blob: d730a5321797c37d197a98c56c00e88082bf3586 [file] [log] [blame]
//===-- EmulateInstruction.h ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/EmulateInstruction.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Host/Endian.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "Plugins/Instruction/ARM/EmulateInstructionARM.h"
using namespace lldb;
using namespace lldb_private;
EmulateInstruction*
EmulateInstruction::FindPlugin (const ArchSpec &arch, InstructionType supported_inst_type, const char *plugin_name)
{
EmulateInstructionCreateInstance create_callback = NULL;
if (plugin_name)
{
create_callback = PluginManager::GetEmulateInstructionCreateCallbackForPluginName (plugin_name);
if (create_callback)
{
EmulateInstruction *emulate_insn_ptr = create_callback(arch, supported_inst_type);
if (emulate_insn_ptr)
return emulate_insn_ptr;
}
}
else
{
for (uint32_t idx = 0; (create_callback = PluginManager::GetEmulateInstructionCreateCallbackAtIndex(idx)) != NULL; ++idx)
{
EmulateInstruction *emulate_insn_ptr = create_callback(arch, supported_inst_type);
if (emulate_insn_ptr)
return emulate_insn_ptr;
}
}
return NULL;
}
EmulateInstruction::EmulateInstruction (const ArchSpec &arch) :
m_arch (arch),
m_baton (NULL),
m_read_mem_callback (&ReadMemoryDefault),
m_write_mem_callback (&WriteMemoryDefault),
m_read_reg_callback (&ReadRegisterDefault),
m_write_reg_callback (&WriteRegisterDefault),
m_opcode_pc (LLDB_INVALID_ADDRESS)
{
::memset (&m_opcode, 0, sizeof (m_opcode));
}
uint64_t
EmulateInstruction::ReadRegisterUnsigned (uint32_t reg_kind, uint32_t reg_num, uint64_t fail_value, bool *success_ptr)
{
uint64_t uval64 = 0;
bool success = m_read_reg_callback (this, m_baton, reg_kind, reg_num, uval64);
if (success_ptr)
*success_ptr = success;
if (!success)
uval64 = fail_value;
return uval64;
}
bool
EmulateInstruction::WriteRegisterUnsigned (const Context &context, uint32_t reg_kind, uint32_t reg_num, uint64_t reg_value)
{
return m_write_reg_callback (this, m_baton, context, reg_kind, reg_num, reg_value);
}
uint64_t
EmulateInstruction::ReadMemoryUnsigned (const Context &context, lldb::addr_t addr, size_t byte_size, uint64_t fail_value, bool *success_ptr)
{
uint64_t uval64 = 0;
bool success = false;
if (byte_size <= 8)
{
uint8_t buf[sizeof(uint64_t)];
size_t bytes_read = m_read_mem_callback (this, m_baton, context, addr, buf, byte_size);
if (bytes_read == byte_size)
{
uint32_t offset = 0;
DataExtractor data (buf, byte_size, GetByteOrder(), GetAddressByteSize());
uval64 = data.GetMaxU64 (&offset, byte_size);
success = true;
}
}
if (success_ptr)
*success_ptr = success;
if (!success)
uval64 = fail_value;
return uval64;
}
bool
EmulateInstruction::WriteMemoryUnsigned (const Context &context,
lldb::addr_t addr,
uint64_t uval,
size_t uval_byte_size)
{
StreamString strm(Stream::eBinary, GetAddressByteSize(), GetByteOrder());
strm.PutMaxHex64 (uval, uval_byte_size);
size_t bytes_written = m_write_mem_callback (this, m_baton, context, addr, strm.GetData(), uval_byte_size);
if (bytes_written == uval_byte_size)
return true;
return false;
}
void
EmulateInstruction::SetBaton (void *baton)
{
m_baton = baton;
}
void
EmulateInstruction::SetCallbacks (ReadMemory read_mem_callback,
WriteMemory write_mem_callback,
ReadRegister read_reg_callback,
WriteRegister write_reg_callback)
{
m_read_mem_callback = read_mem_callback;
m_write_mem_callback = write_mem_callback;
m_read_reg_callback = read_reg_callback;
m_write_reg_callback = write_reg_callback;
}
void
EmulateInstruction::SetReadMemCallback (ReadMemory read_mem_callback)
{
m_read_mem_callback = read_mem_callback;
}
void
EmulateInstruction::SetWriteMemCallback (WriteMemory write_mem_callback)
{
m_write_mem_callback = write_mem_callback;
}
void
EmulateInstruction::SetReadRegCallback (ReadRegister read_reg_callback)
{
m_read_reg_callback = read_reg_callback;
}
void
EmulateInstruction::SetWriteRegCallback (WriteRegister write_reg_callback)
{
m_write_reg_callback = write_reg_callback;
}
//
// Read & Write Memory and Registers callback functions.
