blob: 6c33d2d508e3167f29cfc61df6abbaca2798eb58 [file] [log] [blame]
Chris Lattner173234a2008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Dan Gohman24371272010-12-15 20:10:26 +000016#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner173234a2008-06-02 01:18:21 +000017#include "llvm/Constants.h"
18#include "llvm/Instructions.h"
Evan Cheng0ff39b32008-06-30 07:31:25 +000019#include "llvm/GlobalVariable.h"
Dan Gohman307a7c42009-09-15 16:14:44 +000020#include "llvm/GlobalAlias.h"
Chris Lattner173234a2008-06-02 01:18:21 +000021#include "llvm/IntrinsicInst.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000022#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000023#include "llvm/Operator.h"
Bill Wendling0582ae92009-03-13 04:39:26 +000024#include "llvm/Target/TargetData.h"
Chris Lattner173234a2008-06-02 01:18:21 +000025#include "llvm/Support/GetElementPtrTypeIterator.h"
26#include "llvm/Support/MathExtras.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000027#include "llvm/Support/PatternMatch.h"
Eric Christopher25ec4832010-03-05 06:58:57 +000028#include "llvm/ADT/SmallPtrSet.h"
Chris Lattner32a9e7a2008-06-04 04:46:14 +000029#include <cstring>
Chris Lattner173234a2008-06-02 01:18:21 +000030using namespace llvm;
Duncan Sandsd70d1a52011-01-25 09:38:29 +000031using namespace llvm::PatternMatch;
32
33const unsigned MaxDepth = 6;
34
35/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
36/// unknown returns 0). For vector types, returns the element type's bitwidth.
37static unsigned getBitWidth(const Type *Ty, const TargetData *TD) {
38 if (unsigned BitWidth = Ty->getScalarSizeInBits())
39 return BitWidth;
40 assert(isa<PointerType>(Ty) && "Expected a pointer type!");
41 return TD ? TD->getPointerSizeInBits() : 0;
42}
Chris Lattner173234a2008-06-02 01:18:21 +000043
Chris Lattner173234a2008-06-02 01:18:21 +000044/// ComputeMaskedBits - Determine which of the bits specified in Mask are
45/// known to be either zero or one and return them in the KnownZero/KnownOne
46/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
47/// processing.
48/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
49/// we cannot optimize based on the assumption that it is zero without changing
50/// it to be an explicit zero. If we don't change it to zero, other code could
51/// optimized based on the contradictory assumption that it is non-zero.
52/// Because instcombine aggressively folds operations with undef args anyway,
53/// this won't lose us code quality.
Chris Lattnercf5128e2009-09-08 00:06:16 +000054///
55/// This function is defined on values with integer type, values with pointer
56/// type (but only if TD is non-null), and vectors of integers. In the case
57/// where V is a vector, the mask, known zero, and known one values are the
58/// same width as the vector element, and the bit is set only if it is true
59/// for all of the elements in the vector.
Chris Lattner173234a2008-06-02 01:18:21 +000060void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
61 APInt &KnownZero, APInt &KnownOne,
Dan Gohman846a2f22009-08-27 17:51:25 +000062 const TargetData *TD, unsigned Depth) {
Chris Lattner173234a2008-06-02 01:18:21 +000063 assert(V && "No Value?");
Dan Gohman9004c8a2009-05-21 02:28:33 +000064 assert(Depth <= MaxDepth && "Limit Search Depth");
Chris Lattner79abedb2009-01-20 18:22:57 +000065 unsigned BitWidth = Mask.getBitWidth();
Duncan Sands1df98592010-02-16 11:11:14 +000066 assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy())
Duncan Sandsb0bc6c32010-02-15 16:12:20 +000067 && "Not integer or pointer type!");
Dan Gohman6de29f82009-06-15 22:12:54 +000068 assert((!TD ||
69 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +000070 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman6de29f82009-06-15 22:12:54 +000071 V->getType()->getScalarSizeInBits() == BitWidth) &&
Chris Lattner173234a2008-06-02 01:18:21 +000072 KnownZero.getBitWidth() == BitWidth &&
73 KnownOne.getBitWidth() == BitWidth &&
74 "V, Mask, KnownOne and KnownZero should have same BitWidth");
75
76 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
77 // We know all of the bits for a constant!
78 KnownOne = CI->getValue() & Mask;
79 KnownZero = ~KnownOne & Mask;
80 return;
81 }
Dan Gohman6de29f82009-06-15 22:12:54 +000082 // Null and aggregate-zero are all-zeros.
83 if (isa<ConstantPointerNull>(V) ||
84 isa<ConstantAggregateZero>(V)) {
Jay Foad7a874dd2010-12-01 08:53:58 +000085 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +000086 KnownZero = Mask;
87 return;
88 }
Dan Gohman6de29f82009-06-15 22:12:54 +000089 // Handle a constant vector by taking the intersection of the known bits of
90 // each element.
91 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
Jay Foad7a874dd2010-12-01 08:53:58 +000092 KnownZero.setAllBits(); KnownOne.setAllBits();
Dan Gohman6de29f82009-06-15 22:12:54 +000093 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
94 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
95 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
96 TD, Depth);
97 KnownZero &= KnownZero2;
98 KnownOne &= KnownOne2;
99 }
100 return;
101 }
Chris Lattner173234a2008-06-02 01:18:21 +0000102 // The address of an aligned GlobalValue has trailing zeros.
103 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
104 unsigned Align = GV->getAlignment();
Dan Gohman00407252009-08-11 15:50:03 +0000105 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
106 const Type *ObjectType = GV->getType()->getElementType();
107 // If the object is defined in the current Module, we'll be giving
108 // it the preferred alignment. Otherwise, we have to assume that it
109 // may only have the minimum ABI alignment.
110 if (!GV->isDeclaration() && !GV->mayBeOverridden())
111 Align = TD->getPrefTypeAlignment(ObjectType);
112 else
113 Align = TD->getABITypeAlignment(ObjectType);
114 }
Chris Lattner173234a2008-06-02 01:18:21 +0000115 if (Align > 0)
116 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
117 CountTrailingZeros_32(Align));
118 else
Jay Foad7a874dd2010-12-01 08:53:58 +0000119 KnownZero.clearAllBits();
120 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000121 return;
122 }
Dan Gohman307a7c42009-09-15 16:14:44 +0000123 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
124 // the bits of its aliasee.
125 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
126 if (GA->mayBeOverridden()) {
Jay Foad7a874dd2010-12-01 08:53:58 +0000127 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Dan Gohman307a7c42009-09-15 16:14:44 +0000128 } else {
129 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
130 TD, Depth+1);
131 }
132 return;
133 }
Chris Lattner173234a2008-06-02 01:18:21 +0000134
Jay Foad7a874dd2010-12-01 08:53:58 +0000135 KnownZero.clearAllBits(); KnownOne.clearAllBits(); // Start out not knowing anything.
Chris Lattner173234a2008-06-02 01:18:21 +0000136
Dan Gohman9004c8a2009-05-21 02:28:33 +0000137 if (Depth == MaxDepth || Mask == 0)
Chris Lattner173234a2008-06-02 01:18:21 +0000138 return; // Limit search depth.
139
Dan Gohmanca178902009-07-17 20:47:02 +0000140 Operator *I = dyn_cast<Operator>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000141 if (!I) return;
142
143 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohmanca178902009-07-17 20:47:02 +0000144 switch (I->getOpcode()) {
Chris Lattner173234a2008-06-02 01:18:21 +0000145 default: break;
146 case Instruction::And: {
147 // If either the LHS or the RHS are Zero, the result is zero.
148 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
149 APInt Mask2(Mask & ~KnownZero);
150 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
151 Depth+1);
152 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
153 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
154
155 // Output known-1 bits are only known if set in both the LHS & RHS.
156 KnownOne &= KnownOne2;
157 // Output known-0 are known to be clear if zero in either the LHS | RHS.
158 KnownZero |= KnownZero2;
159 return;
160 }
161 case Instruction::Or: {
162 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
163 APInt Mask2(Mask & ~KnownOne);
164 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
165 Depth+1);
166 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
167 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
168
169 // Output known-0 bits are only known if clear in both the LHS & RHS.
170 KnownZero &= KnownZero2;
171 // Output known-1 are known to be set if set in either the LHS | RHS.
172 KnownOne |= KnownOne2;
173 return;
174 }
175 case Instruction::Xor: {
176 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
177 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
178 Depth+1);
179 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
180 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
181
182 // Output known-0 bits are known if clear or set in both the LHS & RHS.
