blob: e7a87e098d04a23a14ea38c88d3b1df5a0030621 [file] [log] [blame]
Chris Lattner8383a7b2008-04-20 20:35:01 +00001//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattner177480b2008-04-20 21:13:06 +000010// This file implements the Jump Threading pass.
Chris Lattner8383a7b2008-04-20 20:35:01 +000011//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
Chris Lattner177480b2008-04-20 21:13:06 +000016#include "llvm/IntrinsicInst.h"
Owen Anderson1ff50b32009-07-03 00:54:20 +000017#include "llvm/LLVMContext.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000018#include "llvm/Pass.h"
Chris Lattner9819ef72009-11-09 23:00:14 +000019#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnercc4d3b22009-11-11 02:08:33 +000020#include "llvm/Analysis/LazyValueInfo.h"
Chris Lattner2cc67512008-04-21 02:57:57 +000021#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chris Lattnerbd3401f2008-04-20 22:39:42 +000022#include "llvm/Transforms/Utils/Local.h"
Chris Lattner433a0db2009-10-10 09:05:58 +000023#include "llvm/Transforms/Utils/SSAUpdater.h"
Chris Lattneref0c6742008-12-01 04:48:07 +000024#include "llvm/Target/TargetData.h"
Mike Stumpfe095f32009-05-04 18:40:41 +000025#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallSet.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000030#include "llvm/Support/CommandLine.h"
Chris Lattner177480b2008-04-20 21:13:06 +000031#include "llvm/Support/Debug.h"
Daniel Dunbar93b67e42009-07-26 07:49:05 +000032#include "llvm/Support/raw_ostream.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000033using namespace llvm;
34
Chris Lattnerbd3401f2008-04-20 22:39:42 +000035STATISTIC(NumThreads, "Number of jumps threaded");
36STATISTIC(NumFolds, "Number of terminators folded");
Chris Lattner78c552e2009-10-11 07:24:57 +000037STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
Chris Lattner8383a7b2008-04-20 20:35:01 +000038
Chris Lattner177480b2008-04-20 21:13:06 +000039static cl::opt<unsigned>
40Threshold("jump-threading-threshold",
41 cl::desc("Max block size to duplicate for jump threading"),
42 cl::init(6), cl::Hidden);
43
Chris Lattnercc4d3b22009-11-11 02:08:33 +000044// Turn on use of LazyValueInfo.
45static cl::opt<bool>
46EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
47
48
49
Chris Lattner8383a7b2008-04-20 20:35:01 +000050namespace {
Chris Lattner94019f82008-05-09 04:43:13 +000051 /// This pass performs 'jump threading', which looks at blocks that have
52 /// multiple predecessors and multiple successors. If one or more of the
53 /// predecessors of the block can be proven to always jump to one of the
54 /// successors, we forward the edge from the predecessor to the successor by
55 /// duplicating the contents of this block.
56 ///
57 /// An example of when this can occur is code like this:
58 ///
59 /// if () { ...
60 /// X = 4;
61 /// }
62 /// if (X < 3) {
63 ///
64 /// In this case, the unconditional branch at the end of the first if can be
65 /// revectored to the false side of the second if.
66 ///
Chris Lattner3e8b6632009-09-02 06:11:42 +000067 class JumpThreading : public FunctionPass {
Chris Lattneref0c6742008-12-01 04:48:07 +000068 TargetData *TD;
Chris Lattnercc4d3b22009-11-11 02:08:33 +000069 LazyValueInfo *LVI;
Mike Stumpfe095f32009-05-04 18:40:41 +000070#ifdef NDEBUG
71 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
72#else
73 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
74#endif
Chris Lattner8383a7b2008-04-20 20:35:01 +000075 public:
76 static char ID; // Pass identification
Dan Gohmanae73dc12008-09-04 17:05:41 +000077 JumpThreading() : FunctionPass(&ID) {}
Chris Lattner8383a7b2008-04-20 20:35:01 +000078
79 bool runOnFunction(Function &F);
Mike Stumpfe095f32009-05-04 18:40:41 +000080
Chris Lattnercc4d3b22009-11-11 02:08:33 +000081 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
82 if (EnableLVI)
83 AU.addRequired<LazyValueInfo>();
84 }
85
86 void FindLoopHeaders(Function &F);
Chris Lattnerc7bcbf62008-11-27 07:20:04 +000087 bool ProcessBlock(BasicBlock *BB);
Chris Lattner5729d382009-11-07 08:05:03 +000088 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
89 BasicBlock *SuccBB);
Chris Lattner78c552e2009-10-11 07:24:57 +000090 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
91 BasicBlock *PredBB);
Chris Lattner5729d382009-11-07 08:05:03 +000092
93 typedef SmallVectorImpl<std::pair<ConstantInt*,
94 BasicBlock*> > PredValueInfo;
95
96 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
97 PredValueInfo &Result);
Chris Lattner1c96b412009-11-12 01:37:43 +000098 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
Chris Lattner5729d382009-11-07 08:05:03 +000099
100
Chris Lattner421fa9e2008-12-03 07:48:08 +0000101 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000102 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner6bf77502008-04-22 07:05:46 +0000103
Chris Lattnerd38c14e2008-04-22 06:36:15 +0000104 bool ProcessJumpOnPHI(PHINode *PN);
Chris Lattner69e067f2008-11-27 05:07:53 +0000105
106 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
Chris Lattner8383a7b2008-04-20 20:35:01 +0000107 };
Chris Lattner8383a7b2008-04-20 20:35:01 +0000108}
109
Dan Gohman844731a2008-05-13 00:00:25 +0000110char JumpThreading::ID = 0;
111static RegisterPass<JumpThreading>
112X("jump-threading", "Jump Threading");
113
Chris Lattner8383a7b2008-04-20 20:35:01 +0000114// Public interface to the Jump Threading pass
115FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
116
117/// runOnFunction - Top level algorithm.
118///
119bool JumpThreading::runOnFunction(Function &F) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000120 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
Dan Gohman02a436c2009-07-24 18:13:53 +0000121 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000122 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000123
Mike Stumpfe095f32009-05-04 18:40:41 +0000124 FindLoopHeaders(F);
125
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000126 bool AnotherIteration = true, EverChanged = false;
127 while (AnotherIteration) {
128 AnotherIteration = false;
129 bool Changed = false;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000130 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
131 BasicBlock *BB = I;
Chris Lattnerf3183f62009-11-10 21:40:01 +0000132 // Thread all of the branches we can over this block.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000133 while (ProcessBlock(BB))
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000134 Changed = true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000135
136 ++I;
137
138 // If the block is trivially dead, zap it. This eliminates the successor
139 // edges which simplifies the CFG.
