blob: 41ed449958a513f002ebaf6734e48299f10afb16 [file] [log] [blame]
Chris Lattner233f7dc2002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner8a2a3112001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman844731a2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Chris Lattner8a2a3112001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner318bf792007-03-18 22:51:34 +000015// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
Chris Lattner8a2a3112001-12-14 16:52:21 +000017// into:
Chris Lattner318bf792007-03-18 22:51:34 +000018// %Z = add i32 %X, 2
Chris Lattner8a2a3112001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner065a6162003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattner2cd91962003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdf17af12003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Reid Spencere4d87aa2006-12-23 06:05:41 +000027// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
Chris Lattnere92d2f42003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattnerbac32862004-11-14 19:13:23 +000032// ... etc.
Chris Lattner2cd91962003-07-23 21:41:57 +000033//
Chris Lattner8a2a3112001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattner0cea42a2004-03-13 23:54:27 +000036#define DEBUG_TYPE "instcombine"
Chris Lattner022103b2002-05-07 20:03:00 +000037#include "llvm/Transforms/Scalar.h"
Chris Lattner35b9e482004-10-12 04:52:52 +000038#include "llvm/IntrinsicInst.h"
Chris Lattnerbd0ef772002-02-26 21:46:54 +000039#include "llvm/Pass.h"
Chris Lattner0864acf2002-11-04 16:18:53 +000040#include "llvm/DerivedTypes.h"
Chris Lattner833b8a42003-06-26 05:06:25 +000041#include "llvm/GlobalVariable.h"
Chris Lattner79066fa2007-01-30 23:46:24 +000042#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner173234a2008-06-02 01:18:21 +000043#include "llvm/Analysis/ValueTracking.h"
Chris Lattnerbc61e662003-11-02 05:57:39 +000044#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
Chris Lattner28977af2004-04-05 01:30:19 +000047#include "llvm/Support/CallSite.h"
Nick Lewycky5be29202008-02-03 16:33:09 +000048#include "llvm/Support/ConstantRange.h"
Chris Lattnerea1c4542004-12-08 23:43:58 +000049#include "llvm/Support/Debug.h"
Chris Lattner28977af2004-04-05 01:30:19 +000050#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerdd841ae2002-04-18 17:39:14 +000051#include "llvm/Support/InstVisitor.h"
Chris Lattnerbcd7db52005-08-02 19:16:58 +000052#include "llvm/Support/MathExtras.h"
Chris Lattneracd1f0f2004-07-30 07:50:03 +000053#include "llvm/Support/PatternMatch.h"
Chris Lattnera4f0b3a2006-08-27 12:54:02 +000054#include "llvm/Support/Compiler.h"
Chris Lattnerdbab3862007-03-02 21:28:56 +000055#include "llvm/ADT/DenseMap.h"
Chris Lattner55eb1c42007-01-31 04:40:53 +000056#include "llvm/ADT/SmallVector.h"
Chris Lattner1f87a582007-02-15 19:41:52 +000057#include "llvm/ADT/SmallPtrSet.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000058#include "llvm/ADT/Statistic.h"
Chris Lattnerea1c4542004-12-08 23:43:58 +000059#include "llvm/ADT/STLExtras.h"
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +000060#include <algorithm>
Torok Edwin3eaee312008-04-20 08:33:11 +000061#include <climits>
Reid Spencera9b81012007-03-26 17:44:01 +000062#include <sstream>
Chris Lattner67b1e1b2003-12-07 01:24:23 +000063using namespace llvm;
Chris Lattneracd1f0f2004-07-30 07:50:03 +000064using namespace llvm::PatternMatch;
Brian Gaeked0fde302003-11-11 22:41:34 +000065
Chris Lattner0e5f4992006-12-19 21:40:18 +000066STATISTIC(NumCombined , "Number of insts combined");
67STATISTIC(NumConstProp, "Number of constant folds");
68STATISTIC(NumDeadInst , "Number of dead inst eliminated");
69STATISTIC(NumDeadStore, "Number of dead stores eliminated");
70STATISTIC(NumSunkInst , "Number of instructions sunk");
Chris Lattnera92f6962002-10-01 22:38:41 +000071
Chris Lattner0e5f4992006-12-19 21:40:18 +000072namespace {
Chris Lattnerf4b54612006-06-28 22:08:15 +000073 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass,
75 public InstVisitor<InstCombiner, Instruction*> {
Chris Lattnerdd841ae2002-04-18 17:39:14 +000076 // Worklist of all of the instructions that need to be simplified.
Chris Lattner2806dff2008-08-15 04:03:01 +000077 SmallVector<Instruction*, 256> Worklist;
Chris Lattnerdbab3862007-03-02 21:28:56 +000078 DenseMap<Instruction*, unsigned> WorklistMap;
Chris Lattnerbc61e662003-11-02 05:57:39 +000079 TargetData *TD;
Chris Lattnerf964f322007-03-04 04:27:24 +000080 bool MustPreserveLCSSA;
Chris Lattnerdbab3862007-03-02 21:28:56 +000081 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +000082 static char ID; // Pass identification, replacement for typeid
Dan Gohmanae73dc12008-09-04 17:05:41 +000083 InstCombiner() : FunctionPass(&ID) {}
Devang Patel794fd752007-05-01 21:15:47 +000084
Chris Lattnerdbab3862007-03-02 21:28:56 +000085 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction *I) {
Dan Gohman6b345ee2008-07-07 17:46:23 +000088 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
Chris Lattnerdbab3862007-03-02 21:28:56 +000089 Worklist.push_back(I);
90 }
91
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction *I) {
94 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
95 if (It == WorklistMap.end()) return; // Not in worklist.
96
97 // Don't bother moving everything down, just null out the slot.
98 Worklist[It->second] = 0;
99
100 WorklistMap.erase(It);
101 }
102
103 Instruction *RemoveOneFromWorkList() {
104 Instruction *I = Worklist.back();
105 Worklist.pop_back();
106 WorklistMap.erase(I);
107 return I;
108 }
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000109
Chris Lattnerdbab3862007-03-02 21:28:56 +0000110
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
113 /// now.
114 ///
Chris Lattner6dce1a72006-02-07 06:56:34 +0000115 void AddUsersToWorkList(Value &I) {
Chris Lattner7e708292002-06-25 16:13:24 +0000116 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000117 UI != UE; ++UI)
Chris Lattnerdbab3862007-03-02 21:28:56 +0000118 AddToWorkList(cast<Instruction>(*UI));
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000119 }
120
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
123 ///
124 void AddUsesToWorkList(Instruction &I) {
Gabor Greif177dd3f2008-06-12 21:37:33 +0000125 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
126 if (Instruction *Op = dyn_cast<Instruction>(*i))
Chris Lattnerdbab3862007-03-02 21:28:56 +0000127 AddToWorkList(Op);
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000128 }
Chris Lattner867b99f2006-10-05 06:55:50 +0000129
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
133 ///
134 /// Return the specified operand before it is turned into an undef.
135 ///
136 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
137 Value *R = I.getOperand(op);
138
Gabor Greif177dd3f2008-06-12 21:37:33 +0000139 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
140 if (Instruction *Op = dyn_cast<Instruction>(*i)) {
Chris Lattnerdbab3862007-03-02 21:28:56 +0000141 AddToWorkList(Op);
Chris Lattner867b99f2006-10-05 06:55:50 +0000142 // Set the operand to undef to drop the use.
