blob: 288fe6809711d4704d3ec90f434ac4ff557cbd8e [file] [log] [blame]
Chris Lattner233f7dc2002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner8a2a3112001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman844731a2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Chris Lattner8a2a3112001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner318bf792007-03-18 22:51:34 +000015// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
Chris Lattner8a2a3112001-12-14 16:52:21 +000017// into:
Chris Lattner318bf792007-03-18 22:51:34 +000018// %Z = add i32 %X, 2
Chris Lattner8a2a3112001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner065a6162003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattner2cd91962003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdf17af12003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Reid Spencere4d87aa2006-12-23 06:05:41 +000027// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
Chris Lattnere92d2f42003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattnerbac32862004-11-14 19:13:23 +000032// ... etc.
Chris Lattner2cd91962003-07-23 21:41:57 +000033//
Chris Lattner8a2a3112001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattner0cea42a2004-03-13 23:54:27 +000036#define DEBUG_TYPE "instcombine"
Chris Lattner022103b2002-05-07 20:03:00 +000037#include "llvm/Transforms/Scalar.h"
Chris Lattnerac8f2fd2010-01-04 07:12:23 +000038#include "InstCombine.h"
Chris Lattner35b9e482004-10-12 04:52:52 +000039#include "llvm/IntrinsicInst.h"
Chris Lattner79066fa2007-01-30 23:46:24 +000040#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner9dbb4292009-11-09 23:28:39 +000041#include "llvm/Analysis/InstructionSimplify.h"
Victor Hernandezf006b182009-10-27 20:05:49 +000042#include "llvm/Analysis/MemoryBuiltins.h"
Chris Lattnerbc61e662003-11-02 05:57:39 +000043#include "llvm/Target/TargetData.h"
Chris Lattnerbc61e662003-11-02 05:57:39 +000044#include "llvm/Transforms/Utils/Local.h"
Chris Lattner804272c2010-01-05 07:54:43 +000045#include "llvm/Support/CFG.h"
Chris Lattnerea1c4542004-12-08 23:43:58 +000046#include "llvm/Support/Debug.h"
Chris Lattner28977af2004-04-05 01:30:19 +000047#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattneracd1f0f2004-07-30 07:50:03 +000048#include "llvm/Support/PatternMatch.h"
Nick Lewyckyd5061a92011-08-03 00:43:35 +000049#include "llvm/Support/ValueHandle.h"
Chris Lattner1f87a582007-02-15 19:41:52 +000050#include "llvm/ADT/SmallPtrSet.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000051#include "llvm/ADT/Statistic.h"
Duncan Sands0ad7b6e2011-09-30 13:12:16 +000052#include "llvm/ADT/StringSwitch.h"
Owen Anderson74cfb0c2010-10-07 20:04:55 +000053#include "llvm-c/Initialization.h"
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +000054#include <algorithm>
Torok Edwin3eaee312008-04-20 08:33:11 +000055#include <climits>
Chris Lattner67b1e1b2003-12-07 01:24:23 +000056using namespace llvm;
Chris Lattneracd1f0f2004-07-30 07:50:03 +000057using namespace llvm::PatternMatch;
Brian Gaeked0fde302003-11-11 22:41:34 +000058
Chris Lattner0e5f4992006-12-19 21:40:18 +000059STATISTIC(NumCombined , "Number of insts combined");
60STATISTIC(NumConstProp, "Number of constant folds");
61STATISTIC(NumDeadInst , "Number of dead inst eliminated");
Chris Lattner0e5f4992006-12-19 21:40:18 +000062STATISTIC(NumSunkInst , "Number of instructions sunk");
Duncan Sands37bf92b2010-12-22 13:36:08 +000063STATISTIC(NumExpand, "Number of expansions");
Duncan Sandsa3c44a52010-12-22 09:40:51 +000064STATISTIC(NumFactor , "Number of factorizations");
65STATISTIC(NumReassoc , "Number of reassociations");
Chris Lattnera92f6962002-10-01 22:38:41 +000066
Owen Anderson74cfb0c2010-10-07 20:04:55 +000067// Initialization Routines
68void llvm::initializeInstCombine(PassRegistry &Registry) {
69 initializeInstCombinerPass(Registry);
70}
71
72void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
73 initializeInstCombine(*unwrap(R));
74}
Chris Lattnerdd841ae2002-04-18 17:39:14 +000075
Dan Gohman844731a2008-05-13 00:00:25 +000076char InstCombiner::ID = 0;
Owen Andersond13db2c2010-07-21 22:09:45 +000077INITIALIZE_PASS(InstCombiner, "instcombine",
Owen Andersonce665bd2010-10-07 22:25:06 +000078 "Combine redundant instructions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +000079
Chris Lattnere0b4b722010-01-04 07:17:19 +000080void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnere0b4b722010-01-04 07:17:19 +000081 AU.setPreservesCFG();
82}
83
84
Chris Lattnerc22d4d12009-11-10 07:23:37 +000085/// ShouldChangeType - Return true if it is desirable to convert a computation
86/// from 'From' to 'To'. We don't want to convert from a legal to an illegal
87/// type for example, or from a smaller to a larger illegal type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +000088bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
Duncan Sands1df98592010-02-16 11:11:14 +000089 assert(From->isIntegerTy() && To->isIntegerTy());
Chris Lattnerc22d4d12009-11-10 07:23:37 +000090
91 // If we don't have TD, we don't know if the source/dest are legal.
92 if (!TD) return false;
93
94 unsigned FromWidth = From->getPrimitiveSizeInBits();
95 unsigned ToWidth = To->getPrimitiveSizeInBits();
96 bool FromLegal = TD->isLegalInteger(FromWidth);
97 bool ToLegal = TD->isLegalInteger(ToWidth);
98
99 // If this is a legal integer from type, and the result would be an illegal
100 // type, don't do the transformation.
101 if (FromLegal && !ToLegal)
102 return false;
103
104 // Otherwise, if both are illegal, do not increase the size of the result. We
105 // do allow things like i160 -> i64, but not i64 -> i160.
106 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
107 return false;
108
109 return true;
110}
111
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000112// Return true, if No Signed Wrap should be maintained for I.
113// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
114// where both B and C should be ConstantInts, results in a constant that does
115// not overflow. This function only handles the Add and Sub opcodes. For
116// all other opcodes, the function conservatively returns false.
117static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
118 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
119 if (!OBO || !OBO->hasNoSignedWrap()) {
120 return false;
121 }
122
123 // We reason about Add and Sub Only.
124 Instruction::BinaryOps Opcode = I.getOpcode();
125 if (Opcode != Instruction::Add &&
126 Opcode != Instruction::Sub) {
127 return false;
128 }
129
130 ConstantInt *CB = dyn_cast<ConstantInt>(B);
131 ConstantInt *CC = dyn_cast<ConstantInt>(C);
132
133 if (!CB || !CC) {
134 return false;
135 }
136
137 const APInt &BVal = CB->getValue();
138 const APInt &CVal = CC->getValue();
139 bool Overflow = false;
140
141 if (Opcode == Instruction::Add) {
142 BVal.sadd_ov(CVal, Overflow);
143 } else {
144 BVal.ssub_ov(CVal, Overflow);
145 }
146
147 return !Overflow;
148}
149
Duncan Sands096aa792010-11-13 15:10:37 +0000150/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
151/// operators which are associative or commutative:
152//
153// Commutative operators:
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000154//
Chris Lattner4f98c562003-03-10 21:43:22 +0000155// 1. Order operands such that they are listed from right (least complex) to
156// left (most complex). This puts constants before unary operators before
157// binary operators.
158//
Duncan Sands096aa792010-11-13 15:10:37 +0000159// Associative operators:
Chris Lattner4f98c562003-03-10 21:43:22 +0000160//
Duncan Sands096aa792010-11-13 15:10:37 +0000161// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
162// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
163//
164// Associative and commutative operators:
165//
166// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
167// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
168// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
169// if C1 and C2 are constants.
170//
171bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +0000172 Instruction::BinaryOps Opcode = I.getOpcode();
Duncan Sands096aa792010-11-13 15:10:37 +0000173 bool Changed = false;
Chris Lattnerc8802d22003-03-11 00:12:48 +0000174
Duncan Sands096aa792010-11-13 15:10:37 +0000175 do {
176 // Order operands such that they are listed from right (least complex) to
177 // left (most complex). This puts constants before unary operators before
178 // binary operators.
179 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
180 getComplexity(I.getOperand(1)))
181 Changed = !I.swapOperands();
182
183 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
184 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
185
186 if (I.isAssociative()) {
187 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
188 if (Op0 && Op0->getOpcode() == Opcode) {
189 Value *A = Op0->getOperand(0);
190 Value *B = Op0->getOperand(1);
191 Value *C = I.getOperand(1);
192
193 // Does "B op C" simplify?
194 if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
195 // It simplifies to V. Form "A op V".
196 I.setOperand(0, A);
197 I.setOperand(1, V);
Dan Gohman5195b712011-02-02 02:05:46 +0000198 // Conservatively clear the optional flags, since they may not be
199 // preserved by the reassociation.
Nick Lewycky7f0170c2011-08-14 03:41:33 +0000200 if (MaintainNoSignedWrap(I, B, C) &&
201 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
202 // Note: this is only valid because SimplifyBinOp doesn't look at
203 // the operands to Op0.
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000204 I.clearSubclassOptionalData();
205 I.setHasNoSignedWrap(true);
206 } else {
207 I.clearSubclassOptionalData();
208 }
209
Duncan Sands096aa792010-11-13 15:10:37 +0000210 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000211 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000212 continue;
Misha Brukmanfd939082005-04-21 23:48:37 +0000213 }
Duncan Sands096aa792010-11-13 15:10:37 +0000214 }
215
216 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
217 if (Op1 && Op1->getOpcode() == Opcode) {
218 Value *A = I.getOperand(0);
219 Value *B = Op1->getOperand(0);
220 Value *C = Op1->getOperand(1);
221
222 // Does "A op B" simplify?
223 if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
224 // It simplifies to V. Form "V op C".
225 I.setOperand(0, V);
226 I.setOperand(1, C);
Dan Gohman5195b712011-02-02 02:05:46 +0000227 // Conservatively clear the optional flags, since they may not be
228 // preserved by the reassociation.
229 I.clearSubclassOptionalData();
Duncan Sands096aa792010-11-13 15:10:37 +0000230 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000231 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000232 continue;
233 }
234 }
Chris Lattner4f98c562003-03-10 21:43:22 +0000235 }
Duncan Sands096aa792010-11-13 15:10:37 +0000236
237 if (I.isAssociative() && I.isCommutative()) {
238 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
239 if (Op0 && Op0->getOpcode() == Opcode) {
240 Value *A = Op0->getOperand(0);
241 Value *B = Op0->getOperand(1);
242 Value *C = I.getOperand(1);
243
244 // Does "C op A" simplify?
245 if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
246 // It simplifies to V. Form "V op B".
247 I.setOperand(0, V);
248 I.setOperand(1, B);
Dan Gohman5195b712011-02-02 02:05:46 +0000249 // Conservatively clear the optional flags, since they may not be
250 // preserved by the reassociation.
251 I.clearSubclassOptionalData();
Duncan Sands096aa792010-11-13 15:10:37 +0000252 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000253 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000254 continue;
255 }
256 }
257
258 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
259 if (Op1 && Op1->getOpcode() == Opcode) {
260 Value *A = I.getOperand(0);
261 Value *B = Op1->getOperand(0);
262 Value *C = Op1->getOperand(1);
263
264 // Does "C op A" simplify?
265 if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
266 // It simplifies to V. Form "B op V".
267 I.setOperand(0, B);
268 I.setOperand(1, V);
Dan Gohman5195b712011-02-02 02:05:46 +0000269 // Conservatively clear the optional flags, since they may not be
270 // preserved by the reassociation.
271 I.clearSubclassOptionalData();
Duncan Sands096aa792010-11-13 15:10:37 +0000272 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000273 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000274 continue;
275 }
276 }
277
278 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
279 // if C1 and C2 are constants.
280 if (Op0 && Op1 &&
281 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
282 isa<Constant>(Op0->getOperand(1)) &&
283 isa<Constant>(Op1->getOperand(1)) &&
284 Op0->hasOneUse() && Op1->hasOneUse()) {
285 Value *A = Op0->getOperand(0);
286 Constant *C1 = cast<Constant>(Op0->getOperand(1));
287 Value *B = Op1->getOperand(0);
288 Constant *C2 = cast<Constant>(Op1->getOperand(1));
289
290 Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000291 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
Eli Friedmana311c342011-05-27 00:19:40 +0000292 InsertNewInstWith(New, I);
Eli Friedmane6f364b2011-05-18 23:58:37 +0000293 New->takeName(Op1);
Duncan Sands096aa792010-11-13 15:10:37 +0000294 I.setOperand(0, New);
295 I.setOperand(1, Folded);
Dan Gohman5195b712011-02-02 02:05:46 +0000296 // Conservatively clear the optional flags, since they may not be
297 // preserved by the reassociation.