140 if (pred_begin(BB) == pred_end(BB) &&
Chris Lattner20fa76e2008-12-08 22:44:07 +0000141 BB != &BB->getParent()->getEntryBlock()) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000142 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000143 << "' with terminator: " << *BB->getTerminator() << '\n');
Mike Stumpfe095f32009-05-04 18:40:41 +0000144 LoopHeaders.erase(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000145 DeleteDeadBlock(BB);
146 Changed = true;
Chris Lattnerf3183f62009-11-10 21:40:01 +0000147 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
148 // Can't thread an unconditional jump, but if the block is "almost
149 // empty", we can replace uses of it with uses of the successor and make
150 // this dead.
151 if (BI->isUnconditional() &&
152 BB != &BB->getParent()->getEntryBlock()) {
153 BasicBlock::iterator BBI = BB->getFirstNonPHI();
154 // Ignore dbg intrinsics.
155 while (isa<DbgInfoIntrinsic>(BBI))
156 ++BBI;
157 // If the terminator is the only non-phi instruction, try to nuke it.
158 if (BBI->isTerminator()) {
Chris Lattner6f84a5f2009-11-10 21:45:09 +0000159 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
160 // block, we have to make sure it isn't in the LoopHeaders set. We
161 // reinsert afterward in the rare case when the block isn't deleted.
162 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
Chris Lattnerf3183f62009-11-10 21:40:01 +0000163
164 if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
165 Changed = true;
Chris Lattner6f84a5f2009-11-10 21:45:09 +0000166 else if (ErasedFromLoopHeaders)
Chris Lattnerf3183f62009-11-10 21:40:01 +0000167 LoopHeaders.insert(BB);
168 }
169 }
Chris Lattner421fa9e2008-12-03 07:48:08 +0000170 }
171 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000172 AnotherIteration = Changed;
173 EverChanged |= Changed;
174 }
Mike Stumpfe095f32009-05-04 18:40:41 +0000175
176 LoopHeaders.clear();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000177 return EverChanged;
Chris Lattner8383a7b2008-04-20 20:35:01 +0000178}
Chris Lattner177480b2008-04-20 21:13:06 +0000179
Chris Lattner78c552e2009-10-11 07:24:57 +0000180/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
181/// thread across it.
182static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
183 /// Ignore PHI nodes, these will be flattened when duplication happens.
184 BasicBlock::const_iterator I = BB->getFirstNonPHI();
185
Chris Lattnerb14b88a2009-11-11 00:21:58 +0000186 // FIXME: THREADING will delete values that are just used to compute the
187 // branch, so they shouldn't count against the duplication cost.
188
189
Chris Lattner78c552e2009-10-11 07:24:57 +0000190 // Sum up the cost of each instruction until we get to the terminator. Don't
191 // include the terminator because the copy won't include it.
192 unsigned Size = 0;
193 for (; !isa<TerminatorInst>(I); ++I) {
194 // Debugger intrinsics don't incur code size.
195 if (isa<DbgInfoIntrinsic>(I)) continue;
196
197 // If this is a pointer->pointer bitcast, it is free.
198 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
199 continue;
200
201 // All other instructions count for at least one unit.
202 ++Size;
203
204 // Calls are more expensive. If they are non-intrinsic calls, we model them
205 // as having cost of 4. If they are a non-vector intrinsic, we model them
206 // as having cost of 2 total, and if they are a vector intrinsic, we model
207 // them as having cost 1.
208 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
209 if (!isa<IntrinsicInst>(CI))
210 Size += 3;
211 else if (!isa<VectorType>(CI->getType()))
212 Size += 1;
213 }
214 }
215
216 // Threading through a switch statement is particularly profitable. If this
217 // block ends in a switch, decrease its cost to make it more likely to happen.
218 if (isa<SwitchInst>(I))
219 Size = Size > 6 ? Size-6 : 0;
220
221 return Size;
222}
223
Mike Stumpfe095f32009-05-04 18:40:41 +0000224/// FindLoopHeaders - We do not want jump threading to turn proper loop
225/// structures into irreducible loops. Doing this breaks up the loop nesting
226/// hierarchy and pessimizes later transformations. To prevent this from
227/// happening, we first have to find the loop headers. Here we approximate this
228/// by finding targets of backedges in the CFG.
229///
230/// Note that there definitely are cases when we want to allow threading of
231/// edges across a loop header. For example, threading a jump from outside the
232/// loop (the preheader) to an exit block of the loop is definitely profitable.
233/// It is also almost always profitable to thread backedges from within the loop
234/// to exit blocks, and is often profitable to thread backedges to other blocks
235/// within the loop (forming a nested loop). This simple analysis is not rich
236/// enough to track all of these properties and keep it up-to-date as the CFG
237/// mutates, so we don't allow any of these transformations.
238///
239void JumpThreading::FindLoopHeaders(Function &F) {
240 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
241 FindFunctionBackedges(F, Edges);
242
243 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
244 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
245}
246
Chris Lattner5729d382009-11-07 08:05:03 +0000247/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
248/// if we can infer that the value is a known ConstantInt in any of our
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000249/// predecessors. If so, return the known list of value and pred BB in the
Chris Lattner5729d382009-11-07 08:05:03 +0000250/// result vector. If a value is known to be undef, it is returned as null.
251///
Chris Lattner5729d382009-11-07 08:05:03 +0000252/// This returns true if there were any known values.
253///
Chris Lattner5729d382009-11-07 08:05:03 +0000254bool JumpThreading::
255ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
Chris Lattner5729d382009-11-07 08:05:03 +0000256 // If V is a constantint, then it is known in all predecessors.
257 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
258 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000259
260 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
261 Result.push_back(std::make_pair(CI, *PI));
Chris Lattner5729d382009-11-07 08:05:03 +0000262 return true;
263 }
264
265 // If V is a non-instruction value, or an instruction in a different block,
266 // then it can't be derived from a PHI.
267 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000268 if (I == 0 || I->getParent() != BB) {
269
270 // Okay, if this is a live-in value, see if it has a known value at the end
271 // of any of our predecessors.
272 //
273 // FIXME: This should be an edge property, not a block end property.
274 /// TODO: Per PR2563, we could infer value range information about a
275 /// predecessor based on its terminator.
276 //
277 if (LVI) {
278 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
279 // If the value is known by LazyValueInfo to be a constant in a
280 // predecessor, use that information to try to thread this block.
Chris Lattner38392bb2009-11-12 01:29:10 +0000281 Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000282 if (PredCst == 0 ||
283 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
284 continue;
285
286 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
287 }
288
289 return !Result.empty();
290 }
291
Chris Lattner5729d382009-11-07 08:05:03 +0000292 return false;
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000293 }
Chris Lattner5729d382009-11-07 08:05:03 +0000294
295 /// If I is a PHI node, then we know the incoming values for any constants.
296 if (PHINode *PN = dyn_cast<PHINode>(I)) {
297 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
298 Value *InVal = PN->getIncomingValue(i);
299 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
300 ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
301 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
302 }
303 }
304 return !Result.empty();
305 }
306
307 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
308
309 // Handle some boolean conditions.