183 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
184 // Output known-1 are known to be set if set in only one of the LHS, RHS.
185 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
186 KnownZero = KnownZeroOut;
187 return;
188 }
189 case Instruction::Mul: {
190 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
191 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
192 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
193 Depth+1);
194 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
195 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
196
197 // If low bits are zero in either operand, output low known-0 bits.
198 // Also compute a conserative estimate for high known-0 bits.
199 // More trickiness is possible, but this is sufficient for the
200 // interesting case of alignment computation.
Jay Foad7a874dd2010-12-01 08:53:58 +0000201 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000202 unsigned TrailZ = KnownZero.countTrailingOnes() +
203 KnownZero2.countTrailingOnes();
204 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
205 KnownZero2.countLeadingOnes(),
206 BitWidth) - BitWidth;
207
208 TrailZ = std::min(TrailZ, BitWidth);
209 LeadZ = std::min(LeadZ, BitWidth);
210 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
211 APInt::getHighBitsSet(BitWidth, LeadZ);
212 KnownZero &= Mask;
213 return;
214 }
215 case Instruction::UDiv: {
216 // For the purposes of computing leading zeros we can conservatively
217 // treat a udiv as a logical right shift by the power of 2 known to
218 // be less than the denominator.
219 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
220 ComputeMaskedBits(I->getOperand(0),
221 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
222 unsigned LeadZ = KnownZero2.countLeadingOnes();
223
Jay Foad7a874dd2010-12-01 08:53:58 +0000224 KnownOne2.clearAllBits();
225 KnownZero2.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000226 ComputeMaskedBits(I->getOperand(1),
227 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
228 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
229 if (RHSUnknownLeadingOnes != BitWidth)
230 LeadZ = std::min(BitWidth,
231 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
232
233 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
234 return;
235 }
236 case Instruction::Select:
237 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
238 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
239 Depth+1);
240 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
241 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
242
243 // Only known if known in both the LHS and RHS.
244 KnownOne &= KnownOne2;
245 KnownZero &= KnownZero2;
246 return;
247 case Instruction::FPTrunc:
248 case Instruction::FPExt:
249 case Instruction::FPToUI:
250 case Instruction::FPToSI:
251 case Instruction::SIToFP:
252 case Instruction::UIToFP:
253 return; // Can't work with floating point.
254 case Instruction::PtrToInt:
255 case Instruction::IntToPtr:
256 // We can't handle these if we don't know the pointer size.
257 if (!TD) return;
258 // FALL THROUGH and handle them the same as zext/trunc.
259 case Instruction::ZExt:
260 case Instruction::Trunc: {
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000261 const Type *SrcTy = I->getOperand(0)->getType();
262
263 unsigned SrcBitWidth;
Chris Lattner173234a2008-06-02 01:18:21 +0000264 // Note that we handle pointer operands here because of inttoptr/ptrtoint
265 // which fall through here.
Duncan Sands1df98592010-02-16 11:11:14 +0000266 if (SrcTy->isPointerTy())
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000267 SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
268 else
269 SrcBitWidth = SrcTy->getScalarSizeInBits();
270
Jay Foad40f8f622010-12-07 08:25:19 +0000271 APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth);
272 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
273 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000274 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
275 Depth+1);
Jay Foad40f8f622010-12-07 08:25:19 +0000276 KnownZero = KnownZero.zextOrTrunc(BitWidth);
277 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000278 // Any top bits are known to be zero.
279 if (BitWidth > SrcBitWidth)
280 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
281 return;
282 }
283 case Instruction::BitCast: {
284 const Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands1df98592010-02-16 11:11:14 +0000285 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattner0dabb0b2009-07-02 16:04:08 +0000286 // TODO: For now, not handling conversions like:
287 // (bitcast i64 %x to <2 x i32>)
Duncan Sands1df98592010-02-16 11:11:14 +0000288 !I->getType()->isVectorTy()) {
Chris Lattner173234a2008-06-02 01:18:21 +0000289 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
290 Depth+1);
291 return;
292 }
293 break;
294 }
295 case Instruction::SExt: {
296 // Compute the bits in the result that are not present in the input.
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000297 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000298
Jay Foad40f8f622010-12-07 08:25:19 +0000299 APInt MaskIn = Mask.trunc(SrcBitWidth);
300 KnownZero = KnownZero.trunc(SrcBitWidth);
301 KnownOne = KnownOne.trunc(SrcBitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000302 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
303 Depth+1);
304 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Jay Foad40f8f622010-12-07 08:25:19 +0000305 KnownZero = KnownZero.zext(BitWidth);
306 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000307
308 // If the sign bit of the input is known set or clear, then we know the
309 // top bits of the result.
310 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
311 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
312 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
313 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
314 return;
315 }
316 case Instruction::Shl:
317 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
318 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
319 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
320 APInt Mask2(Mask.lshr(ShiftAmt));
321 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
322 Depth+1);
323 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
324 KnownZero <<= ShiftAmt;
325 KnownOne <<= ShiftAmt;
326 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
327 return;
328 }
329 break;
330 case Instruction::LShr:
331 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
332 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
333 // Compute the new bits that are at the top now.
334 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
335
336 // Unsigned shift right.
337 APInt Mask2(Mask.shl(ShiftAmt));
338 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
339 Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000340 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000341 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
342 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
343 // high bits known zero.
344 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
345 return;
346 }
347 break;
348 case Instruction::AShr:
349 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
350 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
351 // Compute the new bits that are at the top now.
Chris Lattner43b40a42011-01-04 18:19:15 +0000352 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Chris Lattner173234a2008-06-02 01:18:21 +0000353
354 // Signed shift right.
355 APInt Mask2(Mask.shl(ShiftAmt));
356 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
357 Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000358 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000359 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
360 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
361
362 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
363 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
364 KnownZero |= HighBits;
365 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
366 KnownOne |= HighBits;
367 return;
368 }
369 break;
370 case Instruction::Sub: {
371 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
372 // We know that the top bits of C-X are clear if X contains less bits
373 // than C (i.e. no wrap-around can happen). For example, 20-X is
374 // positive if we can prove that X is >= 0 and < 16.
375 if (!CLHS->getValue().isNegative()) {
376 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
377 // NLZ can't be BitWidth with no sign bit
378 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
379 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
380 TD, Depth+1);
381
382 // If all of the MaskV bits are known to be zero, then we know the
383 // output top bits are zero, because we now know that the output is
384 // from [0-C].
385 if ((KnownZero2 & MaskV) == MaskV) {
386 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
387 // Top bits known zero.
388 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
389 }
390 }
391 }
392 }
393 // fall through
394 case Instruction::Add: {
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000395 // If one of the operands has trailing zeros, then the bits that the
Dan Gohman39250432009-05-24 18:02:35 +0000396 // other operand has in those bit positions will be preserved in the
397 // result. For an add, this works with either operand. For a subtract,
398 // this only works if the known zeros are in the right operand.
399 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
400 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
401 BitWidth - Mask.countLeadingZeros());
402 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
Chris Lattner173234a2008-06-02 01:18:21 +0000403 Depth+1);
Dan Gohman39250432009-05-24 18:02:35 +0000404 assert((LHSKnownZero & LHSKnownOne) == 0 &&
405 "Bits known to be one AND zero?");
406 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
Chris Lattner173234a2008-06-02 01:18:21 +0000407
408 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
409 Depth+1);
410 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
Dan Gohman39250432009-05-24 18:02:35 +0000411 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
Chris Lattner173234a2008-06-02 01:18:21 +0000412
Dan Gohman39250432009-05-24 18:02:35 +0000413 // Determine which operand has more trailing zeros, and use that
414 // many bits from the other operand.
415 if (LHSKnownZeroOut > RHSKnownZeroOut) {
Dan Gohmanca178902009-07-17 20:47:02 +0000416 if (I->getOpcode() == Instruction::Add) {
Dan Gohman39250432009-05-24 18:02:35 +0000417 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
418 KnownZero |= KnownZero2 & Mask;
419 KnownOne |= KnownOne2 & Mask;
420 } else {
421 // If the known zeros are in the left operand for a subtract,
422 // fall back to the minimum known zeros in both operands.
423 KnownZero |= APInt::getLowBitsSet(BitWidth,
424 std::min(LHSKnownZeroOut,
425 RHSKnownZeroOut));
426 }
427 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
428 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
429 KnownZero |= LHSKnownZero & Mask;
430 KnownOne |= LHSKnownOne & Mask;
431 }
Nick Lewyckyb69050a2011-03-11 09:00:19 +0000432
433 // Are we still trying to solve for the sign bit?
