blob: 14274296de7da2bebf3a69d6370dcf64203a639b [file] [log] [blame]
Dan Gohman2d1be872009-04-16 03:18:22 +00001//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
Nate Begemaneaa13852004-10-18 21:08:22 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
Nate Begemaneaa13852004-10-18 21:08:22 +00008//===----------------------------------------------------------------------===//
9//
Dan Gohmancec8f9d2009-05-19 20:37:36 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
Nate Begemaneaa13852004-10-18 21:08:22 +000014// This pass performs a strength reduction on array references inside loops that
Dan Gohmancec8f9d2009-05-19 20:37:36 +000015// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
Nate Begemaneaa13852004-10-18 21:08:22 +000019//
Dan Gohman572645c2010-02-12 10:34:29 +000020// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24// %i = phi [ 0, %entry ], [ %i.next, %latch ]
25// ...
26// %i.next = add %i, 1
27// %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41// instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44// smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47// multiple base registers, or as the increment expression in an addrec),
48// we may not actually need both reg and (-1 * reg) in registers; the
49// negation can be implemented by using a sub instead of an add. The
50// lack of support for taking this into consideration when making
51// register pressure decisions is partly worked around by the "Special"
52// use kind.
53//
Nate Begemaneaa13852004-10-18 21:08:22 +000054//===----------------------------------------------------------------------===//
55
Chris Lattnerbe3e5212005-08-03 23:30:08 +000056#define DEBUG_TYPE "loop-reduce"
Nate Begemaneaa13852004-10-18 21:08:22 +000057#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
Dan Gohmane5b01be2007-05-04 14:59:09 +000060#include "llvm/IntrinsicInst.h"
Jeff Cohen2f3c9b72005-03-04 04:04:26 +000061#include "llvm/DerivedTypes.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000062#include "llvm/Analysis/IVUsers.h"
Dan Gohman572645c2010-02-12 10:34:29 +000063#include "llvm/Analysis/Dominators.h"
Devang Patel0f54dcb2007-03-06 21:14:09 +000064#include "llvm/Analysis/LoopPass.h"
Nate Begeman16997482005-07-30 00:15:07 +000065#include "llvm/Analysis/ScalarEvolutionExpander.h"
Chris Lattnere0391be2005-08-12 22:06:11 +000066#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Nate Begemaneaa13852004-10-18 21:08:22 +000067#include "llvm/Transforms/Utils/Local.h"
Dan Gohman572645c2010-02-12 10:34:29 +000068#include "llvm/ADT/SmallBitVector.h"
69#include "llvm/ADT/SetVector.h"
70#include "llvm/ADT/DenseSet.h"
Nate Begeman16997482005-07-30 00:15:07 +000071#include "llvm/Support/Debug.h"
Dan Gohmanafc36a92009-05-02 18:29:22 +000072#include "llvm/Support/ValueHandle.h"
Daniel Dunbar460f6562009-07-26 09:48:23 +000073#include "llvm/Support/raw_ostream.h"
Evan Chengd277f2c2006-03-13 23:14:23 +000074#include "llvm/Target/TargetLowering.h"
Jeff Cohencfb1d422005-07-30 18:22:27 +000075#include <algorithm>
Nate Begemaneaa13852004-10-18 21:08:22 +000076using namespace llvm;
77
Dan Gohman572645c2010-02-12 10:34:29 +000078namespace {
Nate Begemaneaa13852004-10-18 21:08:22 +000079
Dan Gohman572645c2010-02-12 10:34:29 +000080/// RegSortData - This class holds data which is used to order reuse candidates.
81class RegSortData {
82public:
83 /// UsedByIndices - This represents the set of LSRUse indices which reference
84 /// a particular register.
85 SmallBitVector UsedByIndices;
86
87 RegSortData() {}
88
89 void print(raw_ostream &OS) const;
90 void dump() const;
91};
92
93}
94
95void RegSortData::print(raw_ostream &OS) const {
96 OS << "[NumUses=" << UsedByIndices.count() << ']';
97}
98
99void RegSortData::dump() const {
100 print(errs()); errs() << '\n';
101}
Dan Gohmanc17e0cf2009-02-20 04:17:46 +0000102
Chris Lattner0e5f4992006-12-19 21:40:18 +0000103namespace {
Dale Johannesendc42f482007-03-20 00:47:50 +0000104
Dan Gohman572645c2010-02-12 10:34:29 +0000105/// RegUseTracker - Map register candidates to information about how they are
106/// used.
107class RegUseTracker {
108 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
Dale Johannesendc42f482007-03-20 00:47:50 +0000109
Dan Gohman572645c2010-02-12 10:34:29 +0000110 RegUsesTy RegUses;
111 SmallVector<const SCEV *, 16> RegSequence;
Evan Chengd1d6b5c2006-03-16 21:53:05 +0000112
Dan Gohman572645c2010-02-12 10:34:29 +0000113public:
114 void CountRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000115
Dan Gohman572645c2010-02-12 10:34:29 +0000116 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000117
Dan Gohman572645c2010-02-12 10:34:29 +0000118 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000119
Dan Gohman572645c2010-02-12 10:34:29 +0000120 void clear();
Dan Gohmana10756e2010-01-21 02:09:26 +0000121
Dan Gohman572645c2010-02-12 10:34:29 +0000122 typedef SmallVectorImpl<const SCEV *>::iterator iterator;
123 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
124 iterator begin() { return RegSequence.begin(); }
125 iterator end() { return RegSequence.end(); }
126 const_iterator begin() const { return RegSequence.begin(); }
127 const_iterator end() const { return RegSequence.end(); }
128};
Dan Gohmana10756e2010-01-21 02:09:26 +0000129
Dan Gohmana10756e2010-01-21 02:09:26 +0000130}
131
Dan Gohman572645c2010-02-12 10:34:29 +0000132void
133RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
134 std::pair<RegUsesTy::iterator, bool> Pair =
135 RegUses.insert(std::make_pair(Reg, RegSortData()));
136 RegSortData &RSD = Pair.first->second;
137 if (Pair.second)
138 RegSequence.push_back(Reg);
139 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
140 RSD.UsedByIndices.set(LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000141}
142
Dan Gohman572645c2010-02-12 10:34:29 +0000143bool
144RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
145 if (!RegUses.count(Reg)) return false;
146 const SmallBitVector &UsedByIndices =
147 RegUses.find(Reg)->second.UsedByIndices;
148 int i = UsedByIndices.find_first();
149 if (i == -1) return false;
150 if ((size_t)i != LUIdx) return true;
151 return UsedByIndices.find_next(i) != -1;
152}
Dan Gohmana10756e2010-01-21 02:09:26 +0000153
Dan Gohman572645c2010-02-12 10:34:29 +0000154const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
155 RegUsesTy::const_iterator I = RegUses.find(Reg);
156 assert(I != RegUses.end() && "Unknown register!");
157 return I->second.UsedByIndices;
158}
Dan Gohmana10756e2010-01-21 02:09:26 +0000159
Dan Gohman572645c2010-02-12 10:34:29 +0000160void RegUseTracker::clear() {
161 RegUses.clear();
162 RegSequence.clear();
163}
Dan Gohmana10756e2010-01-21 02:09:26 +0000164
Dan Gohman572645c2010-02-12 10:34:29 +0000165namespace {
166
167/// Formula - This class holds information that describes a formula for
168/// computing satisfying a use. It may include broken-out immediates and scaled
169/// registers.
170struct Formula {
171 /// AM - This is used to represent complex addressing, as well as other kinds
172 /// of interesting uses.
173 TargetLowering::AddrMode AM;
174
175 /// BaseRegs - The list of "base" registers for this use. When this is
176 /// non-empty, AM.HasBaseReg should be set to true.
177 SmallVector<const SCEV *, 2> BaseRegs;
178
179 /// ScaledReg - The 'scaled' register for this use. This should be non-null
180 /// when AM.Scale is not zero.
181 const SCEV *ScaledReg;
182
183 Formula() : ScaledReg(0) {}
184
185 void InitialMatch(const SCEV *S, Loop *L,
186 ScalarEvolution &SE, DominatorTree &DT);
187
188 unsigned getNumRegs() const;
189 const Type *getType() const;
190
191 bool referencesReg(const SCEV *S) const;
192 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
193 const RegUseTracker &RegUses) const;
194
195 void print(raw_ostream &OS) const;
196 void dump() const;
197};
198
199}
200
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000201/// DoInitialMatch - Recursion helper for InitialMatch.
Dan Gohman572645c2010-02-12 10:34:29 +0000202static void DoInitialMatch(const SCEV *S, Loop *L,
203 SmallVectorImpl<const SCEV *> &Good,
204 SmallVectorImpl<const SCEV *> &Bad,
205 ScalarEvolution &SE, DominatorTree &DT) {
206 // Collect expressions which properly dominate the loop header.
207 if (S->properlyDominates(L->getHeader(), &DT)) {
208 Good.push_back(S);
209 return;
Dan Gohmana10756e2010-01-21 02:09:26 +0000210 }
Dan Gohman572645c2010-02-12 10:34:29 +0000211
212 // Look at add operands.
213 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
214 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
215 I != E; ++I)
216 DoInitialMatch(*I, L, Good, Bad, SE, DT);
217 return;
218 }
219
220 // Look at addrec operands.
221 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
222 if (!AR->getStart()->isZero()) {
223 DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
224 DoInitialMatch(SE.getAddRecExpr(SE.getIntegerSCEV(0, AR->getType()),
225 AR->getStepRecurrence(SE),
226 AR->getLoop()),
227 L, Good, Bad, SE, DT);
228 return;
229 }
230
231 // Handle a multiplication by -1 (negation) if it didn't fold.
232 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
233 if (Mul->getOperand(0)->isAllOnesValue()) {
234 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
235 const SCEV *NewMul = SE.getMulExpr(Ops);
236
237 SmallVector<const SCEV *, 4> MyGood;
238 SmallVector<const SCEV *, 4> MyBad;
239 DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
240 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
241 SE.getEffectiveSCEVType(NewMul->getType())));
242 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
243 E = MyGood.end(); I != E; ++I)
244 Good.push_back(SE.getMulExpr(NegOne, *I));
245 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
246 E = MyBad.end(); I != E; ++I)
247 Bad.push_back(SE.getMulExpr(NegOne, *I));
248 return;
249 }
250
251 // Ok, we can't do anything interesting. Just stuff the whole thing into a
252 // register and hope for the best.
253 Bad.push_back(S);
254}
255
256/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
257/// attempting to keep all loop-invariant and loop-computable values in a
258/// single base register.
259void Formula::InitialMatch(const SCEV *S, Loop *L,
260 ScalarEvolution &SE, DominatorTree &DT) {
261 SmallVector<const SCEV *, 4> Good;
262 SmallVector<const SCEV *, 4> Bad;
263 DoInitialMatch(S, L, Good, Bad, SE, DT);
264 if (!Good.empty()) {
265 BaseRegs.push_back(SE.getAddExpr(Good));
266 AM.HasBaseReg = true;
267 }
268 if (!Bad.empty()) {
269 BaseRegs.push_back(SE.getAddExpr(Bad));
270 AM.HasBaseReg = true;
271 }
272}
273
274/// getNumRegs - Return the total number of register operands used by this
275/// formula. This does not include register uses implied by non-constant
276/// addrec strides.
277unsigned Formula::getNumRegs() const {
278 return !!ScaledReg + BaseRegs.size();
279}
280
281/// getType - Return the type of this formula, if it has one, or null
282/// otherwise. This type is meaningless except for the bit size.
283const Type *Formula::getType() const {
284 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
285 ScaledReg ? ScaledReg->getType() :
286 AM.BaseGV ? AM.BaseGV->getType() :
287 0;
288}
289
290/// referencesReg - Test if this formula references the given register.
291bool Formula::referencesReg(const SCEV *S) const {
292 return S == ScaledReg ||
293 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
294}
295
296/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
297/// which are used by uses other than the use with the given index.
298bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
299 const RegUseTracker &RegUses) const {
300 if (ScaledReg)
301 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
302 return true;
303 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
304 E = BaseRegs.end(); I != E; ++I)
305 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
306 return true;
307 return false;
308}
309
310void Formula::print(raw_ostream &OS) const {
311 bool First = true;
312 if (AM.BaseGV) {
313 if (!First) OS << " + "; else First = false;
314 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
315 }
316 if (AM.BaseOffs != 0) {
317 if (!First) OS << " + "; else First = false;
318 OS << AM.BaseOffs;
319 }
320 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
321 E = BaseRegs.end(); I != E; ++I) {
322 if (!First) OS << " + "; else First = false;
323 OS << "reg(" << **I << ')';
324 }
325 if (AM.Scale != 0) {
326 if (!First) OS << " + "; else First = false;
327 OS << AM.Scale << "*reg(";
328 if (ScaledReg)
329 OS << *ScaledReg;
330 else
331 OS << "<unknown>";
332 OS << ')';
333 }
334}
335
336void Formula::dump() const {
337 print(errs()); errs() << '\n';
338}
339
Dan Gohmanaae01f12010-02-19 19:32:49 +0000340/// isAddRecSExtable - Return true if the given addrec can be sign-extended
341/// without changing its value.
342static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
343 const Type *WideTy =
344 IntegerType::get(SE.getContext(),
345 SE.getTypeSizeInBits(AR->getType()) + 1);
346 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
347}
348
349/// isAddSExtable - Return true if the given add can be sign-extended
350/// without changing its value.
351static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
352 const Type *WideTy =
353 IntegerType::get(SE.getContext(),
354 SE.getTypeSizeInBits(A->getType()) + 1);
355 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
356}
357
358/// isMulSExtable - Return true if the given add can be sign-extended
359/// without changing its value.
360static bool isMulSExtable(const SCEVMulExpr *A, ScalarEvolution &SE) {
361 const Type *WideTy =
362 IntegerType::get(SE.getContext(),
363 SE.getTypeSizeInBits(A->getType()) + 1);
364 return isa<SCEVMulExpr>(SE.getSignExtendExpr(A, WideTy));
365}
366
Dan Gohmanf09b7122010-02-19 19:35:48 +0000367/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
368/// and if the remainder is known to be zero, or null otherwise. If
369/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
370/// to Y, ignoring that the multiplication may overflow, which is useful when
371/// the result will be used in a context where the most significant bits are
372/// ignored.
373static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
374 ScalarEvolution &SE,
375 bool IgnoreSignificantBits = false) {
Dan Gohman572645c2010-02-12 10:34:29 +0000376 // Handle the trivial case, which works for any SCEV type.
377 if (LHS == RHS)
378 return SE.getIntegerSCEV(1, LHS->getType());
379
380 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do some
381 // folding.
382 if (RHS->isAllOnesValue())
383 return SE.getMulExpr(LHS, RHS);
384
385 // Check for a division of a constant by a constant.
386 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
387 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
388 if (!RC)
389 return 0;
390 if (C->getValue()->getValue().srem(RC->getValue()->getValue()) != 0)
391 return 0;
392 return SE.getConstant(C->getValue()->getValue()
393 .sdiv(RC->getValue()->getValue()));
394 }
395
Dan Gohmanaae01f12010-02-19 19:32:49 +0000396 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000397 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000398 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000399 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
400 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000401 if (!Start) return 0;
Dan Gohmanf09b7122010-02-19 19:35:48 +0000402 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
403 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000404 if (!Step) return 0;
405 return SE.getAddRecExpr(Start, Step, AR->getLoop());
406 }
Dan Gohman572645c2010-02-12 10:34:29 +0000407 }
408
Dan Gohmanaae01f12010-02-19 19:32:49 +0000409 // Distribute the sdiv over add operands, if the add doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000410 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000411 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
412 SmallVector<const SCEV *, 8> Ops;
413 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
414 I != E; ++I) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000415 const SCEV *Op = getExactSDiv(*I, RHS, SE,
416 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000417 if (!Op) return 0;
418 Ops.push_back(Op);
419 }
420 return SE.getAddExpr(Ops);
Dan Gohman572645c2010-02-12 10:34:29 +0000421 }
Dan Gohman572645c2010-02-12 10:34:29 +0000422 }
423
424 // Check for a multiply operand that we can pull RHS out of.