Gabor Greif177dd3f2008-06-12 21:37:33 +0000143 *i = UndefValue::get(Op->getType());
Chris Lattner867b99f2006-10-05 06:55:50 +0000144 }
145
146 return R;
147 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000148
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000149 public:
Chris Lattner7e708292002-06-25 16:13:24 +0000150 virtual bool runOnFunction(Function &F);
Chris Lattnerec9c3582007-03-03 02:04:50 +0000151
152 bool DoOneIteration(Function &F, unsigned ItNum);
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000153
Chris Lattner97e52e42002-04-28 21:27:06 +0000154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnerbc61e662003-11-02 05:57:39 +0000155 AU.addRequired<TargetData>();
Owen Andersond1b78a12006-07-10 19:03:49 +0000156 AU.addPreservedID(LCSSAID);
Chris Lattnercb2610e2002-10-21 20:00:28 +0000157 AU.setPreservesCFG();
Chris Lattner97e52e42002-04-28 21:27:06 +0000158 }
159
Chris Lattner28977af2004-04-05 01:30:19 +0000160 TargetData &getTargetData() const { return *TD; }
161
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
164 // Return Value:
165 // null - No change was made
Chris Lattner233f7dc2002-08-12 21:17:25 +0000166 // I - Change was made, I is still valid, I may be dead though
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000167 // otherwise - Change was made, replace I with returned instruction
Misha Brukmanfd939082005-04-21 23:48:37 +0000168 //
Chris Lattner7e708292002-06-25 16:13:24 +0000169 Instruction *visitAdd(BinaryOperator &I);
170 Instruction *visitSub(BinaryOperator &I);
171 Instruction *visitMul(BinaryOperator &I);
Reid Spencer0a783f72006-11-02 01:53:59 +0000172 Instruction *visitURem(BinaryOperator &I);
173 Instruction *visitSRem(BinaryOperator &I);
174 Instruction *visitFRem(BinaryOperator &I);
Chris Lattnerfdb19e52008-07-14 00:15:52 +0000175 bool SimplifyDivRemOfSelect(BinaryOperator &I);
Reid Spencer0a783f72006-11-02 01:53:59 +0000176 Instruction *commonRemTransforms(BinaryOperator &I);
177 Instruction *commonIRemTransforms(BinaryOperator &I);
Reid Spencer1628cec2006-10-26 06:15:43 +0000178 Instruction *commonDivTransforms(BinaryOperator &I);
179 Instruction *commonIDivTransforms(BinaryOperator &I);
180 Instruction *visitUDiv(BinaryOperator &I);
181 Instruction *visitSDiv(BinaryOperator &I);
182 Instruction *visitFDiv(BinaryOperator &I);
Chris Lattner29cd5ba2008-11-16 05:06:21 +0000183 Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Chris Lattner7e708292002-06-25 16:13:24 +0000184 Instruction *visitAnd(BinaryOperator &I);
Chris Lattner69d4ced2008-11-16 05:20:07 +0000185 Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Bill Wendlingd54d8602008-12-01 08:32:40 +0000186 Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
Bill Wendlinga698a472008-12-01 08:23:25 +0000187 Value *A, Value *B, Value *C);
Chris Lattner7e708292002-06-25 16:13:24 +0000188 Instruction *visitOr (BinaryOperator &I);
189 Instruction *visitXor(BinaryOperator &I);
Reid Spencer832254e2007-02-02 02:16:23 +0000190 Instruction *visitShl(BinaryOperator &I);
191 Instruction *visitAShr(BinaryOperator &I);
192 Instruction *visitLShr(BinaryOperator &I);
193 Instruction *commonShiftTransforms(BinaryOperator &I);
Chris Lattnera5406232008-05-19 20:18:56 +0000194 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
195 Constant *RHSC);
Reid Spencere4d87aa2006-12-23 06:05:41 +0000196 Instruction *visitFCmpInst(FCmpInst &I);
197 Instruction *visitICmpInst(ICmpInst &I);
198 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
Chris Lattner01deb9d2007-04-03 17:43:25 +0000199 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
200 Instruction *LHS,
201 ConstantInt *RHS);
Chris Lattner562ef782007-06-20 23:46:26 +0000202 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
203 ConstantInt *DivRHS);
Chris Lattner484d3cf2005-04-24 06:59:08 +0000204
Reid Spencere4d87aa2006-12-23 06:05:41 +0000205 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
206 ICmpInst::Predicate Cond, Instruction &I);
Reid Spencerb83eb642006-10-20 07:07:24 +0000207 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
Reid Spencer832254e2007-02-02 02:16:23 +0000208 BinaryOperator &I);
Reid Spencer3da59db2006-11-27 01:05:10 +0000209 Instruction *commonCastTransforms(CastInst &CI);
210 Instruction *commonIntCastTransforms(CastInst &CI);
Chris Lattnerd3e28342007-04-27 17:44:50 +0000211 Instruction *commonPointerCastTransforms(CastInst &CI);
Chris Lattner8a9f5712007-04-11 06:57:46 +0000212 Instruction *visitTrunc(TruncInst &CI);
213 Instruction *visitZExt(ZExtInst &CI);
214 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerb7530652008-01-27 05:29:54 +0000215 Instruction *visitFPTrunc(FPTruncInst &CI);
Reid Spencer3da59db2006-11-27 01:05:10 +0000216 Instruction *visitFPExt(CastInst &CI);
Chris Lattner0c7a9a02008-05-19 20:25:04 +0000217 Instruction *visitFPToUI(FPToUIInst &FI);
218 Instruction *visitFPToSI(FPToSIInst &FI);
Reid Spencer3da59db2006-11-27 01:05:10 +0000219 Instruction *visitUIToFP(CastInst &CI);
220 Instruction *visitSIToFP(CastInst &CI);
221 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattnerf9d9e452008-01-08 07:23:51 +0000222 Instruction *visitIntToPtr(IntToPtrInst &CI);
Chris Lattnerd3e28342007-04-27 17:44:50 +0000223 Instruction *visitBitCast(BitCastInst &CI);
Chris Lattner6fb5a4a2005-01-19 21:50:18 +0000224 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
225 Instruction *FI);
Dan Gohman81b28ce2008-09-16 18:46:06 +0000226 Instruction *visitSelectInst(SelectInst &SI);
227 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Chris Lattner9fe38862003-06-19 17:00:31 +0000228 Instruction *visitCallInst(CallInst &CI);
229 Instruction *visitInvokeInst(InvokeInst &II);
Chris Lattner7e708292002-06-25 16:13:24 +0000230 Instruction *visitPHINode(PHINode &PN);
231 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
Chris Lattner0864acf2002-11-04 16:18:53 +0000232 Instruction *visitAllocationInst(AllocationInst &AI);
Chris Lattner67b1e1b2003-12-07 01:24:23 +0000233 Instruction *visitFreeInst(FreeInst &FI);
Chris Lattner833b8a42003-06-26 05:06:25 +0000234 Instruction *visitLoadInst(LoadInst &LI);
Chris Lattner2f503e62005-01-31 05:36:43 +0000235 Instruction *visitStoreInst(StoreInst &SI);
Chris Lattnerc4d10eb2003-06-04 04:46:00 +0000236 Instruction *visitBranchInst(BranchInst &BI);
Chris Lattner46238a62004-07-03 00:26:11 +0000237 Instruction *visitSwitchInst(SwitchInst &SI);
Chris Lattnerefb47352006-04-15 01:39:45 +0000238 Instruction *visitInsertElementInst(InsertElementInst &IE);
Robert Bocchino1d7456d2006-01-13 22:48:06 +0000239 Instruction *visitExtractElementInst(ExtractElementInst &EI);
Chris Lattnera844fc4c2006-04-10 22:45:52 +0000240 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +0000241 Instruction *visitExtractValueInst(ExtractValueInst &EV);
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000242
243 // visitInstruction - Specify what to return for unhandled instructions...
Chris Lattner7e708292002-06-25 16:13:24 +0000244 Instruction *visitInstruction(Instruction &I) { return 0; }
Chris Lattner8b170942002-08-09 23:47:40 +0000245
Chris Lattner9fe38862003-06-19 17:00:31 +0000246 private:
Chris Lattnera44d8a22003-10-07 22:32:43 +0000247 Instruction *visitCallSite(CallSite CS);
Chris Lattner9fe38862003-06-19 17:00:31 +0000248 bool transformConstExprCastCall(CallSite CS);
Duncan Sandscdb6d922007-09-17 10:26:40 +0000249 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chengb98a10e2008-03-24 00:21:34 +0000250 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
251 bool DoXform = true);
Chris Lattner3d28b1b2008-05-20 05:46:13 +0000252 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Chris Lattner9fe38862003-06-19 17:00:31 +0000253
Chris Lattner28977af2004-04-05 01:30:19 +0000254 public:
Chris Lattner8b170942002-08-09 23:47:40 +0000255 // InsertNewInstBefore - insert an instruction New before instruction Old
256 // in the program. Add the new instruction to the worklist.
