blob: 2a6fffa37e20abb3d36a6aa9bcd57785200188be [file] [log] [blame]
Josh Coalsonbb7f6b92000-12-10 04:09:52 +00001/* libFLAC - Free Lossless Audio Coder library
2 * Copyright (C) 2000 Josh Coalson
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
13 *
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 */
19
20#include <assert.h>
21#include <stdio.h>
22#include <stdlib.h> /* for malloc() */
23#include <string.h> /* for memcpy() */
24#include "FLAC/encoder.h"
25#include "private/bitbuffer.h"
26#include "private/encoder_framing.h"
27#include "private/fixed.h"
28#include "private/lpc.h"
29
30#ifdef min
31#undef min
32#endif
33#define min(x,y) ((x)<(y)?(x):(y))
34
35#ifdef max
36#undef max
37#endif
38#define max(x,y) ((x)>(y)?(x):(y))
39
40#ifdef RICE_BITS
41#undef RICE_BITS
42#endif
43#define RICE_BITS(value, parameter) (2 + (parameter) + (((unsigned)((value) < 0? -(value) : (value))) >> (parameter)))
44
45typedef struct FLAC__EncoderPrivate {
46 unsigned input_capacity; /* current size (in samples) of the signal and residual buffers */
47 int32 *integer_signal[FLAC__MAX_CHANNELS]; /* the integer version of the input signal */
48 int32 *integer_signal_mid_side[2]; /* the integer version of the mid-side input signal (stereo only) */
49 real *real_signal[FLAC__MAX_CHANNELS]; /* the floating-point version of the input signal */
50 real *real_signal_mid_side[2]; /* the floating-point version of the mid-side input signal (stereo only) */
51 int32 *residual[2]; /* where the candidate and best subframe residual signals will be stored */
52 unsigned best_residual; /* index into the above */
53 FLAC__BitBuffer frame; /* the current frame being worked on */
54 FLAC__BitBuffer frame_mid_side; /* special parallel workspace for the mid-side coded version of the current frame */
55 FLAC__BitBuffer frame_left_side; /* special parallel workspace for the left-side coded version of the current frame */
56 FLAC__BitBuffer frame_right_side; /* special parallel workspace for the right-side coded version of the current frame */
57 FLAC__SubframeHeader best_subframe, candidate_subframe;
58 bool current_frame_can_do_mid_side; /* encoder sets this false when any given sample of a frame's side channel exceeds 16 bits */
59 FLAC__StreamMetaData metadata;
60 unsigned current_sample_number;
61 unsigned current_frame_number;
62 FLAC__EncoderWriteStatus (*write_callback)(const FLAC__Encoder *encoder, const byte buffer[], unsigned bytes, unsigned samples, unsigned current_frame, void *client_data);
63 void (*metadata_callback)(const FLAC__Encoder *encoder, const FLAC__StreamMetaData *metadata, void *client_data);
64 void *client_data;
65} FLAC__EncoderPrivate;
66
67static bool encoder_resize_buffers_(FLAC__Encoder *encoder, unsigned new_size);
68static bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame);
69static bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame, const FLAC__FrameHeader *frame_header, unsigned channels, const int32 *integer_signal[], const real *real_signal[], FLAC__BitBuffer *bitbuffer);
70static unsigned encoder_evaluate_constant_subframe_(const int32 signal, unsigned bits_per_sample, FLAC__SubframeHeader *subframe);
71static unsigned encoder_evaluate_fixed_subframe_(const int32 signal[], int32 residual[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned rice_parameter, unsigned max_partition_order, FLAC__SubframeHeader *subframe);
72static unsigned encoder_evaluate_lpc_subframe_(const int32 signal[], int32 residual[], const real lp_coeff[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned max_partition_order, FLAC__SubframeHeader *subframe);
73static unsigned encoder_evaluate_verbatim_subframe_(unsigned blocksize, unsigned bits_per_sample, FLAC__SubframeHeader *subframe);
74static unsigned encoder_find_best_partition_order_(int32 residual[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned max_partition_order, unsigned *best_partition_order, unsigned best_parameters[]);
75static bool encoder_generate_constant_subframe_(const FLAC__SubframeHeader *header, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer);
76static bool encoder_generate_fixed_subframe_(const FLAC__SubframeHeader *header, int32 residual[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer);
77static bool encoder_generate_lpc_subframe_(const FLAC__SubframeHeader *header, int32 residual[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer);
78static bool encoder_generate_verbatim_subframe_(const FLAC__SubframeHeader *header, const int32 signal[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer);
79static void encoder_promote_candidate_subframe_(FLAC__Encoder *encoder);
80static bool encoder_set_partitioned_rice_(const int32 residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameter, const unsigned partition_order, unsigned parameters[], unsigned *bits);
81
82
83bool encoder_resize_buffers_(FLAC__Encoder *encoder, unsigned new_size)