425 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS))
Dan Gohmanaae01f12010-02-19 19:32:49 +0000426 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000427 SmallVector<const SCEV *, 4> Ops;
428 bool Found = false;
429 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
430 I != E; ++I) {
431 if (!Found)
Dan Gohmanf09b7122010-02-19 19:35:48 +0000432 if (const SCEV *Q = getExactSDiv(*I, RHS, SE,
433 IgnoreSignificantBits)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000434 Ops.push_back(Q);
435 Found = true;
436 continue;
437 }
438 Ops.push_back(*I);
439 }
440 return Found ? SE.getMulExpr(Ops) : 0;
441 }
442
443 // Otherwise we don't know.
444 return 0;
445}
446
447/// ExtractImmediate - If S involves the addition of a constant integer value,
448/// return that integer value, and mutate S to point to a new SCEV with that
449/// value excluded.
450static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
451 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
452 if (C->getValue()->getValue().getMinSignedBits() <= 64) {
453 S = SE.getIntegerSCEV(0, C->getType());
454 return C->getValue()->getSExtValue();
455 }
456 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
457 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
458 int64_t Result = ExtractImmediate(NewOps.front(), SE);
459 S = SE.getAddExpr(NewOps);
460 return Result;
461 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
462 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
463 int64_t Result = ExtractImmediate(NewOps.front(), SE);
464 S = SE.getAddRecExpr(NewOps, AR->getLoop());
465 return Result;
466 }
467 return 0;
468}
469
470/// ExtractSymbol - If S involves the addition of a GlobalValue address,
471/// return that symbol, and mutate S to point to a new SCEV with that
472/// value excluded.
473static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
474 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
475 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
476 S = SE.getIntegerSCEV(0, GV->getType());
477 return GV;
478 }
479 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
480 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
481 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
482 S = SE.getAddExpr(NewOps);
483 return Result;
484 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
485 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
486 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
487 S = SE.getAddRecExpr(NewOps, AR->getLoop());
488 return Result;
489 }
490 return 0;
Nate Begemaneaa13852004-10-18 21:08:22 +0000491}
492
Dan Gohmanf284ce22009-02-18 00:08:39 +0000493/// isAddressUse - Returns true if the specified instruction is using the
Dale Johannesen203af582008-12-05 21:47:27 +0000494/// specified value as an address.
495static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
496 bool isAddress = isa<LoadInst>(Inst);
497 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
498 if (SI->getOperand(1) == OperandVal)
499 isAddress = true;
500 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
501 // Addressing modes can also be folded into prefetches and a variety
502 // of intrinsics.
503 switch (II->getIntrinsicID()) {
504 default: break;
505 case Intrinsic::prefetch:
506 case Intrinsic::x86_sse2_loadu_dq:
507 case Intrinsic::x86_sse2_loadu_pd:
508 case Intrinsic::x86_sse_loadu_ps:
509 case Intrinsic::x86_sse_storeu_ps:
510 case Intrinsic::x86_sse2_storeu_pd:
511 case Intrinsic::x86_sse2_storeu_dq:
512 case Intrinsic::x86_sse2_storel_dq:
513 if (II->getOperand(1) == OperandVal)
514 isAddress = true;
515 break;
516 }
517 }
518 return isAddress;
519}
Chris Lattner0ae33eb2005-10-03 01:04:44 +0000520
Dan Gohman21e77222009-03-09 21:01:17 +0000521/// getAccessType - Return the type of the memory being accessed.
522static const Type *getAccessType(const Instruction *Inst) {
Dan Gohmana537bf82009-05-18 16:45:28 +0000523 const Type *AccessTy = Inst->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000524 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
Dan Gohmana537bf82009-05-18 16:45:28 +0000525 AccessTy = SI->getOperand(0)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000526 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
527 // Addressing modes can also be folded into prefetches and a variety
528 // of intrinsics.
529 switch (II->getIntrinsicID()) {
530 default: break;
531 case Intrinsic::x86_sse_storeu_ps:
532 case Intrinsic::x86_sse2_storeu_pd:
533 case Intrinsic::x86_sse2_storeu_dq:
534 case Intrinsic::x86_sse2_storel_dq:
Dan Gohmana537bf82009-05-18 16:45:28 +0000535 AccessTy = II->getOperand(1)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000536 break;
537 }
538 }
Dan Gohman572645c2010-02-12 10:34:29 +0000539
540 // All pointers have the same requirements, so canonicalize them to an
541 // arbitrary pointer type to minimize variation.
542 if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
543 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
544 PTy->getAddressSpace());
545
Dan Gohmana537bf82009-05-18 16:45:28 +0000546 return AccessTy;
Dan Gohman21e77222009-03-09 21:01:17 +0000547}
548
Dan Gohman572645c2010-02-12 10:34:29 +0000549/// DeleteTriviallyDeadInstructions - If any of the instructions is the
550/// specified set are trivially dead, delete them and see if this makes any of
551/// their operands subsequently dead.
552static bool
553DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
554 bool Changed = false;
555
556 while (!DeadInsts.empty()) {
557 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
558
559 if (I == 0 || !isInstructionTriviallyDead(I))
560 continue;
561
562 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
563 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
564 *OI = 0;
565 if (U->use_empty())
566 DeadInsts.push_back(U);
567 }
568
569 I->eraseFromParent();
570 Changed = true;
571 }
572
573 return Changed;
574}
575
Dan Gohman7979b722010-01-22 00:46:49 +0000576namespace {
Jim Grosbach56a1f802009-11-17 17:53:56 +0000577
Dan Gohman572645c2010-02-12 10:34:29 +0000578/// Cost - This class is used to measure and compare candidate formulae.
579class Cost {
580 /// TODO: Some of these could be merged. Also, a lexical ordering
581 /// isn't always optimal.
582 unsigned NumRegs;
583 unsigned AddRecCost;
584 unsigned NumIVMuls;
585 unsigned NumBaseAdds;
586 unsigned ImmCost;
587 unsigned SetupCost;
Nate Begeman16997482005-07-30 00:15:07 +0000588
Dan Gohman572645c2010-02-12 10:34:29 +0000589public:
590 Cost()
591 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
592 SetupCost(0) {}
Jim Grosbach56a1f802009-11-17 17:53:56 +0000593
Dan Gohman572645c2010-02-12 10:34:29 +0000594 unsigned getNumRegs() const { return NumRegs; }
Dan Gohman7979b722010-01-22 00:46:49 +0000595
Dan Gohman572645c2010-02-12 10:34:29 +0000596 bool operator<(const Cost &Other) const;
Dan Gohman7979b722010-01-22 00:46:49 +0000597
Dan Gohman572645c2010-02-12 10:34:29 +0000598 void Loose();
Dan Gohman7979b722010-01-22 00:46:49 +0000599
Dan Gohman572645c2010-02-12 10:34:29 +0000600 void RateFormula(const Formula &F,
601 SmallPtrSet<const SCEV *, 16> &Regs,
602 const DenseSet<const SCEV *> &VisitedRegs,
603 const Loop *L,
604 const SmallVectorImpl<int64_t> &Offsets,
605 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman7979b722010-01-22 00:46:49 +0000606
Dan Gohman572645c2010-02-12 10:34:29 +0000607 void print(raw_ostream &OS) const;
608 void dump() const;
Dan Gohman7979b722010-01-22 00:46:49 +0000609
Dan Gohman572645c2010-02-12 10:34:29 +0000610private:
611 void RateRegister(const SCEV *Reg,
612 SmallPtrSet<const SCEV *, 16> &Regs,
613 const Loop *L,
614 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman9214b822010-02-13 02:06:02 +0000615 void RatePrimaryRegister(const SCEV *Reg,
616 SmallPtrSet<const SCEV *, 16> &Regs,
617 const Loop *L,
618 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000619};
620
621}
622
623/// RateRegister - Tally up interesting quantities from the given register.
624void Cost::RateRegister(const SCEV *Reg,
625 SmallPtrSet<const SCEV *, 16> &Regs,
626 const Loop *L,
627 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000628 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
629 if (AR->getLoop() == L)
630 AddRecCost += 1; /// TODO: This should be a function of the stride.
Dan Gohman572645c2010-02-12 10:34:29 +0000631
Dan Gohman9214b822010-02-13 02:06:02 +0000632 // If this is an addrec for a loop that's already been visited by LSR,
633 // don't second-guess its addrec phi nodes. LSR isn't currently smart
634 // enough to reason about more than one loop at a time. Consider these
635 // registers free and leave them alone.
636 else if (L->contains(AR->getLoop()) ||
637 (!AR->getLoop()->contains(L) &&
638 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
639 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
640 PHINode *PN = dyn_cast<PHINode>(I); ++I)
641 if (SE.isSCEVable(PN->getType()) &&
642 (SE.getEffectiveSCEVType(PN->getType()) ==
643 SE.getEffectiveSCEVType(AR->getType())) &&
644 SE.getSCEV(PN) == AR)
645 return;
Dan Gohman572645c2010-02-12 10:34:29 +0000646
Dan Gohman9214b822010-02-13 02:06:02 +0000647 // If this isn't one of the addrecs that the loop already has, it
648 // would require a costly new phi and add. TODO: This isn't
649 // precisely modeled right now.
650 ++NumBaseAdds;
651 if (!Regs.count(AR->getStart()))
Dan Gohman572645c2010-02-12 10:34:29 +0000652 RateRegister(AR->getStart(), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000653 }
Dan Gohman572645c2010-02-12 10:34:29 +0000654
Dan Gohman9214b822010-02-13 02:06:02 +0000655 // Add the step value register, if it needs one.
656 // TODO: The non-affine case isn't precisely modeled here.
657 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
658 if (!Regs.count(AR->getStart()))
659 RateRegister(AR->getOperand(1), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000660 }
Dan Gohman9214b822010-02-13 02:06:02 +0000661 ++NumRegs;
662
663 // Rough heuristic; favor registers which don't require extra setup
664 // instructions in the preheader.
665 if (!isa<SCEVUnknown>(Reg) &&
666 !isa<SCEVConstant>(Reg) &&
667 !(isa<SCEVAddRecExpr>(Reg) &&
668 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
669 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
670 ++SetupCost;
671}
672
673/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
674/// before, rate it.
675void Cost::RatePrimaryRegister(const SCEV *Reg,
Dan Gohman7fca2292010-02-16 19:42:34 +0000676 SmallPtrSet<const SCEV *, 16> &Regs,
677 const Loop *L,
678 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000679 if (Regs.insert(Reg))
680 RateRegister(Reg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000681}
682
683void Cost::RateFormula(const Formula &F,
684 SmallPtrSet<const SCEV *, 16> &Regs,
685 const DenseSet<const SCEV *> &VisitedRegs,
686 const Loop *L,
687 const SmallVectorImpl<int64_t> &Offsets,
688 ScalarEvolution &SE, DominatorTree &DT) {
689 // Tally up the registers.
690 if (const SCEV *ScaledReg = F.ScaledReg) {
691 if (VisitedRegs.count(ScaledReg)) {
692 Loose();
693 return;
694 }
Dan Gohman9214b822010-02-13 02:06:02 +0000695 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000696 }
697 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
698 E = F.BaseRegs.end(); I != E; ++I) {
699 const SCEV *BaseReg = *I;
700 if (VisitedRegs.count(BaseReg)) {
701 Loose();
702 return;
703 }
Dan Gohman9214b822010-02-13 02:06:02 +0000704 RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000705
706 NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
707 BaseReg->hasComputableLoopEvolution(L);
708 }
709
710 if (F.BaseRegs.size() > 1)
711 NumBaseAdds += F.BaseRegs.size() - 1;
712
713 // Tally up the non-zero immediates.
714 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
715 E = Offsets.end(); I != E; ++I) {
716 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
717 if (F.AM.BaseGV)
718 ImmCost += 64; // Handle symbolic values conservatively.
719 // TODO: This should probably be the pointer size.
720 else if (Offset != 0)
721 ImmCost += APInt(64, Offset, true).getMinSignedBits();
722 }
723}
724
725/// Loose - Set this cost to a loosing value.
726void Cost::Loose() {
727 NumRegs = ~0u;
728 AddRecCost = ~0u;
729 NumIVMuls = ~0u;
730 NumBaseAdds = ~0u;
731 ImmCost = ~0u;
732 SetupCost = ~0u;
733}
734
735/// operator< - Choose the lower cost.
736bool Cost::operator<(const Cost &Other) const {
737 if (NumRegs != Other.NumRegs)
738 return NumRegs < Other.NumRegs;
739 if (AddRecCost != Other.AddRecCost)
740 return AddRecCost < Other.AddRecCost;
741 if (NumIVMuls != Other.NumIVMuls)
742 return NumIVMuls < Other.NumIVMuls;
743 if (NumBaseAdds != Other.NumBaseAdds)
744 return NumBaseAdds < Other.NumBaseAdds;
745 if (ImmCost != Other.ImmCost)
746 return ImmCost < Other.ImmCost;
747 if (SetupCost != Other.SetupCost)
748 return SetupCost < Other.SetupCost;
749 return false;
750}
751
752void Cost::print(raw_ostream &OS) const {
753 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
754 if (AddRecCost != 0)
755 OS << ", with addrec cost " << AddRecCost;
756 if (NumIVMuls != 0)
757 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
758 if (NumBaseAdds != 0)
759 OS << ", plus " << NumBaseAdds << " base add"
760 << (NumBaseAdds == 1 ? "" : "s");
761 if (ImmCost != 0)
762 OS << ", plus " << ImmCost << " imm cost";
763 if (SetupCost != 0)
764 OS << ", plus " << SetupCost << " setup cost";
765}
766
767void Cost::dump() const {
768 print(errs()); errs() << '\n';
769}
770
771namespace {
772
773/// LSRFixup - An operand value in an instruction which is to be replaced
774/// with some equivalent, possibly strength-reduced, replacement.
775struct LSRFixup {
776 /// UserInst - The instruction which will be updated.
777 Instruction *UserInst;
778
779 /// OperandValToReplace - The operand of the instruction which will
780 /// be replaced. The operand may be used more than once; every instance
781 /// will be replaced.
782 Value *OperandValToReplace;
783
784 /// PostIncLoop - If this user is to use the post-incremented value of an
785 /// induction variable, this variable is non-null and holds the loop
786 /// associated with the induction variable.
787 const Loop *PostIncLoop;
788
789 /// LUIdx - The index of the LSRUse describing the expression which
790 /// this fixup needs, minus an offset (below).
791 size_t LUIdx;
792
793 /// Offset - A constant offset to be added to the LSRUse expression.
794 /// This allows multiple fixups to share the same LSRUse with different
795 /// offsets, for example in an unrolled loop.
796 int64_t Offset;
797
798 LSRFixup();
799
800 void print(raw_ostream &OS) const;
801 void dump() const;
802};
803
804}
805
806LSRFixup::LSRFixup()
807 : UserInst(0), OperandValToReplace(0), PostIncLoop(0),
808 LUIdx(~size_t(0)), Offset(0) {}
809
810void LSRFixup::print(raw_ostream &OS) const {
811 OS << "UserInst=";
812 // Store is common and interesting enough to be worth special-casing.
813 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
814 OS << "store ";
815 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
816 } else if (UserInst->getType()->isVoidTy())
817 OS << UserInst->getOpcodeName();
818 else
819 WriteAsOperand(OS, UserInst, /*PrintType=*/false);
820
821 OS << ", OperandValToReplace=";
822 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
823
824 if (PostIncLoop) {
825 OS << ", PostIncLoop=";
826 WriteAsOperand(OS, PostIncLoop->getHeader(), /*PrintType=*/false);
827 }
828
829 if (LUIdx != ~size_t(0))
830 OS << ", LUIdx=" << LUIdx;
831
832 if (Offset != 0)
833 OS << ", Offset=" << Offset;
834}
835
836void LSRFixup::dump() const {
837 print(errs()); errs() << '\n';
838}
839
840namespace {
841
842/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
843/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
844struct UniquifierDenseMapInfo {
845 static SmallVector<const SCEV *, 2> getEmptyKey() {
846 SmallVector<const SCEV *, 2> V;
847 V.push_back(reinterpret_cast<const SCEV *>(-1));
848 return V;
849 }
850
851 static SmallVector<const SCEV *, 2> getTombstoneKey() {
852 SmallVector<const SCEV *, 2> V;
853 V.push_back(reinterpret_cast<const SCEV *>(-2));
854 return V;
855 }
856
857 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
858 unsigned Result = 0;
859 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
860 E = V.end(); I != E; ++I)
861 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
862 return Result;
863 }
864
865 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
866 const SmallVector<const SCEV *, 2> &RHS) {
867 return LHS == RHS;
868 }
869};
870
871/// LSRUse - This class holds the state that LSR keeps for each use in
872/// IVUsers, as well as uses invented by LSR itself. It includes information
873/// about what kinds of things can be folded into the user, information about
874/// the user itself, and information about how the use may be satisfied.
