blob: 2e2648ff06cda296dac977662f543a159d895cb0 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken. If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/Debug.h"
Chris Lattnerbdf77462007-09-13 16:30:19 +000029#include "llvm/ADT/SmallPtrSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/StringExtras.h"
33#include <algorithm>
34#include <set>
35using namespace llvm;
36
37STATISTIC(NumMarked , "Number of globals marked constant");
38STATISTIC(NumSRA , "Number of aggregate globals broken into scalars");
39STATISTIC(NumHeapSRA , "Number of heap objects SRA'd");
40STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
41STATISTIC(NumDeleted , "Number of globals deleted");
42STATISTIC(NumFnDeleted , "Number of functions deleted");
43STATISTIC(NumGlobUses , "Number of global uses devirtualized");
44STATISTIC(NumLocalized , "Number of globals localized");
45STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans");
46STATISTIC(NumFastCallFns , "Number of functions converted to fastcc");
47STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
48
49namespace {
50 struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
51 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
52 AU.addRequired<TargetData>();
53 }
54 static char ID; // Pass identification, replacement for typeid
55 GlobalOpt() : ModulePass((intptr_t)&ID) {}
56
57 bool runOnModule(Module &M);
58
59 private:
60 GlobalVariable *FindGlobalCtors(Module &M);
61 bool OptimizeFunctions(Module &M);
62 bool OptimizeGlobalVars(Module &M);
63 bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
64 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
65 };
66
67 char GlobalOpt::ID = 0;
68 RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
69}
70
71ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
72
73/// GlobalStatus - As we analyze each global, keep track of some information
74/// about it. If we find out that the address of the global is taken, none of
75/// this info will be accurate.
76struct VISIBILITY_HIDDEN GlobalStatus {
77 /// isLoaded - True if the global is ever loaded. If the global isn't ever
78 /// loaded it can be deleted.
79 bool isLoaded;
80
81 /// StoredType - Keep track of what stores to the global look like.
82 ///
83 enum StoredType {
84 /// NotStored - There is no store to this global. It can thus be marked
85 /// constant.
86 NotStored,
87
88 /// isInitializerStored - This global is stored to, but the only thing
89 /// stored is the constant it was initialized with. This is only tracked
90 /// for scalar globals.
91 isInitializerStored,
92
93 /// isStoredOnce - This global is stored to, but only its initializer and
94 /// one other value is ever stored to it. If this global isStoredOnce, we
95 /// track the value stored to it in StoredOnceValue below. This is only
96 /// tracked for scalar globals.
97 isStoredOnce,
98
99 /// isStored - This global is stored to by multiple values or something else
100 /// that we cannot track.
101 isStored
102 } StoredType;
103
104 /// StoredOnceValue - If only one value (besides the initializer constant) is
105 /// ever stored to this global, keep track of what value it is.
106 Value *StoredOnceValue;
107
108 /// AccessingFunction/HasMultipleAccessingFunctions - These start out
109 /// null/false. When the first accessing function is noticed, it is recorded.
110 /// When a second different accessing function is noticed,
111 /// HasMultipleAccessingFunctions is set to true.
112 Function *AccessingFunction;
113 bool HasMultipleAccessingFunctions;
114
115 /// HasNonInstructionUser - Set to true if this global has a user that is not
116 /// an instruction (e.g. a constant expr or GV initializer).
117 bool HasNonInstructionUser;
118
119 /// HasPHIUser - Set to true if this global has a user that is a PHI node.
120 bool HasPHIUser;
121
122 /// isNotSuitableForSRA - Keep track of whether any SRA preventing users of
123 /// the global exist. Such users include GEP instruction with variable
124 /// indexes, and non-gep/load/store users like constant expr casts.
125 bool isNotSuitableForSRA;
126
127 GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
128 AccessingFunction(0), HasMultipleAccessingFunctions(false),
129 HasNonInstructionUser(false), HasPHIUser(false),
130 isNotSuitableForSRA(false) {}
131};
132
133
134
135/// ConstantIsDead - Return true if the specified constant is (transitively)
136/// dead. The constant may be used by other constants (e.g. constant arrays and
137/// constant exprs) as long as they are dead, but it cannot be used by anything
138/// else.
139static bool ConstantIsDead(Constant *C) {
140 if (isa<GlobalValue>(C)) return false;
141
142 for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
143 if (Constant *CU = dyn_cast<Constant>(*UI)) {
144 if (!ConstantIsDead(CU)) return false;
145 } else
146 return false;
147 return true;
148}
149
150
151/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
152/// structure. If the global has its address taken, return true to indicate we
153/// can't do anything with it.
154///
155static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
156 std::set<PHINode*> &PHIUsers) {
157 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
158 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
159 GS.HasNonInstructionUser = true;
160
161 if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
162 if (CE->getOpcode() != Instruction::GetElementPtr)
163 GS.isNotSuitableForSRA = true;
164 else if (!GS.isNotSuitableForSRA) {
165 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
166 // don't like < 3 operand CE's, and we don't like non-constant integer
167 // indices.
168 if (CE->getNumOperands() < 3 || !CE->getOperand(1)->isNullValue())
169 GS.isNotSuitableForSRA = true;
170 else {
171 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
172 if (!isa<ConstantInt>(CE->getOperand(i))) {
173 GS.isNotSuitableForSRA = true;
174 break;
175 }
176 }
177 }
178
179 } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
180 if (!GS.HasMultipleAccessingFunctions) {
181 Function *F = I->getParent()->getParent();
182 if (GS.AccessingFunction == 0)
183 GS.AccessingFunction = F;
184 else if (GS.AccessingFunction != F)
185 GS.HasMultipleAccessingFunctions = true;
186 }
187 if (isa<LoadInst>(I)) {
188 GS.isLoaded = true;
189 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
190 // Don't allow a store OF the address, only stores TO the address.
191 if (SI->getOperand(0) == V) return true;
192
193 // If this is a direct store to the global (i.e., the global is a scalar
194 // value, not an aggregate), keep more specific information about
195 // stores.
196 if (GS.StoredType != GlobalStatus::isStored)
197 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
198 Value *StoredVal = SI->getOperand(0);
199 if (StoredVal == GV->getInitializer()) {
200 if (GS.StoredType < GlobalStatus::isInitializerStored)
201 GS.StoredType = GlobalStatus::isInitializerStored;
202 } else if (isa<LoadInst>(StoredVal) &&
203 cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
204 // G = G
205 if (GS.StoredType < GlobalStatus::isInitializerStored)
206 GS.StoredType = GlobalStatus::isInitializerStored;
207 } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
208 GS.StoredType = GlobalStatus::isStoredOnce;
209 GS.StoredOnceValue = StoredVal;
210 } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
211 GS.StoredOnceValue == StoredVal) {
212 // noop.
213 } else {
214 GS.StoredType = GlobalStatus::isStored;
215 }
216 } else {
217 GS.StoredType = GlobalStatus::isStored;
218 }
219 } else if (isa<GetElementPtrInst>(I)) {
220 if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
221
222 // If the first two indices are constants, this can be SRA'd.
223 if (isa<GlobalVariable>(I->getOperand(0))) {
224 if (I->getNumOperands() < 3 || !isa<Constant>(I->getOperand(1)) ||
225 !cast<Constant>(I->getOperand(1))->isNullValue() ||
226 !isa<ConstantInt>(I->getOperand(2)))
227 GS.isNotSuitableForSRA = true;
228 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I->getOperand(0))){
229 if (CE->getOpcode() != Instruction::GetElementPtr ||
230 CE->getNumOperands() < 3 || I->getNumOperands() < 2 ||
231 !isa<Constant>(I->getOperand(0)) ||
232 !cast<Constant>(I->getOperand(0))->isNullValue())
233 GS.isNotSuitableForSRA = true;
234 } else {
235 GS.isNotSuitableForSRA = true;
236 }
237 } else if (isa<SelectInst>(I)) {
238 if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
239 GS.isNotSuitableForSRA = true;
240 } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
241 // PHI nodes we can check just like select or GEP instructions, but we
242 // have to be careful about infinite recursion.
243 if (PHIUsers.insert(PN).second) // Not already visited.
244 if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
245 GS.isNotSuitableForSRA = true;
246 GS.HasPHIUser = true;
247 } else if (isa<CmpInst>(I)) {
248 GS.isNotSuitableForSRA = true;
249 } else if (isa<MemCpyInst>(I) || isa<MemMoveInst>(I)) {
250 if (I->getOperand(1) == V)
251 GS.StoredType = GlobalStatus::isStored;
252 if (I->getOperand(2) == V)
253 GS.isLoaded = true;
254 GS.isNotSuitableForSRA = true;
255 } else if (isa<MemSetInst>(I)) {
256 assert(I->getOperand(1) == V && "Memset only takes one pointer!");
257 GS.StoredType = GlobalStatus::isStored;
258 GS.isNotSuitableForSRA = true;
259 } else {
260 return true; // Any other non-load instruction might take address!
261 }
262 } else if (Constant *C = dyn_cast<Constant>(*UI)) {
263 GS.HasNonInstructionUser = true;
264 // We might have a dead and dangling constant hanging off of here.
265 if (!ConstantIsDead(C))
266 return true;
267 } else {
268 GS.HasNonInstructionUser = true;
269 // Otherwise must be some other user.
