blob: 645120510eab06d99f76748c123e8d3a33679fbc [file] [log] [blame]
Chris Lattner233f7dc2002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner8a2a3112001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Chris Lattner62b14df2002-09-02 04:59:56 +000011// instructions. This pass does not modify the CFG This pass is where algebraic
12// simplification happens.
Chris Lattner8a2a3112001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner32ed46b2004-05-04 15:19:33 +000015// %Y = add int %X, 1
16// %Z = add int %Y, 1
Chris Lattner8a2a3112001-12-14 16:52:21 +000017// into:
Chris Lattner32ed46b2004-05-04 15:19:33 +000018// %Z = add int %X, 2
Chris Lattner8a2a3112001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner065a6162003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattner2cd91962003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdf17af12003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Chris Lattner2cd91962003-07-23 21:41:57 +000027// 3. SetCC instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All SetCC instructions on boolean values are replaced with logical ops
Chris Lattnere92d2f42003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattnerbac32862004-11-14 19:13:23 +000032// ... etc.
Chris Lattner2cd91962003-07-23 21:41:57 +000033//
Chris Lattner8a2a3112001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattner0cea42a2004-03-13 23:54:27 +000036#define DEBUG_TYPE "instcombine"
Chris Lattner022103b2002-05-07 20:03:00 +000037#include "llvm/Transforms/Scalar.h"
Chris Lattner35b9e482004-10-12 04:52:52 +000038#include "llvm/IntrinsicInst.h"
Chris Lattnerbd0ef772002-02-26 21:46:54 +000039#include "llvm/Pass.h"
Chris Lattner0864acf2002-11-04 16:18:53 +000040#include "llvm/DerivedTypes.h"
Chris Lattner833b8a42003-06-26 05:06:25 +000041#include "llvm/GlobalVariable.h"
Chris Lattnerbc61e662003-11-02 05:57:39 +000042#include "llvm/Target/TargetData.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Transforms/Utils/Local.h"
Chris Lattner28977af2004-04-05 01:30:19 +000045#include "llvm/Support/CallSite.h"
Chris Lattnerea1c4542004-12-08 23:43:58 +000046#include "llvm/Support/Debug.h"
Chris Lattner28977af2004-04-05 01:30:19 +000047#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerdd841ae2002-04-18 17:39:14 +000048#include "llvm/Support/InstVisitor.h"
Chris Lattnerbcd7db52005-08-02 19:16:58 +000049#include "llvm/Support/MathExtras.h"
Chris Lattneracd1f0f2004-07-30 07:50:03 +000050#include "llvm/Support/PatternMatch.h"
Chris Lattnerb3d59702005-07-07 20:40:38 +000051#include "llvm/ADT/DepthFirstIterator.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000052#include "llvm/ADT/Statistic.h"
Chris Lattnerea1c4542004-12-08 23:43:58 +000053#include "llvm/ADT/STLExtras.h"
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +000054#include <algorithm>
Chris Lattnerdac58ad2006-01-22 23:32:06 +000055#include <iostream>
Chris Lattner67b1e1b2003-12-07 01:24:23 +000056using namespace llvm;
Chris Lattneracd1f0f2004-07-30 07:50:03 +000057using namespace llvm::PatternMatch;
Brian Gaeked0fde302003-11-11 22:41:34 +000058
Chris Lattnerdd841ae2002-04-18 17:39:14 +000059namespace {
Chris Lattnera92f6962002-10-01 22:38:41 +000060 Statistic<> NumCombined ("instcombine", "Number of insts combined");
61 Statistic<> NumConstProp("instcombine", "Number of constant folds");
62 Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated");
Chris Lattner9ca96412006-02-08 03:25:32 +000063 Statistic<> NumDeadStore("instcombine", "Number of dead stores eliminated");
Chris Lattnerea1c4542004-12-08 23:43:58 +000064 Statistic<> NumSunkInst ("instcombine", "Number of instructions sunk");
Chris Lattnera92f6962002-10-01 22:38:41 +000065
Chris Lattnerf57b8452002-04-27 06:56:12 +000066 class InstCombiner : public FunctionPass,
Chris Lattnerdd841ae2002-04-18 17:39:14 +000067 public InstVisitor<InstCombiner, Instruction*> {
68 // Worklist of all of the instructions that need to be simplified.
69 std::vector<Instruction*> WorkList;
Chris Lattnerbc61e662003-11-02 05:57:39 +000070 TargetData *TD;
Chris Lattnerdd841ae2002-04-18 17:39:14 +000071
Chris Lattner7bcc0e72004-02-28 05:22:00 +000072 /// AddUsersToWorkList - When an instruction is simplified, add all users of
73 /// the instruction to the work lists because they might get more simplified
74 /// now.
75 ///
Chris Lattner6dce1a72006-02-07 06:56:34 +000076 void AddUsersToWorkList(Value &I) {
Chris Lattner7e708292002-06-25 16:13:24 +000077 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
Chris Lattnerdd841ae2002-04-18 17:39:14 +000078 UI != UE; ++UI)
79 WorkList.push_back(cast<Instruction>(*UI));
80 }
81
Chris Lattner7bcc0e72004-02-28 05:22:00 +000082 /// AddUsesToWorkList - When an instruction is simplified, add operands to
83 /// the work lists because they might get more simplified now.
84 ///
85 void AddUsesToWorkList(Instruction &I) {
86 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
87 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
88 WorkList.push_back(Op);
89 }
90
Chris Lattner62b14df2002-09-02 04:59:56 +000091 // removeFromWorkList - remove all instances of I from the worklist.
92 void removeFromWorkList(Instruction *I);
Chris Lattnerdd841ae2002-04-18 17:39:14 +000093 public:
Chris Lattner7e708292002-06-25 16:13:24 +000094 virtual bool runOnFunction(Function &F);
Chris Lattnerdd841ae2002-04-18 17:39:14 +000095
Chris Lattner97e52e42002-04-28 21:27:06 +000096 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnerbc61e662003-11-02 05:57:39 +000097 AU.addRequired<TargetData>();
Chris Lattnercb2610e2002-10-21 20:00:28 +000098 AU.setPreservesCFG();
Chris Lattner97e52e42002-04-28 21:27:06 +000099 }
100
Chris Lattner28977af2004-04-05 01:30:19 +0000101 TargetData &getTargetData() const { return *TD; }
102
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000103 // Visitation implementation - Implement instruction combining for different
104 // instruction types. The semantics are as follows:
105 // Return Value:
106 // null - No change was made
Chris Lattner233f7dc2002-08-12 21:17:25 +0000107 // I - Change was made, I is still valid, I may be dead though
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000108 // otherwise - Change was made, replace I with returned instruction
Misha Brukmanfd939082005-04-21 23:48:37 +0000109 //
Chris Lattner7e708292002-06-25 16:13:24 +0000110 Instruction *visitAdd(BinaryOperator &I);
111 Instruction *visitSub(BinaryOperator &I);
112 Instruction *visitMul(BinaryOperator &I);
113 Instruction *visitDiv(BinaryOperator &I);
114 Instruction *visitRem(BinaryOperator &I);
115 Instruction *visitAnd(BinaryOperator &I);
116 Instruction *visitOr (BinaryOperator &I);
117 Instruction *visitXor(BinaryOperator &I);
Chris Lattner484d3cf2005-04-24 06:59:08 +0000118 Instruction *visitSetCondInst(SetCondInst &I);
119 Instruction *visitSetCondInstWithCastAndCast(SetCondInst &SCI);
120
Chris Lattner574da9b2005-01-13 20:14:25 +0000121 Instruction *FoldGEPSetCC(User *GEPLHS, Value *RHS,
122 Instruction::BinaryOps Cond, Instruction &I);
Chris Lattnerea340052003-03-10 19:16:08 +0000123 Instruction *visitShiftInst(ShiftInst &I);
Chris Lattner4d5542c2006-01-06 07:12:35 +0000124 Instruction *FoldShiftByConstant(Value *Op0, ConstantUInt *Op1,
125 ShiftInst &I);
Chris Lattner7e708292002-06-25 16:13:24 +0000126 Instruction *visitCastInst(CastInst &CI);
Chris Lattner6fb5a4a2005-01-19 21:50:18 +0000127 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
128 Instruction *FI);
Chris Lattner3d69f462004-03-12 05:52:32 +0000129 Instruction *visitSelectInst(SelectInst &CI);
Chris Lattner9fe38862003-06-19 17:00:31 +0000130 Instruction *visitCallInst(CallInst &CI);
131 Instruction *visitInvokeInst(InvokeInst &II);
Chris Lattner7e708292002-06-25 16:13:24 +0000132 Instruction *visitPHINode(PHINode &PN);
133 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
Chris Lattner0864acf2002-11-04 16:18:53 +0000134 Instruction *visitAllocationInst(AllocationInst &AI);
Chris Lattner67b1e1b2003-12-07 01:24:23 +0000135 Instruction *visitFreeInst(FreeInst &FI);
Chris Lattner833b8a42003-06-26 05:06:25 +0000136 Instruction *visitLoadInst(LoadInst &LI);
Chris Lattner2f503e62005-01-31 05:36:43 +0000137 Instruction *visitStoreInst(StoreInst &SI);
Chris Lattnerc4d10eb2003-06-04 04:46:00 +0000138 Instruction *visitBranchInst(BranchInst &BI);
Chris Lattner46238a62004-07-03 00:26:11 +0000139 Instruction *visitSwitchInst(SwitchInst &SI);
Robert Bocchino1d7456d2006-01-13 22:48:06 +0000140 Instruction *visitExtractElementInst(ExtractElementInst &EI);
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000141
142 // visitInstruction - Specify what to return for unhandled instructions...
Chris Lattner7e708292002-06-25 16:13:24 +0000143 Instruction *visitInstruction(Instruction &I) { return 0; }
Chris Lattner8b170942002-08-09 23:47:40 +0000144
Chris Lattner9fe38862003-06-19 17:00:31 +0000145 private:
Chris Lattnera44d8a22003-10-07 22:32:43 +0000146 Instruction *visitCallSite(CallSite CS);
Chris Lattner9fe38862003-06-19 17:00:31 +0000147 bool transformConstExprCastCall(CallSite CS);
148
Chris Lattner28977af2004-04-05 01:30:19 +0000149 public:
Chris Lattner8b170942002-08-09 23:47:40 +0000150 // InsertNewInstBefore - insert an instruction New before instruction Old
151 // in the program. Add the new instruction to the worklist.
152 //
Chris Lattner955f3312004-09-28 21:48:02 +0000153 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
Chris Lattnere6f9a912002-08-23 18:32:43 +0000154 assert(New && New->getParent() == 0 &&
155 "New instruction already inserted into a basic block!");
Chris Lattner8b170942002-08-09 23:47:40 +0000156 BasicBlock *BB = Old.getParent();
157 BB->getInstList().insert(&Old, New); // Insert inst
158 WorkList.push_back(New); // Add to worklist
Chris Lattner4cb170c2004-02-23 06:38:22 +0000159 return New;
Chris Lattner8b170942002-08-09 23:47:40 +0000160 }
161
Chris Lattner0c967662004-09-24 15:21:34 +0000162 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
163 /// This also adds the cast to the worklist. Finally, this returns the
164 /// cast.
165 Value *InsertCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
166 if (V->getType() == Ty) return V;
Misha Brukmanfd939082005-04-21 23:48:37 +0000167
Chris Lattner0c967662004-09-24 15:21:34 +0000168 Instruction *C = new CastInst(V, Ty, V->getName(), &Pos);
169 WorkList.push_back(C);
170 return C;
171 }
172
Chris Lattner8b170942002-08-09 23:47:40 +0000173 // ReplaceInstUsesWith - This method is to be used when an instruction is
174 // found to be dead, replacable with another preexisting expression. Here
175 // we add all uses of I to the worklist, replace all uses of I with the new
176 // value, then return I, so that the inst combiner will know that I was
177 // modified.
178 //
179 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000180 AddUsersToWorkList(I); // Add all modified instrs to worklist
Chris Lattner15a76c02004-04-05 02:10:19 +0000181 if (&I != V) {
182 I.replaceAllUsesWith(V);
183 return &I;
184 } else {
185 // If we are replacing the instruction with itself, this must be in a
186 // segment of unreachable code, so just clobber the instruction.
Chris Lattner17be6352004-10-18 02:59:09 +0000187 I.replaceAllUsesWith(UndefValue::get(I.getType()));
Chris Lattner15a76c02004-04-05 02:10:19 +0000188 return &I;
189 }
Chris Lattner8b170942002-08-09 23:47:40 +0000190 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000191
Chris Lattner6dce1a72006-02-07 06:56:34 +0000192 // UpdateValueUsesWith - This method is to be used when an value is
193 // found to be replacable with another preexisting expression or was
194 // updated. Here we add all uses of I to the worklist, replace all uses of
195 // I with the new value (unless the instruction was just updated), then
196 // return true, so that the inst combiner will know that I was modified.
197 //
198 bool UpdateValueUsesWith(Value *Old, Value *New) {
199 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
200 if (Old != New)
201 Old->replaceAllUsesWith(New);
202 if (Instruction *I = dyn_cast<Instruction>(Old))
203 WorkList.push_back(I);
Chris Lattnerf8c36f52006-02-12 08:02:11 +0000204 if (Instruction *I = dyn_cast<Instruction>(New))
205 WorkList.push_back(I);
Chris Lattner6dce1a72006-02-07 06:56:34 +0000206 return true;
207 }
208
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000209 // EraseInstFromFunction - When dealing with an instruction that has side
210 // effects or produces a void value, we can't rely on DCE to delete the
211 // instruction. Instead, visit methods should return the value returned by
212 // this function.
213 Instruction *EraseInstFromFunction(Instruction &I) {
214 assert(I.use_empty() && "Cannot erase instruction that is used!");
215 AddUsesToWorkList(I);
216 removeFromWorkList(&I);
Chris Lattner954f66a2004-11-18 21:41:39 +0000217 I.eraseFromParent();
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000218 return 0; // Don't do anything with FI
219 }
220
Chris Lattneraa9c1f12003-08-13 20:16:26 +0000221 private:
Chris Lattner24c8e382003-07-24 17:35:25 +0000222 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
223 /// InsertBefore instruction. This is specialized a bit to avoid inserting
224 /// casts that are known to not do anything...
225 ///
226 Value *InsertOperandCastBefore(Value *V, const Type *DestTy,
227 Instruction *InsertBefore);
228
Chris Lattnerc8802d22003-03-11 00:12:48 +0000229 // SimplifyCommutative - This performs a few simplifications for commutative
Chris Lattner4e998b22004-09-29 05:07:12 +0000230 // operators.
Chris Lattnerc8802d22003-03-11 00:12:48 +0000231 bool SimplifyCommutative(BinaryOperator &I);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +0000232
Chris Lattner255d8912006-02-11 09:31:47 +0000233 bool SimplifyDemandedBits(Value *V, uint64_t Mask,
234 uint64_t &KnownZero, uint64_t &KnownOne,
235 unsigned Depth = 0);
Chris Lattner4e998b22004-09-29 05:07:12 +0000236
237 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
238 // PHI node as operand #0, see if we can fold the instruction into the PHI
239 // (which is only possible if all operands to the PHI are constants).
240 Instruction *FoldOpIntoPhi(Instruction &I);
241
Chris Lattnerbac32862004-11-14 19:13:23 +0000242 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
243 // operator and they all are only used by the PHI, PHI together their
244 // inputs, and do the operation once, to the result of the PHI.
245 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
246
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +0000247 Instruction *OptAndOp(Instruction *Op, ConstantIntegral *OpRHS,
248 ConstantIntegral *AndRHS, BinaryOperator &TheAnd);
Chris Lattnerc8e77562005-09-18 04:24:45 +0000249
250 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantIntegral *Mask,
251 bool isSub, Instruction &I);
Chris Lattnera96879a2004-09-29 17:40:11 +0000252 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
253 bool Inside, Instruction &IB);
Chris Lattnerb3f83972005-10-24 06:03:58 +0000254 Instruction *PromoteCastOfAllocation(CastInst &CI, AllocationInst &AI);
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000255 };
Chris Lattnerf6293092002-07-23 18:06:35 +0000256
Chris Lattnera6275cc2002-07-26 21:12:46 +0000257 RegisterOpt<InstCombiner> X("instcombine", "Combine redundant instructions");
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000258}
259
Chris Lattner4f98c562003-03-10 21:43:22 +0000260// getComplexity: Assign a complexity or rank value to LLVM Values...
Chris Lattnere87597f2004-10-16 18:11:37 +0000261// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
Chris Lattner4f98c562003-03-10 21:43:22 +0000262static unsigned getComplexity(Value *V) {
263 if (isa<Instruction>(V)) {
264 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
Chris Lattnere87597f2004-10-16 18:11:37 +0000265 return 3;
266 return 4;
Chris Lattner4f98c562003-03-10 21:43:22 +0000267 }
Chris Lattnere87597f2004-10-16 18:11:37 +0000268 if (isa<Argument>(V)) return 3;
269 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
Chris Lattner4f98c562003-03-10 21:43:22 +0000270}
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000271
Chris Lattnerc8802d22003-03-11 00:12:48 +0000272// isOnlyUse - Return true if this instruction will be deleted if we stop using
273// it.
274static bool isOnlyUse(Value *V) {
Chris Lattnerfd059242003-10-15 16:48:29 +0000275 return V->hasOneUse() || isa<Constant>(V);
Chris Lattnerc8802d22003-03-11 00:12:48 +0000276}
277
Chris Lattner4cb170c2004-02-23 06:38:22 +0000278// getPromotedType - Return the specified type promoted as it would be to pass
279// though a va_arg area...
280static const Type *getPromotedType(const Type *Ty) {
Chris Lattner5dd04022004-06-17 18:16:02 +0000281 switch (Ty->getTypeID()) {
Chris Lattner4cb170c2004-02-23 06:38:22 +0000282 case Type::SByteTyID:
283 case Type::ShortTyID: return Type::IntTy;
284 case Type::UByteTyID:
285 case Type::UShortTyID: return Type::UIntTy;
286 case Type::FloatTyID: return Type::DoubleTy;
287 default: return Ty;
288 }
289}
290
Chris Lattnereed48272005-09-13 00:40:14 +0000291/// isCast - If the specified operand is a CastInst or a constant expr cast,
292/// return the operand value, otherwise return null.
293static Value *isCast(Value *V) {
294 if (CastInst *I = dyn_cast<CastInst>(V))
295 return I->getOperand(0);
296 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
297 if (CE->getOpcode() == Instruction::Cast)
298 return CE->getOperand(0);
299 return 0;
300}
301
Chris Lattner4f98c562003-03-10 21:43:22 +0000302// SimplifyCommutative - This performs a few simplifications for commutative
303// operators:
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000304//
Chris Lattner4f98c562003-03-10 21:43:22 +0000305// 1. Order operands such that they are listed from right (least complex) to
306// left (most complex). This puts constants before unary operators before
307// binary operators.
308//
Chris Lattnerc8802d22003-03-11 00:12:48 +0000309// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
310// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattner4f98c562003-03-10 21:43:22 +0000311//
Chris Lattnerc8802d22003-03-11 00:12:48 +0000312bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +0000313 bool Changed = false;
314 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
315 Changed = !I.swapOperands();
Misha Brukmanfd939082005-04-21 23:48:37 +0000316
Chris Lattner4f98c562003-03-10 21:43:22 +0000317 if (!I.isAssociative()) return Changed;
318 Instruction::BinaryOps Opcode = I.getOpcode();
Chris Lattnerc8802d22003-03-11 00:12:48 +0000319 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
320 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
321 if (isa<Constant>(I.getOperand(1))) {
Chris Lattner2a9c8472003-05-27 16:40:51 +0000322 Constant *Folded = ConstantExpr::get(I.getOpcode(),
323 cast<Constant>(I.getOperand(1)),
324 cast<Constant>(Op->getOperand(1)));
Chris Lattnerc8802d22003-03-11 00:12:48 +0000325 I.setOperand(0, Op->getOperand(0));
326 I.setOperand(1, Folded);
327 return true;
328 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
329 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
330 isOnlyUse(Op) && isOnlyUse(Op1)) {
331 Constant *C1 = cast<Constant>(Op->getOperand(1));
332 Constant *C2 = cast<Constant>(Op1->getOperand(1));
333
334 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattner2a9c8472003-05-27 16:40:51 +0000335 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Chris Lattnerc8802d22003-03-11 00:12:48 +0000336 Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
337 Op1->getOperand(0),
338 Op1->getName(), &I);
339 WorkList.push_back(New);
340 I.setOperand(0, New);
341 I.setOperand(1, Folded);
342 return true;
Misha Brukmanfd939082005-04-21 23:48:37 +0000343 }
Chris Lattner4f98c562003-03-10 21:43:22 +0000344 }
Chris Lattner4f98c562003-03-10 21:43:22 +0000345 return Changed;
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000346}
Chris Lattner8a2a3112001-12-14 16:52:21 +0000347
Chris Lattner8d969642003-03-10 23:06:50 +0000348// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
349// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattnerb35dde12002-05-06 16:49:18 +0000350//
Chris Lattner8d969642003-03-10 23:06:50 +0000351static inline Value *dyn_castNegVal(Value *V) {
352 if (BinaryOperator::isNeg(V))
Chris Lattnera1df33c2005-04-24 07:30:14 +0000353 return BinaryOperator::getNegArgument(V);
Chris Lattner8d969642003-03-10 23:06:50 +0000354
Chris Lattner0ce85802004-12-14 20:08:06 +0000355 // Constants can be considered to be negated values if they can be folded.
356 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
357 return ConstantExpr::getNeg(C);
Chris Lattner8d969642003-03-10 23:06:50 +0000358 return 0;
Chris Lattnerb35dde12002-05-06 16:49:18 +0000359}
360
Chris Lattner8d969642003-03-10 23:06:50 +0000361static inline Value *dyn_castNotVal(Value *V) {
362 if (BinaryOperator::isNot(V))
Chris Lattnera1df33c2005-04-24 07:30:14 +0000363 return BinaryOperator::getNotArgument(V);
Chris Lattner8d969642003-03-10 23:06:50 +0000364
365 // Constants can be considered to be not'ed values...
Chris Lattner3f2ec392003-04-30 22:34:06 +0000366 if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(V))
Chris Lattner448c3232004-06-10 02:12:35 +0000367 return ConstantExpr::getNot(C);
Chris Lattner8d969642003-03-10 23:06:50 +0000368 return 0;
369}
370
Chris Lattnerc8802d22003-03-11 00:12:48 +0000371// dyn_castFoldableMul - If this value is a multiply that can be folded into
372// other computations (because it has a constant operand), return the
Chris Lattner50af16a2004-11-13 19:50:12 +0000373// non-constant operand of the multiply, and set CST to point to the multiplier.
374// Otherwise, return null.
Chris Lattnerc8802d22003-03-11 00:12:48 +0000375//
Chris Lattner50af16a2004-11-13 19:50:12 +0000376static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
Chris Lattnerfd059242003-10-15 16:48:29 +0000377 if (V->hasOneUse() && V->getType()->isInteger())
Chris Lattner50af16a2004-11-13 19:50:12 +0000378 if (Instruction *I = dyn_cast<Instruction>(V)) {
Chris Lattnerc8802d22003-03-11 00:12:48 +0000379 if (I->getOpcode() == Instruction::Mul)
Chris Lattner50e60c72004-11-15 05:54:07 +0000380 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
Chris Lattnerc8802d22003-03-11 00:12:48 +0000381 return I->getOperand(0);
Chris Lattner50af16a2004-11-13 19:50:12 +0000382 if (I->getOpcode() == Instruction::Shl)
Chris Lattner50e60c72004-11-15 05:54:07 +0000383 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
Chris Lattner50af16a2004-11-13 19:50:12 +0000384 // The multiplier is really 1 << CST.
385 Constant *One = ConstantInt::get(V->getType(), 1);
386 CST = cast<ConstantInt>(ConstantExpr::getShl(One, CST));
387 return I->getOperand(0);
388 }
389 }
Chris Lattnerc8802d22003-03-11 00:12:48 +0000390 return 0;
Chris Lattnera2881962003-02-18 19:28:33 +0000391}
Chris Lattneraf2930e2002-08-14 17:51:49 +0000392
Chris Lattner574da9b2005-01-13 20:14:25 +0000393/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
394/// expression, return it.
395static User *dyn_castGetElementPtr(Value *V) {
396 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
397 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
398 if (CE->getOpcode() == Instruction::GetElementPtr)
399 return cast<User>(V);
400 return false;
401}
402
Chris Lattner955f3312004-09-28 21:48:02 +0000403// AddOne, SubOne - Add or subtract a constant one from an integer constant...
Chris Lattnera96879a2004-09-29 17:40:11 +0000404static ConstantInt *AddOne(ConstantInt *C) {
405 return cast<ConstantInt>(ConstantExpr::getAdd(C,
406 ConstantInt::get(C->getType(), 1)));
Chris Lattner955f3312004-09-28 21:48:02 +0000407}
Chris Lattnera96879a2004-09-29 17:40:11 +0000408static ConstantInt *SubOne(ConstantInt *C) {
409 return cast<ConstantInt>(ConstantExpr::getSub(C,
410 ConstantInt::get(C->getType(), 1)));
Chris Lattner955f3312004-09-28 21:48:02 +0000411}
412
Chris Lattner255d8912006-02-11 09:31:47 +0000413/// GetConstantInType - Return a ConstantInt with the specified type and value.
414///
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000415static ConstantIntegral *GetConstantInType(const Type *Ty, uint64_t Val) {
Chris Lattner255d8912006-02-11 09:31:47 +0000416 if (Ty->isUnsigned())
417 return ConstantUInt::get(Ty, Val);
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000418 else if (Ty->getTypeID() == Type::BoolTyID)
419 return ConstantBool::get(Val);
Chris Lattner255d8912006-02-11 09:31:47 +0000420 int64_t SVal = Val;
421 SVal <<= 64-Ty->getPrimitiveSizeInBits();
422 SVal >>= 64-Ty->getPrimitiveSizeInBits();
423 return ConstantSInt::get(Ty, SVal);
424}
425
426
Chris Lattner68d5ff22006-02-09 07:38:58 +0000427/// ComputeMaskedBits - Determine which of the bits specified in Mask are
428/// known to be either zero or one and return them in the KnownZero/KnownOne
429/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
430/// processing.
431static void ComputeMaskedBits(Value *V, uint64_t Mask, uint64_t &KnownZero,
432 uint64_t &KnownOne, unsigned Depth = 0) {
Chris Lattner5931c542005-09-24 23:43:33 +0000433 // Note, we cannot consider 'undef' to be "IsZero" here. The problem is that
434 // we cannot optimize based on the assumption that it is zero without changing
Chris Lattner3bedbd92006-02-07 07:27:52 +0000435 // it to be an explicit zero. If we don't change it to zero, other code could
Chris Lattner5931c542005-09-24 23:43:33 +0000436 // optimized based on the contradictory assumption that it is non-zero.
437 // Because instcombine aggressively folds operations with undef args anyway,
438 // this won't lose us code quality.
Chris Lattner68d5ff22006-02-09 07:38:58 +0000439 if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V)) {
440 // We know all of the bits for a constant!
Chris Lattner255d8912006-02-11 09:31:47 +0000441 KnownOne = CI->getZExtValue() & Mask;
Chris Lattner68d5ff22006-02-09 07:38:58 +0000442 KnownZero = ~KnownOne & Mask;
443 return;
444 }
445
446 KnownZero = KnownOne = 0; // Don't know anything.
Chris Lattner74c51a02006-02-07 08:05:22 +0000447 if (Depth == 6 || Mask == 0)
Chris Lattner68d5ff22006-02-09 07:38:58 +0000448 return; // Limit search depth.
449
450 uint64_t KnownZero2, KnownOne2;
Chris Lattner255d8912006-02-11 09:31:47 +0000451 Instruction *I = dyn_cast<Instruction>(V);
452 if (!I) return;
453
454 switch (I->getOpcode()) {
455 case Instruction::And:
456 // If either the LHS or the RHS are Zero, the result is zero.
457 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
458 Mask &= ~KnownZero;
459 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
460 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
461 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
462
463 // Output known-1 bits are only known if set in both the LHS & RHS.
464 KnownOne &= KnownOne2;
465 // Output known-0 are known to be clear if zero in either the LHS | RHS.
466 KnownZero |= KnownZero2;
467 return;
468 case Instruction::Or:
469 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
470 Mask &= ~KnownOne;
471 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
472 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
473 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
474
475 // Output known-0 bits are only known if clear in both the LHS & RHS.
476 KnownZero &= KnownZero2;
477 // Output known-1 are known to be set if set in either the LHS | RHS.
478 KnownOne |= KnownOne2;
479 return;
480 case Instruction::Xor: {
481 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
482 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
483 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
484 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
485
486 // Output known-0 bits are known if clear or set in both the LHS & RHS.
487 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
488 // Output known-1 are known to be set if set in only one of the LHS, RHS.
489 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
490 KnownZero = KnownZeroOut;
491 return;
492 }
493 case Instruction::Select:
494 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
495 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
496 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
497 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
498
499 // Only known if known in both the LHS and RHS.
500 KnownOne &= KnownOne2;
501 KnownZero &= KnownZero2;
502 return;
503 case Instruction::Cast: {
504 const Type *SrcTy = I->getOperand(0)->getType();
505 if (!SrcTy->isIntegral()) return;
506
507 // If this is an integer truncate or noop, just look in the input.
508 if (SrcTy->getPrimitiveSizeInBits() >=
509 I->getType()->getPrimitiveSizeInBits()) {
510 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
Chris Lattner68d5ff22006-02-09 07:38:58 +0000511 return;
512 }
Chris Lattner68d5ff22006-02-09 07:38:58 +0000513
Chris Lattner255d8912006-02-11 09:31:47 +0000514 // Sign or Zero extension. Compute the bits in the result that are not
515 // present in the input.
516 uint64_t NotIn = ~SrcTy->getIntegralTypeMask();
517 uint64_t NewBits = I->getType()->getIntegralTypeMask() & NotIn;
Chris Lattner60de63d2005-10-09 06:36:35 +0000518
Chris Lattner255d8912006-02-11 09:31:47 +0000519 // Handle zero extension.
520 if (!SrcTy->isSigned()) {
521 Mask &= SrcTy->getIntegralTypeMask();
522 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
523 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
524 // The top bits are known to be zero.
525 KnownZero |= NewBits;
526 } else {
527 // Sign extension.
528 Mask &= SrcTy->getIntegralTypeMask();
529 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
530 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner74c51a02006-02-07 08:05:22 +0000531
Chris Lattner255d8912006-02-11 09:31:47 +0000532 // If the sign bit of the input is known set or clear, then we know the
533 // top bits of the result.
534 uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
535 if (KnownZero & InSignBit) { // Input sign bit known zero
Chris Lattner68d5ff22006-02-09 07:38:58 +0000536 KnownZero |= NewBits;
Chris Lattner255d8912006-02-11 09:31:47 +0000537 KnownOne &= ~NewBits;
538 } else if (KnownOne & InSignBit) { // Input sign bit known set
539 KnownOne |= NewBits;
540 KnownZero &= ~NewBits;
541 } else { // Input sign bit unknown
542 KnownZero &= ~NewBits;
543 KnownOne &= ~NewBits;
544 }
545 }
546 return;
547 }
548 case Instruction::Shl:
549 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
550 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
551 Mask >>= SA->getValue();
552 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
553 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
554 KnownZero <<= SA->getValue();
555 KnownOne <<= SA->getValue();
556 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
557 return;
558 }
559 break;
560 case Instruction::Shr:
561 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
562 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
563 // Compute the new bits that are at the top now.
564 uint64_t HighBits = (1ULL << SA->getValue())-1;
565 HighBits <<= I->getType()->getPrimitiveSizeInBits()-SA->getValue();
566
567 if (I->getType()->isUnsigned()) { // Unsigned shift right.
568 Mask <<= SA->getValue();
569 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
570 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
571 KnownZero >>= SA->getValue();
572 KnownOne >>= SA->getValue();
573 KnownZero |= HighBits; // high bits known zero.
Chris Lattner68d5ff22006-02-09 07:38:58 +0000574 } else {
Chris Lattner255d8912006-02-11 09:31:47 +0000575 Mask <<= SA->getValue();
576 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
577 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
578 KnownZero >>= SA->getValue();
579 KnownOne >>= SA->getValue();
580
581 // Handle the sign bits.
582 uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
583 SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
584
585 if (KnownZero & SignBit) { // New bits are known zero.
586 KnownZero |= HighBits;
587 } else if (KnownOne & SignBit) { // New bits are known one.
588 KnownOne |= HighBits;
Chris Lattner68d5ff22006-02-09 07:38:58 +0000589 }
590 }
591 return;
Chris Lattner60de63d2005-10-09 06:36:35 +0000592 }
Chris Lattner255d8912006-02-11 09:31:47 +0000593 break;
Chris Lattner5931c542005-09-24 23:43:33 +0000594 }
Chris Lattner74c51a02006-02-07 08:05:22 +0000595}
596
597/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
598/// this predicate to simplify operations downstream. Mask is known to be zero
599/// for bits that V cannot have.
600static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) {
Chris Lattner68d5ff22006-02-09 07:38:58 +0000601 uint64_t KnownZero, KnownOne;
602 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
603 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
604 return (KnownZero & Mask) == Mask;
Chris Lattner5931c542005-09-24 23:43:33 +0000605}
606
Chris Lattner255d8912006-02-11 09:31:47 +0000607/// ShrinkDemandedConstant - Check to see if the specified operand of the
608/// specified instruction is a constant integer. If so, check to see if there
609/// are any bits set in the constant that are not demanded. If so, shrink the
610/// constant and return true.
611static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
612 uint64_t Demanded) {
613 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
614 if (!OpC) return false;
615
616 // If there are no bits set that aren't demanded, nothing to do.
617 if ((~Demanded & OpC->getZExtValue()) == 0)
618 return false;
619
620 // This is producing any bits that are not needed, shrink the RHS.
621 uint64_t Val = Demanded & OpC->getZExtValue();
622 I->setOperand(OpNo, GetConstantInType(OpC->getType(), Val));
623 return true;
624}
625
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000626// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
627// set of known zero and one bits, compute the maximum and minimum values that
628// could have the specified known zero and known one bits, returning them in
629// min/max.
630static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
631 uint64_t KnownZero,
632 uint64_t KnownOne,
633 int64_t &Min, int64_t &Max) {
634 uint64_t TypeBits = Ty->getIntegralTypeMask();
635 uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits;
636
637 uint64_t SignBit = 1ULL << (Ty->getPrimitiveSizeInBits()-1);
638
639 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
640 // bit if it is unknown.
641 Min = KnownOne;
642 Max = KnownOne|UnknownBits;
643
644 if (SignBit & UnknownBits) { // Sign bit is unknown
645 Min |= SignBit;
646 Max &= ~SignBit;
647 }
648
649 // Sign extend the min/max values.
650 int ShAmt = 64-Ty->getPrimitiveSizeInBits();
651 Min = (Min << ShAmt) >> ShAmt;
652 Max = (Max << ShAmt) >> ShAmt;
653}
654
655// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
656// a set of known zero and one bits, compute the maximum and minimum values that
657// could have the specified known zero and known one bits, returning them in
658// min/max.
659static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
660 uint64_t KnownZero,
661 uint64_t KnownOne,
662 uint64_t &Min,
663 uint64_t &Max) {
664 uint64_t TypeBits = Ty->getIntegralTypeMask();
665 uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits;
666
667 // The minimum value is when the unknown bits are all zeros.
668 Min = KnownOne;
669 // The maximum value is when the unknown bits are all ones.
670 Max = KnownOne|UnknownBits;
671}
Chris Lattner255d8912006-02-11 09:31:47 +0000672
673
674/// SimplifyDemandedBits - Look at V. At this point, we know that only the
675/// DemandedMask bits of the result of V are ever used downstream. If we can
676/// use this information to simplify V, do so and return true. Otherwise,
677/// analyze the expression and return a mask of KnownOne and KnownZero bits for
678/// the expression (used to simplify the caller). The KnownZero/One bits may
679/// only be accurate for those bits in the DemandedMask.
680bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t DemandedMask,
681 uint64_t &KnownZero, uint64_t &KnownOne,
Chris Lattner6dce1a72006-02-07 06:56:34 +0000682 unsigned Depth) {
Chris Lattner255d8912006-02-11 09:31:47 +0000683 if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V)) {
684 // We know all of the bits for a constant!
685 KnownOne = CI->getZExtValue() & DemandedMask;
686 KnownZero = ~KnownOne & DemandedMask;
687 return false;
688 }
689
690 KnownZero = KnownOne = 0;
Chris Lattner6dce1a72006-02-07 06:56:34 +0000691 if (!V->hasOneUse()) { // Other users may use these bits.
Chris Lattner255d8912006-02-11 09:31:47 +0000692 if (Depth != 0) { // Not at the root.
693 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
694 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattner6dce1a72006-02-07 06:56:34 +0000695 return false;
Chris Lattner255d8912006-02-11 09:31:47 +0000696 }
Chris Lattner6dce1a72006-02-07 06:56:34 +0000697 // If this is the root being simplified, allow it to have multiple uses,
Chris Lattner255d8912006-02-11 09:31:47 +0000698 // just set the DemandedMask to all bits.
699 DemandedMask = V->getType()->getIntegralTypeMask();
700 } else if (DemandedMask == 0) { // Not demanding any bits from V.
Chris Lattner74c51a02006-02-07 08:05:22 +0000701 if (V != UndefValue::get(V->getType()))
702 return UpdateValueUsesWith(V, UndefValue::get(V->getType()));
703 return false;
Chris Lattner6dce1a72006-02-07 06:56:34 +0000704 } else if (Depth == 6) { // Limit search depth.
705 return false;
706 }
707
708 Instruction *I = dyn_cast<Instruction>(V);
709 if (!I) return false; // Only analyze instructions.
710
Chris Lattner255d8912006-02-11 09:31:47 +0000711 uint64_t KnownZero2, KnownOne2;
Chris Lattner6dce1a72006-02-07 06:56:34 +0000712 switch (I->getOpcode()) {
713 default: break;
714 case Instruction::And:
Chris Lattner255d8912006-02-11 09:31:47 +0000715 // If either the LHS or the RHS are Zero, the result is zero.
716 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
717 KnownZero, KnownOne, Depth+1))
718 return true;
719 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
720
721 // If something is known zero on the RHS, the bits aren't demanded on the
722 // LHS.
723 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownZero,
724 KnownZero2, KnownOne2, Depth+1))
725 return true;
726 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
727
728 // If all of the demanded bits are known one on one side, return the other.
729 // These bits cannot contribute to the result of the 'and'.
730 if ((DemandedMask & ~KnownZero2 & KnownOne) == (DemandedMask & ~KnownZero2))
731 return UpdateValueUsesWith(I, I->getOperand(0));
732 if ((DemandedMask & ~KnownZero & KnownOne2) == (DemandedMask & ~KnownZero))
733 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattnerf8c36f52006-02-12 08:02:11 +0000734
735 // If all of the demanded bits in the inputs are known zeros, return zero.
736 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
737 return UpdateValueUsesWith(I, Constant::getNullValue(I->getType()));
738
Chris Lattner255d8912006-02-11 09:31:47 +0000739 // If the RHS is a constant, see if we can simplify it.
Chris Lattnerf8c36f52006-02-12 08:02:11 +0000740 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~KnownZero2))
Chris Lattner255d8912006-02-11 09:31:47 +0000741 return UpdateValueUsesWith(I, I);
742
743 // Output known-1 bits are only known if set in both the LHS & RHS.
744 KnownOne &= KnownOne2;
745 // Output known-0 are known to be clear if zero in either the LHS | RHS.
746 KnownZero |= KnownZero2;
747 break;
748 case Instruction::Or:
749 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
750 KnownZero, KnownOne, Depth+1))
751 return true;
752 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
753 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownOne,
754 KnownZero2, KnownOne2, Depth+1))
755 return true;
756 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
757
758 // If all of the demanded bits are known zero on one side, return the other.
759 // These bits cannot contribute to the result of the 'or'.
Jeff Cohenbce48052006-02-18 03:20:33 +0000760 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Chris Lattner255d8912006-02-11 09:31:47 +0000761 return UpdateValueUsesWith(I, I->getOperand(0));
Jeff Cohenbce48052006-02-18 03:20:33 +0000762 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Chris Lattner255d8912006-02-11 09:31:47 +0000763 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattnerf8c36f52006-02-12 08:02:11 +0000764
765 // If all of the potentially set bits on one side are known to be set on
766 // the other side, just use the 'other' side.
767 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
768 (DemandedMask & (~KnownZero)))
769 return UpdateValueUsesWith(I, I->getOperand(0));
Nate Begeman368e18d2006-02-16 21:11:51 +0000770 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
771 (DemandedMask & (~KnownZero2)))
772 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattner255d8912006-02-11 09:31:47 +0000773
774 // If the RHS is a constant, see if we can simplify it.
775 if (ShrinkDemandedConstant(I, 1, DemandedMask))
776 return UpdateValueUsesWith(I, I);
777
778 // Output known-0 bits are only known if clear in both the LHS & RHS.
779 KnownZero &= KnownZero2;
780 // Output known-1 are known to be set if set in either the LHS | RHS.
781 KnownOne |= KnownOne2;
782 break;
783 case Instruction::Xor: {
784 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
785 KnownZero, KnownOne, Depth+1))
786 return true;
787 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
788 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
789 KnownZero2, KnownOne2, Depth+1))
790 return true;
791 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
792
793 // If all of the demanded bits are known zero on one side, return the other.
794 // These bits cannot contribute to the result of the 'xor'.
795 if ((DemandedMask & KnownZero) == DemandedMask)
796 return UpdateValueUsesWith(I, I->getOperand(0));
797 if ((DemandedMask & KnownZero2) == DemandedMask)
798 return UpdateValueUsesWith(I, I->getOperand(1));
799
800 // Output known-0 bits are known if clear or set in both the LHS & RHS.
801 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
802 // Output known-1 are known to be set if set in only one of the LHS, RHS.
803 uint64_t KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
804
805 // If all of the unknown bits are known to be zero on one side or the other
806 // (but not both) turn this into an *inclusive* or.
Chris Lattnerf8c36f52006-02-12 08:02:11 +0000807 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattner255d8912006-02-11 09:31:47 +0000808 if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut)) {
809 if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits) {
810 Instruction *Or =
811 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
812 I->getName());
813 InsertNewInstBefore(Or, *I);
814 return UpdateValueUsesWith(I, Or);
Chris Lattner6dce1a72006-02-07 06:56:34 +0000815 }
816 }
Chris Lattner255d8912006-02-11 09:31:47 +0000817
Chris Lattnerf8c36f52006-02-12 08:02:11 +0000818 // If all of the demanded bits on one side are known, and all of the set
819 // bits on that side are also known to be set on the other side, turn this
820 // into an AND, as we know the bits will be cleared.
821 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
822 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
823 if ((KnownOne & KnownOne2) == KnownOne) {
824 Constant *AndC = GetConstantInType(I->getType(),
825 ~KnownOne & DemandedMask);
826 Instruction *And =
827 BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
828 InsertNewInstBefore(And, *I);
829 return UpdateValueUsesWith(I, And);
830 }
831 }
832
Chris Lattner255d8912006-02-11 09:31:47 +0000833 // If the RHS is a constant, see if we can simplify it.
834 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
835 if (ShrinkDemandedConstant(I, 1, DemandedMask))
836 return UpdateValueUsesWith(I, I);
837
838 KnownZero = KnownZeroOut;
839 KnownOne = KnownOneOut;
840 break;
841 }
842 case Instruction::Select:
843 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
844 KnownZero, KnownOne, Depth+1))
845 return true;
846 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
847 KnownZero2, KnownOne2, Depth+1))
848 return true;
849 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
850 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
851
852 // If the operands are constants, see if we can simplify them.
853 if (ShrinkDemandedConstant(I, 1, DemandedMask))
854 return UpdateValueUsesWith(I, I);
855 if (ShrinkDemandedConstant(I, 2, DemandedMask))
856 return UpdateValueUsesWith(I, I);
857
858 // Only known if known in both the LHS and RHS.
859 KnownOne &= KnownOne2;
860 KnownZero &= KnownZero2;
861 break;
Chris Lattner6dce1a72006-02-07 06:56:34 +0000862 case Instruction::Cast: {
863 const Type *SrcTy = I->getOperand(0)->getType();
Chris Lattner255d8912006-02-11 09:31:47 +0000864 if (!SrcTy->isIntegral()) return false;
Chris Lattner6dce1a72006-02-07 06:56:34 +0000865
Chris Lattner255d8912006-02-11 09:31:47 +0000866 // If this is an integer truncate or noop, just look in the input.
867 if (SrcTy->getPrimitiveSizeInBits() >=
868 I->getType()->getPrimitiveSizeInBits()) {
869 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
870 KnownZero, KnownOne, Depth+1))
871 return true;
872 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
873 break;
874 }
875
876 // Sign or Zero extension. Compute the bits in the result that are not
877 // present in the input.
878 uint64_t NotIn = ~SrcTy->getIntegralTypeMask();
879 uint64_t NewBits = I->getType()->getIntegralTypeMask() & NotIn;
880
881 // Handle zero extension.
882 if (!SrcTy->isSigned()) {
883 DemandedMask &= SrcTy->getIntegralTypeMask();
884 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
885 KnownZero, KnownOne, Depth+1))
886 return true;
887 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
888 // The top bits are known to be zero.
889 KnownZero |= NewBits;
890 } else {
891 // Sign extension.
Chris Lattnerf345fe42006-02-13 22:41:07 +0000892 uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
893 int64_t InputDemandedBits = DemandedMask & SrcTy->getIntegralTypeMask();
894
895 // If any of the sign extended bits are demanded, we know that the sign
896 // bit is demanded.