875/// TODO: Represent multiple users of the same expression in common?
876class LSRUse {
877 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
878
879public:
880 /// KindType - An enum for a kind of use, indicating what types of
881 /// scaled and immediate operands it might support.
882 enum KindType {
883 Basic, ///< A normal use, with no folding.
884 Special, ///< A special case of basic, allowing -1 scales.
885 Address, ///< An address use; folding according to TargetLowering
886 ICmpZero ///< An equality icmp with both operands folded into one.
887 // TODO: Add a generic icmp too?
Dan Gohman7979b722010-01-22 00:46:49 +0000888 };
Dan Gohman572645c2010-02-12 10:34:29 +0000889
890 KindType Kind;
891 const Type *AccessTy;
892
893 SmallVector<int64_t, 8> Offsets;
894 int64_t MinOffset;
895 int64_t MaxOffset;
896
897 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
898 /// LSRUse are outside of the loop, in which case some special-case heuristics
899 /// may be used.
900 bool AllFixupsOutsideLoop;
901
902 /// Formulae - A list of ways to build a value that can satisfy this user.
903 /// After the list is populated, one of these is selected heuristically and
904 /// used to formulate a replacement for OperandValToReplace in UserInst.
905 SmallVector<Formula, 12> Formulae;
906
907 /// Regs - The set of register candidates used by all formulae in this LSRUse.
908 SmallPtrSet<const SCEV *, 4> Regs;
909
910 LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
911 MinOffset(INT64_MAX),
912 MaxOffset(INT64_MIN),
913 AllFixupsOutsideLoop(true) {}
914
Dan Gohman454d26d2010-02-22 04:11:59 +0000915 bool InsertFormula(const Formula &F);
Dan Gohman572645c2010-02-12 10:34:29 +0000916
917 void check() const;
918
919 void print(raw_ostream &OS) const;
920 void dump() const;
921};
922
923/// InsertFormula - If the given formula has not yet been inserted, add it to
924/// the list, and return true. Return false otherwise.
Dan Gohman454d26d2010-02-22 04:11:59 +0000925bool LSRUse::InsertFormula(const Formula &F) {
Dan Gohman572645c2010-02-12 10:34:29 +0000926 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
927 if (F.ScaledReg) Key.push_back(F.ScaledReg);
928 // Unstable sort by host order ok, because this is only used for uniquifying.
929 std::sort(Key.begin(), Key.end());
930
931 if (!Uniquifier.insert(Key).second)
932 return false;
933
934 // Using a register to hold the value of 0 is not profitable.
935 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
936 "Zero allocated in a scaled register!");
937#ifndef NDEBUG
938 for (SmallVectorImpl<const SCEV *>::const_iterator I =
939 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
940 assert(!(*I)->isZero() && "Zero allocated in a base register!");
941#endif
942
943 // Add the formula to the list.
944 Formulae.push_back(F);
945
946 // Record registers now being used by this use.
947 if (F.ScaledReg) Regs.insert(F.ScaledReg);
948 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
949
950 return true;
Dan Gohman7979b722010-01-22 00:46:49 +0000951}
952
Dan Gohman572645c2010-02-12 10:34:29 +0000953void LSRUse::print(raw_ostream &OS) const {
954 OS << "LSR Use: Kind=";
955 switch (Kind) {
956 case Basic: OS << "Basic"; break;
957 case Special: OS << "Special"; break;
958 case ICmpZero: OS << "ICmpZero"; break;
959 case Address:
960 OS << "Address of ";
Duncan Sands1df98592010-02-16 11:11:14 +0000961 if (AccessTy->isPointerTy())
Dan Gohman572645c2010-02-12 10:34:29 +0000962 OS << "pointer"; // the full pointer type could be really verbose
963 else
964 OS << *AccessTy;
Evan Chengcdf43b12007-10-25 09:11:16 +0000965 }
966
Dan Gohman572645c2010-02-12 10:34:29 +0000967 OS << ", Offsets={";
968 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
969 E = Offsets.end(); I != E; ++I) {
970 OS << *I;
971 if (next(I) != E)
972 OS << ',';
Dan Gohman7979b722010-01-22 00:46:49 +0000973 }
Dan Gohman572645c2010-02-12 10:34:29 +0000974 OS << '}';
Dan Gohman7979b722010-01-22 00:46:49 +0000975
Dan Gohman572645c2010-02-12 10:34:29 +0000976 if (AllFixupsOutsideLoop)
977 OS << ", all-fixups-outside-loop";
Dan Gohman7979b722010-01-22 00:46:49 +0000978}
979
Dan Gohman572645c2010-02-12 10:34:29 +0000980void LSRUse::dump() const {
981 print(errs()); errs() << '\n';
982}
Dan Gohman7979b722010-01-22 00:46:49 +0000983
Dan Gohman572645c2010-02-12 10:34:29 +0000984/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
985/// be completely folded into the user instruction at isel time. This includes
986/// address-mode folding and special icmp tricks.
987static bool isLegalUse(const TargetLowering::AddrMode &AM,
988 LSRUse::KindType Kind, const Type *AccessTy,
989 const TargetLowering *TLI) {
990 switch (Kind) {
991 case LSRUse::Address:
992 // If we have low-level target information, ask the target if it can
993 // completely fold this address.
994 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
995
996 // Otherwise, just guess that reg+reg addressing is legal.
997 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
998
999 case LSRUse::ICmpZero:
1000 // There's not even a target hook for querying whether it would be legal to
1001 // fold a GV into an ICmp.
1002 if (AM.BaseGV)
1003 return false;
1004
1005 // ICmp only has two operands; don't allow more than two non-trivial parts.
1006 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1007 return false;
1008
1009 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1010 // putting the scaled register in the other operand of the icmp.
1011 if (AM.Scale != 0 && AM.Scale != -1)
1012 return false;
1013
1014 // If we have low-level target information, ask the target if it can fold an
1015 // integer immediate on an icmp.
1016 if (AM.BaseOffs != 0) {
1017 if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1018 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001019 }
Dan Gohman572645c2010-02-12 10:34:29 +00001020
1021 return true;
1022
1023 case LSRUse::Basic:
1024 // Only handle single-register values.
1025 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1026
1027 case LSRUse::Special:
1028 // Only handle -1 scales, or no scale.
1029 return AM.Scale == 0 || AM.Scale == -1;
Dan Gohman7979b722010-01-22 00:46:49 +00001030 }
1031
Dan Gohman7979b722010-01-22 00:46:49 +00001032 return false;
1033}
1034
Dan Gohman572645c2010-02-12 10:34:29 +00001035static bool isLegalUse(TargetLowering::AddrMode AM,
1036 int64_t MinOffset, int64_t MaxOffset,
1037 LSRUse::KindType Kind, const Type *AccessTy,
1038 const TargetLowering *TLI) {
1039 // Check for overflow.
1040 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1041 (MinOffset > 0))
1042 return false;
1043 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1044 if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1045 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1046 // Check for overflow.
1047 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1048 (MaxOffset > 0))
1049 return false;
1050 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1051 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001052 }
Dan Gohman572645c2010-02-12 10:34:29 +00001053 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001054}
1055
Dan Gohman572645c2010-02-12 10:34:29 +00001056static bool isAlwaysFoldable(int64_t BaseOffs,
1057 GlobalValue *BaseGV,
1058 bool HasBaseReg,
1059 LSRUse::KindType Kind, const Type *AccessTy,
Dan Gohman454d26d2010-02-22 04:11:59 +00001060 const TargetLowering *TLI) {
Dan Gohman572645c2010-02-12 10:34:29 +00001061 // Fast-path: zero is always foldable.
1062 if (BaseOffs == 0 && !BaseGV) return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001063
Dan Gohman572645c2010-02-12 10:34:29 +00001064 // Conservatively, create an address with an immediate and a
1065 // base and a scale.
1066 TargetLowering::AddrMode AM;
1067 AM.BaseOffs = BaseOffs;
1068 AM.BaseGV = BaseGV;
1069 AM.HasBaseReg = HasBaseReg;
1070 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001071
Dan Gohman572645c2010-02-12 10:34:29 +00001072 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001073}
1074
Dan Gohman572645c2010-02-12 10:34:29 +00001075static bool isAlwaysFoldable(const SCEV *S,
1076 int64_t MinOffset, int64_t MaxOffset,
1077 bool HasBaseReg,
1078 LSRUse::KindType Kind, const Type *AccessTy,
1079 const TargetLowering *TLI,
1080 ScalarEvolution &SE) {
1081 // Fast-path: zero is always foldable.
1082 if (S->isZero()) return true;
1083
1084 // Conservatively, create an address with an immediate and a
1085 // base and a scale.
1086 int64_t BaseOffs = ExtractImmediate(S, SE);
1087 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1088
1089 // If there's anything else involved, it's not foldable.
1090 if (!S->isZero()) return false;
1091
1092 // Fast-path: zero is always foldable.
1093 if (BaseOffs == 0 && !BaseGV) return true;
1094
1095 // Conservatively, create an address with an immediate and a
1096 // base and a scale.
1097 TargetLowering::AddrMode AM;
1098 AM.BaseOffs = BaseOffs;
1099 AM.BaseGV = BaseGV;
1100 AM.HasBaseReg = HasBaseReg;
1101 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1102
1103 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001104}
1105
Dan Gohman572645c2010-02-12 10:34:29 +00001106/// FormulaSorter - This class implements an ordering for formulae which sorts
1107/// the by their standalone cost.
1108class FormulaSorter {
1109 /// These two sets are kept empty, so that we compute standalone costs.
1110 DenseSet<const SCEV *> VisitedRegs;
1111 SmallPtrSet<const SCEV *, 16> Regs;
1112 Loop *L;
1113 LSRUse *LU;
1114 ScalarEvolution &SE;
1115 DominatorTree &DT;
1116
1117public:
1118 FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
1119 : L(l), LU(&lu), SE(se), DT(dt) {}
1120
1121 bool operator()(const Formula &A, const Formula &B) {
1122 Cost CostA;
1123 CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1124 Regs.clear();
1125 Cost CostB;
1126 CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1127 Regs.clear();
1128 return CostA < CostB;
1129 }
1130};
1131
1132/// LSRInstance - This class holds state for the main loop strength reduction
1133/// logic.
1134class LSRInstance {
1135 IVUsers &IU;
1136 ScalarEvolution &SE;
1137 DominatorTree &DT;
1138 const TargetLowering *const TLI;
1139 Loop *const L;
1140 bool Changed;
1141
1142 /// IVIncInsertPos - This is the insert position that the current loop's
1143 /// induction variable increment should be placed. In simple loops, this is
1144 /// the latch block's terminator. But in more complicated cases, this is a
1145 /// position which will dominate all the in-loop post-increment users.
1146 Instruction *IVIncInsertPos;
1147
1148 /// Factors - Interesting factors between use strides.
1149 SmallSetVector<int64_t, 8> Factors;
1150
1151 /// Types - Interesting use types, to facilitate truncation reuse.
1152 SmallSetVector<const Type *, 4> Types;
1153
1154 /// Fixups - The list of operands which are to be replaced.
1155 SmallVector<LSRFixup, 16> Fixups;
1156
1157 /// Uses - The list of interesting uses.
1158 SmallVector<LSRUse, 16> Uses;
1159
1160 /// RegUses - Track which uses use which register candidates.
1161 RegUseTracker RegUses;
1162
1163 void OptimizeShadowIV();
1164 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1165 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1166 bool OptimizeLoopTermCond();
1167
1168 void CollectInterestingTypesAndFactors();
1169 void CollectFixupsAndInitialFormulae();
1170
1171 LSRFixup &getNewFixup() {
1172 Fixups.push_back(LSRFixup());
1173 return Fixups.back();
1174 }
1175
1176 // Support for sharing of LSRUses between LSRFixups.
1177 typedef DenseMap<const SCEV *, size_t> UseMapTy;
1178 UseMapTy UseMap;
1179
1180 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
1181 LSRUse::KindType Kind, const Type *AccessTy);
1182
1183 std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1184 LSRUse::KindType Kind,
1185 const Type *AccessTy);
1186
1187public:
Dan Gohman454d26d2010-02-22 04:11:59 +00001188 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00001189 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1190 void CountRegisters(const Formula &F, size_t LUIdx);
1191 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1192
1193 void CollectLoopInvariantFixupsAndFormulae();
1194
1195 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1196 unsigned Depth = 0);
1197 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1198 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1199 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1200 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1201 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1202 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1203 void GenerateCrossUseConstantOffsets();
1204 void GenerateAllReuseFormulae();
1205
1206 void FilterOutUndesirableDedicatedRegisters();
1207 void NarrowSearchSpaceUsingHeuristics();
1208
1209 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1210 Cost &SolutionCost,
1211 SmallVectorImpl<const Formula *> &Workspace,
1212 const Cost &CurCost,
1213 const SmallPtrSet<const SCEV *, 16> &CurRegs,
1214 DenseSet<const SCEV *> &VisitedRegs) const;
1215 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1216
1217 Value *Expand(const LSRFixup &LF,
1218 const Formula &F,
Dan Gohman454d26d2010-02-22 04:11:59 +00001219 BasicBlock::iterator IP,
Dan Gohman572645c2010-02-12 10:34:29 +00001220 SCEVExpander &Rewriter,
Dan Gohman454d26d2010-02-22 04:11:59 +00001221 SmallVectorImpl<WeakVH> &DeadInsts) const;
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001222 void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1223 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001224 SCEVExpander &Rewriter,
1225 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001226 Pass *P) const;
Dan Gohman572645c2010-02-12 10:34:29 +00001227 void Rewrite(const LSRFixup &LF,
1228 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00001229 SCEVExpander &Rewriter,
1230 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00001231 Pass *P) const;
1232 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1233 Pass *P);
1234
1235 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1236
1237 bool getChanged() const { return Changed; }
1238
1239 void print_factors_and_types(raw_ostream &OS) const;
1240 void print_fixups(raw_ostream &OS) const;
1241 void print_uses(raw_ostream &OS) const;
1242 void print(raw_ostream &OS) const;
1243 void dump() const;
1244};
1245
1246}
1247
1248/// OptimizeShadowIV - If IV is used in a int-to-float cast
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001249/// inside the loop then try to eliminate the cast operation.
Dan Gohman572645c2010-02-12 10:34:29 +00001250void LSRInstance::OptimizeShadowIV() {
1251 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1252 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1253 return;
1254
1255 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1256 UI != E; /* empty */) {
1257 IVUsers::const_iterator CandidateUI = UI;
1258 ++UI;
1259 Instruction *ShadowUse = CandidateUI->getUser();
1260 const Type *DestTy = NULL;
1261
1262 /* If shadow use is a int->float cast then insert a second IV
1263 to eliminate this cast.
1264
1265 for (unsigned i = 0; i < n; ++i)
1266 foo((double)i);
1267
1268 is transformed into
1269
1270 double d = 0.0;
1271 for (unsigned i = 0; i < n; ++i, ++d)
1272 foo(d);
1273 */
1274 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1275 DestTy = UCast->getDestTy();
1276 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1277 DestTy = SCast->getDestTy();
1278 if (!DestTy) continue;
1279
1280 if (TLI) {
1281 // If target does not support DestTy natively then do not apply
1282 // this transformation.