Nick Lewycky28b84ff2011-08-14 04:51:49 +0000298 I.clearSubclassOptionalData();
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000299
Duncan Sands096aa792010-11-13 15:10:37 +0000300 Changed = true;
301 continue;
302 }
303 }
304
305 // No further simplifications.
306 return Changed;
307 } while (1);
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000308}
Chris Lattner8a2a3112001-12-14 16:52:21 +0000309
Duncan Sands5057f382010-11-23 14:23:47 +0000310/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
Duncan Sandsc2b1c0b2010-11-23 15:25:34 +0000311/// "(X LOp Y) ROp (X LOp Z)".
Duncan Sands5057f382010-11-23 14:23:47 +0000312static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
313 Instruction::BinaryOps ROp) {
314 switch (LOp) {
315 default:
316 return false;
317
318 case Instruction::And:
319 // And distributes over Or and Xor.
320 switch (ROp) {
321 default:
322 return false;
323 case Instruction::Or:
324 case Instruction::Xor:
325 return true;
326 }
327
328 case Instruction::Mul:
329 // Multiplication distributes over addition and subtraction.
330 switch (ROp) {
331 default:
332 return false;
333 case Instruction::Add:
334 case Instruction::Sub:
335 return true;
336 }
337
338 case Instruction::Or:
339 // Or distributes over And.
340 switch (ROp) {
341 default:
342 return false;
343 case Instruction::And:
344 return true;
345 }
346 }
347}
348
349/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
350/// "(X ROp Z) LOp (Y ROp Z)".
351static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
352 Instruction::BinaryOps ROp) {
353 if (Instruction::isCommutative(ROp))
354 return LeftDistributesOverRight(ROp, LOp);
355 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
356 // but this requires knowing that the addition does not overflow and other
357 // such subtleties.
358 return false;
359}
360
Duncan Sands37bf92b2010-12-22 13:36:08 +0000361/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
362/// which some other binary operation distributes over either by factorizing
363/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
364/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
365/// a win). Returns the simplified value, or null if it didn't simplify.
366Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
367 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
368 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
369 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
370 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
Duncan Sands5057f382010-11-23 14:23:47 +0000371
Duncan Sands37bf92b2010-12-22 13:36:08 +0000372 // Factorization.
373 if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
374 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
375 // a common term.
376 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
377 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
378 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
Duncan Sands5057f382010-11-23 14:23:47 +0000379
Duncan Sands37bf92b2010-12-22 13:36:08 +0000380 // Does "X op' Y" always equal "Y op' X"?
381 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
Duncan Sands5057f382010-11-23 14:23:47 +0000382
Duncan Sands37bf92b2010-12-22 13:36:08 +0000383 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
384 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
385 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
386 // commutative case, "(A op' B) op (C op' A)"?
387 if (A == C || (InnerCommutative && A == D)) {
388 if (A != C)
389 std::swap(C, D);
390 // Consider forming "A op' (B op D)".
391 // If "B op D" simplifies then it can be formed with no cost.
392 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
393 // If "B op D" doesn't simplify then only go on if both of the existing
394 // operations "A op' B" and "C op' D" will be zapped as no longer used.
395 if (!V && Op0->hasOneUse() && Op1->hasOneUse())
396 V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
397 if (V) {
398 ++NumFactor;
399 V = Builder->CreateBinOp(InnerOpcode, A, V);
400 V->takeName(&I);
401 return V;
402 }
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000403 }
Duncan Sands5057f382010-11-23 14:23:47 +0000404
Duncan Sands37bf92b2010-12-22 13:36:08 +0000405 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
406 if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
407 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
408 // commutative case, "(A op' B) op (B op' D)"?
409 if (B == D || (InnerCommutative && B == C)) {
410 if (B != D)
411 std::swap(C, D);
412 // Consider forming "(A op C) op' B".
413 // If "A op C" simplifies then it can be formed with no cost.
414 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
415 // If "A op C" doesn't simplify then only go on if both of the existing
416 // operations "A op' B" and "C op' D" will be zapped as no longer used.
417 if (!V && Op0->hasOneUse() && Op1->hasOneUse())
418 V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
419 if (V) {
420 ++NumFactor;
421 V = Builder->CreateBinOp(InnerOpcode, V, B);
422 V->takeName(&I);
423 return V;
424 }
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000425 }
Duncan Sands37bf92b2010-12-22 13:36:08 +0000426 }
427
428 // Expansion.
429 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
430 // The instruction has the form "(A op' B) op C". See if expanding it out
431 // to "(A op C) op' (B op C)" results in simplifications.
432 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
433 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
434
435 // Do "A op C" and "B op C" both simplify?
436 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
437 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
438 // They do! Return "L op' R".
439 ++NumExpand;
440 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
441 if ((L == A && R == B) ||
442 (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
443 return Op0;
444 // Otherwise return "L op' R" if it simplifies.
445 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
446 return V;
447 // Otherwise, create a new instruction.
448 C = Builder->CreateBinOp(InnerOpcode, L, R);
449 C->takeName(&I);
450 return C;
451 }
452 }
453
454 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
455 // The instruction has the form "A op (B op' C)". See if expanding it out
456 // to "(A op B) op' (A op C)" results in simplifications.
457 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
458 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
459
460 // Do "A op B" and "A op C" both simplify?
461 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
462 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
463 // They do! Return "L op' R".
464 ++NumExpand;
465 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
466 if ((L == B && R == C) ||
467 (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
468 return Op1;
469 // Otherwise return "L op' R" if it simplifies.
470 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
471 return V;
472 // Otherwise, create a new instruction.
473 A = Builder->CreateBinOp(InnerOpcode, L, R);
474 A->takeName(&I);
475 return A;
476 }
477 }
Duncan Sands5057f382010-11-23 14:23:47 +0000478
479 return 0;
480}
481
Chris Lattner8d969642003-03-10 23:06:50 +0000482// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
483// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattnerb35dde12002-05-06 16:49:18 +0000484//
Chris Lattner02446fc2010-01-04 07:37:31 +0000485Value *InstCombiner::dyn_castNegVal(Value *V) const {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000486 if (BinaryOperator::isNeg(V))
Chris Lattnera1df33c2005-04-24 07:30:14 +0000487 return BinaryOperator::getNegArgument(V);
Chris Lattner8d969642003-03-10 23:06:50 +0000488
Chris Lattner0ce85802004-12-14 20:08:06 +0000489 // Constants can be considered to be negated values if they can be folded.
490 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
Owen Andersonbaf3c402009-07-29 18:55:55 +0000491 return ConstantExpr::getNeg(C);
Nick Lewycky18b3da62008-05-23 04:54:45 +0000492
493 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000494 if (C->getType()->getElementType()->isIntegerTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +0000495 return ConstantExpr::getNeg(C);
Nick Lewycky18b3da62008-05-23 04:54:45 +0000496
Chris Lattner8d969642003-03-10 23:06:50 +0000497 return 0;
Chris Lattnerb35dde12002-05-06 16:49:18 +0000498}
499
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000500// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
501// instruction if the LHS is a constant negative zero (which is the 'negate'
502// form).
503//
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000504Value *InstCombiner::dyn_castFNegVal(Value *V) const {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000505 if (BinaryOperator::isFNeg(V))
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000506 return BinaryOperator::getFNegArgument(V);
507
508 // Constants can be considered to be negated values if they can be folded.
509 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
Owen Andersonbaf3c402009-07-29 18:55:55 +0000510 return ConstantExpr::getFNeg(C);
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000511
512 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000513 if (C->getType()->getElementType()->isFloatingPointTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +0000514 return ConstantExpr::getFNeg(C);
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000515
516 return 0;
517}
518
Chris Lattner6e7ba452005-01-01 16:22:27 +0000519static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner2eefe512004-04-09 19:05:30 +0000520 InstCombiner *IC) {
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000521 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Chris Lattner2345d1d2009-08-30 20:01:10 +0000522 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000523 }
Chris Lattner6e7ba452005-01-01 16:22:27 +0000524
Chris Lattner2eefe512004-04-09 19:05:30 +0000525 // Figure out if the constant is the left or the right argument.
Chris Lattner6e7ba452005-01-01 16:22:27 +0000526 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
527 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattner564a7272003-08-13 19:01:45 +0000528
Chris Lattner2eefe512004-04-09 19:05:30 +0000529 if (Constant *SOC = dyn_cast<Constant>(SO)) {
530 if (ConstIsRHS)
Owen Andersonbaf3c402009-07-29 18:55:55 +0000531 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
532 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner2eefe512004-04-09 19:05:30 +0000533 }
534
535 Value *Op0 = SO, *Op1 = ConstOperand;
536 if (!ConstIsRHS)
537 std::swap(Op0, Op1);
Chris Lattner74381062009-08-30 07:44:24 +0000538
Chris Lattner6e7ba452005-01-01 16:22:27 +0000539 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Chris Lattner74381062009-08-30 07:44:24 +0000540 return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
541 SO->getName()+".op");
542 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
543 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
544 SO->getName()+".cmp");
545 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
546 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
547 SO->getName()+".cmp");
548 llvm_unreachable("Unknown binary instruction type!");
Chris Lattner6e7ba452005-01-01 16:22:27 +0000549}
550
551// FoldOpIntoSelect - Given an instruction with a select as one operand and a
552// constant as the other operand, try to fold the binary operator into the
553// select arguments. This also works for Cast instructions, which obviously do
554// not have a second operand.
Chris Lattner80f43d32010-01-04 07:53:58 +0000555Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
Chris Lattner6e7ba452005-01-01 16:22:27 +0000556 // Don't modify shared select instructions
557 if (!SI->hasOneUse()) return 0;
558 Value *TV = SI->getOperand(1);
559 Value *FV = SI->getOperand(2);
560
561 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner956db272005-04-21 05:43:13 +0000562 // Bool selects with constant operands can be folded to logical ops.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000563 if (SI->getType()->isIntegerTy(1)) return 0;
Chris Lattner956db272005-04-21 05:43:13 +0000564
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000565 // If it's a bitcast involving vectors, make sure it has the same number of
566 // elements on both sides.
567 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000568 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
569 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000570
571 // Verify that either both or neither are vectors.
572 if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
573 // If vectors, verify that they have the same number of elements.
574 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
575 return 0;
576 }
577
Chris Lattner80f43d32010-01-04 07:53:58 +0000578 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
579 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
Chris Lattner6e7ba452005-01-01 16:22:27 +0000580
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000581 return SelectInst::Create(SI->getCondition(),
582 SelectTrueVal, SelectFalseVal);
Chris Lattner6e7ba452005-01-01 16:22:27 +0000583 }
584 return 0;
Chris Lattner2eefe512004-04-09 19:05:30 +0000585}
586
Chris Lattner4e998b22004-09-29 05:07:12 +0000587
Chris Lattner5d1704d2009-09-27 19:57:57 +0000588/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
589/// has a PHI node as operand #0, see if we can fold the instruction into the
590/// PHI (which is only possible if all operands to the PHI are constants).
Chris Lattner213cd612009-09-27 20:46:36 +0000591///
Chris Lattner9922ccf2011-01-16 05:14:26 +0000592Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
Chris Lattner4e998b22004-09-29 05:07:12 +0000593 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattnerbac32862004-11-14 19:13:23 +0000594 unsigned NumPHIValues = PN->getNumIncomingValues();
Chris Lattner5aac8322011-01-16 04:37:29 +0000595 if (NumPHIValues == 0)
Chris Lattner213cd612009-09-27 20:46:36 +0000596 return 0;
597
Chris Lattner084fe622011-01-21 05:08:26 +0000598 // We normally only transform phis with a single use. However, if a PHI has
599 // multiple uses and they are all the same operation, we can fold *all* of the
600 // uses into the PHI.
Chris Lattner192228e2011-01-16 05:28:59 +0000601 if (!PN->hasOneUse()) {
602 // Walk the use list for the instruction, comparing them to I.
603 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
Chris Lattnercd151d22011-01-21 05:29:50 +0000604 UI != E; ++UI) {
605 Instruction *User = cast<Instruction>(*UI);
606 if (User != &I && !I.isIdenticalTo(User))
Chris Lattner192228e2011-01-16 05:28:59 +0000607 return 0;
Chris Lattnercd151d22011-01-21 05:29:50 +0000608 }
Chris Lattner192228e2011-01-16 05:28:59 +0000609 // Otherwise, we can replace *all* users with the new PHI we form.