257 //
Chris Lattner955f3312004-09-28 21:48:02 +0000258 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
Chris Lattnere6f9a912002-08-23 18:32:43 +0000259 assert(New && New->getParent() == 0 &&
260 "New instruction already inserted into a basic block!");
Chris Lattner8b170942002-08-09 23:47:40 +0000261 BasicBlock *BB = Old.getParent();
262 BB->getInstList().insert(&Old, New); // Insert inst
Chris Lattnerdbab3862007-03-02 21:28:56 +0000263 AddToWorkList(New);
Chris Lattner4cb170c2004-02-23 06:38:22 +0000264 return New;
Chris Lattner8b170942002-08-09 23:47:40 +0000265 }
266
Chris Lattner0c967662004-09-24 15:21:34 +0000267 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
268 /// This also adds the cast to the worklist. Finally, this returns the
269 /// cast.
Reid Spencer17212df2006-12-12 09:18:51 +0000270 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
271 Instruction &Pos) {
Chris Lattner0c967662004-09-24 15:21:34 +0000272 if (V->getType() == Ty) return V;
Misha Brukmanfd939082005-04-21 23:48:37 +0000273
Chris Lattnere2ed0572006-04-06 19:19:17 +0000274 if (Constant *CV = dyn_cast<Constant>(V))
Reid Spencer17212df2006-12-12 09:18:51 +0000275 return ConstantExpr::getCast(opc, CV, Ty);
Chris Lattnere2ed0572006-04-06 19:19:17 +0000276
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000277 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Chris Lattnerdbab3862007-03-02 21:28:56 +0000278 AddToWorkList(C);
Chris Lattner0c967662004-09-24 15:21:34 +0000279 return C;
280 }
Chris Lattner6d0339d2008-01-13 22:23:22 +0000281
282 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
283 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
284 }
285
Chris Lattner0c967662004-09-24 15:21:34 +0000286
Chris Lattner8b170942002-08-09 23:47:40 +0000287 // ReplaceInstUsesWith - This method is to be used when an instruction is
288 // found to be dead, replacable with another preexisting expression. Here
289 // we add all uses of I to the worklist, replace all uses of I with the new
290 // value, then return I, so that the inst combiner will know that I was
291 // modified.
292 //
293 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000294 AddUsersToWorkList(I); // Add all modified instrs to worklist
Chris Lattner15a76c02004-04-05 02:10:19 +0000295 if (&I != V) {
296 I.replaceAllUsesWith(V);
297 return &I;
298 } else {
299 // If we are replacing the instruction with itself, this must be in a
300 // segment of unreachable code, so just clobber the instruction.
Chris Lattner17be6352004-10-18 02:59:09 +0000301 I.replaceAllUsesWith(UndefValue::get(I.getType()));
Chris Lattner15a76c02004-04-05 02:10:19 +0000302 return &I;
303 }
Chris Lattner8b170942002-08-09 23:47:40 +0000304 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000305
Chris Lattner6dce1a72006-02-07 06:56:34 +0000306 // UpdateValueUsesWith - This method is to be used when an value is
307 // found to be replacable with another preexisting expression or was
308 // updated. Here we add all uses of I to the worklist, replace all uses of
309 // I with the new value (unless the instruction was just updated), then
310 // return true, so that the inst combiner will know that I was modified.
311 //
312 bool UpdateValueUsesWith(Value *Old, Value *New) {
313 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
314 if (Old != New)
315 Old->replaceAllUsesWith(New);
316 if (Instruction *I = dyn_cast<Instruction>(Old))
Chris Lattnerdbab3862007-03-02 21:28:56 +0000317 AddToWorkList(I);
Chris Lattnerf8c36f52006-02-12 08:02:11 +0000318 if (Instruction *I = dyn_cast<Instruction>(New))
Chris Lattnerdbab3862007-03-02 21:28:56 +0000319 AddToWorkList(I);
Chris Lattner6dce1a72006-02-07 06:56:34 +0000320 return true;
321 }
322
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000323 // EraseInstFromFunction - When dealing with an instruction that has side
324 // effects or produces a void value, we can't rely on DCE to delete the
325 // instruction. Instead, visit methods should return the value returned by
326 // this function.
327 Instruction *EraseInstFromFunction(Instruction &I) {
328 assert(I.use_empty() && "Cannot erase instruction that is used!");
329 AddUsesToWorkList(I);
Chris Lattnerdbab3862007-03-02 21:28:56 +0000330 RemoveFromWorkList(&I);
Chris Lattner954f66a2004-11-18 21:41:39 +0000331 I.eraseFromParent();
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000332 return 0; // Don't do anything with FI
333 }
Chris Lattner173234a2008-06-02 01:18:21 +0000334
335 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
336 APInt &KnownOne, unsigned Depth = 0) const {
337 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
338 }
339
340 bool MaskedValueIsZero(Value *V, const APInt &Mask,
341 unsigned Depth = 0) const {
342 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
343 }
344 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
345 return llvm::ComputeNumSignBits(Op, TD, Depth);
346 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000347
Chris Lattneraa9c1f12003-08-13 20:16:26 +0000348 private:
Chris Lattner24c8e382003-07-24 17:35:25 +0000349
Reid Spencere4d87aa2006-12-23 06:05:41 +0000350 /// SimplifyCommutative - This performs a few simplifications for
351 /// commutative operators.
Chris Lattnerc8802d22003-03-11 00:12:48 +0000352 bool SimplifyCommutative(BinaryOperator &I);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +0000353
Reid Spencere4d87aa2006-12-23 06:05:41 +0000354 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
355 /// most-complex to least-complex order.
356 bool SimplifyCompare(CmpInst &I);
357
Reid Spencer2ec619a2007-03-23 21:24:59 +0000358 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
359 /// on the demanded bits.
Reid Spencer8cb68342007-03-12 17:25:59 +0000360 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
361 APInt& KnownZero, APInt& KnownOne,
362 unsigned Depth = 0);
363
Chris Lattner867b99f2006-10-05 06:55:50 +0000364 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
365 uint64_t &UndefElts, unsigned Depth = 0);
366
Chris Lattner4e998b22004-09-29 05:07:12 +0000367 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
368 // PHI node as operand #0, see if we can fold the instruction into the PHI
369 // (which is only possible if all operands to the PHI are constants).
370 Instruction *FoldOpIntoPhi(Instruction &I);
371
Chris Lattnerbac32862004-11-14 19:13:23 +0000372 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
373 // operator and they all are only used by the PHI, PHI together their
374 // inputs, and do the operation once, to the result of the PHI.
375 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
Chris Lattner7da52b22006-11-01 04:51:18 +0000376 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
Chris Lattner05f18922008-12-01 02:34:36 +0000377 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
378
Chris Lattner7da52b22006-11-01 04:51:18 +0000379
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000380 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
381 ConstantInt *AndRHS, BinaryOperator &TheAnd);
Chris Lattnerc8e77562005-09-18 04:24:45 +0000382
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000383 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
Chris Lattnerc8e77562005-09-18 04:24:45 +0000384 bool isSub, Instruction &I);
Chris Lattnera96879a2004-09-29 17:40:11 +0000385 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
Reid Spencere4d87aa2006-12-23 06:05:41 +0000386 bool isSigned, bool Inside, Instruction &IB);
Chris Lattnerd3e28342007-04-27 17:44:50 +0000387 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
Chris Lattnerafe91a52006-06-15 19:07:26 +0000388 Instruction *MatchBSwap(BinaryOperator &I);
Chris Lattner3284d1f2007-04-15 00:07:55 +0000389 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattnerf497b022008-01-13 23:50:23 +0000390 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner69ea9d22008-04-30 06:39:11 +0000391 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattnerf497b022008-01-13 23:50:23 +0000392
Chris Lattnerafe91a52006-06-15 19:07:26 +0000393
Reid Spencerc55b2432006-12-13 18:21:21 +0000394 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohmaneee962e2008-04-10 18:43:06 +0000395
Dan Gohmaneee962e2008-04-10 18:43:06 +0000396 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
397 unsigned CastOpc,
398 int &NumCastsRemoved);
399 unsigned GetOrEnforceKnownAlignment(Value *V,
400 unsigned PrefAlign = 0);
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +0000401
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000402 };
403}
404
Dan Gohman844731a2008-05-13 00:00:25 +0000405char InstCombiner::ID = 0;
406static RegisterPass<InstCombiner>
407X("instcombine", "Combine redundant instructions");
408
Chris Lattner4f98c562003-03-10 21:43:22 +0000409// getComplexity: Assign a complexity or rank value to LLVM Values...