1283 EVT DVT = TLI->getValueType(DestTy);
1284 if (!TLI->isTypeLegal(DVT)) continue;
1285 }
1286
1287 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1288 if (!PH) continue;
1289 if (PH->getNumIncomingValues() != 2) continue;
1290
1291 const Type *SrcTy = PH->getType();
1292 int Mantissa = DestTy->getFPMantissaWidth();
1293 if (Mantissa == -1) continue;
1294 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1295 continue;
1296
1297 unsigned Entry, Latch;
1298 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1299 Entry = 0;
1300 Latch = 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001301 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001302 Entry = 1;
1303 Latch = 0;
Dan Gohman7979b722010-01-22 00:46:49 +00001304 }
Dan Gohman7979b722010-01-22 00:46:49 +00001305
Dan Gohman572645c2010-02-12 10:34:29 +00001306 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1307 if (!Init) continue;
1308 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
Dan Gohman7979b722010-01-22 00:46:49 +00001309
Dan Gohman572645c2010-02-12 10:34:29 +00001310 BinaryOperator *Incr =
1311 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1312 if (!Incr) continue;
1313 if (Incr->getOpcode() != Instruction::Add
1314 && Incr->getOpcode() != Instruction::Sub)
Dan Gohman7979b722010-01-22 00:46:49 +00001315 continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001316
Dan Gohman572645c2010-02-12 10:34:29 +00001317 /* Initialize new IV, double d = 0.0 in above example. */
1318 ConstantInt *C = NULL;
1319 if (Incr->getOperand(0) == PH)
1320 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1321 else if (Incr->getOperand(1) == PH)
1322 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001323 else
Dan Gohman7979b722010-01-22 00:46:49 +00001324 continue;
1325
Dan Gohman572645c2010-02-12 10:34:29 +00001326 if (!C) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001327
Dan Gohman572645c2010-02-12 10:34:29 +00001328 // Ignore negative constants, as the code below doesn't handle them
1329 // correctly. TODO: Remove this restriction.
1330 if (!C->getValue().isStrictlyPositive()) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001331
Dan Gohman572645c2010-02-12 10:34:29 +00001332 /* Add new PHINode. */
1333 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
Dan Gohman7979b722010-01-22 00:46:49 +00001334
Dan Gohman572645c2010-02-12 10:34:29 +00001335 /* create new increment. '++d' in above example. */
1336 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1337 BinaryOperator *NewIncr =
1338 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1339 Instruction::FAdd : Instruction::FSub,
1340 NewPH, CFP, "IV.S.next.", Incr);
Dan Gohman7979b722010-01-22 00:46:49 +00001341
Dan Gohman572645c2010-02-12 10:34:29 +00001342 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1343 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
Dan Gohman7979b722010-01-22 00:46:49 +00001344
Dan Gohman572645c2010-02-12 10:34:29 +00001345 /* Remove cast operation */
1346 ShadowUse->replaceAllUsesWith(NewPH);
1347 ShadowUse->eraseFromParent();
1348 break;
Dan Gohman7979b722010-01-22 00:46:49 +00001349 }
1350}
1351
1352/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1353/// set the IV user and stride information and return true, otherwise return
1354/// false.
Dan Gohman572645c2010-02-12 10:34:29 +00001355bool LSRInstance::FindIVUserForCond(ICmpInst *Cond,
1356 IVStrideUse *&CondUse) {
1357 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1358 if (UI->getUser() == Cond) {
1359 // NOTE: we could handle setcc instructions with multiple uses here, but
1360 // InstCombine does it as well for simple uses, it's not clear that it
1361 // occurs enough in real life to handle.
1362 CondUse = UI;
1363 return true;
1364 }
Dan Gohman7979b722010-01-22 00:46:49 +00001365 return false;
Evan Chengcdf43b12007-10-25 09:11:16 +00001366}
1367
Dan Gohman7979b722010-01-22 00:46:49 +00001368/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1369/// a max computation.
1370///
1371/// This is a narrow solution to a specific, but acute, problem. For loops
1372/// like this:
1373///
1374/// i = 0;
1375/// do {
1376/// p[i] = 0.0;
1377/// } while (++i < n);
1378///
1379/// the trip count isn't just 'n', because 'n' might not be positive. And
1380/// unfortunately this can come up even for loops where the user didn't use
1381/// a C do-while loop. For example, seemingly well-behaved top-test loops
1382/// will commonly be lowered like this:
1383//
1384/// if (n > 0) {
1385/// i = 0;
1386/// do {
1387/// p[i] = 0.0;
1388/// } while (++i < n);
1389/// }
1390///
1391/// and then it's possible for subsequent optimization to obscure the if
1392/// test in such a way that indvars can't find it.
1393///
1394/// When indvars can't find the if test in loops like this, it creates a
1395/// max expression, which allows it to give the loop a canonical
1396/// induction variable:
1397///
1398/// i = 0;
1399/// max = n < 1 ? 1 : n;
1400/// do {
1401/// p[i] = 0.0;
1402/// } while (++i != max);
1403///
1404/// Canonical induction variables are necessary because the loop passes
1405/// are designed around them. The most obvious example of this is the
1406/// LoopInfo analysis, which doesn't remember trip count values. It
1407/// expects to be able to rediscover the trip count each time it is
Dan Gohman572645c2010-02-12 10:34:29 +00001408/// needed, and it does this using a simple analysis that only succeeds if
Dan Gohman7979b722010-01-22 00:46:49 +00001409/// the loop has a canonical induction variable.
1410///
1411/// However, when it comes time to generate code, the maximum operation
1412/// can be quite costly, especially if it's inside of an outer loop.
1413///
1414/// This function solves this problem by detecting this type of loop and
1415/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1416/// the instructions for the maximum computation.
1417///
Dan Gohman572645c2010-02-12 10:34:29 +00001418ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
Dan Gohman7979b722010-01-22 00:46:49 +00001419 // Check that the loop matches the pattern we're looking for.
1420 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1421 Cond->getPredicate() != CmpInst::ICMP_NE)
1422 return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001423
Dan Gohman7979b722010-01-22 00:46:49 +00001424 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1425 if (!Sel || !Sel->hasOneUse()) return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001426
Dan Gohman572645c2010-02-12 10:34:29 +00001427 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
Dan Gohman7979b722010-01-22 00:46:49 +00001428 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1429 return Cond;
Dan Gohman572645c2010-02-12 10:34:29 +00001430 const SCEV *One = SE.getIntegerSCEV(1, BackedgeTakenCount->getType());
Dan Gohmana10756e2010-01-21 02:09:26 +00001431
Dan Gohman7979b722010-01-22 00:46:49 +00001432 // Add one to the backedge-taken count to get the trip count.
Dan Gohman572645c2010-02-12 10:34:29 +00001433 const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
Dan Gohman7979b722010-01-22 00:46:49 +00001434
1435 // Check for a max calculation that matches the pattern.
1436 if (!isa<SCEVSMaxExpr>(IterationCount) && !isa<SCEVUMaxExpr>(IterationCount))
1437 return Cond;
1438 const SCEVNAryExpr *Max = cast<SCEVNAryExpr>(IterationCount);
Dan Gohman572645c2010-02-12 10:34:29 +00001439 if (Max != SE.getSCEV(Sel)) return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001440
1441 // To handle a max with more than two operands, this optimization would
1442 // require additional checking and setup.
1443 if (Max->getNumOperands() != 2)
1444 return Cond;
1445
1446 const SCEV *MaxLHS = Max->getOperand(0);
1447 const SCEV *MaxRHS = Max->getOperand(1);
1448 if (!MaxLHS || MaxLHS != One) return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001449 // Check the relevant induction variable for conformance to
1450 // the pattern.
Dan Gohman572645c2010-02-12 10:34:29 +00001451 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001452 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1453 if (!AR || !AR->isAffine() ||
1454 AR->getStart() != One ||
Dan Gohman572645c2010-02-12 10:34:29 +00001455 AR->getStepRecurrence(SE) != One)
Dan Gohman7979b722010-01-22 00:46:49 +00001456 return Cond;
1457
1458 assert(AR->getLoop() == L &&
1459 "Loop condition operand is an addrec in a different loop!");
1460
1461 // Check the right operand of the select, and remember it, as it will
1462 // be used in the new comparison instruction.
1463 Value *NewRHS = 0;
Dan Gohman572645c2010-02-12 10:34:29 +00001464 if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001465 NewRHS = Sel->getOperand(1);
Dan Gohman572645c2010-02-12 10:34:29 +00001466 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001467 NewRHS = Sel->getOperand(2);
1468 if (!NewRHS) return Cond;
1469
1470 // Determine the new comparison opcode. It may be signed or unsigned,
1471 // and the original comparison may be either equality or inequality.
1472 CmpInst::Predicate Pred =
1473 isa<SCEVSMaxExpr>(Max) ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
1474 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1475 Pred = CmpInst::getInversePredicate(Pred);
1476
1477 // Ok, everything looks ok to change the condition into an SLT or SGE and
1478 // delete the max calculation.
1479 ICmpInst *NewCond =
1480 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1481
1482 // Delete the max calculation instructions.
1483 Cond->replaceAllUsesWith(NewCond);
1484 CondUse->setUser(NewCond);
1485 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1486 Cond->eraseFromParent();
1487 Sel->eraseFromParent();
1488 if (Cmp->use_empty())
1489 Cmp->eraseFromParent();
1490 return NewCond;
Dan Gohmanad7321f2008-09-15 21:22:06 +00001491}
1492
Jim Grosbach56a1f802009-11-17 17:53:56 +00001493/// OptimizeLoopTermCond - Change loop terminating condition to use the
Evan Cheng586f69a2009-11-12 07:35:05 +00001494/// postinc iv when possible.
Dan Gohman572645c2010-02-12 10:34:29 +00001495bool
1496LSRInstance::OptimizeLoopTermCond() {
1497 SmallPtrSet<Instruction *, 4> PostIncs;
1498
Evan Cheng586f69a2009-11-12 07:35:05 +00001499 BasicBlock *LatchBlock = L->getLoopLatch();
Evan Cheng076e0852009-11-17 18:10:11 +00001500 SmallVector<BasicBlock*, 8> ExitingBlocks;
1501 L->getExitingBlocks(ExitingBlocks);
Jim Grosbach56a1f802009-11-17 17:53:56 +00001502
Evan Cheng076e0852009-11-17 18:10:11 +00001503 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1504 BasicBlock *ExitingBlock = ExitingBlocks[i];
Evan Cheng586f69a2009-11-12 07:35:05 +00001505
Dan Gohman572645c2010-02-12 10:34:29 +00001506 // Get the terminating condition for the loop if possible. If we
Evan Cheng076e0852009-11-17 18:10:11 +00001507 // can, we want to change it to use a post-incremented version of its
1508 // induction variable, to allow coalescing the live ranges for the IV into
1509 // one register value.
Evan Cheng586f69a2009-11-12 07:35:05 +00001510
Evan Cheng076e0852009-11-17 18:10:11 +00001511 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1512 if (!TermBr)
1513 continue;
1514 // FIXME: Overly conservative, termination condition could be an 'or' etc..
1515 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1516 continue;
Evan Cheng586f69a2009-11-12 07:35:05 +00001517
Evan Cheng076e0852009-11-17 18:10:11 +00001518 // Search IVUsesByStride to find Cond's IVUse if there is one.
1519 IVStrideUse *CondUse = 0;
Evan Cheng076e0852009-11-17 18:10:11 +00001520 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
Dan Gohman572645c2010-02-12 10:34:29 +00001521 if (!FindIVUserForCond(Cond, CondUse))
Evan Cheng076e0852009-11-17 18:10:11 +00001522 continue;
1523
Evan Cheng076e0852009-11-17 18:10:11 +00001524 // If the trip count is computed in terms of a max (due to ScalarEvolution
1525 // being unable to find a sufficient guard, for example), change the loop
1526 // comparison to use SLT or ULT instead of NE.
Dan Gohman572645c2010-02-12 10:34:29 +00001527 // One consequence of doing this now is that it disrupts the count-down
1528 // optimization. That's not always a bad thing though, because in such
1529 // cases it may still be worthwhile to avoid a max.
1530 Cond = OptimizeMax(Cond, CondUse);
Evan Cheng076e0852009-11-17 18:10:11 +00001531
Dan Gohman572645c2010-02-12 10:34:29 +00001532 // If this exiting block dominates the latch block, it may also use
1533 // the post-inc value if it won't be shared with other uses.
1534 // Check for dominance.
1535 if (!DT.dominates(ExitingBlock, LatchBlock))
Dan Gohman7979b722010-01-22 00:46:49 +00001536 continue;
Evan Cheng076e0852009-11-17 18:10:11 +00001537
Dan Gohman572645c2010-02-12 10:34:29 +00001538 // Conservatively avoid trying to use the post-inc value in non-latch
1539 // exits if there may be pre-inc users in intervening blocks.
Dan Gohman590bfe82010-02-14 03:21:49 +00001540 if (LatchBlock != ExitingBlock)
Dan Gohman572645c2010-02-12 10:34:29 +00001541 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1542 // Test if the use is reachable from the exiting block. This dominator
1543 // query is a conservative approximation of reachability.
1544 if (&*UI != CondUse &&
1545 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1546 // Conservatively assume there may be reuse if the quotient of their
1547 // strides could be a legal scale.
1548 const SCEV *A = CondUse->getStride();
1549 const SCEV *B = UI->getStride();
1550 if (SE.getTypeSizeInBits(A->getType()) !=
1551 SE.getTypeSizeInBits(B->getType())) {
1552 if (SE.getTypeSizeInBits(A->getType()) >
1553 SE.getTypeSizeInBits(B->getType()))
1554 B = SE.getSignExtendExpr(B, A->getType());
1555 else
1556 A = SE.getSignExtendExpr(A, B->getType());
1557 }
1558 if (const SCEVConstant *D =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001559 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001560 // Stride of one or negative one can have reuse with non-addresses.
1561 if (D->getValue()->isOne() ||
1562 D->getValue()->isAllOnesValue())
1563 goto decline_post_inc;
1564 // Avoid weird situations.
1565 if (D->getValue()->getValue().getMinSignedBits() >= 64 ||
1566 D->getValue()->getValue().isMinSignedValue())
1567 goto decline_post_inc;
Dan Gohman590bfe82010-02-14 03:21:49 +00001568 // Without TLI, assume that any stride might be valid, and so any
1569 // use might be shared.
1570 if (!TLI)
1571 goto decline_post_inc;
Dan Gohman572645c2010-02-12 10:34:29 +00001572 // Check for possible scaled-address reuse.
1573 const Type *AccessTy = getAccessType(UI->getUser());
1574 TargetLowering::AddrMode AM;
1575 AM.Scale = D->getValue()->getSExtValue();
Dan Gohman2763dfd2010-02-14 02:45:21 +00001576 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001577 goto decline_post_inc;
1578 AM.Scale = -AM.Scale;
Dan Gohman2763dfd2010-02-14 02:45:21 +00001579 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001580 goto decline_post_inc;
1581 }
1582 }
1583
David Greene63c94632009-12-23 22:58:38 +00001584 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
Dan Gohman572645c2010-02-12 10:34:29 +00001585 << *Cond << '\n');
Evan Cheng076e0852009-11-17 18:10:11 +00001586
1587 // It's possible for the setcc instruction to be anywhere in the loop, and
1588 // possible for it to have multiple users. If it is not immediately before
1589 // the exiting block branch, move it.
Dan Gohman572645c2010-02-12 10:34:29 +00001590 if (&*++BasicBlock::iterator(Cond) != TermBr) {
1591 if (Cond->hasOneUse()) {
Evan Cheng076e0852009-11-17 18:10:11 +00001592 Cond->moveBefore(TermBr);
1593 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001594 // Clone the terminating condition and insert into the loopend.
1595 ICmpInst *OldCond = Cond;
Evan Cheng076e0852009-11-17 18:10:11 +00001596 Cond = cast<ICmpInst>(Cond->clone());
1597 Cond->setName(L->getHeader()->getName() + ".termcond");
1598 ExitingBlock->getInstList().insert(TermBr, Cond);
1599
1600 // Clone the IVUse, as the old use still exists!
Dan Gohman572645c2010-02-12 10:34:29 +00001601 CondUse = &IU.AddUser(CondUse->getStride(), CondUse->getOffset(),
1602 Cond, CondUse->getOperandValToReplace());
1603 TermBr->replaceUsesOfWith(OldCond, Cond);
Evan Cheng076e0852009-11-17 18:10:11 +00001604 }
Evan Cheng586f69a2009-11-12 07:35:05 +00001605 }
1606
Evan Cheng076e0852009-11-17 18:10:11 +00001607 // If we get to here, we know that we can transform the setcc instruction to
1608 // use the post-incremented version of the IV, allowing us to coalesce the
1609 // live ranges for the IV correctly.