84{
85 bool ok;
86 unsigned i;
87 int32 *previous_is, *current_is;
88 real *previous_rs, *current_rs;
89 int32 *residual;
90
91 assert(new_size > 0);
92 assert(encoder->state == FLAC__ENCODER_OK);
93 assert(encoder->guts->current_sample_number == 0);
94
95 /* To avoid excessive malloc'ing, we only grow the buffer; no shrinking. */
96 if(new_size <= encoder->guts->input_capacity)
97 return true;
98
99 ok = 1;
100 if(ok) {
101 for(i = 0; ok && i < encoder->channels; i++) {
102 /* integer version of the signal */
103 previous_is = encoder->guts->integer_signal[i];
104 current_is = (int32*)malloc(sizeof(int32) * new_size);
105 if(0 == current_is) {
106 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
107 ok = 0;
108 }
109 else {
110 encoder->guts->integer_signal[i] = current_is;
111 if(previous_is != 0)
112 free(previous_is);
113 }
114 /* real version of the signal */
115 previous_rs = encoder->guts->real_signal[i];
116 current_rs = (real*)malloc(sizeof(real) * new_size);
117 if(0 == current_rs) {
118 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
119 ok = 0;
120 }
121 else {
122 encoder->guts->real_signal[i] = current_rs;
123 if(previous_rs != 0)
124 free(previous_rs);
125 }
126 }
127 }
128 if(ok) {
129 for(i = 0; ok && i < 2; i++) {
130 /* integer version of the signal */
131 previous_is = encoder->guts->integer_signal_mid_side[i];
132 current_is = (int32*)malloc(sizeof(int32) * new_size);
133 if(0 == current_is) {
134 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
135 ok = 0;
136 }
137 else {
138 encoder->guts->integer_signal_mid_side[i] = current_is;
139 if(previous_is != 0)
140 free(previous_is);
141 }
142 /* real version of the signal */
143 previous_rs = encoder->guts->real_signal_mid_side[i];
144 current_rs = (real*)malloc(sizeof(real) * new_size);
145 if(0 == current_rs) {
146 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
147 ok = 0;
148 }
149 else {
150 encoder->guts->real_signal_mid_side[i] = current_rs;
151 if(previous_rs != 0)
152 free(previous_rs);
153 }
154 }
155 }
156 if(ok) {
157 for(i = 0; i < 2; i++) {
158 residual = (int32*)malloc(sizeof(int32) * new_size);
159 if(0 == residual) {
160 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
161 ok = 0;
162 }
163 else {
164 if(encoder->guts->residual[i] != 0)
165 free(encoder->guts->residual[i]);
166 encoder->guts->residual[i] = residual;
167 }
168 }
169 }
170 if(ok)
171 encoder->guts->input_capacity = new_size;
172
173 return ok;
174}
175
176FLAC__Encoder *FLAC__encoder_get_new_instance()
177{
178 FLAC__Encoder *encoder = (FLAC__Encoder*)malloc(sizeof(FLAC__Encoder));
179 if(encoder != 0) {
180 encoder->state = FLAC__ENCODER_UNINITIALIZED;
181 encoder->guts = 0;
182 }
183 return encoder;
184}
185
186void FLAC__encoder_free_instance(FLAC__Encoder *encoder)
187{
188 assert(encoder != 0);
189 free(encoder);
190}
191
192FLAC__EncoderState FLAC__encoder_init(FLAC__Encoder *encoder, FLAC__EncoderWriteStatus (*write_callback)(const FLAC__Encoder *encoder, const byte buffer[], unsigned bytes, unsigned samples, unsigned current_frame, void *client_data), void (*metadata_callback)(const FLAC__Encoder *encoder, const FLAC__StreamMetaData *metadata, void *client_data), void *client_data)
193{
194 unsigned i;
195
196 assert(sizeof(int) >= 4); /* we want to die right away if this is not true */
197 assert(encoder != 0);
198 assert(write_callback != 0);
199 assert(metadata_callback != 0);
200 assert(encoder->state == FLAC__ENCODER_UNINITIALIZED);
201 assert(encoder->guts == 0);
202
203 encoder->state = FLAC__ENCODER_OK;
204
205 if(encoder->channels == 0 || encoder->channels > FLAC__MAX_CHANNELS)
206 return encoder->state = FLAC__ENCODER_INVALID_NUMBER_OF_CHANNELS;
207
208 if(encoder->do_mid_side_stereo && encoder->channels != 2)
209 return encoder->state = FLAC__ENCODER_MID_SIDE_CHANNELS_MISMATCH;
210
211 if(encoder->do_mid_side_stereo && encoder->bits_per_sample > 16)
212 return encoder->state = FLAC__ENCODER_MID_SIDE_SAMPLE_SIZE_MISMATCH;
213
214 if(encoder->bits_per_sample == 0 || encoder->bits_per_sample > FLAC__MAX_BITS_PER_SAMPLE)
215 return encoder->state = FLAC__ENCODER_INVALID_BITS_PER_SAMPLE;
216
217 if(encoder->sample_rate == 0 || encoder->sample_rate > FLAC__MAX_SAMPLE_RATE)
218 return encoder->state = FLAC__ENCODER_INVALID_SAMPLE_RATE;
219
220 if(encoder->blocksize < FLAC__MIN_BLOCK_SIZE || encoder->blocksize > FLAC__MAX_BLOCK_SIZE)
221 return encoder->state = FLAC__ENCODER_INVALID_BLOCK_SIZE;
222
223 if(encoder->blocksize < encoder->max_lpc_order)
224 return encoder->state = FLAC__ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER;
225
226 if(encoder->qlp_coeff_precision == 0) {
227 if(encoder->bits_per_sample < 16) {
228 /* @@@ need some data about how to set this here w.r.t. blocksize and sample rate */
229 /* @@@ until then we'll make a guess */
230 encoder->qlp_coeff_precision = max(5, 2 + encoder->bits_per_sample / 2);