610 }
Chris Lattner213cd612009-09-27 20:46:36 +0000611
Chris Lattner5d1704d2009-09-27 19:57:57 +0000612 // Check to see if all of the operands of the PHI are simple constants
613 // (constantint/constantfp/undef). If there is one non-constant value,
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000614 // remember the BB it is in. If there is more than one or if *it* is a PHI,
615 // bail out. We don't do arbitrary constant expressions here because moving
616 // their computation can be expensive without a cost model.
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000617 BasicBlock *NonConstBB = 0;
Chris Lattner5aac8322011-01-16 04:37:29 +0000618 for (unsigned i = 0; i != NumPHIValues; ++i) {
619 Value *InVal = PN->getIncomingValue(i);
620 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
621 continue;
622
623 if (isa<PHINode>(InVal)) return 0; // Itself a phi.
624 if (NonConstBB) return 0; // More than one non-const value.
625
626 NonConstBB = PN->getIncomingBlock(i);
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000627
628 // If the InVal is an invoke at the end of the pred block, then we can't
629 // insert a computation after it without breaking the edge.
630 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
631 if (II->getParent() == NonConstBB)
632 return 0;
Chris Lattnercd151d22011-01-21 05:29:50 +0000633
634 // If the incoming non-constant value is in I's block, we will remove one
635 // instruction, but insert another equivalent one, leading to infinite
636 // instcombine.
637 if (NonConstBB == I.getParent())
638 return 0;
Chris Lattner5aac8322011-01-16 04:37:29 +0000639 }
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000640
641 // If there is exactly one non-constant value, we can insert a copy of the
642 // operation in that block. However, if this is a critical edge, we would be
643 // inserting the computation one some other paths (e.g. inside a loop). Only
644 // do this if the pred block is unconditionally branching into the phi block.
Chris Lattner9922ccf2011-01-16 05:14:26 +0000645 if (NonConstBB != 0) {
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000646 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
647 if (!BI || !BI->isUnconditional()) return 0;
648 }
Chris Lattner4e998b22004-09-29 05:07:12 +0000649
650 // Okay, we can do the transformation: create the new PHI node.
Eli Friedmane6f364b2011-05-18 23:58:37 +0000651 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
Chris Lattner857eb572009-10-21 23:41:58 +0000652 InsertNewInstBefore(NewPN, *PN);
653 NewPN->takeName(PN);
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000654
655 // If we are going to have to insert a new computation, do so right before the
656 // predecessors terminator.
657 if (NonConstBB)
658 Builder->SetInsertPoint(NonConstBB->getTerminator());
659
Chris Lattner4e998b22004-09-29 05:07:12 +0000660 // Next, add all of the operands to the PHI.
Chris Lattner5d1704d2009-09-27 19:57:57 +0000661 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
662 // We only currently try to fold the condition of a select when it is a phi,
663 // not the true/false values.
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000664 Value *TrueV = SI->getTrueValue();
665 Value *FalseV = SI->getFalseValue();
Chris Lattner3ddfb212009-09-28 06:49:44 +0000666 BasicBlock *PhiTransBB = PN->getParent();
Chris Lattner5d1704d2009-09-27 19:57:57 +0000667 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000668 BasicBlock *ThisBB = PN->getIncomingBlock(i);
Chris Lattner3ddfb212009-09-28 06:49:44 +0000669 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
670 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
Chris Lattner5d1704d2009-09-27 19:57:57 +0000671 Value *InV = 0;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000672 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000673 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000674 else
675 InV = Builder->CreateSelect(PN->getIncomingValue(i),
676 TrueVInPred, FalseVInPred, "phitmp");
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000677 NewPN->addIncoming(InV, ThisBB);
Chris Lattner5d1704d2009-09-27 19:57:57 +0000678 }
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000679 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
680 Constant *C = cast<Constant>(I.getOperand(1));
681 for (unsigned i = 0; i != NumPHIValues; ++i) {
682 Value *InV = 0;
683 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
684 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
685 else if (isa<ICmpInst>(CI))
686 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
687 C, "phitmp");
688 else
689 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
690 C, "phitmp");
691 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
692 }
Chris Lattner5d1704d2009-09-27 19:57:57 +0000693 } else if (I.getNumOperands() == 2) {
Chris Lattner4e998b22004-09-29 05:07:12 +0000694 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattnerbac32862004-11-14 19:13:23 +0000695 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnera9ff5eb2007-08-05 08:47:58 +0000696 Value *InV = 0;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000697 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
698 InV = ConstantExpr::get(I.getOpcode(), InC, C);
699 else
700 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
701 PN->getIncomingValue(i), C, "phitmp");
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000702 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner4e998b22004-09-29 05:07:12 +0000703 }
Reid Spencer3da59db2006-11-27 01:05:10 +0000704 } else {
705 CastInst *CI = cast<CastInst>(&I);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000706 Type *RetTy = CI->getType();
Chris Lattnerbac32862004-11-14 19:13:23 +0000707 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000708 Value *InV;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000709 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
Owen Andersonbaf3c402009-07-29 18:55:55 +0000710 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000711 else
712 InV = Builder->CreateCast(CI->getOpcode(),
713 PN->getIncomingValue(i), I.getType(), "phitmp");
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000714 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner4e998b22004-09-29 05:07:12 +0000715 }
716 }
Chris Lattner192228e2011-01-16 05:28:59 +0000717
718 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
719 UI != E; ) {
720 Instruction *User = cast<Instruction>(*UI++);
721 if (User == &I) continue;
722 ReplaceInstUsesWith(*User, NewPN);
723 EraseInstFromFunction(*User);
724 }
Chris Lattner4e998b22004-09-29 05:07:12 +0000725 return ReplaceInstUsesWith(I, NewPN);
726}
727
Chris Lattner46cd5a12009-01-09 05:44:56 +0000728/// FindElementAtOffset - Given a type and a constant offset, determine whether
729/// or not there is a sequence of GEP indices into the type that will land us at
Chris Lattner3914f722009-01-24 01:00:13 +0000730/// the specified offset. If so, fill them into NewIndices and return the
731/// resultant element type, otherwise return null.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000732Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
Chris Lattner80f43d32010-01-04 07:53:58 +0000733 SmallVectorImpl<Value*> &NewIndices) {
Dan Gohmance9fe9f2009-07-21 23:21:54 +0000734 if (!TD) return 0;
Chris Lattner3914f722009-01-24 01:00:13 +0000735 if (!Ty->isSized()) return 0;
Chris Lattner46cd5a12009-01-09 05:44:56 +0000736
737 // Start with the index over the outer type. Note that the type size
738 // might be zero (even if the offset isn't zero) if the indexed type
739 // is something like [0 x {int, int}]
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000740 Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
Chris Lattner46cd5a12009-01-09 05:44:56 +0000741 int64_t FirstIdx = 0;
Duncan Sands777d2302009-05-09 07:06:46 +0000742 if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
Chris Lattner46cd5a12009-01-09 05:44:56 +0000743 FirstIdx = Offset/TySize;
Chris Lattner31a69cb2009-01-11 20:41:36 +0000744 Offset -= FirstIdx*TySize;
Chris Lattner46cd5a12009-01-09 05:44:56 +0000745
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000746 // Handle hosts where % returns negative instead of values [0..TySize).
Chris Lattner46cd5a12009-01-09 05:44:56 +0000747 if (Offset < 0) {
748 --FirstIdx;
749 Offset += TySize;
750 assert(Offset >= 0);
751 }
752 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
753 }
754
Owen Andersoneed707b2009-07-24 23:12:02 +0000755 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
Chris Lattner46cd5a12009-01-09 05:44:56 +0000756
757 // Index into the types. If we fail, set OrigBase to null.
758 while (Offset) {
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000759 // Indexing into tail padding between struct/array elements.
760 if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
Chris Lattner3914f722009-01-24 01:00:13 +0000761 return 0;
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000762
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000763 if (StructType *STy = dyn_cast<StructType>(Ty)) {
Chris Lattner46cd5a12009-01-09 05:44:56 +0000764 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000765 assert(Offset < (int64_t)SL->getSizeInBytes() &&
766 "Offset must stay within the indexed type");
767
Chris Lattner46cd5a12009-01-09 05:44:56 +0000768 unsigned Elt = SL->getElementContainingOffset(Offset);
Chris Lattner4de84762010-01-04 07:02:48 +0000769 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
770 Elt));
Chris Lattner46cd5a12009-01-09 05:44:56 +0000771
772 Offset -= SL->getElementOffset(Elt);
773 Ty = STy->getElementType(Elt);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000774 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
Duncan Sands777d2302009-05-09 07:06:46 +0000775 uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000776 assert(EltSize && "Cannot index into a zero-sized array");
Owen Andersoneed707b2009-07-24 23:12:02 +0000777 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000778 Offset %= EltSize;
Chris Lattner1c412d92009-01-11 20:23:52 +0000779 Ty = AT->getElementType();
Chris Lattner46cd5a12009-01-09 05:44:56 +0000780 } else {
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000781 // Otherwise, we can't index into the middle of this atomic type, bail.
Chris Lattner3914f722009-01-24 01:00:13 +0000782 return 0;
Chris Lattner46cd5a12009-01-09 05:44:56 +0000783 }
784 }
785
Chris Lattner3914f722009-01-24 01:00:13 +0000786 return Ty;
Chris Lattner46cd5a12009-01-09 05:44:56 +0000787}
788
Rafael Espindola592ad6a2011-07-31 04:43:41 +0000789static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
790 // If this GEP has only 0 indices, it is the same pointer as
791 // Src. If Src is not a trivial GEP too, don't combine
792 // the indices.
793 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
794 !Src.hasOneUse())
795 return false;
796 return true;
797}
Chris Lattner473945d2002-05-06 18:06:38 +0000798
Chris Lattner7e708292002-06-25 16:13:24 +0000799Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattnerc514c1f2009-11-27 00:29:05 +0000800 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
801
Jay Foadb9b54eb2011-07-19 15:07:52 +0000802 if (Value *V = SimplifyGEPInst(Ops, TD))
Chris Lattnerc514c1f2009-11-27 00:29:05 +0000803 return ReplaceInstUsesWith(GEP, V);
804
Chris Lattner620ce142004-05-07 22:09:22 +0000805 Value *PtrOp = GEP.getOperand(0);
Chris Lattnerc6bd1952004-02-22 05:25:17 +0000806
Duncan Sandsa63395a2010-11-22 16:32:50 +0000807 // Eliminate unneeded casts for indices, and replace indices which displace
808 // by multiples of a zero size type with zero.
Chris Lattnerccf4b342009-08-30 04:49:01 +0000809 if (TD) {
810 bool MadeChange = false;
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000811 Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
Duncan Sandsa63395a2010-11-22 16:32:50 +0000812
Chris Lattnerccf4b342009-08-30 04:49:01 +0000813 gep_type_iterator GTI = gep_type_begin(GEP);
814 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
815 I != E; ++I, ++GTI) {
Duncan Sandsa63395a2010-11-22 16:32:50 +0000816 // Skip indices into struct types.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000817 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
Duncan Sandsa63395a2010-11-22 16:32:50 +0000818 if (!SeqTy) continue;
819
820 // If the element type has zero size then any index over it is equivalent
821 // to an index of zero, so replace it with zero if it is not zero already.
822 if (SeqTy->getElementType()->isSized() &&
823 TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
824 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
825 *I = Constant::getNullValue(IntPtrTy);
826 MadeChange = true;
827 }
828
829 if ((*I)->getType() != IntPtrTy) {
830 // If we are using a wider index than needed for this platform, shrink
831 // it to what we need. If narrower, sign-extend it to what we need.
832 // This explicit cast can make subsequent optimizations more obvious.
833 *I = Builder->CreateIntCast(*I, IntPtrTy, true);
834 MadeChange = true;
835 }
Chris Lattner28977af2004-04-05 01:30:19 +0000836 }
Chris Lattnerccf4b342009-08-30 04:49:01 +0000837 if (MadeChange) return &GEP;
Chris Lattnerdb9654e2007-03-25 20:43:09 +0000838 }
Chris Lattner28977af2004-04-05 01:30:19 +0000839
Chris Lattner90ac28c2002-08-02 19:29:35 +0000840 // Combine Indices - If the source pointer to this getelementptr instruction
841 // is a getelementptr instruction, combine the indices of the two
842 // getelementptr instructions into a single instruction.
843 //
Dan Gohmand6aa02d2009-07-28 01:40:03 +0000844 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
Rafael Espindola592ad6a2011-07-31 04:43:41 +0000845 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
Rafael Espindolab5a12dd2011-07-11 03:43:47 +0000846 return 0;
847
Chris Lattner620ce142004-05-07 22:09:22 +0000848 // Note that if our source is a gep chain itself that we wait for that
849 // chain to be resolved before we perform this transformation. This
850 // avoids us creating a TON of code in some cases.