310 if (I->getType()->getPrimitiveSizeInBits() == 1) {
311 // X | true -> true
312 // X & false -> false
313 if (I->getOpcode() == Instruction::Or ||
314 I->getOpcode() == Instruction::And) {
315 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
316 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
317
318 if (LHSVals.empty() && RHSVals.empty())
319 return false;
320
321 ConstantInt *InterestingVal;
322 if (I->getOpcode() == Instruction::Or)
323 InterestingVal = ConstantInt::getTrue(I->getContext());
324 else
325 InterestingVal = ConstantInt::getFalse(I->getContext());
326
327 // Scan for the sentinel.
328 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
329 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
330 Result.push_back(LHSVals[i]);
331 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
332 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
333 Result.push_back(RHSVals[i]);
334 return !Result.empty();
335 }
336
Chris Lattner055d0462009-11-10 22:39:16 +0000337 // Handle the NOT form of XOR.
338 if (I->getOpcode() == Instruction::Xor &&
339 isa<ConstantInt>(I->getOperand(1)) &&
340 cast<ConstantInt>(I->getOperand(1))->isOne()) {
341 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
342 if (Result.empty())
343 return false;
344
345 // Invert the known values.
346 for (unsigned i = 0, e = Result.size(); i != e; ++i)
347 Result[i].first =
348 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
349 return true;
350 }
Chris Lattner5729d382009-11-07 08:05:03 +0000351 }
352
353 // Handle compare with phi operand, where the PHI is defined in this block.
354 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
355 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
356 if (PN && PN->getParent() == BB) {
357 // We can do this simplification if any comparisons fold to true or false.
358 // See if any do.
359 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
360 BasicBlock *PredBB = PN->getIncomingBlock(i);
361 Value *LHS = PN->getIncomingValue(i);
362 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
363
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000364 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
Chris Lattner5729d382009-11-07 08:05:03 +0000365 if (Res == 0) continue;
366
367 if (isa<UndefValue>(Res))
368 Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
369 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
370 Result.push_back(std::make_pair(CI, PredBB));
371 }
372
373 return !Result.empty();
374 }
375
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000376
377 // If comparing a live-in value against a constant, see if we know the
378 // live-in value on any predecessors.
379 if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
Chris Lattner0e0ff292009-11-12 04:37:50 +0000380 Cmp->getType()->isInteger() && // Not vector compare.
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000381 (!isa<Instruction>(Cmp->getOperand(0)) ||
382 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
383 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
384
385 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
386 // If the value is known by LazyValueInfo to be a constant in a
387 // predecessor, use that information to try to thread this block.
Chris Lattner0e0ff292009-11-12 04:37:50 +0000388 LazyValueInfo::Tristate
389 Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
390 RHSCst, *PI, BB);
391 if (Res == LazyValueInfo::Unknown)
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000392 continue;
Chris Lattner0e0ff292009-11-12 04:37:50 +0000393
394 Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
395 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000396 }
397
398 return !Result.empty();
399 }
Chris Lattner5729d382009-11-07 08:05:03 +0000400 }
401 return false;
402}
403
404
Chris Lattner6bf77502008-04-22 07:05:46 +0000405
Chris Lattnere33583b2009-10-11 04:18:15 +0000406/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
407/// in an undefined jump, decide which block is best to revector to.
408///
409/// Since we can pick an arbitrary destination, we pick the successor with the
410/// fewest predecessors. This should reduce the in-degree of the others.
411///
412static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
413 TerminatorInst *BBTerm = BB->getTerminator();
414 unsigned MinSucc = 0;
415 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
416 // Compute the successor with the minimum number of predecessors.
417 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
418 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
419 TestBB = BBTerm->getSuccessor(i);
420 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
421 if (NumPreds < MinNumPreds)
422 MinSucc = i;
423 }
424
425 return MinSucc;
426}
427
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000428/// ProcessBlock - If there are any predecessors whose control can be threaded
Chris Lattner177480b2008-04-20 21:13:06 +0000429/// through to a successor, transform them now.
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000430bool JumpThreading::ProcessBlock(BasicBlock *BB) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000431 // If this block has a single predecessor, and if that pred has a single
432 // successor, merge the blocks. This encourages recursive jump threading
433 // because now the condition in this block can be threaded through
434 // predecessors of our predecessor block.
Chris Lattner5729d382009-11-07 08:05:03 +0000435 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
Chris Lattnerf5102a02008-11-28 19:54:49 +0000436 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
437 SinglePred != BB) {
Mike Stumpfe095f32009-05-04 18:40:41 +0000438 // If SinglePred was a loop header, BB becomes one.
439 if (LoopHeaders.erase(SinglePred))
440 LoopHeaders.insert(BB);
441
Chris Lattner3d86d242008-11-27 19:25:19 +0000442 // Remember if SinglePred was the entry block of the function. If so, we
443 // will need to move BB back to the entry position.
444 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
Chris Lattner69e067f2008-11-27 05:07:53 +0000445 MergeBasicBlockIntoOnlyPred(BB);
Chris Lattner3d86d242008-11-27 19:25:19 +0000446
447 if (isEntry && BB != &BB->getParent()->getEntryBlock())
448 BB->moveBefore(&BB->getParent()->getEntryBlock());
Chris Lattner69e067f2008-11-27 05:07:53 +0000449 return true;
450 }
Chris Lattner5729d382009-11-07 08:05:03 +0000451 }
452
453 // Look to see if the terminator is a branch of switch, if not we can't thread
454 // it.
Chris Lattner177480b2008-04-20 21:13:06 +0000455 Value *Condition;
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000456 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
457 // Can't thread an unconditional jump.
458 if (BI->isUnconditional()) return false;
Chris Lattner177480b2008-04-20 21:13:06 +0000459 Condition = BI->getCondition();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000460 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
Chris Lattner177480b2008-04-20 21:13:06 +0000461 Condition = SI->getCondition();
462 else
463 return false; // Must be an invoke.
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000464
465 // If the terminator of this block is branching on a constant, simplify the
Chris Lattner037c7812008-04-21 18:25:01 +0000466 // terminator to an unconditional branch. This can occur due to threading in
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000467 // other blocks.
468 if (isa<ConstantInt>(Condition)) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000469 DEBUG(errs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000470 << "' folding terminator: " << *BB->getTerminator() << '\n');
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000471 ++NumFolds;
472 ConstantFoldTerminator(BB);
473 return true;
474 }
475
Chris Lattner421fa9e2008-12-03 07:48:08 +0000476 // If the terminator is branching on an undef, we can pick any of the
Chris Lattnere33583b2009-10-11 04:18:15 +0000477 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000478 if (isa<UndefValue>(Condition)) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000479 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000480
481 // Fold the branch/switch.