231 }
232 else if(encoder->bits_per_sample == 16) {
233 if(encoder->blocksize <= 192)
234 encoder->qlp_coeff_precision = 7;
235 else if(encoder->blocksize <= 384)
236 encoder->qlp_coeff_precision = 8;
237 else if(encoder->blocksize <= 576)
238 encoder->qlp_coeff_precision = 9;
239 else if(encoder->blocksize <= 1152)
240 encoder->qlp_coeff_precision = 10;
241 else if(encoder->blocksize <= 2304)
242 encoder->qlp_coeff_precision = 11;
243 else if(encoder->blocksize <= 4608)
244 encoder->qlp_coeff_precision = 12;
245 else
246 encoder->qlp_coeff_precision = 13;
247 }
248 else {
249 encoder->qlp_coeff_precision = min(13, 8*sizeof(int32) - encoder->bits_per_sample - 1);
250 }
251 }
252 else if(encoder->qlp_coeff_precision < FLAC__MIN_QLP_COEFF_PRECISION || encoder->qlp_coeff_precision + encoder->bits_per_sample >= 8*sizeof(uint32))
253 return encoder->state = FLAC__ENCODER_INVALID_QLP_COEFF_PRECISION;
254
255 if(encoder->streamable_subset) {
256 if(encoder->bits_per_sample != 8 && encoder->bits_per_sample != 12 && encoder->bits_per_sample != 16 && encoder->bits_per_sample != 20 && encoder->bits_per_sample != 24)
257 return encoder->state = FLAC__ENCODER_NOT_STREAMABLE;
258 if(encoder->sample_rate > 655350)
259 return encoder->state = FLAC__ENCODER_NOT_STREAMABLE;
260 }
261
262 if(encoder->rice_optimization_level >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN))
263 encoder->rice_optimization_level = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN) - 1;
264
265 encoder->guts = (FLAC__EncoderPrivate*)malloc(sizeof(FLAC__EncoderPrivate));
266 if(encoder->guts == 0)
267 return encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
268
269 encoder->guts->input_capacity = 0;
270 for(i = 0; i < encoder->channels; i++) {
271 encoder->guts->integer_signal[i] = 0;
272 encoder->guts->real_signal[i] = 0;
273 }
274 for(i = 0; i < 2; i++) {
275 encoder->guts->integer_signal_mid_side[i] = 0;
276 encoder->guts->real_signal_mid_side[i] = 0;
277 }
278 encoder->guts->residual[0] = 0;
279 encoder->guts->residual[1] = 0;
280 encoder->guts->best_residual = 0;
281 encoder->guts->current_frame_can_do_mid_side = true;
282 encoder->guts->current_sample_number = 0;
283 encoder->guts->current_frame_number = 0;
284
285 if(!encoder_resize_buffers_(encoder, encoder->blocksize)) {
286 /* the above function sets the state for us in case of an error */
287 return encoder->state;
288 }
289 FLAC__bitbuffer_init(&encoder->guts->frame);
290 encoder->guts->write_callback = write_callback;
291 encoder->guts->metadata_callback = metadata_callback;
292 encoder->guts->client_data = client_data;
293
294 /*
295 * write the stream header
296 */
297 if(!FLAC__bitbuffer_clear(&encoder->guts->frame))
298 return encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
299
300 if(!FLAC__bitbuffer_write_raw_uint32(&encoder->guts->frame, FLAC__STREAM_SYNC, FLAC__STREAM_SYNC_LEN))
301 return encoder->state = FLAC__ENCODER_FRAMING_ERROR;
302
303 encoder->guts->metadata.type = FLAC__METADATA_TYPE_ENCODING;
304 encoder->guts->metadata.is_last = true;
305 encoder->guts->metadata.length = FLAC__STREAM_METADATA_ENCODING_LENGTH;
306 encoder->guts->metadata.data.encoding.min_blocksize = encoder->blocksize; /* this encoder uses the same blocksize for the whole stream */
307 encoder->guts->metadata.data.encoding.max_blocksize = encoder->blocksize;
308 encoder->guts->metadata.data.encoding.min_framesize = 0; /* we don't know this yet; have to fill it in later */
309 encoder->guts->metadata.data.encoding.max_framesize = 0; /* we don't know this yet; have to fill it in later */
310 encoder->guts->metadata.data.encoding.sample_rate = encoder->sample_rate;
311 encoder->guts->metadata.data.encoding.channels = encoder->channels;
312 encoder->guts->metadata.data.encoding.bits_per_sample = encoder->bits_per_sample;
313 encoder->guts->metadata.data.encoding.total_samples = 0; /* we don't know this yet; have to fill it in later */
314 if(!FLAC__add_metadata_block(&encoder->guts->metadata, &encoder->guts->frame))
315 return encoder->state = FLAC__ENCODER_FRAMING_ERROR;
316
317 assert(encoder->guts->frame.bits == 0); /* assert that we're byte-aligned before writing */
318 assert(encoder->guts->frame.total_consumed_bits == 0); /* assert that no reading of the buffer was done */
319 if(encoder->guts->write_callback(encoder, encoder->guts->frame.buffer, encoder->guts->frame.bytes, 0, encoder->guts->current_frame_number, encoder->guts->client_data) != FLAC__ENCODER_WRITE_OK)
320 return encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_WRITING;
321
322 /* now that the metadata block is written, we can init this to an absurdly-high value */
323 encoder->guts->metadata.data.encoding.min_framesize = (1u << FLAC__STREAM_METADATA_ENCODING_MIN_FRAME_SIZE_LEN) - 1;
324
325 return encoder->state;
326}
327
328void FLAC__encoder_finish(FLAC__Encoder *encoder)