Rafael Espindola592ad6a2011-07-31 04:43:41 +0000851 if (GEPOperator *SrcGEP =
852 dyn_cast<GEPOperator>(Src->getOperand(0)))
853 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
Chris Lattnerf9b91bb2009-08-30 05:08:50 +0000854 return 0; // Wait until our source is folded to completion.
Chris Lattner620ce142004-05-07 22:09:22 +0000855
Chris Lattner72588fc2007-02-15 22:48:32 +0000856 SmallVector<Value*, 8> Indices;
Chris Lattner620ce142004-05-07 22:09:22 +0000857
858 // Find out whether the last index in the source GEP is a sequential idx.
859 bool EndsWithSequential = false;
Chris Lattnerab984842009-08-30 05:30:55 +0000860 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
861 I != E; ++I)
Duncan Sands1df98592010-02-16 11:11:14 +0000862 EndsWithSequential = !(*I)->isStructTy();
Misha Brukmanfd939082005-04-21 23:48:37 +0000863
Chris Lattner90ac28c2002-08-02 19:29:35 +0000864 // Can we combine the two pointer arithmetics offsets?
Chris Lattner620ce142004-05-07 22:09:22 +0000865 if (EndsWithSequential) {
Chris Lattnerdecd0812003-03-05 22:33:14 +0000866 // Replace: gep (gep %P, long B), long A, ...
867 // With: T = long A+B; gep %P, T, ...
868 //
Chris Lattnerf9b91bb2009-08-30 05:08:50 +0000869 Value *Sum;
870 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
871 Value *GO1 = GEP.getOperand(1);
Owen Andersona7235ea2009-07-31 20:28:14 +0000872 if (SO1 == Constant::getNullValue(SO1->getType())) {
Chris Lattner28977af2004-04-05 01:30:19 +0000873 Sum = GO1;
Owen Andersona7235ea2009-07-31 20:28:14 +0000874 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
Chris Lattner28977af2004-04-05 01:30:19 +0000875 Sum = SO1;
876 } else {
Chris Lattnerab984842009-08-30 05:30:55 +0000877 // If they aren't the same type, then the input hasn't been processed
878 // by the loop above yet (which canonicalizes sequential index types to
879 // intptr_t). Just avoid transforming this until the input has been
880 // normalized.
881 if (SO1->getType() != GO1->getType())
882 return 0;
Chris Lattnerf925cbd2009-08-30 18:50:58 +0000883 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Chris Lattner28977af2004-04-05 01:30:19 +0000884 }
Chris Lattner620ce142004-05-07 22:09:22 +0000885
Chris Lattnerab984842009-08-30 05:30:55 +0000886 // Update the GEP in place if possible.
Chris Lattnerf9b91bb2009-08-30 05:08:50 +0000887 if (Src->getNumOperands() == 2) {
888 GEP.setOperand(0, Src->getOperand(0));
Chris Lattner620ce142004-05-07 22:09:22 +0000889 GEP.setOperand(1, Sum);
890 return &GEP;
Chris Lattner620ce142004-05-07 22:09:22 +0000891 }
Chris Lattnerab984842009-08-30 05:30:55 +0000892 Indices.append(Src->op_begin()+1, Src->op_end()-1);
Chris Lattnerccf4b342009-08-30 04:49:01 +0000893 Indices.push_back(Sum);
Chris Lattnerab984842009-08-30 05:30:55 +0000894 Indices.append(GEP.op_begin()+2, GEP.op_end());
Misha Brukmanfd939082005-04-21 23:48:37 +0000895 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner28977af2004-04-05 01:30:19 +0000896 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Chris Lattnerf9b91bb2009-08-30 05:08:50 +0000897 Src->getNumOperands() != 1) {
Chris Lattner90ac28c2002-08-02 19:29:35 +0000898 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattnerab984842009-08-30 05:30:55 +0000899 Indices.append(Src->op_begin()+1, Src->op_end());
900 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
Chris Lattner90ac28c2002-08-02 19:29:35 +0000901 }
902
Dan Gohmanf8dbee72009-09-07 23:54:19 +0000903 if (!Indices.empty())
Chris Lattner948cdeb2010-01-05 07:42:10 +0000904 return (GEP.isInBounds() && Src->isInBounds()) ?
Jay Foada9203102011-07-25 09:48:08 +0000905 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
906 GEP.getName()) :
907 GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
Chris Lattner6e24d832009-08-30 05:00:50 +0000908 }
Nadav Rotem0286ca82011-04-05 14:29:52 +0000909
Chris Lattnerf9b91bb2009-08-30 05:08:50 +0000910 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
Chris Lattner948cdeb2010-01-05 07:42:10 +0000911 Value *StrippedPtr = PtrOp->stripPointerCasts();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000912 PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
Nadav Rotem0286ca82011-04-05 14:29:52 +0000913 if (StrippedPtr != PtrOp &&
914 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
Chris Lattner963f4ba2009-08-30 20:36:46 +0000915
Chris Lattnerc514c1f2009-11-27 00:29:05 +0000916 bool HasZeroPointerIndex = false;
917 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
918 HasZeroPointerIndex = C->isZero();
Nadav Rotem0286ca82011-04-05 14:29:52 +0000919
Chris Lattner963f4ba2009-08-30 20:36:46 +0000920 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
921 // into : GEP [10 x i8]* X, i32 0, ...
922 //
923 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
924 // into : GEP i8* X, ...
Nadav Rotem0286ca82011-04-05 14:29:52 +0000925 //
Chris Lattner963f4ba2009-08-30 20:36:46 +0000926 // This occurs when the program declares an array extern like "int X[];"
Chris Lattner6e24d832009-08-30 05:00:50 +0000927 if (HasZeroPointerIndex) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000928 PointerType *CPTy = cast<PointerType>(PtrOp->getType());
929 if (ArrayType *CATy =
Duncan Sands5b7cfb02009-03-02 09:18:21 +0000930 dyn_cast<ArrayType>(CPTy->getElementType())) {
931 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
Chris Lattner948cdeb2010-01-05 07:42:10 +0000932 if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
Duncan Sands5b7cfb02009-03-02 09:18:21 +0000933 // -> GEP i8* X, ...
Chris Lattner948cdeb2010-01-05 07:42:10 +0000934 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
935 GetElementPtrInst *Res =
Jay Foada9203102011-07-25 09:48:08 +0000936 GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
Chris Lattner948cdeb2010-01-05 07:42:10 +0000937 Res->setIsInBounds(GEP.isInBounds());
938 return Res;
Chris Lattner963f4ba2009-08-30 20:36:46 +0000939 }
940
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000941 if (ArrayType *XATy =
Chris Lattner948cdeb2010-01-05 07:42:10 +0000942 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
Duncan Sands5b7cfb02009-03-02 09:18:21 +0000943 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
Chris Lattnereed48272005-09-13 00:40:14 +0000944 if (CATy->getElementType() == XATy->getElementType()) {
Duncan Sands5b7cfb02009-03-02 09:18:21 +0000945 // -> GEP [10 x i8]* X, i32 0, ...
Chris Lattnereed48272005-09-13 00:40:14 +0000946 // At this point, we know that the cast source type is a pointer
947 // to an array of the same type as the destination pointer
948 // array. Because the array type is never stepped over (there
949 // is a leading zero) we can fold the cast into this GEP.
Chris Lattner948cdeb2010-01-05 07:42:10 +0000950 GEP.setOperand(0, StrippedPtr);
Chris Lattnereed48272005-09-13 00:40:14 +0000951 return &GEP;
952 }
Duncan Sands5b7cfb02009-03-02 09:18:21 +0000953 }
954 }
Chris Lattnereed48272005-09-13 00:40:14 +0000955 } else if (GEP.getNumOperands() == 2) {
956 // Transform things like:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +0000957 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
958 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000959 Type *SrcElTy = StrippedPtrTy->getElementType();
960 Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
Duncan Sands1df98592010-02-16 11:11:14 +0000961 if (TD && SrcElTy->isArrayTy() &&
Duncan Sands777d2302009-05-09 07:06:46 +0000962 TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
963 TD->getTypeAllocSize(ResElTy)) {
David Greeneb8f74792007-09-04 15:46:09 +0000964 Value *Idx[2];
Chris Lattner4de84762010-01-04 07:02:48 +0000965 Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
David Greeneb8f74792007-09-04 15:46:09 +0000966 Idx[1] = GEP.getOperand(1);
Chris Lattner948cdeb2010-01-05 07:42:10 +0000967 Value *NewGEP = GEP.isInBounds() ?
Jay Foad0a2a60a2011-07-22 08:16:57 +0000968 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
969 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
Reid Spencer3da59db2006-11-27 01:05:10 +0000970 // V and GEP are both pointer types --> BitCast
Chris Lattnerf925cbd2009-08-30 18:50:58 +0000971 return new BitCastInst(NewGEP, GEP.getType());
Chris Lattnerc6bd1952004-02-22 05:25:17 +0000972 }
Chris Lattner7835cdd2005-09-13 18:36:04 +0000973
974 // Transform things like:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +0000975 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Chris Lattner7835cdd2005-09-13 18:36:04 +0000976 // (where tmp = 8*tmp2) into:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +0000977 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Chris Lattner7835cdd2005-09-13 18:36:04 +0000978
Duncan Sands1df98592010-02-16 11:11:14 +0000979 if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
Chris Lattner7835cdd2005-09-13 18:36:04 +0000980 uint64_t ArrayEltSize =
Duncan Sands777d2302009-05-09 07:06:46 +0000981 TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
Chris Lattner7835cdd2005-09-13 18:36:04 +0000982
983 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
984 // allow either a mul, shift, or constant here.
985 Value *NewIdx = 0;
986 ConstantInt *Scale = 0;
987 if (ArrayEltSize == 1) {
988 NewIdx = GEP.getOperand(1);
Chris Lattnerab984842009-08-30 05:30:55 +0000989 Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
Chris Lattner7835cdd2005-09-13 18:36:04 +0000990 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000991 NewIdx = ConstantInt::get(CI->getType(), 1);
Chris Lattner7835cdd2005-09-13 18:36:04 +0000992 Scale = CI;
993 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
994 if (Inst->getOpcode() == Instruction::Shl &&
995 isa<ConstantInt>(Inst->getOperand(1))) {
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +0000996 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
997 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
Owen Andersoneed707b2009-07-24 23:12:02 +0000998 Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
Dan Gohman6de29f82009-06-15 22:12:54 +0000999 1ULL << ShAmtVal);
Chris Lattner7835cdd2005-09-13 18:36:04 +00001000 NewIdx = Inst->getOperand(0);
1001 } else if (Inst->getOpcode() == Instruction::Mul &&
1002 isa<ConstantInt>(Inst->getOperand(1))) {
1003 Scale = cast<ConstantInt>(Inst->getOperand(1));
1004 NewIdx = Inst->getOperand(0);
1005 }
1006 }
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00001007
Chris Lattner7835cdd2005-09-13 18:36:04 +00001008 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00001009 // out, perform the transformation. Note, we don't know whether Scale is
1010 // signed or not. We'll use unsigned version of division/modulo
1011 // operation after making sure Scale doesn't have the sign bit set.
Chris Lattner58b1ac72009-02-25 18:20:01 +00001012 if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00001013 Scale->getZExtValue() % ArrayEltSize == 0) {
Owen Andersoneed707b2009-07-24 23:12:02 +00001014 Scale = ConstantInt::get(Scale->getType(),
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00001015 Scale->getZExtValue() / ArrayEltSize);
Reid Spencerb83eb642006-10-20 07:07:24 +00001016 if (Scale->getZExtValue() != 1) {
Chris Lattner878daed2009-08-30 05:56:44 +00001017 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
1018 false /*ZExt*/);
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001019 NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
Chris Lattner7835cdd2005-09-13 18:36:04 +00001020 }
1021
1022 // Insert the new GEP instruction.
David Greeneb8f74792007-09-04 15:46:09 +00001023 Value *Idx[2];
Chris Lattner4de84762010-01-04 07:02:48 +00001024 Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
David Greeneb8f74792007-09-04 15:46:09 +00001025 Idx[1] = NewIdx;
Chris Lattner948cdeb2010-01-05 07:42:10 +00001026 Value *NewGEP = GEP.isInBounds() ?