Benjamin Kramer2715a582011-03-11 14:46:49 +0000434 if (I->getOpcode() == Instruction::Add &&
435 Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){
Nick Lewyckyb69050a2011-03-11 09:00:19 +0000436 OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I);
437 if (OBO->hasNoSignedWrap()) {
438 // Adding two positive numbers can't wrap into negative ...
439 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
440 KnownZero |= APInt::getSignBit(BitWidth);
441 // and adding two negative numbers can't wrap into positive.
442 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
443 KnownOne |= APInt::getSignBit(BitWidth);
444 }
445 }
446
Chris Lattner173234a2008-06-02 01:18:21 +0000447 return;
448 }
449 case Instruction::SRem:
450 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sandscfd54182010-01-29 06:18:37 +0000451 APInt RA = Rem->getValue().abs();
452 if (RA.isPowerOf2()) {
453 APInt LowBits = RA - 1;
Chris Lattner173234a2008-06-02 01:18:21 +0000454 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
455 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
456 Depth+1);
457
Duncan Sandscfd54182010-01-29 06:18:37 +0000458 // The low bits of the first operand are unchanged by the srem.
459 KnownZero = KnownZero2 & LowBits;
460 KnownOne = KnownOne2 & LowBits;
Chris Lattner173234a2008-06-02 01:18:21 +0000461
Duncan Sandscfd54182010-01-29 06:18:37 +0000462 // If the first operand is non-negative or has all low bits zero, then
463 // the upper bits are all zero.
464 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
465 KnownZero |= ~LowBits;
466
467 // If the first operand is negative and not all low bits are zero, then
468 // the upper bits are all one.
469 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
470 KnownOne |= ~LowBits;
471
472 KnownZero &= Mask;
473 KnownOne &= Mask;
Chris Lattner173234a2008-06-02 01:18:21 +0000474
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000475 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000476 }
477 }
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000478
479 // The sign bit is the LHS's sign bit, except when the result of the
480 // remainder is zero.
481 if (Mask.isNegative() && KnownZero.isNonNegative()) {
482 APInt Mask2 = APInt::getSignBit(BitWidth);
483 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
484 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
485 Depth+1);
486 // If it's known zero, our sign bit is also zero.
487 if (LHSKnownZero.isNegative())
488 KnownZero |= LHSKnownZero;
489 }
490
Chris Lattner173234a2008-06-02 01:18:21 +0000491 break;
492 case Instruction::URem: {
493 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
494 APInt RA = Rem->getValue();
495 if (RA.isPowerOf2()) {
496 APInt LowBits = (RA - 1);
497 APInt Mask2 = LowBits & Mask;
498 KnownZero |= ~LowBits & Mask;
499 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
500 Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000501 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000502 break;
503 }
504 }
505
506 // Since the result is less than or equal to either operand, any leading
507 // zero bits in either operand must also exist in the result.
508 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
509 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
510 TD, Depth+1);
511 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
512 TD, Depth+1);
513
Chris Lattner79abedb2009-01-20 18:22:57 +0000514 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner173234a2008-06-02 01:18:21 +0000515 KnownZero2.countLeadingOnes());
Jay Foad7a874dd2010-12-01 08:53:58 +0000516 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000517 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
518 break;
519 }
520
Victor Hernandeza276c602009-10-17 01:18:07 +0000521 case Instruction::Alloca: {
Victor Hernandez7b929da2009-10-23 21:09:37 +0000522 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000523 unsigned Align = AI->getAlignment();
Victor Hernandeza276c602009-10-17 01:18:07 +0000524 if (Align == 0 && TD)
525 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Chris Lattner173234a2008-06-02 01:18:21 +0000526
527 if (Align > 0)
528 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
529 CountTrailingZeros_32(Align));
530 break;
531 }
532 case Instruction::GetElementPtr: {
533 // Analyze all of the subscripts of this getelementptr instruction
534 // to determine if we can prove known low zero bits.
535 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
536 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
537 ComputeMaskedBits(I->getOperand(0), LocalMask,
538 LocalKnownZero, LocalKnownOne, TD, Depth+1);
539 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
540
541 gep_type_iterator GTI = gep_type_begin(I);
542 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
543 Value *Index = I->getOperand(i);
544 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
545 // Handle struct member offset arithmetic.
546 if (!TD) return;
547 const StructLayout *SL = TD->getStructLayout(STy);
548 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
549 uint64_t Offset = SL->getElementOffset(Idx);
550 TrailZ = std::min(TrailZ,
551 CountTrailingZeros_64(Offset));
552 } else {
553 // Handle array index arithmetic.
554 const Type *IndexedTy = GTI.getIndexedType();
555 if (!IndexedTy->isSized()) return;
Dan Gohman6de29f82009-06-15 22:12:54 +0000556 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sands777d2302009-05-09 07:06:46 +0000557 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner173234a2008-06-02 01:18:21 +0000558 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
559 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
560 ComputeMaskedBits(Index, LocalMask,
561 LocalKnownZero, LocalKnownOne, TD, Depth+1);
562 TrailZ = std::min(TrailZ,
Chris Lattner79abedb2009-01-20 18:22:57 +0000563 unsigned(CountTrailingZeros_64(TypeSize) +
564 LocalKnownZero.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000565 }
566 }
567
568 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
569 break;
570 }
571 case Instruction::PHI: {
572 PHINode *P = cast<PHINode>(I);
573 // Handle the case of a simple two-predecessor recurrence PHI.
574 // There's a lot more that could theoretically be done here, but
575 // this is sufficient to catch some interesting cases.
576 if (P->getNumIncomingValues() == 2) {
577 for (unsigned i = 0; i != 2; ++i) {
578 Value *L = P->getIncomingValue(i);
579 Value *R = P->getIncomingValue(!i);
Dan Gohmanca178902009-07-17 20:47:02 +0000580 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner173234a2008-06-02 01:18:21 +0000581 if (!LU)
582 continue;
Dan Gohmanca178902009-07-17 20:47:02 +0000583 unsigned Opcode = LU->getOpcode();
Chris Lattner173234a2008-06-02 01:18:21 +0000584 // Check for operations that have the property that if
585 // both their operands have low zero bits, the result
586 // will have low zero bits.
587 if (Opcode == Instruction::Add ||
588 Opcode == Instruction::Sub ||
589 Opcode == Instruction::And ||
590 Opcode == Instruction::Or ||
591 Opcode == Instruction::Mul) {
592 Value *LL = LU->getOperand(0);
593 Value *LR = LU->getOperand(1);
594 // Find a recurrence.
595 if (LL == I)
596 L = LR;
597 else if (LR == I)
598 L = LL;
599 else
600 break;
601 // Ok, we have a PHI of the form L op= R. Check for low
602 // zero bits.
603 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
604 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
605 Mask2 = APInt::getLowBitsSet(BitWidth,
606 KnownZero2.countTrailingOnes());
David Greenec714f132008-10-27 23:24:03 +0000607
608 // We need to take the minimum number of known bits
609 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
610 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
611
Chris Lattner173234a2008-06-02 01:18:21 +0000612 KnownZero = Mask &
613 APInt::getLowBitsSet(BitWidth,
David Greenec714f132008-10-27 23:24:03 +0000614 std::min(KnownZero2.countTrailingOnes(),
615 KnownZero3.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000616 break;
617 }
618 }
619 }
Dan Gohman9004c8a2009-05-21 02:28:33 +0000620
Nick Lewycky3b739d22011-02-10 23:54:10 +0000621 // Unreachable blocks may have zero-operand PHI nodes.
622 if (P->getNumIncomingValues() == 0)
623 return;
624
Dan Gohman9004c8a2009-05-21 02:28:33 +0000625 // Otherwise take the unions of the known bit sets of the operands,
626 // taking conservative care to avoid excessive recursion.
627 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands606199f2011-03-08 12:39:03 +0000628 // Skip if every incoming value references to ourself.
629 if (P->hasConstantValue() == P)
630 break;
631
Dan Gohman9004c8a2009-05-21 02:28:33 +0000632 KnownZero = APInt::getAllOnesValue(BitWidth);
633 KnownOne = APInt::getAllOnesValue(BitWidth);
634 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
635 // Skip direct self references.
636 if (P->getIncomingValue(i) == P) continue;
637
638 KnownZero2 = APInt(BitWidth, 0);
639 KnownOne2 = APInt(BitWidth, 0);
640 // Recurse, but cap the recursion to one level, because we don't
641 // want to waste time spinning around in loops.