270 return true;
271 }
272
273 return false;
274}
275
276static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
277 ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
278 if (!CI) return 0;
279 unsigned IdxV = CI->getZExtValue();
280
281 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
282 if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
283 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
284 if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
285 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
286 if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
287 } else if (isa<ConstantAggregateZero>(Agg)) {
288 if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
289 if (IdxV < STy->getNumElements())
290 return Constant::getNullValue(STy->getElementType(IdxV));
291 } else if (const SequentialType *STy =
292 dyn_cast<SequentialType>(Agg->getType())) {
293 return Constant::getNullValue(STy->getElementType());
294 }
295 } else if (isa<UndefValue>(Agg)) {
296 if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
297 if (IdxV < STy->getNumElements())
298 return UndefValue::get(STy->getElementType(IdxV));
299 } else if (const SequentialType *STy =
300 dyn_cast<SequentialType>(Agg->getType())) {
301 return UndefValue::get(STy->getElementType());
302 }
303 }
304 return 0;
305}
306
307
308/// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all
309/// users of the global, cleaning up the obvious ones. This is largely just a
310/// quick scan over the use list to clean up the easy and obvious cruft. This
311/// returns true if it made a change.
312static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
313 bool Changed = false;
314 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
315 User *U = *UI++;
316
317 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
318 if (Init) {
319 // Replace the load with the initializer.
320 LI->replaceAllUsesWith(Init);
321 LI->eraseFromParent();
322 Changed = true;
323 }
324 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
325 // Store must be unreachable or storing Init into the global.
326 SI->eraseFromParent();
327 Changed = true;
328 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
329 if (CE->getOpcode() == Instruction::GetElementPtr) {
330 Constant *SubInit = 0;
331 if (Init)
332 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
333 Changed |= CleanupConstantGlobalUsers(CE, SubInit);
334 } else if (CE->getOpcode() == Instruction::BitCast &&
335 isa<PointerType>(CE->getType())) {
336 // Pointer cast, delete any stores and memsets to the global.
337 Changed |= CleanupConstantGlobalUsers(CE, 0);
338 }
339
340 if (CE->use_empty()) {
341 CE->destroyConstant();
342 Changed = true;
343 }
344 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
Chris Lattner7ebafca2007-11-09 17:33:02 +0000345 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
346 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
347 // and will invalidate our notion of what Init is.
Chris Lattner2dd9c042007-11-13 21:46:23 +0000348 Constant *SubInit = 0;
Chris Lattner7ebafca2007-11-09 17:33:02 +0000349 if (!isa<ConstantExpr>(GEP->getOperand(0))) {
350 ConstantExpr *CE =
351 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
352 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
Chris Lattner2dd9c042007-11-13 21:46:23 +0000353 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
Chris Lattner7ebafca2007-11-09 17:33:02 +0000354 }
Chris Lattner2dd9c042007-11-13 21:46:23 +0000355 Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000356
357 if (GEP->use_empty()) {
358 GEP->eraseFromParent();
359 Changed = true;
360 }
361 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
362 if (MI->getRawDest() == V) {
363 MI->eraseFromParent();
364 Changed = true;
365 }
366
367 } else if (Constant *C = dyn_cast<Constant>(U)) {
368 // If we have a chain of dead constantexprs or other things dangling from
369 // us, and if they are all dead, nuke them without remorse.
370 if (ConstantIsDead(C)) {
371 C->destroyConstant();
372 // This could have invalidated UI, start over from scratch.
373 CleanupConstantGlobalUsers(V, Init);
374 return true;
375 }
376 }
377 }
378 return Changed;
379}
380
381/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
382/// variable. This opens the door for other optimizations by exposing the
383/// behavior of the program in a more fine-grained way. We have determined that
384/// this transformation is safe already. We return the first global variable we
385/// insert so that the caller can reprocess it.
386static GlobalVariable *SRAGlobal(GlobalVariable *GV) {
387 assert(GV->hasInternalLinkage() && !GV->isConstant());
388 Constant *Init = GV->getInitializer();
389 const Type *Ty = Init->getType();
390
391 std::vector<GlobalVariable*> NewGlobals;
392 Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
393
394 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
395 NewGlobals.reserve(STy->getNumElements());
396 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
397 Constant *In = getAggregateConstantElement(Init,
398 ConstantInt::get(Type::Int32Ty, i));
399 assert(In && "Couldn't get element of initializer?");
400 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
401 GlobalVariable::InternalLinkage,
402 In, GV->getName()+"."+utostr(i),
403 (Module *)NULL,
404 GV->isThreadLocal());
405 Globals.insert(GV, NGV);
406 NewGlobals.push_back(NGV);
407 }
408 } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
409 unsigned NumElements = 0;
410 if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
411 NumElements = ATy->getNumElements();
412 else if (const VectorType *PTy = dyn_cast<VectorType>(STy))
413 NumElements = PTy->getNumElements();
414 else
415 assert(0 && "Unknown aggregate sequential type!");
416
417 if (NumElements > 16 && GV->hasNUsesOrMore(16))
418 return 0; // It's not worth it.
419 NewGlobals.reserve(NumElements);
420 for (unsigned i = 0, e = NumElements; i != e; ++i) {
421 Constant *In = getAggregateConstantElement(Init,
422 ConstantInt::get(Type::Int32Ty, i));
423 assert(In && "Couldn't get element of initializer?");
424
425 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
426 GlobalVariable::InternalLinkage,
427 In, GV->getName()+"."+utostr(i),
428 (Module *)NULL,
429 GV->isThreadLocal());
430 Globals.insert(GV, NGV);
431 NewGlobals.push_back(NGV);
432 }
433 }
434
435 if (NewGlobals.empty())
436 return 0;
437
438 DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
439
440 Constant *NullInt = Constant::getNullValue(Type::Int32Ty);
441
442 // Loop over all of the uses of the global, replacing the constantexpr geps,
443 // with smaller constantexpr geps or direct references.
444 while (!GV->use_empty()) {
445 User *GEP = GV->use_back();
446 assert(((isa<ConstantExpr>(GEP) &&
447 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
448 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
449
450 // Ignore the 1th operand, which has to be zero or else the program is quite
451 // broken (undefined). Get the 2nd operand, which is the structure or array
452 // index.
453 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
454 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
455
456 Value *NewPtr = NewGlobals[Val];
457
458 // Form a shorter GEP if needed.
459 if (GEP->getNumOperands() > 3)
460 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
461 SmallVector<Constant*, 8> Idxs;
462 Idxs.push_back(NullInt);
463 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
464 Idxs.push_back(CE->getOperand(i));
465 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
466 &Idxs[0], Idxs.size());
467 } else {
468 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
469 SmallVector<Value*, 8> Idxs;
470 Idxs.push_back(NullInt);
471 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
472 Idxs.push_back(GEPI->getOperand(i));
David Greene393be882007-09-04 15:46:09 +0000473 NewPtr = new GetElementPtrInst(NewPtr, Idxs.begin(), Idxs.end(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000474 GEPI->getName()+"."+utostr(Val), GEPI);
475 }
476 GEP->replaceAllUsesWith(NewPtr);
477
478 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
479 GEPI->eraseFromParent();
480 else
481 cast<ConstantExpr>(GEP)->destroyConstant();
482 }
483
484 // Delete the old global, now that it is dead.
485 Globals.erase(GV);
486 ++NumSRA;
487
488 // Loop over the new globals array deleting any globals that are obviously
489 // dead. This can arise due to scalarization of a structure or an array that
490 // has elements that are dead.
491 unsigned FirstGlobal = 0;
492 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
493 if (NewGlobals[i]->use_empty()) {
494 Globals.erase(NewGlobals[i]);
495 if (FirstGlobal == i) ++FirstGlobal;
496 }
497
498 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
499}
500
501/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
Chris Lattnerbdf77462007-09-13 16:30:19 +0000502/// value will trap if the value is dynamically null. PHIs keeps track of any
503/// phi nodes we've seen to avoid reprocessing them.
504static bool AllUsesOfValueWillTrapIfNull(Value *V,
505 SmallPtrSet<PHINode*, 8> &PHIs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000506 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
507 if (isa<LoadInst>(*UI)) {
508 // Will trap.
509 } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
510 if (SI->getOperand(0) == V) {
511 //cerr << "NONTRAPPING USE: " << **UI;
512 return false; // Storing the value.
513 }
514 } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
515 if (CI->getOperand(0) != V) {
516 //cerr << "NONTRAPPING USE: " << **UI;
517 return false; // Not calling the ptr
518 }
519 } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
520 if (II->getOperand(0) != V) {
521 //cerr << "NONTRAPPING USE: " << **UI;
522 return false; // Not calling the ptr
523 }
Chris Lattnerbdf77462007-09-13 16:30:19 +0000524 } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
525 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000526 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
Chris Lattnerbdf77462007-09-13 16:30:19 +0000527 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
528 } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
529 // If we've already seen this phi node, ignore it, it has already been
530 // checked.
531 if (PHIs.insert(PN))
532 return AllUsesOfValueWillTrapIfNull(PN, PHIs);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000533 } else if (isa<ICmpInst>(*UI) &&
534 isa<ConstantPointerNull>(UI->getOperand(1))) {
535 // Ignore setcc X, null
536 } else {
537 //cerr << "NONTRAPPING USE: " << **UI;
538 return false;
539 }
540 return true;
541}
542
543/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
544/// from GV will trap if the loaded value is null. Note that this also permits
545/// comparisons of the loaded value against null, as a special case.
546static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
547 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
548 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
Chris Lattnerbdf77462007-09-13 16:30:19 +0000549 SmallPtrSet<PHINode*, 8> PHIs;
550 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000551 return false;
552 } else if (isa<StoreInst>(*UI)) {
553 // Ignore stores to the global.
554 } else {
555 // We don't know or understand this user, bail out.