Jay Foad0a2a60a2011-07-22 08:16:57 +00001027 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()):
1028 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
Reid Spencer3da59db2006-11-27 01:05:10 +00001029 // The NewGEP must be pointer typed, so must the old one -> BitCast
1030 return new BitCastInst(NewGEP, GEP.getType());
Chris Lattner7835cdd2005-09-13 18:36:04 +00001031 }
1032 }
Chris Lattnerc6bd1952004-02-22 05:25:17 +00001033 }
Chris Lattner8a2a3112001-12-14 16:52:21 +00001034 }
Nadav Rotem0286ca82011-04-05 14:29:52 +00001035
Chris Lattner46cd5a12009-01-09 05:44:56 +00001036 /// See if we can simplify:
Chris Lattner873ff012009-08-30 05:55:36 +00001037 /// X = bitcast A* to B*
Chris Lattner46cd5a12009-01-09 05:44:56 +00001038 /// Y = gep X, <...constant indices...>
1039 /// into a gep of the original struct. This is important for SROA and alias
1040 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
Chris Lattner58407792009-01-09 04:53:57 +00001041 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
Dan Gohmance9fe9f2009-07-21 23:21:54 +00001042 if (TD &&
Nadav Rotem0286ca82011-04-05 14:29:52 +00001043 !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
1044 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1045
Chris Lattner46cd5a12009-01-09 05:44:56 +00001046 // Determine how much the GEP moves the pointer. We are guaranteed to get
1047 // a constant back from EmitGEPOffset.
Chris Lattner02446fc2010-01-04 07:37:31 +00001048 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
Chris Lattner46cd5a12009-01-09 05:44:56 +00001049 int64_t Offset = OffsetV->getSExtValue();
Nadav Rotem0286ca82011-04-05 14:29:52 +00001050
Chris Lattner46cd5a12009-01-09 05:44:56 +00001051 // If this GEP instruction doesn't move the pointer, just replace the GEP
1052 // with a bitcast of the real input to the dest type.
1053 if (Offset == 0) {
1054 // If the bitcast is of an allocation, and the allocation will be
1055 // converted to match the type of the cast, don't touch this.
Victor Hernandez7b929da2009-10-23 21:09:37 +00001056 if (isa<AllocaInst>(BCI->getOperand(0)) ||
Victor Hernandez83d63912009-09-18 22:35:49 +00001057 isMalloc(BCI->getOperand(0))) {
Chris Lattner46cd5a12009-01-09 05:44:56 +00001058 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1059 if (Instruction *I = visitBitCast(*BCI)) {
1060 if (I != BCI) {
1061 I->takeName(BCI);
1062 BCI->getParent()->getInstList().insert(BCI, I);
1063 ReplaceInstUsesWith(*BCI, I);
1064 }
1065 return &GEP;
Chris Lattner58407792009-01-09 04:53:57 +00001066 }
Chris Lattner58407792009-01-09 04:53:57 +00001067 }
Chris Lattner46cd5a12009-01-09 05:44:56 +00001068 return new BitCastInst(BCI->getOperand(0), GEP.getType());
Chris Lattner58407792009-01-09 04:53:57 +00001069 }
Chris Lattner46cd5a12009-01-09 05:44:56 +00001070
1071 // Otherwise, if the offset is non-zero, we need to find out if there is a
1072 // field at Offset in 'A's type. If so, we can pull the cast through the
1073 // GEP.
1074 SmallVector<Value*, 8> NewIndices;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001075 Type *InTy =
Chris Lattner46cd5a12009-01-09 05:44:56 +00001076 cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
Chris Lattner80f43d32010-01-04 07:53:58 +00001077 if (FindElementAtOffset(InTy, Offset, NewIndices)) {
Chris Lattner948cdeb2010-01-05 07:42:10 +00001078 Value *NGEP = GEP.isInBounds() ?
Jay Foad0a2a60a2011-07-22 08:16:57 +00001079 Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
1080 Builder->CreateGEP(BCI->getOperand(0), NewIndices);
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001081
1082 if (NGEP->getType() == GEP.getType())
1083 return ReplaceInstUsesWith(GEP, NGEP);
Chris Lattner46cd5a12009-01-09 05:44:56 +00001084 NGEP->takeName(&GEP);
1085 return new BitCastInst(NGEP, GEP.getType());
1086 }
Chris Lattner58407792009-01-09 04:53:57 +00001087 }
1088 }
1089
Chris Lattner8a2a3112001-12-14 16:52:21 +00001090 return 0;
1091}
1092
Duncan Sands1d9b9732010-05-27 19:09:06 +00001093
1094
Nick Lewyckydbd22552011-08-03 01:11:40 +00001095static bool IsOnlyNullComparedAndFreed(Value *V, SmallVectorImpl<WeakVH> &Users,
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001096 int Depth = 0) {
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001097 if (Depth == 8)
1098 return false;
1099
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001100 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
Duncan Sands1d9b9732010-05-27 19:09:06 +00001101 UI != UE; ++UI) {
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001102 User *U = *UI;
1103 if (isFreeCall(U)) {
1104 Users.push_back(U);
Duncan Sands1d9b9732010-05-27 19:09:06 +00001105 continue;
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001106 }
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001107 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
1108 if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1))) {
1109 Users.push_back(ICI);
1110 continue;
1111 }
1112 }
1113 if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1114 if (IsOnlyNullComparedAndFreed(BCI, Users, Depth+1)) {
1115 Users.push_back(BCI);
1116 continue;
1117 }
1118 }
1119 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
Nick Lewyckydbd22552011-08-03 01:11:40 +00001120 if (IsOnlyNullComparedAndFreed(GEPI, Users, Depth+1)) {
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001121 Users.push_back(GEPI);
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001122 continue;
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001123 }
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001124 }
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001125 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001126 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001127 II->getIntrinsicID() == Intrinsic::lifetime_end) {
1128 Users.push_back(II);
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001129 continue;
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001130 }
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001131 }
Duncan Sands1d9b9732010-05-27 19:09:06 +00001132 return false;
1133 }
1134 return true;
1135}
1136
1137Instruction *InstCombiner::visitMalloc(Instruction &MI) {
1138 // If we have a malloc call which is only used in any amount of comparisons
1139 // to null and free calls, delete the calls and replace the comparisons with
1140 // true or false as appropriate.
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001141 SmallVector<WeakVH, 64> Users;
1142 if (IsOnlyNullComparedAndFreed(&MI, Users)) {
1143 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1144 Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1145 if (!I) continue;
Duncan Sands1d9b9732010-05-27 19:09:06 +00001146
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001147 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001148 ReplaceInstUsesWith(*C,
1149 ConstantInt::get(Type::getInt1Ty(C->getContext()),
1150 C->isFalseWhenEqual()));
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001151 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001152 ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
Duncan Sands1d9b9732010-05-27 19:09:06 +00001153 }
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001154 EraseInstFromFunction(*I);
Duncan Sands1d9b9732010-05-27 19:09:06 +00001155 }
1156 return EraseInstFromFunction(MI);
1157 }
1158 return 0;
1159}
1160
1161
1162
Gabor Greif91697372010-06-24 12:21:15 +00001163Instruction *InstCombiner::visitFree(CallInst &FI) {
1164 Value *Op = FI.getArgOperand(0);
Victor Hernandez66284e02009-10-24 04:23:03 +00001165
1166 // free undef -> unreachable.
1167 if (isa<UndefValue>(Op)) {
1168 // Insert a new store to null because we cannot modify the CFG here.
Eli Friedmane6f364b2011-05-18 23:58:37 +00001169 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1170 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
Victor Hernandez66284e02009-10-24 04:23:03 +00001171 return EraseInstFromFunction(FI);
1172 }
1173
1174 // If we have 'free null' delete the instruction. This can happen in stl code
1175 // when lots of inlining happens.
1176 if (isa<ConstantPointerNull>(Op))
1177 return EraseInstFromFunction(FI);
1178
Victor Hernandez66284e02009-10-24 04:23:03 +00001179 return 0;
1180}
Chris Lattner67b1e1b2003-12-07 01:24:23 +00001181
Chris Lattner3284d1f2007-04-15 00:07:55 +00001182
Chris Lattner2f503e62005-01-31 05:36:43 +00001183
Chris Lattnerc4d10eb2003-06-04 04:46:00 +00001184Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1185 // Change br (not X), label True, label False to: br X, label False, True
Reid Spencer4b828e62005-06-18 17:37:34 +00001186 Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001187 BasicBlock *TrueDest;
1188 BasicBlock *FalseDest;
Dan Gohman4ae51262009-08-12 16:23:25 +00001189 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001190 !isa<Constant>(X)) {
1191 // Swap Destinations and condition...
1192 BI.setCondition(X);
Chandler Carruth602650c2011-10-17 01:11:57 +00001193 BI.swapSuccessors();
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001194 return &BI;
1195 }
1196
Reid Spencere4d87aa2006-12-23 06:05:41 +00001197 // Cannonicalize fcmp_one -> fcmp_oeq
1198 FCmpInst::Predicate FPred; Value *Y;
1199 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
Chris Lattner7a1e9242009-08-30 06:13:40 +00001200 TrueDest, FalseDest)) &&
1201 BI.getCondition()->hasOneUse())
1202 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1203 FPred == FCmpInst::FCMP_OGE) {
1204 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1205 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1206
1207 // Swap Destinations and condition.
Chandler Carruth602650c2011-10-17 01:11:57 +00001208 BI.swapSuccessors();
Chris Lattner7a1e9242009-08-30 06:13:40 +00001209 Worklist.Add(Cond);
Reid Spencere4d87aa2006-12-23 06:05:41 +00001210 return &BI;
1211 }
1212
1213 // Cannonicalize icmp_ne -> icmp_eq
1214 ICmpInst::Predicate IPred;
1215 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
Chris Lattner7a1e9242009-08-30 06:13:40 +00001216 TrueDest, FalseDest)) &&
1217 BI.getCondition()->hasOneUse())
1218 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
1219 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1220 IPred == ICmpInst::ICMP_SGE) {
1221 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1222 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1223 // Swap Destinations and condition.
Chandler Carruth602650c2011-10-17 01:11:57 +00001224 BI.swapSuccessors();
Chris Lattner7a1e9242009-08-30 06:13:40 +00001225 Worklist.Add(Cond);
Chris Lattner40f5d702003-06-04 05:10:11 +00001226 return &BI;
1227 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001228
Chris Lattnerc4d10eb2003-06-04 04:46:00 +00001229 return 0;
1230}
Chris Lattner0864acf2002-11-04 16:18:53 +00001231
Chris Lattner46238a62004-07-03 00:26:11 +00001232Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1233 Value *Cond = SI.getCondition();
1234 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1235 if (I->getOpcode() == Instruction::Add)
1236 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1237 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
Eli Friedmanbb5a7442011-09-29 20:21:17 +00001238 unsigned NumCases = SI.getNumCases();
1239 // Skip the first item since that's the default case.
1240 for (unsigned i = 1; i < NumCases; ++i) {
1241 ConstantInt* CaseVal = SI.getCaseValue(i);
1242 Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1243 AddRHS);
1244 assert(isa<ConstantInt>(NewCaseVal) &&
1245 "Result of expression should be constant");
1246 SI.setSuccessorValue(i, cast<ConstantInt>(NewCaseVal));
1247 }
1248 SI.setCondition(I->getOperand(0));
Chris Lattner7a1e9242009-08-30 06:13:40 +00001249 Worklist.Add(I);
Chris Lattner46238a62004-07-03 00:26:11 +00001250 return &SI;
1251 }
1252 }
1253 return 0;
1254}
1255
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +00001256Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001257 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +00001258
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001259 if (!EV.hasIndices())
1260 return ReplaceInstUsesWith(EV, Agg);
1261
1262 if (Constant *C = dyn_cast<Constant>(Agg)) {
1263 if (isa<UndefValue>(C))
Owen Anderson9e9a0d52009-07-30 23:03:37 +00001264 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001265
1266 if (isa<ConstantAggregateZero>(C))
Owen Andersona7235ea2009-07-31 20:28:14 +00001267 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001268
1269 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
1270 // Extract the element indexed by the first index out of the constant
1271 Value *V = C->getOperand(*EV.idx_begin());
1272 if (EV.getNumIndices() > 1)
1273 // Extract the remaining indices out of the constant indexed by the
1274 // first index
Jay Foadfc6d3a42011-07-13 10:26:04 +00001275 return ExtractValueInst::Create(V, EV.getIndices().slice(1));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001276 else
1277 return ReplaceInstUsesWith(EV, V);
1278 }
1279 return 0; // Can't handle other constants
1280 }
1281 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1282 // We're extracting from an insertvalue instruction, compare the indices
1283 const unsigned *exti, *exte, *insi, *inse;
1284 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1285 exte = EV.idx_end(), inse = IV->idx_end();
1286 exti != exte && insi != inse;
1287 ++exti, ++insi) {
1288 if (*insi != *exti)
1289 // The insert and extract both reference distinctly different elements.