642 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
643 KnownZero2, KnownOne2, TD, MaxDepth-1);
644 KnownZero &= KnownZero2;
645 KnownOne &= KnownOne2;
646 // If all bits have been ruled out, there's no need to check
647 // more operands.
648 if (!KnownZero && !KnownOne)
649 break;
650 }
651 }
Chris Lattner173234a2008-06-02 01:18:21 +0000652 break;
653 }
654 case Instruction::Call:
655 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
656 switch (II->getIntrinsicID()) {
657 default: break;
658 case Intrinsic::ctpop:
659 case Intrinsic::ctlz:
660 case Intrinsic::cttz: {
661 unsigned LowBits = Log2_32(BitWidth)+1;
662 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
663 break;
664 }
665 }
666 }
667 break;
668 }
669}
670
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000671/// ComputeSignBit - Determine whether the sign bit is known to be zero or
672/// one. Convenience wrapper around ComputeMaskedBits.
673void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
674 const TargetData *TD, unsigned Depth) {
675 unsigned BitWidth = getBitWidth(V->getType(), TD);
676 if (!BitWidth) {
677 KnownZero = false;
678 KnownOne = false;
679 return;
680 }
681 APInt ZeroBits(BitWidth, 0);
682 APInt OneBits(BitWidth, 0);
683 ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD,
684 Depth);
685 KnownOne = OneBits[BitWidth - 1];
686 KnownZero = ZeroBits[BitWidth - 1];
687}
688
689/// isPowerOfTwo - Return true if the given value is known to have exactly one
690/// bit set when defined. For vectors return true if every element is known to
691/// be a power of two when defined. Supports values with integer or pointer
692/// types and vectors of integers.
693bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) {
694 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Duncan Sands464a4f32011-01-26 08:44:16 +0000695 return CI->getValue().isPowerOf2();
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000696 // TODO: Handle vector constants.
697
698 // 1 << X is clearly a power of two if the one is not shifted off the end. If
699 // it is shifted off the end then the result is undefined.
700 if (match(V, m_Shl(m_One(), m_Value())))
701 return true;
702
703 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
704 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands93c78022011-02-01 08:50:33 +0000705 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000706 return true;
707
708 // The remaining tests are all recursive, so bail out if we hit the limit.
709 if (Depth++ == MaxDepth)
710 return false;
711
712 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
713 return isPowerOfTwo(ZI->getOperand(0), TD, Depth);
714
715 if (SelectInst *SI = dyn_cast<SelectInst>(V))
716 return isPowerOfTwo(SI->getTrueValue(), TD, Depth) &&
717 isPowerOfTwo(SI->getFalseValue(), TD, Depth);
718
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000719 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyda834092011-02-28 09:18:11 +0000720 // is a power of two only if the first operand is a power of two.
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000721 if (match(V, m_Shr(m_Value(), m_Value())) ||
722 match(V, m_IDiv(m_Value(), m_Value()))) {
723 BinaryOperator *BO = cast<BinaryOperator>(V);
724 if (BO->isExact())
725 return isPowerOfTwo(BO->getOperand(0), TD, Depth);
726 }
727
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000728 return false;
729}
730
731/// isKnownNonZero - Return true if the given value is known to be non-zero
732/// when defined. For vectors return true if every element is known to be
733/// non-zero when defined. Supports values with integer or pointer type and
734/// vectors of integers.
735bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
736 if (Constant *C = dyn_cast<Constant>(V)) {
737 if (C->isNullValue())
738 return false;
739 if (isa<ConstantInt>(C))
740 // Must be non-zero due to null test above.
741 return true;
742 // TODO: Handle vectors
743 return false;
744 }
745
746 // The remaining tests are all recursive, so bail out if we hit the limit.
747 if (Depth++ == MaxDepth)
748 return false;
749
750 unsigned BitWidth = getBitWidth(V->getType(), TD);
751
752 // X | Y != 0 if X != 0 or Y != 0.
753 Value *X = 0, *Y = 0;
754 if (match(V, m_Or(m_Value(X), m_Value(Y))))
755 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
756
757 // ext X != 0 if X != 0.
758 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
759 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
760
Duncan Sands91367822011-01-29 13:27:00 +0000761 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000762 // if the lowest bit is shifted off the end.
763 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000764 // shl nuw can't remove any non-zero bits.
765 BinaryOperator *BO = cast<BinaryOperator>(V);
766 if (BO->hasNoUnsignedWrap())
767 return isKnownNonZero(X, TD, Depth);
768
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000769 APInt KnownZero(BitWidth, 0);
770 APInt KnownOne(BitWidth, 0);
Duncan Sands91367822011-01-29 13:27:00 +0000771 ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000772 if (KnownOne[0])
773 return true;
774 }
Duncan Sands91367822011-01-29 13:27:00 +0000775 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000776 // defined if the sign bit is shifted off the end.
777 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000778 // shr exact can only shift out zero bits.
779 BinaryOperator *BO = cast<BinaryOperator>(V);
780 if (BO->isExact())
781 return isKnownNonZero(X, TD, Depth);
782
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000783 bool XKnownNonNegative, XKnownNegative;
784 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
785 if (XKnownNegative)
786 return true;
787 }
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000788 // div exact can only produce a zero if the dividend is zero.
789 else if (match(V, m_IDiv(m_Value(X), m_Value()))) {
790 BinaryOperator *BO = cast<BinaryOperator>(V);
791 if (BO->isExact())
792 return isKnownNonZero(X, TD, Depth);
793 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000794 // X + Y.
795 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
796 bool XKnownNonNegative, XKnownNegative;
797 bool YKnownNonNegative, YKnownNegative;
798 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
799 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
800
801 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands227fba12011-01-25 15:14:15 +0000802 // zero unless both X and Y are zero.
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000803 if (XKnownNonNegative && YKnownNonNegative)
Duncan Sands227fba12011-01-25 15:14:15 +0000804 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
805 return true;
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000806
807 // If X and Y are both negative (as signed values) then their sum is not
808 // zero unless both X and Y equal INT_MIN.
809 if (BitWidth && XKnownNegative && YKnownNegative) {
810 APInt KnownZero(BitWidth, 0);
811 APInt KnownOne(BitWidth, 0);
812 APInt Mask = APInt::getSignedMaxValue(BitWidth);
813 // The sign bit of X is set. If some other bit is set then X is not equal
814 // to INT_MIN.
815 ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth);
816 if ((KnownOne & Mask) != 0)
817 return true;
818 // The sign bit of Y is set. If some other bit is set then Y is not equal
819 // to INT_MIN.
820 ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth);
821 if ((KnownOne & Mask) != 0)
822 return true;
823 }
824
825 // The sum of a non-negative number and a power of two is not zero.
826 if (XKnownNonNegative && isPowerOfTwo(Y, TD, Depth))
827 return true;
828 if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth))
829 return true;
830 }
831 // (C ? X : Y) != 0 if X != 0 and Y != 0.
832 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
833 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
834 isKnownNonZero(SI->getFalseValue(), TD, Depth))
835 return true;
836 }
837
838 if (!BitWidth) return false;
839 APInt KnownZero(BitWidth, 0);
840 APInt KnownOne(BitWidth, 0);
841 ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne,
842 TD, Depth);
843 return KnownOne != 0;
844}
845
Chris Lattner173234a2008-06-02 01:18:21 +0000846/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
847/// this predicate to simplify operations downstream. Mask is known to be zero
848/// for bits that V cannot have.
Chris Lattnercf5128e2009-09-08 00:06:16 +0000849///
850/// This function is defined on values with integer type, values with pointer
851/// type (but only if TD is non-null), and vectors of integers. In the case
852/// where V is a vector, the mask, known zero, and known one values are the
853/// same width as the vector element, and the bit is set only if it is true
854/// for all of the elements in the vector.
Chris Lattner173234a2008-06-02 01:18:21 +0000855bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
Dan Gohman846a2f22009-08-27 17:51:25 +0000856 const TargetData *TD, unsigned Depth) {
Chris Lattner173234a2008-06-02 01:18:21 +0000857 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
858 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
859 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
860 return (KnownZero & Mask) == Mask;
861}
862
863
864
865/// ComputeNumSignBits - Return the number of times the sign bit of the
866/// register is replicated into the other bits. We know that at least 1 bit
867/// is always equal to the sign bit (itself), but other cases can give us
868/// information. For example, immediately after an "ashr X, 2", we know that
869/// the top 3 bits are all equal to each other, so we return 3.
870///
871/// 'Op' must have a scalar integer type.