Dan Gohman572645c2010-02-12 10:34:29 +00001610 CondUse->setOffset(SE.getMinusSCEV(CondUse->getOffset(),
1611 CondUse->getStride()));
Evan Cheng076e0852009-11-17 18:10:11 +00001612 CondUse->setIsUseOfPostIncrementedValue(true);
1613 Changed = true;
1614
Dan Gohman572645c2010-02-12 10:34:29 +00001615 PostIncs.insert(Cond);
1616 decline_post_inc:;
Dan Gohmana10756e2010-01-21 02:09:26 +00001617 }
Dan Gohman572645c2010-02-12 10:34:29 +00001618
1619 // Determine an insertion point for the loop induction variable increment. It
1620 // must dominate all the post-inc comparisons we just set up, and it must
1621 // dominate the loop latch edge.
1622 IVIncInsertPos = L->getLoopLatch()->getTerminator();
1623 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1624 E = PostIncs.end(); I != E; ++I) {
1625 BasicBlock *BB =
1626 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1627 (*I)->getParent());
1628 if (BB == (*I)->getParent())
1629 IVIncInsertPos = *I;
1630 else if (BB != IVIncInsertPos->getParent())
1631 IVIncInsertPos = BB->getTerminator();
1632 }
1633
1634 return Changed;
Dan Gohmana10756e2010-01-21 02:09:26 +00001635}
1636
Dan Gohman572645c2010-02-12 10:34:29 +00001637bool
1638LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
1639 LSRUse::KindType Kind, const Type *AccessTy) {
1640 int64_t NewMinOffset = LU.MinOffset;
1641 int64_t NewMaxOffset = LU.MaxOffset;
1642 const Type *NewAccessTy = AccessTy;
Dan Gohman7979b722010-01-22 00:46:49 +00001643
Dan Gohman572645c2010-02-12 10:34:29 +00001644 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1645 // something conservative, however this can pessimize in the case that one of
1646 // the uses will have all its uses outside the loop, for example.
1647 if (LU.Kind != Kind)
Dan Gohman7979b722010-01-22 00:46:49 +00001648 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001649 // Conservatively assume HasBaseReg is true for now.
1650 if (NewOffset < LU.MinOffset) {
1651 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, /*HasBaseReg=*/true,
Dan Gohman454d26d2010-02-22 04:11:59 +00001652 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001653 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001654 NewMinOffset = NewOffset;
1655 } else if (NewOffset > LU.MaxOffset) {
1656 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, /*HasBaseReg=*/true,
Dan Gohman454d26d2010-02-22 04:11:59 +00001657 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001658 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001659 NewMaxOffset = NewOffset;
Dan Gohmana10756e2010-01-21 02:09:26 +00001660 }
Dan Gohman572645c2010-02-12 10:34:29 +00001661 // Check for a mismatched access type, and fall back conservatively as needed.
1662 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1663 NewAccessTy = Type::getVoidTy(AccessTy->getContext());
Dan Gohmana10756e2010-01-21 02:09:26 +00001664
Dan Gohman572645c2010-02-12 10:34:29 +00001665 // Update the use.
1666 LU.MinOffset = NewMinOffset;
1667 LU.MaxOffset = NewMaxOffset;
1668 LU.AccessTy = NewAccessTy;
1669 if (NewOffset != LU.Offsets.back())
1670 LU.Offsets.push_back(NewOffset);
Dan Gohman8b0ade32010-01-21 22:42:49 +00001671 return true;
1672}
1673
Dan Gohman572645c2010-02-12 10:34:29 +00001674/// getUse - Return an LSRUse index and an offset value for a fixup which
1675/// needs the given expression, with the given kind and optional access type.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001676/// Either reuse an existing use or create a new one, as needed.
Dan Gohman572645c2010-02-12 10:34:29 +00001677std::pair<size_t, int64_t>
1678LSRInstance::getUse(const SCEV *&Expr,
1679 LSRUse::KindType Kind, const Type *AccessTy) {
1680 const SCEV *Copy = Expr;
1681 int64_t Offset = ExtractImmediate(Expr, SE);
Evan Cheng586f69a2009-11-12 07:35:05 +00001682
Dan Gohman572645c2010-02-12 10:34:29 +00001683 // Basic uses can't accept any offset, for example.
Dan Gohman454d26d2010-02-22 04:11:59 +00001684 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
Dan Gohman572645c2010-02-12 10:34:29 +00001685 Expr = Copy;
1686 Offset = 0;
1687 }
1688
1689 std::pair<UseMapTy::iterator, bool> P =
1690 UseMap.insert(std::make_pair(Expr, 0));
1691 if (!P.second) {
1692 // A use already existed with this base.
1693 size_t LUIdx = P.first->second;
1694 LSRUse &LU = Uses[LUIdx];
1695 if (reconcileNewOffset(LU, Offset, Kind, AccessTy))
1696 // Reuse this use.
1697 return std::make_pair(LUIdx, Offset);
1698 }
1699
1700 // Create a new use.
1701 size_t LUIdx = Uses.size();
1702 P.first->second = LUIdx;
1703 Uses.push_back(LSRUse(Kind, AccessTy));
1704 LSRUse &LU = Uses[LUIdx];
1705
1706 // We don't need to track redundant offsets, but we don't need to go out
1707 // of our way here to avoid them.
1708 if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1709 LU.Offsets.push_back(Offset);
1710
1711 LU.MinOffset = Offset;
1712 LU.MaxOffset = Offset;
1713 return std::make_pair(LUIdx, Offset);
1714}
1715
1716void LSRInstance::CollectInterestingTypesAndFactors() {
1717 SmallSetVector<const SCEV *, 4> Strides;
1718
Dan Gohman1b7bf182010-02-19 00:05:23 +00001719 // Collect interesting types and strides.
Dan Gohman572645c2010-02-12 10:34:29 +00001720 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1721 const SCEV *Stride = UI->getStride();
1722
1723 // Collect interesting types.
1724 Types.insert(SE.getEffectiveSCEVType(Stride->getType()));
1725
Dan Gohman1b7bf182010-02-19 00:05:23 +00001726 // Add the stride for this loop.
1727 Strides.insert(Stride);
1728
1729 // Add strides for other mentioned loops.
1730 for (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(UI->getOffset());
1731 AR; AR = dyn_cast<SCEVAddRecExpr>(AR->getStart()))
1732 Strides.insert(AR->getStepRecurrence(SE));
1733 }
1734
1735 // Compute interesting factors from the set of interesting strides.
1736 for (SmallSetVector<const SCEV *, 4>::const_iterator
1737 I = Strides.begin(), E = Strides.end(); I != E; ++I)
Dan Gohman572645c2010-02-12 10:34:29 +00001738 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
Dan Gohman1b7bf182010-02-19 00:05:23 +00001739 next(I); NewStrideIter != E; ++NewStrideIter) {
1740 const SCEV *OldStride = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00001741 const SCEV *NewStride = *NewStrideIter;
Dan Gohman572645c2010-02-12 10:34:29 +00001742
1743 if (SE.getTypeSizeInBits(OldStride->getType()) !=
1744 SE.getTypeSizeInBits(NewStride->getType())) {
1745 if (SE.getTypeSizeInBits(OldStride->getType()) >
1746 SE.getTypeSizeInBits(NewStride->getType()))
1747 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1748 else
1749 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
1750 }
1751 if (const SCEVConstant *Factor =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001752 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
1753 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001754 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1755 Factors.insert(Factor->getValue()->getValue().getSExtValue());
1756 } else if (const SCEVConstant *Factor =
Dan Gohman454d26d2010-02-22 04:11:59 +00001757 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
1758 NewStride,
Dan Gohmanf09b7122010-02-19 19:35:48 +00001759 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001760 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1761 Factors.insert(Factor->getValue()->getValue().getSExtValue());
1762 }
1763 }
Dan Gohman572645c2010-02-12 10:34:29 +00001764
1765 // If all uses use the same type, don't bother looking for truncation-based
1766 // reuse.
1767 if (Types.size() == 1)
1768 Types.clear();
1769
1770 DEBUG(print_factors_and_types(dbgs()));
1771}
1772
1773void LSRInstance::CollectFixupsAndInitialFormulae() {
1774 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1775 // Record the uses.
1776 LSRFixup &LF = getNewFixup();
1777 LF.UserInst = UI->getUser();
1778 LF.OperandValToReplace = UI->getOperandValToReplace();
1779 if (UI->isUseOfPostIncrementedValue())
1780 LF.PostIncLoop = L;
1781
1782 LSRUse::KindType Kind = LSRUse::Basic;
1783 const Type *AccessTy = 0;
1784 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
1785 Kind = LSRUse::Address;
1786 AccessTy = getAccessType(LF.UserInst);
1787 }
1788
1789 const SCEV *S = IU.getCanonicalExpr(*UI);
1790
1791 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
1792 // (N - i == 0), and this allows (N - i) to be the expression that we work
1793 // with rather than just N or i, so we can consider the register
1794 // requirements for both N and i at the same time. Limiting this code to
1795 // equality icmps is not a problem because all interesting loops use
1796 // equality icmps, thanks to IndVarSimplify.
1797 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
1798 if (CI->isEquality()) {
1799 // Swap the operands if needed to put the OperandValToReplace on the
1800 // left, for consistency.
1801 Value *NV = CI->getOperand(1);
1802 if (NV == LF.OperandValToReplace) {
1803 CI->setOperand(1, CI->getOperand(0));
1804 CI->setOperand(0, NV);
1805 }
1806
1807 // x == y --> x - y == 0
1808 const SCEV *N = SE.getSCEV(NV);
1809 if (N->isLoopInvariant(L)) {
1810 Kind = LSRUse::ICmpZero;
1811 S = SE.getMinusSCEV(N, S);
1812 }
1813
1814 // -1 and the negations of all interesting strides (except the negation
1815 // of -1) are now also interesting.
1816 for (size_t i = 0, e = Factors.size(); i != e; ++i)
1817 if (Factors[i] != -1)
1818 Factors.insert(-(uint64_t)Factors[i]);
1819 Factors.insert(-1);
1820 }
1821
1822 // Set up the initial formula for this use.
1823 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
1824 LF.LUIdx = P.first;
1825 LF.Offset = P.second;
1826 LSRUse &LU = Uses[LF.LUIdx];
1827 LU.AllFixupsOutsideLoop &= !L->contains(LF.UserInst);
1828
1829 // If this is the first use of this LSRUse, give it a formula.
1830 if (LU.Formulae.empty()) {
Dan Gohman454d26d2010-02-22 04:11:59 +00001831 InsertInitialFormula(S, LU, LF.LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00001832 CountRegisters(LU.Formulae.back(), LF.LUIdx);
1833 }
1834 }
1835
1836 DEBUG(print_fixups(dbgs()));
1837}
1838
1839void
Dan Gohman454d26d2010-02-22 04:11:59 +00001840LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
Dan Gohman572645c2010-02-12 10:34:29 +00001841 Formula F;
1842 F.InitialMatch(S, L, SE, DT);
1843 bool Inserted = InsertFormula(LU, LUIdx, F);
1844 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
1845}
1846
1847void
1848LSRInstance::InsertSupplementalFormula(const SCEV *S,
1849 LSRUse &LU, size_t LUIdx) {
1850 Formula F;
1851 F.BaseRegs.push_back(S);
1852 F.AM.HasBaseReg = true;
1853 bool Inserted = InsertFormula(LU, LUIdx, F);
1854 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
1855}
1856
1857/// CountRegisters - Note which registers are used by the given formula,
1858/// updating RegUses.
1859void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
1860 if (F.ScaledReg)
1861 RegUses.CountRegister(F.ScaledReg, LUIdx);
1862 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
1863 E = F.BaseRegs.end(); I != E; ++I)
1864 RegUses.CountRegister(*I, LUIdx);
1865}
1866
1867/// InsertFormula - If the given formula has not yet been inserted, add it to
1868/// the list, and return true. Return false otherwise.
1869bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
Dan Gohman454d26d2010-02-22 04:11:59 +00001870 if (!LU.InsertFormula(F))
Dan Gohman572645c2010-02-12 10:34:29 +00001871 return false;
1872
1873 CountRegisters(F, LUIdx);
1874 return true;
1875}
1876
1877/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
1878/// loop-invariant values which we're tracking. These other uses will pin these
1879/// values in registers, making them less profitable for elimination.
1880/// TODO: This currently misses non-constant addrec step registers.
1881/// TODO: Should this give more weight to users inside the loop?
1882void
1883LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
1884 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
1885 SmallPtrSet<const SCEV *, 8> Inserted;
1886
1887 while (!Worklist.empty()) {
1888 const SCEV *S = Worklist.pop_back_val();
1889
1890 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
1891 Worklist.insert(Worklist.end(), N->op_begin(), N->op_end());
1892 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
1893 Worklist.push_back(C->getOperand());
1894 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
1895 Worklist.push_back(D->getLHS());
1896 Worklist.push_back(D->getRHS());
1897 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
1898 if (!Inserted.insert(U)) continue;
1899 const Value *V = U->getValue();
1900 if (const Instruction *Inst = dyn_cast<Instruction>(V))
1901 if (L->contains(Inst)) continue;
1902 for (Value::use_const_iterator UI = V->use_begin(), UE = V->use_end();
1903 UI != UE; ++UI) {
1904 const Instruction *UserInst = dyn_cast<Instruction>(*UI);
1905 // Ignore non-instructions.
1906 if (!UserInst)
Dan Gohman7979b722010-01-22 00:46:49 +00001907 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00001908 // Ignore instructions in other functions (as can happen with
1909 // Constants).
1910 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
Dan Gohman7979b722010-01-22 00:46:49 +00001911 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00001912 // Ignore instructions not dominated by the loop.
1913 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
1914 UserInst->getParent() :
1915 cast<PHINode>(UserInst)->getIncomingBlock(
1916 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
1917 if (!DT.dominates(L->getHeader(), UseBB))
1918 continue;
1919 // Ignore uses which are part of other SCEV expressions, to avoid
1920 // analyzing them multiple times.
1921 if (SE.isSCEVable(UserInst->getType()) &&
1922 !isa<SCEVUnknown>(SE.getSCEV(const_cast<Instruction *>(UserInst))))
1923 continue;
1924 // Ignore icmp instructions which are already being analyzed.
1925 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
1926 unsigned OtherIdx = !UI.getOperandNo();
1927 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
1928 if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
1929 continue;
1930 }
1931
1932 LSRFixup &LF = getNewFixup();
1933 LF.UserInst = const_cast<Instruction *>(UserInst);
1934 LF.OperandValToReplace = UI.getUse();
1935 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
1936 LF.LUIdx = P.first;
1937 LF.Offset = P.second;
1938 LSRUse &LU = Uses[LF.LUIdx];
1939 LU.AllFixupsOutsideLoop &= L->contains(LF.UserInst);
1940 InsertSupplementalFormula(U, LU, LF.LUIdx);
1941 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
1942 break;
1943 }
1944 }
1945 }
1946}
1947
1948/// CollectSubexprs - Split S into subexpressions which can be pulled out into
1949/// separate registers. If C is non-null, multiply each subexpression by C.
1950static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
1951 SmallVectorImpl<const SCEV *> &Ops,
1952 ScalarEvolution &SE) {
1953 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1954 // Break out add operands.
1955 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1956 I != E; ++I)
1957 CollectSubexprs(*I, C, Ops, SE);
1958 return;
1959 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1960 // Split a non-zero base out of an addrec.
1961 if (!AR->getStart()->isZero()) {
Dan Gohman572645c2010-02-12 10:34:29 +00001962 CollectSubexprs(SE.getAddRecExpr(SE.getIntegerSCEV(0, AR->getType()),
1963 AR->getStepRecurrence(SE),
1964 AR->getLoop()), C, Ops, SE);
Dan Gohman68d6da12010-02-12 19:35:25 +00001965 CollectSubexprs(AR->getStart(), C, Ops, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00001966 return;
1967 }
1968 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
1969 // Break (C * (a + b + c)) into C*a + C*b + C*c.
1970 if (Mul->getNumOperands() == 2)
1971 if (const SCEVConstant *Op0 =
1972 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
1973 CollectSubexprs(Mul->getOperand(1),
1974 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
1975 Ops, SE);
1976 return;
1977 }
1978 }
1979
1980 // Otherwise use the value itself.
1981 Ops.push_back(C ? SE.getMulExpr(C, S) : S);
1982}
1983
1984/// GenerateReassociations - Split out subexpressions from adds and the bases of
1985/// addrecs.
1986void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
1987 Formula Base,
1988 unsigned Depth) {
1989 // Arbitrarily cap recursion to protect compile time.