556 //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
557 return false;
558 }
559
560 return true;
561}
562
563static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
564 bool Changed = false;
565 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
566 Instruction *I = cast<Instruction>(*UI++);
567 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
568 LI->setOperand(0, NewV);
569 Changed = true;
570 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
571 if (SI->getOperand(1) == V) {
572 SI->setOperand(1, NewV);
573 Changed = true;
574 }
575 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
576 if (I->getOperand(0) == V) {
577 // Calling through the pointer! Turn into a direct call, but be careful
578 // that the pointer is not also being passed as an argument.
579 I->setOperand(0, NewV);
580 Changed = true;
581 bool PassedAsArg = false;
582 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
583 if (I->getOperand(i) == V) {
584 PassedAsArg = true;
585 I->setOperand(i, NewV);
586 }
587
588 if (PassedAsArg) {
589 // Being passed as an argument also. Be careful to not invalidate UI!
590 UI = V->use_begin();
591 }
592 }
593 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
594 Changed |= OptimizeAwayTrappingUsesOfValue(CI,
595 ConstantExpr::getCast(CI->getOpcode(),
596 NewV, CI->getType()));
597 if (CI->use_empty()) {
598 Changed = true;
599 CI->eraseFromParent();
600 }
601 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
602 // Should handle GEP here.
603 SmallVector<Constant*, 8> Idxs;
604 Idxs.reserve(GEPI->getNumOperands()-1);
605 for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
606 if (Constant *C = dyn_cast<Constant>(GEPI->getOperand(i)))
607 Idxs.push_back(C);
608 else
609 break;
610 if (Idxs.size() == GEPI->getNumOperands()-1)
611 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
612 ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
613 Idxs.size()));
614 if (GEPI->use_empty()) {
615 Changed = true;
616 GEPI->eraseFromParent();
617 }
618 }
619 }
620
621 return Changed;
622}
623
624
625/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
626/// value stored into it. If there are uses of the loaded value that would trap
627/// if the loaded value is dynamically null, then we know that they cannot be
628/// reachable with a null optimize away the load.
629static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
630 std::vector<LoadInst*> Loads;
631 bool Changed = false;
632
633 // Replace all uses of loads with uses of uses of the stored value.
634 for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end();
635 GUI != E; ++GUI)
636 if (LoadInst *LI = dyn_cast<LoadInst>(*GUI)) {
637 Loads.push_back(LI);
638 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
639 } else {
640 // If we get here we could have stores, selects, or phi nodes whose values
641 // are loaded.
642 assert((isa<StoreInst>(*GUI) || isa<PHINode>(*GUI) ||
643 isa<SelectInst>(*GUI)) &&
644 "Only expect load and stores!");
645 }
646
647 if (Changed) {
648 DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
649 ++NumGlobUses;
650 }
651
652 // Delete all of the loads we can, keeping track of whether we nuked them all!
653 bool AllLoadsGone = true;
654 while (!Loads.empty()) {
655 LoadInst *L = Loads.back();
656 if (L->use_empty()) {
657 L->eraseFromParent();
658 Changed = true;
659 } else {
660 AllLoadsGone = false;
661 }
662 Loads.pop_back();
663 }
664
665 // If we nuked all of the loads, then none of the stores are needed either,
666 // nor is the global.
667 if (AllLoadsGone) {
668 DOUT << " *** GLOBAL NOW DEAD!\n";
669 CleanupConstantGlobalUsers(GV, 0);
670 if (GV->use_empty()) {
671 GV->eraseFromParent();
672 ++NumDeleted;
673 }
674 Changed = true;
675 }
676 return Changed;
677}
678
679/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
680/// instructions that are foldable.
681static void ConstantPropUsersOf(Value *V) {
682 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
683 if (Instruction *I = dyn_cast<Instruction>(*UI++))
684 if (Constant *NewC = ConstantFoldInstruction(I)) {
685 I->replaceAllUsesWith(NewC);
686
687 // Advance UI to the next non-I use to avoid invalidating it!
688 // Instructions could multiply use V.
689 while (UI != E && *UI == I)
690 ++UI;
691 I->eraseFromParent();
692 }
693}
694
695/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
696/// variable, and transforms the program as if it always contained the result of
697/// the specified malloc. Because it is always the result of the specified
698/// malloc, there is no reason to actually DO the malloc. Instead, turn the
699/// malloc into a global, and any loads of GV as uses of the new global.
700static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
701 MallocInst *MI) {
702 DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << " MALLOC = " << *MI;
703 ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
704
705 if (NElements->getZExtValue() != 1) {
706 // If we have an array allocation, transform it to a single element
707 // allocation to make the code below simpler.
708 Type *NewTy = ArrayType::get(MI->getAllocatedType(),
709 NElements->getZExtValue());
710 MallocInst *NewMI =
711 new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty),
712 MI->getAlignment(), MI->getName(), MI);
713 Value* Indices[2];
714 Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +0000715 Value *NewGEP = new GetElementPtrInst(NewMI, Indices, Indices + 2,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000716 NewMI->getName()+".el0", MI);
717 MI->replaceAllUsesWith(NewGEP);
718 MI->eraseFromParent();
719 MI = NewMI;
720 }
721
722 // Create the new global variable. The contents of the malloc'd memory is
723 // undefined, so initialize with an undef value.
724 Constant *Init = UndefValue::get(MI->getAllocatedType());
725 GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false,
726 GlobalValue::InternalLinkage, Init,
727 GV->getName()+".body",
728 (Module *)NULL,
729 GV->isThreadLocal());
730 GV->getParent()->getGlobalList().insert(GV, NewGV);
731
732 // Anything that used the malloc now uses the global directly.
733 MI->replaceAllUsesWith(NewGV);
734
735 Constant *RepValue = NewGV;
736 if (NewGV->getType() != GV->getType()->getElementType())
737 RepValue = ConstantExpr::getBitCast(RepValue,
738 GV->getType()->getElementType());
739
740 // If there is a comparison against null, we will insert a global bool to
741 // keep track of whether the global was initialized yet or not.
742 GlobalVariable *InitBool =
743 new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage,
744 ConstantInt::getFalse(), GV->getName()+".init",
745 (Module *)NULL, GV->isThreadLocal());
746 bool InitBoolUsed = false;
747
748 // Loop over all uses of GV, processing them in turn.
749 std::vector<StoreInst*> Stores;
750 while (!GV->use_empty())
751 if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
752 while (!LI->use_empty()) {
753 Use &LoadUse = LI->use_begin().getUse();
754 if (!isa<ICmpInst>(LoadUse.getUser()))
755 LoadUse = RepValue;
756 else {
757 ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
758 // Replace the cmp X, 0 with a use of the bool value.
759 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
760 InitBoolUsed = true;
761 switch (CI->getPredicate()) {
762 default: assert(0 && "Unknown ICmp Predicate!");
763 case ICmpInst::ICMP_ULT:
764 case ICmpInst::ICMP_SLT:
765 LV = ConstantInt::getFalse(); // X < null -> always false
766 break;
767 case ICmpInst::ICMP_ULE:
768 case ICmpInst::ICMP_SLE:
769 case ICmpInst::ICMP_EQ:
770 LV = BinaryOperator::createNot(LV, "notinit", CI);
771 break;
772 case ICmpInst::ICMP_NE:
773 case ICmpInst::ICMP_UGE:
774 case ICmpInst::ICMP_SGE:
775 case ICmpInst::ICMP_UGT:
776 case ICmpInst::ICMP_SGT:
777 break; // no change.
778 }
779 CI->replaceAllUsesWith(LV);
780 CI->eraseFromParent();
781 }
782 }
783 LI->eraseFromParent();
784 } else {
785 StoreInst *SI = cast<StoreInst>(GV->use_back());
786 // The global is initialized when the store to it occurs.
787 new StoreInst(ConstantInt::getTrue(), InitBool, SI);
788 SI->eraseFromParent();
789 }
790
791 // If the initialization boolean was used, insert it, otherwise delete it.
792 if (!InitBoolUsed) {
793 while (!InitBool->use_empty()) // Delete initializations
794 cast<Instruction>(InitBool->use_back())->eraseFromParent();
795 delete InitBool;
796 } else
797 GV->getParent()->getGlobalList().insert(GV, InitBool);
798
799
800 // Now the GV is dead, nuke it and the malloc.
801 GV->eraseFromParent();
802 MI->eraseFromParent();
803
804 // To further other optimizations, loop over all users of NewGV and try to
805 // constant prop them. This will promote GEP instructions with constant
806 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
807 ConstantPropUsersOf(NewGV);
808 if (RepValue != NewGV)
809 ConstantPropUsersOf(RepValue);
810
811 return NewGV;
812}
813
814/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
815/// to make sure that there are no complex uses of V. We permit simple things
816/// like dereferencing the pointer, but not storing through the address, unless
817/// it is to the specified global.
818static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
Chris Lattnere7606f42007-09-13 16:37:20 +0000819 GlobalVariable *GV,
820 SmallPtrSet<PHINode*, 8> &PHIs) {
Chris Lattner4bde3c42007-09-14 03:41:21 +0000821 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000822 if (isa<LoadInst>(*UI) || isa<CmpInst>(*UI)) {
823 // Fine, ignore.
824 } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
825 if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
826 return false; // Storing the pointer itself... bad.
827 // Otherwise, storing through it, or storing into GV... fine.
Chris Lattner4bde3c42007-09-14 03:41:21 +0000828 } else if (isa<GetElementPtrInst>(*UI)) {
Chris Lattnere7606f42007-09-13 16:37:20 +0000829 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(cast<Instruction>(*UI),
830 GV, PHIs))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000831 return false;
Chris Lattnere7606f42007-09-13 16:37:20 +0000832 } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
833 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
834 // cycles.