1290 // This means the extract is not influenced by the insert, and we can
1291 // replace the aggregate operand of the extract with the aggregate
1292 // operand of the insert. i.e., replace
1293 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1294 // %E = extractvalue { i32, { i32 } } %I, 0
1295 // with
1296 // %E = extractvalue { i32, { i32 } } %A, 0
1297 return ExtractValueInst::Create(IV->getAggregateOperand(),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001298 EV.getIndices());
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001299 }
1300 if (exti == exte && insi == inse)
1301 // Both iterators are at the end: Index lists are identical. Replace
1302 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1303 // %C = extractvalue { i32, { i32 } } %B, 1, 0
1304 // with "i32 42"
1305 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1306 if (exti == exte) {
1307 // The extract list is a prefix of the insert list. i.e. replace
1308 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1309 // %E = extractvalue { i32, { i32 } } %I, 1
1310 // with
1311 // %X = extractvalue { i32, { i32 } } %A, 1
1312 // %E = insertvalue { i32 } %X, i32 42, 0
1313 // by switching the order of the insert and extract (though the
1314 // insertvalue should be left in, since it may have other uses).
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001315 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001316 EV.getIndices());
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001317 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001318 makeArrayRef(insi, inse));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001319 }
1320 if (insi == inse)
1321 // The insert list is a prefix of the extract list
1322 // We can simply remove the common indices from the extract and make it
1323 // operate on the inserted value instead of the insertvalue result.
1324 // i.e., replace
1325 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1326 // %E = extractvalue { i32, { i32 } } %I, 1, 0
1327 // with
1328 // %E extractvalue { i32 } { i32 42 }, 0
1329 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001330 makeArrayRef(exti, exte));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001331 }
Chris Lattner7e606e22009-11-09 07:07:56 +00001332 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1333 // We're extracting from an intrinsic, see if we're the only user, which
1334 // allows us to simplify multiple result intrinsics to simpler things that
Gabor Greif91697372010-06-24 12:21:15 +00001335 // just get one value.
Chris Lattner7e606e22009-11-09 07:07:56 +00001336 if (II->hasOneUse()) {
1337 // Check if we're grabbing the overflow bit or the result of a 'with
1338 // overflow' intrinsic. If it's the latter we can remove the intrinsic
1339 // and replace it with a traditional binary instruction.
1340 switch (II->getIntrinsicID()) {
1341 case Intrinsic::uadd_with_overflow:
1342 case Intrinsic::sadd_with_overflow:
1343 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif91697372010-06-24 12:21:15 +00001344 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedman3e22cb92011-05-18 00:32:01 +00001345 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner7e606e22009-11-09 07:07:56 +00001346 EraseInstFromFunction(*II);
1347 return BinaryOperator::CreateAdd(LHS, RHS);
1348 }
Chris Lattner74b64612010-12-19 19:43:52 +00001349
1350 // If the normal result of the add is dead, and the RHS is a constant,
1351 // we can transform this into a range comparison.
1352 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
Chris Lattnerf2a97ed2010-12-19 23:24:04 +00001353 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1354 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1355 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1356 ConstantExpr::getNot(CI));
Chris Lattner7e606e22009-11-09 07:07:56 +00001357 break;
1358 case Intrinsic::usub_with_overflow:
1359 case Intrinsic::ssub_with_overflow:
1360 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif91697372010-06-24 12:21:15 +00001361 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedman3e22cb92011-05-18 00:32:01 +00001362 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner7e606e22009-11-09 07:07:56 +00001363 EraseInstFromFunction(*II);
1364 return BinaryOperator::CreateSub(LHS, RHS);
1365 }
1366 break;
1367 case Intrinsic::umul_with_overflow:
1368 case Intrinsic::smul_with_overflow:
1369 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif91697372010-06-24 12:21:15 +00001370 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedman3e22cb92011-05-18 00:32:01 +00001371 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner7e606e22009-11-09 07:07:56 +00001372 EraseInstFromFunction(*II);
1373 return BinaryOperator::CreateMul(LHS, RHS);
1374 }
1375 break;
1376 default:
1377 break;
1378 }
1379 }
1380 }
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001381 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1382 // If the (non-volatile) load only has one use, we can rewrite this to a
1383 // load from a GEP. This reduces the size of the load.
1384 // FIXME: If a load is used only by extractvalue instructions then this
1385 // could be done regardless of having multiple uses.
Eli Friedmancc4a0432011-08-15 22:09:40 +00001386 if (L->isSimple() && L->hasOneUse()) {
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001387 // extractvalue has integer indices, getelementptr has Value*s. Convert.
1388 SmallVector<Value*, 4> Indices;
1389 // Prefix an i32 0 since we need the first element.
1390 Indices.push_back(Builder->getInt32(0));
1391 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1392 I != E; ++I)
1393 Indices.push_back(Builder->getInt32(*I));
1394
1395 // We need to insert these at the location of the old load, not at that of
1396 // the extractvalue.
1397 Builder->SetInsertPoint(L->getParent(), L);
Jay Foad0a2a60a2011-07-22 08:16:57 +00001398 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001399 // Returning the load directly will cause the main loop to insert it in
1400 // the wrong spot, so use ReplaceInstUsesWith().
1401 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1402 }
1403 // We could simplify extracts from other values. Note that nested extracts may
1404 // already be simplified implicitly by the above: extract (extract (insert) )
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001405 // will be translated into extract ( insert ( extract ) ) first and then just
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001406 // the value inserted, if appropriate. Similarly for extracts from single-use
1407 // loads: extract (extract (load)) will be translated to extract (load (gep))
1408 // and if again single-use then via load (gep (gep)) to load (gep).
1409 // However, double extracts from e.g. function arguments or return values
1410 // aren't handled yet.
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +00001411 return 0;
1412}
1413
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001414enum Personality_Type {
1415 Unknown_Personality,
1416 GNU_Ada_Personality,
Bill Wendling76f267d2011-10-17 21:20:24 +00001417 GNU_CXX_Personality,
1418 GNU_ObjC_Personality
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001419};
1420
1421/// RecognizePersonality - See if the given exception handling personality
1422/// function is one that we understand. If so, return a description of it;
1423/// otherwise return Unknown_Personality.
1424static Personality_Type RecognizePersonality(Value *Pers) {
1425 Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1426 if (!F)
1427 return Unknown_Personality;
1428 return StringSwitch<Personality_Type>(F->getName())
1429 .Case("__gnat_eh_personality", GNU_Ada_Personality)
Bill Wendling76f267d2011-10-17 21:20:24 +00001430 .Case("__gxx_personality_v0", GNU_CXX_Personality)
1431 .Case("__objc_personality_v0", GNU_ObjC_Personality)
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001432 .Default(Unknown_Personality);
1433}
1434
1435/// isCatchAll - Return 'true' if the given typeinfo will match anything.
1436static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1437 switch (Personality) {
1438 case Unknown_Personality:
1439 return false;
1440 case GNU_Ada_Personality:
1441 // While __gnat_all_others_value will match any Ada exception, it doesn't
1442 // match foreign exceptions (or didn't, before gcc-4.7).
1443 return false;
1444 case GNU_CXX_Personality:
Bill Wendling76f267d2011-10-17 21:20:24 +00001445 case GNU_ObjC_Personality:
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001446 return TypeInfo->isNullValue();
1447 }
1448 llvm_unreachable("Unknown personality!");
1449}
1450
1451static bool shorter_filter(const Value *LHS, const Value *RHS) {
1452 return
1453 cast<ArrayType>(LHS->getType())->getNumElements()
1454 <
1455 cast<ArrayType>(RHS->getType())->getNumElements();
1456}
1457
1458Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
1459 // The logic here should be correct for any real-world personality function.
1460 // However if that turns out not to be true, the offending logic can always
1461 // be conditioned on the personality function, like the catch-all logic is.
1462 Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
1463
1464 // Simplify the list of clauses, eg by removing repeated catch clauses
1465 // (these are often created by inlining).
1466 bool MakeNewInstruction = false; // If true, recreate using the following:
1467 SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1468 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
1469
1470 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1471 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1472 bool isLastClause = i + 1 == e;
1473 if (LI.isCatch(i)) {
1474 // A catch clause.
1475 Value *CatchClause = LI.getClause(i);
1476 Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1477
1478 // If we already saw this clause, there is no point in having a second
1479 // copy of it.
1480 if (AlreadyCaught.insert(TypeInfo)) {
1481 // This catch clause was not already seen.
1482 NewClauses.push_back(CatchClause);
1483 } else {
1484 // Repeated catch clause - drop the redundant copy.
1485 MakeNewInstruction = true;
1486 }
1487
1488 // If this is a catch-all then there is no point in keeping any following
1489 // clauses or marking the landingpad as having a cleanup.
1490 if (isCatchAll(Personality, TypeInfo)) {
1491 if (!isLastClause)
1492 MakeNewInstruction = true;
1493 CleanupFlag = false;
1494 break;
1495 }
1496 } else {
1497 // A filter clause. If any of the filter elements were already caught
1498 // then they can be dropped from the filter. It is tempting to try to
1499 // exploit the filter further by saying that any typeinfo that does not
1500 // occur in the filter can't be caught later (and thus can be dropped).
1501 // However this would be wrong, since typeinfos can match without being
1502 // equal (for example if one represents a C++ class, and the other some
1503 // class derived from it).
1504 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1505 Value *FilterClause = LI.getClause(i);
1506 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1507 unsigned NumTypeInfos = FilterType->getNumElements();
1508
1509 // An empty filter catches everything, so there is no point in keeping any
1510 // following clauses or marking the landingpad as having a cleanup. By
1511 // dealing with this case here the following code is made a bit simpler.
1512 if (!NumTypeInfos) {
1513 NewClauses.push_back(FilterClause);
1514 if (!isLastClause)
1515 MakeNewInstruction = true;
1516 CleanupFlag = false;
1517 break;
1518 }
1519
1520 bool MakeNewFilter = false; // If true, make a new filter.
1521 SmallVector<Constant *, 16> NewFilterElts; // New elements.
1522 if (isa<ConstantAggregateZero>(FilterClause)) {
1523 // Not an empty filter - it contains at least one null typeinfo.
1524 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1525 Constant *TypeInfo =
1526 Constant::getNullValue(FilterType->getElementType());
1527 // If this typeinfo is a catch-all then the filter can never match.
1528 if (isCatchAll(Personality, TypeInfo)) {
1529 // Throw the filter away.
1530 MakeNewInstruction = true;
1531 continue;
1532 }
1533
1534 // There is no point in having multiple copies of this typeinfo, so
1535 // discard all but the first copy if there is more than one.
1536 NewFilterElts.push_back(TypeInfo);
1537 if (NumTypeInfos > 1)
1538 MakeNewFilter = true;
1539 } else {
1540 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1541 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1542 NewFilterElts.reserve(NumTypeInfos);
1543
1544 // Remove any filter elements that were already caught or that already
1545 // occurred in the filter. While there, see if any of the elements are
1546 // catch-alls. If so, the filter can be discarded.
1547 bool SawCatchAll = false;
1548 for (unsigned j = 0; j != NumTypeInfos; ++j) {
1549 Value *Elt = Filter->getOperand(j);
1550 Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1551 if (isCatchAll(Personality, TypeInfo)) {
1552 // This element is a catch-all. Bail out, noting this fact.
1553 SawCatchAll = true;
1554 break;
1555 }
1556 if (AlreadyCaught.count(TypeInfo))
1557 // Already caught by an earlier clause, so having it in the filter
1558 // is pointless.
1559 continue;
1560 // There is no point in having multiple copies of the same typeinfo in
1561 // a filter, so only add it if we didn't already.
1562 if (SeenInFilter.insert(TypeInfo))
1563 NewFilterElts.push_back(cast<Constant>(Elt));
1564 }
1565 // A filter containing a catch-all cannot match anything by definition.
1566 if (SawCatchAll) {
1567 // Throw the filter away.
1568 MakeNewInstruction = true;
1569 continue;
1570 }
1571
1572 // If we dropped something from the filter, make a new one.
1573 if (NewFilterElts.size() < NumTypeInfos)
1574 MakeNewFilter = true;
1575 }
1576 if (MakeNewFilter) {
1577 FilterType = ArrayType::get(FilterType->getElementType(),
1578 NewFilterElts.size());
1579 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
1580 MakeNewInstruction = true;
1581 }
1582
1583 NewClauses.push_back(FilterClause);
1584
1585 // If the new filter is empty then it will catch everything so there is
1586 // no point in keeping any following clauses or marking the landingpad
1587 // as having a cleanup. The case of the original filter being empty was
1588 // already handled above.
1589 if (MakeNewFilter && !NewFilterElts.size()) {
1590 assert(MakeNewInstruction && "New filter but not a new instruction!");
1591 CleanupFlag = false;
1592 break;
1593 }
1594 }
1595 }
1596
1597 // If several filters occur in a row then reorder them so that the shortest
1598 // filters come first (those with the smallest number of elements). This is
1599 // advantageous because shorter filters are more likely to match, speeding up
1600 // unwinding, but mostly because it increases the effectiveness of the other
1601 // filter optimizations below.
1602 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
1603 unsigned j;
1604 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
1605 for (j = i; j != e; ++j)
1606 if (!isa<ArrayType>(NewClauses[j]->getType()))
1607 break;
1608
1609 // Check whether the filters are already sorted by length. We need to know
1610 // if sorting them is actually going to do anything so that we only make a
1611 // new landingpad instruction if it does.