1990 if (Depth >= 3) return;
1991
1992 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
1993 const SCEV *BaseReg = Base.BaseRegs[i];
1994
1995 SmallVector<const SCEV *, 8> AddOps;
1996 CollectSubexprs(BaseReg, 0, AddOps, SE);
1997 if (AddOps.size() == 1) continue;
1998
1999 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2000 JE = AddOps.end(); J != JE; ++J) {
2001 // Don't pull a constant into a register if the constant could be folded
2002 // into an immediate field.
2003 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2004 Base.getNumRegs() > 1,
2005 LU.Kind, LU.AccessTy, TLI, SE))
2006 continue;
2007
2008 // Collect all operands except *J.
2009 SmallVector<const SCEV *, 8> InnerAddOps;
2010 for (SmallVectorImpl<const SCEV *>::const_iterator K = AddOps.begin(),
2011 KE = AddOps.end(); K != KE; ++K)
2012 if (K != J)
2013 InnerAddOps.push_back(*K);
2014
2015 // Don't leave just a constant behind in a register if the constant could
2016 // be folded into an immediate field.
2017 if (InnerAddOps.size() == 1 &&
2018 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2019 Base.getNumRegs() > 1,
2020 LU.Kind, LU.AccessTy, TLI, SE))
2021 continue;
2022
2023 Formula F = Base;
2024 F.BaseRegs[i] = SE.getAddExpr(InnerAddOps);
2025 F.BaseRegs.push_back(*J);
2026 if (InsertFormula(LU, LUIdx, F))
2027 // If that formula hadn't been seen before, recurse to find more like
2028 // it.
2029 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2030 }
2031 }
2032}
2033
2034/// GenerateCombinations - Generate a formula consisting of all of the
2035/// loop-dominating registers added into a single register.
2036void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
Dan Gohman441a3892010-02-14 18:51:39 +00002037 Formula Base) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002038 // This method is only interesting on a plurality of registers.
Dan Gohman572645c2010-02-12 10:34:29 +00002039 if (Base.BaseRegs.size() <= 1) return;
2040
2041 Formula F = Base;
2042 F.BaseRegs.clear();
2043 SmallVector<const SCEV *, 4> Ops;
2044 for (SmallVectorImpl<const SCEV *>::const_iterator
2045 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2046 const SCEV *BaseReg = *I;
2047 if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2048 !BaseReg->hasComputableLoopEvolution(L))
2049 Ops.push_back(BaseReg);
2050 else
2051 F.BaseRegs.push_back(BaseReg);
2052 }
2053 if (Ops.size() > 1) {
Dan Gohmance947362010-02-14 18:50:49 +00002054 const SCEV *Sum = SE.getAddExpr(Ops);
2055 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2056 // opportunity to fold something. For now, just ignore such cases
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002057 // rather than proceed with zero in a register.
Dan Gohmance947362010-02-14 18:50:49 +00002058 if (!Sum->isZero()) {
2059 F.BaseRegs.push_back(Sum);
2060 (void)InsertFormula(LU, LUIdx, F);
2061 }
Dan Gohman572645c2010-02-12 10:34:29 +00002062 }
2063}
2064
2065/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2066void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2067 Formula Base) {
2068 // We can't add a symbolic offset if the address already contains one.
2069 if (Base.AM.BaseGV) return;
2070
2071 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2072 const SCEV *G = Base.BaseRegs[i];
2073 GlobalValue *GV = ExtractSymbol(G, SE);
2074 if (G->isZero() || !GV)
2075 continue;
2076 Formula F = Base;
2077 F.AM.BaseGV = GV;
2078 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2079 LU.Kind, LU.AccessTy, TLI))
2080 continue;
2081 F.BaseRegs[i] = G;
2082 (void)InsertFormula(LU, LUIdx, F);
2083 }
2084}
2085
2086/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2087void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2088 Formula Base) {
2089 // TODO: For now, just add the min and max offset, because it usually isn't
2090 // worthwhile looking at everything inbetween.
2091 SmallVector<int64_t, 4> Worklist;
2092 Worklist.push_back(LU.MinOffset);
2093 if (LU.MaxOffset != LU.MinOffset)
2094 Worklist.push_back(LU.MaxOffset);
2095
2096 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2097 const SCEV *G = Base.BaseRegs[i];
2098
2099 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2100 E = Worklist.end(); I != E; ++I) {
2101 Formula F = Base;
2102 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2103 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2104 LU.Kind, LU.AccessTy, TLI)) {
2105 F.BaseRegs[i] = SE.getAddExpr(G, SE.getIntegerSCEV(*I, G->getType()));
2106
2107 (void)InsertFormula(LU, LUIdx, F);
2108 }
2109 }
2110
2111 int64_t Imm = ExtractImmediate(G, SE);
2112 if (G->isZero() || Imm == 0)
2113 continue;
2114 Formula F = Base;
2115 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2116 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2117 LU.Kind, LU.AccessTy, TLI))
2118 continue;
2119 F.BaseRegs[i] = G;
2120 (void)InsertFormula(LU, LUIdx, F);
2121 }
2122}
2123
2124/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2125/// the comparison. For example, x == y -> x*c == y*c.
2126void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2127 Formula Base) {
2128 if (LU.Kind != LSRUse::ICmpZero) return;
2129
2130 // Determine the integer type for the base formula.
2131 const Type *IntTy = Base.getType();
2132 if (!IntTy) return;
2133 if (SE.getTypeSizeInBits(IntTy) > 64) return;
2134
2135 // Don't do this if there is more than one offset.
2136 if (LU.MinOffset != LU.MaxOffset) return;
2137
2138 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2139
2140 // Check each interesting stride.
2141 for (SmallSetVector<int64_t, 8>::const_iterator
2142 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2143 int64_t Factor = *I;
2144 Formula F = Base;
2145
2146 // Check that the multiplication doesn't overflow.
Dan Gohman968cb932010-02-17 00:41:53 +00002147 if (F.AM.BaseOffs == INT64_MIN && Factor == -1)
2148 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002149 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00002150 if (F.AM.BaseOffs / Factor != Base.AM.BaseOffs)
Dan Gohman572645c2010-02-12 10:34:29 +00002151 continue;
2152
2153 // Check that multiplying with the use offset doesn't overflow.
2154 int64_t Offset = LU.MinOffset;
Dan Gohman968cb932010-02-17 00:41:53 +00002155 if (Offset == INT64_MIN && Factor == -1)
2156 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002157 Offset = (uint64_t)Offset * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00002158 if (Offset / Factor != LU.MinOffset)
Dan Gohman572645c2010-02-12 10:34:29 +00002159 continue;
2160
2161 // Check that this scale is legal.
2162 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2163 continue;
2164
2165 // Compensate for the use having MinOffset built into it.
2166 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2167
2168 const SCEV *FactorS = SE.getIntegerSCEV(Factor, IntTy);
2169
2170 // Check that multiplying with each base register doesn't overflow.
2171 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2172 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002173 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
Dan Gohman572645c2010-02-12 10:34:29 +00002174 goto next;
2175 }
2176
2177 // Check that multiplying with the scaled register doesn't overflow.
2178 if (F.ScaledReg) {
2179 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002180 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
Dan Gohman572645c2010-02-12 10:34:29 +00002181 continue;
2182 }
2183
2184 // If we make it here and it's legal, add it.
2185 (void)InsertFormula(LU, LUIdx, F);
2186 next:;
2187 }
2188}
2189
2190/// GenerateScales - Generate stride factor reuse formulae by making use of
2191/// scaled-offset address modes, for example.
2192void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx,
2193 Formula Base) {
2194 // Determine the integer type for the base formula.
2195 const Type *IntTy = Base.getType();
2196 if (!IntTy) return;
2197
2198 // If this Formula already has a scaled register, we can't add another one.
2199 if (Base.AM.Scale != 0) return;
2200
2201 // Check each interesting stride.
2202 for (SmallSetVector<int64_t, 8>::const_iterator
2203 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2204 int64_t Factor = *I;
2205
2206 Base.AM.Scale = Factor;
2207 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2208 // Check whether this scale is going to be legal.
2209 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2210 LU.Kind, LU.AccessTy, TLI)) {
2211 // As a special-case, handle special out-of-loop Basic users specially.
2212 // TODO: Reconsider this special case.
2213 if (LU.Kind == LSRUse::Basic &&
2214 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2215 LSRUse::Special, LU.AccessTy, TLI) &&
2216 LU.AllFixupsOutsideLoop)
2217 LU.Kind = LSRUse::Special;
2218 else
2219 continue;
2220 }
2221 // For an ICmpZero, negating a solitary base register won't lead to
2222 // new solutions.
2223 if (LU.Kind == LSRUse::ICmpZero &&
2224 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2225 continue;
2226 // For each addrec base reg, apply the scale, if possible.
2227 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2228 if (const SCEVAddRecExpr *AR =
2229 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
2230 const SCEV *FactorS = SE.getIntegerSCEV(Factor, IntTy);
2231 if (FactorS->isZero())
2232 continue;
2233 // Divide out the factor, ignoring high bits, since we'll be
2234 // scaling the value back up in the end.
Dan Gohmanf09b7122010-02-19 19:35:48 +00002235 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
Dan Gohman572645c2010-02-12 10:34:29 +00002236 // TODO: This could be optimized to avoid all the copying.
2237 Formula F = Base;
2238 F.ScaledReg = Quotient;
2239 std::swap(F.BaseRegs[i], F.BaseRegs.back());
2240 F.BaseRegs.pop_back();
2241 (void)InsertFormula(LU, LUIdx, F);
2242 }
2243 }
2244 }
2245}
2246
2247/// GenerateTruncates - Generate reuse formulae from different IV types.
2248void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx,
2249 Formula Base) {
2250 // This requires TargetLowering to tell us which truncates are free.
2251 if (!TLI) return;
2252
2253 // Don't bother truncating symbolic values.
2254 if (Base.AM.BaseGV) return;
2255
2256 // Determine the integer type for the base formula.
2257 const Type *DstTy = Base.getType();
2258 if (!DstTy) return;
2259 DstTy = SE.getEffectiveSCEVType(DstTy);
2260
2261 for (SmallSetVector<const Type *, 4>::const_iterator
2262 I = Types.begin(), E = Types.end(); I != E; ++I) {
2263 const Type *SrcTy = *I;
2264 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2265 Formula F = Base;
2266
2267 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2268 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2269 JE = F.BaseRegs.end(); J != JE; ++J)
2270 *J = SE.getAnyExtendExpr(*J, SrcTy);
2271
2272 // TODO: This assumes we've done basic processing on all uses and
2273 // have an idea what the register usage is.
2274 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2275 continue;
2276
2277 (void)InsertFormula(LU, LUIdx, F);
2278 }
2279 }
2280}
2281
2282namespace {
2283
Dan Gohman6020d852010-02-14 18:51:20 +00002284/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
Dan Gohman572645c2010-02-12 10:34:29 +00002285/// defer modifications so that the search phase doesn't have to worry about
2286/// the data structures moving underneath it.
2287struct WorkItem {
2288 size_t LUIdx;
2289 int64_t Imm;
2290 const SCEV *OrigReg;
2291
2292 WorkItem(size_t LI, int64_t I, const SCEV *R)
2293 : LUIdx(LI), Imm(I), OrigReg(R) {}
2294
2295 void print(raw_ostream &OS) const;
2296 void dump() const;
2297};
2298
2299}
2300
2301void WorkItem::print(raw_ostream &OS) const {
2302 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2303 << " , add offset " << Imm;
2304}
2305
2306void WorkItem::dump() const {
2307 print(errs()); errs() << '\n';
2308}
2309
2310/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2311/// distance apart and try to form reuse opportunities between them.
2312void LSRInstance::GenerateCrossUseConstantOffsets() {
2313 // Group the registers by their value without any added constant offset.
2314 typedef std::map<int64_t, const SCEV *> ImmMapTy;
2315 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2316 RegMapTy Map;
2317 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2318 SmallVector<const SCEV *, 8> Sequence;
2319 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2320 I != E; ++I) {
2321 const SCEV *Reg = *I;
2322 int64_t Imm = ExtractImmediate(Reg, SE);
2323 std::pair<RegMapTy::iterator, bool> Pair =
2324 Map.insert(std::make_pair(Reg, ImmMapTy()));
2325 if (Pair.second)
2326 Sequence.push_back(Reg);
2327 Pair.first->second.insert(std::make_pair(Imm, *I));
2328 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2329 }
2330
2331 // Now examine each set of registers with the same base value. Build up
2332 // a list of work to do and do the work in a separate step so that we're
2333 // not adding formulae and register counts while we're searching.
2334 SmallVector<WorkItem, 32> WorkItems;
2335 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2336 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2337 E = Sequence.end(); I != E; ++I) {
2338 const SCEV *Reg = *I;
2339 const ImmMapTy &Imms = Map.find(Reg)->second;
2340
Dan Gohmancd045c02010-02-12 19:20:37 +00002341 // It's not worthwhile looking for reuse if there's only one offset.
2342 if (Imms.size() == 1)
2343 continue;
2344
Dan Gohman572645c2010-02-12 10:34:29 +00002345 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2346 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2347 J != JE; ++J)
2348 dbgs() << ' ' << J->first;
2349 dbgs() << '\n');
2350
2351 // Examine each offset.
2352 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2353 J != JE; ++J) {
2354 const SCEV *OrigReg = J->second;
2355
2356 int64_t JImm = J->first;
2357 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2358
2359 if (!isa<SCEVConstant>(OrigReg) &&
2360 UsedByIndicesMap[Reg].count() == 1) {
2361 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2362 continue;
2363 }
2364
2365 // Conservatively examine offsets between this orig reg a few selected
2366 // other orig regs.
2367 ImmMapTy::const_iterator OtherImms[] = {
2368 Imms.begin(), prior(Imms.end()),
2369 Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2370 };
2371 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2372 ImmMapTy::const_iterator M = OtherImms[i];
Dan Gohmancd045c02010-02-12 19:20:37 +00002373 if (M == J || M == JE) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002374
2375 // Compute the difference between the two.
2376 int64_t Imm = (uint64_t)JImm - M->first;
2377 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2378 LUIdx = UsedByIndices.find_next(LUIdx))
2379 // Make a memo of this use, offset, and register tuple.
2380 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2381 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
Evan Cheng586f69a2009-11-12 07:35:05 +00002382 }
2383 }
2384 }
2385
Dan Gohman572645c2010-02-12 10:34:29 +00002386 Map.clear();
2387 Sequence.clear();
2388 UsedByIndicesMap.clear();
2389 UniqueItems.clear();
2390
2391 // Now iterate through the worklist and add new formulae.
2392 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2393 E = WorkItems.end(); I != E; ++I) {
2394 const WorkItem &WI = *I;
2395 size_t LUIdx = WI.LUIdx;
2396 LSRUse &LU = Uses[LUIdx];
2397 int64_t Imm = WI.Imm;
2398 const SCEV *OrigReg = WI.OrigReg;
2399
2400 const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2401 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2402 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2403
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002404 // TODO: Use a more targeted data structure.
Dan Gohman572645c2010-02-12 10:34:29 +00002405 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2406 Formula F = LU.Formulae[L];
2407 // Use the immediate in the scaled register.
2408 if (F.ScaledReg == OrigReg) {
2409 int64_t Offs = (uint64_t)F.AM.BaseOffs +
2410 Imm * (uint64_t)F.AM.Scale;
2411 // Don't create 50 + reg(-50).
2412 if (F.referencesReg(SE.getSCEV(
2413 ConstantInt::get(IntTy, -(uint64_t)Offs))))
2414 continue;
2415 Formula NewF = F;
2416 NewF.AM.BaseOffs = Offs;
2417 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2418 LU.Kind, LU.AccessTy, TLI))
2419 continue;
2420 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2421
2422 // If the new scale is a constant in a register, and adding the constant
2423 // value to the immediate would produce a value closer to zero than the
2424 // immediate itself, then the formula isn't worthwhile.
2425 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2426 if (C->getValue()->getValue().isNegative() !=
2427 (NewF.AM.BaseOffs < 0) &&
2428 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
2429 .ule(APInt(BitWidth, NewF.AM.BaseOffs).abs()))
2430 continue;
2431
2432 // OK, looks good.
2433 (void)InsertFormula(LU, LUIdx, NewF);
2434 } else {
2435 // Use the immediate in a base register.