897 if (NewBits & DemandedMask)
898 InputDemandedBits |= InSignBit;
899
900 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
Chris Lattner255d8912006-02-11 09:31:47 +0000901 KnownZero, KnownOne, Depth+1))
902 return true;
903 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
904
905 // If the sign bit of the input is known set or clear, then we know the
906 // top bits of the result.
Chris Lattner6dce1a72006-02-07 06:56:34 +0000907
Chris Lattner255d8912006-02-11 09:31:47 +0000908 // If the input sign bit is known zero, or if the NewBits are not demanded
909 // convert this into a zero extension.
910 if ((KnownZero & InSignBit) || (NewBits & ~DemandedMask) == NewBits) {
Chris Lattner6dce1a72006-02-07 06:56:34 +0000911 // Convert to unsigned first.
Chris Lattnerd89d8882006-02-07 19:07:40 +0000912 Instruction *NewVal;
Chris Lattner6dce1a72006-02-07 06:56:34 +0000913 NewVal = new CastInst(I->getOperand(0), SrcTy->getUnsignedVersion(),
Chris Lattnerd89d8882006-02-07 19:07:40 +0000914 I->getOperand(0)->getName());
915 InsertNewInstBefore(NewVal, *I);
Chris Lattner255d8912006-02-11 09:31:47 +0000916 // Then cast that to the destination type.
Chris Lattnerd89d8882006-02-07 19:07:40 +0000917 NewVal = new CastInst(NewVal, I->getType(), I->getName());
918 InsertNewInstBefore(NewVal, *I);
Chris Lattner6dce1a72006-02-07 06:56:34 +0000919 return UpdateValueUsesWith(I, NewVal);
Chris Lattner255d8912006-02-11 09:31:47 +0000920 } else if (KnownOne & InSignBit) { // Input sign bit known set
921 KnownOne |= NewBits;
922 KnownZero &= ~NewBits;
923 } else { // Input sign bit unknown
924 KnownZero &= ~NewBits;
925 KnownOne &= ~NewBits;
Chris Lattner6dce1a72006-02-07 06:56:34 +0000926 }
Chris Lattner6dce1a72006-02-07 06:56:34 +0000927 }
Chris Lattner255d8912006-02-11 09:31:47 +0000928 break;
Chris Lattner6dce1a72006-02-07 06:56:34 +0000929 }
Chris Lattner6dce1a72006-02-07 06:56:34 +0000930 case Instruction::Shl:
Chris Lattner255d8912006-02-11 09:31:47 +0000931 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
932 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask >> SA->getValue(),
933 KnownZero, KnownOne, Depth+1))
934 return true;
935 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
936 KnownZero <<= SA->getValue();
937 KnownOne <<= SA->getValue();
938 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
939 }
Chris Lattner6dce1a72006-02-07 06:56:34 +0000940 break;
941 case Instruction::Shr:
Chris Lattner255d8912006-02-11 09:31:47 +0000942 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
943 unsigned ShAmt = SA->getValue();
944
945 // Compute the new bits that are at the top now.
946 uint64_t HighBits = (1ULL << ShAmt)-1;
947 HighBits <<= I->getType()->getPrimitiveSizeInBits() - ShAmt;
Chris Lattnerc15637b2006-02-13 06:09:08 +0000948 uint64_t TypeMask = I->getType()->getIntegralTypeMask();
Chris Lattner255d8912006-02-11 09:31:47 +0000949 if (I->getType()->isUnsigned()) { // Unsigned shift right.
Chris Lattnerc15637b2006-02-13 06:09:08 +0000950 if (SimplifyDemandedBits(I->getOperand(0),
951 (DemandedMask << ShAmt) & TypeMask,
Chris Lattner255d8912006-02-11 09:31:47 +0000952 KnownZero, KnownOne, Depth+1))
953 return true;
954 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattnerc15637b2006-02-13 06:09:08 +0000955 KnownZero &= TypeMask;
956 KnownOne &= TypeMask;
Chris Lattner255d8912006-02-11 09:31:47 +0000957 KnownZero >>= ShAmt;
958 KnownOne >>= ShAmt;
959 KnownZero |= HighBits; // high bits known zero.
960 } else { // Signed shift right.
Chris Lattnerc15637b2006-02-13 06:09:08 +0000961 if (SimplifyDemandedBits(I->getOperand(0),
962 (DemandedMask << ShAmt) & TypeMask,
Chris Lattner255d8912006-02-11 09:31:47 +0000963 KnownZero, KnownOne, Depth+1))
964 return true;
965 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattnerc15637b2006-02-13 06:09:08 +0000966 KnownZero &= TypeMask;
967 KnownOne &= TypeMask;
Chris Lattner255d8912006-02-11 09:31:47 +0000968 KnownZero >>= SA->getValue();
969 KnownOne >>= SA->getValue();
970
971 // Handle the sign bits.
972 uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
973 SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
974
975 // If the input sign bit is known to be zero, or if none of the top bits
976 // are demanded, turn this into an unsigned shift right.
977 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
978 // Convert the input to unsigned.
979 Instruction *NewVal;
980 NewVal = new CastInst(I->getOperand(0),
981 I->getType()->getUnsignedVersion(),
982 I->getOperand(0)->getName());
983 InsertNewInstBefore(NewVal, *I);
984 // Perform the unsigned shift right.
985 NewVal = new ShiftInst(Instruction::Shr, NewVal, SA, I->getName());
986 InsertNewInstBefore(NewVal, *I);
987 // Then cast that to the destination type.
988 NewVal = new CastInst(NewVal, I->getType(), I->getName());
989 InsertNewInstBefore(NewVal, *I);
990 return UpdateValueUsesWith(I, NewVal);
991 } else if (KnownOne & SignBit) { // New bits are known one.
992 KnownOne |= HighBits;
993 }
Chris Lattner6dce1a72006-02-07 06:56:34 +0000994 }
Chris Lattner255d8912006-02-11 09:31:47 +0000995 }
Chris Lattner6dce1a72006-02-07 06:56:34 +0000996 break;
997 }
Chris Lattner255d8912006-02-11 09:31:47 +0000998
999 // If the client is only demanding bits that we know, return the known
1000 // constant.
1001 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
1002 return UpdateValueUsesWith(I, GetConstantInType(I->getType(), KnownOne));
Chris Lattner6dce1a72006-02-07 06:56:34 +00001003 return false;
1004}
1005
Chris Lattner955f3312004-09-28 21:48:02 +00001006// isTrueWhenEqual - Return true if the specified setcondinst instruction is
1007// true when both operands are equal...
1008//
1009static bool isTrueWhenEqual(Instruction &I) {
1010 return I.getOpcode() == Instruction::SetEQ ||
1011 I.getOpcode() == Instruction::SetGE ||
1012 I.getOpcode() == Instruction::SetLE;
1013}
Chris Lattner564a7272003-08-13 19:01:45 +00001014
1015/// AssociativeOpt - Perform an optimization on an associative operator. This
1016/// function is designed to check a chain of associative operators for a
1017/// potential to apply a certain optimization. Since the optimization may be
1018/// applicable if the expression was reassociated, this checks the chain, then
1019/// reassociates the expression as necessary to expose the optimization
1020/// opportunity. This makes use of a special Functor, which must define
1021/// 'shouldApply' and 'apply' methods.
1022///
1023template<typename Functor>
1024Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
1025 unsigned Opcode = Root.getOpcode();
1026 Value *LHS = Root.getOperand(0);
1027
1028 // Quick check, see if the immediate LHS matches...
1029 if (F.shouldApply(LHS))
1030 return F.apply(Root);
1031
1032 // Otherwise, if the LHS is not of the same opcode as the root, return.
1033 Instruction *LHSI = dyn_cast<Instruction>(LHS);
Chris Lattnerfd059242003-10-15 16:48:29 +00001034 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
Chris Lattner564a7272003-08-13 19:01:45 +00001035 // Should we apply this transform to the RHS?
1036 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1037
1038 // If not to the RHS, check to see if we should apply to the LHS...
1039 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1040 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1041 ShouldApply = true;
1042 }
1043
1044 // If the functor wants to apply the optimization to the RHS of LHSI,
1045 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1046 if (ShouldApply) {
1047 BasicBlock *BB = Root.getParent();
Misha Brukmanfd939082005-04-21 23:48:37 +00001048
Chris Lattner564a7272003-08-13 19:01:45 +00001049 // Now all of the instructions are in the current basic block, go ahead
1050 // and perform the reassociation.
1051 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1052
1053 // First move the selected RHS to the LHS of the root...
1054 Root.setOperand(0, LHSI->getOperand(1));
1055
1056 // Make what used to be the LHS of the root be the user of the root...
1057 Value *ExtraOperand = TmpLHSI->getOperand(1);
Chris Lattner65725312004-04-16 18:08:07 +00001058 if (&Root == TmpLHSI) {
Chris Lattner15a76c02004-04-05 02:10:19 +00001059 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1060 return 0;
1061 }
Chris Lattner65725312004-04-16 18:08:07 +00001062 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
Chris Lattner564a7272003-08-13 19:01:45 +00001063 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Chris Lattner65725312004-04-16 18:08:07 +00001064 TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
1065 BasicBlock::iterator ARI = &Root; ++ARI;
1066 BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root
1067 ARI = Root;
Chris Lattner564a7272003-08-13 19:01:45 +00001068
1069 // Now propagate the ExtraOperand down the chain of instructions until we
1070 // get to LHSI.
1071 while (TmpLHSI != LHSI) {
1072 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
Chris Lattner65725312004-04-16 18:08:07 +00001073 // Move the instruction to immediately before the chain we are
1074 // constructing to avoid breaking dominance properties.
1075 NextLHSI->getParent()->getInstList().remove(NextLHSI);
1076 BB->getInstList().insert(ARI, NextLHSI);
1077 ARI = NextLHSI;
1078
Chris Lattner564a7272003-08-13 19:01:45 +00001079 Value *NextOp = NextLHSI->getOperand(1);
1080 NextLHSI->setOperand(1, ExtraOperand);
1081 TmpLHSI = NextLHSI;
1082 ExtraOperand = NextOp;
1083 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001084
Chris Lattner564a7272003-08-13 19:01:45 +00001085 // Now that the instructions are reassociated, have the functor perform
1086 // the transformation...
1087 return F.apply(Root);
1088 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001089
Chris Lattner564a7272003-08-13 19:01:45 +00001090 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1091 }
1092 return 0;
1093}
1094
1095
1096// AddRHS - Implements: X + X --> X << 1
1097struct AddRHS {
1098 Value *RHS;
1099 AddRHS(Value *rhs) : RHS(rhs) {}
1100 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1101 Instruction *apply(BinaryOperator &Add) const {
1102 return new ShiftInst(Instruction::Shl, Add.getOperand(0),
1103 ConstantInt::get(Type::UByteTy, 1));
1104 }
1105};
1106
1107// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1108// iff C1&C2 == 0
1109struct AddMaskingAnd {
1110 Constant *C2;
1111 AddMaskingAnd(Constant *c) : C2(c) {}
1112 bool shouldApply(Value *LHS) const {
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001113 ConstantInt *C1;
Misha Brukmanfd939082005-04-21 23:48:37 +00001114 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001115 ConstantExpr::getAnd(C1, C2)->isNullValue();
Chris Lattner564a7272003-08-13 19:01:45 +00001116 }
1117 Instruction *apply(BinaryOperator &Add) const {
Chris Lattner48595f12004-06-10 02:07:29 +00001118 return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
Chris Lattner564a7272003-08-13 19:01:45 +00001119 }
1120};
1121
Chris Lattner6e7ba452005-01-01 16:22:27 +00001122static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner2eefe512004-04-09 19:05:30 +00001123 InstCombiner *IC) {
Chris Lattner6e7ba452005-01-01 16:22:27 +00001124 if (isa<CastInst>(I)) {
1125 if (Constant *SOC = dyn_cast<Constant>(SO))
1126 return ConstantExpr::getCast(SOC, I.getType());
Misha Brukmanfd939082005-04-21 23:48:37 +00001127
Chris Lattner6e7ba452005-01-01 16:22:27 +00001128 return IC->InsertNewInstBefore(new CastInst(SO, I.getType(),
1129 SO->getName() + ".cast"), I);
1130 }
1131
Chris Lattner2eefe512004-04-09 19:05:30 +00001132 // Figure out if the constant is the left or the right argument.
Chris Lattner6e7ba452005-01-01 16:22:27 +00001133 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1134 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattner564a7272003-08-13 19:01:45 +00001135
Chris Lattner2eefe512004-04-09 19:05:30 +00001136 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1137 if (ConstIsRHS)
Chris Lattner6e7ba452005-01-01 16:22:27 +00001138 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1139 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner2eefe512004-04-09 19:05:30 +00001140 }
1141
1142 Value *Op0 = SO, *Op1 = ConstOperand;
1143 if (!ConstIsRHS)
1144 std::swap(Op0, Op1);
1145 Instruction *New;
Chris Lattner6e7ba452005-01-01 16:22:27 +00001146 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
1147 New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
1148 else if (ShiftInst *SI = dyn_cast<ShiftInst>(&I))
1149 New = new ShiftInst(SI->getOpcode(), Op0, Op1, SO->getName()+".sh");
Chris Lattner326c0f32004-04-10 19:15:56 +00001150 else {
Chris Lattner2eefe512004-04-09 19:05:30 +00001151 assert(0 && "Unknown binary instruction type!");
Chris Lattner326c0f32004-04-10 19:15:56 +00001152 abort();
1153 }
Chris Lattner6e7ba452005-01-01 16:22:27 +00001154 return IC->InsertNewInstBefore(New, I);
1155}
1156
1157// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1158// constant as the other operand, try to fold the binary operator into the
1159// select arguments. This also works for Cast instructions, which obviously do
1160// not have a second operand.
1161static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1162 InstCombiner *IC) {
1163 // Don't modify shared select instructions
1164 if (!SI->hasOneUse()) return 0;
1165 Value *TV = SI->getOperand(1);
1166 Value *FV = SI->getOperand(2);
1167
1168 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner956db272005-04-21 05:43:13 +00001169 // Bool selects with constant operands can be folded to logical ops.
1170 if (SI->getType() == Type::BoolTy) return 0;
1171
Chris Lattner6e7ba452005-01-01 16:22:27 +00001172 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1173 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1174
1175 return new SelectInst(SI->getCondition(), SelectTrueVal,
1176 SelectFalseVal);
1177 }
1178 return 0;
Chris Lattner2eefe512004-04-09 19:05:30 +00001179}
1180
Chris Lattner4e998b22004-09-29 05:07:12 +00001181
1182/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1183/// node as operand #0, see if we can fold the instruction into the PHI (which
1184/// is only possible if all operands to the PHI are constants).
1185Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1186 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattnerbac32862004-11-14 19:13:23 +00001187 unsigned NumPHIValues = PN->getNumIncomingValues();
1188 if (!PN->hasOneUse() || NumPHIValues == 0 ||
1189 !isa<Constant>(PN->getIncomingValue(0))) return 0;
Chris Lattner4e998b22004-09-29 05:07:12 +00001190
1191 // Check to see if all of the operands of the PHI are constants. If not, we
1192 // cannot do the transformation.
Chris Lattnerbac32862004-11-14 19:13:23 +00001193 for (unsigned i = 1; i != NumPHIValues; ++i)
Chris Lattner4e998b22004-09-29 05:07:12 +00001194 if (!isa<Constant>(PN->getIncomingValue(i)))
1195 return 0;
1196
1197 // Okay, we can do the transformation: create the new PHI node.
1198 PHINode *NewPN = new PHINode(I.getType(), I.getName());
1199 I.setName("");
Chris Lattner55517062005-01-29 00:39:08 +00001200 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
Chris Lattner4e998b22004-09-29 05:07:12 +00001201 InsertNewInstBefore(NewPN, *PN);
1202
1203 // Next, add all of the operands to the PHI.
1204 if (I.getNumOperands() == 2) {
1205 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattnerbac32862004-11-14 19:13:23 +00001206 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner4e998b22004-09-29 05:07:12 +00001207 Constant *InV = cast<Constant>(PN->getIncomingValue(i));
1208 NewPN->addIncoming(ConstantExpr::get(I.getOpcode(), InV, C),
1209 PN->getIncomingBlock(i));
1210 }
1211 } else {
1212 assert(isa<CastInst>(I) && "Unary op should be a cast!");
1213 const Type *RetTy = I.getType();
Chris Lattnerbac32862004-11-14 19:13:23 +00001214 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner4e998b22004-09-29 05:07:12 +00001215 Constant *InV = cast<Constant>(PN->getIncomingValue(i));
1216 NewPN->addIncoming(ConstantExpr::getCast(InV, RetTy),
1217 PN->getIncomingBlock(i));
1218 }
1219 }
1220 return ReplaceInstUsesWith(I, NewPN);
1221}
1222
Chris Lattner7e708292002-06-25 16:13:24 +00001223Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00001224 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00001225 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Chris Lattnerb35dde12002-05-06 16:49:18 +00001226
Chris Lattner66331a42004-04-10 22:01:55 +00001227 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
Chris Lattnere87597f2004-10-16 18:11:37 +00001228 // X + undef -> undef
1229 if (isa<UndefValue>(RHS))
1230 return ReplaceInstUsesWith(I, RHS);
1231
Chris Lattner66331a42004-04-10 22:01:55 +00001232 // X + 0 --> X
Chris Lattner5e678e02005-10-17 17:56:38 +00001233 if (!I.getType()->isFloatingPoint()) { // NOTE: -0 + +0 = +0.
1234 if (RHSC->isNullValue())
1235 return ReplaceInstUsesWith(I, LHS);
Chris Lattner8532cf62005-10-17 20:18:38 +00001236 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
1237 if (CFP->isExactlyValue(-0.0))
1238 return ReplaceInstUsesWith(I, LHS);
Chris Lattner5e678e02005-10-17 17:56:38 +00001239 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001240
Chris Lattner66331a42004-04-10 22:01:55 +00001241 // X + (signbit) --> X ^ signbit
1242 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
Chris Lattner74c51a02006-02-07 08:05:22 +00001243 uint64_t Val = CI->getZExtValue();
Chris Lattner1a074fc2006-02-07 07:00:41 +00001244 if (Val == (1ULL << (CI->getType()->getPrimitiveSizeInBits()-1)))
Chris Lattner48595f12004-06-10 02:07:29 +00001245 return BinaryOperator::createXor(LHS, RHS);
Chris Lattner66331a42004-04-10 22:01:55 +00001246 }
Chris Lattner4e998b22004-09-29 05:07:12 +00001247
1248 if (isa<PHINode>(LHS))
1249 if (Instruction *NV = FoldOpIntoPhi(I))
1250 return NV;
Chris Lattner5931c542005-09-24 23:43:33 +00001251
Chris Lattner4f637d42006-01-06 17:59:59 +00001252 ConstantInt *XorRHS = 0;
1253 Value *XorLHS = 0;
Chris Lattner5931c542005-09-24 23:43:33 +00001254 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1255 unsigned TySizeBits = I.getType()->getPrimitiveSizeInBits();
1256 int64_t RHSSExt = cast<ConstantInt>(RHSC)->getSExtValue();
1257 uint64_t RHSZExt = cast<ConstantInt>(RHSC)->getZExtValue();
1258
1259 uint64_t C0080Val = 1ULL << 31;
1260 int64_t CFF80Val = -C0080Val;
1261 unsigned Size = 32;
1262 do {
1263 if (TySizeBits > Size) {
1264 bool Found = false;
1265 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1266 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1267 if (RHSSExt == CFF80Val) {
1268 if (XorRHS->getZExtValue() == C0080Val)
1269 Found = true;
1270 } else if (RHSZExt == C0080Val) {
1271 if (XorRHS->getSExtValue() == CFF80Val)
1272 Found = true;
1273 }
1274 if (Found) {
1275 // This is a sign extend if the top bits are known zero.
Chris Lattner68d5ff22006-02-09 07:38:58 +00001276 uint64_t Mask = ~0ULL;
Chris Lattner3bedbd92006-02-07 07:27:52 +00001277 Mask <<= 64-(TySizeBits-Size);
Chris Lattner68d5ff22006-02-09 07:38:58 +00001278 Mask &= XorLHS->getType()->getIntegralTypeMask();
Chris Lattner3bedbd92006-02-07 07:27:52 +00001279 if (!MaskedValueIsZero(XorLHS, Mask))
Chris Lattner5931c542005-09-24 23:43:33 +00001280 Size = 0; // Not a sign ext, but can't be any others either.
1281 goto FoundSExt;
1282 }
1283 }
1284 Size >>= 1;
1285 C0080Val >>= Size;
1286 CFF80Val >>= Size;
1287 } while (Size >= 8);
1288
1289FoundSExt:
1290 const Type *MiddleType = 0;
1291 switch (Size) {
1292 default: break;
1293 case 32: MiddleType = Type::IntTy; break;
1294 case 16: MiddleType = Type::ShortTy; break;
1295 case 8: MiddleType = Type::SByteTy; break;
1296 }
1297 if (MiddleType) {
1298 Instruction *NewTrunc = new CastInst(XorLHS, MiddleType, "sext");
1299 InsertNewInstBefore(NewTrunc, I);
1300 return new CastInst(NewTrunc, I.getType());
1301 }
1302 }
Chris Lattner66331a42004-04-10 22:01:55 +00001303 }
Chris Lattnerb35dde12002-05-06 16:49:18 +00001304
Chris Lattner564a7272003-08-13 19:01:45 +00001305 // X + X --> X << 1
Robert Bocchino71698282004-07-27 21:02:21 +00001306 if (I.getType()->isInteger()) {
Chris Lattner564a7272003-08-13 19:01:45 +00001307 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
Chris Lattner7edc8c22005-04-07 17:14:51 +00001308
1309 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
1310 if (RHSI->getOpcode() == Instruction::Sub)
1311 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
1312 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
1313 }
1314 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
1315 if (LHSI->getOpcode() == Instruction::Sub)
1316 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
1317 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
1318 }
Robert Bocchino71698282004-07-27 21:02:21 +00001319 }
Chris Lattnere92d2f42003-08-13 04:18:28 +00001320
Chris Lattner5c4afb92002-05-08 22:46:53 +00001321 // -A + B --> B - A
Chris Lattner8d969642003-03-10 23:06:50 +00001322 if (Value *V = dyn_castNegVal(LHS))
Chris Lattner48595f12004-06-10 02:07:29 +00001323 return BinaryOperator::createSub(RHS, V);
Chris Lattnerb35dde12002-05-06 16:49:18 +00001324
1325 // A + -B --> A - B
Chris Lattner8d969642003-03-10 23:06:50 +00001326 if (!isa<Constant>(RHS))
1327 if (Value *V = dyn_castNegVal(RHS))
Chris Lattner48595f12004-06-10 02:07:29 +00001328 return BinaryOperator::createSub(LHS, V);
Chris Lattnerdd841ae2002-04-18 17:39:14 +00001329
Misha Brukmanfd939082005-04-21 23:48:37 +00001330
Chris Lattner50af16a2004-11-13 19:50:12 +00001331 ConstantInt *C2;
1332 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
1333 if (X == RHS) // X*C + X --> X * (C+1)
1334 return BinaryOperator::createMul(RHS, AddOne(C2));
1335
1336 // X*C1 + X*C2 --> X * (C1+C2)
1337 ConstantInt *C1;
1338 if (X == dyn_castFoldableMul(RHS, C1))
1339 return BinaryOperator::createMul(X, ConstantExpr::getAdd(C1, C2));
Chris Lattnerad3448c2003-02-18 19:57:07 +00001340 }
1341
1342 // X + X*C --> X * (C+1)
Chris Lattner50af16a2004-11-13 19:50:12 +00001343 if (dyn_castFoldableMul(RHS, C2) == LHS)
1344 return BinaryOperator::createMul(LHS, AddOne(C2));
1345
Chris Lattnerad3448c2003-02-18 19:57:07 +00001346
Chris Lattner564a7272003-08-13 19:01:45 +00001347 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001348 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
Chris Lattner564a7272003-08-13 19:01:45 +00001349 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R;
Chris Lattnerc8802d22003-03-11 00:12:48 +00001350
Chris Lattner6b032052003-10-02 15:11:26 +00001351 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
Chris Lattner4f637d42006-01-06 17:59:59 +00001352 Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001353 if (match(LHS, m_Not(m_Value(X)))) { // ~X + C --> (C-1) - X
1354 Constant *C= ConstantExpr::getSub(CRHS, ConstantInt::get(I.getType(), 1));
1355 return BinaryOperator::createSub(C, X);
Chris Lattner6b032052003-10-02 15:11:26 +00001356 }
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001357
Chris Lattnerb99d6b12004-10-08 05:07:56 +00001358 // (X & FF00) + xx00 -> (X+xx00) & FF00
1359 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
1360 Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
1361 if (Anded == CRHS) {
1362 // See if all bits from the first bit set in the Add RHS up are included
1363 // in the mask. First, get the rightmost bit.
1364 uint64_t AddRHSV = CRHS->getRawValue();
1365
1366 // Form a mask of all bits from the lowest bit added through the top.
1367 uint64_t AddRHSHighBits = ~((AddRHSV & -AddRHSV)-1);
Chris Lattner1a074fc2006-02-07 07:00:41 +00001368 AddRHSHighBits &= C2->getType()->getIntegralTypeMask();
Chris Lattnerb99d6b12004-10-08 05:07:56 +00001369
1370 // See if the and mask includes all of these bits.
1371 uint64_t AddRHSHighBitsAnd = AddRHSHighBits & C2->getRawValue();
Misha Brukmanfd939082005-04-21 23:48:37 +00001372
Chris Lattnerb99d6b12004-10-08 05:07:56 +00001373 if (AddRHSHighBits == AddRHSHighBitsAnd) {
1374 // Okay, the xform is safe. Insert the new add pronto.
1375 Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
1376 LHS->getName()), I);
1377 return BinaryOperator::createAnd(NewAdd, C2);
1378 }
1379 }
1380 }
1381
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001382 // Try to fold constant add into select arguments.
1383 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
Chris Lattner6e7ba452005-01-01 16:22:27 +00001384 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001385 return R;
Chris Lattner6b032052003-10-02 15:11:26 +00001386 }
1387
Chris Lattner7e708292002-06-25 16:13:24 +00001388 return Changed ? &I : 0;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00001389}
1390
Chris Lattner1ba5bcd2003-07-22 21:46:59 +00001391// isSignBit - Return true if the value represented by the constant only has the
1392// highest order bit set.
1393static bool isSignBit(ConstantInt *CI) {
Chris Lattner484d3cf2005-04-24 06:59:08 +00001394 unsigned NumBits = CI->getType()->getPrimitiveSizeInBits();
Chris Lattnerf52d6812005-04-24 17:46:05 +00001395 return (CI->getRawValue() & (~0ULL >> (64-NumBits))) == (1ULL << (NumBits-1));
Chris Lattner1ba5bcd2003-07-22 21:46:59 +00001396}
1397
Chris Lattnerbfe492b2004-03-13 00:11:49 +00001398/// RemoveNoopCast - Strip off nonconverting casts from the value.
1399///
1400static Value *RemoveNoopCast(Value *V) {
1401 if (CastInst *CI = dyn_cast<CastInst>(V)) {
1402 const Type *CTy = CI->getType();
1403 const Type *OpTy = CI->getOperand(0)->getType();
1404 if (CTy->isInteger() && OpTy->isInteger()) {
Chris Lattner484d3cf2005-04-24 06:59:08 +00001405 if (CTy->getPrimitiveSizeInBits() == OpTy->getPrimitiveSizeInBits())
Chris Lattnerbfe492b2004-03-13 00:11:49 +00001406 return RemoveNoopCast(CI->getOperand(0));
1407 } else if (isa<PointerType>(CTy) && isa<PointerType>(OpTy))
1408 return RemoveNoopCast(CI->getOperand(0));
1409 }
1410 return V;
1411}
1412
Chris Lattner7e708292002-06-25 16:13:24 +00001413Instruction *InstCombiner::visitSub(BinaryOperator &I) {
Chris Lattner7e708292002-06-25 16:13:24 +00001414 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00001415
Chris Lattner233f7dc2002-08-12 21:17:25 +00001416 if (Op0 == Op1) // sub X, X -> 0
1417 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerdd841ae2002-04-18 17:39:14 +00001418
Chris Lattner233f7dc2002-08-12 21:17:25 +00001419 // If this is a 'B = x-(-A)', change to B = x+A...
Chris Lattner8d969642003-03-10 23:06:50 +00001420 if (Value *V = dyn_castNegVal(Op1))
Chris Lattner48595f12004-06-10 02:07:29 +00001421 return BinaryOperator::createAdd(Op0, V);
Chris Lattnerb35dde12002-05-06 16:49:18 +00001422
Chris Lattnere87597f2004-10-16 18:11:37 +00001423 if (isa<UndefValue>(Op0))
1424 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
1425 if (isa<UndefValue>(Op1))
1426 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
1427
Chris Lattnerd65460f2003-11-05 01:06:05 +00001428 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
1429 // Replace (-1 - A) with (~A)...
Chris Lattnera2881962003-02-18 19:28:33 +00001430 if (C->isAllOnesValue())
1431 return BinaryOperator::createNot(Op1);
Chris Lattner40371712002-05-09 01:29:19 +00001432
Chris Lattnerd65460f2003-11-05 01:06:05 +00001433 // C - ~X == X + (1+C)
Reid Spencer4b828e62005-06-18 17:37:34 +00001434 Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001435 if (match(Op1, m_Not(m_Value(X))))
1436 return BinaryOperator::createAdd(X,
Chris Lattner48595f12004-06-10 02:07:29 +00001437 ConstantExpr::getAdd(C, ConstantInt::get(I.getType(), 1)));
Chris Lattner9c290672004-03-12 23:53:13 +00001438 // -((uint)X >> 31) -> ((int)X >> 31)
1439 // -((int)X >> 31) -> ((uint)X >> 31)
Chris Lattnerbfe492b2004-03-13 00:11:49 +00001440 if (C->isNullValue()) {
1441 Value *NoopCastedRHS = RemoveNoopCast(Op1);
1442 if (ShiftInst *SI = dyn_cast<ShiftInst>(NoopCastedRHS))
Chris Lattner9c290672004-03-12 23:53:13 +00001443 if (SI->getOpcode() == Instruction::Shr)
1444 if (ConstantUInt *CU = dyn_cast<ConstantUInt>(SI->getOperand(1))) {
1445 const Type *NewTy;
Chris Lattnerbfe492b2004-03-13 00:11:49 +00001446 if (SI->getType()->isSigned())
Chris Lattner5dd04022004-06-17 18:16:02 +00001447 NewTy = SI->getType()->getUnsignedVersion();
Chris Lattner9c290672004-03-12 23:53:13 +00001448 else
Chris Lattner5dd04022004-06-17 18:16:02 +00001449 NewTy = SI->getType()->getSignedVersion();
Chris Lattner9c290672004-03-12 23:53:13 +00001450 // Check to see if we are shifting out everything but the sign bit.
Chris Lattner484d3cf2005-04-24 06:59:08 +00001451 if (CU->getValue() == SI->getType()->getPrimitiveSizeInBits()-1) {
Chris Lattner9c290672004-03-12 23:53:13 +00001452 // Ok, the transformation is safe. Insert a cast of the incoming
1453 // value, then the new shift, then the new cast.
1454 Instruction *FirstCast = new CastInst(SI->getOperand(0), NewTy,
1455 SI->getOperand(0)->getName());
1456 Value *InV = InsertNewInstBefore(FirstCast, I);
1457 Instruction *NewShift = new ShiftInst(Instruction::Shr, FirstCast,
1458 CU, SI->getName());
Chris Lattnerbfe492b2004-03-13 00:11:49 +00001459 if (NewShift->getType() == I.getType())
1460 return NewShift;
1461 else {
1462 InV = InsertNewInstBefore(NewShift, I);
1463 return new CastInst(NewShift, I.getType());
1464 }
Chris Lattner9c290672004-03-12 23:53:13 +00001465 }
1466 }
Chris Lattnerbfe492b2004-03-13 00:11:49 +00001467 }
Chris Lattner2eefe512004-04-09 19:05:30 +00001468
1469 // Try to fold constant sub into select arguments.
1470 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner6e7ba452005-01-01 16:22:27 +00001471 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00001472 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00001473
1474 if (isa<PHINode>(Op0))
1475 if (Instruction *NV = FoldOpIntoPhi(I))
1476 return NV;
Chris Lattnerd65460f2003-11-05 01:06:05 +00001477 }
1478
Chris Lattner43d84d62005-04-07 16:15:25 +00001479 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
1480 if (Op1I->getOpcode() == Instruction::Add &&
1481 !Op0->getType()->isFloatingPoint()) {
Chris Lattner08954a22005-04-07 16:28:01 +00001482 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Chris Lattner43d84d62005-04-07 16:15:25 +00001483 return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName());
Chris Lattner08954a22005-04-07 16:28:01 +00001484 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Chris Lattner43d84d62005-04-07 16:15:25 +00001485 return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName());
Chris Lattner08954a22005-04-07 16:28:01 +00001486 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
1487 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
1488 // C1-(X+C2) --> (C1-C2)-X
1489 return BinaryOperator::createSub(ConstantExpr::getSub(CI1, CI2),
1490 Op1I->getOperand(0));
1491 }
Chris Lattner43d84d62005-04-07 16:15:25 +00001492 }
1493
Chris Lattnerfd059242003-10-15 16:48:29 +00001494 if (Op1I->hasOneUse()) {
Chris Lattnera2881962003-02-18 19:28:33 +00001495 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
1496 // is not used by anyone else...
1497 //
Chris Lattner0517e722004-02-02 20:09:56 +00001498 if (Op1I->getOpcode() == Instruction::Sub &&
1499 !Op1I->getType()->isFloatingPoint()) {
Chris Lattnera2881962003-02-18 19:28:33 +00001500 // Swap the two operands of the subexpr...
1501 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
1502 Op1I->setOperand(0, IIOp1);
1503 Op1I->setOperand(1, IIOp0);
Misha Brukmanfd939082005-04-21 23:48:37 +00001504
Chris Lattnera2881962003-02-18 19:28:33 +00001505 // Create the new top level add instruction...
Chris Lattner48595f12004-06-10 02:07:29 +00001506 return BinaryOperator::createAdd(Op0, Op1);
Chris Lattnera2881962003-02-18 19:28:33 +00001507 }
1508
1509 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
1510 //
1511 if (Op1I->getOpcode() == Instruction::And &&
1512 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
1513 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
1514
Chris Lattnerf523d062004-06-09 05:08:07 +00001515 Value *NewNot =
1516 InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
Chris Lattner48595f12004-06-10 02:07:29 +00001517 return BinaryOperator::createAnd(Op0, NewNot);
Chris Lattnera2881962003-02-18 19:28:33 +00001518 }
Chris Lattnerad3448c2003-02-18 19:57:07 +00001519
Chris Lattner91ccc152004-10-06 15:08:25 +00001520 // -(X sdiv C) -> (X sdiv -C)
1521 if (Op1I->getOpcode() == Instruction::Div)
1522 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
Chris Lattner43d84d62005-04-07 16:15:25 +00001523 if (CSI->isNullValue())
Chris Lattner91ccc152004-10-06 15:08:25 +00001524 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Misha Brukmanfd939082005-04-21 23:48:37 +00001525 return BinaryOperator::createDiv(Op1I->getOperand(0),
Chris Lattner91ccc152004-10-06 15:08:25 +00001526 ConstantExpr::getNeg(DivRHS));
1527
Chris Lattnerad3448c2003-02-18 19:57:07 +00001528 // X - X*C --> X * (1-C)
Reid Spencer4b828e62005-06-18 17:37:34 +00001529 ConstantInt *C2 = 0;
Chris Lattner50af16a2004-11-13 19:50:12 +00001530 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
Misha Brukmanfd939082005-04-21 23:48:37 +00001531 Constant *CP1 =
Chris Lattner50af16a2004-11-13 19:50:12 +00001532 ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), C2);
Chris Lattner48595f12004-06-10 02:07:29 +00001533 return BinaryOperator::createMul(Op0, CP1);
Chris Lattnerad3448c2003-02-18 19:57:07 +00001534 }
Chris Lattner40371712002-05-09 01:29:19 +00001535 }
Chris Lattner43d84d62005-04-07 16:15:25 +00001536 }
Chris Lattnera2881962003-02-18 19:28:33 +00001537
Chris Lattner7edc8c22005-04-07 17:14:51 +00001538 if (!Op0->getType()->isFloatingPoint())
1539 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
1540 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00001541 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
1542 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
1543 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
1544 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
Chris Lattner7edc8c22005-04-07 17:14:51 +00001545 } else if (Op0I->getOpcode() == Instruction::Sub) {
1546 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
1547 return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName());
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00001548 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001549
Chris Lattner50af16a2004-11-13 19:50:12 +00001550 ConstantInt *C1;
1551 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
1552 if (X == Op1) { // X*C - X --> X * (C-1)
1553 Constant *CP1 = ConstantExpr::getSub(C1, ConstantInt::get(I.getType(),1));
1554 return BinaryOperator::createMul(Op1, CP1);
1555 }
Chris Lattnerad3448c2003-02-18 19:57:07 +00001556
Chris Lattner50af16a2004-11-13 19:50:12 +00001557 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
1558 if (X == dyn_castFoldableMul(Op1, C2))
1559 return BinaryOperator::createMul(Op1, ConstantExpr::getSub(C1, C2));
1560 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00001561 return 0;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00001562}
1563
Chris Lattner4cb170c2004-02-23 06:38:22 +00001564/// isSignBitCheck - Given an exploded setcc instruction, return true if it is
1565/// really just returns true if the most significant (sign) bit is set.
1566static bool isSignBitCheck(unsigned Opcode, Value *LHS, ConstantInt *RHS) {
1567 if (RHS->getType()->isSigned()) {
1568 // True if source is LHS < 0 or LHS <= -1
1569 return Opcode == Instruction::SetLT && RHS->isNullValue() ||
1570 Opcode == Instruction::SetLE && RHS->isAllOnesValue();
1571 } else {
1572 ConstantUInt *RHSC = cast<ConstantUInt>(RHS);
1573 // True if source is LHS > 127 or LHS >= 128, where the constants depend on
1574 // the size of the integer type.
1575 if (Opcode == Instruction::SetGE)
Chris Lattner484d3cf2005-04-24 06:59:08 +00001576 return RHSC->getValue() ==
1577 1ULL << (RHS->getType()->getPrimitiveSizeInBits()-1);
Chris Lattner4cb170c2004-02-23 06:38:22 +00001578 if (Opcode == Instruction::SetGT)
1579 return RHSC->getValue() ==
Chris Lattner484d3cf2005-04-24 06:59:08 +00001580 (1ULL << (RHS->getType()->getPrimitiveSizeInBits()-1))-1;
Chris Lattner4cb170c2004-02-23 06:38:22 +00001581 }
1582 return false;
1583}
1584
Chris Lattner7e708292002-06-25 16:13:24 +00001585Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00001586 bool Changed = SimplifyCommutative(I);
Chris Lattnera2881962003-02-18 19:28:33 +00001587 Value *Op0 = I.getOperand(0);
Chris Lattnerdd841ae2002-04-18 17:39:14 +00001588
Chris Lattnere87597f2004-10-16 18:11:37 +00001589 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
1590 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1591
Chris Lattner233f7dc2002-08-12 21:17:25 +00001592 // Simplify mul instructions with a constant RHS...
Chris Lattnera2881962003-02-18 19:28:33 +00001593 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
1594 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnere92d2f42003-08-13 04:18:28 +00001595
1596 // ((X << C1)*C2) == (X * (C2 << C1))
1597 if (ShiftInst *SI = dyn_cast<ShiftInst>(Op0))
1598 if (SI->getOpcode() == Instruction::Shl)
1599 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Chris Lattner48595f12004-06-10 02:07:29 +00001600 return BinaryOperator::createMul(SI->getOperand(0),
1601 ConstantExpr::getShl(CI, ShOp));
Misha Brukmanfd939082005-04-21 23:48:37 +00001602
Chris Lattner515c97c2003-09-11 22:24:54 +00001603 if (CI->isNullValue())
1604 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
1605 if (CI->equalsInt(1)) // X * 1 == X
1606 return ReplaceInstUsesWith(I, Op0);
1607 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Chris Lattner0af1fab2003-06-25 17:09:20 +00001608 return BinaryOperator::createNeg(Op0, I.getName());
Chris Lattner6c1ce212002-04-29 22:24:47 +00001609
Chris Lattner515c97c2003-09-11 22:24:54 +00001610 int64_t Val = (int64_t)cast<ConstantInt>(CI)->getRawValue();
Chris Lattnerbcd7db52005-08-02 19:16:58 +00001611 if (isPowerOf2_64(Val)) { // Replace X*(2^C) with X << C
1612 uint64_t C = Log2_64(Val);
Chris Lattnera2881962003-02-18 19:28:33 +00001613 return new ShiftInst(Instruction::Shl, Op0,
1614 ConstantUInt::get(Type::UByteTy, C));
Chris Lattnerbcd7db52005-08-02 19:16:58 +00001615 }
Robert Bocchino71698282004-07-27 21:02:21 +00001616 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
Chris Lattnera2881962003-02-18 19:28:33 +00001617 if (Op1F->isNullValue())
1618 return ReplaceInstUsesWith(I, Op1);
Chris Lattner6c1ce212002-04-29 22:24:47 +00001619
Chris Lattnera2881962003-02-18 19:28:33 +00001620 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
1621 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
1622 if (Op1F->getValue() == 1.0)
1623 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
1624 }
Chris Lattner2eefe512004-04-09 19:05:30 +00001625
1626 // Try to fold constant mul into select arguments.
1627 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00001628 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00001629 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00001630
1631 if (isa<PHINode>(Op0))
1632 if (Instruction *NV = FoldOpIntoPhi(I))
1633 return NV;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00001634 }
1635
Chris Lattnera4f445b2003-03-10 23:23:04 +00001636 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
1637 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Chris Lattner48595f12004-06-10 02:07:29 +00001638 return BinaryOperator::createMul(Op0v, Op1v);
Chris Lattnera4f445b2003-03-10 23:23:04 +00001639
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00001640 // If one of the operands of the multiply is a cast from a boolean value, then
1641 // we know the bool is either zero or one, so this is a 'masking' multiply.
1642 // See if we can simplify things based on how the boolean was originally
1643 // formed.
1644 CastInst *BoolCast = 0;
1645 if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(0)))
1646 if (CI->getOperand(0)->getType() == Type::BoolTy)
1647 BoolCast = CI;
1648 if (!BoolCast)
1649 if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(1)))
1650 if (CI->getOperand(0)->getType() == Type::BoolTy)
1651 BoolCast = CI;
1652 if (BoolCast) {
1653 if (SetCondInst *SCI = dyn_cast<SetCondInst>(BoolCast->getOperand(0))) {
1654 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
1655 const Type *SCOpTy = SCIOp0->getType();
1656
Chris Lattner4cb170c2004-02-23 06:38:22 +00001657 // If the setcc is true iff the sign bit of X is set, then convert this
1658 // multiply into a shift/and combination.
1659 if (isa<ConstantInt>(SCIOp1) &&
1660 isSignBitCheck(SCI->getOpcode(), SCIOp0, cast<ConstantInt>(SCIOp1))) {
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00001661 // Shift the X value right to turn it into "all signbits".
1662 Constant *Amt = ConstantUInt::get(Type::UByteTy,
Chris Lattner484d3cf2005-04-24 06:59:08 +00001663 SCOpTy->getPrimitiveSizeInBits()-1);
Chris Lattner4cb170c2004-02-23 06:38:22 +00001664 if (SCIOp0->getType()->isUnsigned()) {
Chris Lattner5dd04022004-06-17 18:16:02 +00001665 const Type *NewTy = SCIOp0->getType()->getSignedVersion();
Chris Lattner4cb170c2004-02-23 06:38:22 +00001666 SCIOp0 = InsertNewInstBefore(new CastInst(SCIOp0, NewTy,
1667 SCIOp0->getName()), I);
1668 }
1669
1670 Value *V =
1671 InsertNewInstBefore(new ShiftInst(Instruction::Shr, SCIOp0, Amt,
1672 BoolCast->getOperand(0)->getName()+
1673 ".mask"), I);
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00001674
1675 // If the multiply type is not the same as the source type, sign extend
1676 // or truncate to the multiply type.
1677 if (I.getType() != V->getType())
Chris Lattner4cb170c2004-02-23 06:38:22 +00001678 V = InsertNewInstBefore(new CastInst(V, I.getType(), V->getName()),I);
Misha Brukmanfd939082005-04-21 23:48:37 +00001679
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00001680 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Chris Lattner48595f12004-06-10 02:07:29 +00001681 return BinaryOperator::createAnd(V, OtherOp);
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00001682 }
1683 }
1684 }
1685
Chris Lattner7e708292002-06-25 16:13:24 +00001686 return Changed ? &I : 0;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00001687}
1688
Chris Lattner7e708292002-06-25 16:13:24 +00001689Instruction *InstCombiner::visitDiv(BinaryOperator &I) {
Chris Lattner857e8cd2004-12-12 21:48:58 +00001690 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnere87597f2004-10-16 18:11:37 +00001691
Chris Lattner857e8cd2004-12-12 21:48:58 +00001692 if (isa<UndefValue>(Op0)) // undef / X -> 0
1693 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1694 if (isa<UndefValue>(Op1))
1695 return ReplaceInstUsesWith(I, Op1); // X / undef -> undef
1696
1697 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner83a2e6e2004-04-26 14:01:59 +00001698 // div X, 1 == X
Chris Lattner233f7dc2002-08-12 21:17:25 +00001699 if (RHS->equalsInt(1))
Chris Lattner857e8cd2004-12-12 21:48:58 +00001700 return ReplaceInstUsesWith(I, Op0);
Chris Lattnera2881962003-02-18 19:28:33 +00001701
Chris Lattner83a2e6e2004-04-26 14:01:59 +00001702 // div X, -1 == -X
1703 if (RHS->isAllOnesValue())
Chris Lattner857e8cd2004-12-12 21:48:58 +00001704 return BinaryOperator::createNeg(Op0);
Chris Lattner83a2e6e2004-04-26 14:01:59 +00001705
Chris Lattner857e8cd2004-12-12 21:48:58 +00001706 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
Chris Lattner18d19ca2004-09-28 18:22:15 +00001707 if (LHS->getOpcode() == Instruction::Div)
1708 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Chris Lattner18d19ca2004-09-28 18:22:15 +00001709 // (X / C1) / C2 -> X / (C1*C2)
1710 return BinaryOperator::createDiv(LHS->getOperand(0),
1711 ConstantExpr::getMul(RHS, LHSRHS));
1712 }
1713
Chris Lattnera2881962003-02-18 19:28:33 +00001714 // Check to see if this is an unsigned division with an exact power of 2,
1715 // if so, convert to a right shift.