//
size_t
EmulateInstruction::ReadMemoryFrame (EmulateInstruction *instruction,
void *baton,
const Context &context,
lldb::addr_t addr,
void *dst,
size_t length)
{
if (!baton)
return 0;
StackFrame *frame = (StackFrame *) baton;
DataBufferSP data_sp (new DataBufferHeap (length, '\0'));
Error error;
size_t bytes_read = frame->GetThread().GetProcess().ReadMemory (addr, data_sp->GetBytes(), data_sp->GetByteSize(),
error);
if (bytes_read > 0)
((DataBufferHeap *) data_sp.get())->CopyData (dst, length);
return bytes_read;
}
size_t
EmulateInstruction::WriteMemoryFrame (EmulateInstruction *instruction,
void *baton,
const Context &context,
lldb::addr_t addr,
const void *dst,
size_t length)
{
if (!baton)
return 0;
StackFrame *frame = (StackFrame *) baton;
lldb::DataBufferSP data_sp (new DataBufferHeap (dst, length));
if (data_sp)
{
length = data_sp->GetByteSize();
if (length > 0)
{
Error error;
size_t bytes_written = frame->GetThread().GetProcess().WriteMemory (addr, data_sp->GetBytes(), length,
error);
return bytes_written;
}
}
return 0;
}
bool
EmulateInstruction::ReadRegisterFrame (EmulateInstruction *instruction,
void *baton,
uint32_t reg_kind,
uint32_t reg_num,
uint64_t &reg_value)
{
if (!baton)
return false;
StackFrame *frame = (StackFrame *) baton;
RegisterContext *reg_context = frame->GetRegisterContext().get();
Scalar value;
uint32_t internal_reg_num = reg_context->ConvertRegisterKindToRegisterNumber (reg_kind, reg_num);
if (internal_reg_num == LLDB_INVALID_REGNUM)
return false;
if (reg_context->ReadRegisterValue (internal_reg_num, value))
{
reg_value = value.GetRawBits64 (0);
return true;
}
return false;
}
bool
EmulateInstruction::WriteRegisterFrame (EmulateInstruction *instruction,
void *baton,
const Context &context,
uint32_t reg_kind,
uint32_t reg_num,
uint64_t reg_value)
{
if (!baton)
return false;
StackFrame *frame = (StackFrame *) baton;
RegisterContext *reg_context = frame->GetRegisterContext().get();
Scalar value (reg_value);
uint32_t internal_reg_num = reg_context->ConvertRegisterKindToRegisterNumber (reg_kind, reg_num);
if (internal_reg_num != LLDB_INVALID_REGNUM)
return reg_context->WriteRegisterValue (internal_reg_num, value);
else
return false;
}
size_t
EmulateInstruction::ReadMemoryDefault (EmulateInstruction *instruction,
void *baton,
const Context &context,
lldb::addr_t addr,
void *dst,
size_t length)
{
PrintContext ("Read from memory", context);
fprintf (stdout, " Read from Memory (address = %p, length = %d)\n",(void *) addr, (uint32_t) length);
*((uint64_t *) dst) = 0xdeadbeef;
return length;
}
size_t
EmulateInstruction::WriteMemoryDefault (EmulateInstruction *instruction,
void *baton,
const Context &context,
lldb::addr_t addr,
const void *dst,
size_t length)
{
PrintContext ("Write to memory", context);
fprintf (stdout, " Write to Memory (address = %p, length = %d)\n", (void *) addr, (uint32_t) length);
return length;
}
bool
EmulateInstruction::ReadRegisterDefault (EmulateInstruction *instruction,
void *baton,
uint32_t reg_kind,
uint32_t reg_num,
uint64_t &reg_value)