835 if (PHIs.insert(PN))
Chris Lattner4bde3c42007-09-14 03:41:21 +0000836 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
837 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000838 } else {
839 return false;
840 }
841 return true;
842}
843
844/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
845/// somewhere. Transform all uses of the allocation into loads from the
846/// global and uses of the resultant pointer. Further, delete the store into
847/// GV. This assumes that these value pass the
848/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
849static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
850 GlobalVariable *GV) {
851 while (!Alloc->use_empty()) {
Chris Lattner20eef0f2007-09-13 18:00:31 +0000852 Instruction *U = cast<Instruction>(*Alloc->use_begin());
853 Instruction *InsertPt = U;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000854 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
855 // If this is the store of the allocation into the global, remove it.
856 if (SI->getOperand(1) == GV) {
857 SI->eraseFromParent();
858 continue;
859 }
Chris Lattner20eef0f2007-09-13 18:00:31 +0000860 } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
861 // Insert the load in the corresponding predecessor, not right before the
862 // PHI.
863 unsigned PredNo = Alloc->use_begin().getOperandNo()/2;
864 InsertPt = PN->getIncomingBlock(PredNo)->getTerminator();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000865 }
866
867 // Insert a load from the global, and use it instead of the malloc.
Chris Lattner20eef0f2007-09-13 18:00:31 +0000868 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000869 U->replaceUsesOfWith(Alloc, NL);
870 }
871}
872
873/// GlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
874/// GV are simple enough to perform HeapSRA, return true.
Chris Lattnereefff982007-09-13 21:31:36 +0000875static bool GlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
876 MallocInst *MI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000877 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
878 ++UI)
879 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
880 // We permit two users of the load: setcc comparing against the null
881 // pointer, and a getelementptr of a specific form.
882 for (Value::use_iterator UI = LI->use_begin(), E = LI->use_end(); UI != E;
883 ++UI) {
884 // Comparison against null is ok.
885 if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
886 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
887 return false;
888 continue;
889 }
890
891 // getelementptr is also ok, but only a simple form.
Chris Lattnereefff982007-09-13 21:31:36 +0000892 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
893 // Must index into the array and into the struct.
894 if (GEPI->getNumOperands() < 3)
895 return false;
896
897 // Otherwise the GEP is ok.
898 continue;
899 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000900
Chris Lattnereefff982007-09-13 21:31:36 +0000901 if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
902 // We have a phi of a load from the global. We can only handle this
903 // if the other PHI'd values are actually the same. In this case,
904 // the rewriter will just drop the phi entirely.
905 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
906 Value *IV = PN->getIncomingValue(i);
907 if (IV == LI) continue; // Trivial the same.
908
909 // If the phi'd value is from the malloc that initializes the value,
910 // we can xform it.
911 if (IV == MI) continue;
912
913 // Otherwise, we don't know what it is.
914 return false;
915 }
916 return true;
917 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000918
Chris Lattnereefff982007-09-13 21:31:36 +0000919 // Otherwise we don't know what this is, not ok.
920 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000921 }
922 }
923 return true;
924}
925
Chris Lattner20eef0f2007-09-13 18:00:31 +0000926/// GetHeapSROALoad - Return the load for the specified field of the HeapSROA'd
927/// value, lazily creating it on demand.
Chris Lattnereefff982007-09-13 21:31:36 +0000928static Value *GetHeapSROALoad(Instruction *Load, unsigned FieldNo,
Chris Lattner20eef0f2007-09-13 18:00:31 +0000929 const std::vector<GlobalVariable*> &FieldGlobals,
930 std::vector<Value *> &InsertedLoadsForPtr) {
931 if (InsertedLoadsForPtr.size() <= FieldNo)
932 InsertedLoadsForPtr.resize(FieldNo+1);
933 if (InsertedLoadsForPtr[FieldNo] == 0)
934 InsertedLoadsForPtr[FieldNo] = new LoadInst(FieldGlobals[FieldNo],
935 Load->getName()+".f" +
936 utostr(FieldNo), Load);
937 return InsertedLoadsForPtr[FieldNo];
938}
939
Chris Lattneraf82fb82007-09-13 17:29:05 +0000940/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
941/// the load, rewrite the derived value to use the HeapSRoA'd load.
942static void RewriteHeapSROALoadUser(LoadInst *Load, Instruction *LoadUser,
943 const std::vector<GlobalVariable*> &FieldGlobals,
944 std::vector<Value *> &InsertedLoadsForPtr) {
945 // If this is a comparison against null, handle it.
946 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
947 assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
948 // If we have a setcc of the loaded pointer, we can use a setcc of any
949 // field.
950 Value *NPtr;
951 if (InsertedLoadsForPtr.empty()) {
Chris Lattner20eef0f2007-09-13 18:00:31 +0000952 NPtr = GetHeapSROALoad(Load, 0, FieldGlobals, InsertedLoadsForPtr);
Chris Lattneraf82fb82007-09-13 17:29:05 +0000953 } else {
954 NPtr = InsertedLoadsForPtr.back();
955 }
956
957 Value *New = new ICmpInst(SCI->getPredicate(), NPtr,
958 Constant::getNullValue(NPtr->getType()),
959 SCI->getName(), SCI);
960 SCI->replaceAllUsesWith(New);
961 SCI->eraseFromParent();
962 return;
963 }
964
Chris Lattner20eef0f2007-09-13 18:00:31 +0000965 // Handle 'getelementptr Ptr, Idx, uint FieldNo ...'
966 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
967 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
968 && "Unexpected GEPI!");
Chris Lattneraf82fb82007-09-13 17:29:05 +0000969
Chris Lattner20eef0f2007-09-13 18:00:31 +0000970 // Load the pointer for this field.
971 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
972 Value *NewPtr = GetHeapSROALoad(Load, FieldNo,
973 FieldGlobals, InsertedLoadsForPtr);
974
975 // Create the new GEP idx vector.
976 SmallVector<Value*, 8> GEPIdx;
977 GEPIdx.push_back(GEPI->getOperand(1));
978 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
979
980 Value *NGEPI = new GetElementPtrInst(NewPtr, GEPIdx.begin(), GEPIdx.end(),
981 GEPI->getName(), GEPI);
982 GEPI->replaceAllUsesWith(NGEPI);
983 GEPI->eraseFromParent();
984 return;
985 }
Chris Lattneraf82fb82007-09-13 17:29:05 +0000986
Chris Lattnereefff982007-09-13 21:31:36 +0000987 // Handle PHI nodes. PHI nodes must be merging in the same values, plus
988 // potentially the original malloc. Insert phi nodes for each field, then
989 // process uses of the PHI.
Chris Lattner20eef0f2007-09-13 18:00:31 +0000990 PHINode *PN = cast<PHINode>(LoadUser);
Chris Lattnereefff982007-09-13 21:31:36 +0000991 std::vector<Value *> PHIsForField;
992 PHIsForField.resize(FieldGlobals.size());
993 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
994 Value *LoadV = GetHeapSROALoad(Load, i, FieldGlobals, InsertedLoadsForPtr);
995
996 PHINode *FieldPN = new PHINode(LoadV->getType(),
997 PN->getName()+"."+utostr(i), PN);
998 // Fill in the predecessor values.
999 for (unsigned pred = 0, e = PN->getNumIncomingValues(); pred != e; ++pred) {
1000 // Each predecessor either uses the load or the original malloc.
1001 Value *InVal = PN->getIncomingValue(pred);
1002 BasicBlock *BB = PN->getIncomingBlock(pred);
1003 Value *NewVal;
1004 if (isa<MallocInst>(InVal)) {
1005 // Insert a reload from the global in the predecessor.
1006 NewVal = GetHeapSROALoad(BB->getTerminator(), i, FieldGlobals,
1007 PHIsForField);
1008 } else {
1009 NewVal = InsertedLoadsForPtr[i];
1010 }
1011 FieldPN->addIncoming(NewVal, BB);
1012 }
1013 PHIsForField[i] = FieldPN;
1014 }
1015
1016 // Since PHIsForField specifies a phi for every input value, the lazy inserter
1017 // will never insert a load.
Chris Lattner20eef0f2007-09-13 18:00:31 +00001018 while (!PN->use_empty())
Chris Lattnereefff982007-09-13 21:31:36 +00001019 RewriteHeapSROALoadUser(Load, PN->use_back(), FieldGlobals, PHIsForField);
Chris Lattner20eef0f2007-09-13 18:00:31 +00001020 PN->eraseFromParent();
Chris Lattneraf82fb82007-09-13 17:29:05 +00001021}
1022
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001023/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr
1024/// is a value loaded from the global. Eliminate all uses of Ptr, making them
1025/// use FieldGlobals instead. All uses of loaded values satisfy
1026/// GlobalLoadUsesSimpleEnoughForHeapSRA.
Chris Lattneraf82fb82007-09-13 17:29:05 +00001027static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001028 const std::vector<GlobalVariable*> &FieldGlobals) {
1029 std::vector<Value *> InsertedLoadsForPtr;
1030 //InsertedLoadsForPtr.resize(FieldGlobals.size());
Chris Lattneraf82fb82007-09-13 17:29:05 +00001031 while (!Load->use_empty())
1032 RewriteHeapSROALoadUser(Load, Load->use_back(),
1033 FieldGlobals, InsertedLoadsForPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001034}
1035
1036/// PerformHeapAllocSRoA - MI is an allocation of an array of structures. Break
1037/// it up into multiple allocations of arrays of the fields.