1612 for (unsigned k = i; k + 1 < j; ++k)
1613 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
1614 // Not sorted, so sort the filters now. Doing an unstable sort would be
1615 // correct too but reordering filters pointlessly might confuse users.
1616 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
1617 shorter_filter);
1618 MakeNewInstruction = true;
1619 break;
1620 }
1621
1622 // Look for the next batch of filters.
1623 i = j + 1;
1624 }
1625
1626 // If typeinfos matched if and only if equal, then the elements of a filter L
1627 // that occurs later than a filter F could be replaced by the intersection of
1628 // the elements of F and L. In reality two typeinfos can match without being
1629 // equal (for example if one represents a C++ class, and the other some class
1630 // derived from it) so it would be wrong to perform this transform in general.
1631 // However the transform is correct and useful if F is a subset of L. In that
1632 // case L can be replaced by F, and thus removed altogether since repeating a
1633 // filter is pointless. So here we look at all pairs of filters F and L where
1634 // L follows F in the list of clauses, and remove L if every element of F is
1635 // an element of L. This can occur when inlining C++ functions with exception
1636 // specifications.
1637 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
1638 // Examine each filter in turn.
1639 Value *Filter = NewClauses[i];
1640 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
1641 if (!FTy)
1642 // Not a filter - skip it.
1643 continue;
1644 unsigned FElts = FTy->getNumElements();
1645 // Examine each filter following this one. Doing this backwards means that
1646 // we don't have to worry about filters disappearing under us when removed.
1647 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
1648 Value *LFilter = NewClauses[j];
1649 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
1650 if (!LTy)
1651 // Not a filter - skip it.
1652 continue;
1653 // If Filter is a subset of LFilter, i.e. every element of Filter is also
1654 // an element of LFilter, then discard LFilter.
1655 SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j;
1656 // If Filter is empty then it is a subset of LFilter.
1657 if (!FElts) {
1658 // Discard LFilter.
1659 NewClauses.erase(J);
1660 MakeNewInstruction = true;
1661 // Move on to the next filter.
1662 continue;
1663 }
1664 unsigned LElts = LTy->getNumElements();
1665 // If Filter is longer than LFilter then it cannot be a subset of it.
1666 if (FElts > LElts)
1667 // Move on to the next filter.
1668 continue;
1669 // At this point we know that LFilter has at least one element.
1670 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
1671 // Filter is a subset of LFilter iff Filter contains only zeros (as we
1672 // already know that Filter is not longer than LFilter).
1673 if (isa<ConstantAggregateZero>(Filter)) {
1674 assert(FElts <= LElts && "Should have handled this case earlier!");
1675 // Discard LFilter.
1676 NewClauses.erase(J);
1677 MakeNewInstruction = true;
1678 }
1679 // Move on to the next filter.
1680 continue;
1681 }
1682 ConstantArray *LArray = cast<ConstantArray>(LFilter);
1683 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
1684 // Since Filter is non-empty and contains only zeros, it is a subset of
1685 // LFilter iff LFilter contains a zero.
1686 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
1687 for (unsigned l = 0; l != LElts; ++l)
1688 if (LArray->getOperand(l)->isNullValue()) {
1689 // LFilter contains a zero - discard it.
1690 NewClauses.erase(J);
1691 MakeNewInstruction = true;
1692 break;
1693 }
1694 // Move on to the next filter.
1695 continue;
1696 }
1697 // At this point we know that both filters are ConstantArrays. Loop over
1698 // operands to see whether every element of Filter is also an element of
1699 // LFilter. Since filters tend to be short this is probably faster than
1700 // using a method that scales nicely.
1701 ConstantArray *FArray = cast<ConstantArray>(Filter);
1702 bool AllFound = true;
1703 for (unsigned f = 0; f != FElts; ++f) {
1704 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
1705 AllFound = false;
1706 for (unsigned l = 0; l != LElts; ++l) {
1707 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
1708 if (LTypeInfo == FTypeInfo) {
1709 AllFound = true;
1710 break;
1711 }
1712 }
1713 if (!AllFound)
1714 break;
1715 }
1716 if (AllFound) {
1717 // Discard LFilter.
1718 NewClauses.erase(J);
1719 MakeNewInstruction = true;
1720 }
1721 // Move on to the next filter.
1722 }
1723 }
1724
1725 // If we changed any of the clauses, replace the old landingpad instruction
1726 // with a new one.
1727 if (MakeNewInstruction) {
1728 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
1729 LI.getPersonalityFn(),
1730 NewClauses.size());
1731 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
1732 NLI->addClause(NewClauses[i]);
1733 // A landing pad with no clauses must have the cleanup flag set. It is
1734 // theoretically possible, though highly unlikely, that we eliminated all
1735 // clauses. If so, force the cleanup flag to true.
1736 if (NewClauses.empty())
1737 CleanupFlag = true;
1738 NLI->setCleanup(CleanupFlag);
1739 return NLI;
1740 }
1741
1742 // Even if none of the clauses changed, we may nonetheless have understood
1743 // that the cleanup flag is pointless. Clear it if so.
1744 if (LI.isCleanup() != CleanupFlag) {
1745 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
1746 LI.setCleanup(CleanupFlag);
1747 return &LI;
1748 }
1749
1750 return 0;
1751}
1752
Chris Lattnera844fc4c2006-04-10 22:45:52 +00001753
Robert Bocchino1d7456d2006-01-13 22:48:06 +00001754
Chris Lattnerea1c4542004-12-08 23:43:58 +00001755
1756/// TryToSinkInstruction - Try to move the specified instruction from its
1757/// current block into the beginning of DestBlock, which can only happen if it's
1758/// safe to move the instruction past all of the instructions between it and the
1759/// end of its block.
1760static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
1761 assert(I->hasOneUse() && "Invariants didn't hold!");
1762
Bill Wendling9d6070f2011-08-15 21:14:31 +00001763 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Bill Wendlingc9b2a982011-08-17 20:36:44 +00001764 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
1765 isa<TerminatorInst>(I))
Chris Lattnerbfc538c2008-05-09 15:07:33 +00001766 return false;
Misha Brukmanfd939082005-04-21 23:48:37 +00001767
Chris Lattnerea1c4542004-12-08 23:43:58 +00001768 // Do not sink alloca instructions out of the entry block.
Dan Gohmanecb7a772007-03-22 16:38:57 +00001769 if (isa<AllocaInst>(I) && I->getParent() ==
1770 &DestBlock->getParent()->getEntryBlock())
Chris Lattnerea1c4542004-12-08 23:43:58 +00001771 return false;
1772
Chris Lattner96a52a62004-12-09 07:14:34 +00001773 // We can only sink load instructions if there is nothing between the load and
1774 // the end of block that could change the value.
Chris Lattner2539e332008-05-08 17:37:37 +00001775 if (I->mayReadFromMemory()) {
1776 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Chris Lattner96a52a62004-12-09 07:14:34 +00001777 Scan != E; ++Scan)
1778 if (Scan->mayWriteToMemory())
1779 return false;
Chris Lattner96a52a62004-12-09 07:14:34 +00001780 }
Chris Lattnerea1c4542004-12-08 23:43:58 +00001781
Bill Wendling5b6f42f2011-08-16 20:45:24 +00001782 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
Chris Lattner4bc5f802005-08-08 19:11:57 +00001783 I->moveBefore(InsertPos);
Chris Lattnerea1c4542004-12-08 23:43:58 +00001784 ++NumSunkInst;
1785 return true;
1786}
1787
Chris Lattnerf4f5a772006-05-10 19:00:36 +00001788
1789/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
1790/// all reachable code to the worklist.
1791///
1792/// This has a couple of tricks to make the code faster and more powerful. In
1793/// particular, we constant fold and DCE instructions as we go, to avoid adding
1794/// them to the worklist (this significantly speeds up instcombine on code where
1795/// many instructions are dead or constant). Additionally, if we find a branch
1796/// whose condition is a known constant, we only visit the reachable successors.
1797///
Chris Lattner2ee743b2009-10-15 04:59:28 +00001798static bool AddReachableCodeToWorklist(BasicBlock *BB,
Chris Lattner1f87a582007-02-15 19:41:52 +00001799 SmallPtrSet<BasicBlock*, 64> &Visited,
Chris Lattnerdbab3862007-03-02 21:28:56 +00001800 InstCombiner &IC,
Chris Lattner8c8c66a2006-05-11 17:11:52 +00001801 const TargetData *TD) {
Chris Lattner2ee743b2009-10-15 04:59:28 +00001802 bool MadeIRChange = false;
Chris Lattner2806dff2008-08-15 04:03:01 +00001803 SmallVector<BasicBlock*, 256> Worklist;
Chris Lattner2c7718a2007-03-23 19:17:18 +00001804 Worklist.push_back(BB);
Chris Lattnerf4f5a772006-05-10 19:00:36 +00001805
Benjamin Kramera53fe602010-10-23 17:10:24 +00001806 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
Eli Friedmana4d4aeb2011-05-24 18:52:07 +00001807 DenseMap<ConstantExpr*, Constant*> FoldedConstants;
1808
Dan Gohman321a8132010-01-05 16:27:25 +00001809 do {
1810 BB = Worklist.pop_back_val();
Chris Lattner2c7718a2007-03-23 19:17:18 +00001811
1812 // We have now visited this block! If we've already been here, ignore it.
1813 if (!Visited.insert(BB)) continue;
Devang Patel7fe1dec2008-11-19 18:56:50 +00001814
Chris Lattner2c7718a2007-03-23 19:17:18 +00001815 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
1816 Instruction *Inst = BBI++;
Chris Lattnerf4f5a772006-05-10 19:00:36 +00001817
Chris Lattner2c7718a2007-03-23 19:17:18 +00001818 // DCE instruction if trivially dead.
1819 if (isInstructionTriviallyDead(Inst)) {
1820 ++NumDeadInst;
Chris Lattnerbdff5482009-08-23 04:37:46 +00001821 DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
Chris Lattner2c7718a2007-03-23 19:17:18 +00001822 Inst->eraseFromParent();
1823 continue;
1824 }
1825
1826 // ConstantProp instruction if trivially constant.
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00001827 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
Chris Lattner7b550cc2009-11-06 04:27:31 +00001828 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00001829 DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
1830 << *Inst << '\n');
1831 Inst->replaceAllUsesWith(C);
1832 ++NumConstProp;
1833 Inst->eraseFromParent();
1834 continue;
1835 }
Chris Lattner2ee743b2009-10-15 04:59:28 +00001836
Chris Lattner2ee743b2009-10-15 04:59:28 +00001837 if (TD) {
1838 // See if we can constant fold its operands.
1839 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
1840 i != e; ++i) {
1841 ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
1842 if (CE == 0) continue;
Eli Friedmana4d4aeb2011-05-24 18:52:07 +00001843
1844 Constant*& FoldRes = FoldedConstants[CE];
1845 if (!FoldRes)
1846 FoldRes = ConstantFoldConstantExpression(CE, TD);
1847 if (!FoldRes)
1848 FoldRes = CE;
1849
1850 if (FoldRes != CE) {
1851 *i = FoldRes;
Chris Lattner2ee743b2009-10-15 04:59:28 +00001852 MadeIRChange = true;
1853 }
1854 }
1855 }
Devang Patel7fe1dec2008-11-19 18:56:50 +00001856
Chris Lattner67f7d542009-10-12 03:58:40 +00001857 InstrsForInstCombineWorklist.push_back(Inst);
Chris Lattnerf4f5a772006-05-10 19:00:36 +00001858 }
Chris Lattner2c7718a2007-03-23 19:17:18 +00001859
1860 // Recursively visit successors. If this is a branch or switch on a
1861 // constant, only visit the reachable successor.
1862 TerminatorInst *TI = BB->getTerminator();
1863 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1864 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
1865 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewycky91436992008-03-09 08:50:23 +00001866 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewycky280a6e62008-04-25 16:53:59 +00001867 Worklist.push_back(ReachableBB);
Chris Lattner2c7718a2007-03-23 19:17:18 +00001868 continue;
1869 }
1870 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1871 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
1872 // See if this is an explicit destination.
1873 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
1874 if (SI->getCaseValue(i) == Cond) {
Nick Lewycky91436992008-03-09 08:50:23 +00001875 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewycky280a6e62008-04-25 16:53:59 +00001876 Worklist.push_back(ReachableBB);
Chris Lattner2c7718a2007-03-23 19:17:18 +00001877 continue;
1878 }
1879
1880 // Otherwise it is the default destination.