2436 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2437 const SCEV *BaseReg = F.BaseRegs[N];
2438 if (BaseReg != OrigReg)
2439 continue;
2440 Formula NewF = F;
2441 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2442 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2443 LU.Kind, LU.AccessTy, TLI))
2444 continue;
2445 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2446
2447 // If the new formula has a constant in a register, and adding the
2448 // constant value to the immediate would produce a value closer to
2449 // zero than the immediate itself, then the formula isn't worthwhile.
2450 for (SmallVectorImpl<const SCEV *>::const_iterator
2451 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2452 J != JE; ++J)
2453 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
2454 if (C->getValue()->getValue().isNegative() !=
2455 (NewF.AM.BaseOffs < 0) &&
2456 C->getValue()->getValue().abs()
2457 .ule(APInt(BitWidth, NewF.AM.BaseOffs).abs()))
2458 goto skip_formula;
2459
2460 // Ok, looks good.
2461 (void)InsertFormula(LU, LUIdx, NewF);
2462 break;
2463 skip_formula:;
2464 }
2465 }
2466 }
2467 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00002468}
2469
Dan Gohman572645c2010-02-12 10:34:29 +00002470/// GenerateAllReuseFormulae - Generate formulae for each use.
2471void
2472LSRInstance::GenerateAllReuseFormulae() {
Dan Gohmanc2385a02010-02-16 01:42:53 +00002473 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
Dan Gohman572645c2010-02-12 10:34:29 +00002474 // queries are more precise.
2475 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2476 LSRUse &LU = Uses[LUIdx];
2477 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2478 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2479 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2480 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2481 }
2482 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2483 LSRUse &LU = Uses[LUIdx];
2484 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2485 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2486 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2487 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2488 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2489 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2490 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2491 GenerateScales(LU, LUIdx, LU.Formulae[i]);
Dan Gohmanc2385a02010-02-16 01:42:53 +00002492 }
2493 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2494 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00002495 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2496 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2497 }
2498
2499 GenerateCrossUseConstantOffsets();
2500}
2501
2502/// If their are multiple formulae with the same set of registers used
2503/// by other uses, pick the best one and delete the others.
2504void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2505#ifndef NDEBUG
2506 bool Changed = false;
2507#endif
2508
2509 // Collect the best formula for each unique set of shared registers. This
2510 // is reset for each use.
2511 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2512 BestFormulaeTy;
2513 BestFormulaeTy BestFormulae;
2514
2515 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2516 LSRUse &LU = Uses[LUIdx];
2517 FormulaSorter Sorter(L, LU, SE, DT);
2518
2519 // Clear out the set of used regs; it will be recomputed.
2520 LU.Regs.clear();
2521
2522 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2523 FIdx != NumForms; ++FIdx) {
2524 Formula &F = LU.Formulae[FIdx];
2525
2526 SmallVector<const SCEV *, 2> Key;
2527 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2528 JE = F.BaseRegs.end(); J != JE; ++J) {
2529 const SCEV *Reg = *J;
2530 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2531 Key.push_back(Reg);
2532 }
2533 if (F.ScaledReg &&
2534 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2535 Key.push_back(F.ScaledReg);
2536 // Unstable sort by host order ok, because this is only used for
2537 // uniquifying.
2538 std::sort(Key.begin(), Key.end());
2539
2540 std::pair<BestFormulaeTy::const_iterator, bool> P =
2541 BestFormulae.insert(std::make_pair(Key, FIdx));
2542 if (!P.second) {
2543 Formula &Best = LU.Formulae[P.first->second];
2544 if (Sorter.operator()(F, Best))
2545 std::swap(F, Best);
2546 DEBUG(dbgs() << "Filtering out "; F.print(dbgs());
2547 dbgs() << "\n"
2548 " in favor of "; Best.print(dbgs());
2549 dbgs() << '\n');
2550#ifndef NDEBUG
2551 Changed = true;
2552#endif
2553 std::swap(F, LU.Formulae.back());
2554 LU.Formulae.pop_back();
2555 --FIdx;
2556 --NumForms;
2557 continue;
2558 }
2559 if (F.ScaledReg) LU.Regs.insert(F.ScaledReg);
2560 LU.Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
2561 }
2562 BestFormulae.clear();
2563 }
2564
2565 DEBUG(if (Changed) {
Dan Gohman9214b822010-02-13 02:06:02 +00002566 dbgs() << "\n"
2567 "After filtering out undesirable candidates:\n";
Dan Gohman572645c2010-02-12 10:34:29 +00002568 print_uses(dbgs());
2569 });
2570}
2571
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002572/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
Dan Gohman572645c2010-02-12 10:34:29 +00002573/// formulae to choose from, use some rough heuristics to prune down the number
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002574/// of formulae. This keeps the main solver from taking an extraordinary amount
Dan Gohman572645c2010-02-12 10:34:29 +00002575/// of time in some worst-case scenarios.
2576void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
2577 // This is a rough guess that seems to work fairly well.
2578 const size_t Limit = UINT16_MAX;
2579
2580 SmallPtrSet<const SCEV *, 4> Taken;
2581 for (;;) {
2582 // Estimate the worst-case number of solutions we might consider. We almost
2583 // never consider this many solutions because we prune the search space,
2584 // but the pruning isn't always sufficient.
2585 uint32_t Power = 1;
2586 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2587 E = Uses.end(); I != E; ++I) {
2588 size_t FSize = I->Formulae.size();
2589 if (FSize >= Limit) {
2590 Power = Limit;
2591 break;
2592 }
2593 Power *= FSize;
2594 if (Power >= Limit)
2595 break;
2596 }
2597 if (Power < Limit)
2598 break;
2599
2600 // Ok, we have too many of formulae on our hands to conveniently handle.
2601 // Use a rough heuristic to thin out the list.
2602
2603 // Pick the register which is used by the most LSRUses, which is likely
2604 // to be a good reuse register candidate.
2605 const SCEV *Best = 0;
2606 unsigned BestNum = 0;
2607 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2608 I != E; ++I) {
2609 const SCEV *Reg = *I;
2610 if (Taken.count(Reg))
2611 continue;
2612 if (!Best)
2613 Best = Reg;
2614 else {
2615 unsigned Count = RegUses.getUsedByIndices(Reg).count();
2616 if (Count > BestNum) {
2617 Best = Reg;
2618 BestNum = Count;
2619 }
2620 }
2621 }
2622
2623 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002624 << " will yield profitable reuse.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00002625 Taken.insert(Best);
2626
2627 // In any use with formulae which references this register, delete formulae
2628 // which don't reference it.
2629 for (SmallVectorImpl<LSRUse>::iterator I = Uses.begin(),
2630 E = Uses.end(); I != E; ++I) {
2631 LSRUse &LU = *I;
2632 if (!LU.Regs.count(Best)) continue;
2633
2634 // Clear out the set of used regs; it will be recomputed.
2635 LU.Regs.clear();
2636
2637 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2638 Formula &F = LU.Formulae[i];
2639 if (!F.referencesReg(Best)) {
2640 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
2641 std::swap(LU.Formulae.back(), F);
2642 LU.Formulae.pop_back();
2643 --e;
2644 --i;
2645 continue;
2646 }
2647
2648 if (F.ScaledReg) LU.Regs.insert(F.ScaledReg);
2649 LU.Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
2650 }
2651 }
2652
2653 DEBUG(dbgs() << "After pre-selection:\n";
2654 print_uses(dbgs()));
2655 }
2656}
2657
2658/// SolveRecurse - This is the recursive solver.
2659void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2660 Cost &SolutionCost,
2661 SmallVectorImpl<const Formula *> &Workspace,
2662 const Cost &CurCost,
2663 const SmallPtrSet<const SCEV *, 16> &CurRegs,
2664 DenseSet<const SCEV *> &VisitedRegs) const {
2665 // Some ideas:
2666 // - prune more:
2667 // - use more aggressive filtering
2668 // - sort the formula so that the most profitable solutions are found first
2669 // - sort the uses too
2670 // - search faster:
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002671 // - don't compute a cost, and then compare. compare while computing a cost
Dan Gohman572645c2010-02-12 10:34:29 +00002672 // and bail early.
2673 // - track register sets with SmallBitVector
2674
2675 const LSRUse &LU = Uses[Workspace.size()];
2676
2677 // If this use references any register that's already a part of the
2678 // in-progress solution, consider it a requirement that a formula must
2679 // reference that register in order to be considered. This prunes out
2680 // unprofitable searching.
2681 SmallSetVector<const SCEV *, 4> ReqRegs;
2682 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
2683 E = CurRegs.end(); I != E; ++I)
Dan Gohman9214b822010-02-13 02:06:02 +00002684 if (LU.Regs.count(*I))
Dan Gohman572645c2010-02-12 10:34:29 +00002685 ReqRegs.insert(*I);
Dan Gohman572645c2010-02-12 10:34:29 +00002686
Dan Gohman9214b822010-02-13 02:06:02 +00002687 bool AnySatisfiedReqRegs = false;
Dan Gohman572645c2010-02-12 10:34:29 +00002688 SmallPtrSet<const SCEV *, 16> NewRegs;
2689 Cost NewCost;
Dan Gohman9214b822010-02-13 02:06:02 +00002690retry:
Dan Gohman572645c2010-02-12 10:34:29 +00002691 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2692 E = LU.Formulae.end(); I != E; ++I) {
2693 const Formula &F = *I;
2694
2695 // Ignore formulae which do not use any of the required registers.
2696 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
2697 JE = ReqRegs.end(); J != JE; ++J) {
2698 const SCEV *Reg = *J;
2699 if ((!F.ScaledReg || F.ScaledReg != Reg) &&
2700 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
2701 F.BaseRegs.end())
2702 goto skip;
2703 }
Dan Gohman9214b822010-02-13 02:06:02 +00002704 AnySatisfiedReqRegs = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002705
2706 // Evaluate the cost of the current formula. If it's already worse than
2707 // the current best, prune the search at that point.
2708 NewCost = CurCost;
2709 NewRegs = CurRegs;
2710 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
2711 if (NewCost < SolutionCost) {
2712 Workspace.push_back(&F);
2713 if (Workspace.size() != Uses.size()) {
2714 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
2715 NewRegs, VisitedRegs);
2716 if (F.getNumRegs() == 1 && Workspace.size() == 1)
2717 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
2718 } else {
2719 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
2720 dbgs() << ". Regs:";
2721 for (SmallPtrSet<const SCEV *, 16>::const_iterator
2722 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
2723 dbgs() << ' ' << **I;
2724 dbgs() << '\n');
2725
2726 SolutionCost = NewCost;
2727 Solution = Workspace;
2728 }
2729 Workspace.pop_back();
2730 }
2731 skip:;
2732 }
Dan Gohman9214b822010-02-13 02:06:02 +00002733
2734 // If none of the formulae had all of the required registers, relax the
2735 // constraint so that we don't exclude all formulae.
2736 if (!AnySatisfiedReqRegs) {
2737 ReqRegs.clear();
2738 goto retry;
2739 }
Dan Gohman572645c2010-02-12 10:34:29 +00002740}
2741
2742void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
2743 SmallVector<const Formula *, 8> Workspace;
2744 Cost SolutionCost;
2745 SolutionCost.Loose();
2746 Cost CurCost;
2747 SmallPtrSet<const SCEV *, 16> CurRegs;
2748 DenseSet<const SCEV *> VisitedRegs;
2749 Workspace.reserve(Uses.size());
2750
2751 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
2752 CurRegs, VisitedRegs);
2753
2754 // Ok, we've now made all our decisions.
2755 DEBUG(dbgs() << "\n"
2756 "The chosen solution requires "; SolutionCost.print(dbgs());
2757 dbgs() << ":\n";
2758 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
2759 dbgs() << " ";
2760 Uses[i].print(dbgs());
2761 dbgs() << "\n"
2762 " ";
2763 Solution[i]->print(dbgs());
2764 dbgs() << '\n';
2765 });
2766}
2767
2768/// getImmediateDominator - A handy utility for the specific DominatorTree
2769/// query that we need here.
2770///
2771static BasicBlock *getImmediateDominator(BasicBlock *BB, DominatorTree &DT) {
2772 DomTreeNode *Node = DT.getNode(BB);
2773 if (!Node) return 0;
2774 Node = Node->getIDom();
2775 if (!Node) return 0;
2776 return Node->getBlock();
2777}
2778
2779Value *LSRInstance::Expand(const LSRFixup &LF,
2780 const Formula &F,
2781 BasicBlock::iterator IP,
Dan Gohman572645c2010-02-12 10:34:29 +00002782 SCEVExpander &Rewriter,
Dan Gohman454d26d2010-02-22 04:11:59 +00002783 SmallVectorImpl<WeakVH> &DeadInsts) const {
Dan Gohman572645c2010-02-12 10:34:29 +00002784 const LSRUse &LU = Uses[LF.LUIdx];
2785
2786 // Then, collect some instructions which we will remain dominated by when
2787 // expanding the replacement. These must be dominated by any operands that
2788 // will be required in the expansion.
2789 SmallVector<Instruction *, 4> Inputs;
2790 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
2791 Inputs.push_back(I);
2792 if (LU.Kind == LSRUse::ICmpZero)
2793 if (Instruction *I =
2794 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
2795 Inputs.push_back(I);
Dan Gohman069d6f32010-03-02 01:59:21 +00002796 if (LF.PostIncLoop) {
2797 if (!L->contains(LF.UserInst))
2798 Inputs.push_back(L->getLoopLatch()->getTerminator());
2799 else
2800 Inputs.push_back(IVIncInsertPos);
2801 }
Dan Gohman572645c2010-02-12 10:34:29 +00002802
2803 // Then, climb up the immediate dominator tree as far as we can go while
2804 // still being dominated by the input positions.
2805 for (;;) {
2806 bool AllDominate = true;
2807 Instruction *BetterPos = 0;
2808 BasicBlock *IDom = getImmediateDominator(IP->getParent(), DT);
2809 if (!IDom) break;
2810 Instruction *Tentative = IDom->getTerminator();
2811 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
2812 E = Inputs.end(); I != E; ++I) {
2813 Instruction *Inst = *I;
2814 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
2815 AllDominate = false;
2816 break;
2817 }
2818 if (IDom == Inst->getParent() &&
2819 (!BetterPos || DT.dominates(BetterPos, Inst)))
2820 BetterPos = next(BasicBlock::iterator(Inst));
2821 }
2822 if (!AllDominate)
2823 break;
2824 if (BetterPos)
2825 IP = BetterPos;
2826 else
2827 IP = Tentative;
2828 }
2829 while (isa<PHINode>(IP)) ++IP;
2830
2831 // Inform the Rewriter if we have a post-increment use, so that it can
2832 // perform an advantageous expansion.
2833 Rewriter.setPostInc(LF.PostIncLoop);
2834
2835 // This is the type that the user actually needs.
2836 const Type *OpTy = LF.OperandValToReplace->getType();
2837 // This will be the type that we'll initially expand to.
2838 const Type *Ty = F.getType();
2839 if (!Ty)
2840 // No type known; just expand directly to the ultimate type.
2841 Ty = OpTy;
2842 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
2843 // Expand directly to the ultimate type if it's the right size.
2844 Ty = OpTy;
2845 // This is the type to do integer arithmetic in.
2846 const Type *IntTy = SE.getEffectiveSCEVType(Ty);
2847
2848 // Build up a list of operands to add together to form the full base.
2849 SmallVector<const SCEV *, 8> Ops;
2850
2851 // Expand the BaseRegs portion.
2852 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2853 E = F.BaseRegs.end(); I != E; ++I) {
2854 const SCEV *Reg = *I;
2855 assert(!Reg->isZero() && "Zero allocated in a base register!");
2856
2857 // If we're expanding for a post-inc user for the add-rec's loop, make the
2858 // post-inc adjustment.
2859 const SCEV *Start = Reg;
2860 while (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Start)) {
2861 if (AR->getLoop() == LF.PostIncLoop) {
2862 Reg = SE.getAddExpr(Reg, AR->getStepRecurrence(SE));
2863 // If the user is inside the loop, insert the code after the increment
Dan Gohman278f9582010-02-22 03:59:54 +00002864 // so that it is dominated by its operand. If the original insert point
2865 // was already dominated by the increment, keep it, because there may
2866 // be loop-variant operands that need to be respected also.