{
std::string reg_name;
TranslateRegister (reg_kind, reg_num, reg_name);
fprintf (stdout, " Read Register (%s)\n", reg_name.c_str());
reg_value = 24;
return true;
}
bool
EmulateInstruction::WriteRegisterDefault (EmulateInstruction *instruction,
void *baton,
const Context &context,
uint32_t reg_kind,
uint32_t reg_num,
uint64_t reg_value)
{
PrintContext ("Write to register", context);
std::string reg_name;
TranslateRegister (reg_kind, reg_num, reg_name);
fprintf (stdout, " Write to Register (%s), value = 0x%llx\n", reg_name.c_str(), reg_value);
return true;
}
void
EmulateInstruction::PrintContext (const char *context_type, const Context &context)
{
switch (context.type)
{
case eContextReadOpcode:
fprintf (stdout, " %s context: Reading an Opcode\n", context_type);
break;
case eContextImmediate:
fprintf (stdout, " %s context: Immediate\n", context_type);
break;
case eContextPushRegisterOnStack:
fprintf (stdout, " %s context: Pushing a register onto the stack.\n", context_type);
break;
case eContextPopRegisterOffStack:
fprintf (stdout, " %s context: Popping a register off the stack.\n", context_type);
break;
case eContextAdjustStackPointer:
fprintf (stdout, " %s context: Adjusting the stack pointer.\n", context_type);
break;
case eContextAdjustBaseRegister:
fprintf (stdout, " %s context: Adjusting (writing value back to) a base register.\n", context_type);
break;
case eContextRegisterPlusOffset:
fprintf (stdout, " %s context: Register plus offset\n", context_type);
break;
case eContextRegisterStore:
fprintf (stdout, " %s context: Storing a register.\n", context_type);
break;
case eContextRegisterLoad:
fprintf (stdout, " %s context: Loading a register.\n", context_type);
break;
case eContextRelativeBranchImmediate:
fprintf (stdout, " %s context: Relative branch immediate\n", context_type);
break;
case eContextAbsoluteBranchRegister:
fprintf (stdout, " %s context: Absolute branch register\n", context_type);
break;
case eContextSupervisorCall:
fprintf (stdout, " %s context: Performing a supervisor call.\n", context_type);
break;
case eContextTableBranchReadMemory:
fprintf (stdout, " %s context: Table branch read memory\n", context_type);
break;
case eContextWriteRegisterRandomBits:
fprintf (stdout, " %s context: Write random bits to a register\n", context_type);
break;
case eContextWriteMemoryRandomBits:
fprintf (stdout, " %s context: Write random bits to a memory address\n", context_type);
break;
case eContextMultiplication:
fprintf (stdout, " %s context: Performing a multiplication\n", context_type);
break;
case eContextAddition:
fprintf (stdout, " %s context: Performing an addition\n", context_type);
break;
case eContextReturnFromException:
fprintf (stdout, " %s context: Returning from an exception\n", context_type);
break;
default:
fprintf (stdout, " %s context: Unrecognized context.\n", context_type);
break;
}
switch (context.info_type)
{
case eInfoTypeRegisterPlusOffset:
{
std::string reg_name;
TranslateRegister (context.info.RegisterPlusOffset.reg.kind,
