2457 break;
2458
2459 case TemplateArgument::Template:
2460 MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsTemplate(),
2461 OnlyDeduced, Depth, Used);
2462 break;
2463
2464 case TemplateArgument::Expression:
2465 MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced,
2466 Depth, Used);
2467 break;
2468
2469 case TemplateArgument::Pack:
2470 for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
2471 PEnd = TemplateArg.pack_end();
2472 P != PEnd; ++P)
2473 MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used);
2474 break;
2475 }
2476}
2477
2478/// \brief Mark the template parameters can be deduced by the given
2479/// template argument list.
2480///
2481/// \param TemplateArgs the template argument list from which template
2482/// parameters will be deduced.
2483///
2484/// \param Deduced a bit vector whose elements will be set to \c true
2485/// to indicate when the corresponding template parameter will be
2486/// deduced.
2487void
2488Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
2489 bool OnlyDeduced, unsigned Depth,
2490 llvm::SmallVectorImpl<bool> &Used) {
2491 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2492 ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced,
2493 Depth, Used);
2494}
2495
2496/// \brief Marks all of the template parameters that will be deduced by a
2497/// call to the given function template.
2498void Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
2499 llvm::SmallVectorImpl<bool> &Deduced) {
2500 TemplateParameterList *TemplateParams
2501 = FunctionTemplate->getTemplateParameters();
2502 Deduced.clear();
2503 Deduced.resize(TemplateParams->size());
2504
2505 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2506 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
2507 ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(),
2508 true, TemplateParams->getDepth(), Deduced);
2509}