329{
330 unsigned i;
331
332 assert(encoder != 0);
333 if(encoder->state == FLAC__ENCODER_UNINITIALIZED)
334 return;
335 if(encoder->guts->current_sample_number != 0) {
336 encoder->blocksize = encoder->guts->current_sample_number;
337 encoder_process_frame_(encoder, true); /* true => is last frame */
338 }
339 encoder->guts->metadata_callback(encoder, &encoder->guts->metadata, encoder->guts->client_data);
340 if(encoder->guts != 0) {
341 for(i = 0; i < encoder->channels; i++) {
342 if(encoder->guts->integer_signal[i] != 0) {
343 free(encoder->guts->integer_signal[i]);
344 encoder->guts->integer_signal[i] = 0;
345 }
346 if(encoder->guts->real_signal[i] != 0) {
347 free(encoder->guts->real_signal[i]);
348 encoder->guts->real_signal[i] = 0;
349 }
350 }
351 for(i = 0; i < 2; i++) {
352 if(encoder->guts->integer_signal_mid_side[i] != 0) {
353 free(encoder->guts->integer_signal_mid_side[i]);
354 encoder->guts->integer_signal_mid_side[i] = 0;
355 }
356 if(encoder->guts->real_signal_mid_side[i] != 0) {
357 free(encoder->guts->real_signal_mid_side[i]);
358 encoder->guts->real_signal_mid_side[i] = 0;
359 }
360 }
361 for(i = 0; i < 2; i++) {
362 if(encoder->guts->residual[i] != 0) {
363 free(encoder->guts->residual[i]);
364 encoder->guts->residual[i] = 0;
365 }
366 }
367 FLAC__bitbuffer_free(&encoder->guts->frame);
368 free(encoder->guts);
369 encoder->guts = 0;
370 }
371 encoder->state = FLAC__ENCODER_UNINITIALIZED;
372}
373
374bool FLAC__encoder_process(FLAC__Encoder *encoder, const int32 *buf[], unsigned samples)
375{
376 unsigned i, j, channel;
377 int32 x, mid, side;
378 const bool ms = encoder->do_mid_side_stereo && encoder->channels == 2;
379 const int32 min_side = -((int64)1 << (encoder->bits_per_sample-1));
380 const int32 max_side = ((int64)1 << (encoder->bits_per_sample-1)) - 1;
381
382 assert(encoder != 0);
383 assert(encoder->state == FLAC__ENCODER_OK);
384
385 j = 0;
386 do {
387 for(i = encoder->guts->current_sample_number; i < encoder->blocksize && j < samples; i++, j++) {
388 for(channel = 0; channel < encoder->channels; channel++) {
389 x = buf[channel][j];
390 encoder->guts->integer_signal[channel][i] = x;
391 encoder->guts->real_signal[channel][i] = (real)x;
392 }
393 if(ms && encoder->guts->current_frame_can_do_mid_side) {
394 side = buf[0][j] - buf[1][j];
395 if(side < min_side || side > max_side) {
396 encoder->guts->current_frame_can_do_mid_side = false;
397 }
398 else {
399 mid = (buf[0][j] + buf[1][j]) >> 1; /* NOTE: not the same as divide-by-two ! */
400 encoder->guts->integer_signal_mid_side[0][i] = mid;
401 encoder->guts->integer_signal_mid_side[1][i] = side;
402 encoder->guts->real_signal_mid_side[0][i] = (real)mid;
403 encoder->guts->real_signal_mid_side[1][i] = (real)side;
404 }
405 }
406 encoder->guts->current_sample_number++;
407 }
408 if(i == encoder->blocksize) {
409 if(!encoder_process_frame_(encoder, false)) /* false => not last frame */
410 return false;
411 }
412 } while(j < samples);
413
414 return true;
415}
416
417/* 'samples' is channel-wide samples, e.g. for 1 second at 44100Hz, 'samples' = 44100 regardless of the number of channels */
418bool FLAC__encoder_process_interleaved(FLAC__Encoder *encoder, const int32 buf[], unsigned samples)
419{
420 unsigned i, j, k, channel;
421 int32 x, left = 0, mid, side;
422 const bool ms = encoder->do_mid_side_stereo && encoder->channels == 2;
423 const int32 min_side = -((int64)1 << (encoder->bits_per_sample-1));
424 const int32 max_side = ((int64)1 << (encoder->bits_per_sample-1)) - 1;
425
426 assert(encoder != 0);
427 assert(encoder->state == FLAC__ENCODER_OK);
428
429 j = k = 0;
430 do {
431 for(i = encoder->guts->current_sample_number; i < encoder->blocksize && j < samples; i++, j++, k++) {
432 for(channel = 0; channel < encoder->channels; channel++, k++) {
433 x = buf[k];
434 encoder->guts->integer_signal[channel][i] = x;
435 encoder->guts->real_signal[channel][i] = (real)x;
436 if(ms && encoder->guts->current_frame_can_do_mid_side) {
437 if(channel == 0) {
438 left = x;
439 }
440 else {
441 side = left - x;
442 if(side < min_side || side > max_side) {
443 encoder->guts->current_frame_can_do_mid_side = false;
444 }
445 else {
446 mid = (left + x) >> 1; /* NOTE: not the same as divide-by-two ! */
447 encoder->guts->integer_signal_mid_side[0][i] = mid;
448 encoder->guts->integer_signal_mid_side[1][i] = side;
449 encoder->guts->real_signal_mid_side[0][i] = (real)mid;
450 encoder->guts->real_signal_mid_side[1][i] = (real)side;
451 }
452 }
453 }
454 }
455 encoder->guts->current_sample_number++;
456 }
457 if(i == encoder->blocksize) {
458 if(!encoder_process_frame_(encoder, false)) /* false => not last frame */
459 return false;
460 }
461 } while(j < samples);
462
463 return true;
464}
465
466bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame)
467{
468 FLAC__FrameHeader frame_header;
469 FLAC__BitBuffer *smallest_frame;
470