Chris Lattnere33583b2009-10-11 04:18:15 +0000482 TerminatorInst *BBTerm = BB->getTerminator();
Chris Lattner421fa9e2008-12-03 07:48:08 +0000483 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000484 if (i == BestSucc) continue;
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000485 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000486 }
487
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000488 DEBUG(errs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000489 << "' folding undef terminator: " << *BBTerm << '\n');
Chris Lattnere33583b2009-10-11 04:18:15 +0000490 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000491 BBTerm->eraseFromParent();
492 return true;
493 }
494
495 Instruction *CondInst = dyn_cast<Instruction>(Condition);
496
497 // If the condition is an instruction defined in another block, see if a
498 // predecessor has the same condition:
499 // br COND, BBX, BBY
500 // BBX:
501 // br COND, BBZ, BBW
Chris Lattner0e0ff292009-11-12 04:37:50 +0000502 if (!LVI &&
503 !Condition->hasOneUse() && // Multiple uses.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000504 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
505 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
506 if (isa<BranchInst>(BB->getTerminator())) {
507 for (; PI != E; ++PI)
508 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
509 if (PBI->isConditional() && PBI->getCondition() == Condition &&
510 ProcessBranchOnDuplicateCond(*PI, BB))
511 return true;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000512 } else {
513 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
514 for (; PI != E; ++PI)
515 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
516 if (PSI->getCondition() == Condition &&
517 ProcessSwitchOnDuplicateCond(*PI, BB))
518 return true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000519 }
520 }
521
Chris Lattner421fa9e2008-12-03 07:48:08 +0000522 // All the rest of our checks depend on the condition being an instruction.
Chris Lattner87e9f592009-11-12 01:41:34 +0000523 if (CondInst == 0) {
524 // FIXME: Unify this with code below.
525 if (LVI && ProcessThreadableEdges(Condition, BB))
526 return true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000527 return false;
Chris Lattner87e9f592009-11-12 01:41:34 +0000528 }
529
Chris Lattner421fa9e2008-12-03 07:48:08 +0000530
Chris Lattner177480b2008-04-20 21:13:06 +0000531 // See if this is a phi node in the current block.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000532 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
533 if (PN->getParent() == BB)
534 return ProcessJumpOnPHI(PN);
Chris Lattner177480b2008-04-20 21:13:06 +0000535
Nick Lewycky9683f182009-06-19 04:56:29 +0000536 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
Chris Lattner0e0ff292009-11-12 04:37:50 +0000537 if (!LVI &&
538 (!isa<PHINode>(CondCmp->getOperand(0)) ||
539 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
Chris Lattner5729d382009-11-07 08:05:03 +0000540 // If we have a comparison, loop over the predecessors to see if there is
541 // a condition with a lexically identical value.
542 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
543 for (; PI != E; ++PI)
544 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
545 if (PBI->isConditional() && *PI != BB) {
546 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
547 if (CI->getOperand(0) == CondCmp->getOperand(0) &&
548 CI->getOperand(1) == CondCmp->getOperand(1) &&
549 CI->getPredicate() == CondCmp->getPredicate()) {
550 // TODO: Could handle things like (x != 4) --> (x == 17)
551 if (ProcessBranchOnDuplicateCond(*PI, BB))
552 return true;
553 }
Chris Lattner79c740f2009-06-19 16:27:56 +0000554 }
555 }
Chris Lattner5729d382009-11-07 08:05:03 +0000556 }
Nick Lewycky9683f182009-06-19 04:56:29 +0000557 }
Chris Lattner69e067f2008-11-27 05:07:53 +0000558
559 // Check for some cases that are worth simplifying. Right now we want to look
560 // for loads that are used by a switch or by the condition for the branch. If
561 // we see one, check to see if it's partially redundant. If so, insert a PHI
562 // which can then be used to thread the values.
563 //
564 // This is particularly important because reg2mem inserts loads and stores all
565 // over the place, and this blocks jump threading if we don't zap them.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000566 Value *SimplifyValue = CondInst;
Chris Lattner69e067f2008-11-27 05:07:53 +0000567 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
568 if (isa<Constant>(CondCmp->getOperand(1)))
569 SimplifyValue = CondCmp->getOperand(0);
570
571 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
572 if (SimplifyPartiallyRedundantLoad(LI))
573 return true;
574
Chris Lattner5729d382009-11-07 08:05:03 +0000575
576 // Handle a variety of cases where we are branching on something derived from
577 // a PHI node in the current block. If we can prove that any predecessors
578 // compute a predictable value based on a PHI node, thread those predecessors.
579 //
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000580 if (ProcessThreadableEdges(CondInst, BB))
581 return true;
Chris Lattner5729d382009-11-07 08:05:03 +0000582
583
Chris Lattner69e067f2008-11-27 05:07:53 +0000584 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
585 // "(X == 4)" thread through this block.
Chris Lattnera5ddb592008-04-22 21:40:39 +0000586
Chris Lattnerd38c14e2008-04-22 06:36:15 +0000587 return false;
588}
589
Chris Lattner421fa9e2008-12-03 07:48:08 +0000590/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
591/// block that jump on exactly the same condition. This means that we almost
592/// always know the direction of the edge in the DESTBB:
593/// PREDBB:
594/// br COND, DESTBB, BBY
595/// DESTBB:
596/// br COND, BBZ, BBW
597///
598/// If DESTBB has multiple predecessors, we can't just constant fold the branch
599/// in DESTBB, we have to thread over it.
600bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
601 BasicBlock *BB) {
602 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
603
604 // If both successors of PredBB go to DESTBB, we don't know anything. We can
605 // fold the branch to an unconditional one, which allows other recursive
606 // simplifications.
607 bool BranchDir;
608 if (PredBI->getSuccessor(1) != BB)
609 BranchDir = true;
610 else if (PredBI->getSuccessor(0) != BB)
611 BranchDir = false;
612 else {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000613 DEBUG(errs() << " In block '" << PredBB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000614 << "' folding terminator: " << *PredBB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000615 ++NumFolds;
616 ConstantFoldTerminator(PredBB);
617 return true;
618 }
619
620 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
621
622 // If the dest block has one predecessor, just fix the branch condition to a
623 // constant and fold it.
624 if (BB->getSinglePredecessor()) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000625 DEBUG(errs() << " In block '" << BB->getName()
626 << "' folding condition to '" << BranchDir << "': "
Chris Lattner78c552e2009-10-11 07:24:57 +0000627 << *BB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000628 ++NumFolds;
Chris Lattner5a06cf62009-10-11 18:39:58 +0000629 Value *OldCond = DestBI->getCondition();
Owen Anderson1d0be152009-08-13 21:58:54 +0000630 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
631 BranchDir));
Chris Lattner421fa9e2008-12-03 07:48:08 +0000632 ConstantFoldTerminator(BB);
Chris Lattner5a06cf62009-10-11 18:39:58 +0000633 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000634 return true;
635 }
Chris Lattnerbdbf1a12009-10-11 04:33:43 +0000636
Chris Lattner421fa9e2008-12-03 07:48:08 +0000637
638 // Next, figure out which successor we are threading to.
639 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
640
Chris Lattner5729d382009-11-07 08:05:03 +0000641 SmallVector<BasicBlock*, 2> Preds;
642 Preds.push_back(PredBB);
643
Mike Stumpfe095f32009-05-04 18:40:41 +0000644 // Ok, try to thread it!