1881 Worklist.push_back(SI->getSuccessor(0));
1882 continue;
1883 }
1884 }
1885
1886 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1887 Worklist.push_back(TI->getSuccessor(i));
Dan Gohman321a8132010-01-05 16:27:25 +00001888 } while (!Worklist.empty());
Chris Lattner67f7d542009-10-12 03:58:40 +00001889
1890 // Once we've found all of the instructions to add to instcombine's worklist,
1891 // add them in reverse order. This way instcombine will visit from the top
1892 // of the function down. This jives well with the way that it adds all uses
1893 // of instructions to the worklist after doing a transformation, thus avoiding
1894 // some N^2 behavior in pathological cases.
1895 IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
1896 InstrsForInstCombineWorklist.size());
Chris Lattner2ee743b2009-10-15 04:59:28 +00001897
1898 return MadeIRChange;
Chris Lattnerf4f5a772006-05-10 19:00:36 +00001899}
1900
Chris Lattnerec9c3582007-03-03 02:04:50 +00001901bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
Chris Lattnerb0b822c2009-08-31 06:57:37 +00001902 MadeIRChange = false;
Chris Lattnerec9c3582007-03-03 02:04:50 +00001903
Daniel Dunbarce63ffb2009-07-25 00:23:56 +00001904 DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
1905 << F.getNameStr() << "\n");
Chris Lattner8a2a3112001-12-14 16:52:21 +00001906
Chris Lattnerb3d59702005-07-07 20:40:38 +00001907 {
Chris Lattnerf4f5a772006-05-10 19:00:36 +00001908 // Do a depth-first traversal of the function, populate the worklist with
1909 // the reachable instructions. Ignore blocks that are not reachable. Keep
1910 // track of which blocks we visit.
Chris Lattner1f87a582007-02-15 19:41:52 +00001911 SmallPtrSet<BasicBlock*, 64> Visited;
Chris Lattner2ee743b2009-10-15 04:59:28 +00001912 MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
Jeff Cohen00b168892005-07-27 06:12:32 +00001913
Chris Lattnerb3d59702005-07-07 20:40:38 +00001914 // Do a quick scan over the function. If we find any blocks that are
1915 // unreachable, remove any instructions inside of them. This prevents
1916 // the instcombine code from having to deal with some bad special cases.
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00001917 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1918 if (Visited.count(BB)) continue;
1919
Bill Wendlinga2684682011-09-04 09:43:36 +00001920 // Delete the instructions backwards, as it has a reduced likelihood of
1921 // having to update as many def-use and use-def chains.
1922 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1923 while (EndInst != BB->begin()) {
1924 // Delete the next to last instruction.
1925 BasicBlock::iterator I = EndInst;
1926 Instruction *Inst = --I;
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00001927 if (!Inst->use_empty())
1928 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
Bill Wendlinga2684682011-09-04 09:43:36 +00001929 if (isa<LandingPadInst>(Inst)) {
1930 EndInst = Inst;
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00001931 continue;
Bill Wendlinga2684682011-09-04 09:43:36 +00001932 }
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00001933 if (!isa<DbgInfoIntrinsic>(Inst)) {
1934 ++NumDeadInst;
1935 MadeIRChange = true;
Chris Lattnerb3d59702005-07-07 20:40:38 +00001936 }
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00001937 Inst->eraseFromParent();
Chris Lattnerb3d59702005-07-07 20:40:38 +00001938 }
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00001939 }
Chris Lattnerb3d59702005-07-07 20:40:38 +00001940 }
Chris Lattner8a2a3112001-12-14 16:52:21 +00001941
Chris Lattner873ff012009-08-30 05:55:36 +00001942 while (!Worklist.isEmpty()) {
1943 Instruction *I = Worklist.RemoveOne();
Chris Lattnerdbab3862007-03-02 21:28:56 +00001944 if (I == 0) continue; // skip null values.
Chris Lattner8a2a3112001-12-14 16:52:21 +00001945
Chris Lattner8c8c66a2006-05-11 17:11:52 +00001946 // Check to see if we can DCE the instruction.
Chris Lattner62b14df2002-09-02 04:59:56 +00001947 if (isInstructionTriviallyDead(I)) {
Chris Lattnerbdff5482009-08-23 04:37:46 +00001948 DEBUG(errs() << "IC: DCE: " << *I << '\n');
Chris Lattner7a1e9242009-08-30 06:13:40 +00001949 EraseInstFromFunction(*I);
1950 ++NumDeadInst;
Chris Lattnerb0b822c2009-08-31 06:57:37 +00001951 MadeIRChange = true;
Chris Lattner4bb7c022003-10-06 17:11:01 +00001952 continue;
1953 }
Chris Lattner62b14df2002-09-02 04:59:56 +00001954
Chris Lattner8c8c66a2006-05-11 17:11:52 +00001955 // Instruction isn't dead, see if we can constant propagate it.
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00001956 if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
Chris Lattner7b550cc2009-11-06 04:27:31 +00001957 if (Constant *C = ConstantFoldInstruction(I, TD)) {
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00001958 DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
Chris Lattnerad5fec12005-01-28 19:32:01 +00001959
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00001960 // Add operands to the worklist.
1961 ReplaceInstUsesWith(*I, C);
1962 ++NumConstProp;
1963 EraseInstFromFunction(*I);
1964 MadeIRChange = true;
1965 continue;
1966 }
Chris Lattner4bb7c022003-10-06 17:11:01 +00001967
Chris Lattnerea1c4542004-12-08 23:43:58 +00001968 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohmanfc74abf2008-07-23 00:34:11 +00001969 if (I->hasOneUse()) {
Chris Lattnerea1c4542004-12-08 23:43:58 +00001970 BasicBlock *BB = I->getParent();
Chris Lattner8db2cd12009-10-14 15:21:58 +00001971 Instruction *UserInst = cast<Instruction>(I->use_back());
1972 BasicBlock *UserParent;
1973
1974 // Get the block the use occurs in.
1975 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
1976 UserParent = PN->getIncomingBlock(I->use_begin().getUse());
1977 else
1978 UserParent = UserInst->getParent();
1979
Chris Lattnerea1c4542004-12-08 23:43:58 +00001980 if (UserParent != BB) {
1981 bool UserIsSuccessor = false;
1982 // See if the user is one of our successors.
1983 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1984 if (*SI == UserParent) {
1985 UserIsSuccessor = true;
1986 break;
1987 }
1988
1989 // If the user is one of our immediate successors, and if that successor
1990 // only has us as a predecessors (we'd have to split the critical edge
1991 // otherwise), we can keep going.
Chris Lattner8db2cd12009-10-14 15:21:58 +00001992 if (UserIsSuccessor && UserParent->getSinglePredecessor())
Chris Lattnerea1c4542004-12-08 23:43:58 +00001993 // Okay, the CFG is simple enough, try to sink this instruction.
Chris Lattnerb0b822c2009-08-31 06:57:37 +00001994 MadeIRChange |= TryToSinkInstruction(I, UserParent);
Chris Lattnerea1c4542004-12-08 23:43:58 +00001995 }
1996 }
1997
Chris Lattner74381062009-08-30 07:44:24 +00001998 // Now that we have an instruction, try combining it to simplify it.
1999 Builder->SetInsertPoint(I->getParent(), I);
Eli Friedmanef819d02011-05-18 01:28:27 +00002000 Builder->SetCurrentDebugLocation(I->getDebugLoc());
Chris Lattner74381062009-08-30 07:44:24 +00002001
Reid Spencera9b81012007-03-26 17:44:01 +00002002#ifndef NDEBUG
2003 std::string OrigI;
2004#endif
Chris Lattnerbdff5482009-08-23 04:37:46 +00002005 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
Jeffrey Yasskin43069632009-10-08 00:12:24 +00002006 DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
2007
Chris Lattner90ac28c2002-08-02 19:29:35 +00002008 if (Instruction *Result = visit(*I)) {
Chris Lattner3dec1f22002-05-10 15:38:35 +00002009 ++NumCombined;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002010 // Should we replace the old instruction with a new one?
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +00002011 if (Result != I) {
Jim Grosbache2999b42011-10-05 20:44:29 +00002012 DEBUG(errs() << "IC: Old = " << *I << '\n'
2013 << " New = " << *Result << '\n');
2014
Eli Friedmana311c342011-05-27 00:19:40 +00002015 if (!I->getDebugLoc().isUnknown())
2016 Result->setDebugLoc(I->getDebugLoc());
Chris Lattnerf523d062004-06-09 05:08:07 +00002017 // Everything uses the new instruction now.
2018 I->replaceAllUsesWith(Result);
2019
Jim Grosbach35d9da32011-10-05 20:53:43 +00002020 // Move the name to the new instruction first.
2021 Result->takeName(I);
2022
Jim Grosbache2999b42011-10-05 20:44:29 +00002023 // Push the new instruction and any users onto the worklist.
2024 Worklist.Add(Result);
2025 Worklist.AddUsersToWorkList(*Result);
2026
Chris Lattner4bb7c022003-10-06 17:11:01 +00002027 // Insert the new instruction into the basic block...
2028 BasicBlock *InstParent = I->getParent();
Chris Lattnerbac32862004-11-14 19:13:23 +00002029 BasicBlock::iterator InsertPos = I;
2030
2031 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
2032 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
2033 ++InsertPos;
2034
2035 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattner4bb7c022003-10-06 17:11:01 +00002036
Chris Lattner7a1e9242009-08-30 06:13:40 +00002037 EraseInstFromFunction(*I);
Chris Lattner7e708292002-06-25 16:13:24 +00002038 } else {
Evan Chengc7baf682007-03-27 16:44:48 +00002039#ifndef NDEBUG
Chris Lattnerbdff5482009-08-23 04:37:46 +00002040 DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
2041 << " New = " << *I << '\n');
Evan Chengc7baf682007-03-27 16:44:48 +00002042#endif
Chris Lattner0cea42a2004-03-13 23:54:27 +00002043
Chris Lattner90ac28c2002-08-02 19:29:35 +00002044 // If the instruction was modified, it's possible that it is now dead.
2045 // if so, remove it.
Chris Lattner00d51312004-05-01 23:27:23 +00002046 if (isInstructionTriviallyDead(I)) {
Chris Lattner7a1e9242009-08-30 06:13:40 +00002047 EraseInstFromFunction(*I);
Chris Lattnerf523d062004-06-09 05:08:07 +00002048 } else {
Chris Lattner7a1e9242009-08-30 06:13:40 +00002049 Worklist.Add(I);
Chris Lattnere5ecdb52009-08-30 06:22:51 +00002050 Worklist.AddUsersToWorkList(*I);
Chris Lattner90ac28c2002-08-02 19:29:35 +00002051 }
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +00002052 }
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002053 MadeIRChange = true;
Chris Lattner8a2a3112001-12-14 16:52:21 +00002054 }
2055 }
2056
Chris Lattner873ff012009-08-30 05:55:36 +00002057 Worklist.Zap();
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002058 return MadeIRChange;
Chris Lattnerbd0ef772002-02-26 21:46:54 +00002059}
2060
Chris Lattnerec9c3582007-03-03 02:04:50 +00002061
2062bool InstCombiner::runOnFunction(Function &F) {
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002063 TD = getAnalysisIfAvailable<TargetData>();
2064
Chris Lattner74381062009-08-30 07:44:24 +00002065
2066 /// Builder - This is an IRBuilder that automatically inserts new
2067 /// instructions into the worklist when they are created.
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002068 IRBuilder<true, TargetFolder, InstCombineIRInserter>
Chris Lattnerf55eeb92009-11-06 05:59:53 +00002069 TheBuilder(F.getContext(), TargetFolder(TD),
Chris Lattner74381062009-08-30 07:44:24 +00002070 InstCombineIRInserter(Worklist));
2071 Builder = &TheBuilder;
2072
Chris Lattnerec9c3582007-03-03 02:04:50 +00002073 bool EverMadeChange = false;
2074
Devang Patel813c9a02011-03-17 22:18:16 +00002075 // Lower dbg.declare intrinsics otherwise their value may be clobbered
2076 // by instcombiner.
2077 EverMadeChange = LowerDbgDeclare(F);
2078
Chris Lattnerec9c3582007-03-03 02:04:50 +00002079 // Iterate while there is work to do.
2080 unsigned Iteration = 0;
Bill Wendlinga6c31122008-05-14 22:45:20 +00002081 while (DoOneIteration(F, Iteration++))
Chris Lattnerec9c3582007-03-03 02:04:50 +00002082 EverMadeChange = true;
Chris Lattner74381062009-08-30 07:44:24 +00002083
2084 Builder = 0;
Chris Lattnerec9c3582007-03-03 02:04:50 +00002085 return EverMadeChange;
2086}
2087
Brian Gaeke96d4bf72004-07-27 17:43:21 +00002088FunctionPass *llvm::createInstructionCombiningPass() {
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002089 return new InstCombiner();
Chris Lattnerbd0ef772002-02-26 21:46:54 +00002090}