1038static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
1039 DOUT << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *MI;
1040 const StructType *STy = cast<StructType>(MI->getAllocatedType());
1041
1042 // There is guaranteed to be at least one use of the malloc (storing
1043 // it into GV). If there are other uses, change them to be uses of
1044 // the global to simplify later code. This also deletes the store
1045 // into GV.
1046 ReplaceUsesOfMallocWithGlobal(MI, GV);
1047
1048 // Okay, at this point, there are no users of the malloc. Insert N
1049 // new mallocs at the same place as MI, and N globals.
1050 std::vector<GlobalVariable*> FieldGlobals;
1051 std::vector<MallocInst*> FieldMallocs;
1052
1053 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1054 const Type *FieldTy = STy->getElementType(FieldNo);
Christopher Lambbb2f2222007-12-17 01:12:55 +00001055 const Type *PFieldTy = PointerType::getUnqual(FieldTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001056
1057 GlobalVariable *NGV =
1058 new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage,
1059 Constant::getNullValue(PFieldTy),
1060 GV->getName() + ".f" + utostr(FieldNo), GV,
1061 GV->isThreadLocal());
1062 FieldGlobals.push_back(NGV);
1063
1064 MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
1065 MI->getName() + ".f" + utostr(FieldNo),MI);
1066 FieldMallocs.push_back(NMI);
1067 new StoreInst(NMI, NGV, MI);
1068 }
1069
1070 // The tricky aspect of this transformation is handling the case when malloc
1071 // fails. In the original code, malloc failing would set the result pointer
1072 // of malloc to null. In this case, some mallocs could succeed and others
1073 // could fail. As such, we emit code that looks like this:
1074 // F0 = malloc(field0)
1075 // F1 = malloc(field1)
1076 // F2 = malloc(field2)
1077 // if (F0 == 0 || F1 == 0 || F2 == 0) {
1078 // if (F0) { free(F0); F0 = 0; }
1079 // if (F1) { free(F1); F1 = 0; }
1080 // if (F2) { free(F2); F2 = 0; }
1081 // }
1082 Value *RunningOr = 0;
1083 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1084 Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i],
1085 Constant::getNullValue(FieldMallocs[i]->getType()),
1086 "isnull", MI);
1087 if (!RunningOr)
1088 RunningOr = Cond; // First seteq
1089 else
1090 RunningOr = BinaryOperator::createOr(RunningOr, Cond, "tmp", MI);
1091 }
1092
1093 // Split the basic block at the old malloc.
1094 BasicBlock *OrigBB = MI->getParent();
1095 BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
1096
1097 // Create the block to check the first condition. Put all these blocks at the
1098 // end of the function as they are unlikely to be executed.
1099 BasicBlock *NullPtrBlock = new BasicBlock("malloc_ret_null",
1100 OrigBB->getParent());
1101
1102 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1103 // branch on RunningOr.
1104 OrigBB->getTerminator()->eraseFromParent();
1105 new BranchInst(NullPtrBlock, ContBB, RunningOr, OrigBB);
1106
1107 // Within the NullPtrBlock, we need to emit a comparison and branch for each
1108 // pointer, because some may be null while others are not.
1109 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1110 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1111 Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal,
1112 Constant::getNullValue(GVVal->getType()),
1113 "tmp", NullPtrBlock);
1114 BasicBlock *FreeBlock = new BasicBlock("free_it", OrigBB->getParent());
1115 BasicBlock *NextBlock = new BasicBlock("next", OrigBB->getParent());
1116 new BranchInst(FreeBlock, NextBlock, Cmp, NullPtrBlock);
1117
1118 // Fill in FreeBlock.
1119 new FreeInst(GVVal, FreeBlock);
1120 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1121 FreeBlock);
1122 new BranchInst(NextBlock, FreeBlock);
1123
1124 NullPtrBlock = NextBlock;
1125 }
1126
1127 new BranchInst(ContBB, NullPtrBlock);
1128
1129
1130 // MI is no longer needed, remove it.
1131 MI->eraseFromParent();
1132
1133
1134 // Okay, the malloc site is completely handled. All of the uses of GV are now
1135 // loads, and all uses of those loads are simple. Rewrite them to use loads
1136 // of the per-field globals instead.
1137 while (!GV->use_empty()) {
1138 if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
1139 RewriteUsesOfLoadForHeapSRoA(LI, FieldGlobals);
1140 LI->eraseFromParent();
1141 } else {
1142 // Must be a store of null.
1143 StoreInst *SI = cast<StoreInst>(GV->use_back());
1144 assert(isa<Constant>(SI->getOperand(0)) &&
1145 cast<Constant>(SI->getOperand(0))->isNullValue() &&
1146 "Unexpected heap-sra user!");
1147
1148 // Insert a store of null into each global.
1149 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1150 Constant *Null =
1151 Constant::getNullValue(FieldGlobals[i]->getType()->getElementType());
1152 new StoreInst(Null, FieldGlobals[i], SI);
1153 }
1154 // Erase the original store.
1155 SI->eraseFromParent();
1156 }
1157 }
1158
1159 // The old global is now dead, remove it.
1160 GV->eraseFromParent();
1161
1162 ++NumHeapSRA;
1163 return FieldGlobals[0];
1164}
1165
1166
1167// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1168// that only one value (besides its initializer) is ever stored to the global.
1169static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1170 Module::global_iterator &GVI,
1171 TargetData &TD) {
1172 if (CastInst *CI = dyn_cast<CastInst>(StoredOnceVal))
1173 StoredOnceVal = CI->getOperand(0);
1174 else if (GetElementPtrInst *GEPI =dyn_cast<GetElementPtrInst>(StoredOnceVal)){
1175 // "getelementptr Ptr, 0, 0, 0" is really just a cast.
1176 bool IsJustACast = true;
1177 for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
1178 if (!isa<Constant>(GEPI->getOperand(i)) ||
1179 !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
1180 IsJustACast = false;
1181 break;
1182 }
1183 if (IsJustACast)
1184 StoredOnceVal = GEPI->getOperand(0);
1185 }
1186
1187 // If we are dealing with a pointer global that is initialized to null and
1188 // only has one (non-null) value stored into it, then we can optimize any
1189 // users of the loaded value (often calls and loads) that would trap if the
1190 // value was null.
1191 if (isa<PointerType>(GV->getInitializer()->getType()) &&
1192 GV->getInitializer()->isNullValue()) {
1193 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1194 if (GV->getInitializer()->getType() != SOVC->getType())
1195 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1196
1197 // Optimize away any trapping uses of the loaded value.
1198 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1199 return true;
1200 } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
1201 // If this is a malloc of an abstract type, don't touch it.
1202 if (!MI->getAllocatedType()->isSized())
1203 return false;
1204
1205 // We can't optimize this global unless all uses of it are *known* to be
1206 // of the malloc value, not of the null initializer value (consider a use
1207 // that compares the global's value against zero to see if the malloc has
1208 // been reached). To do this, we check to see if all uses of the global
1209 // would trap if the global were null: this proves that they must all
1210 // happen after the malloc.
1211 if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1212 return false;
1213
1214 // We can't optimize this if the malloc itself is used in a complex way,
1215 // for example, being stored into multiple globals. This allows the
1216 // malloc to be stored into the specified global, loaded setcc'd, and
1217 // GEP'd. These are all things we could transform to using the global
1218 // for.
Chris Lattnere7606f42007-09-13 16:37:20 +00001219 {
1220 SmallPtrSet<PHINode*, 8> PHIs;
1221 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
1222 return false;
1223 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001224
1225
1226 // If we have a global that is only initialized with a fixed size malloc,
1227 // transform the program to use global memory instead of malloc'd memory.
1228 // This eliminates dynamic allocation, avoids an indirection accessing the
1229 // data, and exposes the resultant global to further GlobalOpt.
1230 if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
1231 // Restrict this transformation to only working on small allocations
1232 // (2048 bytes currently), as we don't want to introduce a 16M global or
1233 // something.
1234 if (NElements->getZExtValue()*
Duncan Sandsf99fdc62007-11-01 20:53:16 +00001235 TD.getABITypeSize(MI->getAllocatedType()) < 2048) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001236 GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
1237 return true;
1238 }
1239 }
1240
1241 // If the allocation is an array of structures, consider transforming this
1242 // into multiple malloc'd arrays, one for each field. This is basically
1243 // SRoA for malloc'd memory.
1244 if (const StructType *AllocTy =
1245 dyn_cast<StructType>(MI->getAllocatedType())) {
1246 // This the structure has an unreasonable number of fields, leave it
1247 // alone.
1248 if (AllocTy->getNumElements() <= 16 && AllocTy->getNumElements() > 0 &&
Chris Lattnereefff982007-09-13 21:31:36 +00001249 GlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001250 GVI = PerformHeapAllocSRoA(GV, MI);
1251 return true;
1252 }
1253 }
1254 }
1255 }
1256
1257 return false;
1258}
1259
1260/// ShrinkGlobalToBoolean - At this point, we have learned that the only two
1261/// values ever stored into GV are its initializer and OtherVal.
1262static void ShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1263 // Create the new global, initializing it to false.
1264 GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false,
1265 GlobalValue::InternalLinkage, ConstantInt::getFalse(),
1266 GV->getName()+".b",
1267 (Module *)NULL,
1268 GV->isThreadLocal());
1269 GV->getParent()->getGlobalList().insert(GV, NewGV);
1270
1271 Constant *InitVal = GV->getInitializer();
1272 assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!");
1273
1274 // If initialized to zero and storing one into the global, we can use a cast
1275 // instead of a select to synthesize the desired value.