Chris Lattner5729d382009-11-07 08:05:03 +0000645 return ThreadEdge(BB, Preds, SuccBB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000646}
647
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000648/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
649/// block that switch on exactly the same condition. This means that we almost
650/// always know the direction of the edge in the DESTBB:
651/// PREDBB:
652/// switch COND [... DESTBB, BBY ... ]
653/// DESTBB:
654/// switch COND [... BBZ, BBW ]
655///
656/// Optimizing switches like this is very important, because simplifycfg builds
657/// switches out of repeated 'if' conditions.
658bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
659 BasicBlock *DestBB) {
Chris Lattner2c7ed112009-01-19 21:20:34 +0000660 // Can't thread edge to self.
661 if (PredBB == DestBB)
662 return false;
663
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000664 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
665 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
666
667 // There are a variety of optimizations that we can potentially do on these
668 // blocks: we order them from most to least preferable.
669
670 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
671 // directly to their destination. This does not introduce *any* code size
Dale Johannesen6b233392009-03-17 00:38:24 +0000672 // growth. Skip debug info first.
673 BasicBlock::iterator BBI = DestBB->begin();
674 while (isa<DbgInfoIntrinsic>(BBI))
675 BBI++;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000676
677 // FIXME: Thread if it just contains a PHI.
Dale Johannesen6b233392009-03-17 00:38:24 +0000678 if (isa<SwitchInst>(BBI)) {
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000679 bool MadeChange = false;
680 // Ignore the default edge for now.
681 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
682 ConstantInt *DestVal = DestSI->getCaseValue(i);
683 BasicBlock *DestSucc = DestSI->getSuccessor(i);
684
685 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
686 // PredSI has an explicit case for it. If so, forward. If it is covered
687 // by the default case, we can't update PredSI.
688 unsigned PredCase = PredSI->findCaseValue(DestVal);
689 if (PredCase == 0) continue;
690
691 // If PredSI doesn't go to DestBB on this value, then it won't reach the
692 // case on this condition.
693 if (PredSI->getSuccessor(PredCase) != DestBB &&
694 DestSI->getSuccessor(i) != DestBB)
695 continue;
696
697 // Otherwise, we're safe to make the change. Make sure that the edge from
698 // DestSI to DestSucc is not critical and has no PHI nodes.
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000699 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
700 DEBUG(errs() << "THROUGH: " << *DestSI);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000701
702 // If the destination has PHI nodes, just split the edge for updating
703 // simplicity.
704 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
705 SplitCriticalEdge(DestSI, i, this);
706 DestSucc = DestSI->getSuccessor(i);
707 }
708 FoldSingleEntryPHINodes(DestSucc);
709 PredSI->setSuccessor(PredCase, DestSucc);
710 MadeChange = true;
711 }
712
713 if (MadeChange)
714 return true;
715 }
716
717 return false;
718}
719
720
Chris Lattner69e067f2008-11-27 05:07:53 +0000721/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
722/// load instruction, eliminate it by replacing it with a PHI node. This is an
723/// important optimization that encourages jump threading, and needs to be run
724/// interlaced with other jump threading tasks.
725bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
726 // Don't hack volatile loads.
727 if (LI->isVolatile()) return false;
728
729 // If the load is defined in a block with exactly one predecessor, it can't be
730 // partially redundant.
731 BasicBlock *LoadBB = LI->getParent();
732 if (LoadBB->getSinglePredecessor())
733 return false;
734
735 Value *LoadedPtr = LI->getOperand(0);
736
737 // If the loaded operand is defined in the LoadBB, it can't be available.
738 // FIXME: Could do PHI translation, that would be fun :)
739 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
740 if (PtrOp->getParent() == LoadBB)
741 return false;
742
743 // Scan a few instructions up from the load, to see if it is obviously live at
744 // the entry to its block.
745 BasicBlock::iterator BBIt = LI;
746
Chris Lattner52c95852008-11-27 08:10:05 +0000747 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
748 BBIt, 6)) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000749 // If the value if the load is locally available within the block, just use
750 // it. This frequently occurs for reg2mem'd allocas.
751 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
Chris Lattner2a99b482009-01-09 06:08:12 +0000752
753 // If the returned value is the load itself, replace with an undef. This can
754 // only happen in dead loops.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000755 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
Chris Lattner69e067f2008-11-27 05:07:53 +0000756 LI->replaceAllUsesWith(AvailableVal);
757 LI->eraseFromParent();
758 return true;
759 }
760
761 // Otherwise, if we scanned the whole block and got to the top of the block,
762 // we know the block is locally transparent to the load. If not, something
763 // might clobber its value.
764 if (BBIt != LoadBB->begin())
765 return false;
766
767
768 SmallPtrSet<BasicBlock*, 8> PredsScanned;
769 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
770 AvailablePredsTy AvailablePreds;
771 BasicBlock *OneUnavailablePred = 0;
772
773 // If we got here, the loaded value is transparent through to the start of the
774 // block. Check to see if it is available in any of the predecessor blocks.
775 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
776 PI != PE; ++PI) {
777 BasicBlock *PredBB = *PI;
778
779 // If we already scanned this predecessor, skip it.
780 if (!PredsScanned.insert(PredBB))
781 continue;
782
783 // Scan the predecessor to see if the value is available in the pred.
784 BBIt = PredBB->end();
Chris Lattner52c95852008-11-27 08:10:05 +0000785 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
Chris Lattner69e067f2008-11-27 05:07:53 +0000786 if (!PredAvailable) {
787 OneUnavailablePred = PredBB;
788 continue;
789 }
790
791 // If so, this load is partially redundant. Remember this info so that we
792 // can create a PHI node.
793 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
794 }
795
796 // If the loaded value isn't available in any predecessor, it isn't partially
797 // redundant.
798 if (AvailablePreds.empty()) return false;
799
800 // Okay, the loaded value is available in at least one (and maybe all!)
801 // predecessors. If the value is unavailable in more than one unique
802 // predecessor, we want to insert a merge block for those common predecessors.
803 // This ensures that we only have to insert one reload, thus not increasing
804 // code size.
805 BasicBlock *UnavailablePred = 0;
806
807 // If there is exactly one predecessor where the value is unavailable, the
808 // already computed 'OneUnavailablePred' block is it. If it ends in an
809 // unconditional branch, we know that it isn't a critical edge.
810 if (PredsScanned.size() == AvailablePreds.size()+1 &&
811 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
812 UnavailablePred = OneUnavailablePred;
813 } else if (PredsScanned.size() != AvailablePreds.size()) {
814 // Otherwise, we had multiple unavailable predecessors or we had a critical
815 // edge from the one.
816 SmallVector<BasicBlock*, 8> PredsToSplit;
817 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
818
819 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
820 AvailablePredSet.insert(AvailablePreds[i].first);
821
822 // Add all the unavailable predecessors to the PredsToSplit list.