Chris Lattnere87597f2004-10-16 18:11:37 +0000410// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
Chris Lattner4f98c562003-03-10 21:43:22 +0000411static unsigned getComplexity(Value *V) {
412 if (isa<Instruction>(V)) {
413 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
Chris Lattnere87597f2004-10-16 18:11:37 +0000414 return 3;
415 return 4;
Chris Lattner4f98c562003-03-10 21:43:22 +0000416 }
Chris Lattnere87597f2004-10-16 18:11:37 +0000417 if (isa<Argument>(V)) return 3;
418 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
Chris Lattner4f98c562003-03-10 21:43:22 +0000419}
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000420
Chris Lattnerc8802d22003-03-11 00:12:48 +0000421// isOnlyUse - Return true if this instruction will be deleted if we stop using
422// it.
423static bool isOnlyUse(Value *V) {
Chris Lattnerfd059242003-10-15 16:48:29 +0000424 return V->hasOneUse() || isa<Constant>(V);
Chris Lattnerc8802d22003-03-11 00:12:48 +0000425}
426
Chris Lattner4cb170c2004-02-23 06:38:22 +0000427// getPromotedType - Return the specified type promoted as it would be to pass
428// though a va_arg area...
429static const Type *getPromotedType(const Type *Ty) {
Reid Spencera54b7cb2007-01-12 07:05:14 +0000430 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
431 if (ITy->getBitWidth() < 32)
432 return Type::Int32Ty;
Chris Lattner2b7e0ad2007-05-23 01:17:04 +0000433 }
Reid Spencera54b7cb2007-01-12 07:05:14 +0000434 return Ty;
Chris Lattner4cb170c2004-02-23 06:38:22 +0000435}
436
Matthijs Kooijman7e6d9b92008-10-13 15:17:01 +0000437/// getBitCastOperand - If the specified operand is a CastInst, a constant
438/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
439/// operand value, otherwise return null.
Reid Spencer3da59db2006-11-27 01:05:10 +0000440static Value *getBitCastOperand(Value *V) {
441 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Matthijs Kooijman7e6d9b92008-10-13 15:17:01 +0000442 // BitCastInst?
Chris Lattnereed48272005-09-13 00:40:14 +0000443 return I->getOperand(0);
Matthijs Kooijman7e6d9b92008-10-13 15:17:01 +0000444 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
445 // GetElementPtrInst?
446 if (GEP->hasAllZeroIndices())
447 return GEP->getOperand(0);
448 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Reid Spencer3da59db2006-11-27 01:05:10 +0000449 if (CE->getOpcode() == Instruction::BitCast)
Matthijs Kooijman7e6d9b92008-10-13 15:17:01 +0000450 // BitCast ConstantExp?
Chris Lattnereed48272005-09-13 00:40:14 +0000451 return CE->getOperand(0);
Matthijs Kooijman7e6d9b92008-10-13 15:17:01 +0000452 else if (CE->getOpcode() == Instruction::GetElementPtr) {
453 // GetElementPtr ConstantExp?
454 for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end();
455 I != E; ++I) {
456 ConstantInt *CI = dyn_cast<ConstantInt>(I);
457 if (!CI || !CI->isZero())
458 // Any non-zero indices? Not cast-like.
459 return 0;
460 }
461 // All-zero indices? This is just like casting.
462 return CE->getOperand(0);
463 }
464 }
Chris Lattnereed48272005-09-13 00:40:14 +0000465 return 0;
466}
467
Reid Spencer3da59db2006-11-27 01:05:10 +0000468/// This function is a wrapper around CastInst::isEliminableCastPair. It
469/// simply extracts arguments and returns what that function returns.
Reid Spencer3da59db2006-11-27 01:05:10 +0000470static Instruction::CastOps
471isEliminableCastPair(
472 const CastInst *CI, ///< The first cast instruction
473 unsigned opcode, ///< The opcode of the second cast instruction
474 const Type *DstTy, ///< The target type for the second cast instruction
475 TargetData *TD ///< The target data for pointer size
476) {
477
478 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
479 const Type *MidTy = CI->getType(); // B from above
Chris Lattner33a61132006-05-06 09:00:16 +0000480
Reid Spencer3da59db2006-11-27 01:05:10 +0000481 // Get the opcodes of the two Cast instructions
482 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
483 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
Chris Lattner33a61132006-05-06 09:00:16 +0000484
Reid Spencer3da59db2006-11-27 01:05:10 +0000485 return Instruction::CastOps(
486 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
487 DstTy, TD->getIntPtrType()));
Chris Lattner33a61132006-05-06 09:00:16 +0000488}
489
490/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
491/// in any code being generated. It does not require codegen if V is simple
492/// enough or if the cast can be folded into other casts.
Reid Spencere4d87aa2006-12-23 06:05:41 +0000493static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
494 const Type *Ty, TargetData *TD) {
Chris Lattner33a61132006-05-06 09:00:16 +0000495 if (V->getType() == Ty || isa<Constant>(V)) return false;
496
Chris Lattner01575b72006-05-25 23:24:33 +0000497 // If this is another cast that can be eliminated, it isn't codegen either.
Chris Lattner33a61132006-05-06 09:00:16 +0000498 if (const CastInst *CI = dyn_cast<CastInst>(V))
Reid Spencere4d87aa2006-12-23 06:05:41 +0000499 if (isEliminableCastPair(CI, opcode, Ty, TD))
Chris Lattner33a61132006-05-06 09:00:16 +0000500 return false;
501 return true;
502}
503
Chris Lattner4f98c562003-03-10 21:43:22 +0000504// SimplifyCommutative - This performs a few simplifications for commutative
505// operators:
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000506//
Chris Lattner4f98c562003-03-10 21:43:22 +0000507// 1. Order operands such that they are listed from right (least complex) to
508// left (most complex). This puts constants before unary operators before
509// binary operators.
510//
Chris Lattnerc8802d22003-03-11 00:12:48 +0000511// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
512// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattner4f98c562003-03-10 21:43:22 +0000513//
Chris Lattnerc8802d22003-03-11 00:12:48 +0000514bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +0000515 bool Changed = false;
516 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
517 Changed = !I.swapOperands();
Misha Brukmanfd939082005-04-21 23:48:37 +0000518
Chris Lattner4f98c562003-03-10 21:43:22 +0000519 if (!I.isAssociative()) return Changed;
520 Instruction::BinaryOps Opcode = I.getOpcode();
Chris Lattnerc8802d22003-03-11 00:12:48 +0000521 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
522 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
523 if (isa<Constant>(I.getOperand(1))) {
Chris Lattner2a9c8472003-05-27 16:40:51 +0000524 Constant *Folded = ConstantExpr::get(I.getOpcode(),
525 cast<Constant>(I.getOperand(1)),
526 cast<Constant>(Op->getOperand(1)));
Chris Lattnerc8802d22003-03-11 00:12:48 +0000527 I.setOperand(0, Op->getOperand(0));
528 I.setOperand(1, Folded);
529 return true;
530 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
531 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
532 isOnlyUse(Op) && isOnlyUse(Op1)) {
533 Constant *C1 = cast<Constant>(Op->getOperand(1));
534 Constant *C2 = cast<Constant>(Op1->getOperand(1));
535
536 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattner2a9c8472003-05-27 16:40:51 +0000537 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000538 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Chris Lattnerc8802d22003-03-11 00:12:48 +0000539 Op1->getOperand(0),
540 Op1->getName(), &I);
Chris Lattnerdbab3862007-03-02 21:28:56 +0000541 AddToWorkList(New);
Chris Lattnerc8802d22003-03-11 00:12:48 +0000542 I.setOperand(0, New);
543 I.setOperand(1, Folded);
544 return true;
Misha Brukmanfd939082005-04-21 23:48:37 +0000545 }
Chris Lattner4f98c562003-03-10 21:43:22 +0000546 }
Chris Lattner4f98c562003-03-10 21:43:22 +0000547 return Changed;
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000548}
Chris Lattner8a2a3112001-12-14 16:52:21 +0000549
Reid Spencere4d87aa2006-12-23 06:05:41 +0000550/// SimplifyCompare - For a CmpInst this function just orders the operands
551/// so that theyare listed from right (least complex) to left (most complex).