context.info.RegisterPlusOffset.reg.num,
reg_name);
fprintf (stdout, " Info type: Register plus offset (%s +/- %lld)\n", reg_name.c_str(),
context.info.RegisterPlusOffset.signed_offset);
}
break;
case eInfoTypeRegisterPlusIndirectOffset:
{
std::string base_reg_name;
std::string offset_reg_name;
TranslateRegister (context.info.RegisterPlusIndirectOffset.base_reg.kind,
context.info.RegisterPlusIndirectOffset.base_reg.num,
base_reg_name);
TranslateRegister (context.info.RegisterPlusIndirectOffset.offset_reg.kind,
context.info.RegisterPlusIndirectOffset.offset_reg.num,
offset_reg_name);
fprintf (stdout, " Info type: Register plus indirect offset (%s +/- %s)\n",
base_reg_name.c_str(),
offset_reg_name.c_str());
}
break;
case eInfoTypeRegisterToRegisterPlusOffset:
{
std::string base_reg_name;
std::string data_reg_name;
TranslateRegister (context.info.RegisterToRegisterPlusOffset.base_reg.kind,
context.info.RegisterToRegisterPlusOffset.base_reg.num,
base_reg_name);
TranslateRegister (context.info.RegisterToRegisterPlusOffset.data_reg.kind,
context.info.RegisterToRegisterPlusOffset.data_reg.num,
data_reg_name);
fprintf (stdout, " Info type: Register plus offset (%s +/- %lld) and data register (%s)\n",
base_reg_name.c_str(), context.info.RegisterToRegisterPlusOffset.offset,
data_reg_name.c_str());
}
break;
case eInfoTypeRegisterToRegisterPlusIndirectOffset:
{
std::string base_reg_name;
std::string offset_reg_name;
std::string data_reg_name;
TranslateRegister (context.info.RegisterToRegisterPlusIndirectOffset.base_reg.kind,
context.info.RegisterToRegisterPlusIndirectOffset.base_reg.num,
base_reg_name);
TranslateRegister (context.info.RegisterToRegisterPlusIndirectOffset.offset_reg.kind,
context.info.RegisterToRegisterPlusIndirectOffset.offset_reg.num,
offset_reg_name);
TranslateRegister (context.info.RegisterToRegisterPlusIndirectOffset.data_reg.kind,
context.info.RegisterToRegisterPlusIndirectOffset.data_reg.num,
data_reg_name);
fprintf (stdout, " Info type: Register plus indirect offset (%s +/- %s) and data register (%s)\n",
base_reg_name.c_str(), offset_reg_name.c_str(), data_reg_name.c_str());
}
break;
case eInfoTypeRegisterRegisterOperands:
{
std::string op1_reg_name;
std::string op2_reg_name;
TranslateRegister (context.info.RegisterRegisterOperands.operand1.kind,
context.info.RegisterRegisterOperands.operand1.num,
op1_reg_name);
TranslateRegister (context.info.RegisterRegisterOperands.operand2.kind,
context.info.RegisterRegisterOperands.operand2.num,
op2_reg_name);
fprintf (stdout, " Info type: Register operands for binary op (%s, %s)\n",
op1_reg_name.c_str(),
op2_reg_name.c_str());
}
break;
case eInfoTypeOffset:
fprintf (stdout, " Info type: signed offset (%lld)\n", context.info.signed_offset);
break;
case eInfoTypeRegister:
{
std::string reg_name;
TranslateRegister (context.info.reg.kind, context.info.reg.num, reg_name);
fprintf (stdout, " Info type: Register (%s)\n", reg_name.c_str());
}
break;
case eInfoTypeImmediate:
fprintf (stdout, " Info type: Immediate (%lld)\n", context.info.immediate);