823 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
824 PI != PE; ++PI)
825 if (!AvailablePredSet.count(*PI))
826 PredsToSplit.push_back(*PI);
827
828 // Split them out to their own block.
829 UnavailablePred =
830 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
831 "thread-split", this);
832 }
833
834 // If the value isn't available in all predecessors, then there will be
835 // exactly one where it isn't available. Insert a load on that edge and add
836 // it to the AvailablePreds list.
837 if (UnavailablePred) {
838 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
839 "Can't handle critical edge here!");
840 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
841 UnavailablePred->getTerminator());
842 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
843 }
844
845 // Now we know that each predecessor of this block has a value in
846 // AvailablePreds, sort them for efficient access as we're walking the preds.
Chris Lattnera3522002008-12-01 06:52:57 +0000847 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
Chris Lattner69e067f2008-11-27 05:07:53 +0000848
849 // Create a PHI node at the start of the block for the PRE'd load value.
850 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
851 PN->takeName(LI);
852
853 // Insert new entries into the PHI for each predecessor. A single block may
854 // have multiple entries here.
855 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
856 ++PI) {
857 AvailablePredsTy::iterator I =
858 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
859 std::make_pair(*PI, (Value*)0));
860
861 assert(I != AvailablePreds.end() && I->first == *PI &&
862 "Didn't find entry for predecessor!");
863
864 PN->addIncoming(I->second, I->first);
865 }
866
867 //cerr << "PRE: " << *LI << *PN << "\n";
868
869 LI->replaceAllUsesWith(PN);
870 LI->eraseFromParent();
871
872 return true;
873}
874
Chris Lattner5729d382009-11-07 08:05:03 +0000875/// FindMostPopularDest - The specified list contains multiple possible
876/// threadable destinations. Pick the one that occurs the most frequently in
877/// the list.
878static BasicBlock *
879FindMostPopularDest(BasicBlock *BB,
880 const SmallVectorImpl<std::pair<BasicBlock*,
881 BasicBlock*> > &PredToDestList) {
882 assert(!PredToDestList.empty());
883
884 // Determine popularity. If there are multiple possible destinations, we
885 // explicitly choose to ignore 'undef' destinations. We prefer to thread
886 // blocks with known and real destinations to threading undef. We'll handle
887 // them later if interesting.
888 DenseMap<BasicBlock*, unsigned> DestPopularity;
889 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
890 if (PredToDestList[i].second)
891 DestPopularity[PredToDestList[i].second]++;
892
893 // Find the most popular dest.
894 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
895 BasicBlock *MostPopularDest = DPI->first;
896 unsigned Popularity = DPI->second;
897 SmallVector<BasicBlock*, 4> SamePopularity;
898
899 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
900 // If the popularity of this entry isn't higher than the popularity we've
901 // seen so far, ignore it.
902 if (DPI->second < Popularity)
903 ; // ignore.
904 else if (DPI->second == Popularity) {
905 // If it is the same as what we've seen so far, keep track of it.
906 SamePopularity.push_back(DPI->first);
907 } else {
908 // If it is more popular, remember it.
909 SamePopularity.clear();
910 MostPopularDest = DPI->first;
911 Popularity = DPI->second;
912 }
913 }
914
915 // Okay, now we know the most popular destination. If there is more than
916 // destination, we need to determine one. This is arbitrary, but we need
917 // to make a deterministic decision. Pick the first one that appears in the
918 // successor list.
919 if (!SamePopularity.empty()) {
920 SamePopularity.push_back(MostPopularDest);
921 TerminatorInst *TI = BB->getTerminator();
922 for (unsigned i = 0; ; ++i) {
923 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
924
925 if (std::find(SamePopularity.begin(), SamePopularity.end(),
926 TI->getSuccessor(i)) == SamePopularity.end())
927 continue;
928
929 MostPopularDest = TI->getSuccessor(i);
930 break;
931 }
932 }
933
934 // Okay, we have finally picked the most popular destination.
935 return MostPopularDest;
936}
937
Chris Lattner1c96b412009-11-12 01:37:43 +0000938bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
Chris Lattner5729d382009-11-07 08:05:03 +0000939 // If threading this would thread across a loop header, don't even try to
940 // thread the edge.
941 if (LoopHeaders.count(BB))
942 return false;
943
Chris Lattner5729d382009-11-07 08:05:03 +0000944 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
Chris Lattner1c96b412009-11-12 01:37:43 +0000945 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
Chris Lattner5729d382009-11-07 08:05:03 +0000946 return false;
947 assert(!PredValues.empty() &&
948 "ComputeValueKnownInPredecessors returned true with no values");
949
950 DEBUG(errs() << "IN BB: " << *BB;
951 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
952 errs() << " BB '" << BB->getName() << "': FOUND condition = ";
953 if (PredValues[i].first)
954 errs() << *PredValues[i].first;
955 else
956 errs() << "UNDEF";
957 errs() << " for pred '" << PredValues[i].second->getName()
958 << "'.\n";
959 });
960
961 // Decide what we want to thread through. Convert our list of known values to
962 // a list of known destinations for each pred. This also discards duplicate
963 // predecessors and keeps track of the undefined inputs (which are represented
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000964 // as a null dest in the PredToDestList).
Chris Lattner5729d382009-11-07 08:05:03 +0000965 SmallPtrSet<BasicBlock*, 16> SeenPreds;
966 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
967
968 BasicBlock *OnlyDest = 0;
969 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
970
971 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
972 BasicBlock *Pred = PredValues[i].second;
973 if (!SeenPreds.insert(Pred))
974 continue; // Duplicate predecessor entry.
975
976 // If the predecessor ends with an indirect goto, we can't change its
977 // destination.
978 if (isa<IndirectBrInst>(Pred->getTerminator()))
979 continue;
980
981 ConstantInt *Val = PredValues[i].first;
982
983 BasicBlock *DestBB;
984 if (Val == 0) // Undef.
985 DestBB = 0;
986 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
987 DestBB = BI->getSuccessor(Val->isZero());
988 else {
989 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
990 DestBB = SI->getSuccessor(SI->findCaseValue(Val));
991 }
992
993 // If we have exactly one destination, remember it for efficiency below.
994 if (i == 0)
995 OnlyDest = DestBB;
996 else if (OnlyDest != DestBB)
997 OnlyDest = MultipleDestSentinel;
998
999 PredToDestList.push_back(std::make_pair(Pred, DestBB));
1000 }
1001
1002 // If all edges were unthreadable, we fail.
1003 if (PredToDestList.empty())
1004 return false;
1005
1006 // Determine which is the most common successor. If we have many inputs and
1007 // this block is a switch, we want to start by threading the batch that goes
1008 // to the most popular destination first. If we only know about one
1009 // threadable destination (the common case) we can avoid this.
1010 BasicBlock *MostPopularDest = OnlyDest;
1011
1012 if (MostPopularDest == MultipleDestSentinel)
1013 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1014
1015 // Now that we know what the most popular destination is, factor all
1016 // predecessors that will jump to it into a single predecessor.