1716 if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
1717 if (uint64_t Val = C->getValue()) // Don't break X / 0
Chris Lattnerbcd7db52005-08-02 19:16:58 +00001718 if (isPowerOf2_64(Val)) {
1719 uint64_t C = Log2_64(Val);
Chris Lattner857e8cd2004-12-12 21:48:58 +00001720 return new ShiftInst(Instruction::Shr, Op0,
Chris Lattnera2881962003-02-18 19:28:33 +00001721 ConstantUInt::get(Type::UByteTy, C));
Chris Lattnerbcd7db52005-08-02 19:16:58 +00001722 }
Chris Lattner4e998b22004-09-29 05:07:12 +00001723
Chris Lattnera052f822004-10-09 02:50:40 +00001724 // -X/C -> X/-C
1725 if (RHS->getType()->isSigned())
Chris Lattner857e8cd2004-12-12 21:48:58 +00001726 if (Value *LHSNeg = dyn_castNegVal(Op0))
Chris Lattnera052f822004-10-09 02:50:40 +00001727 return BinaryOperator::createDiv(LHSNeg, ConstantExpr::getNeg(RHS));
1728
Chris Lattner857e8cd2004-12-12 21:48:58 +00001729 if (!RHS->isNullValue()) {
1730 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00001731 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner857e8cd2004-12-12 21:48:58 +00001732 return R;
1733 if (isa<PHINode>(Op0))
1734 if (Instruction *NV = FoldOpIntoPhi(I))
1735 return NV;
1736 }
Chris Lattnera2881962003-02-18 19:28:33 +00001737 }
1738
Chris Lattner857e8cd2004-12-12 21:48:58 +00001739 // If this is 'udiv X, (Cond ? C1, C2)' where C1&C2 are powers of two,
1740 // transform this into: '(Cond ? (udiv X, C1) : (udiv X, C2))'.
1741 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1742 if (ConstantUInt *STO = dyn_cast<ConstantUInt>(SI->getOperand(1)))
1743 if (ConstantUInt *SFO = dyn_cast<ConstantUInt>(SI->getOperand(2))) {
1744 if (STO->getValue() == 0) { // Couldn't be this argument.
1745 I.setOperand(1, SFO);
Misha Brukmanfd939082005-04-21 23:48:37 +00001746 return &I;
Chris Lattner857e8cd2004-12-12 21:48:58 +00001747 } else if (SFO->getValue() == 0) {
Chris Lattnerf9c775c2005-06-16 04:55:52 +00001748 I.setOperand(1, STO);
Misha Brukmanfd939082005-04-21 23:48:37 +00001749 return &I;
Chris Lattner857e8cd2004-12-12 21:48:58 +00001750 }
1751
Chris Lattnerbf70b832005-04-08 04:03:26 +00001752 uint64_t TVA = STO->getValue(), FVA = SFO->getValue();
Chris Lattnerbcd7db52005-08-02 19:16:58 +00001753 if (isPowerOf2_64(TVA) && isPowerOf2_64(FVA)) {
1754 unsigned TSA = Log2_64(TVA), FSA = Log2_64(FVA);
Chris Lattnerbf70b832005-04-08 04:03:26 +00001755 Constant *TC = ConstantUInt::get(Type::UByteTy, TSA);
1756 Instruction *TSI = new ShiftInst(Instruction::Shr, Op0,
1757 TC, SI->getName()+".t");
1758 TSI = InsertNewInstBefore(TSI, I);
Misha Brukmanfd939082005-04-21 23:48:37 +00001759
Chris Lattnerbf70b832005-04-08 04:03:26 +00001760 Constant *FC = ConstantUInt::get(Type::UByteTy, FSA);
1761 Instruction *FSI = new ShiftInst(Instruction::Shr, Op0,
1762 FC, SI->getName()+".f");
1763 FSI = InsertNewInstBefore(FSI, I);
1764 return new SelectInst(SI->getOperand(0), TSI, FSI);
1765 }
Chris Lattner857e8cd2004-12-12 21:48:58 +00001766 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001767
Chris Lattnera2881962003-02-18 19:28:33 +00001768 // 0 / X == 0, we don't need to preserve faults!
Chris Lattner857e8cd2004-12-12 21:48:58 +00001769 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
Chris Lattnera2881962003-02-18 19:28:33 +00001770 if (LHS->equalsInt(0))
1771 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1772
Chris Lattnerc812e5d2005-11-05 07:40:31 +00001773 if (I.getType()->isSigned()) {
Chris Lattner3bedbd92006-02-07 07:27:52 +00001774 // If the sign bits of both operands are zero (i.e. we can prove they are
Chris Lattnerc812e5d2005-11-05 07:40:31 +00001775 // unsigned inputs), turn this into a udiv.
Chris Lattner3bedbd92006-02-07 07:27:52 +00001776 uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
1777 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Chris Lattnerc812e5d2005-11-05 07:40:31 +00001778 const Type *NTy = Op0->getType()->getUnsignedVersion();
1779 Instruction *LHS = new CastInst(Op0, NTy, Op0->getName());
1780 InsertNewInstBefore(LHS, I);
1781 Value *RHS;
1782 if (Constant *R = dyn_cast<Constant>(Op1))
1783 RHS = ConstantExpr::getCast(R, NTy);
1784 else
1785 RHS = InsertNewInstBefore(new CastInst(Op1, NTy, Op1->getName()), I);
1786 Instruction *Div = BinaryOperator::createDiv(LHS, RHS, I.getName());
1787 InsertNewInstBefore(Div, I);
1788 return new CastInst(Div, I.getType());
1789 }
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00001790 } else {
1791 // Known to be an unsigned division.
1792 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
1793 // Turn A / (C1 << N), where C1 is "1<<C2" into A >> (N+C2) [udiv only].
1794 if (RHSI->getOpcode() == Instruction::Shl &&
1795 isa<ConstantUInt>(RHSI->getOperand(0))) {
1796 unsigned C1 = cast<ConstantUInt>(RHSI->getOperand(0))->getRawValue();
1797 if (isPowerOf2_64(C1)) {
1798 unsigned C2 = Log2_64(C1);
1799 Value *Add = RHSI->getOperand(1);
1800 if (C2) {
1801 Constant *C2V = ConstantUInt::get(Add->getType(), C2);
1802 Add = InsertNewInstBefore(BinaryOperator::createAdd(Add, C2V,
1803 "tmp"), I);
1804 }
1805 return new ShiftInst(Instruction::Shr, Op0, Add);
1806 }
1807 }
1808 }
Chris Lattnerc812e5d2005-11-05 07:40:31 +00001809 }
1810
Chris Lattner3f5b8772002-05-06 16:14:14 +00001811 return 0;
1812}
1813
1814
Chris Lattner7e708292002-06-25 16:13:24 +00001815Instruction *InstCombiner::visitRem(BinaryOperator &I) {
Chris Lattner857e8cd2004-12-12 21:48:58 +00001816 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner19ccd5c2006-02-28 05:30:45 +00001817
1818 // 0 % X == 0, we don't need to preserve faults!
1819 if (Constant *LHS = dyn_cast<Constant>(Op0))
1820 if (LHS->isNullValue())
1821 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1822
1823 if (isa<UndefValue>(Op0)) // undef % X -> 0
1824 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1825 if (isa<UndefValue>(Op1))
1826 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
1827
Chris Lattner11a49f22005-11-05 07:28:37 +00001828 if (I.getType()->isSigned()) {
Chris Lattner857e8cd2004-12-12 21:48:58 +00001829 if (Value *RHSNeg = dyn_castNegVal(Op1))
Chris Lattner1e3564e2004-07-06 07:11:42 +00001830 if (!isa<ConstantSInt>(RHSNeg) ||
Chris Lattnerb49f3062004-08-09 21:05:48 +00001831 cast<ConstantSInt>(RHSNeg)->getValue() > 0) {
Chris Lattner5b73c082004-07-06 07:01:22 +00001832 // X % -Y -> X % Y
1833 AddUsesToWorkList(I);
1834 I.setOperand(1, RHSNeg);
1835 return &I;
1836 }
Chris Lattner11a49f22005-11-05 07:28:37 +00001837
1838 // If the top bits of both operands are zero (i.e. we can prove they are
1839 // unsigned inputs), turn this into a urem.
Chris Lattner3bedbd92006-02-07 07:27:52 +00001840 uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
1841 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Chris Lattner11a49f22005-11-05 07:28:37 +00001842 const Type *NTy = Op0->getType()->getUnsignedVersion();
1843 Instruction *LHS = new CastInst(Op0, NTy, Op0->getName());
1844 InsertNewInstBefore(LHS, I);
1845 Value *RHS;
1846 if (Constant *R = dyn_cast<Constant>(Op1))
1847 RHS = ConstantExpr::getCast(R, NTy);
1848 else
1849 RHS = InsertNewInstBefore(new CastInst(Op1, NTy, Op1->getName()), I);
1850 Instruction *Rem = BinaryOperator::createRem(LHS, RHS, I.getName());
1851 InsertNewInstBefore(Rem, I);
1852 return new CastInst(Rem, I.getType());
1853 }
1854 }
Chris Lattner5b73c082004-07-06 07:01:22 +00001855
Chris Lattner857e8cd2004-12-12 21:48:58 +00001856 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner19ccd5c2006-02-28 05:30:45 +00001857 // X % 0 == undef, we don't need to preserve faults!
1858 if (RHS->equalsInt(0))
1859 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
1860
Chris Lattnera2881962003-02-18 19:28:33 +00001861 if (RHS->equalsInt(1)) // X % 1 == 0
1862 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1863
1864 // Check to see if this is an unsigned remainder with an exact power of 2,
1865 // if so, convert to a bitwise and.
1866 if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
Chris Lattner19ccd5c2006-02-28 05:30:45 +00001867 if (isPowerOf2_64(C->getValue()))
1868 return BinaryOperator::createAnd(Op0, SubOne(C));
Chris Lattner857e8cd2004-12-12 21:48:58 +00001869
Chris Lattner97943922006-02-28 05:49:21 +00001870 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1871 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1872 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
1873 return R;
1874 } else if (isa<PHINode>(Op0I)) {
1875 if (Instruction *NV = FoldOpIntoPhi(I))
1876 return NV;
1877 } else if (Op0I->getOpcode() == Instruction::Mul) {
1878 // X*C1%C2 --> 0 iff C1%C2 == 0
1879 if (ConstantInt *MulRHS = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
1880 if (ConstantExpr::getRem(MulRHS, RHS)->isNullValue())
1881 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1882 }
1883 } else if (Op0I->getOpcode() == Instruction::Shl) {
1884 // (X<<C1)%C2 --> 0 iff (1<<C1)%C2 == 0
1885 if (Constant *ShRHS = dyn_cast<Constant>(Op0I->getOperand(1))) {
1886 ShRHS = ConstantExpr::getShl(ConstantInt::get(I.getType(), 1), ShRHS);
1887 if (ConstantExpr::getRem(ShRHS, RHS)->isNullValue())
1888 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1889 }
1890 }
1891 }
Chris Lattnera2881962003-02-18 19:28:33 +00001892 }
1893
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00001894 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
1895 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) [urem only].
1896 if (I.getType()->isUnsigned() &&
1897 RHSI->getOpcode() == Instruction::Shl &&
1898 isa<ConstantUInt>(RHSI->getOperand(0))) {
1899 unsigned C1 = cast<ConstantUInt>(RHSI->getOperand(0))->getRawValue();
1900 if (isPowerOf2_64(C1)) {
1901 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
1902 Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1,
1903 "tmp"), I);
1904 return BinaryOperator::createAnd(Op0, Add);
1905 }
1906 }
Chris Lattner19ccd5c2006-02-28 05:30:45 +00001907
1908 // If this is 'urem X, (Cond ? C1, C2)' where C1&C2 are powers of two,
1909 // transform this into: '(Cond ? (urem X, C1) : (urem X, C2))'.
1910 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1911 if (ConstantUInt *STO = dyn_cast<ConstantUInt>(SI->getOperand(1)))
1912 if (ConstantUInt *SFO = dyn_cast<ConstantUInt>(SI->getOperand(2))) {
1913 if (STO->getValue() == 0) { // Couldn't be this argument.
1914 I.setOperand(1, SFO);
1915 return &I;
1916 } else if (SFO->getValue() == 0) {
1917 I.setOperand(1, STO);
1918 return &I;
1919 }
1920
1921 if (isPowerOf2_64(STO->getValue()) && isPowerOf2_64(SFO->getValue())){
1922 Value *TrueAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0,
1923 SubOne(STO), SI->getName()+".t"), I);
1924 Value *FalseAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0,
1925 SubOne(SFO), SI->getName()+".f"), I);
1926 return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd);
1927 }
1928 }
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00001929 }
1930
Chris Lattner3f5b8772002-05-06 16:14:14 +00001931 return 0;
1932}
1933
Chris Lattner8b170942002-08-09 23:47:40 +00001934// isMaxValueMinusOne - return true if this is Max-1
Chris Lattner233f7dc2002-08-12 21:17:25 +00001935static bool isMaxValueMinusOne(const ConstantInt *C) {
Chris Lattner1a074fc2006-02-07 07:00:41 +00001936 if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
1937 return CU->getValue() == C->getType()->getIntegralTypeMask()-1;
Chris Lattner8b170942002-08-09 23:47:40 +00001938
1939 const ConstantSInt *CS = cast<ConstantSInt>(C);
Misha Brukmanfd939082005-04-21 23:48:37 +00001940
Chris Lattner8b170942002-08-09 23:47:40 +00001941 // Calculate 0111111111..11111
Chris Lattner484d3cf2005-04-24 06:59:08 +00001942 unsigned TypeBits = C->getType()->getPrimitiveSizeInBits();
Chris Lattner8b170942002-08-09 23:47:40 +00001943 int64_t Val = INT64_MAX; // All ones
1944 Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
1945 return CS->getValue() == Val-1;
1946}
1947
1948// isMinValuePlusOne - return true if this is Min+1
Chris Lattner233f7dc2002-08-12 21:17:25 +00001949static bool isMinValuePlusOne(const ConstantInt *C) {
Chris Lattner8b170942002-08-09 23:47:40 +00001950 if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
1951 return CU->getValue() == 1;
1952
1953 const ConstantSInt *CS = cast<ConstantSInt>(C);
Misha Brukmanfd939082005-04-21 23:48:37 +00001954
1955 // Calculate 1111111111000000000000
Chris Lattner484d3cf2005-04-24 06:59:08 +00001956 unsigned TypeBits = C->getType()->getPrimitiveSizeInBits();
Chris Lattner8b170942002-08-09 23:47:40 +00001957 int64_t Val = -1; // All ones
1958 Val <<= TypeBits-1; // Shift over to the right spot
1959 return CS->getValue() == Val+1;
1960}
1961
Chris Lattner457dd822004-06-09 07:59:58 +00001962// isOneBitSet - Return true if there is exactly one bit set in the specified
1963// constant.
1964static bool isOneBitSet(const ConstantInt *CI) {
1965 uint64_t V = CI->getRawValue();
1966 return V && (V & (V-1)) == 0;
1967}
1968
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00001969#if 0 // Currently unused
1970// isLowOnes - Return true if the constant is of the form 0+1+.
1971static bool isLowOnes(const ConstantInt *CI) {
1972 uint64_t V = CI->getRawValue();
1973
1974 // There won't be bits set in parts that the type doesn't contain.
1975 V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue();
1976
1977 uint64_t U = V+1; // If it is low ones, this should be a power of two.
1978 return U && V && (U & V) == 0;
1979}
1980#endif
1981
1982// isHighOnes - Return true if the constant is of the form 1+0+.
1983// This is the same as lowones(~X).
1984static bool isHighOnes(const ConstantInt *CI) {
1985 uint64_t V = ~CI->getRawValue();
Chris Lattner2b83af22005-08-07 07:03:10 +00001986 if (~V == 0) return false; // 0's does not match "1+"
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00001987
1988 // There won't be bits set in parts that the type doesn't contain.
1989 V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue();
1990
1991 uint64_t U = V+1; // If it is low ones, this should be a power of two.
1992 return U && V && (U & V) == 0;
1993}
1994
1995
Chris Lattneraa9c1f12003-08-13 20:16:26 +00001996/// getSetCondCode - Encode a setcc opcode into a three bit mask. These bits
1997/// are carefully arranged to allow folding of expressions such as:
1998///
1999/// (A < B) | (A > B) --> (A != B)
2000///
2001/// Bit value '4' represents that the comparison is true if A > B, bit value '2'
2002/// represents that the comparison is true if A == B, and bit value '1' is true
2003/// if A < B.
2004///
2005static unsigned getSetCondCode(const SetCondInst *SCI) {
2006 switch (SCI->getOpcode()) {
2007 // False -> 0
2008 case Instruction::SetGT: return 1;
2009 case Instruction::SetEQ: return 2;
2010 case Instruction::SetGE: return 3;
2011 case Instruction::SetLT: return 4;
2012 case Instruction::SetNE: return 5;
2013 case Instruction::SetLE: return 6;
2014 // True -> 7
2015 default:
2016 assert(0 && "Invalid SetCC opcode!");
2017 return 0;
2018 }
2019}
2020
2021/// getSetCCValue - This is the complement of getSetCondCode, which turns an
2022/// opcode and two operands into either a constant true or false, or a brand new
2023/// SetCC instruction.
2024static Value *getSetCCValue(unsigned Opcode, Value *LHS, Value *RHS) {
2025 switch (Opcode) {
2026 case 0: return ConstantBool::False;
2027 case 1: return new SetCondInst(Instruction::SetGT, LHS, RHS);
2028 case 2: return new SetCondInst(Instruction::SetEQ, LHS, RHS);
2029 case 3: return new SetCondInst(Instruction::SetGE, LHS, RHS);
2030 case 4: return new SetCondInst(Instruction::SetLT, LHS, RHS);
2031 case 5: return new SetCondInst(Instruction::SetNE, LHS, RHS);
2032 case 6: return new SetCondInst(Instruction::SetLE, LHS, RHS);
2033 case 7: return ConstantBool::True;
2034 default: assert(0 && "Illegal SetCCCode!"); return 0;
2035 }
2036}
2037
2038// FoldSetCCLogical - Implements (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
2039struct FoldSetCCLogical {
2040 InstCombiner &IC;
2041 Value *LHS, *RHS;
2042 FoldSetCCLogical(InstCombiner &ic, SetCondInst *SCI)
2043 : IC(ic), LHS(SCI->getOperand(0)), RHS(SCI->getOperand(1)) {}
2044 bool shouldApply(Value *V) const {
2045 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
2046 return (SCI->getOperand(0) == LHS && SCI->getOperand(1) == RHS ||
2047 SCI->getOperand(0) == RHS && SCI->getOperand(1) == LHS);
2048 return false;
2049 }
2050 Instruction *apply(BinaryOperator &Log) const {
2051 SetCondInst *SCI = cast<SetCondInst>(Log.getOperand(0));
2052 if (SCI->getOperand(0) != LHS) {
2053 assert(SCI->getOperand(1) == LHS);
2054 SCI->swapOperands(); // Swap the LHS and RHS of the SetCC
2055 }
2056
2057 unsigned LHSCode = getSetCondCode(SCI);
2058 unsigned RHSCode = getSetCondCode(cast<SetCondInst>(Log.getOperand(1)));
2059 unsigned Code;
2060 switch (Log.getOpcode()) {
2061 case Instruction::And: Code = LHSCode & RHSCode; break;
2062 case Instruction::Or: Code = LHSCode | RHSCode; break;
2063 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
Chris Lattner021c1902003-09-22 20:33:34 +00002064 default: assert(0 && "Illegal logical opcode!"); return 0;
Chris Lattneraa9c1f12003-08-13 20:16:26 +00002065 }
2066
2067 Value *RV = getSetCCValue(Code, LHS, RHS);
2068 if (Instruction *I = dyn_cast<Instruction>(RV))
2069 return I;
2070 // Otherwise, it's a constant boolean value...
2071 return IC.ReplaceInstUsesWith(Log, RV);
2072 }
2073};
2074
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002075// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
2076// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
2077// guaranteed to be either a shift instruction or a binary operator.
2078Instruction *InstCombiner::OptAndOp(Instruction *Op,
2079 ConstantIntegral *OpRHS,
2080 ConstantIntegral *AndRHS,
2081 BinaryOperator &TheAnd) {
2082 Value *X = Op->getOperand(0);
Chris Lattner76f7fe22004-01-12 19:47:05 +00002083 Constant *Together = 0;
2084 if (!isa<ShiftInst>(Op))
Chris Lattner48595f12004-06-10 02:07:29 +00002085 Together = ConstantExpr::getAnd(AndRHS, OpRHS);
Chris Lattner7c4049c2004-01-12 19:35:11 +00002086
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002087 switch (Op->getOpcode()) {
2088 case Instruction::Xor:
Chris Lattner6e7ba452005-01-01 16:22:27 +00002089 if (Op->hasOneUse()) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002090 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
2091 std::string OpName = Op->getName(); Op->setName("");
Chris Lattner48595f12004-06-10 02:07:29 +00002092 Instruction *And = BinaryOperator::createAnd(X, AndRHS, OpName);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002093 InsertNewInstBefore(And, TheAnd);
Chris Lattner48595f12004-06-10 02:07:29 +00002094 return BinaryOperator::createXor(And, Together);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002095 }
2096 break;
2097 case Instruction::Or:
Chris Lattner6e7ba452005-01-01 16:22:27 +00002098 if (Together == AndRHS) // (X | C) & C --> C
2099 return ReplaceInstUsesWith(TheAnd, AndRHS);
Misha Brukmanfd939082005-04-21 23:48:37 +00002100
Chris Lattner6e7ba452005-01-01 16:22:27 +00002101 if (Op->hasOneUse() && Together != OpRHS) {
2102 // (X | C1) & C2 --> (X | (C1&C2)) & C2
2103 std::string Op0Name = Op->getName(); Op->setName("");
2104 Instruction *Or = BinaryOperator::createOr(X, Together, Op0Name);
2105 InsertNewInstBefore(Or, TheAnd);
2106 return BinaryOperator::createAnd(Or, AndRHS);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002107 }
2108 break;
2109 case Instruction::Add:
Chris Lattnerfd059242003-10-15 16:48:29 +00002110 if (Op->hasOneUse()) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002111 // Adding a one to a single bit bit-field should be turned into an XOR
2112 // of the bit. First thing to check is to see if this AND is with a
2113 // single bit constant.
Chris Lattner457dd822004-06-09 07:59:58 +00002114 uint64_t AndRHSV = cast<ConstantInt>(AndRHS)->getRawValue();
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002115
2116 // Clear bits that are not part of the constant.
Chris Lattner1a074fc2006-02-07 07:00:41 +00002117 AndRHSV &= AndRHS->getType()->getIntegralTypeMask();
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002118
2119 // If there is only one bit set...
Chris Lattner457dd822004-06-09 07:59:58 +00002120 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002121 // Ok, at this point, we know that we are masking the result of the
2122 // ADD down to exactly one bit. If the constant we are adding has
2123 // no bits set below this bit, then we can eliminate the ADD.
Chris Lattner457dd822004-06-09 07:59:58 +00002124 uint64_t AddRHS = cast<ConstantInt>(OpRHS)->getRawValue();
Misha Brukmanfd939082005-04-21 23:48:37 +00002125
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002126 // Check to see if any bits below the one bit set in AndRHSV are set.
2127 if ((AddRHS & (AndRHSV-1)) == 0) {
2128 // If not, the only thing that can effect the output of the AND is
2129 // the bit specified by AndRHSV. If that bit is set, the effect of
2130 // the XOR is to toggle the bit. If it is clear, then the ADD has
2131 // no effect.
2132 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
2133 TheAnd.setOperand(0, X);
2134 return &TheAnd;
2135 } else {
2136 std::string Name = Op->getName(); Op->setName("");
2137 // Pull the XOR out of the AND.
Chris Lattner48595f12004-06-10 02:07:29 +00002138 Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS, Name);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002139 InsertNewInstBefore(NewAnd, TheAnd);
Chris Lattner48595f12004-06-10 02:07:29 +00002140 return BinaryOperator::createXor(NewAnd, AndRHS);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002141 }
2142 }
2143 }
2144 }
2145 break;
Chris Lattner62a355c2003-09-19 19:05:02 +00002146
2147 case Instruction::Shl: {
2148 // We know that the AND will not produce any of the bits shifted in, so if
2149 // the anded constant includes them, clear them now!
2150 //
2151 Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
Chris Lattner0c967662004-09-24 15:21:34 +00002152 Constant *ShlMask = ConstantExpr::getShl(AllOne, OpRHS);
2153 Constant *CI = ConstantExpr::getAnd(AndRHS, ShlMask);
Misha Brukmanfd939082005-04-21 23:48:37 +00002154
Chris Lattner0c967662004-09-24 15:21:34 +00002155 if (CI == ShlMask) { // Masking out bits that the shift already masks
2156 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
2157 } else if (CI != AndRHS) { // Reducing bits set in and.
Chris Lattner62a355c2003-09-19 19:05:02 +00002158 TheAnd.setOperand(1, CI);
2159 return &TheAnd;
2160 }
2161 break;
Misha Brukmanfd939082005-04-21 23:48:37 +00002162 }
Chris Lattner62a355c2003-09-19 19:05:02 +00002163 case Instruction::Shr:
2164 // We know that the AND will not produce any of the bits shifted in, so if
2165 // the anded constant includes them, clear them now! This only applies to
2166 // unsigned shifts, because a signed shr may bring in set bits!
2167 //
2168 if (AndRHS->getType()->isUnsigned()) {
2169 Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
Chris Lattner0c967662004-09-24 15:21:34 +00002170 Constant *ShrMask = ConstantExpr::getShr(AllOne, OpRHS);
2171 Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
2172
2173 if (CI == ShrMask) { // Masking out bits that the shift already masks.
2174 return ReplaceInstUsesWith(TheAnd, Op);
2175 } else if (CI != AndRHS) {
2176 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
Chris Lattner62a355c2003-09-19 19:05:02 +00002177 return &TheAnd;
2178 }
Chris Lattner0c967662004-09-24 15:21:34 +00002179 } else { // Signed shr.
2180 // See if this is shifting in some sign extension, then masking it out
2181 // with an and.
2182 if (Op->hasOneUse()) {
2183 Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
2184 Constant *ShrMask = ConstantExpr::getUShr(AllOne, OpRHS);
2185 Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
Chris Lattner9b991822004-10-22 04:53:16 +00002186 if (CI == AndRHS) { // Masking out bits shifted in.
Chris Lattner0c967662004-09-24 15:21:34 +00002187 // Make the argument unsigned.
2188 Value *ShVal = Op->getOperand(0);
2189 ShVal = InsertCastBefore(ShVal,
2190 ShVal->getType()->getUnsignedVersion(),
2191 TheAnd);
2192 ShVal = InsertNewInstBefore(new ShiftInst(Instruction::Shr, ShVal,
2193 OpRHS, Op->getName()),
2194 TheAnd);
Chris Lattnerdc781222004-10-27 05:57:15 +00002195 Value *AndRHS2 = ConstantExpr::getCast(AndRHS, ShVal->getType());
2196 ShVal = InsertNewInstBefore(BinaryOperator::createAnd(ShVal, AndRHS2,
2197 TheAnd.getName()),
2198 TheAnd);
Chris Lattner0c967662004-09-24 15:21:34 +00002199 return new CastInst(ShVal, Op->getType());
2200 }
2201 }
Chris Lattner62a355c2003-09-19 19:05:02 +00002202 }
2203 break;
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002204 }
2205 return 0;
2206}
2207
Chris Lattner8b170942002-08-09 23:47:40 +00002208
Chris Lattnera96879a2004-09-29 17:40:11 +00002209/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
2210/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
2211/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. IB is the location to
2212/// insert new instructions.
2213Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
2214 bool Inside, Instruction &IB) {
2215 assert(cast<ConstantBool>(ConstantExpr::getSetLE(Lo, Hi))->getValue() &&
2216 "Lo is not <= Hi in range emission code!");
2217 if (Inside) {
2218 if (Lo == Hi) // Trivially false.
2219 return new SetCondInst(Instruction::SetNE, V, V);
2220 if (cast<ConstantIntegral>(Lo)->isMinValue())
2221 return new SetCondInst(Instruction::SetLT, V, Hi);
Misha Brukmanfd939082005-04-21 23:48:37 +00002222
Chris Lattnera96879a2004-09-29 17:40:11 +00002223 Constant *AddCST = ConstantExpr::getNeg(Lo);
2224 Instruction *Add = BinaryOperator::createAdd(V, AddCST,V->getName()+".off");
2225 InsertNewInstBefore(Add, IB);
2226 // Convert to unsigned for the comparison.
2227 const Type *UnsType = Add->getType()->getUnsignedVersion();
2228 Value *OffsetVal = InsertCastBefore(Add, UnsType, IB);
2229 AddCST = ConstantExpr::getAdd(AddCST, Hi);
2230 AddCST = ConstantExpr::getCast(AddCST, UnsType);
2231 return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST);
2232 }
2233
2234 if (Lo == Hi) // Trivially true.
2235 return new SetCondInst(Instruction::SetEQ, V, V);
2236
2237 Hi = SubOne(cast<ConstantInt>(Hi));
2238 if (cast<ConstantIntegral>(Lo)->isMinValue()) // V < 0 || V >= Hi ->'V > Hi-1'
2239 return new SetCondInst(Instruction::SetGT, V, Hi);
2240
2241 // Emit X-Lo > Hi-Lo-1
2242 Constant *AddCST = ConstantExpr::getNeg(Lo);
2243 Instruction *Add = BinaryOperator::createAdd(V, AddCST, V->getName()+".off");
2244 InsertNewInstBefore(Add, IB);
2245 // Convert to unsigned for the comparison.
2246 const Type *UnsType = Add->getType()->getUnsignedVersion();
2247 Value *OffsetVal = InsertCastBefore(Add, UnsType, IB);
2248 AddCST = ConstantExpr::getAdd(AddCST, Hi);
2249 AddCST = ConstantExpr::getCast(AddCST, UnsType);
2250 return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST);
2251}
2252
Chris Lattner7203e152005-09-18 07:22:02 +00002253// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
2254// any number of 0s on either side. The 1s are allowed to wrap from LSB to
2255// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
2256// not, since all 1s are not contiguous.
2257static bool isRunOfOnes(ConstantIntegral *Val, unsigned &MB, unsigned &ME) {
2258 uint64_t V = Val->getRawValue();
2259 if (!isShiftedMask_64(V)) return false;
2260
2261 // look for the first zero bit after the run of ones
2262 MB = 64-CountLeadingZeros_64((V - 1) ^ V);
2263 // look for the first non-zero bit
2264 ME = 64-CountLeadingZeros_64(V);
2265 return true;
2266}
2267
2268
2269
2270/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
2271/// where isSub determines whether the operator is a sub. If we can fold one of
2272/// the following xforms:
Chris Lattnerc8e77562005-09-18 04:24:45 +00002273///
2274/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
2275/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
2276/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
2277///
2278/// return (A +/- B).
2279///
2280Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
2281 ConstantIntegral *Mask, bool isSub,
2282 Instruction &I) {
2283 Instruction *LHSI = dyn_cast<Instruction>(LHS);
2284 if (!LHSI || LHSI->getNumOperands() != 2 ||
2285 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
2286
2287 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
2288
2289 switch (LHSI->getOpcode()) {
2290 default: return 0;
2291 case Instruction::And:
Chris Lattner7203e152005-09-18 07:22:02 +00002292 if (ConstantExpr::getAnd(N, Mask) == Mask) {
2293 // If the AndRHS is a power of two minus one (0+1+), this is simple.
2294 if ((Mask->getRawValue() & Mask->getRawValue()+1) == 0)
2295 break;
2296
2297 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
2298 // part, we don't need any explicit masks to take them out of A. If that
2299 // is all N is, ignore it.
2300 unsigned MB, ME;
2301 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
Chris Lattner3bedbd92006-02-07 07:27:52 +00002302 uint64_t Mask = RHS->getType()->getIntegralTypeMask();
2303 Mask >>= 64-MB+1;
2304 if (MaskedValueIsZero(RHS, Mask))
Chris Lattner7203e152005-09-18 07:22:02 +00002305 break;
2306 }
2307 }
Chris Lattnerc8e77562005-09-18 04:24:45 +00002308 return 0;
2309 case Instruction::Or:
2310 case Instruction::Xor:
Chris Lattner7203e152005-09-18 07:22:02 +00002311 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
2312 if ((Mask->getRawValue() & Mask->getRawValue()+1) == 0 &&
2313 ConstantExpr::getAnd(N, Mask)->isNullValue())
Chris Lattnerc8e77562005-09-18 04:24:45 +00002314 break;
2315 return 0;
2316 }
2317
2318 Instruction *New;
2319 if (isSub)
2320 New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold");
2321 else
2322 New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold");
2323 return InsertNewInstBefore(New, I);
2324}
2325
Chris Lattner7e708292002-06-25 16:13:24 +00002326Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00002327 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00002328 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00002329
Chris Lattnere87597f2004-10-16 18:11:37 +00002330 if (isa<UndefValue>(Op1)) // X & undef -> 0
2331 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2332
Chris Lattner6e7ba452005-01-01 16:22:27 +00002333 // and X, X = X
2334 if (Op0 == Op1)
Chris Lattner233f7dc2002-08-12 21:17:25 +00002335 return ReplaceInstUsesWith(I, Op1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00002336
Chris Lattnerf8c36f52006-02-12 08:02:11 +00002337 // See if we can simplify any instructions used by the instruction whose sole
Chris Lattner9ca96412006-02-08 03:25:32 +00002338 // purpose is to compute bits we don't care about.
Chris Lattner255d8912006-02-11 09:31:47 +00002339 uint64_t KnownZero, KnownOne;
2340 if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
2341 KnownZero, KnownOne))
Chris Lattner9ca96412006-02-08 03:25:32 +00002342 return &I;
2343
Chris Lattner6e7ba452005-01-01 16:22:27 +00002344 if (ConstantIntegral *AndRHS = dyn_cast<ConstantIntegral>(Op1)) {
Chris Lattner7560c3a2006-02-08 07:34:50 +00002345 uint64_t AndRHSMask = AndRHS->getZExtValue();
2346 uint64_t TypeMask = Op0->getType()->getIntegralTypeMask();
Chris Lattner7560c3a2006-02-08 07:34:50 +00002347 uint64_t NotAndRHS = AndRHSMask^TypeMask;
Chris Lattner6e7ba452005-01-01 16:22:27 +00002348
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002349 // Optimize a variety of ((val OP C1) & C2) combinations...
2350 if (isa<BinaryOperator>(Op0) || isa<ShiftInst>(Op0)) {
2351 Instruction *Op0I = cast<Instruction>(Op0);
Chris Lattner6e7ba452005-01-01 16:22:27 +00002352 Value *Op0LHS = Op0I->getOperand(0);
2353 Value *Op0RHS = Op0I->getOperand(1);
2354 switch (Op0I->getOpcode()) {
2355 case Instruction::Xor:
2356 case Instruction::Or:
Chris Lattnerad1e3022005-01-23 20:26:55 +00002357 // If the mask is only needed on one incoming arm, push it up.
2358 if (Op0I->hasOneUse()) {
2359 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
2360 // Not masking anything out for the LHS, move to RHS.
2361 Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS,
2362 Op0RHS->getName()+".masked");
2363 InsertNewInstBefore(NewRHS, I);
2364 return BinaryOperator::create(
2365 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
Misha Brukmanfd939082005-04-21 23:48:37 +00002366 }
Chris Lattner3bedbd92006-02-07 07:27:52 +00002367 if (!isa<Constant>(Op0RHS) &&
Chris Lattnerad1e3022005-01-23 20:26:55 +00002368 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
2369 // Not masking anything out for the RHS, move to LHS.
2370 Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS,
2371 Op0LHS->getName()+".masked");
2372 InsertNewInstBefore(NewLHS, I);
2373 return BinaryOperator::create(
2374 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
2375 }
2376 }
2377
Chris Lattner6e7ba452005-01-01 16:22:27 +00002378 break;
Chris Lattnerc8e77562005-09-18 04:24:45 +00002379 case Instruction::Add:
Chris Lattner7203e152005-09-18 07:22:02 +00002380 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
2381 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
2382 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
2383 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
2384 return BinaryOperator::createAnd(V, AndRHS);
2385 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
2386 return BinaryOperator::createAnd(V, AndRHS); // Add commutes
Chris Lattnerc8e77562005-09-18 04:24:45 +00002387 break;
2388
2389 case Instruction::Sub:
Chris Lattner7203e152005-09-18 07:22:02 +00002390 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
2391 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
2392 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
2393 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
2394 return BinaryOperator::createAnd(V, AndRHS);
Chris Lattnerc8e77562005-09-18 04:24:45 +00002395 break;
Chris Lattner6e7ba452005-01-01 16:22:27 +00002396 }
2397
Chris Lattner58403262003-07-23 19:25:52 +00002398 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002399 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002400 return Res;
Chris Lattner6e7ba452005-01-01 16:22:27 +00002401 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
2402 const Type *SrcTy = CI->getOperand(0)->getType();
2403
Chris Lattner2b83af22005-08-07 07:03:10 +00002404 // If this is an integer truncation or change from signed-to-unsigned, and
2405 // if the source is an and/or with immediate, transform it. This
2406 // frequently occurs for bitfield accesses.
2407 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
2408 if (SrcTy->getPrimitiveSizeInBits() >=
2409 I.getType()->getPrimitiveSizeInBits() &&
2410 CastOp->getNumOperands() == 2)
Chris Lattner7560c3a2006-02-08 07:34:50 +00002411 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1)))
Chris Lattner2b83af22005-08-07 07:03:10 +00002412 if (CastOp->getOpcode() == Instruction::And) {
2413 // Change: and (cast (and X, C1) to T), C2
2414 // into : and (cast X to T), trunc(C1)&C2
2415 // This will folds the two ands together, which may allow other
2416 // simplifications.
2417 Instruction *NewCast =
2418 new CastInst(CastOp->getOperand(0), I.getType(),
2419 CastOp->getName()+".shrunk");
2420 NewCast = InsertNewInstBefore(NewCast, I);
2421
2422 Constant *C3=ConstantExpr::getCast(AndCI, I.getType());//trunc(C1)
2423 C3 = ConstantExpr::getAnd(C3, AndRHS); // trunc(C1)&C2
2424 return BinaryOperator::createAnd(NewCast, C3);
2425 } else if (CastOp->getOpcode() == Instruction::Or) {
2426 // Change: and (cast (or X, C1) to T), C2
2427 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
2428 Constant *C3=ConstantExpr::getCast(AndCI, I.getType());//trunc(C1)
2429 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
2430 return ReplaceInstUsesWith(I, AndRHS);
2431 }
2432 }
Chris Lattner06782f82003-07-23 19:36:21 +00002433 }
Chris Lattner2eefe512004-04-09 19:05:30 +00002434
2435 // Try to fold constant and into select arguments.
2436 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002437 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00002438 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00002439 if (isa<PHINode>(Op0))
2440 if (Instruction *NV = FoldOpIntoPhi(I))
2441 return NV;
Chris Lattnerc6a8aff2003-07-23 17:57:01 +00002442 }
2443
Chris Lattner8d969642003-03-10 23:06:50 +00002444 Value *Op0NotVal = dyn_castNotVal(Op0);
2445 Value *Op1NotVal = dyn_castNotVal(Op1);
Chris Lattnera2881962003-02-18 19:28:33 +00002446
Chris Lattner5b62aa72004-06-18 06:07:51 +00002447 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
2448 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2449
Misha Brukmancb6267b2004-07-30 12:50:08 +00002450 // (~A & ~B) == (~(A | B)) - De Morgan's Law
Chris Lattner8d969642003-03-10 23:06:50 +00002451 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Chris Lattner48595f12004-06-10 02:07:29 +00002452 Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
2453 I.getName()+".demorgan");
Chris Lattnerc6a8aff2003-07-23 17:57:01 +00002454 InsertNewInstBefore(Or, I);
Chris Lattnera2881962003-02-18 19:28:33 +00002455 return BinaryOperator::createNot(Or);
2456 }
Chris Lattner2082ad92006-02-13 23:07:23 +00002457
2458 {
2459 Value *A = 0, *B = 0;
2460 ConstantInt *C1 = 0, *C2 = 0;
2461 if (match(Op0, m_Or(m_Value(A), m_Value(B))))
2462 if (A == Op1 || B == Op1) // (A | ?) & A --> A
2463 return ReplaceInstUsesWith(I, Op1);
2464 if (match(Op1, m_Or(m_Value(A), m_Value(B))))
2465 if (A == Op0 || B == Op0) // A & (A | ?) --> A
2466 return ReplaceInstUsesWith(I, Op0);
2467 }
2468
Chris Lattnera2881962003-02-18 19:28:33 +00002469
Chris Lattner955f3312004-09-28 21:48:02 +00002470 if (SetCondInst *RHS = dyn_cast<SetCondInst>(Op1)) {
2471 // (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
Chris Lattneraa9c1f12003-08-13 20:16:26 +00002472 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
2473 return R;
2474
Chris Lattner955f3312004-09-28 21:48:02 +00002475 Value *LHSVal, *RHSVal;
2476 ConstantInt *LHSCst, *RHSCst;
2477 Instruction::BinaryOps LHSCC, RHSCC;
2478 if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
2479 if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
2480 if (LHSVal == RHSVal && // Found (X setcc C1) & (X setcc C2)
2481 // Set[GL]E X, CST is folded to Set[GL]T elsewhere.
Misha Brukmanfd939082005-04-21 23:48:37 +00002482 LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE &&
Chris Lattner955f3312004-09-28 21:48:02 +00002483 RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) {
2484 // Ensure that the larger constant is on the RHS.
2485 Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst);
2486 SetCondInst *LHS = cast<SetCondInst>(Op0);
2487 if (cast<ConstantBool>(Cmp)->getValue()) {
2488 std::swap(LHS, RHS);
2489 std::swap(LHSCst, RHSCst);
2490 std::swap(LHSCC, RHSCC);
2491 }
2492
2493 // At this point, we know we have have two setcc instructions
2494 // comparing a value against two constants and and'ing the result
2495 // together. Because of the above check, we know that we only have
2496 // SetEQ, SetNE, SetLT, and SetGT here. We also know (from the
2497 // FoldSetCCLogical check above), that the two constants are not
2498 // equal.
2499 assert(LHSCst != RHSCst && "Compares not folded above?");
2500
2501 switch (LHSCC) {
2502 default: assert(0 && "Unknown integer condition code!");
2503 case Instruction::SetEQ:
2504 switch (RHSCC) {
2505 default: assert(0 && "Unknown integer condition code!");
2506 case Instruction::SetEQ: // (X == 13 & X == 15) -> false
2507 case Instruction::SetGT: // (X == 13 & X > 15) -> false
2508 return ReplaceInstUsesWith(I, ConstantBool::False);
2509 case Instruction::SetNE: // (X == 13 & X != 15) -> X == 13
2510 case Instruction::SetLT: // (X == 13 & X < 15) -> X == 13
2511 return ReplaceInstUsesWith(I, LHS);
2512 }
2513 case Instruction::SetNE:
2514 switch (RHSCC) {
2515 default: assert(0 && "Unknown integer condition code!");
2516 case Instruction::SetLT:
2517 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X < 14) -> X < 13
2518 return new SetCondInst(Instruction::SetLT, LHSVal, LHSCst);
2519 break; // (X != 13 & X < 15) -> no change
2520 case Instruction::SetEQ: // (X != 13 & X == 15) -> X == 15
2521 case Instruction::SetGT: // (X != 13 & X > 15) -> X > 15
2522 return ReplaceInstUsesWith(I, RHS);
2523 case Instruction::SetNE:
2524 if (LHSCst == SubOne(RHSCst)) {// (X != 13 & X != 14) -> X-13 >u 1
2525 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
2526 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
2527 LHSVal->getName()+".off");
2528 InsertNewInstBefore(Add, I);
2529 const Type *UnsType = Add->getType()->getUnsignedVersion();
2530 Value *OffsetVal = InsertCastBefore(Add, UnsType, I);
2531 AddCST = ConstantExpr::getSub(RHSCst, LHSCst);
2532 AddCST = ConstantExpr::getCast(AddCST, UnsType);
2533 return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST);
2534 }
2535 break; // (X != 13 & X != 15) -> no change
2536 }
2537 break;
2538 case Instruction::SetLT:
2539 switch (RHSCC) {
2540 default: assert(0 && "Unknown integer condition code!");
2541 case Instruction::SetEQ: // (X < 13 & X == 15) -> false
2542 case Instruction::SetGT: // (X < 13 & X > 15) -> false
2543 return ReplaceInstUsesWith(I, ConstantBool::False);
2544 case Instruction::SetNE: // (X < 13 & X != 15) -> X < 13
2545 case Instruction::SetLT: // (X < 13 & X < 15) -> X < 13
2546 return ReplaceInstUsesWith(I, LHS);
2547 }
2548 case Instruction::SetGT:
2549 switch (RHSCC) {
2550 default: assert(0 && "Unknown integer condition code!");
2551 case Instruction::SetEQ: // (X > 13 & X == 15) -> X > 13
2552 return ReplaceInstUsesWith(I, LHS);
2553 case Instruction::SetGT: // (X > 13 & X > 15) -> X > 15
2554 return ReplaceInstUsesWith(I, RHS);
2555 case Instruction::SetNE:
2556 if (RHSCst == AddOne(LHSCst)) // (X > 13 & X != 14) -> X > 14
2557 return new SetCondInst(Instruction::SetGT, LHSVal, RHSCst);
2558 break; // (X > 13 & X != 15) -> no change
Chris Lattnera96879a2004-09-29 17:40:11 +00002559 case Instruction::SetLT: // (X > 13 & X < 15) -> (X-14) <u 1
2560 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true, I);
Chris Lattner955f3312004-09-28 21:48:02 +00002561 }
2562 }
2563 }
2564 }
2565
Chris Lattner7e708292002-06-25 16:13:24 +00002566 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00002567}
2568
Chris Lattner7e708292002-06-25 16:13:24 +00002569Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00002570 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00002571 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00002572
Chris Lattnere87597f2004-10-16 18:11:37 +00002573 if (isa<UndefValue>(Op1))
2574 return ReplaceInstUsesWith(I, // X | undef -> -1
2575 ConstantIntegral::getAllOnesValue(I.getType()));
2576
Chris Lattnerf8c36f52006-02-12 08:02:11 +00002577 // or X, X = X
2578 if (Op0 == Op1)
Chris Lattner233f7dc2002-08-12 21:17:25 +00002579 return ReplaceInstUsesWith(I, Op0);
Chris Lattner3f5b8772002-05-06 16:14:14 +00002580
Chris Lattnerf8c36f52006-02-12 08:02:11 +00002581 // See if we can simplify any instructions used by the instruction whose sole
2582 // purpose is to compute bits we don't care about.