1276 bool IsOneZero = false;
1277 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1278 IsOneZero = InitVal->isNullValue() && CI->isOne();
1279
1280 while (!GV->use_empty()) {
1281 Instruction *UI = cast<Instruction>(GV->use_back());
1282 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1283 // Change the store into a boolean store.
1284 bool StoringOther = SI->getOperand(0) == OtherVal;
1285 // Only do this if we weren't storing a loaded value.
1286 Value *StoreVal;
1287 if (StoringOther || SI->getOperand(0) == InitVal)
1288 StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
1289 else {
1290 // Otherwise, we are storing a previously loaded copy. To do this,
1291 // change the copy from copying the original value to just copying the
1292 // bool.
1293 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1294
1295 // If we're already replaced the input, StoredVal will be a cast or
1296 // select instruction. If not, it will be a load of the original
1297 // global.
1298 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1299 assert(LI->getOperand(0) == GV && "Not a copy!");
1300 // Insert a new load, to preserve the saved value.
1301 StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1302 } else {
1303 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1304 "This is not a form that we understand!");
1305 StoreVal = StoredVal->getOperand(0);
1306 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1307 }
1308 }
1309 new StoreInst(StoreVal, NewGV, SI);
1310 } else if (!UI->use_empty()) {
1311 // Change the load into a load of bool then a select.
1312 LoadInst *LI = cast<LoadInst>(UI);
1313 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1314 Value *NSI;
1315 if (IsOneZero)
1316 NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1317 else
1318 NSI = new SelectInst(NLI, OtherVal, InitVal, "", LI);
1319 NSI->takeName(LI);
1320 LI->replaceAllUsesWith(NSI);
1321 }
1322 UI->eraseFromParent();
1323 }
1324
1325 GV->eraseFromParent();
1326}
1327
1328
1329/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1330/// it if possible. If we make a change, return true.
1331bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1332 Module::global_iterator &GVI) {
1333 std::set<PHINode*> PHIUsers;
1334 GlobalStatus GS;
1335 GV->removeDeadConstantUsers();
1336
1337 if (GV->use_empty()) {
1338 DOUT << "GLOBAL DEAD: " << *GV;
1339 GV->eraseFromParent();
1340 ++NumDeleted;
1341 return true;
1342 }
1343
1344 if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1345#if 0
1346 cerr << "Global: " << *GV;
1347 cerr << " isLoaded = " << GS.isLoaded << "\n";
1348 cerr << " StoredType = ";
1349 switch (GS.StoredType) {
1350 case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1351 case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1352 case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1353 case GlobalStatus::isStored: cerr << "stored\n"; break;
1354 }
1355 if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1356 cerr << " StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1357 if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1358 cerr << " AccessingFunction = " << GS.AccessingFunction->getName()
1359 << "\n";
1360 cerr << " HasMultipleAccessingFunctions = "
1361 << GS.HasMultipleAccessingFunctions << "\n";
1362 cerr << " HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1363 cerr << " isNotSuitableForSRA = " << GS.isNotSuitableForSRA << "\n";
1364 cerr << "\n";
1365#endif
1366
1367 // If this is a first class global and has only one accessing function
1368 // and this function is main (which we know is not recursive we can make
1369 // this global a local variable) we replace the global with a local alloca
1370 // in this function.
1371 //
1372 // NOTE: It doesn't make sense to promote non first class types since we
1373 // are just replacing static memory to stack memory.
1374 if (!GS.HasMultipleAccessingFunctions &&
1375 GS.AccessingFunction && !GS.HasNonInstructionUser &&
1376 GV->getType()->getElementType()->isFirstClassType() &&
1377 GS.AccessingFunction->getName() == "main" &&
1378 GS.AccessingFunction->hasExternalLinkage()) {
1379 DOUT << "LOCALIZING GLOBAL: " << *GV;
1380 Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1381 const Type* ElemTy = GV->getType()->getElementType();
1382 // FIXME: Pass Global's alignment when globals have alignment
1383 AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1384 if (!isa<UndefValue>(GV->getInitializer()))
1385 new StoreInst(GV->getInitializer(), Alloca, FirstI);
1386
1387 GV->replaceAllUsesWith(Alloca);
1388 GV->eraseFromParent();
1389 ++NumLocalized;
1390 return true;
1391 }
1392
1393 // If the global is never loaded (but may be stored to), it is dead.
1394 // Delete it now.
1395 if (!GS.isLoaded) {
1396 DOUT << "GLOBAL NEVER LOADED: " << *GV;
1397
1398 // Delete any stores we can find to the global. We may not be able to
1399 // make it completely dead though.
1400 bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1401
1402 // If the global is dead now, delete it.
1403 if (GV->use_empty()) {
1404 GV->eraseFromParent();
1405 ++NumDeleted;
1406 Changed = true;
1407 }
1408 return Changed;
1409
1410 } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1411 DOUT << "MARKING CONSTANT: " << *GV;
1412 GV->setConstant(true);
1413
1414 // Clean up any obviously simplifiable users now.
1415 CleanupConstantGlobalUsers(GV, GV->getInitializer());
1416
1417 // If the global is dead now, just nuke it.
1418 if (GV->use_empty()) {
1419 DOUT << " *** Marking constant allowed us to simplify "
1420 << "all users and delete global!\n";
1421 GV->eraseFromParent();
1422 ++NumDeleted;
1423 }
1424
1425 ++NumMarked;
1426 return true;
1427 } else if (!GS.isNotSuitableForSRA &&
1428 !GV->getInitializer()->getType()->isFirstClassType()) {
1429 if (GlobalVariable *FirstNewGV = SRAGlobal(GV)) {
1430 GVI = FirstNewGV; // Don't skip the newly produced globals!
1431 return true;
1432 }
1433 } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1434 // If the initial value for the global was an undef value, and if only
1435 // one other value was stored into it, we can just change the
1436 // initializer to be an undef value, then delete all stores to the
1437 // global. This allows us to mark it constant.
1438 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1439 if (isa<UndefValue>(GV->getInitializer())) {
1440 // Change the initial value here.
1441 GV->setInitializer(SOVConstant);
1442
1443 // Clean up any obviously simplifiable users now.
1444 CleanupConstantGlobalUsers(GV, GV->getInitializer());
1445
1446 if (GV->use_empty()) {
1447 DOUT << " *** Substituting initializer allowed us to "
1448 << "simplify all users and delete global!\n";
1449 GV->eraseFromParent();
1450 ++NumDeleted;
1451 } else {
1452 GVI = GV;
1453 }
1454 ++NumSubstitute;
1455 return true;
1456 }
1457
1458 // Try to optimize globals based on the knowledge that only one value
1459 // (besides its initializer) is ever stored to the global.
1460 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1461 getAnalysis<TargetData>()))
1462 return true;
1463
1464 // Otherwise, if the global was not a boolean, we can shrink it to be a
1465 // boolean.
1466 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1467 if (GV->getType()->getElementType() != Type::Int1Ty &&
1468 !GV->getType()->getElementType()->isFloatingPoint() &&
1469 !isa<VectorType>(GV->getType()->getElementType()) &&
1470 !GS.HasPHIUser && !GS.isNotSuitableForSRA) {
1471 DOUT << " *** SHRINKING TO BOOL: " << *GV;
1472 ShrinkGlobalToBoolean(GV, SOVConstant);
1473 ++NumShrunkToBool;
1474 return true;
1475 }
1476 }
1477 }
1478 return false;
1479}
1480
1481/// OnlyCalledDirectly - Return true if the specified function is only called
1482/// directly. In other words, its address is never taken.
1483static bool OnlyCalledDirectly(Function *F) {
1484 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1485 Instruction *User = dyn_cast<Instruction>(*UI);
1486 if (!User) return false;
1487 if (!isa<CallInst>(User) && !isa<InvokeInst>(User)) return false;
1488
1489 // See if the function address is passed as an argument.
1490 for (unsigned i = 1, e = User->getNumOperands(); i != e; ++i)
1491 if (User->getOperand(i) == F) return false;
1492 }
1493 return true;
1494}
1495
1496/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1497/// function, changing them to FastCC.
1498static void ChangeCalleesToFastCall(Function *F) {
1499 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1500 Instruction *User = cast<Instruction>(*UI);
1501 if (CallInst *CI = dyn_cast<CallInst>(User))
1502 CI->setCallingConv(CallingConv::Fast);
1503 else
1504 cast<InvokeInst>(User)->setCallingConv(CallingConv::Fast);
1505 }
1506}
1507
1508bool GlobalOpt::OptimizeFunctions(Module &M) {
1509 bool Changed = false;
1510 // Optimize functions.
1511 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1512 Function *F = FI++;
1513 F->removeDeadConstantUsers();
1514 if (F->use_empty() && (F->hasInternalLinkage() ||
1515 F->hasLinkOnceLinkage())) {
1516 M.getFunctionList().erase(F);
1517 Changed = true;
1518 ++NumFnDeleted;
1519 } else if (F->hasInternalLinkage() &&
1520 F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1521 OnlyCalledDirectly(F)) {
1522 // If this function has C calling conventions, is not a varargs
1523 // function, and is only called directly, promote it to use the Fast
1524 // calling convention.