break;
case eInfoTypeImmediateSigned:
fprintf (stdout, " Info type: Signed immediate (%lld)\n", context.info.signed_immediate);
break;
case eInfoTypeAddress:
fprintf (stdout, " Info type: Address (%p)\n", (void *) context.info.address);
break;
case eInfoTypeModeAndImmediate:
{
std::string mode_name;
if (context.info.ModeAndImmediate.mode == EmulateInstructionARM::eModeARM)
mode_name = "ARM";
else if (context.info.ModeAndImmediate.mode == EmulateInstructionARM::eModeThumb)
mode_name = "Thumb";
else
mode_name = "Unknown mode";
fprintf (stdout, " Info type: Mode (%s) and immediate (%d)\n", mode_name.c_str(),
context.info.ModeAndImmediate.data_value);
}
break;
case eInfoTypeModeAndImmediateSigned:
{
std::string mode_name;
if (context.info.ModeAndImmediateSigned.mode == EmulateInstructionARM::eModeARM)
mode_name = "ARM";
else if (context.info.ModeAndImmediateSigned.mode == EmulateInstructionARM::eModeThumb)
mode_name = "Thumb";
else
mode_name = "Unknown mode";
fprintf (stdout, " Info type: Mode (%s) and signed immediate (%d)\n", mode_name.c_str(),
context.info.ModeAndImmediateSigned.signed_data_value);
}
break;
case eInfoTypeMode:
{
std::string mode_name;
if (context.info.mode == EmulateInstructionARM::eModeARM)
mode_name = "ARM";
else if (context.info.mode == EmulateInstructionARM::eModeThumb)
mode_name = "Thumb";
else
mode_name = "Unknown mode";
fprintf (stdout, " Info type: Mode (%s)\n", mode_name.c_str());
}
break;
case eInfoTypeNoArgs:
fprintf (stdout, " Info type: no arguments\n");
break;
default:
break;
}
}
bool
EmulateInstruction::SetInstruction (const Opcode &opcode, const Address &inst_addr, Target *target)
{
m_opcode = opcode;
m_opcode_pc = LLDB_INVALID_ADDRESS;
if (inst_addr.IsValid())
{
if (target)
m_opcode_pc = inst_addr.GetLoadAddress (target);
if (m_opcode_pc == LLDB_INVALID_ADDRESS)
m_opcode_pc = inst_addr.GetFileAddress ();
}
return true;
}
const char *
EmulateInstruction::TranslateRegister (uint32_t kind, uint32_t num, std::string &name)
{
if (kind == eRegisterKindGeneric)
{
switch (num)
{
case LLDB_REGNUM_GENERIC_PC: name = "pc"; break;
case LLDB_REGNUM_GENERIC_SP: name = "sp"; break;
case LLDB_REGNUM_GENERIC_FP: name = "fp"; break;
case LLDB_REGNUM_GENERIC_RA: name = "ra"; break;
case LLDB_REGNUM_GENERIC_FLAGS: name = "flags"; break;
default: name.clear(); break;
}
if (!name.empty())
return name.c_str();
}
const char *kind_cstr = NULL;
switch (kind)
{
case eRegisterKindGCC: // the register numbers seen in eh_frame
kind_cstr = "gcc";
break;
case eRegisterKindDWARF: // the register numbers seen DWARF
kind_cstr = "dwarf";
break;
case eRegisterKindGeneric: // insn ptr reg, stack ptr reg, etc not specific to any particular target
kind_cstr = "generic";
break;
case eRegisterKindGDB: // the register numbers gdb uses (matches stabs numbers?)
kind_cstr = "gdb";
break;
case eRegisterKindLLDB: // lldb's internal register numbers
kind_cstr = "lldb";
break;
}
StreamString sstr;
sstr.Printf ("%s(%u)", kind_cstr, num);
name.swap (sstr.GetString());
return name.c_str();
}