2583 uint64_t KnownZero, KnownOne;
2584 if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
2585 KnownZero, KnownOne))
2586 return &I;
2587
Chris Lattner3f5b8772002-05-06 16:14:14 +00002588 // or X, -1 == -1
Chris Lattnerad44ebf2003-07-23 18:29:44 +00002589 if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
Chris Lattner4f637d42006-01-06 17:59:59 +00002590 ConstantInt *C1 = 0; Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002591 // (X & C1) | C2 --> (X | C2) & (C1|C2)
2592 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Chris Lattner6e4c6492005-05-09 04:58:36 +00002593 Instruction *Or = BinaryOperator::createOr(X, RHS, Op0->getName());
2594 Op0->setName("");
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002595 InsertNewInstBefore(Or, I);
2596 return BinaryOperator::createAnd(Or, ConstantExpr::getOr(RHS, C1));
2597 }
Chris Lattnerad44ebf2003-07-23 18:29:44 +00002598
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002599 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
2600 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
2601 std::string Op0Name = Op0->getName(); Op0->setName("");
2602 Instruction *Or = BinaryOperator::createOr(X, RHS, Op0Name);
2603 InsertNewInstBefore(Or, I);
2604 return BinaryOperator::createXor(Or,
2605 ConstantExpr::getAnd(C1, ConstantExpr::getNot(RHS)));
Chris Lattnerad44ebf2003-07-23 18:29:44 +00002606 }
Chris Lattner2eefe512004-04-09 19:05:30 +00002607
2608 // Try to fold constant and into select arguments.
2609 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002610 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00002611 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00002612 if (isa<PHINode>(Op0))
2613 if (Instruction *NV = FoldOpIntoPhi(I))
2614 return NV;
Chris Lattnerad44ebf2003-07-23 18:29:44 +00002615 }
2616
Chris Lattner4f637d42006-01-06 17:59:59 +00002617 Value *A = 0, *B = 0;
2618 ConstantInt *C1 = 0, *C2 = 0;
Chris Lattnerf4d4c872005-05-07 23:49:08 +00002619
2620 if (match(Op0, m_And(m_Value(A), m_Value(B))))
2621 if (A == Op1 || B == Op1) // (A & ?) | A --> A
2622 return ReplaceInstUsesWith(I, Op1);
2623 if (match(Op1, m_And(m_Value(A), m_Value(B))))
2624 if (A == Op0 || B == Op0) // A | (A & ?) --> A
2625 return ReplaceInstUsesWith(I, Op0);
2626
Chris Lattner6e4c6492005-05-09 04:58:36 +00002627 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
2628 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattner3bedbd92006-02-07 07:27:52 +00002629 MaskedValueIsZero(Op1, C1->getZExtValue())) {
Chris Lattner6e4c6492005-05-09 04:58:36 +00002630 Instruction *NOr = BinaryOperator::createOr(A, Op1, Op0->getName());
2631 Op0->setName("");
2632 return BinaryOperator::createXor(InsertNewInstBefore(NOr, I), C1);
2633 }
2634
2635 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
2636 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattner3bedbd92006-02-07 07:27:52 +00002637 MaskedValueIsZero(Op0, C1->getZExtValue())) {
Chris Lattner6e4c6492005-05-09 04:58:36 +00002638 Instruction *NOr = BinaryOperator::createOr(A, Op0, Op1->getName());
2639 Op0->setName("");
2640 return BinaryOperator::createXor(InsertNewInstBefore(NOr, I), C1);
2641 }
2642
Chris Lattnere9bed7d2005-09-18 03:42:07 +00002643 // (A & C1)|(B & C2)
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002644 if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattnere9bed7d2005-09-18 03:42:07 +00002645 match(Op1, m_And(m_Value(B), m_ConstantInt(C2)))) {
2646
2647 if (A == B) // (A & C1)|(A & C2) == A & (C1|C2)
2648 return BinaryOperator::createAnd(A, ConstantExpr::getOr(C1, C2));
2649
2650
Chris Lattner0b7c0bf2005-09-18 06:02:59 +00002651 // If we have: ((V + N) & C1) | (V & C2)
2652 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2653 // replace with V+N.
2654 if (C1 == ConstantExpr::getNot(C2)) {
Chris Lattner4f637d42006-01-06 17:59:59 +00002655 Value *V1 = 0, *V2 = 0;
Chris Lattner0b7c0bf2005-09-18 06:02:59 +00002656 if ((C2->getRawValue() & (C2->getRawValue()+1)) == 0 && // C2 == 0+1+
2657 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
2658 // Add commutes, try both ways.
Chris Lattner3bedbd92006-02-07 07:27:52 +00002659 if (V1 == B && MaskedValueIsZero(V2, C2->getZExtValue()))
Chris Lattner0b7c0bf2005-09-18 06:02:59 +00002660 return ReplaceInstUsesWith(I, A);
Chris Lattner3bedbd92006-02-07 07:27:52 +00002661 if (V2 == B && MaskedValueIsZero(V1, C2->getZExtValue()))
Chris Lattner0b7c0bf2005-09-18 06:02:59 +00002662 return ReplaceInstUsesWith(I, A);
2663 }
2664 // Or commutes, try both ways.
2665 if ((C1->getRawValue() & (C1->getRawValue()+1)) == 0 &&
2666 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
2667 // Add commutes, try both ways.
Chris Lattner3bedbd92006-02-07 07:27:52 +00002668 if (V1 == A && MaskedValueIsZero(V2, C1->getZExtValue()))
Chris Lattner0b7c0bf2005-09-18 06:02:59 +00002669 return ReplaceInstUsesWith(I, B);
Chris Lattner3bedbd92006-02-07 07:27:52 +00002670 if (V2 == A && MaskedValueIsZero(V1, C1->getZExtValue()))
Chris Lattner0b7c0bf2005-09-18 06:02:59 +00002671 return ReplaceInstUsesWith(I, B);
Chris Lattnere9bed7d2005-09-18 03:42:07 +00002672 }
2673 }
2674 }
Chris Lattner67ca7682003-08-12 19:11:07 +00002675
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002676 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
2677 if (A == Op1) // ~A | A == -1
Misha Brukmanfd939082005-04-21 23:48:37 +00002678 return ReplaceInstUsesWith(I,
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002679 ConstantIntegral::getAllOnesValue(I.getType()));
2680 } else {
2681 A = 0;
2682 }
Chris Lattnerf4d4c872005-05-07 23:49:08 +00002683 // Note, A is still live here!
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002684 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
2685 if (Op0 == B)
Misha Brukmanfd939082005-04-21 23:48:37 +00002686 return ReplaceInstUsesWith(I,
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002687 ConstantIntegral::getAllOnesValue(I.getType()));
Chris Lattnera27231a2003-03-10 23:13:59 +00002688
Misha Brukmancb6267b2004-07-30 12:50:08 +00002689 // (~A | ~B) == (~(A & B)) - De Morgan's Law
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002690 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
2691 Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
2692 I.getName()+".demorgan"), I);
2693 return BinaryOperator::createNot(And);
2694 }
Chris Lattnera27231a2003-03-10 23:13:59 +00002695 }
Chris Lattnera2881962003-02-18 19:28:33 +00002696
Chris Lattneraa9c1f12003-08-13 20:16:26 +00002697 // (setcc1 A, B) | (setcc2 A, B) --> (setcc3 A, B)
Chris Lattnerb4f40d22004-09-28 22:33:08 +00002698 if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1))) {
Chris Lattneraa9c1f12003-08-13 20:16:26 +00002699 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
2700 return R;
2701
Chris Lattnerb4f40d22004-09-28 22:33:08 +00002702 Value *LHSVal, *RHSVal;
2703 ConstantInt *LHSCst, *RHSCst;
2704 Instruction::BinaryOps LHSCC, RHSCC;
2705 if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
2706 if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
2707 if (LHSVal == RHSVal && // Found (X setcc C1) | (X setcc C2)
2708 // Set[GL]E X, CST is folded to Set[GL]T elsewhere.
Misha Brukmanfd939082005-04-21 23:48:37 +00002709 LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE &&
Chris Lattnerb4f40d22004-09-28 22:33:08 +00002710 RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) {
2711 // Ensure that the larger constant is on the RHS.
2712 Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst);
2713 SetCondInst *LHS = cast<SetCondInst>(Op0);
2714 if (cast<ConstantBool>(Cmp)->getValue()) {
2715 std::swap(LHS, RHS);
2716 std::swap(LHSCst, RHSCst);
2717 std::swap(LHSCC, RHSCC);
2718 }
2719
2720 // At this point, we know we have have two setcc instructions
2721 // comparing a value against two constants and or'ing the result
2722 // together. Because of the above check, we know that we only have
2723 // SetEQ, SetNE, SetLT, and SetGT here. We also know (from the
2724 // FoldSetCCLogical check above), that the two constants are not
2725 // equal.
2726 assert(LHSCst != RHSCst && "Compares not folded above?");
2727
2728 switch (LHSCC) {
2729 default: assert(0 && "Unknown integer condition code!");
2730 case Instruction::SetEQ:
2731 switch (RHSCC) {
2732 default: assert(0 && "Unknown integer condition code!");
2733 case Instruction::SetEQ:
2734 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
2735 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
2736 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
2737 LHSVal->getName()+".off");
2738 InsertNewInstBefore(Add, I);
2739 const Type *UnsType = Add->getType()->getUnsignedVersion();
2740 Value *OffsetVal = InsertCastBefore(Add, UnsType, I);
2741 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
2742 AddCST = ConstantExpr::getCast(AddCST, UnsType);
2743 return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST);
2744 }
2745 break; // (X == 13 | X == 15) -> no change
2746
Chris Lattner240d6f42005-04-19 06:04:18 +00002747 case Instruction::SetGT: // (X == 13 | X > 14) -> no change
2748 break;
Chris Lattnerb4f40d22004-09-28 22:33:08 +00002749 case Instruction::SetNE: // (X == 13 | X != 15) -> X != 15
2750 case Instruction::SetLT: // (X == 13 | X < 15) -> X < 15
2751 return ReplaceInstUsesWith(I, RHS);
2752 }
2753 break;
2754 case Instruction::SetNE:
2755 switch (RHSCC) {
2756 default: assert(0 && "Unknown integer condition code!");
Chris Lattnerb4f40d22004-09-28 22:33:08 +00002757 case Instruction::SetEQ: // (X != 13 | X == 15) -> X != 13
2758 case Instruction::SetGT: // (X != 13 | X > 15) -> X != 13
2759 return ReplaceInstUsesWith(I, LHS);
2760 case Instruction::SetNE: // (X != 13 | X != 15) -> true
Chris Lattnere88b7532005-06-17 03:59:17 +00002761 case Instruction::SetLT: // (X != 13 | X < 15) -> true
Chris Lattnerb4f40d22004-09-28 22:33:08 +00002762 return ReplaceInstUsesWith(I, ConstantBool::True);
2763 }
2764 break;
2765 case Instruction::SetLT:
2766 switch (RHSCC) {
2767 default: assert(0 && "Unknown integer condition code!");
2768 case Instruction::SetEQ: // (X < 13 | X == 14) -> no change
2769 break;
Chris Lattnera96879a2004-09-29 17:40:11 +00002770 case Instruction::SetGT: // (X < 13 | X > 15) -> (X-13) > 2
2771 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false, I);
Chris Lattnerb4f40d22004-09-28 22:33:08 +00002772 case Instruction::SetNE: // (X < 13 | X != 15) -> X != 15
2773 case Instruction::SetLT: // (X < 13 | X < 15) -> X < 15
2774 return ReplaceInstUsesWith(I, RHS);
2775 }
2776 break;
2777 case Instruction::SetGT:
2778 switch (RHSCC) {
2779 default: assert(0 && "Unknown integer condition code!");
2780 case Instruction::SetEQ: // (X > 13 | X == 15) -> X > 13
2781 case Instruction::SetGT: // (X > 13 | X > 15) -> X > 13
2782 return ReplaceInstUsesWith(I, LHS);
2783 case Instruction::SetNE: // (X > 13 | X != 15) -> true
2784 case Instruction::SetLT: // (X > 13 | X < 15) -> true
2785 return ReplaceInstUsesWith(I, ConstantBool::True);
2786 }
2787 }
2788 }
2789 }
Chris Lattnere9bed7d2005-09-18 03:42:07 +00002790
Chris Lattner7e708292002-06-25 16:13:24 +00002791 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00002792}
2793
Chris Lattnerc317d392004-02-16 01:20:27 +00002794// XorSelf - Implements: X ^ X --> 0
2795struct XorSelf {
2796 Value *RHS;
2797 XorSelf(Value *rhs) : RHS(rhs) {}
2798 bool shouldApply(Value *LHS) const { return LHS == RHS; }
2799 Instruction *apply(BinaryOperator &Xor) const {
2800 return &Xor;
2801 }
2802};
Chris Lattner3f5b8772002-05-06 16:14:14 +00002803
2804
Chris Lattner7e708292002-06-25 16:13:24 +00002805Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00002806 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00002807 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00002808
Chris Lattnere87597f2004-10-16 18:11:37 +00002809 if (isa<UndefValue>(Op1))
2810 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
2811
Chris Lattnerc317d392004-02-16 01:20:27 +00002812 // xor X, X = 0, even if X is nested in a sequence of Xor's.
2813 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
2814 assert(Result == &I && "AssociativeOpt didn't work?");
Chris Lattner233f7dc2002-08-12 21:17:25 +00002815 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerc317d392004-02-16 01:20:27 +00002816 }
Chris Lattnerf8c36f52006-02-12 08:02:11 +00002817
2818 // See if we can simplify any instructions used by the instruction whose sole
2819 // purpose is to compute bits we don't care about.
2820 uint64_t KnownZero, KnownOne;
2821 if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
2822 KnownZero, KnownOne))
2823 return &I;
Chris Lattner3f5b8772002-05-06 16:14:14 +00002824
Chris Lattnereca0c5c2003-07-23 21:37:07 +00002825 if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
Chris Lattnereca0c5c2003-07-23 21:37:07 +00002826 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Chris Lattner05bd1b22002-08-20 18:24:26 +00002827 // xor (setcc A, B), true = not (setcc A, B) = setncc A, B
Chris Lattnereca0c5c2003-07-23 21:37:07 +00002828 if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0I))
Chris Lattnerfd059242003-10-15 16:48:29 +00002829 if (RHS == ConstantBool::True && SCI->hasOneUse())
Chris Lattner05bd1b22002-08-20 18:24:26 +00002830 return new SetCondInst(SCI->getInverseCondition(),
2831 SCI->getOperand(0), SCI->getOperand(1));
Chris Lattnerad5b4fb2003-11-04 23:50:51 +00002832
Chris Lattnerd65460f2003-11-05 01:06:05 +00002833 // ~(c-X) == X-c-1 == X+(-c-1)
Chris Lattner7c4049c2004-01-12 19:35:11 +00002834 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2835 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
Chris Lattner48595f12004-06-10 02:07:29 +00002836 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2837 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
Chris Lattner7c4049c2004-01-12 19:35:11 +00002838 ConstantInt::get(I.getType(), 1));
Chris Lattner48595f12004-06-10 02:07:29 +00002839 return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
Chris Lattner7c4049c2004-01-12 19:35:11 +00002840 }
Chris Lattner5b62aa72004-06-18 06:07:51 +00002841
2842 // ~(~X & Y) --> (X | ~Y)
2843 if (Op0I->getOpcode() == Instruction::And && RHS->isAllOnesValue()) {
2844 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
2845 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
2846 Instruction *NotY =
Misha Brukmanfd939082005-04-21 23:48:37 +00002847 BinaryOperator::createNot(Op0I->getOperand(1),
Chris Lattner5b62aa72004-06-18 06:07:51 +00002848 Op0I->getOperand(1)->getName()+".not");
2849 InsertNewInstBefore(NotY, I);
2850 return BinaryOperator::createOr(Op0NotVal, NotY);
2851 }
2852 }
Misha Brukmanfd939082005-04-21 23:48:37 +00002853
Chris Lattnereca0c5c2003-07-23 21:37:07 +00002854 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
Chris Lattnerf8c36f52006-02-12 08:02:11 +00002855 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner689d24b2003-11-04 23:37:10 +00002856 // ~(X-c) --> (-c-1)-X
Chris Lattner7c4049c2004-01-12 19:35:11 +00002857 if (RHS->isAllOnesValue()) {
Chris Lattner48595f12004-06-10 02:07:29 +00002858 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2859 return BinaryOperator::createSub(
2860 ConstantExpr::getSub(NegOp0CI,
Chris Lattner7c4049c2004-01-12 19:35:11 +00002861 ConstantInt::get(I.getType(), 1)),
Chris Lattner689d24b2003-11-04 23:37:10 +00002862 Op0I->getOperand(0));
Chris Lattner7c4049c2004-01-12 19:35:11 +00002863 }
Chris Lattner02bd1b32006-02-26 19:57:54 +00002864 } else if (Op0I->getOpcode() == Instruction::Or) {
2865 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2866 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getZExtValue())) {
2867 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
2868 // Anything in both C1 and C2 is known to be zero, remove it from
2869 // NewRHS.
2870 Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
2871 NewRHS = ConstantExpr::getAnd(NewRHS,
2872 ConstantExpr::getNot(CommonBits));
2873 WorkList.push_back(Op0I);
2874 I.setOperand(0, Op0I->getOperand(0));
2875 I.setOperand(1, NewRHS);
2876 return &I;
2877 }
Chris Lattnereca0c5c2003-07-23 21:37:07 +00002878 }
Chris Lattner05bd1b22002-08-20 18:24:26 +00002879 }
Chris Lattner2eefe512004-04-09 19:05:30 +00002880
2881 // Try to fold constant and into select arguments.
2882 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002883 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00002884 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00002885 if (isa<PHINode>(Op0))
2886 if (Instruction *NV = FoldOpIntoPhi(I))
2887 return NV;
Chris Lattner3f5b8772002-05-06 16:14:14 +00002888 }
2889
Chris Lattner8d969642003-03-10 23:06:50 +00002890 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
Chris Lattnera2881962003-02-18 19:28:33 +00002891 if (X == Op1)
2892 return ReplaceInstUsesWith(I,
2893 ConstantIntegral::getAllOnesValue(I.getType()));
2894
Chris Lattner8d969642003-03-10 23:06:50 +00002895 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
Chris Lattnera2881962003-02-18 19:28:33 +00002896 if (X == Op0)
2897 return ReplaceInstUsesWith(I,
2898 ConstantIntegral::getAllOnesValue(I.getType()));
2899
Chris Lattnercb40a372003-03-10 18:24:17 +00002900 if (Instruction *Op1I = dyn_cast<Instruction>(Op1))
Chris Lattner26ca7e12004-02-16 03:54:20 +00002901 if (Op1I->getOpcode() == Instruction::Or) {
Chris Lattnercb40a372003-03-10 18:24:17 +00002902 if (Op1I->getOperand(0) == Op0) { // B^(B|A) == (A|B)^B
2903 cast<BinaryOperator>(Op1I)->swapOperands();
2904 I.swapOperands();
2905 std::swap(Op0, Op1);
2906 } else if (Op1I->getOperand(1) == Op0) { // B^(A|B) == (A|B)^B
2907 I.swapOperands();
2908 std::swap(Op0, Op1);
Misha Brukmanfd939082005-04-21 23:48:37 +00002909 }
Chris Lattner26ca7e12004-02-16 03:54:20 +00002910 } else if (Op1I->getOpcode() == Instruction::Xor) {
2911 if (Op0 == Op1I->getOperand(0)) // A^(A^B) == B
2912 return ReplaceInstUsesWith(I, Op1I->getOperand(1));
2913 else if (Op0 == Op1I->getOperand(1)) // A^(B^A) == B
2914 return ReplaceInstUsesWith(I, Op1I->getOperand(0));
2915 }
Chris Lattnercb40a372003-03-10 18:24:17 +00002916
2917 if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
Chris Lattnerfd059242003-10-15 16:48:29 +00002918 if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) {
Chris Lattnercb40a372003-03-10 18:24:17 +00002919 if (Op0I->getOperand(0) == Op1) // (B|A)^B == (A|B)^B
2920 cast<BinaryOperator>(Op0I)->swapOperands();
Chris Lattner4f98c562003-03-10 21:43:22 +00002921 if (Op0I->getOperand(1) == Op1) { // (A|B)^B == A & ~B
Chris Lattnerf523d062004-06-09 05:08:07 +00002922 Value *NotB = InsertNewInstBefore(BinaryOperator::createNot(Op1,
2923 Op1->getName()+".not"), I);
Chris Lattner48595f12004-06-10 02:07:29 +00002924 return BinaryOperator::createAnd(Op0I->getOperand(0), NotB);
Chris Lattnercb40a372003-03-10 18:24:17 +00002925 }
Chris Lattner26ca7e12004-02-16 03:54:20 +00002926 } else if (Op0I->getOpcode() == Instruction::Xor) {
2927 if (Op1 == Op0I->getOperand(0)) // (A^B)^A == B
2928 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2929 else if (Op1 == Op0I->getOperand(1)) // (B^A)^A == B
2930 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
Chris Lattnercb40a372003-03-10 18:24:17 +00002931 }
2932
Chris Lattneraa9c1f12003-08-13 20:16:26 +00002933 // (setcc1 A, B) ^ (setcc2 A, B) --> (setcc3 A, B)
2934 if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
2935 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
2936 return R;
2937
Chris Lattner7e708292002-06-25 16:13:24 +00002938 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00002939}
2940
Chris Lattnera96879a2004-09-29 17:40:11 +00002941/// MulWithOverflow - Compute Result = In1*In2, returning true if the result
2942/// overflowed for this type.
2943static bool MulWithOverflow(ConstantInt *&Result, ConstantInt *In1,
2944 ConstantInt *In2) {
2945 Result = cast<ConstantInt>(ConstantExpr::getMul(In1, In2));
2946 return !In2->isNullValue() && ConstantExpr::getDiv(Result, In2) != In1;
2947}
2948
2949static bool isPositive(ConstantInt *C) {
2950 return cast<ConstantSInt>(C)->getValue() >= 0;
2951}
2952
2953/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
2954/// overflowed for this type.
2955static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
2956 ConstantInt *In2) {
2957 Result = cast<ConstantInt>(ConstantExpr::getAdd(In1, In2));
2958
2959 if (In1->getType()->isUnsigned())
2960 return cast<ConstantUInt>(Result)->getValue() <
2961 cast<ConstantUInt>(In1)->getValue();
2962 if (isPositive(In1) != isPositive(In2))
2963 return false;
2964 if (isPositive(In1))
2965 return cast<ConstantSInt>(Result)->getValue() <
2966 cast<ConstantSInt>(In1)->getValue();
2967 return cast<ConstantSInt>(Result)->getValue() >
2968 cast<ConstantSInt>(In1)->getValue();
2969}
2970
Chris Lattner574da9b2005-01-13 20:14:25 +00002971/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
2972/// code necessary to compute the offset from the base pointer (without adding
2973/// in the base pointer). Return the result as a signed integer of intptr size.
2974static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
2975 TargetData &TD = IC.getTargetData();
2976 gep_type_iterator GTI = gep_type_begin(GEP);
2977 const Type *UIntPtrTy = TD.getIntPtrType();
2978 const Type *SIntPtrTy = UIntPtrTy->getSignedVersion();
2979 Value *Result = Constant::getNullValue(SIntPtrTy);
2980
2981 // Build a mask for high order bits.
Chris Lattner1a074fc2006-02-07 07:00:41 +00002982 uint64_t PtrSizeMask = ~0ULL >> (64-TD.getPointerSize()*8);
Chris Lattner574da9b2005-01-13 20:14:25 +00002983
Chris Lattner574da9b2005-01-13 20:14:25 +00002984 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
2985 Value *Op = GEP->getOperand(i);
Chris Lattner0b84c802005-01-13 23:26:48 +00002986 uint64_t Size = TD.getTypeSize(GTI.getIndexedType()) & PtrSizeMask;
Chris Lattner574da9b2005-01-13 20:14:25 +00002987 Constant *Scale = ConstantExpr::getCast(ConstantUInt::get(UIntPtrTy, Size),
2988 SIntPtrTy);
2989 if (Constant *OpC = dyn_cast<Constant>(Op)) {
2990 if (!OpC->isNullValue()) {
Chris Lattner5bdf04c2005-01-13 20:40:58 +00002991 OpC = ConstantExpr::getCast(OpC, SIntPtrTy);
Chris Lattner574da9b2005-01-13 20:14:25 +00002992 Scale = ConstantExpr::getMul(OpC, Scale);
2993 if (Constant *RC = dyn_cast<Constant>(Result))
2994 Result = ConstantExpr::getAdd(RC, Scale);
2995 else {
2996 // Emit an add instruction.
2997 Result = IC.InsertNewInstBefore(
2998 BinaryOperator::createAdd(Result, Scale,
2999 GEP->getName()+".offs"), I);
3000 }
3001 }
3002 } else {
Chris Lattner6f7f02f2005-01-14 17:17:59 +00003003 // Convert to correct type.
3004 Op = IC.InsertNewInstBefore(new CastInst(Op, SIntPtrTy,
3005 Op->getName()+".c"), I);
3006 if (Size != 1)
Chris Lattner5bdf04c2005-01-13 20:40:58 +00003007 // We'll let instcombine(mul) convert this to a shl if possible.
3008 Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale,
3009 GEP->getName()+".idx"), I);
Chris Lattner574da9b2005-01-13 20:14:25 +00003010
3011 // Emit an add instruction.
Chris Lattner5bdf04c2005-01-13 20:40:58 +00003012 Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result,
Chris Lattner574da9b2005-01-13 20:14:25 +00003013 GEP->getName()+".offs"), I);
3014 }
3015 }
3016 return Result;
3017}
3018
3019/// FoldGEPSetCC - Fold comparisons between a GEP instruction and something
3020/// else. At this point we know that the GEP is on the LHS of the comparison.
3021Instruction *InstCombiner::FoldGEPSetCC(User *GEPLHS, Value *RHS,
3022 Instruction::BinaryOps Cond,
3023 Instruction &I) {
3024 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
Chris Lattnere9d782b2005-01-13 22:25:21 +00003025
3026 if (CastInst *CI = dyn_cast<CastInst>(RHS))
3027 if (isa<PointerType>(CI->getOperand(0)->getType()))
3028 RHS = CI->getOperand(0);
3029
Chris Lattner574da9b2005-01-13 20:14:25 +00003030 Value *PtrBase = GEPLHS->getOperand(0);
3031 if (PtrBase == RHS) {
3032 // As an optimization, we don't actually have to compute the actual value of
3033 // OFFSET if this is a seteq or setne comparison, just return whether each
3034 // index is zero or not.
Chris Lattnere9d782b2005-01-13 22:25:21 +00003035 if (Cond == Instruction::SetEQ || Cond == Instruction::SetNE) {
3036 Instruction *InVal = 0;
Chris Lattnerad5fec12005-01-28 19:32:01 +00003037 gep_type_iterator GTI = gep_type_begin(GEPLHS);
3038 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i, ++GTI) {
Chris Lattnere9d782b2005-01-13 22:25:21 +00003039 bool EmitIt = true;
3040 if (Constant *C = dyn_cast<Constant>(GEPLHS->getOperand(i))) {
3041 if (isa<UndefValue>(C)) // undef index -> undef.
3042 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
3043 if (C->isNullValue())
3044 EmitIt = false;
Chris Lattnerad5fec12005-01-28 19:32:01 +00003045 else if (TD->getTypeSize(GTI.getIndexedType()) == 0) {
3046 EmitIt = false; // This is indexing into a zero sized array?
Misha Brukmanfd939082005-04-21 23:48:37 +00003047 } else if (isa<ConstantInt>(C))
Chris Lattnere9d782b2005-01-13 22:25:21 +00003048 return ReplaceInstUsesWith(I, // No comparison is needed here.
3049 ConstantBool::get(Cond == Instruction::SetNE));
3050 }
3051
3052 if (EmitIt) {
Misha Brukmanfd939082005-04-21 23:48:37 +00003053 Instruction *Comp =
Chris Lattnere9d782b2005-01-13 22:25:21 +00003054 new SetCondInst(Cond, GEPLHS->getOperand(i),
3055 Constant::getNullValue(GEPLHS->getOperand(i)->getType()));
3056 if (InVal == 0)
3057 InVal = Comp;
3058 else {
3059 InVal = InsertNewInstBefore(InVal, I);
3060 InsertNewInstBefore(Comp, I);
3061 if (Cond == Instruction::SetNE) // True if any are unequal
3062 InVal = BinaryOperator::createOr(InVal, Comp);
3063 else // True if all are equal
3064 InVal = BinaryOperator::createAnd(InVal, Comp);
3065 }
3066 }
3067 }
3068
3069 if (InVal)
3070 return InVal;
3071 else
3072 ReplaceInstUsesWith(I, // No comparison is needed here, all indexes = 0
3073 ConstantBool::get(Cond == Instruction::SetEQ));
3074 }
Chris Lattner574da9b2005-01-13 20:14:25 +00003075
3076 // Only lower this if the setcc is the only user of the GEP or if we expect
3077 // the result to fold to a constant!
3078 if (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) {
3079 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
3080 Value *Offset = EmitGEPOffset(GEPLHS, I, *this);
3081 return new SetCondInst(Cond, Offset,
3082 Constant::getNullValue(Offset->getType()));
3083 }
3084 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
Chris Lattnera70b66d2005-04-25 20:17:30 +00003085 // If the base pointers are different, but the indices are the same, just
3086 // compare the base pointer.
3087 if (PtrBase != GEPRHS->getOperand(0)) {
3088 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
Jeff Cohen00b168892005-07-27 06:12:32 +00003089 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
Chris Lattner93b94a62005-04-26 14:40:41 +00003090 GEPRHS->getOperand(0)->getType();
Chris Lattnera70b66d2005-04-25 20:17:30 +00003091 if (IndicesTheSame)
3092 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
3093 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
3094 IndicesTheSame = false;
3095 break;
3096 }
3097
3098 // If all indices are the same, just compare the base pointers.
3099 if (IndicesTheSame)
3100 return new SetCondInst(Cond, GEPLHS->getOperand(0),
3101 GEPRHS->getOperand(0));
3102
3103 // Otherwise, the base pointers are different and the indices are
3104 // different, bail out.
Chris Lattner574da9b2005-01-13 20:14:25 +00003105 return 0;
Chris Lattnera70b66d2005-04-25 20:17:30 +00003106 }
Chris Lattner574da9b2005-01-13 20:14:25 +00003107
Chris Lattnere9d782b2005-01-13 22:25:21 +00003108 // If one of the GEPs has all zero indices, recurse.
3109 bool AllZeros = true;
3110 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
3111 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
3112 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
3113 AllZeros = false;
3114 break;
3115 }
3116 if (AllZeros)
3117 return FoldGEPSetCC(GEPRHS, GEPLHS->getOperand(0),
3118 SetCondInst::getSwappedCondition(Cond), I);
Chris Lattner4401c9c2005-01-14 00:20:05 +00003119
3120 // If the other GEP has all zero indices, recurse.
Chris Lattnere9d782b2005-01-13 22:25:21 +00003121 AllZeros = true;
3122 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
3123 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
3124 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
3125 AllZeros = false;
3126 break;
3127 }
3128 if (AllZeros)
3129 return FoldGEPSetCC(GEPLHS, GEPRHS->getOperand(0), Cond, I);
3130
Chris Lattner4401c9c2005-01-14 00:20:05 +00003131 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
3132 // If the GEPs only differ by one index, compare it.
3133 unsigned NumDifferences = 0; // Keep track of # differences.
3134 unsigned DiffOperand = 0; // The operand that differs.
3135 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
3136 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
Chris Lattner484d3cf2005-04-24 06:59:08 +00003137 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
3138 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
Chris Lattner45f57b82005-01-21 23:06:49 +00003139 // Irreconcilable differences.
Chris Lattner4401c9c2005-01-14 00:20:05 +00003140 NumDifferences = 2;
3141 break;
3142 } else {
3143 if (NumDifferences++) break;
3144 DiffOperand = i;
3145 }
3146 }
3147
3148 if (NumDifferences == 0) // SAME GEP?
3149 return ReplaceInstUsesWith(I, // No comparison is needed here.
3150 ConstantBool::get(Cond == Instruction::SetEQ));
3151 else if (NumDifferences == 1) {
Chris Lattner45f57b82005-01-21 23:06:49 +00003152 Value *LHSV = GEPLHS->getOperand(DiffOperand);
3153 Value *RHSV = GEPRHS->getOperand(DiffOperand);
Chris Lattner7911f032005-07-18 23:07:33 +00003154
3155 // Convert the operands to signed values to make sure to perform a
3156 // signed comparison.
3157 const Type *NewTy = LHSV->getType()->getSignedVersion();
3158 if (LHSV->getType() != NewTy)
3159 LHSV = InsertNewInstBefore(new CastInst(LHSV, NewTy,
3160 LHSV->getName()), I);
3161 if (RHSV->getType() != NewTy)
3162 RHSV = InsertNewInstBefore(new CastInst(RHSV, NewTy,
3163 RHSV->getName()), I);
3164 return new SetCondInst(Cond, LHSV, RHSV);
Chris Lattner4401c9c2005-01-14 00:20:05 +00003165 }
3166 }
3167
Chris Lattner574da9b2005-01-13 20:14:25 +00003168 // Only lower this if the setcc is the only user of the GEP or if we expect
3169 // the result to fold to a constant!
3170 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
3171 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
3172 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
3173 Value *L = EmitGEPOffset(GEPLHS, I, *this);
3174 Value *R = EmitGEPOffset(GEPRHS, I, *this);
3175 return new SetCondInst(Cond, L, R);
3176 }
3177 }
3178 return 0;
3179}
3180
3181
Chris Lattner484d3cf2005-04-24 06:59:08 +00003182Instruction *InstCombiner::visitSetCondInst(SetCondInst &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00003183 bool Changed = SimplifyCommutative(I);
Chris Lattner8b170942002-08-09 23:47:40 +00003184 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3185 const Type *Ty = Op0->getType();
Chris Lattner3f5b8772002-05-06 16:14:14 +00003186
3187 // setcc X, X
Chris Lattner8b170942002-08-09 23:47:40 +00003188 if (Op0 == Op1)
3189 return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I)));
Chris Lattner53a5b572002-05-09 20:11:54 +00003190
Chris Lattnere87597f2004-10-16 18:11:37 +00003191 if (isa<UndefValue>(Op1)) // X setcc undef -> undef
3192 return ReplaceInstUsesWith(I, UndefValue::get(Type::BoolTy));
3193
Chris Lattner711b3402004-11-14 07:33:16 +00003194 // setcc <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
3195 // addresses never equal each other! We already know that Op0 != Op1.
Misha Brukmanfd939082005-04-21 23:48:37 +00003196 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
3197 isa<ConstantPointerNull>(Op0)) &&
3198 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
Chris Lattner711b3402004-11-14 07:33:16 +00003199 isa<ConstantPointerNull>(Op1)))
Chris Lattner8b170942002-08-09 23:47:40 +00003200 return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I)));
3201
3202 // setcc's with boolean values can always be turned into bitwise operations
3203 if (Ty == Type::BoolTy) {
Chris Lattner5dbef222004-08-11 00:50:51 +00003204 switch (I.getOpcode()) {
3205 default: assert(0 && "Invalid setcc instruction!");
3206 case Instruction::SetEQ: { // seteq bool %A, %B -> ~(A^B)
Chris Lattner48595f12004-06-10 02:07:29 +00003207 Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
Chris Lattner8b170942002-08-09 23:47:40 +00003208 InsertNewInstBefore(Xor, I);
Chris Lattnerde90b762003-11-03 04:25:02 +00003209 return BinaryOperator::createNot(Xor);
Chris Lattner8b170942002-08-09 23:47:40 +00003210 }
Chris Lattner5dbef222004-08-11 00:50:51 +00003211 case Instruction::SetNE:
3212 return BinaryOperator::createXor(Op0, Op1);
Chris Lattner8b170942002-08-09 23:47:40 +00003213
Chris Lattner5dbef222004-08-11 00:50:51 +00003214 case Instruction::SetGT:
3215 std::swap(Op0, Op1); // Change setgt -> setlt
3216 // FALL THROUGH
3217 case Instruction::SetLT: { // setlt bool A, B -> ~X & Y
3218 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
3219 InsertNewInstBefore(Not, I);
3220 return BinaryOperator::createAnd(Not, Op1);
3221 }
3222 case Instruction::SetGE:
Chris Lattner8b170942002-08-09 23:47:40 +00003223 std::swap(Op0, Op1); // Change setge -> setle
Chris Lattner5dbef222004-08-11 00:50:51 +00003224 // FALL THROUGH
3225 case Instruction::SetLE: { // setle bool %A, %B -> ~A | B
3226 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
3227 InsertNewInstBefore(Not, I);
3228 return BinaryOperator::createOr(Not, Op1);
3229 }
3230 }
Chris Lattner8b170942002-08-09 23:47:40 +00003231 }
3232
Chris Lattner2be51ae2004-06-09 04:24:29 +00003233 // See if we are doing a comparison between a constant and an instruction that
3234 // can be folded into the comparison.
Chris Lattner8b170942002-08-09 23:47:40 +00003235 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnera96879a2004-09-29 17:40:11 +00003236 // Check to see if we are comparing against the minimum or maximum value...
3237 if (CI->isMinValue()) {
3238 if (I.getOpcode() == Instruction::SetLT) // A < MIN -> FALSE
3239 return ReplaceInstUsesWith(I, ConstantBool::False);
3240 if (I.getOpcode() == Instruction::SetGE) // A >= MIN -> TRUE
3241 return ReplaceInstUsesWith(I, ConstantBool::True);
3242 if (I.getOpcode() == Instruction::SetLE) // A <= MIN -> A == MIN
3243 return BinaryOperator::createSetEQ(Op0, Op1);
3244 if (I.getOpcode() == Instruction::SetGT) // A > MIN -> A != MIN
3245 return BinaryOperator::createSetNE(Op0, Op1);
3246
3247 } else if (CI->isMaxValue()) {
3248 if (I.getOpcode() == Instruction::SetGT) // A > MAX -> FALSE
3249 return ReplaceInstUsesWith(I, ConstantBool::False);
3250 if (I.getOpcode() == Instruction::SetLE) // A <= MAX -> TRUE
3251 return ReplaceInstUsesWith(I, ConstantBool::True);
3252 if (I.getOpcode() == Instruction::SetGE) // A >= MAX -> A == MAX
3253 return BinaryOperator::createSetEQ(Op0, Op1);
3254 if (I.getOpcode() == Instruction::SetLT) // A < MAX -> A != MAX
3255 return BinaryOperator::createSetNE(Op0, Op1);
3256
3257 // Comparing against a value really close to min or max?
3258 } else if (isMinValuePlusOne(CI)) {
3259 if (I.getOpcode() == Instruction::SetLT) // A < MIN+1 -> A == MIN
3260 return BinaryOperator::createSetEQ(Op0, SubOne(CI));
3261 if (I.getOpcode() == Instruction::SetGE) // A >= MIN-1 -> A != MIN
3262 return BinaryOperator::createSetNE(Op0, SubOne(CI));
3263
3264 } else if (isMaxValueMinusOne(CI)) {
3265 if (I.getOpcode() == Instruction::SetGT) // A > MAX-1 -> A == MAX
3266 return BinaryOperator::createSetEQ(Op0, AddOne(CI));
3267 if (I.getOpcode() == Instruction::SetLE) // A <= MAX-1 -> A != MAX
3268 return BinaryOperator::createSetNE(Op0, AddOne(CI));
3269 }
3270
3271 // If we still have a setle or setge instruction, turn it into the
3272 // appropriate setlt or setgt instruction. Since the border cases have
3273 // already been handled above, this requires little checking.
3274 //
3275 if (I.getOpcode() == Instruction::SetLE)
3276 return BinaryOperator::createSetLT(Op0, AddOne(CI));
3277 if (I.getOpcode() == Instruction::SetGE)
3278 return BinaryOperator::createSetGT(Op0, SubOne(CI));
3279
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00003280
3281 // See if we can fold the comparison based on bits known to be zero or one
3282 // in the input.
3283 uint64_t KnownZero, KnownOne;
3284 if (SimplifyDemandedBits(Op0, Ty->getIntegralTypeMask(),
3285 KnownZero, KnownOne, 0))
3286 return &I;
3287
3288 // Given the known and unknown bits, compute a range that the LHS could be
3289 // in.
3290 if (KnownOne | KnownZero) {
3291 if (Ty->isUnsigned()) { // Unsigned comparison.
3292 uint64_t Min, Max;
3293 uint64_t RHSVal = CI->getZExtValue();
3294 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,
3295 Min, Max);
3296 switch (I.getOpcode()) { // LE/GE have been folded already.
3297 default: assert(0 && "Unknown setcc opcode!");
3298 case Instruction::SetEQ:
3299 if (Max < RHSVal || Min > RHSVal)
3300 return ReplaceInstUsesWith(I, ConstantBool::False);
3301 break;
3302 case Instruction::SetNE:
3303 if (Max < RHSVal || Min > RHSVal)
3304 return ReplaceInstUsesWith(I, ConstantBool::True);
3305 break;
3306 case Instruction::SetLT:
3307 if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True);
3308 if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False);
3309 break;
3310 case Instruction::SetGT:
3311 if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True);
3312 if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False);
3313 break;
3314 }
3315 } else { // Signed comparison.
3316 int64_t Min, Max;
3317 int64_t RHSVal = CI->getSExtValue();
3318 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,
3319 Min, Max);
3320 switch (I.getOpcode()) { // LE/GE have been folded already.
3321 default: assert(0 && "Unknown setcc opcode!");
3322 case Instruction::SetEQ:
3323 if (Max < RHSVal || Min > RHSVal)
3324 return ReplaceInstUsesWith(I, ConstantBool::False);
3325 break;
3326 case Instruction::SetNE:
3327 if (Max < RHSVal || Min > RHSVal)
3328 return ReplaceInstUsesWith(I, ConstantBool::True);
3329 break;
3330 case Instruction::SetLT:
3331 if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True);
3332 if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False);
3333 break;
3334 case Instruction::SetGT:
3335 if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True);
3336 if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False);
3337 break;
3338 }
3339 }
3340 }
3341
3342
Chris Lattner3c6a0d42004-05-25 06:32:08 +00003343 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
Chris Lattner648e3bc2004-09-23 21:52:49 +00003344 switch (LHSI->getOpcode()) {
3345 case Instruction::And:
3346 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
3347 LHSI->getOperand(0)->hasOneUse()) {
3348 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
3349 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
3350 // happens a LOT in code produced by the C front-end, for bitfield
3351 // access.
3352 ShiftInst *Shift = dyn_cast<ShiftInst>(LHSI->getOperand(0));
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00003353 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
3354
3355 // Check to see if there is a noop-cast between the shift and the and.
3356 if (!Shift) {
3357 if (CastInst *CI = dyn_cast<CastInst>(LHSI->getOperand(0)))
3358 if (CI->getOperand(0)->getType()->isIntegral() &&
3359 CI->getOperand(0)->getType()->getPrimitiveSizeInBits() ==
3360 CI->getType()->getPrimitiveSizeInBits())
3361 Shift = dyn_cast<ShiftInst>(CI->getOperand(0));
3362 }
3363
Chris Lattner648e3bc2004-09-23 21:52:49 +00003364 ConstantUInt *ShAmt;
3365 ShAmt = Shift ? dyn_cast<ConstantUInt>(Shift->getOperand(1)) : 0;
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00003366 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
3367 const Type *AndTy = AndCST->getType(); // Type of the and.
Misha Brukmanfd939082005-04-21 23:48:37 +00003368
Chris Lattner648e3bc2004-09-23 21:52:49 +00003369 // We can fold this as long as we can't shift unknown bits
3370 // into the mask. This can only happen with signed shift
3371 // rights, as they sign-extend.