471 assert(encoder->state == FLAC__ENCODER_OK);
472
473 /*
474 * First do a normal encoding pass
475 */
476 frame_header.blocksize = encoder->blocksize;
477 frame_header.sample_rate = encoder->sample_rate;
478 frame_header.channels = encoder->channels;
479 frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; /* the default unless the encoder determines otherwise */
480 frame_header.bits_per_sample = encoder->bits_per_sample;
481 frame_header.number.frame_number = encoder->guts->current_frame_number;
482
483 if(!FLAC__bitbuffer_clear(&encoder->guts->frame)) {
484 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
485 return false;
486 }
487 if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame)) {
488 encoder->state = FLAC__ENCODER_FRAMING_ERROR;
489 return false;
490 }
491
492 if(!encoder_process_subframes_(encoder, is_last_frame, &frame_header, encoder->channels, encoder->guts->integer_signal, encoder->guts->real_signal, &encoder->guts->frame))
493 return false;
494
495 smallest_frame = &encoder->guts->frame;
496
497 /*
498 * Now try a mid-side version if necessary; otherwise, just use the previous step's frame
499 */
500 if(encoder->do_mid_side_stereo && encoder->guts->current_frame_can_do_mid_side) {
501 int32 *integer_signal[2];
502 real *real_signal[2];
503
504 assert(encoder->channels == 2);
505
506 /* mid-side */
507 frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_MID_SIDE;
508 if(!FLAC__bitbuffer_clear(&encoder->guts->frame_mid_side)) {
509 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
510 return false;
511 }
512 if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_mid_side)) {
513 encoder->state = FLAC__ENCODER_FRAMING_ERROR;
514 return false;
515 }
516 integer_signal[0] = encoder->guts->integer_signal_mid_side[0]; /* mid channel */
517 integer_signal[1] = encoder->guts->integer_signal_mid_side[1]; /* side channel */
518 real_signal[0] = encoder->guts->real_signal_mid_side[0]; /* mid channel */
519 real_signal[1] = encoder->guts->real_signal_mid_side[1]; /* side channel */
520 if(!encoder_process_subframes_(encoder, is_last_frame, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_mid_side))
521 return false;
522 if(encoder->guts->frame_mid_side.total_bits < smallest_frame->total_bits)
523 smallest_frame = &encoder->guts->frame_mid_side;
524
525 /* left-side */
526 frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE;
527 if(!FLAC__bitbuffer_clear(&encoder->guts->frame_left_side)) {
528 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
529 return false;
530 }
531 if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_left_side)) {
532 encoder->state = FLAC__ENCODER_FRAMING_ERROR;
533 return false;
534 }
535 integer_signal[0] = encoder->guts->integer_signal[0]; /* left channel */
536 integer_signal[1] = encoder->guts->integer_signal_mid_side[1]; /* side channel */
537 real_signal[0] = encoder->guts->real_signal[0]; /* left channel */
538 real_signal[1] = encoder->guts->real_signal_mid_side[1]; /* side channel */
539 if(!encoder_process_subframes_(encoder, is_last_frame, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_left_side))
540 return false;
541 if(encoder->guts->frame_left_side.total_bits < smallest_frame->total_bits)
542 smallest_frame = &encoder->guts->frame_left_side;
543
544 /* right-side */
545 frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE;
546 if(!FLAC__bitbuffer_clear(&encoder->guts->frame_right_side)) {
547 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
548 return false;
549 }
550 if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_right_side)) {
551 encoder->state = FLAC__ENCODER_FRAMING_ERROR;
552 return false;
553 }
554 integer_signal[0] = encoder->guts->integer_signal_mid_side[1]; /* side channel */
555 integer_signal[1] = encoder->guts->integer_signal[1]; /* right channel */
556 real_signal[0] = encoder->guts->real_signal_mid_side[1]; /* side channel */
557 real_signal[1] = encoder->guts->real_signal[1]; /* right channel */
558 if(!encoder_process_subframes_(encoder, is_last_frame, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_right_side))
559 return false;
560 if(encoder->guts->frame_right_side.total_bits < smallest_frame->total_bits)
561 smallest_frame = &encoder->guts->frame_right_side;
562 }
563
564 /*
565 * Zero-pad the frame to a byte_boundary
566 */
567 if(!FLAC__bitbuffer_zero_pad_to_byte_boundary(smallest_frame)) {
568 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
569 return false;
570 }
571
572 /*
573 * Write it
574 */
575 assert(smallest_frame->bits == 0); /* assert that we're byte-aligned before writing */
576 assert(smallest_frame->total_consumed_bits == 0); /* assert that no reading of the buffer was done */
577 if(encoder->guts->write_callback(encoder, smallest_frame->buffer, smallest_frame->bytes, encoder->blocksize, encoder->guts->current_frame_number, encoder->guts->client_data) != FLAC__ENCODER_WRITE_OK) {