872///
Dan Gohman846a2f22009-08-27 17:51:25 +0000873unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
874 unsigned Depth) {
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000875 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Dan Gohmanbd5ce522009-06-22 22:02:32 +0000876 "ComputeNumSignBits requires a TargetData object to operate "
877 "on non-integer values!");
Dan Gohman6de29f82009-06-15 22:12:54 +0000878 const Type *Ty = V->getType();
Dan Gohmanbd5ce522009-06-22 22:02:32 +0000879 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
880 Ty->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000881 unsigned Tmp, Tmp2;
882 unsigned FirstAnswer = 1;
883
Chris Lattnerd82e5112008-06-02 18:39:07 +0000884 // Note that ConstantInt is handled by the general ComputeMaskedBits case
885 // below.
886
Chris Lattner173234a2008-06-02 01:18:21 +0000887 if (Depth == 6)
888 return 1; // Limit search depth.
889
Dan Gohmanca178902009-07-17 20:47:02 +0000890 Operator *U = dyn_cast<Operator>(V);
891 switch (Operator::getOpcode(V)) {
Chris Lattner173234a2008-06-02 01:18:21 +0000892 default: break;
893 case Instruction::SExt:
Mon P Wang69a00802009-12-02 04:59:58 +0000894 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000895 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
896
897 case Instruction::AShr:
898 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
899 // ashr X, C -> adds C sign bits.
900 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
901 Tmp += C->getZExtValue();
902 if (Tmp > TyBits) Tmp = TyBits;
903 }
Nate Begeman9a3dc552010-12-17 23:12:19 +0000904 // vector ashr X, <C, C, C, C> -> adds C sign bits
905 if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) {
906 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
907 Tmp += CI->getZExtValue();
908 if (Tmp > TyBits) Tmp = TyBits;
909 }
910 }
Chris Lattner173234a2008-06-02 01:18:21 +0000911 return Tmp;
912 case Instruction::Shl:
913 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
914 // shl destroys sign bits.
915 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
916 if (C->getZExtValue() >= TyBits || // Bad shift.
917 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
918 return Tmp - C->getZExtValue();
919 }
920 break;
921 case Instruction::And:
922 case Instruction::Or:
923 case Instruction::Xor: // NOT is handled here.
924 // Logical binary ops preserve the number of sign bits at the worst.
925 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
926 if (Tmp != 1) {
927 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
928 FirstAnswer = std::min(Tmp, Tmp2);
929 // We computed what we know about the sign bits as our first
930 // answer. Now proceed to the generic code that uses
931 // ComputeMaskedBits, and pick whichever answer is better.
932 }
933 break;
934
935 case Instruction::Select:
936 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
937 if (Tmp == 1) return 1; // Early out.
938 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
939 return std::min(Tmp, Tmp2);
940
941 case Instruction::Add:
942 // Add can have at most one carry bit. Thus we know that the output
943 // is, at worst, one more bit than the inputs.
944 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
945 if (Tmp == 1) return 1; // Early out.
946
947 // Special case decrementing a value (ADD X, -1):
Dan Gohman0001e562009-02-24 02:00:40 +0000948 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner173234a2008-06-02 01:18:21 +0000949 if (CRHS->isAllOnesValue()) {
950 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
951 APInt Mask = APInt::getAllOnesValue(TyBits);
952 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
953 Depth+1);
954
955 // If the input is known to be 0 or 1, the output is 0/-1, which is all
956 // sign bits set.
957 if ((KnownZero | APInt(TyBits, 1)) == Mask)
958 return TyBits;
959
960 // If we are subtracting one from a positive number, there is no carry
961 // out of the result.
962 if (KnownZero.isNegative())
963 return Tmp;
964 }
965
966 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
967 if (Tmp2 == 1) return 1;
Chris Lattner8d10f9d2010-01-07 23:44:37 +0000968 return std::min(Tmp, Tmp2)-1;
Chris Lattner173234a2008-06-02 01:18:21 +0000969
970 case Instruction::Sub:
971 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
972 if (Tmp2 == 1) return 1;
973
974 // Handle NEG.
975 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
976 if (CLHS->isNullValue()) {
977 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
978 APInt Mask = APInt::getAllOnesValue(TyBits);
979 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
980 TD, Depth+1);
981 // If the input is known to be 0 or 1, the output is 0/-1, which is all
982 // sign bits set.
983 if ((KnownZero | APInt(TyBits, 1)) == Mask)
984 return TyBits;
985
986 // If the input is known to be positive (the sign bit is known clear),
987 // the output of the NEG has the same number of sign bits as the input.
988 if (KnownZero.isNegative())
989 return Tmp2;
990
991 // Otherwise, we treat this like a SUB.
992 }
993
994 // Sub can have at most one carry bit. Thus we know that the output
995 // is, at worst, one more bit than the inputs.
996 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
997 if (Tmp == 1) return 1; // Early out.
Chris Lattner8d10f9d2010-01-07 23:44:37 +0000998 return std::min(Tmp, Tmp2)-1;
999
1000 case Instruction::PHI: {
1001 PHINode *PN = cast<PHINode>(U);
1002 // Don't analyze large in-degree PHIs.
1003 if (PN->getNumIncomingValues() > 4) break;
1004
1005 // Take the minimum of all incoming values. This can't infinitely loop
1006 // because of our depth threshold.
1007 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1008 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1009 if (Tmp == 1) return Tmp;
1010 Tmp = std::min(Tmp,
Evan Cheng0af20d82010-03-13 02:20:29 +00001011 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001012 }
1013 return Tmp;
1014 }
1015
Chris Lattner173234a2008-06-02 01:18:21 +00001016 case Instruction::Trunc:
1017 // FIXME: it's tricky to do anything useful for this, but it is an important
1018 // case for targets like X86.
1019 break;
1020 }
1021
1022 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1023 // use this information.
1024 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1025 APInt Mask = APInt::getAllOnesValue(TyBits);
1026 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
1027
1028 if (KnownZero.isNegative()) { // sign bit is 0
1029 Mask = KnownZero;
1030 } else if (KnownOne.isNegative()) { // sign bit is 1;
1031 Mask = KnownOne;
1032 } else {
1033 // Nothing known.
1034 return FirstAnswer;
1035 }
1036
1037 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1038 // the number of identical bits in the top of the input value.
1039 Mask = ~Mask;
1040 Mask <<= Mask.getBitWidth()-TyBits;
1041 // Return # leading zeros. We use 'min' here in case Val was zero before
1042 // shifting. We don't want to return '64' as for an i32 "0".
1043 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1044}
Chris Lattner833f25d2008-06-02 01:29:46 +00001045
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001046/// ComputeMultiple - This function computes the integer multiple of Base that
1047/// equals V. If successful, it returns true and returns the multiple in
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001048/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001049/// through SExt instructions only if LookThroughSExt is true.
1050bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001051 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001052 const unsigned MaxDepth = 6;
1053
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001054 assert(V && "No Value?");
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001055 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001056 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001057
1058 const Type *T = V->getType();
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001059
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001060 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001061
1062 if (Base == 0)
1063 return false;
1064
1065 if (Base == 1) {
1066 Multiple = V;
1067 return true;
1068 }
1069
1070 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1071 Constant *BaseVal = ConstantInt::get(T, Base);
1072 if (CO && CO == BaseVal) {
1073 // Multiple is 1.
1074 Multiple = ConstantInt::get(T, 1);
1075 return true;
1076 }
1077
1078 if (CI && CI->getZExtValue() % Base == 0) {
1079 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1080 return true;
1081 }
1082
1083 if (Depth == MaxDepth) return false; // Limit search depth.