3372 if (ShAmt) {
3373 bool CanFold = Shift->getOpcode() != Instruction::Shr ||
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00003374 Ty->isUnsigned();
Chris Lattner648e3bc2004-09-23 21:52:49 +00003375 if (!CanFold) {
3376 // To test for the bad case of the signed shr, see if any
3377 // of the bits shifted in could be tested after the mask.
Chris Lattnerd7e31cf2005-06-17 01:29:28 +00003378 int ShAmtVal = Ty->getPrimitiveSizeInBits()-ShAmt->getValue();
3379 if (ShAmtVal < 0) ShAmtVal = 0; // Out of range shift.
3380
3381 Constant *OShAmt = ConstantUInt::get(Type::UByteTy, ShAmtVal);
Misha Brukmanfd939082005-04-21 23:48:37 +00003382 Constant *ShVal =
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00003383 ConstantExpr::getShl(ConstantInt::getAllOnesValue(AndTy),
3384 OShAmt);
Chris Lattner648e3bc2004-09-23 21:52:49 +00003385 if (ConstantExpr::getAnd(ShVal, AndCST)->isNullValue())
3386 CanFold = true;
3387 }
Misha Brukmanfd939082005-04-21 23:48:37 +00003388
Chris Lattner648e3bc2004-09-23 21:52:49 +00003389 if (CanFold) {
Chris Lattner0cba71b2004-09-28 17:54:07 +00003390 Constant *NewCst;
3391 if (Shift->getOpcode() == Instruction::Shl)
3392 NewCst = ConstantExpr::getUShr(CI, ShAmt);
3393 else
3394 NewCst = ConstantExpr::getShl(CI, ShAmt);
Chris Lattner83c4ec02004-09-27 19:29:18 +00003395
Chris Lattner648e3bc2004-09-23 21:52:49 +00003396 // Check to see if we are shifting out any of the bits being
3397 // compared.
3398 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != CI){
3399 // If we shifted bits out, the fold is not going to work out.
3400 // As a special case, check to see if this means that the
3401 // result is always true or false now.
3402 if (I.getOpcode() == Instruction::SetEQ)
3403 return ReplaceInstUsesWith(I, ConstantBool::False);
3404 if (I.getOpcode() == Instruction::SetNE)
3405 return ReplaceInstUsesWith(I, ConstantBool::True);
3406 } else {
3407 I.setOperand(1, NewCst);
Chris Lattner0cba71b2004-09-28 17:54:07 +00003408 Constant *NewAndCST;
3409 if (Shift->getOpcode() == Instruction::Shl)
3410 NewAndCST = ConstantExpr::getUShr(AndCST, ShAmt);
3411 else
3412 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
3413 LHSI->setOperand(1, NewAndCST);
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00003414 if (AndTy == Ty)
3415 LHSI->setOperand(0, Shift->getOperand(0));
3416 else {
3417 Value *NewCast = InsertCastBefore(Shift->getOperand(0), AndTy,
3418 *Shift);
3419 LHSI->setOperand(0, NewCast);
3420 }
Chris Lattner648e3bc2004-09-23 21:52:49 +00003421 WorkList.push_back(Shift); // Shift is dead.
3422 AddUsesToWorkList(I);
3423 return &I;
Chris Lattner5eb91942004-07-21 19:50:44 +00003424 }
3425 }
Chris Lattner457dd822004-06-09 07:59:58 +00003426 }
Chris Lattner648e3bc2004-09-23 21:52:49 +00003427 }
3428 break;
Chris Lattner83c4ec02004-09-27 19:29:18 +00003429
Chris Lattner18d19ca2004-09-28 18:22:15 +00003430 case Instruction::Shl: // (setcc (shl X, ShAmt), CI)
3431 if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
3432 switch (I.getOpcode()) {
3433 default: break;
3434 case Instruction::SetEQ:
3435 case Instruction::SetNE: {
Chris Lattnere17a1282005-06-15 20:53:31 +00003436 unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
3437
3438 // Check that the shift amount is in range. If not, don't perform
3439 // undefined shifts. When the shift is visited it will be
3440 // simplified.
3441 if (ShAmt->getValue() >= TypeBits)
3442 break;
3443
Chris Lattner18d19ca2004-09-28 18:22:15 +00003444 // If we are comparing against bits always shifted out, the
3445 // comparison cannot succeed.
Misha Brukmanfd939082005-04-21 23:48:37 +00003446 Constant *Comp =
Chris Lattner18d19ca2004-09-28 18:22:15 +00003447 ConstantExpr::getShl(ConstantExpr::getShr(CI, ShAmt), ShAmt);
3448 if (Comp != CI) {// Comparing against a bit that we know is zero.
3449 bool IsSetNE = I.getOpcode() == Instruction::SetNE;
3450 Constant *Cst = ConstantBool::get(IsSetNE);
3451 return ReplaceInstUsesWith(I, Cst);
3452 }
3453
3454 if (LHSI->hasOneUse()) {
3455 // Otherwise strength reduce the shift into an and.
Chris Lattner652f3cf2005-01-08 19:42:22 +00003456 unsigned ShAmtVal = (unsigned)ShAmt->getValue();
Chris Lattner18d19ca2004-09-28 18:22:15 +00003457 uint64_t Val = (1ULL << (TypeBits-ShAmtVal))-1;
3458
3459 Constant *Mask;
3460 if (CI->getType()->isUnsigned()) {
3461 Mask = ConstantUInt::get(CI->getType(), Val);
3462 } else if (ShAmtVal != 0) {
3463 Mask = ConstantSInt::get(CI->getType(), Val);
3464 } else {
3465 Mask = ConstantInt::getAllOnesValue(CI->getType());
3466 }
Misha Brukmanfd939082005-04-21 23:48:37 +00003467
Chris Lattner18d19ca2004-09-28 18:22:15 +00003468 Instruction *AndI =
3469 BinaryOperator::createAnd(LHSI->getOperand(0),
3470 Mask, LHSI->getName()+".mask");
3471 Value *And = InsertNewInstBefore(AndI, I);
3472 return new SetCondInst(I.getOpcode(), And,
3473 ConstantExpr::getUShr(CI, ShAmt));
3474 }
3475 }
3476 }
3477 }
3478 break;
3479
Chris Lattner83c4ec02004-09-27 19:29:18 +00003480 case Instruction::Shr: // (setcc (shr X, ShAmt), CI)
Chris Lattnerf63f6472004-09-27 16:18:50 +00003481 if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
Chris Lattnerf63f6472004-09-27 16:18:50 +00003482 switch (I.getOpcode()) {
3483 default: break;
3484 case Instruction::SetEQ:
3485 case Instruction::SetNE: {
Chris Lattnere17a1282005-06-15 20:53:31 +00003486
3487 // Check that the shift amount is in range. If not, don't perform
3488 // undefined shifts. When the shift is visited it will be
3489 // simplified.
Chris Lattneraa457ac2005-06-16 01:52:07 +00003490 unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
Chris Lattnere17a1282005-06-15 20:53:31 +00003491 if (ShAmt->getValue() >= TypeBits)
3492 break;
3493
Chris Lattnerf63f6472004-09-27 16:18:50 +00003494 // If we are comparing against bits always shifted out, the
3495 // comparison cannot succeed.
Misha Brukmanfd939082005-04-21 23:48:37 +00003496 Constant *Comp =
Chris Lattnerf63f6472004-09-27 16:18:50 +00003497 ConstantExpr::getShr(ConstantExpr::getShl(CI, ShAmt), ShAmt);
Misha Brukmanfd939082005-04-21 23:48:37 +00003498
Chris Lattnerf63f6472004-09-27 16:18:50 +00003499 if (Comp != CI) {// Comparing against a bit that we know is zero.
3500 bool IsSetNE = I.getOpcode() == Instruction::SetNE;
3501 Constant *Cst = ConstantBool::get(IsSetNE);
3502 return ReplaceInstUsesWith(I, Cst);
3503 }
Misha Brukmanfd939082005-04-21 23:48:37 +00003504
Chris Lattnerf63f6472004-09-27 16:18:50 +00003505 if (LHSI->hasOneUse() || CI->isNullValue()) {
Chris Lattner652f3cf2005-01-08 19:42:22 +00003506 unsigned ShAmtVal = (unsigned)ShAmt->getValue();
Chris Lattner18d19ca2004-09-28 18:22:15 +00003507
Chris Lattnerf63f6472004-09-27 16:18:50 +00003508 // Otherwise strength reduce the shift into an and.
3509 uint64_t Val = ~0ULL; // All ones.
3510 Val <<= ShAmtVal; // Shift over to the right spot.
3511
3512 Constant *Mask;
3513 if (CI->getType()->isUnsigned()) {
Chris Lattnerf52d6812005-04-24 17:46:05 +00003514 Val &= ~0ULL >> (64-TypeBits);
Chris Lattnerf63f6472004-09-27 16:18:50 +00003515 Mask = ConstantUInt::get(CI->getType(), Val);
3516 } else {
3517 Mask = ConstantSInt::get(CI->getType(), Val);
3518 }
Misha Brukmanfd939082005-04-21 23:48:37 +00003519
Chris Lattnerf63f6472004-09-27 16:18:50 +00003520 Instruction *AndI =
3521 BinaryOperator::createAnd(LHSI->getOperand(0),
3522 Mask, LHSI->getName()+".mask");
3523 Value *And = InsertNewInstBefore(AndI, I);
3524 return new SetCondInst(I.getOpcode(), And,
3525 ConstantExpr::getShl(CI, ShAmt));
3526 }
3527 break;
3528 }
3529 }
3530 }
3531 break;
Chris Lattner0c967662004-09-24 15:21:34 +00003532
Chris Lattnera96879a2004-09-29 17:40:11 +00003533 case Instruction::Div:
3534 // Fold: (div X, C1) op C2 -> range check
3535 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
3536 // Fold this div into the comparison, producing a range check.
3537 // Determine, based on the divide type, what the range is being
3538 // checked. If there is an overflow on the low or high side, remember
3539 // it, otherwise compute the range [low, hi) bounding the new value.
3540 bool LoOverflow = false, HiOverflow = 0;
3541 ConstantInt *LoBound = 0, *HiBound = 0;
3542
3543 ConstantInt *Prod;
3544 bool ProdOV = MulWithOverflow(Prod, CI, DivRHS);
3545
Chris Lattner6a9fdfa2004-10-11 19:40:04 +00003546 Instruction::BinaryOps Opcode = I.getOpcode();
3547
Chris Lattnera96879a2004-09-29 17:40:11 +00003548 if (DivRHS->isNullValue()) { // Don't hack on divide by zeros.
3549 } else if (LHSI->getType()->isUnsigned()) { // udiv
3550 LoBound = Prod;
3551 LoOverflow = ProdOV;
3552 HiOverflow = ProdOV || AddWithOverflow(HiBound, LoBound, DivRHS);
3553 } else if (isPositive(DivRHS)) { // Divisor is > 0.
3554 if (CI->isNullValue()) { // (X / pos) op 0
3555 // Can't overflow.
3556 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
3557 HiBound = DivRHS;
3558 } else if (isPositive(CI)) { // (X / pos) op pos
3559 LoBound = Prod;
3560 LoOverflow = ProdOV;
3561 HiOverflow = ProdOV || AddWithOverflow(HiBound, Prod, DivRHS);
3562 } else { // (X / pos) op neg
3563 Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
3564 LoOverflow = AddWithOverflow(LoBound, Prod,
3565 cast<ConstantInt>(DivRHSH));
3566 HiBound = Prod;
3567 HiOverflow = ProdOV;
3568 }
3569 } else { // Divisor is < 0.
3570 if (CI->isNullValue()) { // (X / neg) op 0
3571 LoBound = AddOne(DivRHS);
3572 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
Chris Lattner56625032005-06-17 02:05:55 +00003573 if (HiBound == DivRHS)
3574 LoBound = 0; // - INTMIN = INTMIN
Chris Lattnera96879a2004-09-29 17:40:11 +00003575 } else if (isPositive(CI)) { // (X / neg) op pos
3576 HiOverflow = LoOverflow = ProdOV;
3577 if (!LoOverflow)
3578 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS));
3579 HiBound = AddOne(Prod);
3580 } else { // (X / neg) op neg
3581 LoBound = Prod;
3582 LoOverflow = HiOverflow = ProdOV;
3583 HiBound = cast<ConstantInt>(ConstantExpr::getSub(Prod, DivRHS));
3584 }
Chris Lattner340a05f2004-10-08 19:15:44 +00003585
Chris Lattner6a9fdfa2004-10-11 19:40:04 +00003586 // Dividing by a negate swaps the condition.
3587 Opcode = SetCondInst::getSwappedCondition(Opcode);
Chris Lattnera96879a2004-09-29 17:40:11 +00003588 }
3589
3590 if (LoBound) {
3591 Value *X = LHSI->getOperand(0);
Chris Lattner6a9fdfa2004-10-11 19:40:04 +00003592 switch (Opcode) {
Chris Lattnera96879a2004-09-29 17:40:11 +00003593 default: assert(0 && "Unhandled setcc opcode!");
3594 case Instruction::SetEQ:
3595 if (LoOverflow && HiOverflow)
3596 return ReplaceInstUsesWith(I, ConstantBool::False);
3597 else if (HiOverflow)
3598 return new SetCondInst(Instruction::SetGE, X, LoBound);
3599 else if (LoOverflow)
3600 return new SetCondInst(Instruction::SetLT, X, HiBound);
3601 else
3602 return InsertRangeTest(X, LoBound, HiBound, true, I);
3603 case Instruction::SetNE:
3604 if (LoOverflow && HiOverflow)
3605 return ReplaceInstUsesWith(I, ConstantBool::True);
3606 else if (HiOverflow)
3607 return new SetCondInst(Instruction::SetLT, X, LoBound);
3608 else if (LoOverflow)
3609 return new SetCondInst(Instruction::SetGE, X, HiBound);
3610 else
3611 return InsertRangeTest(X, LoBound, HiBound, false, I);
3612 case Instruction::SetLT:
3613 if (LoOverflow)
3614 return ReplaceInstUsesWith(I, ConstantBool::False);
3615 return new SetCondInst(Instruction::SetLT, X, LoBound);
3616 case Instruction::SetGT:
3617 if (HiOverflow)
3618 return ReplaceInstUsesWith(I, ConstantBool::False);
3619 return new SetCondInst(Instruction::SetGE, X, HiBound);
3620 }
3621 }
3622 }
3623 break;
Chris Lattner648e3bc2004-09-23 21:52:49 +00003624 }
Misha Brukmanfd939082005-04-21 23:48:37 +00003625
Chris Lattnerbc5d4142003-07-23 17:02:11 +00003626 // Simplify seteq and setne instructions...
3627 if (I.getOpcode() == Instruction::SetEQ ||
3628 I.getOpcode() == Instruction::SetNE) {
3629 bool isSetNE = I.getOpcode() == Instruction::SetNE;
3630
Chris Lattner00b1a7e2003-07-23 17:26:36 +00003631 // If the first operand is (and|or|xor) with a constant, and the second
Chris Lattnerbc5d4142003-07-23 17:02:11 +00003632 // operand is a constant, simplify a bit.
Chris Lattner934754b2003-08-13 05:33:12 +00003633 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) {
3634 switch (BO->getOpcode()) {
Chris Lattner3571b722004-07-06 07:38:18 +00003635 case Instruction::Rem:
3636 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3637 if (CI->isNullValue() && isa<ConstantSInt>(BO->getOperand(1)) &&
3638 BO->hasOneUse() &&
Chris Lattnerbcd7db52005-08-02 19:16:58 +00003639 cast<ConstantSInt>(BO->getOperand(1))->getValue() > 1) {
3640 int64_t V = cast<ConstantSInt>(BO->getOperand(1))->getValue();
3641 if (isPowerOf2_64(V)) {
3642 unsigned L2 = Log2_64(V);
Chris Lattner3571b722004-07-06 07:38:18 +00003643 const Type *UTy = BO->getType()->getUnsignedVersion();
3644 Value *NewX = InsertNewInstBefore(new CastInst(BO->getOperand(0),
3645 UTy, "tmp"), I);
3646 Constant *RHSCst = ConstantUInt::get(UTy, 1ULL << L2);
3647 Value *NewRem =InsertNewInstBefore(BinaryOperator::createRem(NewX,
3648 RHSCst, BO->getName()), I);
3649 return BinaryOperator::create(I.getOpcode(), NewRem,
3650 Constant::getNullValue(UTy));
3651 }
Chris Lattnerbcd7db52005-08-02 19:16:58 +00003652 }
Misha Brukmanfd939082005-04-21 23:48:37 +00003653 break;
Chris Lattner3571b722004-07-06 07:38:18 +00003654
Chris Lattner934754b2003-08-13 05:33:12 +00003655 case Instruction::Add:
Chris Lattner15d58b62004-06-27 22:51:36 +00003656 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3657 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattner3d834bf2004-09-21 21:35:23 +00003658 if (BO->hasOneUse())
3659 return new SetCondInst(I.getOpcode(), BO->getOperand(0),
3660 ConstantExpr::getSub(CI, BOp1C));
Chris Lattner15d58b62004-06-27 22:51:36 +00003661 } else if (CI->isNullValue()) {
Chris Lattner934754b2003-08-13 05:33:12 +00003662 // Replace ((add A, B) != 0) with (A != -B) if A or B is
3663 // efficiently invertible, or if the add has just this one use.
3664 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
Misha Brukmanfd939082005-04-21 23:48:37 +00003665
Chris Lattner934754b2003-08-13 05:33:12 +00003666 if (Value *NegVal = dyn_castNegVal(BOp1))
3667 return new SetCondInst(I.getOpcode(), BOp0, NegVal);
3668 else if (Value *NegVal = dyn_castNegVal(BOp0))
3669 return new SetCondInst(I.getOpcode(), NegVal, BOp1);
Chris Lattnerfd059242003-10-15 16:48:29 +00003670 else if (BO->hasOneUse()) {
Chris Lattner934754b2003-08-13 05:33:12 +00003671 Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName());
3672 BO->setName("");
3673 InsertNewInstBefore(Neg, I);
3674 return new SetCondInst(I.getOpcode(), BOp0, Neg);
3675 }
3676 }
3677 break;
3678 case Instruction::Xor:
3679 // For the xor case, we can xor two constants together, eliminating
3680 // the explicit xor.
3681 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
3682 return BinaryOperator::create(I.getOpcode(), BO->getOperand(0),
Chris Lattner48595f12004-06-10 02:07:29 +00003683 ConstantExpr::getXor(CI, BOC));
Chris Lattner934754b2003-08-13 05:33:12 +00003684
3685 // FALLTHROUGH
3686 case Instruction::Sub:
3687 // Replace (([sub|xor] A, B) != 0) with (A != B)
3688 if (CI->isNullValue())
3689 return new SetCondInst(I.getOpcode(), BO->getOperand(0),
3690 BO->getOperand(1));
3691 break;
3692
3693 case Instruction::Or:
3694 // If bits are being or'd in that are not present in the constant we
3695 // are comparing against, then the comparison could never succeed!
Chris Lattner7c4049c2004-01-12 19:35:11 +00003696 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
Chris Lattner448c3232004-06-10 02:12:35 +00003697 Constant *NotCI = ConstantExpr::getNot(CI);
Chris Lattner48595f12004-06-10 02:07:29 +00003698 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
Chris Lattnerbc5d4142003-07-23 17:02:11 +00003699 return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
Chris Lattner7c4049c2004-01-12 19:35:11 +00003700 }
Chris Lattner934754b2003-08-13 05:33:12 +00003701 break;
3702
3703 case Instruction::And:
3704 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattnerbc5d4142003-07-23 17:02:11 +00003705 // If bits are being compared against that are and'd out, then the
3706 // comparison can never succeed!
Chris Lattner448c3232004-06-10 02:12:35 +00003707 if (!ConstantExpr::getAnd(CI,
3708 ConstantExpr::getNot(BOC))->isNullValue())
Chris Lattnerbc5d4142003-07-23 17:02:11 +00003709 return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
Chris Lattner934754b2003-08-13 05:33:12 +00003710
Chris Lattner457dd822004-06-09 07:59:58 +00003711 // If we have ((X & C) == C), turn it into ((X & C) != 0).
Chris Lattner3285a6f2004-06-10 02:33:20 +00003712 if (CI == BOC && isOneBitSet(CI))
Chris Lattner457dd822004-06-09 07:59:58 +00003713 return new SetCondInst(isSetNE ? Instruction::SetEQ :
3714 Instruction::SetNE, Op0,
3715 Constant::getNullValue(CI->getType()));
Chris Lattner457dd822004-06-09 07:59:58 +00003716
Chris Lattner934754b2003-08-13 05:33:12 +00003717 // Replace (and X, (1 << size(X)-1) != 0) with x < 0, converting X
3718 // to be a signed value as appropriate.
3719 if (isSignBit(BOC)) {
3720 Value *X = BO->getOperand(0);
3721 // If 'X' is not signed, insert a cast now...
3722 if (!BOC->getType()->isSigned()) {
Chris Lattner5dd04022004-06-17 18:16:02 +00003723 const Type *DestTy = BOC->getType()->getSignedVersion();
Chris Lattner83c4ec02004-09-27 19:29:18 +00003724 X = InsertCastBefore(X, DestTy, I);
Chris Lattner934754b2003-08-13 05:33:12 +00003725 }
3726 return new SetCondInst(isSetNE ? Instruction::SetLT :
3727 Instruction::SetGE, X,
3728 Constant::getNullValue(X->getType()));
3729 }
Misha Brukmanfd939082005-04-21 23:48:37 +00003730
Chris Lattner83c4ec02004-09-27 19:29:18 +00003731 // ((X & ~7) == 0) --> X < 8
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00003732 if (CI->isNullValue() && isHighOnes(BOC)) {
3733 Value *X = BO->getOperand(0);
Chris Lattner83c4ec02004-09-27 19:29:18 +00003734 Constant *NegX = ConstantExpr::getNeg(BOC);
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00003735
3736 // If 'X' is signed, insert a cast now.
Chris Lattner83c4ec02004-09-27 19:29:18 +00003737 if (NegX->getType()->isSigned()) {
3738 const Type *DestTy = NegX->getType()->getUnsignedVersion();
3739 X = InsertCastBefore(X, DestTy, I);
3740 NegX = ConstantExpr::getCast(NegX, DestTy);
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00003741 }
3742
3743 return new SetCondInst(isSetNE ? Instruction::SetGE :
Chris Lattner83c4ec02004-09-27 19:29:18 +00003744 Instruction::SetLT, X, NegX);
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00003745 }
3746
Chris Lattnerbc5d4142003-07-23 17:02:11 +00003747 }
Chris Lattner934754b2003-08-13 05:33:12 +00003748 default: break;
3749 }
3750 }
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003751 } else { // Not a SetEQ/SetNE
Misha Brukmanfd939082005-04-21 23:48:37 +00003752 // If the LHS is a cast from an integral value of the same size,
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003753 if (CastInst *Cast = dyn_cast<CastInst>(Op0)) {
3754 Value *CastOp = Cast->getOperand(0);
3755 const Type *SrcTy = CastOp->getType();
Chris Lattner484d3cf2005-04-24 06:59:08 +00003756 unsigned SrcTySize = SrcTy->getPrimitiveSizeInBits();
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003757 if (SrcTy != Cast->getType() && SrcTy->isInteger() &&
Chris Lattner484d3cf2005-04-24 06:59:08 +00003758 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
Misha Brukmanfd939082005-04-21 23:48:37 +00003759 assert((SrcTy->isSigned() ^ Cast->getType()->isSigned()) &&
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003760 "Source and destination signednesses should differ!");
3761 if (Cast->getType()->isSigned()) {
3762 // If this is a signed comparison, check for comparisons in the
3763 // vicinity of zero.
3764 if (I.getOpcode() == Instruction::SetLT && CI->isNullValue())
3765 // X < 0 => x > 127
Chris Lattner48595f12004-06-10 02:07:29 +00003766 return BinaryOperator::createSetGT(CastOp,
Chris Lattner484d3cf2005-04-24 06:59:08 +00003767 ConstantUInt::get(SrcTy, (1ULL << (SrcTySize-1))-1));
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003768 else if (I.getOpcode() == Instruction::SetGT &&
3769 cast<ConstantSInt>(CI)->getValue() == -1)
3770 // X > -1 => x < 128
Chris Lattner48595f12004-06-10 02:07:29 +00003771 return BinaryOperator::createSetLT(CastOp,
Chris Lattner484d3cf2005-04-24 06:59:08 +00003772 ConstantUInt::get(SrcTy, 1ULL << (SrcTySize-1)));
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003773 } else {
3774 ConstantUInt *CUI = cast<ConstantUInt>(CI);
3775 if (I.getOpcode() == Instruction::SetLT &&
Chris Lattner484d3cf2005-04-24 06:59:08 +00003776 CUI->getValue() == 1ULL << (SrcTySize-1))
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003777 // X < 128 => X > -1
Chris Lattner48595f12004-06-10 02:07:29 +00003778 return BinaryOperator::createSetGT(CastOp,
3779 ConstantSInt::get(SrcTy, -1));
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003780 else if (I.getOpcode() == Instruction::SetGT &&
Chris Lattner484d3cf2005-04-24 06:59:08 +00003781 CUI->getValue() == (1ULL << (SrcTySize-1))-1)
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003782 // X > 127 => X < 0
Chris Lattner48595f12004-06-10 02:07:29 +00003783 return BinaryOperator::createSetLT(CastOp,
3784 Constant::getNullValue(SrcTy));
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003785 }
3786 }
3787 }
Chris Lattner40f5d702003-06-04 05:10:11 +00003788 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00003789 }
3790
Chris Lattner6970b662005-04-23 15:31:55 +00003791 // Handle setcc with constant RHS's that can be integer, FP or pointer.
3792 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3793 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3794 switch (LHSI->getOpcode()) {
Chris Lattner9fb25db2005-05-01 04:42:15 +00003795 case Instruction::GetElementPtr:
3796 if (RHSC->isNullValue()) {
3797 // Transform setcc GEP P, int 0, int 0, int 0, null -> setcc P, null
3798 bool isAllZeros = true;
3799 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
3800 if (!isa<Constant>(LHSI->getOperand(i)) ||
3801 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
3802 isAllZeros = false;
3803 break;
3804 }
3805 if (isAllZeros)
3806 return new SetCondInst(I.getOpcode(), LHSI->getOperand(0),
3807 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3808 }
3809 break;
3810
Chris Lattner6970b662005-04-23 15:31:55 +00003811 case Instruction::PHI:
3812 if (Instruction *NV = FoldOpIntoPhi(I))
3813 return NV;
3814 break;
3815 case Instruction::Select:
3816 // If either operand of the select is a constant, we can fold the
3817 // comparison into the select arms, which will cause one to be
3818 // constant folded and the select turned into a bitwise or.
3819 Value *Op1 = 0, *Op2 = 0;
3820 if (LHSI->hasOneUse()) {
3821 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3822 // Fold the known value into the constant operand.
3823 Op1 = ConstantExpr::get(I.getOpcode(), C, RHSC);
3824 // Insert a new SetCC of the other select operand.
3825 Op2 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
3826 LHSI->getOperand(2), RHSC,
3827 I.getName()), I);
3828 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3829 // Fold the known value into the constant operand.
3830 Op2 = ConstantExpr::get(I.getOpcode(), C, RHSC);
3831 // Insert a new SetCC of the other select operand.
3832 Op1 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
3833 LHSI->getOperand(1), RHSC,
3834 I.getName()), I);
3835 }
3836 }
Jeff Cohen9d809302005-04-23 21:38:35 +00003837
Chris Lattner6970b662005-04-23 15:31:55 +00003838 if (Op1)
3839 return new SelectInst(LHSI->getOperand(0), Op1, Op2);
3840 break;
3841 }
3842 }
3843
Chris Lattner574da9b2005-01-13 20:14:25 +00003844 // If we can optimize a 'setcc GEP, P' or 'setcc P, GEP', do so now.
3845 if (User *GEP = dyn_castGetElementPtr(Op0))
3846 if (Instruction *NI = FoldGEPSetCC(GEP, Op1, I.getOpcode(), I))
3847 return NI;
3848 if (User *GEP = dyn_castGetElementPtr(Op1))
3849 if (Instruction *NI = FoldGEPSetCC(GEP, Op0,
3850 SetCondInst::getSwappedCondition(I.getOpcode()), I))
3851 return NI;
3852
Chris Lattnerde90b762003-11-03 04:25:02 +00003853 // Test to see if the operands of the setcc are casted versions of other
3854 // values. If the cast can be stripped off both arguments, we do so now.
Chris Lattner68708052003-11-03 05:17:03 +00003855 if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3856 Value *CastOp0 = CI->getOperand(0);
3857 if (CastOp0->getType()->isLosslesslyConvertibleTo(CI->getType()) &&
Chris Lattner0cea42a2004-03-13 23:54:27 +00003858 (isa<Constant>(Op1) || isa<CastInst>(Op1)) &&
Chris Lattnerde90b762003-11-03 04:25:02 +00003859 (I.getOpcode() == Instruction::SetEQ ||
3860 I.getOpcode() == Instruction::SetNE)) {
3861 // We keep moving the cast from the left operand over to the right
3862 // operand, where it can often be eliminated completely.
Chris Lattner68708052003-11-03 05:17:03 +00003863 Op0 = CastOp0;
Misha Brukmanfd939082005-04-21 23:48:37 +00003864
Chris Lattnerde90b762003-11-03 04:25:02 +00003865 // If operand #1 is a cast instruction, see if we can eliminate it as
3866 // well.
Chris Lattner68708052003-11-03 05:17:03 +00003867 if (CastInst *CI2 = dyn_cast<CastInst>(Op1))
3868 if (CI2->getOperand(0)->getType()->isLosslesslyConvertibleTo(
Chris Lattnerde90b762003-11-03 04:25:02 +00003869 Op0->getType()))
Chris Lattner68708052003-11-03 05:17:03 +00003870 Op1 = CI2->getOperand(0);
Misha Brukmanfd939082005-04-21 23:48:37 +00003871
Chris Lattnerde90b762003-11-03 04:25:02 +00003872 // If Op1 is a constant, we can fold the cast into the constant.
3873 if (Op1->getType() != Op0->getType())
3874 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
3875 Op1 = ConstantExpr::getCast(Op1C, Op0->getType());
3876 } else {
3877 // Otherwise, cast the RHS right before the setcc
3878 Op1 = new CastInst(Op1, Op0->getType(), Op1->getName());
3879 InsertNewInstBefore(cast<Instruction>(Op1), I);
3880 }
3881 return BinaryOperator::create(I.getOpcode(), Op0, Op1);
3882 }
3883
Chris Lattner68708052003-11-03 05:17:03 +00003884 // Handle the special case of: setcc (cast bool to X), <cst>
3885 // This comes up when you have code like
3886 // int X = A < B;
3887 // if (X) ...
3888 // For generality, we handle any zero-extension of any operand comparison
Chris Lattner484d3cf2005-04-24 06:59:08 +00003889 // with a constant or another cast from the same type.
3890 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
3891 if (Instruction *R = visitSetCondInstWithCastAndCast(I))
3892 return R;
Chris Lattner68708052003-11-03 05:17:03 +00003893 }
Chris Lattner26ab9a92006-02-27 01:44:11 +00003894
3895 if (I.getOpcode() == Instruction::SetNE ||
3896 I.getOpcode() == Instruction::SetEQ) {
3897 Value *A, *B;
3898 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
3899 (A == Op1 || B == Op1)) {
3900 // (A^B) == A -> B == 0
3901 Value *OtherVal = A == Op1 ? B : A;
3902 return BinaryOperator::create(I.getOpcode(), OtherVal,
3903 Constant::getNullValue(A->getType()));
3904 } else if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
3905 (A == Op0 || B == Op0)) {
3906 // A == (A^B) -> B == 0
3907 Value *OtherVal = A == Op0 ? B : A;
3908 return BinaryOperator::create(I.getOpcode(), OtherVal,
3909 Constant::getNullValue(A->getType()));
3910 } else if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
3911 // (A-B) == A -> B == 0
3912 return BinaryOperator::create(I.getOpcode(), B,
3913 Constant::getNullValue(B->getType()));
3914 } else if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
3915 // A == (A-B) -> B == 0
3916 return BinaryOperator::create(I.getOpcode(), B,
3917 Constant::getNullValue(B->getType()));
3918 }
3919 }
Chris Lattner7e708292002-06-25 16:13:24 +00003920 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00003921}
3922
Chris Lattner484d3cf2005-04-24 06:59:08 +00003923// visitSetCondInstWithCastAndCast - Handle setcond (cast x to y), (cast/cst).
3924// We only handle extending casts so far.
3925//
3926Instruction *InstCombiner::visitSetCondInstWithCastAndCast(SetCondInst &SCI) {
3927 Value *LHSCIOp = cast<CastInst>(SCI.getOperand(0))->getOperand(0);
3928 const Type *SrcTy = LHSCIOp->getType();
3929 const Type *DestTy = SCI.getOperand(0)->getType();
3930 Value *RHSCIOp;
3931
3932 if (!DestTy->isIntegral() || !SrcTy->isIntegral())
Chris Lattnerb352fa52005-01-17 03:20:02 +00003933 return 0;
3934
Chris Lattner484d3cf2005-04-24 06:59:08 +00003935 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
3936 unsigned DestBits = DestTy->getPrimitiveSizeInBits();
3937 if (SrcBits >= DestBits) return 0; // Only handle extending cast.
3938
3939 // Is this a sign or zero extension?
3940 bool isSignSrc = SrcTy->isSigned();
3941 bool isSignDest = DestTy->isSigned();
3942
3943 if (CastInst *CI = dyn_cast<CastInst>(SCI.getOperand(1))) {
3944 // Not an extension from the same type?
3945 RHSCIOp = CI->getOperand(0);
3946 if (RHSCIOp->getType() != LHSCIOp->getType()) return 0;
3947 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(SCI.getOperand(1))) {
3948 // Compute the constant that would happen if we truncated to SrcTy then
3949 // reextended to DestTy.
3950 Constant *Res = ConstantExpr::getCast(CI, SrcTy);
3951
3952 if (ConstantExpr::getCast(Res, DestTy) == CI) {
3953 RHSCIOp = Res;
3954 } else {
3955 // If the value cannot be represented in the shorter type, we cannot emit
3956 // a simple comparison.
3957 if (SCI.getOpcode() == Instruction::SetEQ)
3958 return ReplaceInstUsesWith(SCI, ConstantBool::False);
3959 if (SCI.getOpcode() == Instruction::SetNE)
3960 return ReplaceInstUsesWith(SCI, ConstantBool::True);
3961
Chris Lattner484d3cf2005-04-24 06:59:08 +00003962 // Evaluate the comparison for LT.
3963 Value *Result;
3964 if (DestTy->isSigned()) {
3965 // We're performing a signed comparison.
3966 if (isSignSrc) {
3967 // Signed extend and signed comparison.
3968 if (cast<ConstantSInt>(CI)->getValue() < 0) // X < (small) --> false
3969 Result = ConstantBool::False;
3970 else
3971 Result = ConstantBool::True; // X < (large) --> true
3972 } else {
3973 // Unsigned extend and signed comparison.
3974 if (cast<ConstantSInt>(CI)->getValue() < 0)
3975 Result = ConstantBool::False;
3976 else
3977 Result = ConstantBool::True;
3978 }
3979 } else {
3980 // We're performing an unsigned comparison.
3981 if (!isSignSrc) {
3982 // Unsigned extend & compare -> always true.
3983 Result = ConstantBool::True;
3984 } else {
3985 // We're performing an unsigned comp with a sign extended value.
3986 // This is true if the input is >= 0. [aka >s -1]
3987 Constant *NegOne = ConstantIntegral::getAllOnesValue(SrcTy);
3988 Result = InsertNewInstBefore(BinaryOperator::createSetGT(LHSCIOp,
3989 NegOne, SCI.getName()), SCI);
3990 }
Reid Spencer6731d5c2004-11-28 21:31:15 +00003991 }
Chris Lattnerb352fa52005-01-17 03:20:02 +00003992
Jeff Cohen00b168892005-07-27 06:12:32 +00003993 // Finally, return the value computed.
Chris Lattner484d3cf2005-04-24 06:59:08 +00003994 if (SCI.getOpcode() == Instruction::SetLT) {
3995 return ReplaceInstUsesWith(SCI, Result);
3996 } else {
3997 assert(SCI.getOpcode()==Instruction::SetGT &&"SetCC should be folded!");
3998 if (Constant *CI = dyn_cast<Constant>(Result))
3999 return ReplaceInstUsesWith(SCI, ConstantExpr::getNot(CI));
4000 else
4001 return BinaryOperator::createNot(Result);
4002 }
Chris Lattnerb352fa52005-01-17 03:20:02 +00004003 }
Chris Lattner484d3cf2005-04-24 06:59:08 +00004004 } else {
4005 return 0;
Reid Spencer6731d5c2004-11-28 21:31:15 +00004006 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00004007
Chris Lattner8d7089e2005-06-16 03:00:08 +00004008 // Okay, just insert a compare of the reduced operands now!
Chris Lattner484d3cf2005-04-24 06:59:08 +00004009 return BinaryOperator::create(SCI.getOpcode(), LHSCIOp, RHSCIOp);
4010}
Chris Lattner3f5b8772002-05-06 16:14:14 +00004011
Chris Lattnerea340052003-03-10 19:16:08 +00004012Instruction *InstCombiner::visitShiftInst(ShiftInst &I) {
Chris Lattner7e708292002-06-25 16:13:24 +00004013 assert(I.getOperand(1)->getType() == Type::UByteTy);
4014 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerdf17af12003-08-12 21:53:41 +00004015 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner3f5b8772002-05-06 16:14:14 +00004016
4017 // shl X, 0 == X and shr X, 0 == X
4018 // shl 0, X == 0 and shr 0, X == 0
4019 if (Op1 == Constant::getNullValue(Type::UByteTy) ||
Chris Lattner233f7dc2002-08-12 21:17:25 +00004020 Op0 == Constant::getNullValue(Op0->getType()))
4021 return ReplaceInstUsesWith(I, Op0);
Chris Lattner8d6bbdb2006-02-12 08:07:37 +00004022
Chris Lattnere87597f2004-10-16 18:11:37 +00004023 if (isa<UndefValue>(Op0)) { // undef >>s X -> undef
4024 if (!isLeftShift && I.getType()->isSigned())
Chris Lattner79a564c2004-10-16 23:28:04 +00004025 return ReplaceInstUsesWith(I, Op0);
Chris Lattnere87597f2004-10-16 18:11:37 +00004026 else // undef << X -> 0 AND undef >>u X -> 0
4027 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4028 }
4029 if (isa<UndefValue>(Op1)) {
Chris Lattnerf9944f12005-07-20 18:49:28 +00004030 if (isLeftShift || I.getType()->isUnsigned())// X << undef, X >>u undef -> 0
Chris Lattnere87597f2004-10-16 18:11:37 +00004031 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4032 else
4033 return ReplaceInstUsesWith(I, Op0); // X >>s undef -> X
4034 }
4035
Chris Lattnerdf17af12003-08-12 21:53:41 +00004036 // shr int -1, X = -1 (for any arithmetic shift rights of ~0)
4037 if (!isLeftShift)
4038 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
4039 if (CSI->isAllOnesValue())
4040 return ReplaceInstUsesWith(I, CSI);
4041
Chris Lattner2eefe512004-04-09 19:05:30 +00004042 // Try to fold constant and into select arguments.
4043 if (isa<Constant>(Op0))
4044 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner6e7ba452005-01-01 16:22:27 +00004045 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00004046 return R;
4047
Chris Lattner120347e2005-05-08 17:34:56 +00004048 // See if we can turn a signed shr into an unsigned shr.
4049 if (!isLeftShift && I.getType()->isSigned()) {
Chris Lattner3bedbd92006-02-07 07:27:52 +00004050 if (MaskedValueIsZero(Op0,
4051 1ULL << (I.getType()->getPrimitiveSizeInBits()-1))) {
Chris Lattner120347e2005-05-08 17:34:56 +00004052 Value *V = InsertCastBefore(Op0, I.getType()->getUnsignedVersion(), I);
4053 V = InsertNewInstBefore(new ShiftInst(Instruction::Shr, V, Op1,
4054 I.getName()), I);
4055 return new CastInst(V, I.getType());
4056 }
4057 }
Jeff Cohen00b168892005-07-27 06:12:32 +00004058
Chris Lattner4d5542c2006-01-06 07:12:35 +00004059 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1))
4060 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
4061 return Res;
4062 return 0;
4063}
4064
4065Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantUInt *Op1,
4066 ShiftInst &I) {
4067 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner830ed032006-01-06 07:22:22 +00004068 bool isSignedShift = Op0->getType()->isSigned();
4069 bool isUnsignedShift = !isSignedShift;
Chris Lattner4d5542c2006-01-06 07:12:35 +00004070
Chris Lattner8d6bbdb2006-02-12 08:07:37 +00004071 // See if we can simplify any instructions used by the instruction whose sole
4072 // purpose is to compute bits we don't care about.
4073 uint64_t KnownZero, KnownOne;
4074 if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
4075 KnownZero, KnownOne))
4076 return &I;
4077
Chris Lattner4d5542c2006-01-06 07:12:35 +00004078 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
4079 // of a signed value.
4080 //
4081 unsigned TypeBits = Op0->getType()->getPrimitiveSizeInBits();
4082 if (Op1->getValue() >= TypeBits) {
Chris Lattner830ed032006-01-06 07:22:22 +00004083 if (isUnsignedShift || isLeftShift)
Chris Lattner4d5542c2006-01-06 07:12:35 +00004084 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
4085 else {
4086 I.setOperand(1, ConstantUInt::get(Type::UByteTy, TypeBits-1));
4087 return &I;
Chris Lattner8adac752004-02-23 20:30:06 +00004088 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00004089 }
4090
4091 // ((X*C1) << C2) == (X * (C1 << C2))
4092 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
4093 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
4094 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
4095 return BinaryOperator::createMul(BO->getOperand(0),
4096 ConstantExpr::getShl(BOOp, Op1));
4097
4098 // Try to fold constant and into select arguments.
4099 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4100 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4101 return R;
4102 if (isa<PHINode>(Op0))
4103 if (Instruction *NV = FoldOpIntoPhi(I))
4104 return NV;
4105
4106 if (Op0->hasOneUse()) {
Chris Lattner4d5542c2006-01-06 07:12:35 +00004107 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
4108 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
4109 Value *V1, *V2;
4110 ConstantInt *CC;
4111 switch (Op0BO->getOpcode()) {
Chris Lattner11021cb2005-09-18 05:12:10 +00004112 default: break;
4113 case Instruction::Add:
4114 case Instruction::And:
4115 case Instruction::Or:
4116 case Instruction::Xor:
4117 // These operators commute.
4118 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner150f12a2005-09-18 06:30:59 +00004119 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
4120 match(Op0BO->getOperand(1),
Chris Lattner4d5542c2006-01-06 07:12:35 +00004121 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Chris Lattner150f12a2005-09-18 06:30:59 +00004122 Instruction *YS = new ShiftInst(Instruction::Shl,
Chris Lattner4d5542c2006-01-06 07:12:35 +00004123 Op0BO->getOperand(0), Op1,
Chris Lattner150f12a2005-09-18 06:30:59 +00004124 Op0BO->getName());
4125 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner9a4cacb2006-02-09 07:41:14 +00004126 Instruction *X =
4127 BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
4128 Op0BO->getOperand(1)->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00004129 InsertNewInstBefore(X, I); // (X + (Y << C))
4130 Constant *C2 = ConstantInt::getAllOnesValue(X->getType());
Chris Lattner4d5542c2006-01-06 07:12:35 +00004131 C2 = ConstantExpr::getShl(C2, Op1);
Chris Lattner150f12a2005-09-18 06:30:59 +00004132 return BinaryOperator::createAnd(X, C2);
4133 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00004134
Chris Lattner150f12a2005-09-18 06:30:59 +00004135 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
4136 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
4137 match(Op0BO->getOperand(1),
4138 m_And(m_Shr(m_Value(V1), m_Value(V2)),
Chris Lattner4d5542c2006-01-06 07:12:35 +00004139 m_ConstantInt(CC))) && V2 == Op1 &&
Chris Lattner9a4cacb2006-02-09 07:41:14 +00004140 cast<BinaryOperator>(Op0BO->getOperand(1))->getOperand(0)->hasOneUse()) {
Chris Lattner150f12a2005-09-18 06:30:59 +00004141 Instruction *YS = new ShiftInst(Instruction::Shl,
Chris Lattner4d5542c2006-01-06 07:12:35 +00004142 Op0BO->getOperand(0), Op1,
Chris Lattner150f12a2005-09-18 06:30:59 +00004143 Op0BO->getName());
4144 InsertNewInstBefore(YS, I); // (Y << C)
4145 Instruction *XM =
Chris Lattner4d5542c2006-01-06 07:12:35 +00004146 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner150f12a2005-09-18 06:30:59 +00004147 V1->getName()+".mask");
4148 InsertNewInstBefore(XM, I); // X & (CC << C)
4149
4150 return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
4151 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00004152
Chris Lattner150f12a2005-09-18 06:30:59 +00004153 // FALL THROUGH.