1017 SmallVector<BasicBlock*, 16> PredsToFactor;
1018 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1019 if (PredToDestList[i].second == MostPopularDest) {
1020 BasicBlock *Pred = PredToDestList[i].first;
1021
1022 // This predecessor may be a switch or something else that has multiple
1023 // edges to the block. Factor each of these edges by listing them
1024 // according to # occurrences in PredsToFactor.
1025 TerminatorInst *PredTI = Pred->getTerminator();
1026 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1027 if (PredTI->getSuccessor(i) == BB)
1028 PredsToFactor.push_back(Pred);
1029 }
1030
1031 // If the threadable edges are branching on an undefined value, we get to pick
1032 // the destination that these predecessors should get to.
1033 if (MostPopularDest == 0)
1034 MostPopularDest = BB->getTerminator()->
1035 getSuccessor(GetBestDestForJumpOnUndef(BB));
1036
1037 // Ok, try to thread it!
1038 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1039}
Chris Lattner69e067f2008-11-27 05:07:53 +00001040
Chris Lattnere33583b2009-10-11 04:18:15 +00001041/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
Chris Lattnerd38c14e2008-04-22 06:36:15 +00001042/// the current block. See if there are any simplifications we can do based on
1043/// inputs to the phi node.
1044///
1045bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
Chris Lattner6b65f472009-10-11 04:40:21 +00001046 BasicBlock *BB = PN->getParent();
1047
Chris Lattner5729d382009-11-07 08:05:03 +00001048 // If any of the predecessor blocks end in an unconditional branch, we can
1049 // *duplicate* the jump into that block in order to further encourage jump
1050 // threading and to eliminate cases where we have branch on a phi of an icmp
1051 // (branch on icmp is much better).
Chris Lattner78c552e2009-10-11 07:24:57 +00001052
1053 // We don't want to do this tranformation for switches, because we don't
1054 // really want to duplicate a switch.
1055 if (isa<SwitchInst>(BB->getTerminator()))
1056 return false;
1057
1058 // Look for unconditional branch predecessors.
1059 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1060 BasicBlock *PredBB = PN->getIncomingBlock(i);
1061 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1062 if (PredBr->isUnconditional() &&
1063 // Try to duplicate BB into PredBB.
1064 DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1065 return true;
1066 }
1067
Chris Lattner6b65f472009-10-11 04:40:21 +00001068 return false;
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001069}
1070
Chris Lattnera5ddb592008-04-22 21:40:39 +00001071
Chris Lattner78c552e2009-10-11 07:24:57 +00001072/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1073/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1074/// NewPred using the entries from OldPred (suitably mapped).
1075static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1076 BasicBlock *OldPred,
1077 BasicBlock *NewPred,
1078 DenseMap<Instruction*, Value*> &ValueMap) {
1079 for (BasicBlock::iterator PNI = PHIBB->begin();
1080 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1081 // Ok, we have a PHI node. Figure out what the incoming value was for the
1082 // DestBlock.
1083 Value *IV = PN->getIncomingValueForBlock(OldPred);
1084
1085 // Remap the value if necessary.
1086 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1087 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1088 if (I != ValueMap.end())
1089 IV = I->second;
1090 }
1091
1092 PN->addIncoming(IV, NewPred);
1093 }
1094}
Chris Lattner6bf77502008-04-22 07:05:46 +00001095
Chris Lattner5729d382009-11-07 08:05:03 +00001096/// ThreadEdge - We have decided that it is safe and profitable to factor the
1097/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1098/// across BB. Transform the IR to reflect this change.
1099bool JumpThreading::ThreadEdge(BasicBlock *BB,
1100 const SmallVectorImpl<BasicBlock*> &PredBBs,
Chris Lattnerbdbf1a12009-10-11 04:33:43 +00001101 BasicBlock *SuccBB) {
Mike Stumpfe095f32009-05-04 18:40:41 +00001102 // If threading to the same block as we come from, we would infinite loop.
1103 if (SuccBB == BB) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001104 DEBUG(errs() << " Not threading across BB '" << BB->getName()
1105 << "' - would thread to self!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001106 return false;
1107 }
1108
1109 // If threading this would thread across a loop header, don't thread the edge.
1110 // See the comments above FindLoopHeaders for justifications and caveats.
1111 if (LoopHeaders.count(BB)) {
Chris Lattner5729d382009-11-07 08:05:03 +00001112 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001113 << "' to dest BB '" << SuccBB->getName()
1114 << "' - it might create an irreducible loop!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001115 return false;
1116 }
1117
Chris Lattner78c552e2009-10-11 07:24:57 +00001118 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1119 if (JumpThreadCost > Threshold) {
1120 DEBUG(errs() << " Not threading BB '" << BB->getName()
1121 << "' - Cost is too high: " << JumpThreadCost << "\n");
1122 return false;
1123 }
1124
Chris Lattner5729d382009-11-07 08:05:03 +00001125 // And finally, do it! Start by factoring the predecessors is needed.
1126 BasicBlock *PredBB;
1127 if (PredBBs.size() == 1)
1128 PredBB = PredBBs[0];
1129 else {
1130 DEBUG(errs() << " Factoring out " << PredBBs.size()
1131 << " common predecessors.\n");
1132 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1133 ".thr_comm", this);
1134 }
1135
Mike Stumpfe095f32009-05-04 18:40:41 +00001136 // And finally, do it!
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001137 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '"
Daniel Dunbar460f6562009-07-26 09:48:23 +00001138 << SuccBB->getName() << "' with cost: " << JumpThreadCost
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001139 << ", across block:\n "
1140 << *BB << "\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001141
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001142 // We are going to have to map operands from the original BB block to the new
1143 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1144 // account for entry from PredBB.
1145 DenseMap<Instruction*, Value*> ValueMapping;
1146
Owen Anderson1d0be152009-08-13 21:58:54 +00001147 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1148 BB->getName()+".thread",
1149 BB->getParent(), BB);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001150 NewBB->moveAfter(PredBB);
1151
1152 BasicBlock::iterator BI = BB->begin();
1153 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1154 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1155
1156 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1157 // mapping and using it to remap operands in the cloned instructions.
1158 for (; !isa<TerminatorInst>(BI); ++BI) {
Nick Lewycky67760642009-09-27 07:38:41 +00001159 Instruction *New = BI->clone();
Daniel Dunbar460f6562009-07-26 09:48:23 +00001160 New->setName(BI->getName());
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001161 NewBB->getInstList().push_back(New);
1162 ValueMapping[BI] = New;
1163
1164 // Remap operands to patch up intra-block references.
1165 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
Dan Gohmanf530c922009-07-02 00:17:47 +00001166 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1167 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1168 if (I != ValueMapping.end())
1169 New->setOperand(i, I->second);
1170 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001171 }
1172
1173 // We didn't copy the terminator from BB over to NewBB, because there is now
1174 // an unconditional jump to SuccBB. Insert the unconditional jump.