552/// This puts constants before unary operators before binary operators.
553bool InstCombiner::SimplifyCompare(CmpInst &I) {
554 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
555 return false;
556 I.swapOperands();
557 // Compare instructions are not associative so there's nothing else we can do.
558 return true;
559}
560
Chris Lattner8d969642003-03-10 23:06:50 +0000561// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
562// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattnerb35dde12002-05-06 16:49:18 +0000563//
Chris Lattner8d969642003-03-10 23:06:50 +0000564static inline Value *dyn_castNegVal(Value *V) {
565 if (BinaryOperator::isNeg(V))
Chris Lattnera1df33c2005-04-24 07:30:14 +0000566 return BinaryOperator::getNegArgument(V);
Chris Lattner8d969642003-03-10 23:06:50 +0000567
Chris Lattner0ce85802004-12-14 20:08:06 +0000568 // Constants can be considered to be negated values if they can be folded.
569 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
570 return ConstantExpr::getNeg(C);
Nick Lewycky18b3da62008-05-23 04:54:45 +0000571
572 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
573 if (C->getType()->getElementType()->isInteger())
574 return ConstantExpr::getNeg(C);
575
Chris Lattner8d969642003-03-10 23:06:50 +0000576 return 0;
Chris Lattnerb35dde12002-05-06 16:49:18 +0000577}
578
Chris Lattner8d969642003-03-10 23:06:50 +0000579static inline Value *dyn_castNotVal(Value *V) {
580 if (BinaryOperator::isNot(V))
Chris Lattnera1df33c2005-04-24 07:30:14 +0000581 return BinaryOperator::getNotArgument(V);
Chris Lattner8d969642003-03-10 23:06:50 +0000582
583 // Constants can be considered to be not'ed values...
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000584 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
Zhou Sheng4a1822a2007-04-02 13:45:30 +0000585 return ConstantInt::get(~C->getValue());
Chris Lattner8d969642003-03-10 23:06:50 +0000586 return 0;
587}
588
Chris Lattnerc8802d22003-03-11 00:12:48 +0000589// dyn_castFoldableMul - If this value is a multiply that can be folded into
590// other computations (because it has a constant operand), return the
Chris Lattner50af16a2004-11-13 19:50:12 +0000591// non-constant operand of the multiply, and set CST to point to the multiplier.
592// Otherwise, return null.
Chris Lattnerc8802d22003-03-11 00:12:48 +0000593//
Chris Lattner50af16a2004-11-13 19:50:12 +0000594static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
Chris Lattner42a75512007-01-15 02:27:26 +0000595 if (V->hasOneUse() && V->getType()->isInteger())
Chris Lattner50af16a2004-11-13 19:50:12 +0000596 if (Instruction *I = dyn_cast<Instruction>(V)) {
Chris Lattnerc8802d22003-03-11 00:12:48 +0000597 if (I->getOpcode() == Instruction::Mul)
Chris Lattner50e60c72004-11-15 05:54:07 +0000598 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
Chris Lattnerc8802d22003-03-11 00:12:48 +0000599 return I->getOperand(0);
Chris Lattner50af16a2004-11-13 19:50:12 +0000600 if (I->getOpcode() == Instruction::Shl)
Chris Lattner50e60c72004-11-15 05:54:07 +0000601 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
Chris Lattner50af16a2004-11-13 19:50:12 +0000602 // The multiplier is really 1 << CST.
Zhou Sheng97b52c22007-03-29 01:57:21 +0000603 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +0000604 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
Zhou Sheng97b52c22007-03-29 01:57:21 +0000605 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
Chris Lattner50af16a2004-11-13 19:50:12 +0000606 return I->getOperand(0);
607 }
608 }
Chris Lattnerc8802d22003-03-11 00:12:48 +0000609 return 0;
Chris Lattnera2881962003-02-18 19:28:33 +0000610}
Chris Lattneraf2930e2002-08-14 17:51:49 +0000611
Chris Lattner574da9b2005-01-13 20:14:25 +0000612/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
613/// expression, return it.
614static User *dyn_castGetElementPtr(Value *V) {
615 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
616 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
617 if (CE->getOpcode() == Instruction::GetElementPtr)
618 return cast<User>(V);
619 return false;
620}
621
Dan Gohmaneee962e2008-04-10 18:43:06 +0000622/// getOpcode - If this is an Instruction or a ConstantExpr, return the
623/// opcode value. Otherwise return UserOp1.
Dan Gohmanb99e2e22008-05-29 19:53:46 +0000624static unsigned getOpcode(const Value *V) {
625 if (const Instruction *I = dyn_cast<Instruction>(V))
Dan Gohmaneee962e2008-04-10 18:43:06 +0000626 return I->getOpcode();
Dan Gohmanb99e2e22008-05-29 19:53:46 +0000627 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohmaneee962e2008-04-10 18:43:06 +0000628 return CE->getOpcode();
629 // Use UserOp1 to mean there's no opcode.
630 return Instruction::UserOp1;
631}
632
Reid Spencer7177c3a2007-03-25 05:33:51 +0000633/// AddOne - Add one to a ConstantInt
Chris Lattnera96879a2004-09-29 17:40:11 +0000634static ConstantInt *AddOne(ConstantInt *C) {
Reid Spencer2149a9d2007-03-25 19:55:33 +0000635 APInt Val(C->getValue());
636 return ConstantInt::get(++Val);
Chris Lattner955f3312004-09-28 21:48:02 +0000637}
Reid Spencer7177c3a2007-03-25 05:33:51 +0000638/// SubOne - Subtract one from a ConstantInt
Chris Lattnera96879a2004-09-29 17:40:11 +0000639static ConstantInt *SubOne(ConstantInt *C) {
Reid Spencer2149a9d2007-03-25 19:55:33 +0000640 APInt Val(C->getValue());
641 return ConstantInt::get(--Val);
Reid Spencer7177c3a2007-03-25 05:33:51 +0000642}
643/// Add - Add two ConstantInts together
644static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
645 return ConstantInt::get(C1->getValue() + C2->getValue());
646}
647/// And - Bitwise AND two ConstantInts together
648static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
649 return ConstantInt::get(C1->getValue() & C2->getValue());
650}
651/// Subtract - Subtract one ConstantInt from another
652static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
653 return ConstantInt::get(C1->getValue() - C2->getValue());
654}
655/// Multiply - Multiply two ConstantInts together
656static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
657 return ConstantInt::get(C1->getValue() * C2->getValue());
Chris Lattner955f3312004-09-28 21:48:02 +0000658}
Nick Lewyckye0cfecf2008-02-18 22:48:05 +0000659/// MultiplyOverflows - True if the multiply can not be expressed in an int
660/// this size.
661static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
662 uint32_t W = C1->getBitWidth();
663 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
664 if (sign) {
665 LHSExt.sext(W * 2);
666 RHSExt.sext(W * 2);
667 } else {
668 LHSExt.zext(W * 2);
669 RHSExt.zext(W * 2);
670 }
671
672 APInt MulExt = LHSExt * RHSExt;
673
674 if (sign) {
675 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
676 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
677 return MulExt.slt(Min) || MulExt.sgt(Max);
678 } else
679 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
680}
Chris Lattner955f3312004-09-28 21:48:02 +0000681
Reid Spencere7816b52007-03-08 01:52:58 +0000682
Chris Lattner255d8912006-02-11 09:31:47 +0000683/// ShrinkDemandedConstant - Check to see if the specified operand of the
684/// specified instruction is a constant integer. If so, check to see if there
685/// are any bits set in the constant that are not demanded. If so, shrink the
686/// constant and return true.