Chris Lattner11021cb2005-09-18 05:12:10 +00004154 case Instruction::Sub:
4155 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner150f12a2005-09-18 06:30:59 +00004156 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
4157 match(Op0BO->getOperand(0),
Chris Lattner4d5542c2006-01-06 07:12:35 +00004158 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Chris Lattner150f12a2005-09-18 06:30:59 +00004159 Instruction *YS = new ShiftInst(Instruction::Shl,
Chris Lattner4d5542c2006-01-06 07:12:35 +00004160 Op0BO->getOperand(1), Op1,
Chris Lattner150f12a2005-09-18 06:30:59 +00004161 Op0BO->getName());
4162 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner9a4cacb2006-02-09 07:41:14 +00004163 Instruction *X =
4164 BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
4165 Op0BO->getOperand(0)->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00004166 InsertNewInstBefore(X, I); // (X + (Y << C))
4167 Constant *C2 = ConstantInt::getAllOnesValue(X->getType());
Chris Lattner4d5542c2006-01-06 07:12:35 +00004168 C2 = ConstantExpr::getShl(C2, Op1);
Chris Lattner150f12a2005-09-18 06:30:59 +00004169 return BinaryOperator::createAnd(X, C2);
4170 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00004171
Chris Lattner150f12a2005-09-18 06:30:59 +00004172 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
4173 match(Op0BO->getOperand(0),
4174 m_And(m_Shr(m_Value(V1), m_Value(V2)),
Chris Lattner4d5542c2006-01-06 07:12:35 +00004175 m_ConstantInt(CC))) && V2 == Op1 &&
Chris Lattner9a4cacb2006-02-09 07:41:14 +00004176 cast<BinaryOperator>(Op0BO->getOperand(0))
4177 ->getOperand(0)->hasOneUse()) {
Chris Lattner150f12a2005-09-18 06:30:59 +00004178 Instruction *YS = new ShiftInst(Instruction::Shl,
Chris Lattner4d5542c2006-01-06 07:12:35 +00004179 Op0BO->getOperand(1), Op1,
Chris Lattner150f12a2005-09-18 06:30:59 +00004180 Op0BO->getName());
4181 InsertNewInstBefore(YS, I); // (Y << C)
4182 Instruction *XM =
Chris Lattner4d5542c2006-01-06 07:12:35 +00004183 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner150f12a2005-09-18 06:30:59 +00004184 V1->getName()+".mask");
4185 InsertNewInstBefore(XM, I); // X & (CC << C)
4186
4187 return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
4188 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00004189
Chris Lattner11021cb2005-09-18 05:12:10 +00004190 break;
Chris Lattner4d5542c2006-01-06 07:12:35 +00004191 }
4192
4193
4194 // If the operand is an bitwise operator with a constant RHS, and the
4195 // shift is the only use, we can pull it out of the shift.
4196 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
4197 bool isValid = true; // Valid only for And, Or, Xor
4198 bool highBitSet = false; // Transform if high bit of constant set?
4199
4200 switch (Op0BO->getOpcode()) {
Chris Lattnerdf17af12003-08-12 21:53:41 +00004201 default: isValid = false; break; // Do not perform transform!
Chris Lattner1f7e1602004-10-08 03:46:20 +00004202 case Instruction::Add:
4203 isValid = isLeftShift;
4204 break;
Chris Lattnerdf17af12003-08-12 21:53:41 +00004205 case Instruction::Or:
4206 case Instruction::Xor:
4207 highBitSet = false;
4208 break;
4209 case Instruction::And:
4210 highBitSet = true;
4211 break;
Chris Lattner4d5542c2006-01-06 07:12:35 +00004212 }
4213
4214 // If this is a signed shift right, and the high bit is modified
4215 // by the logical operation, do not perform the transformation.
4216 // The highBitSet boolean indicates the value of the high bit of
4217 // the constant which would cause it to be modified for this
4218 // operation.
4219 //
Chris Lattner830ed032006-01-06 07:22:22 +00004220 if (isValid && !isLeftShift && isSignedShift) {
Chris Lattner4d5542c2006-01-06 07:12:35 +00004221 uint64_t Val = Op0C->getRawValue();
4222 isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet;
4223 }
4224
4225 if (isValid) {
4226 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
4227
4228 Instruction *NewShift =
4229 new ShiftInst(I.getOpcode(), Op0BO->getOperand(0), Op1,
4230 Op0BO->getName());
4231 Op0BO->setName("");
4232 InsertNewInstBefore(NewShift, I);
4233
4234 return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
4235 NewRHS);
4236 }
4237 }
4238 }
4239 }
4240
Chris Lattnerad0124c2006-01-06 07:52:12 +00004241 // Find out if this is a shift of a shift by a constant.
4242 ShiftInst *ShiftOp = 0;
Chris Lattner4d5542c2006-01-06 07:12:35 +00004243 if (ShiftInst *Op0SI = dyn_cast<ShiftInst>(Op0))
Chris Lattnerad0124c2006-01-06 07:52:12 +00004244 ShiftOp = Op0SI;
4245 else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
4246 // If this is a noop-integer case of a shift instruction, use the shift.
4247 if (CI->getOperand(0)->getType()->isInteger() &&
4248 CI->getOperand(0)->getType()->getPrimitiveSizeInBits() ==
4249 CI->getType()->getPrimitiveSizeInBits() &&
4250 isa<ShiftInst>(CI->getOperand(0))) {
4251 ShiftOp = cast<ShiftInst>(CI->getOperand(0));
4252 }
4253 }
4254
4255 if (ShiftOp && isa<ConstantUInt>(ShiftOp->getOperand(1))) {
4256 // Find the operands and properties of the input shift. Note that the
4257 // signedness of the input shift may differ from the current shift if there
4258 // is a noop cast between the two.
4259 bool isShiftOfLeftShift = ShiftOp->getOpcode() == Instruction::Shl;
4260 bool isShiftOfSignedShift = ShiftOp->getType()->isSigned();
Chris Lattnere8d56c52006-01-07 01:32:28 +00004261 bool isShiftOfUnsignedShift = !isShiftOfSignedShift;
Chris Lattnerad0124c2006-01-06 07:52:12 +00004262
4263 ConstantUInt *ShiftAmt1C = cast<ConstantUInt>(ShiftOp->getOperand(1));
4264
4265 unsigned ShiftAmt1 = (unsigned)ShiftAmt1C->getValue();
4266 unsigned ShiftAmt2 = (unsigned)Op1->getValue();
4267
4268 // Check for (A << c1) << c2 and (A >> c1) >> c2.
4269 if (isLeftShift == isShiftOfLeftShift) {
4270 // Do not fold these shifts if the first one is signed and the second one
4271 // is unsigned and this is a right shift. Further, don't do any folding
4272 // on them.
4273 if (isShiftOfSignedShift && isUnsignedShift && !isLeftShift)
4274 return 0;
Chris Lattner4d5542c2006-01-06 07:12:35 +00004275
Chris Lattnerad0124c2006-01-06 07:52:12 +00004276 unsigned Amt = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
4277 if (Amt > Op0->getType()->getPrimitiveSizeInBits())
4278 Amt = Op0->getType()->getPrimitiveSizeInBits();
Chris Lattner4d5542c2006-01-06 07:12:35 +00004279
Chris Lattnerad0124c2006-01-06 07:52:12 +00004280 Value *Op = ShiftOp->getOperand(0);
4281 if (isShiftOfSignedShift != isSignedShift)
4282 Op = InsertNewInstBefore(new CastInst(Op, I.getType(), "tmp"), I);
4283 return new ShiftInst(I.getOpcode(), Op,
4284 ConstantUInt::get(Type::UByteTy, Amt));
4285 }
4286
4287 // Check for (A << c1) >> c2 or (A >> c1) << c2. If we are dealing with
4288 // signed types, we can only support the (A >> c1) << c2 configuration,
4289 // because it can not turn an arbitrary bit of A into a sign bit.
4290 if (isUnsignedShift || isLeftShift) {
4291 // Calculate bitmask for what gets shifted off the edge.
4292 Constant *C = ConstantIntegral::getAllOnesValue(I.getType());
4293 if (isLeftShift)
4294 C = ConstantExpr::getShl(C, ShiftAmt1C);
4295 else
Chris Lattnere8d56c52006-01-07 01:32:28 +00004296 C = ConstantExpr::getUShr(C, ShiftAmt1C);
Chris Lattnerad0124c2006-01-06 07:52:12 +00004297
4298 Value *Op = ShiftOp->getOperand(0);
4299 if (isShiftOfSignedShift != isSignedShift)
4300 Op = InsertNewInstBefore(new CastInst(Op, I.getType(),Op->getName()),I);
4301
4302 Instruction *Mask =
4303 BinaryOperator::createAnd(Op, C, Op->getName()+".mask");
4304 InsertNewInstBefore(Mask, I);
4305
4306 // Figure out what flavor of shift we should use...
Chris Lattnere8d56c52006-01-07 01:32:28 +00004307 if (ShiftAmt1 == ShiftAmt2) {
Chris Lattnerad0124c2006-01-06 07:52:12 +00004308 return ReplaceInstUsesWith(I, Mask); // (A << c) >> c === A & c2
Chris Lattnere8d56c52006-01-07 01:32:28 +00004309 } else if (ShiftAmt1 < ShiftAmt2) {
Chris Lattnerad0124c2006-01-06 07:52:12 +00004310 return new ShiftInst(I.getOpcode(), Mask,
4311 ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1));
Chris Lattnere8d56c52006-01-07 01:32:28 +00004312 } else if (isShiftOfUnsignedShift || isShiftOfLeftShift) {
4313 if (isShiftOfUnsignedShift && !isShiftOfLeftShift && isSignedShift) {
4314 // Make sure to emit an unsigned shift right, not a signed one.
4315 Mask = InsertNewInstBefore(new CastInst(Mask,
4316 Mask->getType()->getUnsignedVersion(),
4317 Op->getName()), I);
4318 Mask = new ShiftInst(Instruction::Shr, Mask,
Chris Lattnerad0124c2006-01-06 07:52:12 +00004319 ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
Chris Lattnere8d56c52006-01-07 01:32:28 +00004320 InsertNewInstBefore(Mask, I);
4321 return new CastInst(Mask, I.getType());
4322 } else {
4323 return new ShiftInst(ShiftOp->getOpcode(), Mask,
4324 ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
4325 }
4326 } else {
4327 // (X >>s C1) << C2 where C1 > C2 === (X >>s (C1-C2)) & mask
4328 Op = InsertNewInstBefore(new CastInst(Mask,
4329 I.getType()->getSignedVersion(),
4330 Mask->getName()), I);
4331 Instruction *Shift =
4332 new ShiftInst(ShiftOp->getOpcode(), Op,
4333 ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
4334 InsertNewInstBefore(Shift, I);
4335
4336 C = ConstantIntegral::getAllOnesValue(Shift->getType());
4337 C = ConstantExpr::getShl(C, Op1);
4338 Mask = BinaryOperator::createAnd(Shift, C, Op->getName()+".mask");
4339 InsertNewInstBefore(Mask, I);
4340 return new CastInst(Mask, I.getType());
Chris Lattnerad0124c2006-01-06 07:52:12 +00004341 }
4342 } else {
Chris Lattnere8d56c52006-01-07 01:32:28 +00004343 // We can handle signed (X << C1) >>s C2 if it's a sign extend. In
Chris Lattnerad0124c2006-01-06 07:52:12 +00004344 // this case, C1 == C2 and C1 is 8, 16, or 32.
4345 if (ShiftAmt1 == ShiftAmt2) {
4346 const Type *SExtType = 0;
4347 switch (ShiftAmt1) {
4348 case 8 : SExtType = Type::SByteTy; break;
4349 case 16: SExtType = Type::ShortTy; break;
4350 case 32: SExtType = Type::IntTy; break;
4351 }
4352
4353 if (SExtType) {
4354 Instruction *NewTrunc = new CastInst(ShiftOp->getOperand(0),
4355 SExtType, "sext");
4356 InsertNewInstBefore(NewTrunc, I);
4357 return new CastInst(NewTrunc, I.getType());
Chris Lattnerdf17af12003-08-12 21:53:41 +00004358 }
Chris Lattner11021cb2005-09-18 05:12:10 +00004359 }
Chris Lattner6e7ba452005-01-01 16:22:27 +00004360 }
Chris Lattnerad0124c2006-01-06 07:52:12 +00004361 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00004362 return 0;
4363}
4364
Chris Lattnerbee7e762004-07-20 00:59:32 +00004365enum CastType {
4366 Noop = 0,
4367 Truncate = 1,
4368 Signext = 2,
4369 Zeroext = 3
4370};
4371
4372/// getCastType - In the future, we will split the cast instruction into these
4373/// various types. Until then, we have to do the analysis here.
4374static CastType getCastType(const Type *Src, const Type *Dest) {
4375 assert(Src->isIntegral() && Dest->isIntegral() &&
4376 "Only works on integral types!");
Chris Lattner484d3cf2005-04-24 06:59:08 +00004377 unsigned SrcSize = Src->getPrimitiveSizeInBits();
4378 unsigned DestSize = Dest->getPrimitiveSizeInBits();
Chris Lattnerbee7e762004-07-20 00:59:32 +00004379
4380 if (SrcSize == DestSize) return Noop;
4381 if (SrcSize > DestSize) return Truncate;
4382 if (Src->isSigned()) return Signext;
4383 return Zeroext;
4384}
4385
Chris Lattner3f5b8772002-05-06 16:14:14 +00004386
Chris Lattnera1be5662002-05-02 17:06:02 +00004387// isEliminableCastOfCast - Return true if it is valid to eliminate the CI
4388// instruction.
4389//
Chris Lattnerbc528ef2006-01-19 07:40:22 +00004390static bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy,
4391 const Type *DstTy, TargetData *TD) {
Chris Lattnera1be5662002-05-02 17:06:02 +00004392
Chris Lattner8fd217c2002-08-02 20:00:25 +00004393 // It is legal to eliminate the instruction if casting A->B->A if the sizes
Misha Brukmanfd939082005-04-21 23:48:37 +00004394 // are identical and the bits don't get reinterpreted (for example
Chris Lattner5eb91942004-07-21 19:50:44 +00004395 // int->float->int would not be allowed).
Misha Brukmanf117cc92003-05-20 18:45:36 +00004396 if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy))
Chris Lattner8fd217c2002-08-02 20:00:25 +00004397 return true;
Chris Lattnera1be5662002-05-02 17:06:02 +00004398
Chris Lattnere8a7e592004-07-21 04:27:24 +00004399 // If we are casting between pointer and integer types, treat pointers as
4400 // integers of the appropriate size for the code below.
4401 if (isa<PointerType>(SrcTy)) SrcTy = TD->getIntPtrType();
4402 if (isa<PointerType>(MidTy)) MidTy = TD->getIntPtrType();
4403 if (isa<PointerType>(DstTy)) DstTy = TD->getIntPtrType();
Chris Lattner59a20772004-07-20 05:21:00 +00004404
Chris Lattnera1be5662002-05-02 17:06:02 +00004405 // Allow free casting and conversion of sizes as long as the sign doesn't
4406 // change...
Chris Lattner0c4e8862002-09-03 01:08:28 +00004407 if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) {
Chris Lattnerbee7e762004-07-20 00:59:32 +00004408 CastType FirstCast = getCastType(SrcTy, MidTy);
4409 CastType SecondCast = getCastType(MidTy, DstTy);
Chris Lattner8fd217c2002-08-02 20:00:25 +00004410
Chris Lattnerbee7e762004-07-20 00:59:32 +00004411 // Capture the effect of these two casts. If the result is a legal cast,
4412 // the CastType is stored here, otherwise a special code is used.
4413 static const unsigned CastResult[] = {
4414 // First cast is noop
4415 0, 1, 2, 3,
4416 // First cast is a truncate
4417 1, 1, 4, 4, // trunc->extend is not safe to eliminate
4418 // First cast is a sign ext
Chris Lattner5eb91942004-07-21 19:50:44 +00004419 2, 5, 2, 4, // signext->zeroext never ok
Chris Lattnerbee7e762004-07-20 00:59:32 +00004420 // First cast is a zero ext
Chris Lattner5eb91942004-07-21 19:50:44 +00004421 3, 5, 3, 3,
Chris Lattnerbee7e762004-07-20 00:59:32 +00004422 };
4423
4424 unsigned Result = CastResult[FirstCast*4+SecondCast];
4425 switch (Result) {
4426 default: assert(0 && "Illegal table value!");
4427 case 0:
4428 case 1:
4429 case 2:
4430 case 3:
4431 // FIXME: in the future, when LLVM has explicit sign/zeroextends and
4432 // truncates, we could eliminate more casts.
4433 return (unsigned)getCastType(SrcTy, DstTy) == Result;
4434 case 4:
4435 return false; // Not possible to eliminate this here.
4436 case 5:
Chris Lattner5eb91942004-07-21 19:50:44 +00004437 // Sign or zero extend followed by truncate is always ok if the result
4438 // is a truncate or noop.
4439 CastType ResultCast = getCastType(SrcTy, DstTy);
4440 if (ResultCast == Noop || ResultCast == Truncate)
4441 return true;
Misha Brukmanfd939082005-04-21 23:48:37 +00004442 // Otherwise we are still growing the value, we are only safe if the
Chris Lattner5eb91942004-07-21 19:50:44 +00004443 // result will match the sign/zeroextendness of the result.
4444 return ResultCast == FirstCast;
Chris Lattner3ecce662002-08-15 16:15:25 +00004445 }
Chris Lattner8fd217c2002-08-02 20:00:25 +00004446 }
Chris Lattnerbc528ef2006-01-19 07:40:22 +00004447
4448 // If this is a cast from 'float -> double -> integer', cast from
4449 // 'float -> integer' directly, as the value isn't changed by the
4450 // float->double conversion.
4451 if (SrcTy->isFloatingPoint() && MidTy->isFloatingPoint() &&
4452 DstTy->isIntegral() &&
4453 SrcTy->getPrimitiveSize() < MidTy->getPrimitiveSize())
4454 return true;
4455
Chris Lattnera1be5662002-05-02 17:06:02 +00004456 return false;
4457}
4458
Chris Lattner59a20772004-07-20 05:21:00 +00004459static bool ValueRequiresCast(const Value *V, const Type *Ty, TargetData *TD) {
Chris Lattner24c8e382003-07-24 17:35:25 +00004460 if (V->getType() == Ty || isa<Constant>(V)) return false;
4461 if (const CastInst *CI = dyn_cast<CastInst>(V))
Chris Lattner59a20772004-07-20 05:21:00 +00004462 if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty,
4463 TD))
Chris Lattner24c8e382003-07-24 17:35:25 +00004464 return false;
4465 return true;
4466}
4467
4468/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
4469/// InsertBefore instruction. This is specialized a bit to avoid inserting
4470/// casts that are known to not do anything...
4471///
4472Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy,
4473 Instruction *InsertBefore) {
4474 if (V->getType() == DestTy) return V;
4475 if (Constant *C = dyn_cast<Constant>(V))
4476 return ConstantExpr::getCast(C, DestTy);
4477
4478 CastInst *CI = new CastInst(V, DestTy, V->getName());
4479 InsertNewInstBefore(CI, *InsertBefore);
4480 return CI;
4481}
Chris Lattnera1be5662002-05-02 17:06:02 +00004482
Chris Lattnercfd65102005-10-29 04:36:15 +00004483/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
4484/// expression. If so, decompose it, returning some value X, such that Val is
4485/// X*Scale+Offset.
4486///
4487static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
4488 unsigned &Offset) {
4489 assert(Val->getType() == Type::UIntTy && "Unexpected allocation size type!");
4490 if (ConstantUInt *CI = dyn_cast<ConstantUInt>(Val)) {
4491 Offset = CI->getValue();
4492 Scale = 1;
4493 return ConstantUInt::get(Type::UIntTy, 0);
4494 } else if (Instruction *I = dyn_cast<Instruction>(Val)) {
4495 if (I->getNumOperands() == 2) {
4496 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I->getOperand(1))) {
4497 if (I->getOpcode() == Instruction::Shl) {
4498 // This is a value scaled by '1 << the shift amt'.
4499 Scale = 1U << CUI->getValue();
4500 Offset = 0;
4501 return I->getOperand(0);
4502 } else if (I->getOpcode() == Instruction::Mul) {
4503 // This value is scaled by 'CUI'.
4504 Scale = CUI->getValue();
4505 Offset = 0;
4506 return I->getOperand(0);
4507 } else if (I->getOpcode() == Instruction::Add) {
4508 // We have X+C. Check to see if we really have (X*C2)+C1, where C1 is
4509 // divisible by C2.
4510 unsigned SubScale;
4511 Value *SubVal = DecomposeSimpleLinearExpr(I->getOperand(0), SubScale,
4512 Offset);
4513 Offset += CUI->getValue();
4514 if (SubScale > 1 && (Offset % SubScale == 0)) {
4515 Scale = SubScale;
4516 return SubVal;
4517 }
4518 }
4519 }
4520 }
4521 }
4522
4523 // Otherwise, we can't look past this.
4524 Scale = 1;
4525 Offset = 0;
4526 return Val;
4527}
4528
4529
Chris Lattnerb3f83972005-10-24 06:03:58 +00004530/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
4531/// try to eliminate the cast by moving the type information into the alloc.
4532Instruction *InstCombiner::PromoteCastOfAllocation(CastInst &CI,
4533 AllocationInst &AI) {
4534 const PointerType *PTy = dyn_cast<PointerType>(CI.getType());
Chris Lattner0ddac2a2005-10-27 05:53:56 +00004535 if (!PTy) return 0; // Not casting the allocation to a pointer type.
Chris Lattnerb3f83972005-10-24 06:03:58 +00004536
Chris Lattnerb53c2382005-10-24 06:22:12 +00004537 // Remove any uses of AI that are dead.
4538 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
4539 std::vector<Instruction*> DeadUsers;
4540 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
4541 Instruction *User = cast<Instruction>(*UI++);
4542 if (isInstructionTriviallyDead(User)) {
4543 while (UI != E && *UI == User)
4544 ++UI; // If this instruction uses AI more than once, don't break UI.
4545
4546 // Add operands to the worklist.
4547 AddUsesToWorkList(*User);
4548 ++NumDeadInst;
4549 DEBUG(std::cerr << "IC: DCE: " << *User);
4550
4551 User->eraseFromParent();
4552 removeFromWorkList(User);
4553 }
4554 }
4555
Chris Lattnerb3f83972005-10-24 06:03:58 +00004556 // Get the type really allocated and the type casted to.
4557 const Type *AllocElTy = AI.getAllocatedType();
4558 const Type *CastElTy = PTy->getElementType();
4559 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
Chris Lattner18e78bb2005-10-24 06:26:18 +00004560
4561 unsigned AllocElTyAlign = TD->getTypeSize(AllocElTy);
4562 unsigned CastElTyAlign = TD->getTypeSize(CastElTy);
4563 if (CastElTyAlign < AllocElTyAlign) return 0;
4564
Chris Lattner39387a52005-10-24 06:35:18 +00004565 // If the allocation has multiple uses, only promote it if we are strictly
4566 // increasing the alignment of the resultant allocation. If we keep it the
4567 // same, we open the door to infinite loops of various kinds.
4568 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
4569
Chris Lattnerb3f83972005-10-24 06:03:58 +00004570 uint64_t AllocElTySize = TD->getTypeSize(AllocElTy);
4571 uint64_t CastElTySize = TD->getTypeSize(CastElTy);
Chris Lattner0ddac2a2005-10-27 05:53:56 +00004572 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
Chris Lattner18e78bb2005-10-24 06:26:18 +00004573
Chris Lattner455fcc82005-10-29 03:19:53 +00004574 // See if we can satisfy the modulus by pulling a scale out of the array
4575 // size argument.
Chris Lattnercfd65102005-10-29 04:36:15 +00004576 unsigned ArraySizeScale, ArrayOffset;
4577 Value *NumElements = // See if the array size is a decomposable linear expr.
4578 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
4579
Chris Lattner455fcc82005-10-29 03:19:53 +00004580 // If we can now satisfy the modulus, by using a non-1 scale, we really can
4581 // do the xform.
Chris Lattnercfd65102005-10-29 04:36:15 +00004582 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
4583 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
Chris Lattner8142b0a2005-10-27 06:12:00 +00004584
Chris Lattner455fcc82005-10-29 03:19:53 +00004585 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
4586 Value *Amt = 0;
4587 if (Scale == 1) {
4588 Amt = NumElements;
4589 } else {
4590 Amt = ConstantUInt::get(Type::UIntTy, Scale);
4591 if (ConstantUInt *CI = dyn_cast<ConstantUInt>(NumElements))
4592 Amt = ConstantExpr::getMul(CI, cast<ConstantUInt>(Amt));
4593 else if (Scale != 1) {
4594 Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp");
4595 Amt = InsertNewInstBefore(Tmp, AI);
Chris Lattner8142b0a2005-10-27 06:12:00 +00004596 }
Chris Lattner0ddac2a2005-10-27 05:53:56 +00004597 }
4598
Chris Lattnercfd65102005-10-29 04:36:15 +00004599 if (unsigned Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
4600 Value *Off = ConstantUInt::get(Type::UIntTy, Offset);
4601 Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp");
4602 Amt = InsertNewInstBefore(Tmp, AI);
4603 }
4604
Chris Lattnerb3f83972005-10-24 06:03:58 +00004605 std::string Name = AI.getName(); AI.setName("");
4606 AllocationInst *New;
4607 if (isa<MallocInst>(AI))
Nate Begeman14b05292005-11-05 09:21:28 +00004608 New = new MallocInst(CastElTy, Amt, AI.getAlignment(), Name);
Chris Lattnerb3f83972005-10-24 06:03:58 +00004609 else
Nate Begeman14b05292005-11-05 09:21:28 +00004610 New = new AllocaInst(CastElTy, Amt, AI.getAlignment(), Name);
Chris Lattnerb3f83972005-10-24 06:03:58 +00004611 InsertNewInstBefore(New, AI);
Chris Lattner39387a52005-10-24 06:35:18 +00004612
4613 // If the allocation has multiple uses, insert a cast and change all things
4614 // that used it to use the new cast. This will also hack on CI, but it will
4615 // die soon.
4616 if (!AI.hasOneUse()) {
4617 AddUsesToWorkList(AI);
4618 CastInst *NewCast = new CastInst(New, AI.getType(), "tmpcast");
4619 InsertNewInstBefore(NewCast, AI);
4620 AI.replaceAllUsesWith(NewCast);
4621 }
Chris Lattnerb3f83972005-10-24 06:03:58 +00004622 return ReplaceInstUsesWith(CI, New);
4623}
4624
4625
Chris Lattnera1be5662002-05-02 17:06:02 +00004626// CastInst simplification
Chris Lattnerdd841ae2002-04-18 17:39:14 +00004627//
Chris Lattner7e708292002-06-25 16:13:24 +00004628Instruction *InstCombiner::visitCastInst(CastInst &CI) {
Chris Lattner79d35b32003-06-23 21:59:52 +00004629 Value *Src = CI.getOperand(0);
4630
Chris Lattnera1be5662002-05-02 17:06:02 +00004631 // If the user is casting a value to the same type, eliminate this cast
4632 // instruction...
Chris Lattner79d35b32003-06-23 21:59:52 +00004633 if (CI.getType() == Src->getType())
4634 return ReplaceInstUsesWith(CI, Src);
Chris Lattnera1be5662002-05-02 17:06:02 +00004635
Chris Lattnere87597f2004-10-16 18:11:37 +00004636 if (isa<UndefValue>(Src)) // cast undef -> undef
4637 return ReplaceInstUsesWith(CI, UndefValue::get(CI.getType()));
4638
Chris Lattnera1be5662002-05-02 17:06:02 +00004639 // If casting the result of another cast instruction, try to eliminate this
4640 // one!
4641 //
Chris Lattner6e7ba452005-01-01 16:22:27 +00004642 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
4643 Value *A = CSrc->getOperand(0);
4644 if (isEliminableCastOfCast(A->getType(), CSrc->getType(),
4645 CI.getType(), TD)) {
Chris Lattnera1be5662002-05-02 17:06:02 +00004646 // This instruction now refers directly to the cast's src operand. This
4647 // has a good chance of making CSrc dead.
Chris Lattner7e708292002-06-25 16:13:24 +00004648 CI.setOperand(0, CSrc->getOperand(0));
4649 return &CI;
Chris Lattnera1be5662002-05-02 17:06:02 +00004650 }
4651
Chris Lattner8fd217c2002-08-02 20:00:25 +00004652 // If this is an A->B->A cast, and we are dealing with integral types, try
4653 // to convert this into a logical 'and' instruction.
4654 //
Misha Brukmanfd939082005-04-21 23:48:37 +00004655 if (A->getType()->isInteger() &&
Chris Lattner0c4e8862002-09-03 01:08:28 +00004656 CI.getType()->isInteger() && CSrc->getType()->isInteger() &&
Chris Lattner6e7ba452005-01-01 16:22:27 +00004657 CSrc->getType()->isUnsigned() && // B->A cast must zero extend
Chris Lattner484d3cf2005-04-24 06:59:08 +00004658 CSrc->getType()->getPrimitiveSizeInBits() <
4659 CI.getType()->getPrimitiveSizeInBits()&&
4660 A->getType()->getPrimitiveSizeInBits() ==
4661 CI.getType()->getPrimitiveSizeInBits()) {
Chris Lattner8fd217c2002-08-02 20:00:25 +00004662 assert(CSrc->getType() != Type::ULongTy &&
4663 "Cannot have type bigger than ulong!");
Chris Lattner1a074fc2006-02-07 07:00:41 +00004664 uint64_t AndValue = CSrc->getType()->getIntegralTypeMask();
Chris Lattner6e7ba452005-01-01 16:22:27 +00004665 Constant *AndOp = ConstantUInt::get(A->getType()->getUnsignedVersion(),
4666 AndValue);
4667 AndOp = ConstantExpr::getCast(AndOp, A->getType());
4668 Instruction *And = BinaryOperator::createAnd(CSrc->getOperand(0), AndOp);
4669 if (And->getType() != CI.getType()) {
4670 And->setName(CSrc->getName()+".mask");
4671 InsertNewInstBefore(And, CI);
4672 And = new CastInst(And, CI.getType());
4673 }
4674 return And;
Chris Lattner8fd217c2002-08-02 20:00:25 +00004675 }
4676 }
Chris Lattner6dce1a72006-02-07 06:56:34 +00004677
Chris Lattnera710ddc2004-05-25 04:29:21 +00004678 // If this is a cast to bool, turn it into the appropriate setne instruction.
4679 if (CI.getType() == Type::BoolTy)
Chris Lattner48595f12004-06-10 02:07:29 +00004680 return BinaryOperator::createSetNE(CI.getOperand(0),
Chris Lattnera710ddc2004-05-25 04:29:21 +00004681 Constant::getNullValue(CI.getOperand(0)->getType()));
4682
Chris Lattner6dce1a72006-02-07 06:56:34 +00004683 // See if we can simplify any instructions used by the LHS whose sole
4684 // purpose is to compute bits we don't care about.
Chris Lattner255d8912006-02-11 09:31:47 +00004685 if (CI.getType()->isInteger() && CI.getOperand(0)->getType()->isIntegral()) {
4686 uint64_t KnownZero, KnownOne;
4687 if (SimplifyDemandedBits(&CI, CI.getType()->getIntegralTypeMask(),
4688 KnownZero, KnownOne))
4689 return &CI;
4690 }
Chris Lattner6dce1a72006-02-07 06:56:34 +00004691
Chris Lattner797249b2003-06-21 23:12:02 +00004692 // If casting the result of a getelementptr instruction with no offset, turn
4693 // this into a cast of the original pointer!
4694 //
Chris Lattner79d35b32003-06-23 21:59:52 +00004695 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
Chris Lattner797249b2003-06-21 23:12:02 +00004696 bool AllZeroOperands = true;
4697 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
4698 if (!isa<Constant>(GEP->getOperand(i)) ||
4699 !cast<Constant>(GEP->getOperand(i))->isNullValue()) {
4700 AllZeroOperands = false;
4701 break;
4702 }
4703 if (AllZeroOperands) {
4704 CI.setOperand(0, GEP->getOperand(0));
4705 return &CI;
4706 }
4707 }
4708
Chris Lattnerbc61e662003-11-02 05:57:39 +00004709 // If we are casting a malloc or alloca to a pointer to a type of the same
4710 // size, rewrite the allocation instruction to allocate the "right" type.
4711 //
4712 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
Chris Lattnerb3f83972005-10-24 06:03:58 +00004713 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
4714 return V;
Chris Lattnerbc61e662003-11-02 05:57:39 +00004715
Chris Lattner6e7ba452005-01-01 16:22:27 +00004716 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
4717 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
4718 return NV;
Chris Lattner4e998b22004-09-29 05:07:12 +00004719 if (isa<PHINode>(Src))
4720 if (Instruction *NV = FoldOpIntoPhi(CI))
4721 return NV;
4722
Chris Lattner24c8e382003-07-24 17:35:25 +00004723 // If the source value is an instruction with only this use, we can attempt to
4724 // propagate the cast into the instruction. Also, only handle integral types
4725 // for now.
4726 if (Instruction *SrcI = dyn_cast<Instruction>(Src))
Chris Lattnerfd059242003-10-15 16:48:29 +00004727 if (SrcI->hasOneUse() && Src->getType()->isIntegral() &&
Chris Lattner24c8e382003-07-24 17:35:25 +00004728 CI.getType()->isInteger()) { // Don't mess with casts to bool here
4729 const Type *DestTy = CI.getType();
Chris Lattner484d3cf2005-04-24 06:59:08 +00004730 unsigned SrcBitSize = Src->getType()->getPrimitiveSizeInBits();
4731 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
Chris Lattner24c8e382003-07-24 17:35:25 +00004732
4733 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
4734 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
4735
4736 switch (SrcI->getOpcode()) {
4737 case Instruction::Add:
4738 case Instruction::Mul:
4739 case Instruction::And:
4740 case Instruction::Or:
4741 case Instruction::Xor:
4742 // If we are discarding information, or just changing the sign, rewrite.
4743 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
4744 // Don't insert two casts if they cannot be eliminated. We allow two
4745 // casts to be inserted if the sizes are the same. This could only be
4746 // converting signedness, which is a noop.
Chris Lattner59a20772004-07-20 05:21:00 +00004747 if (DestBitSize == SrcBitSize || !ValueRequiresCast(Op1, DestTy,TD) ||
4748 !ValueRequiresCast(Op0, DestTy, TD)) {
Chris Lattner24c8e382003-07-24 17:35:25 +00004749 Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
4750 Value *Op1c = InsertOperandCastBefore(Op1, DestTy, SrcI);
4751 return BinaryOperator::create(cast<BinaryOperator>(SrcI)
4752 ->getOpcode(), Op0c, Op1c);
4753 }
4754 }
Chris Lattner7aed7ac2005-05-06 02:07:39 +00004755
4756 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
4757 if (SrcBitSize == 1 && SrcI->getOpcode() == Instruction::Xor &&
4758 Op1 == ConstantBool::True &&
4759 (!Op0->hasOneUse() || !isa<SetCondInst>(Op0))) {
4760 Value *New = InsertOperandCastBefore(Op0, DestTy, &CI);
4761 return BinaryOperator::createXor(New,
4762 ConstantInt::get(CI.getType(), 1));
4763 }
Chris Lattner24c8e382003-07-24 17:35:25 +00004764 break;
4765 case Instruction::Shl:
4766 // Allow changing the sign of the source operand. Do not allow changing
4767 // the size of the shift, UNLESS the shift amount is a constant. We
4768 // mush not change variable sized shifts to a smaller size, because it
4769 // is undefined to shift more bits out than exist in the value.
4770 if (DestBitSize == SrcBitSize ||
4771 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
4772 Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
4773 return new ShiftInst(Instruction::Shl, Op0c, Op1);
4774 }
4775 break;
Chris Lattnerd7115b02005-05-06 04:18:52 +00004776 case Instruction::Shr:
4777 // If this is a signed shr, and if all bits shifted in are about to be
4778 // truncated off, turn it into an unsigned shr to allow greater
4779 // simplifications.
4780 if (DestBitSize < SrcBitSize && Src->getType()->isSigned() &&
4781 isa<ConstantInt>(Op1)) {
4782 unsigned ShiftAmt = cast<ConstantUInt>(Op1)->getValue();
4783 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
4784 // Convert to unsigned.
4785 Value *N1 = InsertOperandCastBefore(Op0,
4786 Op0->getType()->getUnsignedVersion(), &CI);
4787 // Insert the new shift, which is now unsigned.
4788 N1 = InsertNewInstBefore(new ShiftInst(Instruction::Shr, N1,
4789 Op1, Src->getName()), CI);
4790 return new CastInst(N1, CI.getType());
4791 }
4792 }
4793 break;
4794
Chris Lattner3e88a4d2006-02-27 02:38:23 +00004795 case Instruction::SetEQ:
Chris Lattner693787a2005-05-04 19:10:26 +00004796 case Instruction::SetNE:
Chris Lattner3e88a4d2006-02-27 02:38:23 +00004797 // We if we are just checking for a seteq of a single bit and casting it
4798 // to an integer. If so, shift the bit to the appropriate place then
4799 // cast to integer to avoid the comparison.
Chris Lattner693787a2005-05-04 19:10:26 +00004800 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3e88a4d2006-02-27 02:38:23 +00004801 uint64_t Op1CV = Op1C->getZExtValue();
4802 // cast (X == 0) to int --> X^1 iff X has only the low bit set.
4803 // cast (X == 0) to int --> (X>>1)^1 iff X has only the 2nd bit set.
4804 // cast (X == 1) to int --> X iff X has only the low bit set.
4805 // cast (X == 2) to int --> X>>1 iff X has only the 2nd bit set.
4806 // cast (X != 0) to int --> X iff X has only the low bit set.
4807 // cast (X != 0) to int --> X>>1 iff X has only the 2nd bit set.
4808 // cast (X != 1) to int --> X^1 iff X has only the low bit set.
4809 // cast (X != 2) to int --> (X>>1)^1 iff X has only the 2nd bit set.
4810 if (Op1CV == 0 || isPowerOf2_64(Op1CV)) {
4811 // If Op1C some other power of two, convert:
4812 uint64_t KnownZero, KnownOne;
4813 uint64_t TypeMask = Op1->getType()->getIntegralTypeMask();
4814 ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne);
4815
4816 if (isPowerOf2_64(KnownZero^TypeMask)) { // Exactly one possible 1?
4817 bool isSetNE = SrcI->getOpcode() == Instruction::SetNE;
4818 if (Op1CV && (Op1CV != (KnownZero^TypeMask))) {
4819 // (X&4) == 2 --> false
4820 // (X&4) != 2 --> true
Chris Lattner06e1e252006-02-28 19:47:20 +00004821 Constant *Res = ConstantBool::get(isSetNE);
4822 Res = ConstantExpr::getCast(Res, CI.getType());
4823 return ReplaceInstUsesWith(CI, Res);
Chris Lattner3e88a4d2006-02-27 02:38:23 +00004824 }
4825
4826 unsigned ShiftAmt = Log2_64(KnownZero^TypeMask);
4827 Value *In = Op0;
4828 if (ShiftAmt) {
Chris Lattnerd1523802005-05-06 01:53:19 +00004829 // Perform an unsigned shr by shiftamt. Convert input to
4830 // unsigned if it is signed.
Chris Lattnerd1523802005-05-06 01:53:19 +00004831 if (In->getType()->isSigned())
4832 In = InsertNewInstBefore(new CastInst(In,
4833 In->getType()->getUnsignedVersion(), In->getName()),CI);
4834 // Insert the shift to put the result in the low bit.
4835 In = InsertNewInstBefore(new ShiftInst(Instruction::Shr, In,
Chris Lattner3e88a4d2006-02-27 02:38:23 +00004836 ConstantInt::get(Type::UByteTy, ShiftAmt),
4837 In->getName()+".lobit"), CI);
Chris Lattnerd1523802005-05-06 01:53:19 +00004838 }
Chris Lattner3e88a4d2006-02-27 02:38:23 +00004839
4840 if ((Op1CV != 0) == isSetNE) { // Toggle the low bit.
4841 Constant *One = ConstantInt::get(In->getType(), 1);
4842 In = BinaryOperator::createXor(In, One, "tmp");
4843 InsertNewInstBefore(cast<Instruction>(In), CI);
Chris Lattnerd1523802005-05-06 01:53:19 +00004844 }
Chris Lattner3e88a4d2006-02-27 02:38:23 +00004845
4846 if (CI.getType() == In->getType())
4847 return ReplaceInstUsesWith(CI, In);
4848 else
4849 return new CastInst(In, CI.getType());
Chris Lattnerd1523802005-05-06 01:53:19 +00004850 }
Chris Lattner693787a2005-05-04 19:10:26 +00004851 }
4852 }
4853 break;
Chris Lattner24c8e382003-07-24 17:35:25 +00004854 }
4855 }
Chris Lattner0ddac2a2005-10-27 05:53:56 +00004856
Chris Lattnerdd841ae2002-04-18 17:39:14 +00004857 return 0;
Chris Lattner8a2a3112001-12-14 16:52:21 +00004858}
4859
Chris Lattnere576b912004-04-09 23:46:01 +00004860/// GetSelectFoldableOperands - We want to turn code that looks like this:
4861/// %C = or %A, %B
4862/// %D = select %cond, %C, %A
4863/// into:
4864/// %C = select %cond, %B, 0
4865/// %D = or %A, %C
4866///
4867/// Assuming that the specified instruction is an operand to the select, return
4868/// a bitmask indicating which operands of this instruction are foldable if they
4869/// equal the other incoming value of the select.
4870///
4871static unsigned GetSelectFoldableOperands(Instruction *I) {
4872 switch (I->getOpcode()) {
4873 case Instruction::Add:
4874 case Instruction::Mul:
4875 case Instruction::And:
4876 case Instruction::Or:
4877 case Instruction::Xor:
4878 return 3; // Can fold through either operand.
4879 case Instruction::Sub: // Can only fold on the amount subtracted.
4880 case Instruction::Shl: // Can only fold on the shift amount.
4881 case Instruction::Shr:
Misha Brukmanfd939082005-04-21 23:48:37 +00004882 return 1;
Chris Lattnere576b912004-04-09 23:46:01 +00004883 default:
4884 return 0; // Cannot fold
4885 }
4886}
4887
4888/// GetSelectFoldableConstant - For the same transformation as the previous
4889/// function, return the identity constant that goes into the select.
4890static Constant *GetSelectFoldableConstant(Instruction *I) {
4891 switch (I->getOpcode()) {
4892 default: assert(0 && "This cannot happen!"); abort();
4893 case Instruction::Add:
4894 case Instruction::Sub:
4895 case Instruction::Or:
4896 case Instruction::Xor:
4897 return Constant::getNullValue(I->getType());
4898 case Instruction::Shl:
4899 case Instruction::Shr:
4900 return Constant::getNullValue(Type::UByteTy);
4901 case Instruction::And:
4902 return ConstantInt::getAllOnesValue(I->getType());
4903 case Instruction::Mul:
4904 return ConstantInt::get(I->getType(), 1);
4905 }
4906}
4907
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00004908/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
4909/// have the same opcode and only one use each. Try to simplify this.
4910Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
4911 Instruction *FI) {
4912 if (TI->getNumOperands() == 1) {
4913 // If this is a non-volatile load or a cast from the same type,
4914 // merge.
4915 if (TI->getOpcode() == Instruction::Cast) {
4916 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
4917 return 0;
4918 } else {
4919 return 0; // unknown unary op.
4920 }
Misha Brukmanfd939082005-04-21 23:48:37 +00004921
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00004922 // Fold this by inserting a select from the input values.
4923 SelectInst *NewSI = new SelectInst(SI.getCondition(), TI->getOperand(0),
4924 FI->getOperand(0), SI.getName()+".v");
4925 InsertNewInstBefore(NewSI, SI);
4926 return new CastInst(NewSI, TI->getType());
4927 }
4928
4929 // Only handle binary operators here.
4930 if (!isa<ShiftInst>(TI) && !isa<BinaryOperator>(TI))
4931 return 0;
4932
4933 // Figure out if the operations have any operands in common.
4934 Value *MatchOp, *OtherOpT, *OtherOpF;
4935 bool MatchIsOpZero;
4936 if (TI->getOperand(0) == FI->getOperand(0)) {
4937 MatchOp = TI->getOperand(0);
4938 OtherOpT = TI->getOperand(1);
4939 OtherOpF = FI->getOperand(1);
4940 MatchIsOpZero = true;
4941 } else if (TI->getOperand(1) == FI->getOperand(1)) {
4942 MatchOp = TI->getOperand(1);
4943 OtherOpT = TI->getOperand(0);
4944 OtherOpF = FI->getOperand(0);
4945 MatchIsOpZero = false;
4946 } else if (!TI->isCommutative()) {
4947 return 0;
4948 } else if (TI->getOperand(0) == FI->getOperand(1)) {
4949 MatchOp = TI->getOperand(0);
4950 OtherOpT = TI->getOperand(1);
4951 OtherOpF = FI->getOperand(0);
4952 MatchIsOpZero = true;
4953 } else if (TI->getOperand(1) == FI->getOperand(0)) {
4954 MatchOp = TI->getOperand(1);
4955 OtherOpT = TI->getOperand(0);
4956 OtherOpF = FI->getOperand(1);
4957 MatchIsOpZero = true;
4958 } else {
4959 return 0;
4960 }
4961
4962 // If we reach here, they do have operations in common.