1084
1085 Operator *I = dyn_cast<Operator>(V);
1086 if (!I) return false;
1087
1088 switch (I->getOpcode()) {
1089 default: break;
Chris Lattner11fe7262009-11-26 01:50:12 +00001090 case Instruction::SExt:
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001091 if (!LookThroughSExt) return false;
1092 // otherwise fall through to ZExt
Chris Lattner11fe7262009-11-26 01:50:12 +00001093 case Instruction::ZExt:
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001094 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1095 LookThroughSExt, Depth+1);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001096 case Instruction::Shl:
1097 case Instruction::Mul: {
1098 Value *Op0 = I->getOperand(0);
1099 Value *Op1 = I->getOperand(1);
1100
1101 if (I->getOpcode() == Instruction::Shl) {
1102 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1103 if (!Op1CI) return false;
1104 // Turn Op0 << Op1 into Op0 * 2^Op1
1105 APInt Op1Int = Op1CI->getValue();
1106 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foada99793c2010-11-30 09:02:01 +00001107 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00001108 API.setBit(BitToSet);
Jay Foada99793c2010-11-30 09:02:01 +00001109 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001110 }
1111
1112 Value *Mul0 = NULL;
Chris Lattnere9711312010-09-05 17:20:46 +00001113 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1114 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1115 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1116 if (Op1C->getType()->getPrimitiveSizeInBits() <
1117 MulC->getType()->getPrimitiveSizeInBits())
1118 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1119 if (Op1C->getType()->getPrimitiveSizeInBits() >
1120 MulC->getType()->getPrimitiveSizeInBits())
1121 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1122
1123 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1124 Multiple = ConstantExpr::getMul(MulC, Op1C);
1125 return true;
1126 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001127
1128 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1129 if (Mul0CI->getValue() == 1) {
1130 // V == Base * Op1, so return Op1
1131 Multiple = Op1;
1132 return true;
1133 }
1134 }
1135
Chris Lattnere9711312010-09-05 17:20:46 +00001136 Value *Mul1 = NULL;
1137 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1138 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1139 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1140 if (Op0C->getType()->getPrimitiveSizeInBits() <
1141 MulC->getType()->getPrimitiveSizeInBits())
1142 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1143 if (Op0C->getType()->getPrimitiveSizeInBits() >
1144 MulC->getType()->getPrimitiveSizeInBits())
1145 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1146
1147 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1148 Multiple = ConstantExpr::getMul(MulC, Op0C);
1149 return true;
1150 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001151
1152 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1153 if (Mul1CI->getValue() == 1) {
1154 // V == Base * Op0, so return Op0
1155 Multiple = Op0;
1156 return true;
1157 }
1158 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001159 }
1160 }
1161
1162 // We could not determine if V is a multiple of Base.
1163 return false;
1164}
1165
Chris Lattner833f25d2008-06-02 01:29:46 +00001166/// CannotBeNegativeZero - Return true if we can prove that the specified FP
1167/// value is never equal to -0.0.
1168///
1169/// NOTE: this function will need to be revisited when we support non-default
1170/// rounding modes!
1171///
1172bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1173 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1174 return !CFP->getValueAPF().isNegZero();
1175
1176 if (Depth == 6)
1177 return 1; // Limit search depth.
1178
Dan Gohmanca178902009-07-17 20:47:02 +00001179 const Operator *I = dyn_cast<Operator>(V);
Chris Lattner833f25d2008-06-02 01:29:46 +00001180 if (I == 0) return false;
1181
1182 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Dan Gohmanae3a0be2009-06-04 22:49:04 +00001183 if (I->getOpcode() == Instruction::FAdd &&
Chris Lattner833f25d2008-06-02 01:29:46 +00001184 isa<ConstantFP>(I->getOperand(1)) &&
1185 cast<ConstantFP>(I->getOperand(1))->isNullValue())
1186 return true;
1187
1188 // sitofp and uitofp turn into +0.0 for zero.
1189 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1190 return true;
1191
1192 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1193 // sqrt(-0.0) = -0.0, no other negative results are possible.
1194 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif71339c92010-06-23 23:38:07 +00001195 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Chris Lattner833f25d2008-06-02 01:29:46 +00001196
1197 if (const CallInst *CI = dyn_cast<CallInst>(I))
1198 if (const Function *F = CI->getCalledFunction()) {
1199 if (F->isDeclaration()) {
Daniel Dunbarf0443c12009-07-26 08:34:35 +00001200 // abs(x) != -0.0
1201 if (F->getName() == "abs") return true;
Dale Johannesen9d061752009-09-25 20:54:50 +00001202 // fabs[lf](x) != -0.0
1203 if (F->getName() == "fabs") return true;
1204 if (F->getName() == "fabsf") return true;
1205 if (F->getName() == "fabsl") return true;
1206 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1207 F->getName() == "sqrtl")
Gabor Greif71339c92010-06-23 23:38:07 +00001208 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattner833f25d2008-06-02 01:29:46 +00001209 }
1210 }
1211
1212 return false;
1213}
1214
Chris Lattnerbb897102010-12-26 20:15:01 +00001215/// isBytewiseValue - If the specified value can be set by repeating the same
1216/// byte in memory, return the i8 value that it is represented with. This is
1217/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1218/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1219/// byte store (e.g. i16 0x1234), return null.
1220Value *llvm::isBytewiseValue(Value *V) {
1221 // All byte-wide stores are splatable, even of arbitrary variables.
1222 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattner41bfbb02011-02-19 19:35:49 +00001223
1224 // Handle 'null' ConstantArrayZero etc.
1225 if (Constant *C = dyn_cast<Constant>(V))
1226 if (C->isNullValue())
1227 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Chris Lattnerbb897102010-12-26 20:15:01 +00001228
1229 // Constant float and double values can be handled as integer values if the
1230 // corresponding integer value is "byteable". An important case is 0.0.
1231 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1232 if (CFP->getType()->isFloatTy())
1233 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1234 if (CFP->getType()->isDoubleTy())
1235 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1236 // Don't handle long double formats, which have strange constraints.
1237 }
1238
1239 // We can handle constant integers that are power of two in size and a
1240 // multiple of 8 bits.
1241 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1242 unsigned Width = CI->getBitWidth();
1243 if (isPowerOf2_32(Width) && Width > 8) {
1244 // We can handle this value if the recursive binary decomposition is the
1245 // same at all levels.
1246 APInt Val = CI->getValue();
1247 APInt Val2;
1248 while (Val.getBitWidth() != 8) {
1249 unsigned NextWidth = Val.getBitWidth()/2;
1250 Val2 = Val.lshr(NextWidth);
1251 Val2 = Val2.trunc(Val.getBitWidth()/2);
1252 Val = Val.trunc(Val.getBitWidth()/2);
1253
1254 // If the top/bottom halves aren't the same, reject it.
1255 if (Val != Val2)
1256 return 0;
1257 }
1258 return ConstantInt::get(V->getContext(), Val);
1259 }
1260 }
1261
1262 // A ConstantArray is splatable if all its members are equal and also
1263 // splatable.
1264 if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1265 if (CA->getNumOperands() == 0)
1266 return 0;
1267
1268 Value *Val = isBytewiseValue(CA->getOperand(0));
1269 if (!Val)
1270 return 0;
1271
1272 for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I)
1273 if (CA->getOperand(I-1) != CA->getOperand(I))
1274 return 0;
1275
1276 return Val;
1277 }
1278
1279 // Conceptually, we could handle things like:
1280 // %a = zext i8 %X to i16
1281 // %b = shl i16 %a, 8
1282 // %c = or i16 %a, %b
1283 // but until there is an example that actually needs this, it doesn't seem
1284 // worth worrying about.
1285 return 0;
1286}
1287
1288
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001289// This is the recursive version of BuildSubAggregate. It takes a few different
1290// arguments. Idxs is the index within the nested struct From that we are
1291// looking at now (which is of type IndexedType). IdxSkip is the number of
1292// indices from Idxs that should be left out when inserting into the resulting
1293// struct. To is the result struct built so far, new insertvalue instructions
1294// build on that.
Dan Gohman7db949d2009-08-07 01:32:21 +00001295static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
1296 SmallVector<unsigned, 10> &Idxs,
1297 unsigned IdxSkip,
Dan Gohman7db949d2009-08-07 01:32:21 +00001298 Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001299 const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
1300 if (STy) {
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001301 // Save the original To argument so we can modify it
1302 Value *OrigTo = To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001303 // General case, the type indexed by Idxs is a struct
1304 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1305 // Process each struct element recursively
1306 Idxs.push_back(i);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001307 Value *PrevTo = To;
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001308 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001309 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001310 Idxs.pop_back();
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001311 if (!To) {
1312 // Couldn't find any inserted value for this index? Cleanup
1313 while (PrevTo != OrigTo) {
1314 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1315 PrevTo = Del->getAggregateOperand();
1316 Del->eraseFromParent();
1317 }
1318 // Stop processing elements
1319 break;
1320 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001321 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001322 // If we succesfully found a value for each of our subaggregates
1323 if (To)
1324 return To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001325 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001326 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1327 // the struct's elements had a value that was inserted directly. In the latter
1328 // case, perhaps we can't determine each of the subelements individually, but
1329 // we might be able to find the complete struct somewhere.
1330
1331 // Find the value that is at that particular spot
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001332 Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end());
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001333
1334 if (!V)
1335 return NULL;
1336
1337 // Insert the value in the new (sub) aggregrate
1338 return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
1339 Idxs.end(), "tmp", InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001340}
1341
1342// This helper takes a nested struct and extracts a part of it (which is again a
1343// struct) into a new value. For example, given the struct:
1344// { a, { b, { c, d }, e } }
1345// and the indices "1, 1" this returns
1346// { c, d }.