578 encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_WRITING;
579 return false;
580 }
581
582 /*
583 * Get ready for the next frame
584 */
585 encoder->guts->current_frame_can_do_mid_side = true;
586 encoder->guts->current_sample_number = 0;
587 encoder->guts->current_frame_number++;
588 encoder->guts->metadata.data.encoding.total_samples += (uint64)encoder->blocksize;
589 encoder->guts->metadata.data.encoding.min_framesize = min(smallest_frame->bytes, encoder->guts->metadata.data.encoding.min_framesize);
590 encoder->guts->metadata.data.encoding.max_framesize = max(smallest_frame->bytes, encoder->guts->metadata.data.encoding.max_framesize);
591
592 return true;
593}
594
595bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame, const FLAC__FrameHeader *frame_header, unsigned channels, const int32 *integer_signal[], const real *real_signal[], FLAC__BitBuffer *frame)
596{
597 real fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1];
598 real lpc_residual_bits_per_sample;
599 real autoc[FLAC__MAX_LPC_ORDER+1];
600 real lp_coeff[FLAC__MAX_LPC_ORDER][FLAC__MAX_LPC_ORDER];
601 real lpc_error[FLAC__MAX_LPC_ORDER];
602 unsigned channel;
603 unsigned min_lpc_order, max_lpc_order, lpc_order;
604 unsigned min_fixed_order, max_fixed_order, guess_fixed_order, fixed_order;
605 unsigned max_partition_order;
606 unsigned min_qlp_coeff_precision, max_qlp_coeff_precision, qlp_coeff_precision;
607 unsigned rice_parameter;
608 unsigned candidate_bits, best_bits;
609
610 if(is_last_frame) {
611 max_partition_order = 0;
612 }
613 else {
614 unsigned limit = 0, b = encoder->blocksize;
615 while(!(b & 1)) {
616 limit++;
617 b >>= 1;
618 }
619 max_partition_order = min(encoder->rice_optimization_level, limit);
620 }
621
622 for(channel = 0; channel < channels; channel++) {
623 /* verbatim subframe is the baseline against which we measure other compressed subframes */
624 best_bits = encoder_evaluate_verbatim_subframe_(frame_header->blocksize, frame_header->bits_per_sample, &(encoder->guts->best_subframe));
625
626 if(frame_header->blocksize >= FLAC__MAX_FIXED_ORDER) {
627 /* check for constant subframe */
628 guess_fixed_order = FLAC__fixed_compute_best_predictor(integer_signal[channel]+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample);
629 if(fixed_residual_bits_per_sample[1] == 0.0) {
630 candidate_bits = encoder_evaluate_constant_subframe_(integer_signal[channel][0], frame_header->bits_per_sample, &(encoder->guts->candidate_subframe));
631 if(candidate_bits < best_bits) {
632 encoder_promote_candidate_subframe_(encoder);
633 best_bits = candidate_bits;
634 }
635 }
636 else {
637 /* encode fixed */
638 if(encoder->do_exhaustive_model_search) {
639 min_fixed_order = 0;
640 max_fixed_order = FLAC__MAX_FIXED_ORDER;
641 }
642 else {
643 min_fixed_order = max_fixed_order = guess_fixed_order;
644 }
645 for(fixed_order = min_fixed_order; fixed_order <= max_fixed_order; fixed_order++) {
646 if(fixed_residual_bits_per_sample[fixed_order] >= (real)frame_header->bits_per_sample)
647 continue; /* don't even try */
648 rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > 0.0)? (unsigned)(fixed_residual_bits_per_sample[fixed_order]+0.5) : 0;
649 if(rice_parameter >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN))
650 rice_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
651 candidate_bits = encoder_evaluate_fixed_subframe_(integer_signal[channel], encoder->guts->residual[!encoder->guts->best_residual], frame_header->blocksize, frame_header->bits_per_sample, fixed_order, rice_parameter, max_partition_order, &(encoder->guts->candidate_subframe));
652 if(candidate_bits < best_bits) {
653 encoder_promote_candidate_subframe_(encoder);
654 best_bits = candidate_bits;
655 }
656 }
657
658 /* encode lpc */
659 if(encoder->max_lpc_order > 0) {
660 if(encoder->max_lpc_order >= frame_header->blocksize)
661 max_lpc_order = frame_header->blocksize-1;
662 else
663 max_lpc_order = encoder->max_lpc_order;
664 if(max_lpc_order > 0) {
665 FLAC__lpc_compute_autocorrelation(real_signal[channel], frame_header->blocksize, max_lpc_order+1, autoc);
666 FLAC__lpc_compute_lp_coefficients(autoc, max_lpc_order, lp_coeff, lpc_error);
667 if(encoder->do_exhaustive_model_search) {
668 min_lpc_order = 1;
669 }
670 else {
671 unsigned guess_lpc_order = FLAC__lpc_compute_best_order(lpc_error, max_lpc_order, frame_header->blocksize, frame_header->bits_per_sample);
672 min_lpc_order = max_lpc_order = guess_lpc_order;
673 }
674 if(encoder->do_qlp_coeff_prec_search) {
675 min_qlp_coeff_precision = FLAC__MIN_QLP_COEFF_PRECISION;
676 max_qlp_coeff_precision = 32 - frame_header->bits_per_sample - 1;
677 }
678 else {
679 min_qlp_coeff_precision = max_qlp_coeff_precision = encoder->qlp_coeff_precision;
680 }
681 for(lpc_order = min_lpc_order; lpc_order <= max_lpc_order; lpc_order++) {