4963 SelectInst *NewSI = new SelectInst(SI.getCondition(), OtherOpT,
4964 OtherOpF, SI.getName()+".v");
4965 InsertNewInstBefore(NewSI, SI);
4966
4967 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
4968 if (MatchIsOpZero)
4969 return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI);
4970 else
4971 return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp);
4972 } else {
4973 if (MatchIsOpZero)
4974 return new ShiftInst(cast<ShiftInst>(TI)->getOpcode(), MatchOp, NewSI);
4975 else
4976 return new ShiftInst(cast<ShiftInst>(TI)->getOpcode(), NewSI, MatchOp);
4977 }
4978}
4979
Chris Lattner3d69f462004-03-12 05:52:32 +00004980Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Chris Lattnerc32b30a2004-03-30 19:37:13 +00004981 Value *CondVal = SI.getCondition();
4982 Value *TrueVal = SI.getTrueValue();
4983 Value *FalseVal = SI.getFalseValue();
4984
4985 // select true, X, Y -> X
4986 // select false, X, Y -> Y
4987 if (ConstantBool *C = dyn_cast<ConstantBool>(CondVal))
Chris Lattner3d69f462004-03-12 05:52:32 +00004988 if (C == ConstantBool::True)
Chris Lattnerc32b30a2004-03-30 19:37:13 +00004989 return ReplaceInstUsesWith(SI, TrueVal);
Chris Lattner3d69f462004-03-12 05:52:32 +00004990 else {
4991 assert(C == ConstantBool::False);
Chris Lattnerc32b30a2004-03-30 19:37:13 +00004992 return ReplaceInstUsesWith(SI, FalseVal);
Chris Lattner3d69f462004-03-12 05:52:32 +00004993 }
Chris Lattnerc32b30a2004-03-30 19:37:13 +00004994
4995 // select C, X, X -> X
4996 if (TrueVal == FalseVal)
4997 return ReplaceInstUsesWith(SI, TrueVal);
4998
Chris Lattnere87597f2004-10-16 18:11:37 +00004999 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
5000 return ReplaceInstUsesWith(SI, FalseVal);
5001 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
5002 return ReplaceInstUsesWith(SI, TrueVal);
5003 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
5004 if (isa<Constant>(TrueVal))
5005 return ReplaceInstUsesWith(SI, TrueVal);
5006 else
5007 return ReplaceInstUsesWith(SI, FalseVal);
5008 }
5009
Chris Lattner0c199a72004-04-08 04:43:23 +00005010 if (SI.getType() == Type::BoolTy)
5011 if (ConstantBool *C = dyn_cast<ConstantBool>(TrueVal)) {
5012 if (C == ConstantBool::True) {
5013 // Change: A = select B, true, C --> A = or B, C
Chris Lattner48595f12004-06-10 02:07:29 +00005014 return BinaryOperator::createOr(CondVal, FalseVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00005015 } else {
5016 // Change: A = select B, false, C --> A = and !B, C
5017 Value *NotCond =
5018 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
5019 "not."+CondVal->getName()), SI);
Chris Lattner48595f12004-06-10 02:07:29 +00005020 return BinaryOperator::createAnd(NotCond, FalseVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00005021 }
5022 } else if (ConstantBool *C = dyn_cast<ConstantBool>(FalseVal)) {
5023 if (C == ConstantBool::False) {
5024 // Change: A = select B, C, false --> A = and B, C
Chris Lattner48595f12004-06-10 02:07:29 +00005025 return BinaryOperator::createAnd(CondVal, TrueVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00005026 } else {
5027 // Change: A = select B, C, true --> A = or !B, C
5028 Value *NotCond =
5029 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
5030 "not."+CondVal->getName()), SI);
Chris Lattner48595f12004-06-10 02:07:29 +00005031 return BinaryOperator::createOr(NotCond, TrueVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00005032 }
5033 }
5034
Chris Lattner2eefe512004-04-09 19:05:30 +00005035 // Selecting between two integer constants?
5036 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
5037 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
5038 // select C, 1, 0 -> cast C to int
5039 if (FalseValC->isNullValue() && TrueValC->getRawValue() == 1) {
5040 return new CastInst(CondVal, SI.getType());
5041 } else if (TrueValC->isNullValue() && FalseValC->getRawValue() == 1) {
5042 // select C, 0, 1 -> cast !C to int
5043 Value *NotCond =
5044 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
Chris Lattner82e14fe2004-04-09 18:19:44 +00005045 "not."+CondVal->getName()), SI);
Chris Lattner2eefe512004-04-09 19:05:30 +00005046 return new CastInst(NotCond, SI.getType());
Chris Lattner82e14fe2004-04-09 18:19:44 +00005047 }
Chris Lattner457dd822004-06-09 07:59:58 +00005048
5049 // If one of the constants is zero (we know they can't both be) and we
5050 // have a setcc instruction with zero, and we have an 'and' with the
5051 // non-constant value, eliminate this whole mess. This corresponds to
5052 // cases like this: ((X & 27) ? 27 : 0)
5053 if (TrueValC->isNullValue() || FalseValC->isNullValue())
5054 if (Instruction *IC = dyn_cast<Instruction>(SI.getCondition()))
5055 if ((IC->getOpcode() == Instruction::SetEQ ||
5056 IC->getOpcode() == Instruction::SetNE) &&
5057 isa<ConstantInt>(IC->getOperand(1)) &&
5058 cast<Constant>(IC->getOperand(1))->isNullValue())
5059 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
5060 if (ICA->getOpcode() == Instruction::And &&
Misha Brukmanfd939082005-04-21 23:48:37 +00005061 isa<ConstantInt>(ICA->getOperand(1)) &&
5062 (ICA->getOperand(1) == TrueValC ||
5063 ICA->getOperand(1) == FalseValC) &&
Chris Lattner457dd822004-06-09 07:59:58 +00005064 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
5065 // Okay, now we know that everything is set up, we just don't
5066 // know whether we have a setne or seteq and whether the true or
5067 // false val is the zero.
5068 bool ShouldNotVal = !TrueValC->isNullValue();
5069 ShouldNotVal ^= IC->getOpcode() == Instruction::SetNE;
5070 Value *V = ICA;
5071 if (ShouldNotVal)
5072 V = InsertNewInstBefore(BinaryOperator::create(
5073 Instruction::Xor, V, ICA->getOperand(1)), SI);
5074 return ReplaceInstUsesWith(SI, V);
5075 }
Chris Lattnerc32b30a2004-03-30 19:37:13 +00005076 }
Chris Lattnerd76956d2004-04-10 22:21:27 +00005077
5078 // See if we are selecting two values based on a comparison of the two values.
5079 if (SetCondInst *SCI = dyn_cast<SetCondInst>(CondVal)) {
5080 if (SCI->getOperand(0) == TrueVal && SCI->getOperand(1) == FalseVal) {
5081 // Transform (X == Y) ? X : Y -> Y
5082 if (SCI->getOpcode() == Instruction::SetEQ)
5083 return ReplaceInstUsesWith(SI, FalseVal);
5084 // Transform (X != Y) ? X : Y -> X
5085 if (SCI->getOpcode() == Instruction::SetNE)
5086 return ReplaceInstUsesWith(SI, TrueVal);
5087 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
5088
5089 } else if (SCI->getOperand(0) == FalseVal && SCI->getOperand(1) == TrueVal){
5090 // Transform (X == Y) ? Y : X -> X
5091 if (SCI->getOpcode() == Instruction::SetEQ)
Chris Lattnerfbede522004-04-11 01:39:19 +00005092 return ReplaceInstUsesWith(SI, FalseVal);
Chris Lattnerd76956d2004-04-10 22:21:27 +00005093 // Transform (X != Y) ? Y : X -> Y
5094 if (SCI->getOpcode() == Instruction::SetNE)
Chris Lattnerfbede522004-04-11 01:39:19 +00005095 return ReplaceInstUsesWith(SI, TrueVal);
Chris Lattnerd76956d2004-04-10 22:21:27 +00005096 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
5097 }
5098 }
Misha Brukmanfd939082005-04-21 23:48:37 +00005099
Chris Lattner87875da2005-01-13 22:52:24 +00005100 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
5101 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
5102 if (TI->hasOneUse() && FI->hasOneUse()) {
5103 bool isInverse = false;
5104 Instruction *AddOp = 0, *SubOp = 0;
5105
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00005106 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
5107 if (TI->getOpcode() == FI->getOpcode())
5108 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
5109 return IV;
5110
5111 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
5112 // even legal for FP.
Chris Lattner87875da2005-01-13 22:52:24 +00005113 if (TI->getOpcode() == Instruction::Sub &&
5114 FI->getOpcode() == Instruction::Add) {
5115 AddOp = FI; SubOp = TI;
5116 } else if (FI->getOpcode() == Instruction::Sub &&
5117 TI->getOpcode() == Instruction::Add) {
5118 AddOp = TI; SubOp = FI;
5119 }
5120
5121 if (AddOp) {
5122 Value *OtherAddOp = 0;
5123 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
5124 OtherAddOp = AddOp->getOperand(1);
5125 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
5126 OtherAddOp = AddOp->getOperand(0);
5127 }
5128
5129 if (OtherAddOp) {
Chris Lattner97f37a42006-02-24 18:05:58 +00005130 // So at this point we know we have (Y -> OtherAddOp):
5131 // select C, (add X, Y), (sub X, Z)
5132 Value *NegVal; // Compute -Z
5133 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
5134 NegVal = ConstantExpr::getNeg(C);
5135 } else {
5136 NegVal = InsertNewInstBefore(
5137 BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI);
Chris Lattner87875da2005-01-13 22:52:24 +00005138 }
Chris Lattner97f37a42006-02-24 18:05:58 +00005139
5140 Value *NewTrueOp = OtherAddOp;
5141 Value *NewFalseOp = NegVal;
5142 if (AddOp != TI)
5143 std::swap(NewTrueOp, NewFalseOp);
5144 Instruction *NewSel =
5145 new SelectInst(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p");
5146
5147 NewSel = InsertNewInstBefore(NewSel, SI);
5148 return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel);
Chris Lattner87875da2005-01-13 22:52:24 +00005149 }
5150 }
5151 }
Misha Brukmanfd939082005-04-21 23:48:37 +00005152
Chris Lattnere576b912004-04-09 23:46:01 +00005153 // See if we can fold the select into one of our operands.
5154 if (SI.getType()->isInteger()) {
5155 // See the comment above GetSelectFoldableOperands for a description of the
5156 // transformation we are doing here.
5157 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
5158 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
5159 !isa<Constant>(FalseVal))
5160 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
5161 unsigned OpToFold = 0;
5162 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
5163 OpToFold = 1;
5164 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
5165 OpToFold = 2;
5166 }
5167
5168 if (OpToFold) {
5169 Constant *C = GetSelectFoldableConstant(TVI);
5170 std::string Name = TVI->getName(); TVI->setName("");
5171 Instruction *NewSel =
5172 new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C,
5173 Name);
5174 InsertNewInstBefore(NewSel, SI);
5175 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
5176 return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
5177 else if (ShiftInst *SI = dyn_cast<ShiftInst>(TVI))
5178 return new ShiftInst(SI->getOpcode(), FalseVal, NewSel);
5179 else {
5180 assert(0 && "Unknown instruction!!");
5181 }
5182 }
5183 }
Chris Lattnera96879a2004-09-29 17:40:11 +00005184
Chris Lattnere576b912004-04-09 23:46:01 +00005185 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
5186 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
5187 !isa<Constant>(TrueVal))
5188 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
5189 unsigned OpToFold = 0;
5190 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
5191 OpToFold = 1;
5192 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
5193 OpToFold = 2;
5194 }
5195
5196 if (OpToFold) {
5197 Constant *C = GetSelectFoldableConstant(FVI);
5198 std::string Name = FVI->getName(); FVI->setName("");
5199 Instruction *NewSel =
5200 new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold),
5201 Name);
5202 InsertNewInstBefore(NewSel, SI);
5203 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
5204 return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
5205 else if (ShiftInst *SI = dyn_cast<ShiftInst>(FVI))
5206 return new ShiftInst(SI->getOpcode(), TrueVal, NewSel);
5207 else {
5208 assert(0 && "Unknown instruction!!");
5209 }
5210 }
5211 }
5212 }
Chris Lattnera1df33c2005-04-24 07:30:14 +00005213
5214 if (BinaryOperator::isNot(CondVal)) {
5215 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
5216 SI.setOperand(1, FalseVal);
5217 SI.setOperand(2, TrueVal);
5218 return &SI;
5219 }
5220
Chris Lattner3d69f462004-03-12 05:52:32 +00005221 return 0;
5222}
5223
5224
Chris Lattner8b0ea312006-01-13 20:11:04 +00005225/// visitCallInst - CallInst simplification. This mostly only handles folding
5226/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
5227/// the heavy lifting.
5228///
Chris Lattner9fe38862003-06-19 17:00:31 +00005229Instruction *InstCombiner::visitCallInst(CallInst &CI) {
Chris Lattner8b0ea312006-01-13 20:11:04 +00005230 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
5231 if (!II) return visitCallSite(&CI);
5232
Chris Lattner7bcc0e72004-02-28 05:22:00 +00005233 // Intrinsics cannot occur in an invoke, so handle them here instead of in
5234 // visitCallSite.
Chris Lattner8b0ea312006-01-13 20:11:04 +00005235 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
Chris Lattner35b9e482004-10-12 04:52:52 +00005236 bool Changed = false;
5237
5238 // memmove/cpy/set of zero bytes is a noop.
5239 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
5240 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
5241
5242 // FIXME: Increase alignment here.
Misha Brukmanfd939082005-04-21 23:48:37 +00005243
Chris Lattner35b9e482004-10-12 04:52:52 +00005244 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
5245 if (CI->getRawValue() == 1) {
5246 // Replace the instruction with just byte operations. We would
5247 // transform other cases to loads/stores, but we don't know if
5248 // alignment is sufficient.
5249 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +00005250 }
5251
Chris Lattner35b9e482004-10-12 04:52:52 +00005252 // If we have a memmove and the source operation is a constant global,
5253 // then the source and dest pointers can't alias, so we can change this
5254 // into a call to memcpy.
Chris Lattner8b0ea312006-01-13 20:11:04 +00005255 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(II))
Chris Lattner35b9e482004-10-12 04:52:52 +00005256 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
5257 if (GVSrc->isConstant()) {
5258 Module *M = CI.getParent()->getParent()->getParent();
5259 Function *MemCpy = M->getOrInsertFunction("llvm.memcpy",
5260 CI.getCalledFunction()->getFunctionType());
5261 CI.setOperand(0, MemCpy);
5262 Changed = true;
5263 }
5264
Chris Lattner8b0ea312006-01-13 20:11:04 +00005265 if (Changed) return II;
5266 } else if (DbgStopPointInst *SPI = dyn_cast<DbgStopPointInst>(II)) {
Chris Lattner954f66a2004-11-18 21:41:39 +00005267 // If this stoppoint is at the same source location as the previous
5268 // stoppoint in the chain, it is not needed.
5269 if (DbgStopPointInst *PrevSPI =
5270 dyn_cast<DbgStopPointInst>(SPI->getChain()))
5271 if (SPI->getLineNo() == PrevSPI->getLineNo() &&
5272 SPI->getColNo() == PrevSPI->getColNo()) {
5273 SPI->replaceAllUsesWith(PrevSPI);
5274 return EraseInstFromFunction(CI);
5275 }
Chris Lattnera728ddc2006-01-13 21:28:09 +00005276 } else {
5277 switch (II->getIntrinsicID()) {
5278 default: break;
5279 case Intrinsic::stackrestore: {
5280 // If the save is right next to the restore, remove the restore. This can
5281 // happen when variable allocas are DCE'd.
5282 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
5283 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
5284 BasicBlock::iterator BI = SS;
5285 if (&*++BI == II)
5286 return EraseInstFromFunction(CI);
5287 }
5288 }
5289
5290 // If the stack restore is in a return/unwind block and if there are no
5291 // allocas or calls between the restore and the return, nuke the restore.
5292 TerminatorInst *TI = II->getParent()->getTerminator();
5293 if (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)) {
5294 BasicBlock::iterator BI = II;
5295 bool CannotRemove = false;
5296 for (++BI; &*BI != TI; ++BI) {
5297 if (isa<AllocaInst>(BI) ||
5298 (isa<CallInst>(BI) && !isa<IntrinsicInst>(BI))) {
5299 CannotRemove = true;
5300 break;
5301 }
5302 }
5303 if (!CannotRemove)
5304 return EraseInstFromFunction(CI);
5305 }
5306 break;
5307 }
5308 }
Chris Lattner35b9e482004-10-12 04:52:52 +00005309 }
5310
Chris Lattner8b0ea312006-01-13 20:11:04 +00005311 return visitCallSite(II);
Chris Lattner9fe38862003-06-19 17:00:31 +00005312}
5313
5314// InvokeInst simplification
5315//
5316Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
Chris Lattnera44d8a22003-10-07 22:32:43 +00005317 return visitCallSite(&II);
Chris Lattner9fe38862003-06-19 17:00:31 +00005318}
5319
Chris Lattnera44d8a22003-10-07 22:32:43 +00005320// visitCallSite - Improvements for call and invoke instructions.
5321//
5322Instruction *InstCombiner::visitCallSite(CallSite CS) {
Chris Lattner6c266db2003-10-07 22:54:13 +00005323 bool Changed = false;
5324
5325 // If the callee is a constexpr cast of a function, attempt to move the cast
5326 // to the arguments of the call/invoke.
Chris Lattnera44d8a22003-10-07 22:32:43 +00005327 if (transformConstExprCastCall(CS)) return 0;
5328
Chris Lattner6c266db2003-10-07 22:54:13 +00005329 Value *Callee = CS.getCalledValue();
Chris Lattnere87597f2004-10-16 18:11:37 +00005330
Chris Lattner08b22ec2005-05-13 07:09:09 +00005331 if (Function *CalleeF = dyn_cast<Function>(Callee))
5332 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
5333 Instruction *OldCall = CS.getInstruction();
5334 // If the call and callee calling conventions don't match, this call must
5335 // be unreachable, as the call is undefined.
5336 new StoreInst(ConstantBool::True,
5337 UndefValue::get(PointerType::get(Type::BoolTy)), OldCall);
5338 if (!OldCall->use_empty())
5339 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
5340 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
5341 return EraseInstFromFunction(*OldCall);
5342 return 0;
5343 }
5344
Chris Lattner17be6352004-10-18 02:59:09 +00005345 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
5346 // This instruction is not reachable, just remove it. We insert a store to
5347 // undef so that we know that this code is not reachable, despite the fact
5348 // that we can't modify the CFG here.
5349 new StoreInst(ConstantBool::True,
5350 UndefValue::get(PointerType::get(Type::BoolTy)),
5351 CS.getInstruction());
5352
5353 if (!CS.getInstruction()->use_empty())
5354 CS.getInstruction()->
5355 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
5356
5357 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
5358 // Don't break the CFG, insert a dummy cond branch.
5359 new BranchInst(II->getNormalDest(), II->getUnwindDest(),
5360 ConstantBool::True, II);
Chris Lattnere87597f2004-10-16 18:11:37 +00005361 }
Chris Lattner17be6352004-10-18 02:59:09 +00005362 return EraseInstFromFunction(*CS.getInstruction());
5363 }
Chris Lattnere87597f2004-10-16 18:11:37 +00005364
Chris Lattner6c266db2003-10-07 22:54:13 +00005365 const PointerType *PTy = cast<PointerType>(Callee->getType());
5366 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
5367 if (FTy->isVarArg()) {
5368 // See if we can optimize any arguments passed through the varargs area of
5369 // the call.
5370 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
5371 E = CS.arg_end(); I != E; ++I)
5372 if (CastInst *CI = dyn_cast<CastInst>(*I)) {
5373 // If this cast does not effect the value passed through the varargs
5374 // area, we can eliminate the use of the cast.
5375 Value *Op = CI->getOperand(0);
5376 if (CI->getType()->isLosslesslyConvertibleTo(Op->getType())) {
5377 *I = Op;
5378 Changed = true;
5379 }
5380 }
5381 }
Misha Brukmanfd939082005-04-21 23:48:37 +00005382
Chris Lattner6c266db2003-10-07 22:54:13 +00005383 return Changed ? CS.getInstruction() : 0;
Chris Lattnera44d8a22003-10-07 22:32:43 +00005384}
5385
Chris Lattner9fe38862003-06-19 17:00:31 +00005386// transformConstExprCastCall - If the callee is a constexpr cast of a function,
5387// attempt to move the cast to the arguments of the call/invoke.
5388//
5389bool InstCombiner::transformConstExprCastCall(CallSite CS) {
5390 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
5391 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
Chris Lattner9db07b92004-07-18 18:59:44 +00005392 if (CE->getOpcode() != Instruction::Cast || !isa<Function>(CE->getOperand(0)))
Chris Lattner9fe38862003-06-19 17:00:31 +00005393 return false;
Reid Spencer8863f182004-07-18 00:38:32 +00005394 Function *Callee = cast<Function>(CE->getOperand(0));
Chris Lattner9fe38862003-06-19 17:00:31 +00005395 Instruction *Caller = CS.getInstruction();
5396
5397 // Okay, this is a cast from a function to a different type. Unless doing so
5398 // would cause a type conversion of one of our arguments, change this call to
5399 // be a direct call with arguments casted to the appropriate types.
5400 //
5401 const FunctionType *FT = Callee->getFunctionType();
5402 const Type *OldRetTy = Caller->getType();
5403
Chris Lattnerf78616b2004-01-14 06:06:08 +00005404 // Check to see if we are changing the return type...
5405 if (OldRetTy != FT->getReturnType()) {
5406 if (Callee->isExternal() &&
5407 !OldRetTy->isLosslesslyConvertibleTo(FT->getReturnType()) &&
5408 !Caller->use_empty())
5409 return false; // Cannot transform this return value...
5410
5411 // If the callsite is an invoke instruction, and the return value is used by
5412 // a PHI node in a successor, we cannot change the return type of the call
5413 // because there is no place to put the cast instruction (without breaking
5414 // the critical edge). Bail out in this case.
5415 if (!Caller->use_empty())
5416 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
5417 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
5418 UI != E; ++UI)
5419 if (PHINode *PN = dyn_cast<PHINode>(*UI))
5420 if (PN->getParent() == II->getNormalDest() ||
Chris Lattneraeb2a1d2004-02-08 21:44:31 +00005421 PN->getParent() == II->getUnwindDest())
Chris Lattnerf78616b2004-01-14 06:06:08 +00005422 return false;
5423 }
Chris Lattner9fe38862003-06-19 17:00:31 +00005424
5425 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
5426 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
Misha Brukmanfd939082005-04-21 23:48:37 +00005427
Chris Lattner9fe38862003-06-19 17:00:31 +00005428 CallSite::arg_iterator AI = CS.arg_begin();
5429 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
5430 const Type *ParamTy = FT->getParamType(i);
5431 bool isConvertible = (*AI)->getType()->isLosslesslyConvertibleTo(ParamTy);
Misha Brukmanfd939082005-04-21 23:48:37 +00005432 if (Callee->isExternal() && !isConvertible) return false;
Chris Lattner9fe38862003-06-19 17:00:31 +00005433 }
5434
5435 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
5436 Callee->isExternal())
5437 return false; // Do not delete arguments unless we have a function body...
5438
5439 // Okay, we decided that this is a safe thing to do: go ahead and start
5440 // inserting cast instructions as necessary...
5441 std::vector<Value*> Args;
5442 Args.reserve(NumActualArgs);
5443
5444 AI = CS.arg_begin();
5445 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
5446 const Type *ParamTy = FT->getParamType(i);
5447 if ((*AI)->getType() == ParamTy) {
5448 Args.push_back(*AI);
5449 } else {
Chris Lattner0c199a72004-04-08 04:43:23 +00005450 Args.push_back(InsertNewInstBefore(new CastInst(*AI, ParamTy, "tmp"),
5451 *Caller));
Chris Lattner9fe38862003-06-19 17:00:31 +00005452 }
5453 }
5454
5455 // If the function takes more arguments than the call was taking, add them
5456 // now...
5457 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
5458 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
5459
5460 // If we are removing arguments to the function, emit an obnoxious warning...
5461 if (FT->getNumParams() < NumActualArgs)
5462 if (!FT->isVarArg()) {
5463 std::cerr << "WARNING: While resolving call to function '"
5464 << Callee->getName() << "' arguments were dropped!\n";
5465 } else {
5466 // Add all of the arguments in their promoted form to the arg list...
5467 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
5468 const Type *PTy = getPromotedType((*AI)->getType());
5469 if (PTy != (*AI)->getType()) {
5470 // Must promote to pass through va_arg area!
5471 Instruction *Cast = new CastInst(*AI, PTy, "tmp");
5472 InsertNewInstBefore(Cast, *Caller);
5473 Args.push_back(Cast);
5474 } else {
5475 Args.push_back(*AI);
5476 }
5477 }
5478 }
5479
5480 if (FT->getReturnType() == Type::VoidTy)
5481 Caller->setName(""); // Void type should not have a name...
5482
5483 Instruction *NC;
5484 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Chris Lattneraeb2a1d2004-02-08 21:44:31 +00005485 NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
Chris Lattner9fe38862003-06-19 17:00:31 +00005486 Args, Caller->getName(), Caller);
Chris Lattnere4370262005-05-14 12:25:32 +00005487 cast<InvokeInst>(II)->setCallingConv(II->getCallingConv());
Chris Lattner9fe38862003-06-19 17:00:31 +00005488 } else {
5489 NC = new CallInst(Callee, Args, Caller->getName(), Caller);
Chris Lattnera9e92112005-05-06 06:48:21 +00005490 if (cast<CallInst>(Caller)->isTailCall())
5491 cast<CallInst>(NC)->setTailCall();
Chris Lattnere4370262005-05-14 12:25:32 +00005492 cast<CallInst>(NC)->setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Chris Lattner9fe38862003-06-19 17:00:31 +00005493 }
5494
5495 // Insert a cast of the return type as necessary...
5496 Value *NV = NC;
5497 if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
5498 if (NV->getType() != Type::VoidTy) {
5499 NV = NC = new CastInst(NC, Caller->getType(), "tmp");
Chris Lattnerbb609042003-10-30 00:46:41 +00005500
5501 // If this is an invoke instruction, we should insert it after the first
5502 // non-phi, instruction in the normal successor block.
5503 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
5504 BasicBlock::iterator I = II->getNormalDest()->begin();
5505 while (isa<PHINode>(I)) ++I;
5506 InsertNewInstBefore(NC, *I);
5507 } else {
5508 // Otherwise, it's a call, just insert cast right after the call instr
5509 InsertNewInstBefore(NC, *Caller);
5510 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +00005511 AddUsersToWorkList(*Caller);
Chris Lattner9fe38862003-06-19 17:00:31 +00005512 } else {
Chris Lattnerc30bda72004-10-17 21:22:38 +00005513 NV = UndefValue::get(Caller->getType());
Chris Lattner9fe38862003-06-19 17:00:31 +00005514 }
5515 }
5516
5517 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
5518 Caller->replaceAllUsesWith(NV);
5519 Caller->getParent()->getInstList().erase(Caller);
5520 removeFromWorkList(Caller);
5521 return true;
5522}
5523
5524
Chris Lattnerbac32862004-11-14 19:13:23 +00005525// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
5526// operator and they all are only used by the PHI, PHI together their
5527// inputs, and do the operation once, to the result of the PHI.
5528Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
5529 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
5530
5531 // Scan the instruction, looking for input operations that can be folded away.
5532 // If all input operands to the phi are the same instruction (e.g. a cast from
5533 // the same type or "+42") we can pull the operation through the PHI, reducing
5534 // code size and simplifying code.
5535 Constant *ConstantOp = 0;
5536 const Type *CastSrcTy = 0;
5537 if (isa<CastInst>(FirstInst)) {
5538 CastSrcTy = FirstInst->getOperand(0)->getType();
5539 } else if (isa<BinaryOperator>(FirstInst) || isa<ShiftInst>(FirstInst)) {
5540 // Can fold binop or shift if the RHS is a constant.
5541 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
5542 if (ConstantOp == 0) return 0;
5543 } else {
5544 return 0; // Cannot fold this operation.
5545 }
5546
5547 // Check to see if all arguments are the same operation.
5548 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
5549 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
5550 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
5551 if (!I->hasOneUse() || I->getOpcode() != FirstInst->getOpcode())
5552 return 0;
5553 if (CastSrcTy) {
5554 if (I->getOperand(0)->getType() != CastSrcTy)
5555 return 0; // Cast operation must match.
5556 } else if (I->getOperand(1) != ConstantOp) {
5557 return 0;
5558 }
5559 }
5560
5561 // Okay, they are all the same operation. Create a new PHI node of the
5562 // correct type, and PHI together all of the LHS's of the instructions.
5563 PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(),
5564 PN.getName()+".in");
Chris Lattner55517062005-01-29 00:39:08 +00005565 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
Chris Lattnerb5893442004-11-14 19:29:34 +00005566
5567 Value *InVal = FirstInst->getOperand(0);
5568 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
Chris Lattnerbac32862004-11-14 19:13:23 +00005569
5570 // Add all operands to the new PHI.
Chris Lattnerb5893442004-11-14 19:29:34 +00005571 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
5572 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
5573 if (NewInVal != InVal)
5574 InVal = 0;
5575 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
5576 }
5577
5578 Value *PhiVal;
5579 if (InVal) {
5580 // The new PHI unions all of the same values together. This is really
5581 // common, so we handle it intelligently here for compile-time speed.
5582 PhiVal = InVal;
5583 delete NewPN;
5584 } else {
5585 InsertNewInstBefore(NewPN, PN);
5586 PhiVal = NewPN;
5587 }
Misha Brukmanfd939082005-04-21 23:48:37 +00005588
Chris Lattnerbac32862004-11-14 19:13:23 +00005589 // Insert and return the new operation.
5590 if (isa<CastInst>(FirstInst))
Chris Lattnerb5893442004-11-14 19:29:34 +00005591 return new CastInst(PhiVal, PN.getType());
Chris Lattnerbac32862004-11-14 19:13:23 +00005592 else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Chris Lattnerb5893442004-11-14 19:29:34 +00005593 return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerbac32862004-11-14 19:13:23 +00005594 else
5595 return new ShiftInst(cast<ShiftInst>(FirstInst)->getOpcode(),
Chris Lattnerb5893442004-11-14 19:29:34 +00005596 PhiVal, ConstantOp);
Chris Lattnerbac32862004-11-14 19:13:23 +00005597}
Chris Lattnera1be5662002-05-02 17:06:02 +00005598
Chris Lattnera3fd1c52005-01-17 05:10:15 +00005599/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
5600/// that is dead.
5601static bool DeadPHICycle(PHINode *PN, std::set<PHINode*> &PotentiallyDeadPHIs) {
5602 if (PN->use_empty()) return true;
5603 if (!PN->hasOneUse()) return false;
5604
5605 // Remember this node, and if we find the cycle, return.
5606 if (!PotentiallyDeadPHIs.insert(PN).second)
5607 return true;
5608
5609 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
5610 return DeadPHICycle(PU, PotentiallyDeadPHIs);
Misha Brukmanfd939082005-04-21 23:48:37 +00005611
Chris Lattnera3fd1c52005-01-17 05:10:15 +00005612 return false;
5613}
5614
Chris Lattner473945d2002-05-06 18:06:38 +00005615// PHINode simplification
5616//
Chris Lattner7e708292002-06-25 16:13:24 +00005617Instruction *InstCombiner::visitPHINode(PHINode &PN) {
Chris Lattner68ee7362005-08-05 01:04:30 +00005618 if (Value *V = PN.hasConstantValue())
5619 return ReplaceInstUsesWith(PN, V);
Chris Lattner7059f2e2004-02-16 05:07:08 +00005620
5621 // If the only user of this instruction is a cast instruction, and all of the
5622 // incoming values are constants, change this PHI to merge together the casted
5623 // constants.
5624 if (PN.hasOneUse())
5625 if (CastInst *CI = dyn_cast<CastInst>(PN.use_back()))
5626 if (CI->getType() != PN.getType()) { // noop casts will be folded
5627 bool AllConstant = true;
5628 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
5629 if (!isa<Constant>(PN.getIncomingValue(i))) {
5630 AllConstant = false;
5631 break;
5632 }
5633 if (AllConstant) {
5634 // Make a new PHI with all casted values.
5635 PHINode *New = new PHINode(CI->getType(), PN.getName(), &PN);
5636 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
5637 Constant *OldArg = cast<Constant>(PN.getIncomingValue(i));
5638 New->addIncoming(ConstantExpr::getCast(OldArg, New->getType()),
5639 PN.getIncomingBlock(i));
5640 }
5641
5642 // Update the cast instruction.
5643 CI->setOperand(0, New);
5644 WorkList.push_back(CI); // revisit the cast instruction to fold.
5645 WorkList.push_back(New); // Make sure to revisit the new Phi
5646 return &PN; // PN is now dead!
5647 }
5648 }
Chris Lattnerbac32862004-11-14 19:13:23 +00005649
5650 // If all PHI operands are the same operation, pull them through the PHI,
5651 // reducing code size.
5652 if (isa<Instruction>(PN.getIncomingValue(0)) &&
5653 PN.getIncomingValue(0)->hasOneUse())
5654 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
5655 return Result;
5656
Chris Lattnera3fd1c52005-01-17 05:10:15 +00005657 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
5658 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
5659 // PHI)... break the cycle.
5660 if (PN.hasOneUse())
5661 if (PHINode *PU = dyn_cast<PHINode>(PN.use_back())) {
5662 std::set<PHINode*> PotentiallyDeadPHIs;
5663 PotentiallyDeadPHIs.insert(&PN);
5664 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
5665 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
5666 }
Misha Brukmanfd939082005-04-21 23:48:37 +00005667
Chris Lattner60921c92003-12-19 05:58:40 +00005668 return 0;
Chris Lattner473945d2002-05-06 18:06:38 +00005669}
5670
Chris Lattner28977af2004-04-05 01:30:19 +00005671static Value *InsertSignExtendToPtrTy(Value *V, const Type *DTy,
5672 Instruction *InsertPoint,
5673 InstCombiner *IC) {
5674 unsigned PS = IC->getTargetData().getPointerSize();
5675 const Type *VTy = V->getType();
Chris Lattner28977af2004-04-05 01:30:19 +00005676 if (!VTy->isSigned() && VTy->getPrimitiveSize() < PS)
5677 // We must insert a cast to ensure we sign-extend.
5678 V = IC->InsertNewInstBefore(new CastInst(V, VTy->getSignedVersion(),
5679 V->getName()), *InsertPoint);
5680 return IC->InsertNewInstBefore(new CastInst(V, DTy, V->getName()),
5681 *InsertPoint);
5682}
5683
Chris Lattnera1be5662002-05-02 17:06:02 +00005684
Chris Lattner7e708292002-06-25 16:13:24 +00005685Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattner620ce142004-05-07 22:09:22 +00005686 Value *PtrOp = GEP.getOperand(0);
Chris Lattnerc54e2b82003-05-22 19:07:21 +00005687 // Is it 'getelementptr %P, long 0' or 'getelementptr %P'
Chris Lattner7e708292002-06-25 16:13:24 +00005688 // If so, eliminate the noop.
Chris Lattnerc6bd1952004-02-22 05:25:17 +00005689 if (GEP.getNumOperands() == 1)
Chris Lattner620ce142004-05-07 22:09:22 +00005690 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattnerc6bd1952004-02-22 05:25:17 +00005691
Chris Lattnere87597f2004-10-16 18:11:37 +00005692 if (isa<UndefValue>(GEP.getOperand(0)))
5693 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
5694
Chris Lattnerc6bd1952004-02-22 05:25:17 +00005695 bool HasZeroPointerIndex = false;
5696 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
5697 HasZeroPointerIndex = C->isNullValue();
5698
5699 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
Chris Lattner620ce142004-05-07 22:09:22 +00005700 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattnera1be5662002-05-02 17:06:02 +00005701
Chris Lattner28977af2004-04-05 01:30:19 +00005702 // Eliminate unneeded casts for indices.
5703 bool MadeChange = false;
Chris Lattnercb69a4e2004-04-07 18:38:20 +00005704 gep_type_iterator GTI = gep_type_begin(GEP);
5705 for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI)
5706 if (isa<SequentialType>(*GTI)) {
5707 if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
5708 Value *Src = CI->getOperand(0);
5709 const Type *SrcTy = Src->getType();
5710 const Type *DestTy = CI->getType();
5711 if (Src->getType()->isInteger()) {
Chris Lattner484d3cf2005-04-24 06:59:08 +00005712 if (SrcTy->getPrimitiveSizeInBits() ==
5713 DestTy->getPrimitiveSizeInBits()) {
Chris Lattnercb69a4e2004-04-07 18:38:20 +00005714 // We can always eliminate a cast from ulong or long to the other.
5715 // We can always eliminate a cast from uint to int or the other on
5716 // 32-bit pointer platforms.
Chris Lattner484d3cf2005-04-24 06:59:08 +00005717 if (DestTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()){
Chris Lattnercb69a4e2004-04-07 18:38:20 +00005718 MadeChange = true;
5719 GEP.setOperand(i, Src);
5720 }
5721 } else if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
5722 SrcTy->getPrimitiveSize() == 4) {
5723 // We can always eliminate a cast from int to [u]long. We can
5724 // eliminate a cast from uint to [u]long iff the target is a 32-bit
5725 // pointer target.
Misha Brukmanfd939082005-04-21 23:48:37 +00005726 if (SrcTy->isSigned() ||
Chris Lattner484d3cf2005-04-24 06:59:08 +00005727 SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
Chris Lattnercb69a4e2004-04-07 18:38:20 +00005728 MadeChange = true;
5729 GEP.setOperand(i, Src);
5730 }
Chris Lattner28977af2004-04-05 01:30:19 +00005731 }
5732 }
5733 }
Chris Lattnercb69a4e2004-04-07 18:38:20 +00005734 // If we are using a wider index than needed for this platform, shrink it
5735 // to what we need. If the incoming value needs a cast instruction,
5736 // insert it. This explicit cast can make subsequent optimizations more
5737 // obvious.
5738 Value *Op = GEP.getOperand(i);
5739 if (Op->getType()->getPrimitiveSize() > TD->getPointerSize())
Chris Lattner4f1134e2004-04-17 18:16:10 +00005740 if (Constant *C = dyn_cast<Constant>(Op)) {
Chris Lattner67769e52004-07-20 01:48:15 +00005741 GEP.setOperand(i, ConstantExpr::getCast(C,
5742 TD->getIntPtrType()->getSignedVersion()));
Chris Lattner4f1134e2004-04-17 18:16:10 +00005743 MadeChange = true;
5744 } else {
Chris Lattnercb69a4e2004-04-07 18:38:20 +00005745 Op = InsertNewInstBefore(new CastInst(Op, TD->getIntPtrType(),
5746 Op->getName()), GEP);
5747 GEP.setOperand(i, Op);
5748 MadeChange = true;
5749 }
Chris Lattner67769e52004-07-20 01:48:15 +00005750
5751 // If this is a constant idx, make sure to canonicalize it to be a signed
5752 // operand, otherwise CSE and other optimizations are pessimized.
5753 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op)) {
5754 GEP.setOperand(i, ConstantExpr::getCast(CUI,
5755 CUI->getType()->getSignedVersion()));
5756 MadeChange = true;
5757 }
Chris Lattner28977af2004-04-05 01:30:19 +00005758 }
5759 if (MadeChange) return &GEP;
5760
Chris Lattner90ac28c2002-08-02 19:29:35 +00005761 // Combine Indices - If the source pointer to this getelementptr instruction
5762 // is a getelementptr instruction, combine the indices of the two
5763 // getelementptr instructions into a single instruction.
5764 //
Chris Lattnerebd985c2004-03-25 22:59:29 +00005765 std::vector<Value*> SrcGEPOperands;
Chris Lattner574da9b2005-01-13 20:14:25 +00005766 if (User *Src = dyn_castGetElementPtr(PtrOp))
Chris Lattnerebd985c2004-03-25 22:59:29 +00005767 SrcGEPOperands.assign(Src->op_begin(), Src->op_end());
Chris Lattnerebd985c2004-03-25 22:59:29 +00005768
5769 if (!SrcGEPOperands.empty()) {
Chris Lattner620ce142004-05-07 22:09:22 +00005770 // Note that if our source is a gep chain itself that we wait for that
5771 // chain to be resolved before we perform this transformation. This
5772 // avoids us creating a TON of code in some cases.
5773 //
5774 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
5775 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
5776 return 0; // Wait until our source is folded to completion.
5777
Chris Lattner90ac28c2002-08-02 19:29:35 +00005778 std::vector<Value *> Indices;
Chris Lattner620ce142004-05-07 22:09:22 +00005779
5780 // Find out whether the last index in the source GEP is a sequential idx.
5781 bool EndsWithSequential = false;
5782 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
5783 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
Chris Lattnerbe97b4e2004-05-08 22:41:42 +00005784 EndsWithSequential = !isa<StructType>(*I);
Misha Brukmanfd939082005-04-21 23:48:37 +00005785
Chris Lattner90ac28c2002-08-02 19:29:35 +00005786 // Can we combine the two pointer arithmetics offsets?
Chris Lattner620ce142004-05-07 22:09:22 +00005787 if (EndsWithSequential) {
Chris Lattnerdecd0812003-03-05 22:33:14 +00005788 // Replace: gep (gep %P, long B), long A, ...
5789 // With: T = long A+B; gep %P, T, ...
5790 //
Chris Lattner620ce142004-05-07 22:09:22 +00005791 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
Chris Lattner28977af2004-04-05 01:30:19 +00005792 if (SO1 == Constant::getNullValue(SO1->getType())) {
5793 Sum = GO1;
5794 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
5795 Sum = SO1;
5796 } else {
5797 // If they aren't the same type, convert both to an integer of the
5798 // target's pointer size.
5799 if (SO1->getType() != GO1->getType()) {
5800 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
5801 SO1 = ConstantExpr::getCast(SO1C, GO1->getType());
5802 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
5803 GO1 = ConstantExpr::getCast(GO1C, SO1->getType());
5804 } else {
5805 unsigned PS = TD->getPointerSize();
Chris Lattner28977af2004-04-05 01:30:19 +00005806 if (SO1->getType()->getPrimitiveSize() == PS) {
5807 // Convert GO1 to SO1's type.
5808 GO1 = InsertSignExtendToPtrTy(GO1, SO1->getType(), &GEP, this);
5809
5810 } else if (GO1->getType()->getPrimitiveSize() == PS) {
5811 // Convert SO1 to GO1's type.
5812 SO1 = InsertSignExtendToPtrTy(SO1, GO1->getType(), &GEP, this);
5813 } else {
5814 const Type *PT = TD->getIntPtrType();
5815 SO1 = InsertSignExtendToPtrTy(SO1, PT, &GEP, this);
5816 GO1 = InsertSignExtendToPtrTy(GO1, PT, &GEP, this);
5817 }
5818 }
5819 }
Chris Lattner620ce142004-05-07 22:09:22 +00005820 if (isa<Constant>(SO1) && isa<Constant>(GO1))
5821 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
5822 else {
Chris Lattner48595f12004-06-10 02:07:29 +00005823 Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
5824 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
Chris Lattner620ce142004-05-07 22:09:22 +00005825 }
Chris Lattner28977af2004-04-05 01:30:19 +00005826 }
Chris Lattner620ce142004-05-07 22:09:22 +00005827
5828 // Recycle the GEP we already have if possible.
5829 if (SrcGEPOperands.size() == 2) {
5830 GEP.setOperand(0, SrcGEPOperands[0]);
5831 GEP.setOperand(1, Sum);
5832 return &GEP;
5833 } else {
5834 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
5835 SrcGEPOperands.end()-1);
5836 Indices.push_back(Sum);
5837 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
5838 }
Misha Brukmanfd939082005-04-21 23:48:37 +00005839 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner28977af2004-04-05 01:30:19 +00005840 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Misha Brukmanfd939082005-04-21 23:48:37 +00005841 SrcGEPOperands.size() != 1) {
Chris Lattner90ac28c2002-08-02 19:29:35 +00005842 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattnerebd985c2004-03-25 22:59:29 +00005843 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
5844 SrcGEPOperands.end());
Chris Lattner90ac28c2002-08-02 19:29:35 +00005845 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
5846 }
5847
5848 if (!Indices.empty())
Chris Lattnerebd985c2004-03-25 22:59:29 +00005849 return new GetElementPtrInst(SrcGEPOperands[0], Indices, GEP.getName());
Chris Lattner9b761232002-08-17 22:21:59 +00005850
Chris Lattner620ce142004-05-07 22:09:22 +00005851 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
Chris Lattner9b761232002-08-17 22:21:59 +00005852 // GEP of global variable. If all of the indices for this GEP are
5853 // constants, we can promote this to a constexpr instead of an instruction.
5854
5855 // Scan for nonconstants...
5856 std::vector<Constant*> Indices;
5857 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
5858 for (; I != E && isa<Constant>(*I); ++I)
5859 Indices.push_back(cast<Constant>(*I));
5860
5861 if (I == E) { // If they are all constants...
Chris Lattner9db07b92004-07-18 18:59:44 +00005862 Constant *CE = ConstantExpr::getGetElementPtr(GV, Indices);
Chris Lattner9b761232002-08-17 22:21:59 +00005863
5864 // Replace all uses of the GEP with the new constexpr...
5865 return ReplaceInstUsesWith(GEP, CE);
5866 }
Chris Lattnereed48272005-09-13 00:40:14 +00005867 } else if (Value *X = isCast(PtrOp)) { // Is the operand a cast?
5868 if (!isa<PointerType>(X->getType())) {
5869 // Not interesting. Source pointer must be a cast from pointer.
5870 } else if (HasZeroPointerIndex) {
5871 // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
5872 // into : GEP [10 x ubyte]* X, long 0, ...
5873 //
5874 // This occurs when the program declares an array extern like "int X[];"
5875 //
5876 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
5877 const PointerType *XTy = cast<PointerType>(X->getType());
5878 if (const ArrayType *XATy =
5879 dyn_cast<ArrayType>(XTy->getElementType()))
5880 if (const ArrayType *CATy =
5881 dyn_cast<ArrayType>(CPTy->getElementType()))
5882 if (CATy->getElementType() == XATy->getElementType()) {
5883 // At this point, we know that the cast source type is a pointer
5884 // to an array of the same type as the destination pointer
5885 // array. Because the array type is never stepped over (there
5886 // is a leading zero) we can fold the cast into this GEP.