1347//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001348// It does this by inserting an insertvalue for each element in the resulting
1349// struct, as opposed to just inserting a single struct. This will only work if
1350// each of the elements of the substruct are known (ie, inserted into From by an
1351// insertvalue instruction somewhere).
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001352//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001353// All inserted insertvalue instructions are inserted before InsertBefore
Dan Gohman7db949d2009-08-07 01:32:21 +00001354static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001355 const unsigned *idx_end,
Dan Gohman7db949d2009-08-07 01:32:21 +00001356 Instruction *InsertBefore) {
Matthijs Kooijman97728912008-06-16 13:28:31 +00001357 assert(InsertBefore && "Must have someplace to insert!");
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001358 const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1359 idx_begin,
1360 idx_end);
Owen Anderson9e9a0d52009-07-30 23:03:37 +00001361 Value *To = UndefValue::get(IndexedType);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001362 SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
1363 unsigned IdxSkip = Idxs.size();
1364
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001365 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001366}
1367
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001368/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1369/// the scalar value indexed is already around as a register, for example if it
1370/// were inserted directly into the aggregrate.
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001371///
1372/// If InsertBefore is not null, this function will duplicate (modified)
1373/// insertvalues when a part of a nested struct is extracted.
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001374Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001375 const unsigned *idx_end, Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001376 // Nothing to index? Just return V then (this is useful at the end of our
1377 // recursion)
1378 if (idx_begin == idx_end)
1379 return V;
1380 // We have indices, so V should have an indexable type
Duncan Sands1df98592010-02-16 11:11:14 +00001381 assert((V->getType()->isStructTy() || V->getType()->isArrayTy())
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001382 && "Not looking at a struct or array?");
1383 assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
1384 && "Invalid indices for type?");
1385 const CompositeType *PTy = cast<CompositeType>(V->getType());
Owen Anderson76f600b2009-07-06 22:37:39 +00001386
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001387 if (isa<UndefValue>(V))
Owen Anderson9e9a0d52009-07-30 23:03:37 +00001388 return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001389 idx_begin,
1390 idx_end));
1391 else if (isa<ConstantAggregateZero>(V))
Owen Andersona7235ea2009-07-31 20:28:14 +00001392 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
Owen Anderson76f600b2009-07-06 22:37:39 +00001393 idx_begin,
1394 idx_end));
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001395 else if (Constant *C = dyn_cast<Constant>(V)) {
1396 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
1397 // Recursively process this constant
Owen Anderson76f600b2009-07-06 22:37:39 +00001398 return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001399 idx_end, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001400 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1401 // Loop the indices for the insertvalue instruction in parallel with the
1402 // requested indices
1403 const unsigned *req_idx = idx_begin;
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001404 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1405 i != e; ++i, ++req_idx) {
Duncan Sands9954c762008-06-19 08:47:31 +00001406 if (req_idx == idx_end) {
Matthijs Kooijman97728912008-06-16 13:28:31 +00001407 if (InsertBefore)
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001408 // The requested index identifies a part of a nested aggregate. Handle
1409 // this specially. For example,
1410 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1411 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1412 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1413 // This can be changed into
1414 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1415 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1416 // which allows the unused 0,0 element from the nested struct to be
1417 // removed.
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001418 return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
Matthijs Kooijman97728912008-06-16 13:28:31 +00001419 else
1420 // We can't handle this without inserting insertvalues
1421 return 0;
Duncan Sands9954c762008-06-19 08:47:31 +00001422 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001423
1424 // This insert value inserts something else than what we are looking for.
1425 // See if the (aggregrate) value inserted into has the value we are
1426 // looking for, then.
1427 if (*req_idx != *i)
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001428 return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001429 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001430 }
1431 // If we end up here, the indices of the insertvalue match with those
1432 // requested (though possibly only partially). Now we recursively look at
1433 // the inserted value, passing any remaining indices.
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001434 return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001435 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001436 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1437 // If we're extracting a value from an aggregrate that was extracted from
1438 // something else, we can extract from that something else directly instead.
1439 // However, we will need to chain I's indices with the requested indices.
1440
1441 // Calculate the number of indices required
1442 unsigned size = I->getNumIndices() + (idx_end - idx_begin);
1443 // Allocate some space to put the new indices in
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001444 SmallVector<unsigned, 5> Idxs;
1445 Idxs.reserve(size);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001446 // Add indices from the extract value instruction
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001447 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001448 i != e; ++i)
1449 Idxs.push_back(*i);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001450
1451 // Add requested indices
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001452 for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
1453 Idxs.push_back(*i);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001454
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001455 assert(Idxs.size() == size
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001456 && "Number of indices added not correct?");
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001457
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001458 return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001459 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001460 }
1461 // Otherwise, we don't know (such as, extracting from a function return value
1462 // or load instruction)
1463 return 0;
1464}
Evan Cheng0ff39b32008-06-30 07:31:25 +00001465
Chris Lattnered58a6f2010-11-30 22:25:26 +00001466/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1467/// it can be expressed as a base pointer plus a constant offset. Return the
1468/// base and offset to the caller.
1469Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1470 const TargetData &TD) {
1471 Operator *PtrOp = dyn_cast<Operator>(Ptr);
1472 if (PtrOp == 0) return Ptr;
1473
1474 // Just look through bitcasts.
1475 if (PtrOp->getOpcode() == Instruction::BitCast)
1476 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1477
1478 // If this is a GEP with constant indices, we can look through it.
1479 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1480 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1481
1482 gep_type_iterator GTI = gep_type_begin(GEP);
1483 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1484 ++I, ++GTI) {
1485 ConstantInt *OpC = cast<ConstantInt>(*I);
1486 if (OpC->isZero()) continue;
1487
1488 // Handle a struct and array indices which add their offset to the pointer.
1489 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
1490 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1491 } else {
1492 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1493 Offset += OpC->getSExtValue()*Size;
1494 }
1495 }
1496
1497 // Re-sign extend from the pointer size if needed to get overflow edge cases
1498 // right.
1499 unsigned PtrSize = TD.getPointerSizeInBits();
1500 if (PtrSize < 64)
1501 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
1502
1503 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1504}
1505
1506
Evan Cheng0ff39b32008-06-30 07:31:25 +00001507/// GetConstantStringInfo - This function computes the length of a
1508/// null-terminated C string pointed to by V. If successful, it returns true
1509/// and returns the string in Str. If unsuccessful, it returns false.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001510bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
1511 uint64_t Offset,
Bill Wendling0582ae92009-03-13 04:39:26 +00001512 bool StopAtNul) {
1513 // If V is NULL then return false;
1514 if (V == NULL) return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001515
1516 // Look through bitcast instructions.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001517 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
Bill Wendling0582ae92009-03-13 04:39:26 +00001518 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
1519
Evan Cheng0ff39b32008-06-30 07:31:25 +00001520 // If the value is not a GEP instruction nor a constant expression with a
1521 // GEP instruction, then return false because ConstantArray can't occur
1522 // any other way
Dan Gohman0a60fa32010-04-14 22:20:45 +00001523 const User *GEP = 0;
1524 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001525 GEP = GEPI;
Dan Gohman0a60fa32010-04-14 22:20:45 +00001526 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001527 if (CE->getOpcode() == Instruction::BitCast)
Bill Wendling0582ae92009-03-13 04:39:26 +00001528 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
1529 if (CE->getOpcode() != Instruction::GetElementPtr)
1530 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001531 GEP = CE;
1532 }
1533
1534 if (GEP) {
1535 // Make sure the GEP has exactly three arguments.
Bill Wendling0582ae92009-03-13 04:39:26 +00001536 if (GEP->getNumOperands() != 3)
1537 return false;
1538
Evan Cheng0ff39b32008-06-30 07:31:25 +00001539 // Make sure the index-ee is a pointer to array of i8.
1540 const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1541 const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001542 if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
Bill Wendling0582ae92009-03-13 04:39:26 +00001543 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001544
1545 // Check to make sure that the first operand of the GEP is an integer and
1546 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001547 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Bill Wendling0582ae92009-03-13 04:39:26 +00001548 if (FirstIdx == 0 || !FirstIdx->isZero())
1549 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001550
1551 // If the second index isn't a ConstantInt, then this is a variable index
1552 // into the array. If this occurs, we can't say anything meaningful about
1553 // the string.