687static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
Reid Spencer6b79e2d2007-03-12 17:15:10 +0000688 APInt Demanded) {
689 assert(I && "No instruction?");
690 assert(OpNo < I->getNumOperands() && "Operand index too large");
691
692 // If the operand is not a constant integer, nothing to do.
693 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
694 if (!OpC) return false;
695
696 // If there are no bits set that aren't demanded, nothing to do.
697 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
698 if ((~Demanded & OpC->getValue()) == 0)
699 return false;
700
701 // This instruction is producing bits that are not demanded. Shrink the RHS.
702 Demanded &= OpC->getValue();
703 I->setOperand(OpNo, ConstantInt::get(Demanded));
704 return true;
705}
706
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000707// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
708// set of known zero and one bits, compute the maximum and minimum values that
709// could have the specified known zero and known one bits, returning them in
710// min/max.
711static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
Reid Spencer0460fb32007-03-22 20:36:03 +0000712 const APInt& KnownZero,
713 const APInt& KnownOne,
714 APInt& Min, APInt& Max) {
715 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
716 assert(KnownZero.getBitWidth() == BitWidth &&
717 KnownOne.getBitWidth() == BitWidth &&
718 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
719 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
Reid Spencer2f549172007-03-25 04:26:16 +0000720 APInt UnknownBits = ~(KnownZero|KnownOne);
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000721
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000722 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
723 // bit if it is unknown.
724 Min = KnownOne;
725 Max = KnownOne|UnknownBits;
726
Zhou Sheng4acf1552007-03-28 05:15:57 +0000727 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
Zhou Sheng4a1822a2007-04-02 13:45:30 +0000728 Min.set(BitWidth-1);
729 Max.clear(BitWidth-1);
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000730 }
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000731}
732
733// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
734// a set of known zero and one bits, compute the maximum and minimum values that
735// could have the specified known zero and known one bits, returning them in
736// min/max.
737static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnera9ff5eb2007-08-05 08:47:58 +0000738 const APInt &KnownZero,
739 const APInt &KnownOne,
740 APInt &Min, APInt &Max) {
741 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Reid Spencer0460fb32007-03-22 20:36:03 +0000742 assert(KnownZero.getBitWidth() == BitWidth &&
743 KnownOne.getBitWidth() == BitWidth &&
744 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
745 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
Reid Spencer2f549172007-03-25 04:26:16 +0000746 APInt UnknownBits = ~(KnownZero|KnownOne);
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000747
748 // The minimum value is when the unknown bits are all zeros.
749 Min = KnownOne;
750 // The maximum value is when the unknown bits are all ones.
751 Max = KnownOne|UnknownBits;
752}
Chris Lattner255d8912006-02-11 09:31:47 +0000753
Reid Spencer8cb68342007-03-12 17:25:59 +0000754/// SimplifyDemandedBits - This function attempts to replace V with a simpler
755/// value based on the demanded bits. When this function is called, it is known
756/// that only the bits set in DemandedMask of the result of V are ever used
757/// downstream. Consequently, depending on the mask and V, it may be possible
758/// to replace V with a constant or one of its operands. In such cases, this
759/// function does the replacement and returns true. In all other cases, it
760/// returns false after analyzing the expression and setting KnownOne and known
761/// to be one in the expression. KnownZero contains all the bits that are known
762/// to be zero in the expression. These are provided to potentially allow the
763/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
764/// the expression. KnownOne and KnownZero always follow the invariant that
765/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
766/// the bits in KnownOne and KnownZero may only be accurate for those bits set
767/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
768/// and KnownOne must all be the same.
769bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
770 APInt& KnownZero, APInt& KnownOne,
771 unsigned Depth) {
772 assert(V != 0 && "Null pointer of Value???");
773 assert(Depth <= 6 && "Limit Search Depth");
774 uint32_t BitWidth = DemandedMask.getBitWidth();
775 const IntegerType *VTy = cast<IntegerType>(V->getType());
776 assert(VTy->getBitWidth() == BitWidth &&
777 KnownZero.getBitWidth() == BitWidth &&
778 KnownOne.getBitWidth() == BitWidth &&
779 "Value *V, DemandedMask, KnownZero and KnownOne \
780 must have same BitWidth");
781 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
782 // We know all of the bits for a constant!
783 KnownOne = CI->getValue() & DemandedMask;
784 KnownZero = ~KnownOne & DemandedMask;
785 return false;
786 }
787
Zhou Sheng96704452007-03-14 03:21:24 +0000788 KnownZero.clear();
789 KnownOne.clear();
Reid Spencer8cb68342007-03-12 17:25:59 +0000790 if (!V->hasOneUse()) { // Other users may use these bits.
791 if (Depth != 0) { // Not at the root.
792 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
793 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
794 return false;
795 }
796 // If this is the root being simplified, allow it to have multiple uses,
797 // just set the DemandedMask to all bits.
798 DemandedMask = APInt::getAllOnesValue(BitWidth);
799 } else if (DemandedMask == 0) { // Not demanding any bits from V.
800 if (V != UndefValue::get(VTy))
801 return UpdateValueUsesWith(V, UndefValue::get(VTy));
802 return false;
803 } else if (Depth == 6) { // Limit search depth.
804 return false;
805 }
806
807 Instruction *I = dyn_cast<Instruction>(V);
808 if (!I) return false; // Only analyze instructions.
809
Reid Spencer8cb68342007-03-12 17:25:59 +0000810 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
811 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
812 switch (I->getOpcode()) {
Dan Gohman23e8b712008-04-28 17:02:21 +0000813 default:
814 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
815 break;
Reid Spencer8cb68342007-03-12 17:25:59 +0000816 case Instruction::And:
817 // If either the LHS or the RHS are Zero, the result is zero.
818 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
819 RHSKnownZero, RHSKnownOne, Depth+1))
820 return true;
821 assert((RHSKnownZero & RHSKnownOne) == 0 &&
822 "Bits known to be one AND zero?");
823
824 // If something is known zero on the RHS, the bits aren't demanded on the
825 // LHS.
826 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
827 LHSKnownZero, LHSKnownOne, Depth+1))
828 return true;
829 assert((LHSKnownZero & LHSKnownOne) == 0 &&
830 "Bits known to be one AND zero?");
831
832 // If all of the demanded bits are known 1 on one side, return the other.
833 // These bits cannot contribute to the result of the 'and'.
834 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
835 (DemandedMask & ~LHSKnownZero))
836 return UpdateValueUsesWith(I, I->getOperand(0));
837 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
838 (DemandedMask & ~RHSKnownZero))
839 return UpdateValueUsesWith(I, I->getOperand(1));
840
841 // If all of the demanded bits in the inputs are known zeros, return zero.
842 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
843 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
844
845 // If the RHS is a constant, see if we can simplify it.
846 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
847 return UpdateValueUsesWith(I, I);
848
849 // Output known-1 bits are only known if set in both the LHS & RHS.
850 RHSKnownOne &= LHSKnownOne;
851 // Output known-0 are known to be clear if zero in either the LHS | RHS.
852 RHSKnownZero |= LHSKnownZero;
853 break;
854 case Instruction::Or:
855 // If either the LHS or the RHS are One, the result is One.
856 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
857 RHSKnownZero, RHSKnownOne, Depth+1))
858 return true;
859 assert((RHSKnownZero & RHSKnownOne) == 0 &&
860 "Bits known to be one AND zero?");
861 // If something is known one on the RHS, the bits aren't demanded on the
862 // LHS.
863 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
864 LHSKnownZero, LHSKnownOne, Depth+1))
865 return true;
866 assert((LHSKnownZero & LHSKnownOne) == 0 &&
867 "Bits known to be one AND zero?");
868
869 // If all of the demanded bits are known zero on one side, return the other.
870 // These bits cannot contribute to the result of the 'or'.
871 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
872 (DemandedMask & ~LHSKnownOne))
873 return UpdateValueUsesWith(I, I->getOperand(0));
874 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
875 (DemandedMask & ~RHSKnownOne))
876 return UpdateValueUsesWith(I, I->getOperand(1));
877
878 // If all of the potentially set bits on one side are known to be set on
879 // the other side, just use the 'other' side.