5887 GEP.setOperand(0, X);
5888 return &GEP;
5889 }
5890 } else if (GEP.getNumOperands() == 2) {
5891 // Transform things like:
Chris Lattner7835cdd2005-09-13 18:36:04 +00005892 // %t = getelementptr ubyte* cast ([2 x int]* %str to uint*), uint %V
5893 // into: %t1 = getelementptr [2 x int*]* %str, int 0, uint %V; cast
Chris Lattnereed48272005-09-13 00:40:14 +00005894 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
5895 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
5896 if (isa<ArrayType>(SrcElTy) &&
5897 TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
5898 TD->getTypeSize(ResElTy)) {
5899 Value *V = InsertNewInstBefore(
5900 new GetElementPtrInst(X, Constant::getNullValue(Type::IntTy),
5901 GEP.getOperand(1), GEP.getName()), GEP);
5902 return new CastInst(V, GEP.getType());
Chris Lattnerc6bd1952004-02-22 05:25:17 +00005903 }
Chris Lattner7835cdd2005-09-13 18:36:04 +00005904
5905 // Transform things like:
5906 // getelementptr sbyte* cast ([100 x double]* X to sbyte*), int %tmp
5907 // (where tmp = 8*tmp2) into:
5908 // getelementptr [100 x double]* %arr, int 0, int %tmp.2
5909
5910 if (isa<ArrayType>(SrcElTy) &&
5911 (ResElTy == Type::SByteTy || ResElTy == Type::UByteTy)) {
5912 uint64_t ArrayEltSize =
5913 TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType());
5914
5915 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
5916 // allow either a mul, shift, or constant here.
5917 Value *NewIdx = 0;
5918 ConstantInt *Scale = 0;
5919 if (ArrayEltSize == 1) {
5920 NewIdx = GEP.getOperand(1);
5921 Scale = ConstantInt::get(NewIdx->getType(), 1);
5922 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
Chris Lattner6e2f8432005-09-14 17:32:56 +00005923 NewIdx = ConstantInt::get(CI->getType(), 1);
Chris Lattner7835cdd2005-09-13 18:36:04 +00005924 Scale = CI;
5925 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
5926 if (Inst->getOpcode() == Instruction::Shl &&
5927 isa<ConstantInt>(Inst->getOperand(1))) {
5928 unsigned ShAmt =cast<ConstantUInt>(Inst->getOperand(1))->getValue();
5929 if (Inst->getType()->isSigned())
5930 Scale = ConstantSInt::get(Inst->getType(), 1ULL << ShAmt);
5931 else
5932 Scale = ConstantUInt::get(Inst->getType(), 1ULL << ShAmt);
5933 NewIdx = Inst->getOperand(0);
5934 } else if (Inst->getOpcode() == Instruction::Mul &&
5935 isa<ConstantInt>(Inst->getOperand(1))) {
5936 Scale = cast<ConstantInt>(Inst->getOperand(1));
5937 NewIdx = Inst->getOperand(0);
5938 }
5939 }
5940
5941 // If the index will be to exactly the right offset with the scale taken
5942 // out, perform the transformation.
5943 if (Scale && Scale->getRawValue() % ArrayEltSize == 0) {
5944 if (ConstantSInt *C = dyn_cast<ConstantSInt>(Scale))
5945 Scale = ConstantSInt::get(C->getType(),
Chris Lattner6e2f8432005-09-14 17:32:56 +00005946 (int64_t)C->getRawValue() /
5947 (int64_t)ArrayEltSize);
Chris Lattner7835cdd2005-09-13 18:36:04 +00005948 else
5949 Scale = ConstantUInt::get(Scale->getType(),
5950 Scale->getRawValue() / ArrayEltSize);
5951 if (Scale->getRawValue() != 1) {
5952 Constant *C = ConstantExpr::getCast(Scale, NewIdx->getType());
5953 Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale");
5954 NewIdx = InsertNewInstBefore(Sc, GEP);
5955 }
5956
5957 // Insert the new GEP instruction.
5958 Instruction *Idx =
5959 new GetElementPtrInst(X, Constant::getNullValue(Type::IntTy),
5960 NewIdx, GEP.getName());
5961 Idx = InsertNewInstBefore(Idx, GEP);
5962 return new CastInst(Idx, GEP.getType());
5963 }
5964 }
Chris Lattnerc6bd1952004-02-22 05:25:17 +00005965 }
Chris Lattner8a2a3112001-12-14 16:52:21 +00005966 }
5967
Chris Lattner8a2a3112001-12-14 16:52:21 +00005968 return 0;
5969}
5970
Chris Lattner0864acf2002-11-04 16:18:53 +00005971Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
5972 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
5973 if (AI.isArrayAllocation()) // Check C != 1
5974 if (const ConstantUInt *C = dyn_cast<ConstantUInt>(AI.getArraySize())) {
5975 const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue());
Chris Lattner0006bd72002-11-09 00:49:43 +00005976 AllocationInst *New = 0;
Chris Lattner0864acf2002-11-04 16:18:53 +00005977
5978 // Create and insert the replacement instruction...
5979 if (isa<MallocInst>(AI))
Nate Begeman14b05292005-11-05 09:21:28 +00005980 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattner0006bd72002-11-09 00:49:43 +00005981 else {
5982 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
Nate Begeman14b05292005-11-05 09:21:28 +00005983 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattner0006bd72002-11-09 00:49:43 +00005984 }
Chris Lattner7c881df2004-03-19 06:08:10 +00005985
5986 InsertNewInstBefore(New, AI);
Misha Brukmanfd939082005-04-21 23:48:37 +00005987
Chris Lattner0864acf2002-11-04 16:18:53 +00005988 // Scan to the end of the allocation instructions, to skip over a block of
5989 // allocas if possible...
5990 //
5991 BasicBlock::iterator It = New;
5992 while (isa<AllocationInst>(*It)) ++It;
5993
5994 // Now that I is pointing to the first non-allocation-inst in the block,
5995 // insert our getelementptr instruction...
5996 //
Chris Lattner693787a2005-05-04 19:10:26 +00005997 Value *NullIdx = Constant::getNullValue(Type::IntTy);
5998 Value *V = new GetElementPtrInst(New, NullIdx, NullIdx,
5999 New->getName()+".sub", It);
Chris Lattner0864acf2002-11-04 16:18:53 +00006000
6001 // Now make everything use the getelementptr instead of the original
6002 // allocation.
Chris Lattner7c881df2004-03-19 06:08:10 +00006003 return ReplaceInstUsesWith(AI, V);
Chris Lattnere87597f2004-10-16 18:11:37 +00006004 } else if (isa<UndefValue>(AI.getArraySize())) {
6005 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
Chris Lattner0864acf2002-11-04 16:18:53 +00006006 }
Chris Lattner7c881df2004-03-19 06:08:10 +00006007
6008 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
6009 // Note that we only do this for alloca's, because malloc should allocate and
6010 // return a unique pointer, even for a zero byte allocation.
Misha Brukmanfd939082005-04-21 23:48:37 +00006011 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Chris Lattnercf27afb2004-07-02 22:55:47 +00006012 TD->getTypeSize(AI.getAllocatedType()) == 0)
Chris Lattner7c881df2004-03-19 06:08:10 +00006013 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
6014
Chris Lattner0864acf2002-11-04 16:18:53 +00006015 return 0;
6016}
6017
Chris Lattner67b1e1b2003-12-07 01:24:23 +00006018Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
6019 Value *Op = FI.getOperand(0);
6020
6021 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
6022 if (CastInst *CI = dyn_cast<CastInst>(Op))
6023 if (isa<PointerType>(CI->getOperand(0)->getType())) {
6024 FI.setOperand(0, CI->getOperand(0));
6025 return &FI;
6026 }
6027
Chris Lattner17be6352004-10-18 02:59:09 +00006028 // free undef -> unreachable.
6029 if (isa<UndefValue>(Op)) {
6030 // Insert a new store to null because we cannot modify the CFG here.
6031 new StoreInst(ConstantBool::True,
6032 UndefValue::get(PointerType::get(Type::BoolTy)), &FI);
6033 return EraseInstFromFunction(FI);
6034 }
6035
Chris Lattner6160e852004-02-28 04:57:37 +00006036 // If we have 'free null' delete the instruction. This can happen in stl code
6037 // when lots of inlining happens.
Chris Lattner17be6352004-10-18 02:59:09 +00006038 if (isa<ConstantPointerNull>(Op))
Chris Lattner7bcc0e72004-02-28 05:22:00 +00006039 return EraseInstFromFunction(FI);
Chris Lattner6160e852004-02-28 04:57:37 +00006040
Chris Lattner67b1e1b2003-12-07 01:24:23 +00006041 return 0;
6042}
6043
6044
Chris Lattnerfcfe33a2005-01-31 05:51:45 +00006045/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Chris Lattnerb89e0712004-07-13 01:49:43 +00006046static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI) {
6047 User *CI = cast<User>(LI.getOperand(0));
Chris Lattnerf9527852005-01-31 04:50:46 +00006048 Value *CastOp = CI->getOperand(0);
Chris Lattnerb89e0712004-07-13 01:49:43 +00006049
6050 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
Chris Lattnerf9527852005-01-31 04:50:46 +00006051 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
Chris Lattnerb89e0712004-07-13 01:49:43 +00006052 const Type *SrcPTy = SrcTy->getElementType();
Chris Lattnerf9527852005-01-31 04:50:46 +00006053
6054 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
6055 // If the source is an array, the code below will not succeed. Check to
6056 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
6057 // constants.
6058 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
6059 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
6060 if (ASrcTy->getNumElements() != 0) {
6061 std::vector<Value*> Idxs(2, Constant::getNullValue(Type::IntTy));
6062 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
6063 SrcTy = cast<PointerType>(CastOp->getType());
6064 SrcPTy = SrcTy->getElementType();
6065 }
6066
6067 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
Chris Lattnerb1515fe2005-03-29 06:37:47 +00006068 // Do not allow turning this into a load of an integer, which is then
6069 // casted to a pointer, this pessimizes pointer analysis a lot.
6070 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
Misha Brukmanfd939082005-04-21 23:48:37 +00006071 IC.getTargetData().getTypeSize(SrcPTy) ==
Chris Lattnerf9527852005-01-31 04:50:46 +00006072 IC.getTargetData().getTypeSize(DestPTy)) {
Misha Brukmanfd939082005-04-21 23:48:37 +00006073
Chris Lattnerf9527852005-01-31 04:50:46 +00006074 // Okay, we are casting from one integer or pointer type to another of
6075 // the same size. Instead of casting the pointer before the load, cast
6076 // the result of the loaded value.
6077 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
6078 CI->getName(),
6079 LI.isVolatile()),LI);
6080 // Now cast the result of the load.
6081 return new CastInst(NewLoad, LI.getType());
6082 }
Chris Lattnerb89e0712004-07-13 01:49:43 +00006083 }
6084 }
6085 return 0;
6086}
6087
Chris Lattnerc10aced2004-09-19 18:43:46 +00006088/// isSafeToLoadUnconditionally - Return true if we know that executing a load
Chris Lattner8a375202004-09-19 19:18:10 +00006089/// from this value cannot trap. If it is not obviously safe to load from the
6090/// specified pointer, we do a quick local scan of the basic block containing
6091/// ScanFrom, to determine if the address is already accessed.
6092static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
6093 // If it is an alloca or global variable, it is always safe to load from.
6094 if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
6095
6096 // Otherwise, be a little bit agressive by scanning the local block where we
6097 // want to check to see if the pointer is already being loaded or stored
Alkis Evlogimenos7b6ec602004-09-20 06:42:58 +00006098 // from/to. If so, the previous load or store would have already trapped,
6099 // so there is no harm doing an extra load (also, CSE will later eliminate
6100 // the load entirely).
Chris Lattner8a375202004-09-19 19:18:10 +00006101 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
6102
Alkis Evlogimenos7b6ec602004-09-20 06:42:58 +00006103 while (BBI != E) {
Chris Lattner8a375202004-09-19 19:18:10 +00006104 --BBI;
6105
6106 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
6107 if (LI->getOperand(0) == V) return true;
6108 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
6109 if (SI->getOperand(1) == V) return true;
Misha Brukmanfd939082005-04-21 23:48:37 +00006110
Alkis Evlogimenos7b6ec602004-09-20 06:42:58 +00006111 }
Chris Lattner8a375202004-09-19 19:18:10 +00006112 return false;
Chris Lattnerc10aced2004-09-19 18:43:46 +00006113}
6114
Chris Lattner833b8a42003-06-26 05:06:25 +00006115Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
6116 Value *Op = LI.getOperand(0);
Chris Lattner5f16a132004-01-12 04:13:56 +00006117
Chris Lattner37366c12005-05-01 04:24:53 +00006118 // load (cast X) --> cast (load X) iff safe
6119 if (CastInst *CI = dyn_cast<CastInst>(Op))
6120 if (Instruction *Res = InstCombineLoadCast(*this, LI))
6121 return Res;
6122
6123 // None of the following transforms are legal for volatile loads.
6124 if (LI.isVolatile()) return 0;
Chris Lattner62f254d2005-09-12 22:00:15 +00006125
Chris Lattner62f254d2005-09-12 22:00:15 +00006126 if (&LI.getParent()->front() != &LI) {
6127 BasicBlock::iterator BBI = &LI; --BBI;
Chris Lattner9c1f0fd2005-09-12 22:21:03 +00006128 // If the instruction immediately before this is a store to the same
6129 // address, do a simple form of store->load forwarding.
Chris Lattner62f254d2005-09-12 22:00:15 +00006130 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
6131 if (SI->getOperand(1) == LI.getOperand(0))
6132 return ReplaceInstUsesWith(LI, SI->getOperand(0));
Chris Lattner9c1f0fd2005-09-12 22:21:03 +00006133 if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
6134 if (LIB->getOperand(0) == LI.getOperand(0))
6135 return ReplaceInstUsesWith(LI, LIB);
Chris Lattner62f254d2005-09-12 22:00:15 +00006136 }
Chris Lattner37366c12005-05-01 04:24:53 +00006137
6138 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op))
6139 if (isa<ConstantPointerNull>(GEPI->getOperand(0)) ||
6140 isa<UndefValue>(GEPI->getOperand(0))) {
6141 // Insert a new store to null instruction before the load to indicate
6142 // that this code is not reachable. We do this instead of inserting
6143 // an unreachable instruction directly because we cannot modify the
6144 // CFG.
6145 new StoreInst(UndefValue::get(LI.getType()),
6146 Constant::getNullValue(Op->getType()), &LI);
6147 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
6148 }
6149
Chris Lattnere87597f2004-10-16 18:11:37 +00006150 if (Constant *C = dyn_cast<Constant>(Op)) {
Chris Lattner37366c12005-05-01 04:24:53 +00006151 // load null/undef -> undef
6152 if ((C->isNullValue() || isa<UndefValue>(C))) {
Chris Lattner17be6352004-10-18 02:59:09 +00006153 // Insert a new store to null instruction before the load to indicate that
6154 // this code is not reachable. We do this instead of inserting an
6155 // unreachable instruction directly because we cannot modify the CFG.
Chris Lattner37366c12005-05-01 04:24:53 +00006156 new StoreInst(UndefValue::get(LI.getType()),
6157 Constant::getNullValue(Op->getType()), &LI);
Chris Lattnere87597f2004-10-16 18:11:37 +00006158 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
Chris Lattner17be6352004-10-18 02:59:09 +00006159 }
Chris Lattner833b8a42003-06-26 05:06:25 +00006160
Chris Lattnere87597f2004-10-16 18:11:37 +00006161 // Instcombine load (constant global) into the value loaded.
6162 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
6163 if (GV->isConstant() && !GV->isExternal())
6164 return ReplaceInstUsesWith(LI, GV->getInitializer());
Misha Brukmanfd939082005-04-21 23:48:37 +00006165
Chris Lattnere87597f2004-10-16 18:11:37 +00006166 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
6167 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
6168 if (CE->getOpcode() == Instruction::GetElementPtr) {
6169 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
6170 if (GV->isConstant() && !GV->isExternal())
Chris Lattner363f2a22005-09-26 05:28:06 +00006171 if (Constant *V =
6172 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
Chris Lattnere87597f2004-10-16 18:11:37 +00006173 return ReplaceInstUsesWith(LI, V);
Chris Lattner37366c12005-05-01 04:24:53 +00006174 if (CE->getOperand(0)->isNullValue()) {
6175 // Insert a new store to null instruction before the load to indicate
6176 // that this code is not reachable. We do this instead of inserting
6177 // an unreachable instruction directly because we cannot modify the
6178 // CFG.
6179 new StoreInst(UndefValue::get(LI.getType()),
6180 Constant::getNullValue(Op->getType()), &LI);
6181 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
6182 }
6183
Chris Lattnere87597f2004-10-16 18:11:37 +00006184 } else if (CE->getOpcode() == Instruction::Cast) {
6185 if (Instruction *Res = InstCombineLoadCast(*this, LI))
6186 return Res;
6187 }
6188 }
Chris Lattnerf499eac2004-04-08 20:39:49 +00006189
Chris Lattner37366c12005-05-01 04:24:53 +00006190 if (Op->hasOneUse()) {
Chris Lattnerc10aced2004-09-19 18:43:46 +00006191 // Change select and PHI nodes to select values instead of addresses: this
6192 // helps alias analysis out a lot, allows many others simplifications, and
6193 // exposes redundancy in the code.
6194 //
6195 // Note that we cannot do the transformation unless we know that the
6196 // introduced loads cannot trap! Something like this is valid as long as
6197 // the condition is always false: load (select bool %C, int* null, int* %G),
6198 // but it would not be valid if we transformed it to load from null
6199 // unconditionally.
6200 //
6201 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
6202 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
Chris Lattner8a375202004-09-19 19:18:10 +00006203 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
6204 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
Chris Lattnerc10aced2004-09-19 18:43:46 +00006205 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
Chris Lattner79f0c8e2004-09-20 10:15:10 +00006206 SI->getOperand(1)->getName()+".val"), LI);
Chris Lattnerc10aced2004-09-19 18:43:46 +00006207 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
Chris Lattner79f0c8e2004-09-20 10:15:10 +00006208 SI->getOperand(2)->getName()+".val"), LI);
Chris Lattnerc10aced2004-09-19 18:43:46 +00006209 return new SelectInst(SI->getCondition(), V1, V2);
6210 }
6211
Chris Lattner684fe212004-09-23 15:46:00 +00006212 // load (select (cond, null, P)) -> load P
6213 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
6214 if (C->isNullValue()) {
6215 LI.setOperand(0, SI->getOperand(2));
6216 return &LI;
6217 }
6218
6219 // load (select (cond, P, null)) -> load P
6220 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
6221 if (C->isNullValue()) {
6222 LI.setOperand(0, SI->getOperand(1));
6223 return &LI;
6224 }
6225
Chris Lattnerc10aced2004-09-19 18:43:46 +00006226 } else if (PHINode *PN = dyn_cast<PHINode>(Op)) {
6227 // load (phi (&V1, &V2, &V3)) --> phi(load &V1, load &V2, load &V3)
Chris Lattner79f0c8e2004-09-20 10:15:10 +00006228 bool Safe = PN->getParent() == LI.getParent();
6229
6230 // Scan all of the instructions between the PHI and the load to make
6231 // sure there are no instructions that might possibly alter the value
6232 // loaded from the PHI.
6233 if (Safe) {
6234 BasicBlock::iterator I = &LI;
6235 for (--I; !isa<PHINode>(I); --I)
6236 if (isa<StoreInst>(I) || isa<CallInst>(I)) {
6237 Safe = false;
6238 break;
6239 }
6240 }
6241
6242 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e && Safe; ++i)
Chris Lattner8a375202004-09-19 19:18:10 +00006243 if (!isSafeToLoadUnconditionally(PN->getIncomingValue(i),
Chris Lattner79f0c8e2004-09-20 10:15:10 +00006244 PN->getIncomingBlock(i)->getTerminator()))
Chris Lattnerc10aced2004-09-19 18:43:46 +00006245 Safe = false;
Chris Lattner79f0c8e2004-09-20 10:15:10 +00006246
Chris Lattnerc10aced2004-09-19 18:43:46 +00006247 if (Safe) {
6248 // Create the PHI.
6249 PHINode *NewPN = new PHINode(LI.getType(), PN->getName());
6250 InsertNewInstBefore(NewPN, *PN);
6251 std::map<BasicBlock*,Value*> LoadMap; // Don't insert duplicate loads
6252
6253 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6254 BasicBlock *BB = PN->getIncomingBlock(i);
6255 Value *&TheLoad = LoadMap[BB];
6256 if (TheLoad == 0) {
6257 Value *InVal = PN->getIncomingValue(i);
6258 TheLoad = InsertNewInstBefore(new LoadInst(InVal,
6259 InVal->getName()+".val"),
6260 *BB->getTerminator());
6261 }
6262 NewPN->addIncoming(TheLoad, BB);
6263 }
6264 return ReplaceInstUsesWith(LI, NewPN);
6265 }
6266 }
6267 }
Chris Lattner833b8a42003-06-26 05:06:25 +00006268 return 0;
6269}
6270
Chris Lattnerfcfe33a2005-01-31 05:51:45 +00006271/// InstCombineStoreToCast - Fold 'store V, (cast P)' -> store (cast V), P'
6272/// when possible.
6273static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
6274 User *CI = cast<User>(SI.getOperand(1));
6275 Value *CastOp = CI->getOperand(0);
6276
6277 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
6278 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
6279 const Type *SrcPTy = SrcTy->getElementType();
6280
6281 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
6282 // If the source is an array, the code below will not succeed. Check to
6283 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
6284 // constants.
6285 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
6286 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
6287 if (ASrcTy->getNumElements() != 0) {
6288 std::vector<Value*> Idxs(2, Constant::getNullValue(Type::IntTy));
6289 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
6290 SrcTy = cast<PointerType>(CastOp->getType());
6291 SrcPTy = SrcTy->getElementType();
6292 }
6293
6294 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
Misha Brukmanfd939082005-04-21 23:48:37 +00006295 IC.getTargetData().getTypeSize(SrcPTy) ==
Chris Lattnerfcfe33a2005-01-31 05:51:45 +00006296 IC.getTargetData().getTypeSize(DestPTy)) {
6297
6298 // Okay, we are casting from one integer or pointer type to another of
6299 // the same size. Instead of casting the pointer before the store, cast
6300 // the value to be stored.
6301 Value *NewCast;
6302 if (Constant *C = dyn_cast<Constant>(SI.getOperand(0)))
6303 NewCast = ConstantExpr::getCast(C, SrcPTy);
6304 else
6305 NewCast = IC.InsertNewInstBefore(new CastInst(SI.getOperand(0),
6306 SrcPTy,
6307 SI.getOperand(0)->getName()+".c"), SI);
6308
6309 return new StoreInst(NewCast, CastOp);
6310 }
6311 }
6312 }
6313 return 0;
6314}
6315
Chris Lattner2f503e62005-01-31 05:36:43 +00006316Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
6317 Value *Val = SI.getOperand(0);
6318 Value *Ptr = SI.getOperand(1);
6319
6320 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
Chris Lattner9ca96412006-02-08 03:25:32 +00006321 EraseInstFromFunction(SI);
Chris Lattner2f503e62005-01-31 05:36:43 +00006322 ++NumCombined;
6323 return 0;
6324 }
6325
Chris Lattner9ca96412006-02-08 03:25:32 +00006326 // Do really simple DSE, to catch cases where there are several consequtive
6327 // stores to the same location, separated by a few arithmetic operations. This
6328 // situation often occurs with bitfield accesses.
6329 BasicBlock::iterator BBI = &SI;
6330 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
6331 --ScanInsts) {
6332 --BBI;
6333
6334 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
6335 // Prev store isn't volatile, and stores to the same location?
6336 if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
6337 ++NumDeadStore;
6338 ++BBI;
6339 EraseInstFromFunction(*PrevSI);
6340 continue;
6341 }
6342 break;
6343 }
6344
6345 // Don't skip over loads or things that can modify memory.
6346 if (BBI->mayWriteToMemory() || isa<LoadInst>(BBI))
6347 break;
6348 }
6349
6350
6351 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
Chris Lattner2f503e62005-01-31 05:36:43 +00006352
6353 // store X, null -> turns into 'unreachable' in SimplifyCFG
6354 if (isa<ConstantPointerNull>(Ptr)) {
6355 if (!isa<UndefValue>(Val)) {
6356 SI.setOperand(0, UndefValue::get(Val->getType()));
6357 if (Instruction *U = dyn_cast<Instruction>(Val))
6358 WorkList.push_back(U); // Dropped a use.
6359 ++NumCombined;
6360 }
6361 return 0; // Do not modify these!
6362 }
6363
6364 // store undef, Ptr -> noop
6365 if (isa<UndefValue>(Val)) {
Chris Lattner9ca96412006-02-08 03:25:32 +00006366 EraseInstFromFunction(SI);
Chris Lattner2f503e62005-01-31 05:36:43 +00006367 ++NumCombined;
6368 return 0;
6369 }
6370
Chris Lattnerfcfe33a2005-01-31 05:51:45 +00006371 // If the pointer destination is a cast, see if we can fold the cast into the
6372 // source instead.
6373 if (CastInst *CI = dyn_cast<CastInst>(Ptr))
6374 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
6375 return Res;
6376 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
6377 if (CE->getOpcode() == Instruction::Cast)
6378 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
6379 return Res;
6380
Chris Lattner408902b2005-09-12 23:23:25 +00006381
6382 // If this store is the last instruction in the basic block, and if the block
6383 // ends with an unconditional branch, try to move it to the successor block.
Chris Lattner9ca96412006-02-08 03:25:32 +00006384 BBI = &SI; ++BBI;
Chris Lattner408902b2005-09-12 23:23:25 +00006385 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
6386 if (BI->isUnconditional()) {
6387 // Check to see if the successor block has exactly two incoming edges. If
6388 // so, see if the other predecessor contains a store to the same location.
6389 // if so, insert a PHI node (if needed) and move the stores down.
6390 BasicBlock *Dest = BI->getSuccessor(0);
6391
6392 pred_iterator PI = pred_begin(Dest);
6393 BasicBlock *Other = 0;
6394 if (*PI != BI->getParent())
6395 Other = *PI;
6396 ++PI;
6397 if (PI != pred_end(Dest)) {
6398 if (*PI != BI->getParent())
6399 if (Other)
6400 Other = 0;
6401 else
6402 Other = *PI;
6403 if (++PI != pred_end(Dest))
6404 Other = 0;
6405 }
6406 if (Other) { // If only one other pred...
6407 BBI = Other->getTerminator();
6408 // Make sure this other block ends in an unconditional branch and that
6409 // there is an instruction before the branch.
6410 if (isa<BranchInst>(BBI) && cast<BranchInst>(BBI)->isUnconditional() &&
6411 BBI != Other->begin()) {
6412 --BBI;
6413 StoreInst *OtherStore = dyn_cast<StoreInst>(BBI);
6414
6415 // If this instruction is a store to the same location.
6416 if (OtherStore && OtherStore->getOperand(1) == SI.getOperand(1)) {
6417 // Okay, we know we can perform this transformation. Insert a PHI
6418 // node now if we need it.
6419 Value *MergedVal = OtherStore->getOperand(0);
6420 if (MergedVal != SI.getOperand(0)) {
6421 PHINode *PN = new PHINode(MergedVal->getType(), "storemerge");
6422 PN->reserveOperandSpace(2);
6423 PN->addIncoming(SI.getOperand(0), SI.getParent());
6424 PN->addIncoming(OtherStore->getOperand(0), Other);
6425 MergedVal = InsertNewInstBefore(PN, Dest->front());
6426 }
6427
6428 // Advance to a place where it is safe to insert the new store and
6429 // insert it.
6430 BBI = Dest->begin();
6431 while (isa<PHINode>(BBI)) ++BBI;
6432 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
6433 OtherStore->isVolatile()), *BBI);
6434
6435 // Nuke the old stores.
Chris Lattner9ca96412006-02-08 03:25:32 +00006436 EraseInstFromFunction(SI);
6437 EraseInstFromFunction(*OtherStore);
Chris Lattner408902b2005-09-12 23:23:25 +00006438 ++NumCombined;
6439 return 0;
6440 }
6441 }
6442 }
6443 }
6444
Chris Lattner2f503e62005-01-31 05:36:43 +00006445 return 0;
6446}
6447
6448
Chris Lattnerc4d10eb2003-06-04 04:46:00 +00006449Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
6450 // Change br (not X), label True, label False to: br X, label False, True
Reid Spencer4b828e62005-06-18 17:37:34 +00006451 Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00006452 BasicBlock *TrueDest;
6453 BasicBlock *FalseDest;
6454 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
6455 !isa<Constant>(X)) {
6456 // Swap Destinations and condition...
6457 BI.setCondition(X);
6458 BI.setSuccessor(0, FalseDest);
6459 BI.setSuccessor(1, TrueDest);
6460 return &BI;
6461 }
6462
6463 // Cannonicalize setne -> seteq
6464 Instruction::BinaryOps Op; Value *Y;
6465 if (match(&BI, m_Br(m_SetCond(Op, m_Value(X), m_Value(Y)),
6466 TrueDest, FalseDest)))
6467 if ((Op == Instruction::SetNE || Op == Instruction::SetLE ||
6468 Op == Instruction::SetGE) && BI.getCondition()->hasOneUse()) {
6469 SetCondInst *I = cast<SetCondInst>(BI.getCondition());
6470 std::string Name = I->getName(); I->setName("");
6471 Instruction::BinaryOps NewOpcode = SetCondInst::getInverseCondition(Op);
6472 Value *NewSCC = BinaryOperator::create(NewOpcode, X, Y, Name, I);
Chris Lattner40f5d702003-06-04 05:10:11 +00006473 // Swap Destinations and condition...
Chris Lattneracd1f0f2004-07-30 07:50:03 +00006474 BI.setCondition(NewSCC);
Chris Lattner40f5d702003-06-04 05:10:11 +00006475 BI.setSuccessor(0, FalseDest);
6476 BI.setSuccessor(1, TrueDest);
Chris Lattneracd1f0f2004-07-30 07:50:03 +00006477 removeFromWorkList(I);
6478 I->getParent()->getInstList().erase(I);
6479 WorkList.push_back(cast<Instruction>(NewSCC));
Chris Lattner40f5d702003-06-04 05:10:11 +00006480 return &BI;
6481 }
Misha Brukmanfd939082005-04-21 23:48:37 +00006482
Chris Lattnerc4d10eb2003-06-04 04:46:00 +00006483 return 0;
6484}
Chris Lattner0864acf2002-11-04 16:18:53 +00006485
Chris Lattner46238a62004-07-03 00:26:11 +00006486Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
6487 Value *Cond = SI.getCondition();
6488 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
6489 if (I->getOpcode() == Instruction::Add)
6490 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
6491 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
6492 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
Chris Lattnere87597f2004-10-16 18:11:37 +00006493 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
Chris Lattner46238a62004-07-03 00:26:11 +00006494 AddRHS));
6495 SI.setOperand(0, I->getOperand(0));
6496 WorkList.push_back(I);
6497 return &SI;
6498 }
6499 }
6500 return 0;
6501}
6502
Robert Bocchino1d7456d2006-01-13 22:48:06 +00006503Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
6504 if (ConstantAggregateZero *C =
6505 dyn_cast<ConstantAggregateZero>(EI.getOperand(0))) {
6506 // If packed val is constant 0, replace extract with scalar 0
6507 const Type *Ty = cast<PackedType>(C->getType())->getElementType();
6508 EI.replaceAllUsesWith(Constant::getNullValue(Ty));
6509 return ReplaceInstUsesWith(EI, Constant::getNullValue(Ty));
6510 }
6511 if (ConstantPacked *C = dyn_cast<ConstantPacked>(EI.getOperand(0))) {
6512 // If packed val is constant with uniform operands, replace EI
6513 // with that operand
6514 Constant *op0 = cast<Constant>(C->getOperand(0));
6515 for (unsigned i = 1; i < C->getNumOperands(); ++i)
6516 if (C->getOperand(i) != op0) return 0;
6517 return ReplaceInstUsesWith(EI, op0);
6518 }
6519 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0)))
6520 if (I->hasOneUse()) {
6521 // Push extractelement into predecessor operation if legal and
6522 // profitable to do so
6523 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
6524 if (!isa<Constant>(BO->getOperand(0)) &&
6525 !isa<Constant>(BO->getOperand(1)))
6526 return 0;
6527 ExtractElementInst *newEI0 =
6528 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
6529 EI.getName());
6530 ExtractElementInst *newEI1 =
6531 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
6532 EI.getName());
6533 InsertNewInstBefore(newEI0, EI);
6534 InsertNewInstBefore(newEI1, EI);
6535 return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1);
6536 }
6537 switch(I->getOpcode()) {
6538 case Instruction::Load: {
6539 Value *Ptr = InsertCastBefore(I->getOperand(0),
6540 PointerType::get(EI.getType()), EI);
6541 GetElementPtrInst *GEP =
6542 new GetElementPtrInst(Ptr, EI.getOperand(1),
6543 I->getName() + ".gep");
6544 InsertNewInstBefore(GEP, EI);
6545 return new LoadInst(GEP);
6546 }
6547 default:
6548 return 0;
6549 }
6550 }
6551 return 0;
6552}
6553
6554
Chris Lattner62b14df2002-09-02 04:59:56 +00006555void InstCombiner::removeFromWorkList(Instruction *I) {
6556 WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I),
6557 WorkList.end());
6558}
6559
Chris Lattnerea1c4542004-12-08 23:43:58 +00006560
6561/// TryToSinkInstruction - Try to move the specified instruction from its
6562/// current block into the beginning of DestBlock, which can only happen if it's
6563/// safe to move the instruction past all of the instructions between it and the
6564/// end of its block.
6565static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
6566 assert(I->hasOneUse() && "Invariants didn't hold!");
6567
Chris Lattner108e9022005-10-27 17:13:11 +00006568 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
6569 if (isa<PHINode>(I) || I->mayWriteToMemory()) return false;
Misha Brukmanfd939082005-04-21 23:48:37 +00006570
Chris Lattnerea1c4542004-12-08 23:43:58 +00006571 // Do not sink alloca instructions out of the entry block.
6572 if (isa<AllocaInst>(I) && I->getParent() == &DestBlock->getParent()->front())
6573 return false;
6574
Chris Lattner96a52a62004-12-09 07:14:34 +00006575 // We can only sink load instructions if there is nothing between the load and
6576 // the end of block that could change the value.
6577 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Chris Lattner96a52a62004-12-09 07:14:34 +00006578 for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
6579 Scan != E; ++Scan)
6580 if (Scan->mayWriteToMemory())
6581 return false;
Chris Lattner96a52a62004-12-09 07:14:34 +00006582 }
Chris Lattnerea1c4542004-12-08 23:43:58 +00006583
6584 BasicBlock::iterator InsertPos = DestBlock->begin();
6585 while (isa<PHINode>(InsertPos)) ++InsertPos;
6586
Chris Lattner4bc5f802005-08-08 19:11:57 +00006587 I->moveBefore(InsertPos);
Chris Lattnerea1c4542004-12-08 23:43:58 +00006588 ++NumSunkInst;
6589 return true;
6590}
6591
Chris Lattner7e708292002-06-25 16:13:24 +00006592bool InstCombiner::runOnFunction(Function &F) {
Chris Lattnerdd841ae2002-04-18 17:39:14 +00006593 bool Changed = false;
Chris Lattnerbc61e662003-11-02 05:57:39 +00006594 TD = &getAnalysis<TargetData>();
Chris Lattner8a2a3112001-12-14 16:52:21 +00006595
Chris Lattnerb3d59702005-07-07 20:40:38 +00006596 {
6597 // Populate the worklist with the reachable instructions.
6598 std::set<BasicBlock*> Visited;
6599 for (df_ext_iterator<BasicBlock*> BB = df_ext_begin(&F.front(), Visited),
6600 E = df_ext_end(&F.front(), Visited); BB != E; ++BB)
6601 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
6602 WorkList.push_back(I);
Jeff Cohen00b168892005-07-27 06:12:32 +00006603
Chris Lattnerb3d59702005-07-07 20:40:38 +00006604 // Do a quick scan over the function. If we find any blocks that are
6605 // unreachable, remove any instructions inside of them. This prevents
6606 // the instcombine code from having to deal with some bad special cases.
6607 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
6608 if (!Visited.count(BB)) {
6609 Instruction *Term = BB->getTerminator();
6610 while (Term != BB->begin()) { // Remove instrs bottom-up
6611 BasicBlock::iterator I = Term; --I;
Chris Lattner6ffe5512004-04-27 15:13:33 +00006612
Chris Lattnerb3d59702005-07-07 20:40:38 +00006613 DEBUG(std::cerr << "IC: DCE: " << *I);
6614 ++NumDeadInst;
6615
6616 if (!I->use_empty())
6617 I->replaceAllUsesWith(UndefValue::get(I->getType()));
6618 I->eraseFromParent();
6619 }
6620 }
6621 }
Chris Lattner8a2a3112001-12-14 16:52:21 +00006622
6623 while (!WorkList.empty()) {
6624 Instruction *I = WorkList.back(); // Get an instruction from the worklist
6625 WorkList.pop_back();
6626
Misha Brukmana3bbcb52002-10-29 23:06:16 +00006627 // Check to see if we can DCE or ConstantPropagate the instruction...
Chris Lattner62b14df2002-09-02 04:59:56 +00006628 // Check to see if we can DIE the instruction...
6629 if (isInstructionTriviallyDead(I)) {
6630 // Add operands to the worklist...
Chris Lattner4bb7c022003-10-06 17:11:01 +00006631 if (I->getNumOperands() < 4)
Chris Lattner7bcc0e72004-02-28 05:22:00 +00006632 AddUsesToWorkList(*I);
Chris Lattner62b14df2002-09-02 04:59:56 +00006633 ++NumDeadInst;
Chris Lattner4bb7c022003-10-06 17:11:01 +00006634
Chris Lattnerad5fec12005-01-28 19:32:01 +00006635 DEBUG(std::cerr << "IC: DCE: " << *I);
6636
6637 I->eraseFromParent();
Chris Lattner4bb7c022003-10-06 17:11:01 +00006638 removeFromWorkList(I);
6639 continue;
6640 }
Chris Lattner62b14df2002-09-02 04:59:56 +00006641
Misha Brukmana3bbcb52002-10-29 23:06:16 +00006642 // Instruction isn't dead, see if we can constant propagate it...
Chris Lattner62b14df2002-09-02 04:59:56 +00006643 if (Constant *C = ConstantFoldInstruction(I)) {
Alkis Evlogimenos54a96a22004-12-08 23:10:30 +00006644 Value* Ptr = I->getOperand(0);
Chris Lattner061718c2004-10-16 19:44:59 +00006645 if (isa<GetElementPtrInst>(I) &&
Alkis Evlogimenos54a96a22004-12-08 23:10:30 +00006646 cast<Constant>(Ptr)->isNullValue() &&
6647 !isa<ConstantPointerNull>(C) &&
6648 cast<PointerType>(Ptr->getType())->getElementType()->isSized()) {
Chris Lattner061718c2004-10-16 19:44:59 +00006649 // If this is a constant expr gep that is effectively computing an
6650 // "offsetof", fold it into 'cast int X to T*' instead of 'gep 0, 0, 12'
6651 bool isFoldableGEP = true;
6652 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
6653 if (!isa<ConstantInt>(I->getOperand(i)))
6654 isFoldableGEP = false;
6655 if (isFoldableGEP) {
Alkis Evlogimenos54a96a22004-12-08 23:10:30 +00006656 uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
Chris Lattner061718c2004-10-16 19:44:59 +00006657 std::vector<Value*>(I->op_begin()+1, I->op_end()));
6658 C = ConstantUInt::get(Type::ULongTy, Offset);
Chris Lattner6e758ae2004-10-16 19:46:33 +00006659 C = ConstantExpr::getCast(C, TD->getIntPtrType());
Chris Lattner061718c2004-10-16 19:44:59 +00006660 C = ConstantExpr::getCast(C, I->getType());
6661 }
6662 }
6663
Chris Lattnerad5fec12005-01-28 19:32:01 +00006664 DEBUG(std::cerr << "IC: ConstFold to: " << *C << " from: " << *I);
6665
Chris Lattner62b14df2002-09-02 04:59:56 +00006666 // Add operands to the worklist...
Chris Lattner7bcc0e72004-02-28 05:22:00 +00006667 AddUsesToWorkList(*I);
Chris Lattnerc736d562002-12-05 22:41:53 +00006668 ReplaceInstUsesWith(*I, C);
6669
Chris Lattner62b14df2002-09-02 04:59:56 +00006670 ++NumConstProp;
Chris Lattner4bb7c022003-10-06 17:11:01 +00006671 I->getParent()->getInstList().erase(I);
Chris Lattner60610002003-10-07 15:17:02 +00006672 removeFromWorkList(I);
Chris Lattner4bb7c022003-10-06 17:11:01 +00006673 continue;
Chris Lattner62b14df2002-09-02 04:59:56 +00006674 }
Chris Lattner4bb7c022003-10-06 17:11:01 +00006675
Chris Lattnerea1c4542004-12-08 23:43:58 +00006676 // See if we can trivially sink this instruction to a successor basic block.
6677 if (I->hasOneUse()) {
6678 BasicBlock *BB = I->getParent();
6679 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
6680 if (UserParent != BB) {
6681 bool UserIsSuccessor = false;
6682 // See if the user is one of our successors.
6683 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
6684 if (*SI == UserParent) {
6685 UserIsSuccessor = true;
6686 break;
6687 }
6688
6689 // If the user is one of our immediate successors, and if that successor
6690 // only has us as a predecessors (we'd have to split the critical edge
6691 // otherwise), we can keep going.
6692 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
6693 next(pred_begin(UserParent)) == pred_end(UserParent))
6694 // Okay, the CFG is simple enough, try to sink this instruction.
6695 Changed |= TryToSinkInstruction(I, UserParent);
6696 }
6697 }
6698
Chris Lattner8a2a3112001-12-14 16:52:21 +00006699 // Now that we have an instruction, try combining it to simplify it...
Chris Lattner90ac28c2002-08-02 19:29:35 +00006700 if (Instruction *Result = visit(*I)) {
Chris Lattner3dec1f22002-05-10 15:38:35 +00006701 ++NumCombined;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00006702 // Should we replace the old instruction with a new one?
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +00006703 if (Result != I) {
Chris Lattner0cea42a2004-03-13 23:54:27 +00006704 DEBUG(std::cerr << "IC: Old = " << *I
6705 << " New = " << *Result);
6706
Chris Lattnerf523d062004-06-09 05:08:07 +00006707 // Everything uses the new instruction now.
6708 I->replaceAllUsesWith(Result);
6709
6710 // Push the new instruction and any users onto the worklist.
6711 WorkList.push_back(Result);
6712 AddUsersToWorkList(*Result);
Chris Lattner4bb7c022003-10-06 17:11:01 +00006713
6714 // Move the name to the new instruction first...
6715 std::string OldName = I->getName(); I->setName("");
Chris Lattnerd558dc32003-10-07 22:58:41 +00006716 Result->setName(OldName);
Chris Lattner4bb7c022003-10-06 17:11:01 +00006717
6718 // Insert the new instruction into the basic block...
6719 BasicBlock *InstParent = I->getParent();
Chris Lattnerbac32862004-11-14 19:13:23 +00006720 BasicBlock::iterator InsertPos = I;
6721
6722 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
6723 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
6724 ++InsertPos;
6725
6726 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattner4bb7c022003-10-06 17:11:01 +00006727
Chris Lattner00d51312004-05-01 23:27:23 +00006728 // Make sure that we reprocess all operands now that we reduced their
6729 // use counts.
Chris Lattner216d4d82004-05-01 23:19:52 +00006730 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
6731 if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
6732 WorkList.push_back(OpI);
6733
Chris Lattnerf523d062004-06-09 05:08:07 +00006734 // Instructions can end up on the worklist more than once. Make sure
6735 // we do not process an instruction that has been deleted.
6736 removeFromWorkList(I);
Chris Lattner4bb7c022003-10-06 17:11:01 +00006737
6738 // Erase the old instruction.
6739 InstParent->getInstList().erase(I);
Chris Lattner7e708292002-06-25 16:13:24 +00006740 } else {
Chris Lattner0cea42a2004-03-13 23:54:27 +00006741 DEBUG(std::cerr << "IC: MOD = " << *I);
6742
Chris Lattner90ac28c2002-08-02 19:29:35 +00006743 // If the instruction was modified, it's possible that it is now dead.
6744 // if so, remove it.
Chris Lattner00d51312004-05-01 23:27:23 +00006745 if (isInstructionTriviallyDead(I)) {
6746 // Make sure we process all operands now that we are reducing their
6747 // use counts.
6748 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
6749 if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
6750 WorkList.push_back(OpI);
Misha Brukmanfd939082005-04-21 23:48:37 +00006751
Chris Lattner00d51312004-05-01 23:27:23 +00006752 // Instructions may end up in the worklist more than once. Erase all
Robert Bocchino1d7456d2006-01-13 22:48:06 +00006753 // occurrences of this instruction.
Chris Lattner62b14df2002-09-02 04:59:56 +00006754 removeFromWorkList(I);
Chris Lattner2f503e62005-01-31 05:36:43 +00006755 I->eraseFromParent();
Chris Lattnerf523d062004-06-09 05:08:07 +00006756 } else {
6757 WorkList.push_back(Result);
6758 AddUsersToWorkList(*Result);
Chris Lattner90ac28c2002-08-02 19:29:35 +00006759 }
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +00006760 }
Chris Lattnerdd841ae2002-04-18 17:39:14 +00006761 Changed = true;
Chris Lattner8a2a3112001-12-14 16:52:21 +00006762 }
6763 }
6764
Chris Lattnerdd841ae2002-04-18 17:39:14 +00006765 return Changed;
Chris Lattnerbd0ef772002-02-26 21:46:54 +00006766}
6767
Brian Gaeke96d4bf72004-07-27 17:43:21 +00006768FunctionPass *llvm::createInstructionCombiningPass() {
Chris Lattnerdd841ae2002-04-18 17:39:14 +00006769 return new InstCombiner();
Chris Lattnerbd0ef772002-02-26 21:46:54 +00006770}
Brian Gaeked0fde302003-11-11 22:41:34 +00006771