682 lpc_residual_bits_per_sample = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[lpc_order-1], frame_header->blocksize);
683 if(lpc_residual_bits_per_sample >= (real)frame_header->bits_per_sample)
684 continue; /* don't even try */
685 rice_parameter = (lpc_residual_bits_per_sample > 0.0)? (unsigned)(lpc_residual_bits_per_sample+0.5) : 0;
686 if(rice_parameter >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN))
687 rice_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
688 for(qlp_coeff_precision = min_qlp_coeff_precision; qlp_coeff_precision <= max_qlp_coeff_precision; qlp_coeff_precision++) {
689 candidate_bits = encoder_evaluate_lpc_subframe_(integer_signal[channel], encoder->guts->residual[!encoder->guts->best_residual], lp_coeff[lpc_order-1], frame_header->blocksize, frame_header->bits_per_sample, lpc_order, qlp_coeff_precision, rice_parameter, max_partition_order, &(encoder->guts->candidate_subframe));
690 if(candidate_bits > 0) { /* if == 0, there was a problem quantizing the lpcoeffs */
691 if(candidate_bits < best_bits) {
692 encoder_promote_candidate_subframe_(encoder);
693 best_bits = candidate_bits;
694 }
695 }
696 }
697 }
698 }
699 }
700 }
701 }
702
703 /* add the best subframe */
704 switch(encoder->guts->best_subframe.type) {
705 case FLAC__SUBFRAME_TYPE_CONSTANT:
706 if(!encoder_generate_constant_subframe_(&(encoder->guts->best_subframe), frame_header->bits_per_sample, frame)) {
707 encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
708 return false;
709 }
710 break;
711 case FLAC__SUBFRAME_TYPE_FIXED:
712 if(!encoder_generate_fixed_subframe_(&(encoder->guts->best_subframe), encoder->guts->residual[encoder->guts->best_residual], frame_header->blocksize, frame_header->bits_per_sample, frame)) {
713 encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
714 return false;
715 }
716 break;
717 case FLAC__SUBFRAME_TYPE_LPC:
718 if(!encoder_generate_lpc_subframe_(&(encoder->guts->best_subframe), encoder->guts->residual[encoder->guts->best_residual], frame_header->blocksize, frame_header->bits_per_sample, frame)) {
719 encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
720 return false;
721 }
722 break;
723 case FLAC__SUBFRAME_TYPE_VERBATIM:
724 if(!encoder_generate_verbatim_subframe_(&(encoder->guts->best_subframe), integer_signal[channel], frame_header->blocksize, frame_header->bits_per_sample, frame)) {
725 encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
726 return false;
727 }
728 break;
729 }
730 }
731
732 return true;
733}
734
735unsigned encoder_evaluate_constant_subframe_(const int32 signal, unsigned bits_per_sample, FLAC__SubframeHeader *subframe)
736{
737 subframe->type = FLAC__SUBFRAME_TYPE_CONSTANT;
738 subframe->data.constant.value = signal;
739
740 return 8 + bits_per_sample;
741}
742
743unsigned encoder_evaluate_fixed_subframe_(const int32 signal[], int32 residual[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned rice_parameter, unsigned max_partition_order, FLAC__SubframeHeader *subframe)
744{
745 unsigned i, residual_bits;
746 const unsigned residual_samples = blocksize - order;
747
748 FLAC__fixed_compute_residual(signal+order, residual_samples, order, residual);
749
750 subframe->type = FLAC__SUBFRAME_TYPE_FIXED;
751
752 subframe->data.fixed.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
753
754 residual_bits = encoder_find_best_partition_order_(residual, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.fixed.entropy_coding_method.data.partitioned_rice.order, subframe->data.fixed.entropy_coding_method.data.partitioned_rice.parameters);
755
756 subframe->data.fixed.order = order;
757 for(i = 0; i < order; i++)
758 subframe->data.fixed.warmup[i] = signal[i];
759
760 return 8 + (order * bits_per_sample) + residual_bits;
761}
762
763unsigned encoder_evaluate_lpc_subframe_(const int32 signal[], int32 residual[], const real lp_coeff[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned max_partition_order, FLAC__SubframeHeader *subframe)
764{
765 int32 qlp_coeff[FLAC__MAX_LPC_ORDER];
766 unsigned i, residual_bits;
767 int quantization, ret;
768 const unsigned residual_samples = blocksize - order;
769
770 ret = FLAC__lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, bits_per_sample, qlp_coeff, &quantization);
771 if(ret != 0)
772 return 0; /* this is a hack to indicate to the caller that we can't do lp at this order on this subframe */
773
774 FLAC__lpc_compute_residual_from_qlp_coefficients(signal+order, residual_samples, qlp_coeff, order, quantization, residual);
775
776 subframe->type = FLAC__SUBFRAME_TYPE_LPC;
777
778 subframe->data.lpc.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
779
780 residual_bits = encoder_find_best_partition_order_(residual, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.lpc.entropy_coding_method.data.partitioned_rice.order, subframe->data.lpc.entropy_coding_method.data.partitioned_rice.parameters);
781
782 subframe->data.lpc.order = order;