880 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
881 (DemandedMask & (~RHSKnownZero)))
882 return UpdateValueUsesWith(I, I->getOperand(0));
883 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
884 (DemandedMask & (~LHSKnownZero)))
885 return UpdateValueUsesWith(I, I->getOperand(1));
886
887 // If the RHS is a constant, see if we can simplify it.
888 if (ShrinkDemandedConstant(I, 1, DemandedMask))
889 return UpdateValueUsesWith(I, I);
890
891 // Output known-0 bits are only known if clear in both the LHS & RHS.
892 RHSKnownZero &= LHSKnownZero;
893 // Output known-1 are known to be set if set in either the LHS | RHS.
894 RHSKnownOne |= LHSKnownOne;
895 break;
896 case Instruction::Xor: {
897 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
898 RHSKnownZero, RHSKnownOne, Depth+1))
899 return true;
900 assert((RHSKnownZero & RHSKnownOne) == 0 &&
901 "Bits known to be one AND zero?");
902 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
903 LHSKnownZero, LHSKnownOne, Depth+1))
904 return true;
905 assert((LHSKnownZero & LHSKnownOne) == 0 &&
906 "Bits known to be one AND zero?");
907
908 // If all of the demanded bits are known zero on one side, return the other.
909 // These bits cannot contribute to the result of the 'xor'.
910 if ((DemandedMask & RHSKnownZero) == DemandedMask)
911 return UpdateValueUsesWith(I, I->getOperand(0));
912 if ((DemandedMask & LHSKnownZero) == DemandedMask)
913 return UpdateValueUsesWith(I, I->getOperand(1));
914
915 // Output known-0 bits are known if clear or set in both the LHS & RHS.
916 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
917 (RHSKnownOne & LHSKnownOne);
918 // Output known-1 are known to be set if set in only one of the LHS, RHS.
919 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
920 (RHSKnownOne & LHSKnownZero);
921
922 // If all of the demanded bits are known to be zero on one side or the
923 // other, turn this into an *inclusive* or.
924 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
925 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
926 Instruction *Or =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000927 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Reid Spencer8cb68342007-03-12 17:25:59 +0000928 I->getName());
929 InsertNewInstBefore(Or, *I);
930 return UpdateValueUsesWith(I, Or);
931 }
932
933 // If all of the demanded bits on one side are known, and all of the set
934 // bits on that side are also known to be set on the other side, turn this
935 // into an AND, as we know the bits will be cleared.
936 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
937 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
938 // all known
939 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
940 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
941 Instruction *And =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000942 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Reid Spencer8cb68342007-03-12 17:25:59 +0000943 InsertNewInstBefore(And, *I);
944 return UpdateValueUsesWith(I, And);
945 }
946 }
947
948 // If the RHS is a constant, see if we can simplify it.
949 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
950 if (ShrinkDemandedConstant(I, 1, DemandedMask))
951 return UpdateValueUsesWith(I, I);
952
953 RHSKnownZero = KnownZeroOut;
954 RHSKnownOne = KnownOneOut;
955 break;
956 }
957 case Instruction::Select:
958 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
959 RHSKnownZero, RHSKnownOne, Depth+1))
960 return true;
961 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
962 LHSKnownZero, LHSKnownOne, Depth+1))
963 return true;
964 assert((RHSKnownZero & RHSKnownOne) == 0 &&
965 "Bits known to be one AND zero?");
966 assert((LHSKnownZero & LHSKnownOne) == 0 &&
967 "Bits known to be one AND zero?");
968
969 // If the operands are constants, see if we can simplify them.
970 if (ShrinkDemandedConstant(I, 1, DemandedMask))
971 return UpdateValueUsesWith(I, I);
972 if (ShrinkDemandedConstant(I, 2, DemandedMask))
973 return UpdateValueUsesWith(I, I);
974
975 // Only known if known in both the LHS and RHS.
976 RHSKnownOne &= LHSKnownOne;
977 RHSKnownZero &= LHSKnownZero;
978 break;
979 case Instruction::Trunc: {
980 uint32_t truncBf =
981 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
Zhou Sheng01542f32007-03-29 02:26:30 +0000982 DemandedMask.zext(truncBf);
983 RHSKnownZero.zext(truncBf);
984 RHSKnownOne.zext(truncBf);
985 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
986 RHSKnownZero, RHSKnownOne, Depth+1))
Reid Spencer8cb68342007-03-12 17:25:59 +0000987 return true;
988 DemandedMask.trunc(BitWidth);
989 RHSKnownZero.trunc(BitWidth);
990 RHSKnownOne.trunc(BitWidth);
991 assert((RHSKnownZero & RHSKnownOne) == 0 &&
992 "Bits known to be one AND zero?");
993 break;
994 }
995 case Instruction::BitCast:
996 if (!I->getOperand(0)->getType()->isInteger())
997 return false;
998
999 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1000 RHSKnownZero, RHSKnownOne, Depth+1))
1001 return true;
1002 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1003 "Bits known to be one AND zero?");
1004 break;
1005 case Instruction::ZExt: {
1006 // Compute the bits in the result that are not present in the input.
1007 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
Reid Spencer2f549172007-03-25 04:26:16 +00001008 uint32_t SrcBitWidth = SrcTy->getBitWidth();
Reid Spencer8cb68342007-03-12 17:25:59 +00001009
Zhou Shengd48653a2007-03-29 04:45:55 +00001010 DemandedMask.trunc(SrcBitWidth);
1011 RHSKnownZero.trunc(SrcBitWidth);
1012 RHSKnownOne.trunc(SrcBitWidth);
Zhou Sheng01542f32007-03-29 02:26:30 +00001013 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1014 RHSKnownZero, RHSKnownOne, Depth+1))
Reid Spencer8cb68342007-03-12 17:25:59 +00001015 return true;
1016 DemandedMask.zext(BitWidth);
1017 RHSKnownZero.zext(BitWidth);
1018 RHSKnownOne.zext(BitWidth);
1019 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1020 "Bits known to be one AND zero?");
1021 // The top bits are known to be zero.
Zhou Sheng01542f32007-03-29 02:26:30 +00001022 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Reid Spencer8cb68342007-03-12 17:25:59 +00001023 break;
1024 }
1025 case Instruction::SExt: {
1026 // Compute the bits in the result that are not present in the input.
1027 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
Reid Spencer2f549172007-03-25 04:26:16 +00001028 uint32_t SrcBitWidth = SrcTy->getBitWidth();
Reid Spencer8cb68342007-03-12 17:25:59 +00001029
Reid Spencer8cb68342007-03-12 17:25:59 +00001030 APInt InputDemandedBits = DemandedMask &
Zhou Sheng01542f32007-03-29 02:26:30 +00001031 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
Reid Spencer8cb68342007-03-12 17:25:59 +00001032
Zhou Sheng01542f32007-03-29 02:26:30 +00001033 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
Reid Spencer8cb68342007-03-12 17:25:59 +00001034 // If any of the sign extended bits are demanded, we know that the sign
1035 // bit is demanded.
1036 if ((NewBits & DemandedMask) != 0)
Zhou Sheng4a1822a2007-04-02 13:45:30 +00001037 InputDemandedBits.set(SrcBitWidth-1);
Reid Spencer8cb68342007-03-12 17:25:59 +00001038
Zhou Shengd48653a2007-03-29 04:45:55 +00001039 InputDemandedBits.trunc(SrcBitWidth);
1040 RHSKnownZero.trunc(SrcBitWidth);
1041 RHSKnownOne.trunc(SrcBitWidth);
Zhou Sheng01542f32007-03-29 02:26:30 +00001042 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1043 RHSKnownZero, RHSKnownOne, Depth+1))
Reid Spencer8cb68342007-03-12 17:25:59 +00001044 return true;
1045 InputDemandedBits.zext(BitWidth);
1046 RHSKnownZero.zext(BitWidth);
1047 RHSKnownOne.zext(BitWidth);
1048 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1049 "Bits known to be one AND zero?");
1050
1051 // If the sign bit of the input is known set or clear, then we know the
1052 // top bits of the result.