2867 if (L->contains(LF.UserInst) && !DT.dominates(IVIncInsertPos, IP))
Dan Gohman572645c2010-02-12 10:34:29 +00002868 IP = IVIncInsertPos;
2869 break;
2870 }
2871 Start = AR->getStart();
2872 }
2873
2874 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
2875 }
2876
2877 // Expand the ScaledReg portion.
2878 Value *ICmpScaledV = 0;
2879 if (F.AM.Scale != 0) {
2880 const SCEV *ScaledS = F.ScaledReg;
2881
2882 // If we're expanding for a post-inc user for the add-rec's loop, make the
2883 // post-inc adjustment.
2884 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ScaledS))
2885 if (AR->getLoop() == LF.PostIncLoop)
2886 ScaledS = SE.getAddExpr(ScaledS, AR->getStepRecurrence(SE));
2887
2888 if (LU.Kind == LSRUse::ICmpZero) {
2889 // An interesting way of "folding" with an icmp is to use a negated
2890 // scale, which we'll implement by inserting it into the other operand
2891 // of the icmp.
2892 assert(F.AM.Scale == -1 &&
2893 "The only scale supported by ICmpZero uses is -1!");
2894 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
2895 } else {
2896 // Otherwise just expand the scaled register and an explicit scale,
2897 // which is expected to be matched as part of the address.
2898 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
2899 ScaledS = SE.getMulExpr(ScaledS,
2900 SE.getIntegerSCEV(F.AM.Scale,
2901 ScaledS->getType()));
2902 Ops.push_back(ScaledS);
2903 }
2904 }
2905
2906 // Expand the immediate portions.
2907 if (F.AM.BaseGV)
2908 Ops.push_back(SE.getSCEV(F.AM.BaseGV));
2909 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
2910 if (Offset != 0) {
2911 if (LU.Kind == LSRUse::ICmpZero) {
2912 // The other interesting way of "folding" with an ICmpZero is to use a
2913 // negated immediate.
2914 if (!ICmpScaledV)
2915 ICmpScaledV = ConstantInt::get(IntTy, -Offset);
2916 else {
2917 Ops.push_back(SE.getUnknown(ICmpScaledV));
2918 ICmpScaledV = ConstantInt::get(IntTy, Offset);
2919 }
2920 } else {
2921 // Just add the immediate values. These again are expected to be matched
2922 // as part of the address.
2923 Ops.push_back(SE.getIntegerSCEV(Offset, IntTy));
2924 }
2925 }
2926
2927 // Emit instructions summing all the operands.
2928 const SCEV *FullS = Ops.empty() ?
2929 SE.getIntegerSCEV(0, IntTy) :
2930 SE.getAddExpr(Ops);
2931 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
2932
2933 // We're done expanding now, so reset the rewriter.
2934 Rewriter.setPostInc(0);
2935
2936 // An ICmpZero Formula represents an ICmp which we're handling as a
2937 // comparison against zero. Now that we've expanded an expression for that
2938 // form, update the ICmp's other operand.
2939 if (LU.Kind == LSRUse::ICmpZero) {
2940 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
2941 DeadInsts.push_back(CI->getOperand(1));
2942 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
2943 "a scale at the same time!");
2944 if (F.AM.Scale == -1) {
2945 if (ICmpScaledV->getType() != OpTy) {
2946 Instruction *Cast =
2947 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
2948 OpTy, false),
2949 ICmpScaledV, OpTy, "tmp", CI);
2950 ICmpScaledV = Cast;
2951 }
2952 CI->setOperand(1, ICmpScaledV);
2953 } else {
2954 assert(F.AM.Scale == 0 &&
2955 "ICmp does not support folding a global value and "
2956 "a scale at the same time!");
2957 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
2958 -(uint64_t)Offset);
2959 if (C->getType() != OpTy)
2960 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2961 OpTy, false),
2962 C, OpTy);
2963
2964 CI->setOperand(1, C);
2965 }
2966 }
2967
2968 return FullV;
2969}
2970
Dan Gohman3a02cbc2010-02-16 20:25:07 +00002971/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
2972/// of their operands effectively happens in their predecessor blocks, so the
2973/// expression may need to be expanded in multiple places.
2974void LSRInstance::RewriteForPHI(PHINode *PN,
2975 const LSRFixup &LF,
2976 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00002977 SCEVExpander &Rewriter,
2978 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00002979 Pass *P) const {
2980 DenseMap<BasicBlock *, Value *> Inserted;
2981 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2982 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
2983 BasicBlock *BB = PN->getIncomingBlock(i);
2984
2985 // If this is a critical edge, split the edge so that we do not insert
2986 // the code on all predecessor/successor paths. We do this unless this
2987 // is the canonical backedge for this loop, which complicates post-inc
2988 // users.
2989 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
2990 !isa<IndirectBrInst>(BB->getTerminator()) &&
2991 (PN->getParent() != L->getHeader() || !L->contains(BB))) {
2992 // Split the critical edge.
2993 BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
2994
2995 // If PN is outside of the loop and BB is in the loop, we want to
2996 // move the block to be immediately before the PHI block, not
2997 // immediately after BB.
2998 if (L->contains(BB) && !L->contains(PN))
2999 NewBB->moveBefore(PN->getParent());
3000
3001 // Splitting the edge can reduce the number of PHI entries we have.
3002 e = PN->getNumIncomingValues();
3003 BB = NewBB;
3004 i = PN->getBasicBlockIndex(BB);
3005 }
3006
3007 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3008 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3009 if (!Pair.second)
3010 PN->setIncomingValue(i, Pair.first->second);
3011 else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003012 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003013
3014 // If this is reuse-by-noop-cast, insert the noop cast.
3015 const Type *OpTy = LF.OperandValToReplace->getType();
3016 if (FullV->getType() != OpTy)
3017 FullV =
3018 CastInst::Create(CastInst::getCastOpcode(FullV, false,
3019 OpTy, false),
3020 FullV, LF.OperandValToReplace->getType(),
3021 "tmp", BB->getTerminator());
3022
3023 PN->setIncomingValue(i, FullV);
3024 Pair.first->second = FullV;
3025 }
3026 }
3027}
3028
Dan Gohman572645c2010-02-12 10:34:29 +00003029/// Rewrite - Emit instructions for the leading candidate expression for this
3030/// LSRUse (this is called "expanding"), and update the UserInst to reference
3031/// the newly expanded value.
3032void LSRInstance::Rewrite(const LSRFixup &LF,
3033 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00003034 SCEVExpander &Rewriter,
3035 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00003036 Pass *P) const {
Dan Gohman572645c2010-02-12 10:34:29 +00003037 // First, find an insertion point that dominates UserInst. For PHI nodes,
3038 // find the nearest block which dominates all the relevant uses.
3039 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
Dan Gohman454d26d2010-02-22 04:11:59 +00003040 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003041 } else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003042 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
Dan Gohman572645c2010-02-12 10:34:29 +00003043
3044 // If this is reuse-by-noop-cast, insert the noop cast.
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003045 const Type *OpTy = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00003046 if (FullV->getType() != OpTy) {
3047 Instruction *Cast =
3048 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3049 FullV, OpTy, "tmp", LF.UserInst);
3050 FullV = Cast;
3051 }
3052
3053 // Update the user. ICmpZero is handled specially here (for now) because
3054 // Expand may have updated one of the operands of the icmp already, and
3055 // its new value may happen to be equal to LF.OperandValToReplace, in
3056 // which case doing replaceUsesOfWith leads to replacing both operands
3057 // with the same value. TODO: Reorganize this.
3058 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3059 LF.UserInst->setOperand(0, FullV);
3060 else
3061 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3062 }
3063
3064 DeadInsts.push_back(LF.OperandValToReplace);
3065}
3066
3067void
3068LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3069 Pass *P) {
3070 // Keep track of instructions we may have made dead, so that
3071 // we can remove them after we are done working.
3072 SmallVector<WeakVH, 16> DeadInsts;
3073
3074 SCEVExpander Rewriter(SE);
3075 Rewriter.disableCanonicalMode();
3076 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3077
3078 // Expand the new value definitions and update the users.
3079 for (size_t i = 0, e = Fixups.size(); i != e; ++i) {
3080 size_t LUIdx = Fixups[i].LUIdx;
3081
Dan Gohman454d26d2010-02-22 04:11:59 +00003082 Rewrite(Fixups[i], *Solution[LUIdx], Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003083
3084 Changed = true;
3085 }
3086
3087 // Clean up after ourselves. This must be done before deleting any
3088 // instructions.
3089 Rewriter.clear();
3090
3091 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3092}
3093
3094LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3095 : IU(P->getAnalysis<IVUsers>()),
3096 SE(P->getAnalysis<ScalarEvolution>()),
3097 DT(P->getAnalysis<DominatorTree>()),
3098 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
Devang Patel0f54dcb2007-03-06 21:14:09 +00003099
Dan Gohman03e896b2009-11-05 21:11:53 +00003100 // If LoopSimplify form is not available, stay out of trouble.
Dan Gohman572645c2010-02-12 10:34:29 +00003101 if (!L->isLoopSimplifyForm()) return;
Dan Gohman03e896b2009-11-05 21:11:53 +00003102
Dan Gohman572645c2010-02-12 10:34:29 +00003103 // If there's no interesting work to be done, bail early.
3104 if (IU.empty()) return;
Dan Gohman80b0f8c2009-03-09 20:34:59 +00003105
Dan Gohman572645c2010-02-12 10:34:29 +00003106 DEBUG(dbgs() << "\nLSR on loop ";
3107 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3108 dbgs() << ":\n");
Dan Gohmanf7912df2009-03-09 20:46:50 +00003109
Dan Gohman572645c2010-02-12 10:34:29 +00003110 /// OptimizeShadowIV - If IV is used in a int-to-float cast
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003111 /// inside the loop then try to eliminate the cast operation.
Dan Gohman572645c2010-02-12 10:34:29 +00003112 OptimizeShadowIV();
Chris Lattner010de252005-08-08 05:28:22 +00003113
Dan Gohman572645c2010-02-12 10:34:29 +00003114 // Change loop terminating condition to use the postinc iv when possible.
3115 Changed |= OptimizeLoopTermCond();
Evan Cheng5792f512009-05-11 22:33:01 +00003116
Dan Gohman572645c2010-02-12 10:34:29 +00003117 CollectInterestingTypesAndFactors();
3118 CollectFixupsAndInitialFormulae();
3119 CollectLoopInvariantFixupsAndFormulae();
Chris Lattner010de252005-08-08 05:28:22 +00003120
Dan Gohman572645c2010-02-12 10:34:29 +00003121 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3122 print_uses(dbgs()));
Misha Brukmanfd939082005-04-21 23:48:37 +00003123
Dan Gohman572645c2010-02-12 10:34:29 +00003124 // Now use the reuse data to generate a bunch of interesting ways
3125 // to formulate the values needed for the uses.
3126 GenerateAllReuseFormulae();
Evan Chengd1d6b5c2006-03-16 21:53:05 +00003127
Dan Gohman572645c2010-02-12 10:34:29 +00003128 DEBUG(dbgs() << "\n"
3129 "After generating reuse formulae:\n";
3130 print_uses(dbgs()));
Nate Begemaneaa13852004-10-18 21:08:22 +00003131
Dan Gohman572645c2010-02-12 10:34:29 +00003132 FilterOutUndesirableDedicatedRegisters();
3133 NarrowSearchSpaceUsingHeuristics();
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003134
Dan Gohman572645c2010-02-12 10:34:29 +00003135 SmallVector<const Formula *, 8> Solution;
3136 Solve(Solution);
3137 assert(Solution.size() == Uses.size() && "Malformed solution!");
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003138
Dan Gohman572645c2010-02-12 10:34:29 +00003139 // Release memory that is no longer needed.
3140 Factors.clear();
3141 Types.clear();
3142 RegUses.clear();
3143
3144#ifndef NDEBUG
3145 // Formulae should be legal.
3146 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3147 E = Uses.end(); I != E; ++I) {
3148 const LSRUse &LU = *I;
3149 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3150 JE = LU.Formulae.end(); J != JE; ++J)
3151 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3152 LU.Kind, LU.AccessTy, TLI) &&
3153 "Illegal formula generated!");
3154 };
3155#endif
3156
3157 // Now that we've decided what we want, make it so.
3158 ImplementSolution(Solution, P);
3159}
3160
3161void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3162 if (Factors.empty() && Types.empty()) return;
3163
3164 OS << "LSR has identified the following interesting factors and types: ";
3165 bool First = true;
3166
3167 for (SmallSetVector<int64_t, 8>::const_iterator
3168 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3169 if (!First) OS << ", ";
3170 First = false;
3171 OS << '*' << *I;
Evan Cheng81ebdcf2009-11-10 21:14:05 +00003172 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00003173
Dan Gohman572645c2010-02-12 10:34:29 +00003174 for (SmallSetVector<const Type *, 4>::const_iterator
3175 I = Types.begin(), E = Types.end(); I != E; ++I) {
3176 if (!First) OS << ", ";
3177 First = false;
3178 OS << '(' << **I << ')';
3179 }
3180 OS << '\n';
3181}
3182
3183void LSRInstance::print_fixups(raw_ostream &OS) const {
3184 OS << "LSR is examining the following fixup sites:\n";
3185 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3186 E = Fixups.end(); I != E; ++I) {
3187 const LSRFixup &LF = *I;
3188 dbgs() << " ";
3189 LF.print(OS);
3190 OS << '\n';
3191 }
3192}
3193
3194void LSRInstance::print_uses(raw_ostream &OS) const {
3195 OS << "LSR is examining the following uses:\n";
3196 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3197 E = Uses.end(); I != E; ++I) {
3198 const LSRUse &LU = *I;
3199 dbgs() << " ";
3200 LU.print(OS);
3201 OS << '\n';
3202 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3203 JE = LU.Formulae.end(); J != JE; ++J) {
3204 OS << " ";
3205 J->print(OS);
3206 OS << '\n';
3207 }
3208 }
3209}
3210
3211void LSRInstance::print(raw_ostream &OS) const {
3212 print_factors_and_types(OS);
3213 print_fixups(OS);
3214 print_uses(OS);
3215}
3216
3217void LSRInstance::dump() const {
3218 print(errs()); errs() << '\n';
3219}
3220
3221namespace {
3222
3223class LoopStrengthReduce : public LoopPass {
3224 /// TLI - Keep a pointer of a TargetLowering to consult for determining
3225 /// transformation profitability.
3226 const TargetLowering *const TLI;
3227
3228public:
3229 static char ID; // Pass ID, replacement for typeid
3230 explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3231
3232private:
3233 bool runOnLoop(Loop *L, LPPassManager &LPM);
3234 void getAnalysisUsage(AnalysisUsage &AU) const;
3235};
3236
3237}
3238
3239char LoopStrengthReduce::ID = 0;
3240static RegisterPass<LoopStrengthReduce>
3241X("loop-reduce", "Loop Strength Reduction");
3242
3243Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3244 return new LoopStrengthReduce(TLI);
3245}
3246
3247LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3248 : LoopPass(&ID), TLI(tli) {}
3249
3250void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3251 // We split critical edges, so we change the CFG. However, we do update
3252 // many analyses if they are around.
3253 AU.addPreservedID(LoopSimplifyID);
3254 AU.addPreserved<LoopInfo>();
3255 AU.addPreserved("domfrontier");
3256
3257 AU.addRequiredID(LoopSimplifyID);
3258 AU.addRequired<DominatorTree>();
3259 AU.addPreserved<DominatorTree>();
3260 AU.addRequired<ScalarEvolution>();
3261 AU.addPreserved<ScalarEvolution>();
3262 AU.addRequired<IVUsers>();
3263 AU.addPreserved<IVUsers>();
3264}
3265
3266bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3267 bool Changed = false;
3268
3269 // Run the main LSR transformation.
3270 Changed |= LSRInstance(TLI, L, this).getChanged();
3271
Dan Gohmanafc36a92009-05-02 18:29:22 +00003272 // At this point, it is worth checking to see if any recurrence PHIs are also
Dan Gohman35738ac2009-05-04 22:30:44 +00003273 // dead, so that we can remove them as well.
Dan Gohman9fff2182010-01-05 16:31:45 +00003274 Changed |= DeleteDeadPHIs(L->getHeader());
Dan Gohmanafc36a92009-05-02 18:29:22 +00003275
Evan Cheng1ce75dc2008-07-07 19:51:32 +00003276 return Changed;
Nate Begemaneaa13852004-10-18 21:08:22 +00003277}