1175 BranchInst::Create(SuccBB, NewBB);
1176
1177 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1178 // PHI nodes for NewBB now.
Chris Lattner78c552e2009-10-11 07:24:57 +00001179 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001180
Chris Lattner433a0db2009-10-10 09:05:58 +00001181 // If there were values defined in BB that are used outside the block, then we
1182 // now have to update all uses of the value to use either the original value,
1183 // the cloned value, or some PHI derived value. This can require arbitrary
1184 // PHI insertion, of which we are prepared to do, clean these up now.
1185 SSAUpdater SSAUpdate;
1186 SmallVector<Use*, 16> UsesToRename;
1187 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1188 // Scan all uses of this instruction to see if it is used outside of its
1189 // block, and if so, record them in UsesToRename.
1190 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1191 ++UI) {
1192 Instruction *User = cast<Instruction>(*UI);
1193 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1194 if (UserPN->getIncomingBlock(UI) == BB)
1195 continue;
1196 } else if (User->getParent() == BB)
1197 continue;
1198
1199 UsesToRename.push_back(&UI.getUse());
1200 }
1201
1202 // If there are no uses outside the block, we're done with this instruction.
1203 if (UsesToRename.empty())
1204 continue;
1205
1206 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1207
1208 // We found a use of I outside of BB. Rename all uses of I that are outside
1209 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1210 // with the two values we know.
1211 SSAUpdate.Initialize(I);
1212 SSAUpdate.AddAvailableValue(BB, I);
1213 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1214
1215 while (!UsesToRename.empty())
1216 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1217 DEBUG(errs() << "\n");
1218 }
1219
1220
Chris Lattneref0c6742008-12-01 04:48:07 +00001221 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001222 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1223 // us to simplify any PHI nodes in BB.
1224 TerminatorInst *PredTerm = PredBB->getTerminator();
1225 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1226 if (PredTerm->getSuccessor(i) == BB) {
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001227 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001228 PredTerm->setSuccessor(i, NewBB);
1229 }
Chris Lattneref0c6742008-12-01 04:48:07 +00001230
1231 // At this point, the IR is fully up to date and consistent. Do a quick scan
1232 // over the new instructions and zap any that are constants or dead. This
1233 // frequently happens because of phi translation.
1234 BI = NewBB->begin();
1235 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1236 Instruction *Inst = BI++;
Chris Lattnerfddcf472009-11-10 01:57:31 +00001237
Chris Lattnere3453782009-11-10 01:08:51 +00001238 if (Value *V = SimplifyInstruction(Inst, TD)) {
Chris Lattnerfddcf472009-11-10 01:57:31 +00001239 WeakVH BIHandle(BI);
1240 ReplaceAndSimplifyAllUses(Inst, V, TD);
1241 if (BIHandle == 0)
1242 BI = NewBB->begin();
Chris Lattneref0c6742008-12-01 04:48:07 +00001243 continue;
1244 }
1245
1246 RecursivelyDeleteTriviallyDeadInstructions(Inst);
1247 }
Mike Stumpfe095f32009-05-04 18:40:41 +00001248
1249 // Threaded an edge!
1250 ++NumThreads;
1251 return true;
Chris Lattner177480b2008-04-20 21:13:06 +00001252}
Chris Lattner78c552e2009-10-11 07:24:57 +00001253
1254/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1255/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1256/// If we can duplicate the contents of BB up into PredBB do so now, this
1257/// improves the odds that the branch will be on an analyzable instruction like
1258/// a compare.
1259bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1260 BasicBlock *PredBB) {
1261 // If BB is a loop header, then duplicating this block outside the loop would
1262 // cause us to transform this into an irreducible loop, don't do this.
1263 // See the comments above FindLoopHeaders for justifications and caveats.
1264 if (LoopHeaders.count(BB)) {
1265 DEBUG(errs() << " Not duplicating loop header '" << BB->getName()
1266 << "' into predecessor block '" << PredBB->getName()
1267 << "' - it might create an irreducible loop!\n");
1268 return false;
1269 }
1270
1271 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1272 if (DuplicationCost > Threshold) {
1273 DEBUG(errs() << " Not duplicating BB '" << BB->getName()
1274 << "' - Cost is too high: " << DuplicationCost << "\n");
1275 return false;
1276 }
1277
1278 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1279 // of PredBB.
1280 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '"
1281 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1282 << DuplicationCost << " block is:" << *BB << "\n");
1283
1284 // We are going to have to map operands from the original BB block into the
1285 // PredBB block. Evaluate PHI nodes in BB.
1286 DenseMap<Instruction*, Value*> ValueMapping;
1287
1288 BasicBlock::iterator BI = BB->begin();
1289 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1290 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1291
1292 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1293
1294 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1295 // mapping and using it to remap operands in the cloned instructions.
1296 for (; BI != BB->end(); ++BI) {
1297 Instruction *New = BI->clone();
1298 New->setName(BI->getName());
1299 PredBB->getInstList().insert(OldPredBranch, New);
1300 ValueMapping[BI] = New;
1301
1302 // Remap operands to patch up intra-block references.
1303 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1304 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1305 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1306 if (I != ValueMapping.end())
1307 New->setOperand(i, I->second);
1308 }
1309 }
1310
1311 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1312 // add entries to the PHI nodes for branch from PredBB now.
1313 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1314 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1315 ValueMapping);
1316 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1317 ValueMapping);
1318
1319 // If there were values defined in BB that are used outside the block, then we
1320 // now have to update all uses of the value to use either the original value,
1321 // the cloned value, or some PHI derived value. This can require arbitrary
1322 // PHI insertion, of which we are prepared to do, clean these up now.
1323 SSAUpdater SSAUpdate;
1324 SmallVector<Use*, 16> UsesToRename;
1325 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1326 // Scan all uses of this instruction to see if it is used outside of its
1327 // block, and if so, record them in UsesToRename.
1328 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1329 ++UI) {
1330 Instruction *User = cast<Instruction>(*UI);
1331 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1332 if (UserPN->getIncomingBlock(UI) == BB)
1333 continue;
1334 } else if (User->getParent() == BB)
1335 continue;
1336
1337 UsesToRename.push_back(&UI.getUse());
1338 }
1339
1340 // If there are no uses outside the block, we're done with this instruction.
1341 if (UsesToRename.empty())
1342 continue;
1343
1344 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1345
1346 // We found a use of I outside of BB. Rename all uses of I that are outside
1347 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1348 // with the two values we know.
1349 SSAUpdate.Initialize(I);
1350 SSAUpdate.AddAvailableValue(BB, I);
1351 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1352
1353 while (!UsesToRename.empty())
1354 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1355 DEBUG(errs() << "\n");
1356 }
1357
1358 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1359 // that we nuked.
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001360 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattner78c552e2009-10-11 07:24:57 +00001361
1362 // Remove the unconditional branch at the end of the PredBB block.
1363 OldPredBranch->eraseFromParent();
1364
1365 ++NumDupes;
1366 return true;
1367}
1368
1369