1525 F->setCallingConv(CallingConv::Fast);
1526 ChangeCalleesToFastCall(F);
1527 ++NumFastCallFns;
1528 Changed = true;
1529 }
1530 }
1531 return Changed;
1532}
1533
1534bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1535 bool Changed = false;
1536 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1537 GVI != E; ) {
1538 GlobalVariable *GV = GVI++;
1539 if (!GV->isConstant() && GV->hasInternalLinkage() &&
1540 GV->hasInitializer())
1541 Changed |= ProcessInternalGlobal(GV, GVI);
1542 }
1543 return Changed;
1544}
1545
1546/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1547/// initializers have an init priority of 65535.
1548GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1549 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1550 I != E; ++I)
1551 if (I->getName() == "llvm.global_ctors") {
1552 // Found it, verify it's an array of { int, void()* }.
1553 const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1554 if (!ATy) return 0;
1555 const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1556 if (!STy || STy->getNumElements() != 2 ||
1557 STy->getElementType(0) != Type::Int32Ty) return 0;
1558 const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1559 if (!PFTy) return 0;
1560 const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1561 if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
1562 FTy->getNumParams() != 0)
1563 return 0;
1564
1565 // Verify that the initializer is simple enough for us to handle.
1566 if (!I->hasInitializer()) return 0;
1567 ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1568 if (!CA) return 0;
1569 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1570 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(CA->getOperand(i))) {
1571 if (isa<ConstantPointerNull>(CS->getOperand(1)))
1572 continue;
1573
1574 // Must have a function or null ptr.
1575 if (!isa<Function>(CS->getOperand(1)))
1576 return 0;
1577
1578 // Init priority must be standard.
1579 ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1580 if (!CI || CI->getZExtValue() != 65535)
1581 return 0;
1582 } else {
1583 return 0;
1584 }
1585
1586 return I;
1587 }
1588 return 0;
1589}
1590
1591/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1592/// return a list of the functions and null terminator as a vector.
1593static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1594 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1595 std::vector<Function*> Result;
1596 Result.reserve(CA->getNumOperands());
1597 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
1598 ConstantStruct *CS = cast<ConstantStruct>(CA->getOperand(i));
1599 Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1600 }
1601 return Result;
1602}
1603
1604/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1605/// specified array, returning the new global to use.
1606static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1607 const std::vector<Function*> &Ctors) {
1608 // If we made a change, reassemble the initializer list.
1609 std::vector<Constant*> CSVals;
1610 CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
1611 CSVals.push_back(0);
1612
1613 // Create the new init list.
1614 std::vector<Constant*> CAList;
1615 for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1616 if (Ctors[i]) {
1617 CSVals[1] = Ctors[i];
1618 } else {
1619 const Type *FTy = FunctionType::get(Type::VoidTy,
1620 std::vector<const Type*>(), false);
Christopher Lambbb2f2222007-12-17 01:12:55 +00001621 const PointerType *PFTy = PointerType::getUnqual(FTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001622 CSVals[1] = Constant::getNullValue(PFTy);
1623 CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647);
1624 }
1625 CAList.push_back(ConstantStruct::get(CSVals));
1626 }
1627
1628 // Create the array initializer.
1629 const Type *StructTy =
1630 cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
1631 Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()),
1632 CAList);
1633
1634 // If we didn't change the number of elements, don't create a new GV.
1635 if (CA->getType() == GCL->getInitializer()->getType()) {
1636 GCL->setInitializer(CA);
1637 return GCL;
1638 }
1639
1640 // Create the new global and insert it next to the existing list.
1641 GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
1642 GCL->getLinkage(), CA, "",
1643 (Module *)NULL,
1644 GCL->isThreadLocal());
1645 GCL->getParent()->getGlobalList().insert(GCL, NGV);
1646 NGV->takeName(GCL);
1647
1648 // Nuke the old list, replacing any uses with the new one.
1649 if (!GCL->use_empty()) {
1650 Constant *V = NGV;
1651 if (V->getType() != GCL->getType())
1652 V = ConstantExpr::getBitCast(V, GCL->getType());
1653 GCL->replaceAllUsesWith(V);
1654 }
1655 GCL->eraseFromParent();
1656
1657 if (Ctors.size())
1658 return NGV;
1659 else
1660 return 0;
1661}
1662
1663
1664static Constant *getVal(std::map<Value*, Constant*> &ComputedValues,
1665 Value *V) {
1666 if (Constant *CV = dyn_cast<Constant>(V)) return CV;
1667 Constant *R = ComputedValues[V];
1668 assert(R && "Reference to an uncomputed value!");
1669 return R;
1670}
1671
1672/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
1673/// enough for us to understand. In particular, if it is a cast of something,
1674/// we punt. We basically just support direct accesses to globals and GEP's of
1675/// globals. This should be kept up to date with CommitValueTo.
1676static bool isSimpleEnoughPointerToCommit(Constant *C) {
1677 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
1678 if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1679 return false; // do not allow weak/linkonce/dllimport/dllexport linkage.
1680 return !GV->isDeclaration(); // reject external globals.
1681 }
1682 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
1683 // Handle a constantexpr gep.
1684 if (CE->getOpcode() == Instruction::GetElementPtr &&
1685 isa<GlobalVariable>(CE->getOperand(0))) {
1686 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1687 if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1688 return false; // do not allow weak/linkonce/dllimport/dllexport linkage.
1689 return GV->hasInitializer() &&
1690 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1691 }
1692 return false;
1693}
1694
1695/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
1696/// initializer. This returns 'Init' modified to reflect 'Val' stored into it.
1697/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
1698static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
1699 ConstantExpr *Addr, unsigned OpNo) {
1700 // Base case of the recursion.
1701 if (OpNo == Addr->getNumOperands()) {
1702 assert(Val->getType() == Init->getType() && "Type mismatch!");
1703 return Val;
1704 }
1705
1706 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1707 std::vector<Constant*> Elts;
1708
1709 // Break up the constant into its elements.
1710 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1711 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
1712 Elts.push_back(CS->getOperand(i));
1713 } else if (isa<ConstantAggregateZero>(Init)) {
1714 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1715 Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
1716 } else if (isa<UndefValue>(Init)) {
1717 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1718 Elts.push_back(UndefValue::get(STy->getElementType(i)));
1719 } else {
1720 assert(0 && "This code is out of sync with "
1721 " ConstantFoldLoadThroughGEPConstantExpr");
1722 }
1723
1724 // Replace the element that we are supposed to.
1725 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
1726 unsigned Idx = CU->getZExtValue();
1727 assert(Idx < STy->getNumElements() && "Struct index out of range!");
1728 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
1729
1730 // Return the modified struct.
1731 return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
1732 } else {
1733 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
1734 const ArrayType *ATy = cast<ArrayType>(Init->getType());
1735
1736 // Break up the array into elements.
1737 std::vector<Constant*> Elts;
1738 if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1739 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1740 Elts.push_back(CA->getOperand(i));
1741 } else if (isa<ConstantAggregateZero>(Init)) {
1742 Constant *Elt = Constant::getNullValue(ATy->getElementType());
1743 Elts.assign(ATy->getNumElements(), Elt);
1744 } else if (isa<UndefValue>(Init)) {
1745 Constant *Elt = UndefValue::get(ATy->getElementType());
1746 Elts.assign(ATy->getNumElements(), Elt);
1747 } else {
1748 assert(0 && "This code is out of sync with "
1749 " ConstantFoldLoadThroughGEPConstantExpr");
1750 }
1751
1752 assert(CI->getZExtValue() < ATy->getNumElements());
1753 Elts[CI->getZExtValue()] =
1754 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
1755 return ConstantArray::get(ATy, Elts);
1756 }
1757}
1758
1759/// CommitValueTo - We have decided that Addr (which satisfies the predicate
1760/// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
1761static void CommitValueTo(Constant *Val, Constant *Addr) {
1762 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
1763 assert(GV->hasInitializer());
1764 GV->setInitializer(Val);
1765 return;
1766 }
1767
1768 ConstantExpr *CE = cast<ConstantExpr>(Addr);
1769 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1770
1771 Constant *Init = GV->getInitializer();
1772 Init = EvaluateStoreInto(Init, Val, CE, 2);
1773 GV->setInitializer(Init);
1774}
1775
1776/// ComputeLoadResult - Return the value that would be computed by a load from
1777/// P after the stores reflected by 'memory' have been performed. If we can't
1778/// decide, return null.
1779static Constant *ComputeLoadResult(Constant *P,
1780 const std::map<Constant*, Constant*> &Memory) {
1781 // If this memory location has been recently stored, use the stored value: it
1782 // is the most up-to-date.
1783 std::map<Constant*, Constant*>::const_iterator I = Memory.find(P);
1784 if (I != Memory.end()) return I->second;
1785
1786 // Access it.
1787 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
1788 if (GV->hasInitializer())
1789 return GV->getInitializer();
1790 return 0;
1791 }
1792
1793 // Handle a constantexpr getelementptr.
1794 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
1795 if (CE->getOpcode() == Instruction::GetElementPtr &&
1796 isa<GlobalVariable>(CE->getOperand(0))) {
1797 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1798 if (GV->hasInitializer())
1799 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1800 }
1801
1802 return 0; // don't know how to evaluate.
1803}
1804
1805/// EvaluateFunction - Evaluate a call to function F, returning true if
1806/// successful, false if we can't evaluate it. ActualArgs contains the formal
1807/// arguments for the function.
1808static bool EvaluateFunction(Function *F, Constant *&RetVal,
1809 const std::vector<Constant*> &ActualArgs,
1810 std::vector<Function*> &CallStack,
1811 std::map<Constant*, Constant*> &MutatedMemory,
1812 std::vector<GlobalVariable*> &AllocaTmps) {
1813 // Check to see if this function is already executing (recursion). If so,
1814 // bail out. TODO: we might want to accept limited recursion.