783 subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision;
784 subframe->data.lpc.quantization_level = quantization;
785 memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(int32)*FLAC__MAX_LPC_ORDER);
786 for(i = 0; i < order; i++)
787 subframe->data.lpc.warmup[i] = signal[i];
788
789 return 8 + 9 + (order * (qlp_coeff_precision + bits_per_sample)) + residual_bits;
790}
791
792unsigned encoder_evaluate_verbatim_subframe_(unsigned blocksize, unsigned bits_per_sample, FLAC__SubframeHeader *subframe)
793{
794 subframe->type = FLAC__SUBFRAME_TYPE_VERBATIM;
795
796 return 8 + (blocksize * bits_per_sample);
797}
798
799unsigned encoder_find_best_partition_order_(int32 residual[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned max_partition_order, unsigned *best_partition_order, unsigned best_parameters[])
800{
801 unsigned residual_bits, best_residual_bits = 0;
802 unsigned partition_order;
803 unsigned best_parameters_index = 0, parameters[2][1 << FLAC__MAX_RICE_PARTITION_ORDER];
804
805 for(partition_order = 0; partition_order <= max_partition_order; partition_order++) {
806 if(!encoder_set_partitioned_rice_(residual, residual_samples, predictor_order, rice_parameter, partition_order, parameters[!best_parameters_index], &residual_bits)) {
807 assert(best_residual_bits != 0);
808 break;
809 }
810 if(best_residual_bits == 0 || residual_bits < best_residual_bits) {
811 best_residual_bits = residual_bits;
812 *best_partition_order = partition_order;
813 best_parameters_index = !best_parameters_index;
814 }
815 }
816 memcpy(best_parameters, parameters[best_parameters_index], sizeof(unsigned)*(1<<(*best_partition_order)));
817
818 return best_residual_bits;
819}
820
821bool encoder_generate_constant_subframe_(const FLAC__SubframeHeader *header, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer)
822{
823 assert(header->type == FLAC__SUBFRAME_TYPE_CONSTANT);
824 return FLAC__subframe_add_constant(bits_per_sample, header, bitbuffer);
825}
826
827bool encoder_generate_fixed_subframe_(const FLAC__SubframeHeader *header, int32 residual[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer)
828{
829 assert(header->type == FLAC__SUBFRAME_TYPE_FIXED);
830 return FLAC__subframe_add_fixed(residual, blocksize - header->data.fixed.order, bits_per_sample, header, bitbuffer);
831}
832
833bool encoder_generate_lpc_subframe_(const FLAC__SubframeHeader *header, int32 residual[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer)
834{
835 assert(header->type == FLAC__SUBFRAME_TYPE_LPC);
836 return FLAC__subframe_add_lpc(residual, blocksize - header->data.lpc.order, bits_per_sample, header, bitbuffer);
837}
838
839bool encoder_generate_verbatim_subframe_(const FLAC__SubframeHeader *header, const int32 signal[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer)
840{
841 assert(header->type == FLAC__SUBFRAME_TYPE_VERBATIM);
842#ifdef NDEBUG
843 (void)header; /* silence compiler warning about unused parameter */
844#endif
845 return FLAC__subframe_add_verbatim(signal, blocksize, bits_per_sample, bitbuffer);
846}
847
848void encoder_promote_candidate_subframe_(FLAC__Encoder *encoder)
849{
850 assert(encoder->state == FLAC__ENCODER_OK);
851 encoder->guts->best_subframe = encoder->guts->candidate_subframe;
852 encoder->guts->best_residual = !encoder->guts->best_residual;
853}
854
855bool encoder_set_partitioned_rice_(const int32 residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameter, const unsigned partition_order, unsigned parameters[], unsigned *bits)
856{
857 unsigned bits_ = 2 + 3;
858
859 if(partition_order == 0) {
860 unsigned i;
861 parameters[0] = rice_parameter;
862 bits_ += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
863 for(i = 0; i < residual_samples; i++)
864 bits_ += RICE_BITS(residual[i], rice_parameter);
865 }
866 else {
867 unsigned i, j, k = 0, k_last = 0, z;
868 unsigned mean;
869 unsigned parameter, partition_samples;
870 const unsigned max_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
871 for(i = 0; i < (1u<<partition_order); i++) {
872 partition_samples = (residual_samples+predictor_order) >> partition_order;
873 if(i == 0) {
874 if(partition_samples <= predictor_order)
875 return false;
876 else
877 partition_samples -= predictor_order;
878 }
879 mean = partition_samples >> 1;
880 for(j = 0; j < partition_samples; j++, k++)
881 mean += ((residual[k] < 0)? (unsigned)(-residual[k]) : (unsigned)residual[k]);
882 mean /= partition_samples;
883 z = 0x80000000;
884 for(j = 0; j < 32; j++, z >>= 1)
885 if(mean & z)
886 break;
887 parameter = j > 31? 0 : 32 - j - 1;
888 if(parameter > max_parameter)
889 parameter = max_parameter;
890 parameters[i] = parameter;
891 bits_ += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
892 for(j = k_last; j < k; j++)
893 bits_ += RICE_BITS(residual[j], parameter);
894 k_last = k;
895 }
896 }
897
898 *bits = bits_;
899 return true;
900}