1554 uint64_t StartIdx = 0;
Dan Gohman0a60fa32010-04-14 22:20:45 +00001555 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Cheng0ff39b32008-06-30 07:31:25 +00001556 StartIdx = CI->getZExtValue();
Bill Wendling0582ae92009-03-13 04:39:26 +00001557 else
1558 return false;
1559 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
Evan Cheng0ff39b32008-06-30 07:31:25 +00001560 StopAtNul);
1561 }
1562
1563 // The GEP instruction, constant or instruction, must reference a global
1564 // variable that is a constant and is initialized. The referenced constant
1565 // initializer is the array that we'll use for optimization.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001566 const GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
Dan Gohman82555732009-08-19 18:20:44 +00001567 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendling0582ae92009-03-13 04:39:26 +00001568 return false;
Dan Gohman0a60fa32010-04-14 22:20:45 +00001569 const Constant *GlobalInit = GV->getInitializer();
Evan Cheng0ff39b32008-06-30 07:31:25 +00001570
1571 // Handle the ConstantAggregateZero case
Bill Wendling0582ae92009-03-13 04:39:26 +00001572 if (isa<ConstantAggregateZero>(GlobalInit)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001573 // This is a degenerate case. The initializer is constant zero so the
1574 // length of the string must be zero.
Bill Wendling0582ae92009-03-13 04:39:26 +00001575 Str.clear();
1576 return true;
1577 }
Evan Cheng0ff39b32008-06-30 07:31:25 +00001578
1579 // Must be a Constant Array
Dan Gohman0a60fa32010-04-14 22:20:45 +00001580 const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001581 if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8))
Bill Wendling0582ae92009-03-13 04:39:26 +00001582 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001583
1584 // Get the number of elements in the array
1585 uint64_t NumElts = Array->getType()->getNumElements();
1586
Bill Wendling0582ae92009-03-13 04:39:26 +00001587 if (Offset > NumElts)
1588 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001589
1590 // Traverse the constant array from 'Offset' which is the place the GEP refers
1591 // to in the array.
Bill Wendling0582ae92009-03-13 04:39:26 +00001592 Str.reserve(NumElts-Offset);
Evan Cheng0ff39b32008-06-30 07:31:25 +00001593 for (unsigned i = Offset; i != NumElts; ++i) {
Dan Gohman0a60fa32010-04-14 22:20:45 +00001594 const Constant *Elt = Array->getOperand(i);
1595 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
Bill Wendling0582ae92009-03-13 04:39:26 +00001596 if (!CI) // This array isn't suitable, non-int initializer.
1597 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001598 if (StopAtNul && CI->isZero())
Bill Wendling0582ae92009-03-13 04:39:26 +00001599 return true; // we found end of string, success!
1600 Str += (char)CI->getZExtValue();
Evan Cheng0ff39b32008-06-30 07:31:25 +00001601 }
Bill Wendling0582ae92009-03-13 04:39:26 +00001602
Evan Cheng0ff39b32008-06-30 07:31:25 +00001603 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
Bill Wendling0582ae92009-03-13 04:39:26 +00001604 return true;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001605}
Eric Christopher25ec4832010-03-05 06:58:57 +00001606
1607// These next two are very similar to the above, but also look through PHI
1608// nodes.
1609// TODO: See if we can integrate these two together.
1610
1611/// GetStringLengthH - If we can compute the length of the string pointed to by
1612/// the specified pointer, return 'len+1'. If we can't, return 0.
1613static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1614 // Look through noop bitcast instructions.
1615 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
1616 return GetStringLengthH(BCI->getOperand(0), PHIs);
1617
1618 // If this is a PHI node, there are two cases: either we have already seen it
1619 // or we haven't.
1620 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1621 if (!PHIs.insert(PN))
1622 return ~0ULL; // already in the set.
1623
1624 // If it was new, see if all the input strings are the same length.
1625 uint64_t LenSoFar = ~0ULL;
1626 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1627 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1628 if (Len == 0) return 0; // Unknown length -> unknown.
1629
1630 if (Len == ~0ULL) continue;
1631
1632 if (Len != LenSoFar && LenSoFar != ~0ULL)
1633 return 0; // Disagree -> unknown.
1634 LenSoFar = Len;
1635 }
1636
1637 // Success, all agree.
1638 return LenSoFar;
1639 }
1640
1641 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1642 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1643 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1644 if (Len1 == 0) return 0;
1645 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1646 if (Len2 == 0) return 0;
1647 if (Len1 == ~0ULL) return Len2;
1648 if (Len2 == ~0ULL) return Len1;
1649 if (Len1 != Len2) return 0;
1650 return Len1;
1651 }
1652
1653 // If the value is not a GEP instruction nor a constant expression with a
1654 // GEP instruction, then return unknown.
1655 User *GEP = 0;
1656 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1657 GEP = GEPI;
1658 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1659 if (CE->getOpcode() != Instruction::GetElementPtr)
1660 return 0;
1661 GEP = CE;
1662 } else {
1663 return 0;
1664 }
1665
1666 // Make sure the GEP has exactly three arguments.
1667 if (GEP->getNumOperands() != 3)
1668 return 0;
1669
1670 // Check to make sure that the first operand of the GEP is an integer and
1671 // has value 0 so that we are sure we're indexing into the initializer.
1672 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
1673 if (!Idx->isZero())
1674 return 0;
1675 } else
1676 return 0;
1677
1678 // If the second index isn't a ConstantInt, then this is a variable index
1679 // into the array. If this occurs, we can't say anything meaningful about
1680 // the string.
1681 uint64_t StartIdx = 0;
1682 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1683 StartIdx = CI->getZExtValue();
1684 else
1685 return 0;
1686
1687 // The GEP instruction, constant or instruction, must reference a global
1688 // variable that is a constant and is initialized. The referenced constant
1689 // initializer is the array that we'll use for optimization.
1690 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1691 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1692 GV->mayBeOverridden())
1693 return 0;
1694 Constant *GlobalInit = GV->getInitializer();
1695
1696 // Handle the ConstantAggregateZero case, which is a degenerate case. The
1697 // initializer is constant zero so the length of the string must be zero.
1698 if (isa<ConstantAggregateZero>(GlobalInit))
1699 return 1; // Len = 0 offset by 1.
1700
1701 // Must be a Constant Array
1702 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1703 if (!Array || !Array->getType()->getElementType()->isIntegerTy(8))
1704 return false;
1705
1706 // Get the number of elements in the array
1707 uint64_t NumElts = Array->getType()->getNumElements();
1708
1709 // Traverse the constant array from StartIdx (derived above) which is
1710 // the place the GEP refers to in the array.
1711 for (unsigned i = StartIdx; i != NumElts; ++i) {
1712 Constant *Elt = Array->getOperand(i);
1713 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1714 if (!CI) // This array isn't suitable, non-int initializer.
1715 return 0;
1716 if (CI->isZero())
1717 return i-StartIdx+1; // We found end of string, success!
1718 }
1719
1720 return 0; // The array isn't null terminated, conservatively return 'unknown'.
1721}
1722
1723/// GetStringLength - If we can compute the length of the string pointed to by
1724/// the specified pointer, return 'len+1'. If we can't, return 0.
1725uint64_t llvm::GetStringLength(Value *V) {
1726 if (!V->getType()->isPointerTy()) return 0;
1727
1728 SmallPtrSet<PHINode*, 32> PHIs;
1729 uint64_t Len = GetStringLengthH(V, PHIs);
1730 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1731 // an empty string as a length.
1732 return Len == ~0ULL ? 1 : Len;
1733}
Dan Gohman5034dd32010-12-15 20:02:24 +00001734
Dan Gohmanbd1801b2011-01-24 18:53:32 +00001735Value *
1736llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) {
Dan Gohman5034dd32010-12-15 20:02:24 +00001737 if (!V->getType()->isPointerTy())
1738 return V;
1739 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1740 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1741 V = GEP->getPointerOperand();
1742 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1743 V = cast<Operator>(V)->getOperand(0);
1744 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1745 if (GA->mayBeOverridden())
1746 return V;
1747 V = GA->getAliasee();
1748 } else {
Dan Gohmanc01895c2010-12-15 20:49:55 +00001749 // See if InstructionSimplify knows any relevant tricks.
1750 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohmanbd1801b2011-01-24 18:53:32 +00001751 // TODO: Aquire a DominatorTree and use it.
1752 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
Dan Gohmanc01895c2010-12-15 20:49:55 +00001753 V = Simplified;
1754 continue;
1755 }
1756
Dan Gohman5034dd32010-12-15 20:02:24 +00001757 return V;
1758 }
1759 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1760 }
1761 return V;
1762}