1815 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
1816 return false;
1817
1818 CallStack.push_back(F);
1819
1820 /// Values - As we compute SSA register values, we store their contents here.
1821 std::map<Value*, Constant*> Values;
1822
1823 // Initialize arguments to the incoming values specified.
1824 unsigned ArgNo = 0;
1825 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1826 ++AI, ++ArgNo)
1827 Values[AI] = ActualArgs[ArgNo];
1828
1829 /// ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
1830 /// we can only evaluate any one basic block at most once. This set keeps
1831 /// track of what we have executed so we can detect recursive cases etc.
1832 std::set<BasicBlock*> ExecutedBlocks;
1833
1834 // CurInst - The current instruction we're evaluating.
1835 BasicBlock::iterator CurInst = F->begin()->begin();
1836
1837 // This is the main evaluation loop.
1838 while (1) {
1839 Constant *InstResult = 0;
1840
1841 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
1842 if (SI->isVolatile()) return false; // no volatile accesses.
1843 Constant *Ptr = getVal(Values, SI->getOperand(1));
1844 if (!isSimpleEnoughPointerToCommit(Ptr))
1845 // If this is too complex for us to commit, reject it.
1846 return false;
1847 Constant *Val = getVal(Values, SI->getOperand(0));
1848 MutatedMemory[Ptr] = Val;
1849 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
1850 InstResult = ConstantExpr::get(BO->getOpcode(),
1851 getVal(Values, BO->getOperand(0)),
1852 getVal(Values, BO->getOperand(1)));
1853 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
1854 InstResult = ConstantExpr::getCompare(CI->getPredicate(),
1855 getVal(Values, CI->getOperand(0)),
1856 getVal(Values, CI->getOperand(1)));
1857 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
1858 InstResult = ConstantExpr::getCast(CI->getOpcode(),
1859 getVal(Values, CI->getOperand(0)),
1860 CI->getType());
1861 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
1862 InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
1863 getVal(Values, SI->getOperand(1)),
1864 getVal(Values, SI->getOperand(2)));
1865 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
1866 Constant *P = getVal(Values, GEP->getOperand(0));
1867 SmallVector<Constant*, 8> GEPOps;
1868 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
1869 GEPOps.push_back(getVal(Values, GEP->getOperand(i)));
1870 InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
1871 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
1872 if (LI->isVolatile()) return false; // no volatile accesses.
1873 InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
1874 MutatedMemory);
1875 if (InstResult == 0) return false; // Could not evaluate load.
1876 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
1877 if (AI->isArrayAllocation()) return false; // Cannot handle array allocs.
1878 const Type *Ty = AI->getType()->getElementType();
1879 AllocaTmps.push_back(new GlobalVariable(Ty, false,
1880 GlobalValue::InternalLinkage,
1881 UndefValue::get(Ty),
1882 AI->getName()));
1883 InstResult = AllocaTmps.back();
1884 } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
1885 // Cannot handle inline asm.
1886 if (isa<InlineAsm>(CI->getOperand(0))) return false;
1887
1888 // Resolve function pointers.
1889 Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
1890 if (!Callee) return false; // Cannot resolve.
1891
1892 std::vector<Constant*> Formals;
1893 for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
1894 Formals.push_back(getVal(Values, CI->getOperand(i)));
1895
1896 if (Callee->isDeclaration()) {
1897 // If this is a function we can constant fold, do it.
1898 if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
1899 Formals.size())) {
1900 InstResult = C;
1901 } else {
1902 return false;
1903 }
1904 } else {
1905 if (Callee->getFunctionType()->isVarArg())
1906 return false;
1907
1908 Constant *RetVal;
1909
1910 // Execute the call, if successful, use the return value.
1911 if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
1912 MutatedMemory, AllocaTmps))
1913 return false;
1914 InstResult = RetVal;
1915 }
1916 } else if (isa<TerminatorInst>(CurInst)) {
1917 BasicBlock *NewBB = 0;
1918 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
1919 if (BI->isUnconditional()) {
1920 NewBB = BI->getSuccessor(0);
1921 } else {
1922 ConstantInt *Cond =
1923 dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
1924 if (!Cond) return false; // Cannot determine.
1925
1926 NewBB = BI->getSuccessor(!Cond->getZExtValue());
1927 }
1928 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
1929 ConstantInt *Val =
1930 dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
1931 if (!Val) return false; // Cannot determine.
1932 NewBB = SI->getSuccessor(SI->findCaseValue(Val));
1933 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
1934 if (RI->getNumOperands())
1935 RetVal = getVal(Values, RI->getOperand(0));
1936
1937 CallStack.pop_back(); // return from fn.
1938 return true; // We succeeded at evaluating this ctor!
1939 } else {
1940 // invoke, unwind, unreachable.
1941 return false; // Cannot handle this terminator.
1942 }
1943
1944 // Okay, we succeeded in evaluating this control flow. See if we have
1945 // executed the new block before. If so, we have a looping function,
1946 // which we cannot evaluate in reasonable time.
1947 if (!ExecutedBlocks.insert(NewBB).second)
1948 return false; // looped!
1949
1950 // Okay, we have never been in this block before. Check to see if there
1951 // are any PHI nodes. If so, evaluate them with information about where
1952 // we came from.
1953 BasicBlock *OldBB = CurInst->getParent();
1954 CurInst = NewBB->begin();
1955 PHINode *PN;
1956 for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
1957 Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
1958
1959 // Do NOT increment CurInst. We know that the terminator had no value.
1960 continue;
1961 } else {
1962 // Did not know how to evaluate this!
1963 return false;
1964 }
1965
1966 if (!CurInst->use_empty())
1967 Values[CurInst] = InstResult;
1968
1969 // Advance program counter.
1970 ++CurInst;
1971 }
1972}
1973
1974/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
1975/// we can. Return true if we can, false otherwise.
1976static bool EvaluateStaticConstructor(Function *F) {
1977 /// MutatedMemory - For each store we execute, we update this map. Loads
1978 /// check this to get the most up-to-date value. If evaluation is successful,
1979 /// this state is committed to the process.
1980 std::map<Constant*, Constant*> MutatedMemory;
1981
1982 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
1983 /// to represent its body. This vector is needed so we can delete the
1984 /// temporary globals when we are done.
1985 std::vector<GlobalVariable*> AllocaTmps;
1986
1987 /// CallStack - This is used to detect recursion. In pathological situations
1988 /// we could hit exponential behavior, but at least there is nothing
1989 /// unbounded.
1990 std::vector<Function*> CallStack;
1991
1992 // Call the function.
1993 Constant *RetValDummy;
1994 bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(),
1995 CallStack, MutatedMemory, AllocaTmps);
1996 if (EvalSuccess) {
1997 // We succeeded at evaluation: commit the result.
1998 DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
1999 << F->getName() << "' to " << MutatedMemory.size()
2000 << " stores.\n";
2001 for (std::map<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2002 E = MutatedMemory.end(); I != E; ++I)
2003 CommitValueTo(I->second, I->first);
2004 }
2005
2006 // At this point, we are done interpreting. If we created any 'alloca'
2007 // temporaries, release them now.
2008 while (!AllocaTmps.empty()) {
2009 GlobalVariable *Tmp = AllocaTmps.back();
2010 AllocaTmps.pop_back();
2011
2012 // If there are still users of the alloca, the program is doing something
2013 // silly, e.g. storing the address of the alloca somewhere and using it
2014 // later. Since this is undefined, we'll just make it be null.
2015 if (!Tmp->use_empty())
2016 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2017 delete Tmp;
2018 }
2019
2020 return EvalSuccess;
2021}
2022
2023
2024
2025/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2026/// Return true if anything changed.
2027bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2028 std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2029 bool MadeChange = false;
2030 if (Ctors.empty()) return false;
2031
2032 // Loop over global ctors, optimizing them when we can.
2033 for (unsigned i = 0; i != Ctors.size(); ++i) {
2034 Function *F = Ctors[i];
2035 // Found a null terminator in the middle of the list, prune off the rest of
2036 // the list.
2037 if (F == 0) {
2038 if (i != Ctors.size()-1) {
2039 Ctors.resize(i+1);
2040 MadeChange = true;
2041 }
2042 break;
2043 }
2044
2045 // We cannot simplify external ctor functions.
2046 if (F->empty()) continue;
2047
2048 // If we can evaluate the ctor at compile time, do.
2049 if (EvaluateStaticConstructor(F)) {
2050 Ctors.erase(Ctors.begin()+i);
2051 MadeChange = true;
2052 --i;
2053 ++NumCtorsEvaluated;
2054 continue;
2055 }
2056 }
2057
2058 if (!MadeChange) return false;
2059
2060 GCL = InstallGlobalCtors(GCL, Ctors);
2061 return true;
2062}
2063
2064
2065bool GlobalOpt::runOnModule(Module &M) {
2066 bool Changed = false;
2067
2068 // Try to find the llvm.globalctors list.
2069 GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2070
2071 bool LocalChange = true;
2072 while (LocalChange) {
2073 LocalChange = false;
2074
2075 // Delete functions that are trivially dead, ccc -> fastcc
2076 LocalChange |= OptimizeFunctions(M);
2077
2078 // Optimize global_ctors list.
2079 if (GlobalCtors)
2080 LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2081
2082 // Optimize non-address-taken globals.
2083 LocalChange |= OptimizeGlobalVars(M);
2084 Changed |= LocalChange;
2085 }
2086
2087 // TODO: Move all global ctors functions to the end of the module for code
2088 // layout.
2089
2090 return Changed;
2091}