1053
1054 // If the input sign bit is known zero, or if the NewBits are not demanded
1055 // convert this into a zero extension.
Zhou Sheng01542f32007-03-29 02:26:30 +00001056 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
Reid Spencer8cb68342007-03-12 17:25:59 +00001057 {
1058 // Convert to ZExt cast
1059 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1060 return UpdateValueUsesWith(I, NewCast);
Zhou Sheng01542f32007-03-29 02:26:30 +00001061 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
Reid Spencer8cb68342007-03-12 17:25:59 +00001062 RHSKnownOne |= NewBits;
Reid Spencer8cb68342007-03-12 17:25:59 +00001063 }
1064 break;
1065 }
1066 case Instruction::Add: {
1067 // Figure out what the input bits are. If the top bits of the and result
1068 // are not demanded, then the add doesn't demand them from its input
1069 // either.
Reid Spencer55702aa2007-03-25 21:11:44 +00001070 uint32_t NLZ = DemandedMask.countLeadingZeros();
Reid Spencer8cb68342007-03-12 17:25:59 +00001071
1072 // If there is a constant on the RHS, there are a variety of xformations
1073 // we can do.
1074 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1075 // If null, this should be simplified elsewhere. Some of the xforms here
1076 // won't work if the RHS is zero.
1077 if (RHS->isZero())
1078 break;
1079
1080 // If the top bit of the output is demanded, demand everything from the
1081 // input. Otherwise, we demand all the input bits except NLZ top bits.
Zhou Sheng01542f32007-03-29 02:26:30 +00001082 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
Reid Spencer8cb68342007-03-12 17:25:59 +00001083
1084 // Find information about known zero/one bits in the input.
1085 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1086 LHSKnownZero, LHSKnownOne, Depth+1))
1087 return true;
1088
1089 // If the RHS of the add has bits set that can't affect the input, reduce
1090 // the constant.
1091 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1092 return UpdateValueUsesWith(I, I);
1093
1094 // Avoid excess work.
1095 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1096 break;
1097
1098 // Turn it into OR if input bits are zero.
1099 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1100 Instruction *Or =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001101 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Reid Spencer8cb68342007-03-12 17:25:59 +00001102 I->getName());
1103 InsertNewInstBefore(Or, *I);
1104 return UpdateValueUsesWith(I, Or);
1105 }
1106
1107 // We can say something about the output known-zero and known-one bits,
1108 // depending on potential carries from the input constant and the
1109 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1110 // bits set and the RHS constant is 0x01001, then we know we have a known
1111 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1112
1113 // To compute this, we first compute the potential carry bits. These are
1114 // the bits which may be modified. I'm not aware of a better way to do
1115 // this scan.
Zhou Shengb9cb95f2007-03-31 02:38:39 +00001116 const APInt& RHSVal = RHS->getValue();
1117 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
Reid Spencer8cb68342007-03-12 17:25:59 +00001118
1119 // Now that we know which bits have carries, compute the known-1/0 sets.
1120
1121 // Bits are known one if they are known zero in one operand and one in the
1122 // other, and there is no input carry.
1123 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1124 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1125
1126 // Bits are known zero if they are known zero in both operands and there
1127 // is no input carry.
1128 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1129 } else {
1130 // If the high-bits of this ADD are not demanded, then it does not demand
1131 // the high bits of its LHS or RHS.
Zhou Sheng01542f32007-03-29 02:26:30 +00001132 if (DemandedMask[BitWidth-1] == 0) {
Reid Spencer8cb68342007-03-12 17:25:59 +00001133 // Right fill the mask of bits for this ADD to demand the most
1134 // significant bit and all those below it.
Zhou Sheng01542f32007-03-29 02:26:30 +00001135 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
Reid Spencer8cb68342007-03-12 17:25:59 +00001136 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1137 LHSKnownZero, LHSKnownOne, Depth+1))
1138 return true;
1139 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1140 LHSKnownZero, LHSKnownOne, Depth+1))
1141 return true;
1142 }
1143 }
1144 break;
1145 }
1146 case Instruction::Sub:
1147 // If the high-bits of this SUB are not demanded, then it does not demand
1148 // the high bits of its LHS or RHS.
Zhou Sheng01542f32007-03-29 02:26:30 +00001149 if (DemandedMask[BitWidth-1] == 0) {
Reid Spencer8cb68342007-03-12 17:25:59 +00001150 // Right fill the mask of bits for this SUB to demand the most
1151 // significant bit and all those below it.
Zhou Sheng4351c642007-04-02 08:20:41 +00001152 uint32_t NLZ = DemandedMask.countLeadingZeros();
Zhou Sheng01542f32007-03-29 02:26:30 +00001153 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
Reid Spencer8cb68342007-03-12 17:25:59 +00001154 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1155 LHSKnownZero, LHSKnownOne, Depth+1))
1156 return true;
1157 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1158 LHSKnownZero, LHSKnownOne, Depth+1))
1159 return true;
1160 }
Dan Gohman23e8b712008-04-28 17:02:21 +00001161 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1162 // the known zeros and ones.
1163 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Reid Spencer8cb68342007-03-12 17:25:59 +00001164 break;
1165 case Instruction::Shl:
1166 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00001167 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Zhou Sheng01542f32007-03-29 02:26:30 +00001168 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1169 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
Reid Spencer8cb68342007-03-12 17:25:59 +00001170 RHSKnownZero, RHSKnownOne, Depth+1))
1171 return true;
1172 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1173 "Bits known to be one AND zero?");
1174 RHSKnownZero <<= ShiftAmt;
1175 RHSKnownOne <<= ShiftAmt;
1176 // low bits known zero.
Zhou Shengadc14952007-03-14 09:07:33 +00001177 if (ShiftAmt)
Zhou Shenge9e03f62007-03-28 15:02:20 +00001178 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
Reid Spencer8cb68342007-03-12 17:25:59 +00001179 }
1180 break;
1181 case Instruction::LShr:
1182 // For a logical shift right
1183 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00001184 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Reid Spencer8cb68342007-03-12 17:25:59 +00001185
Reid Spencer8cb68342007-03-12 17:25:59 +00001186 // Unsigned shift right.
Zhou Sheng01542f32007-03-29 02:26:30 +00001187 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1188 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
Reid Spencer8cb68342007-03-12 17:25:59 +00001189 RHSKnownZero, RHSKnownOne, Depth+1))
1190 return true;
1191 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1192 "Bits known to be one AND zero?");
Reid Spencer8cb68342007-03-12 17:25:59 +00001193 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1194 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
Zhou Shengadc14952007-03-14 09:07:33 +00001195 if (ShiftAmt) {
1196 // Compute the new bits that are at the top now.
Zhou Sheng01542f32007-03-29 02:26:30 +00001197 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
Zhou Shengadc14952007-03-14 09:07:33 +00001198 RHSKnownZero |= HighBits; // high bits known zero.
1199 }
Reid Spencer8cb68342007-03-12 17:25:59 +00001200 }
1201 break;
1202 case Instruction::AShr:
1203 // If this is an arithmetic shift right and only the low-bit is set, we can
1204 // always convert this into a logical shr, even if the shift amount is
1205 // variable. The low bit of the shift cannot be an input sign bit unless
1206 // the shift amount is >= the size of the datatype, which is undefined.
1207 if (DemandedMask == 1) {
1208 // Perform the logical shift right.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001209 Value *NewVal = BinaryOperator::CreateLShr(
Reid Spencer8cb68342007-03-12 17:25:59 +00001210 I->getOperand(0), I->getOperand(1), I->getName());
1211 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1212 return UpdateValueUsesWith(I, NewVal);
1213 }
Chris Lattner4241e4d2007-07-15 20:54:51 +00001214
1215 // If the sign bit is the only bit demanded by this ashr, then there is no
1216 // need to do it, the shift doesn't change the high bit.
1217 if (DemandedMask.isSignBit())
1218 return UpdateValueUsesWith(I, I->getOperand(0));
Reid Spencer8cb68342007-03-12 17:25:59 +00001219
1220 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Zhou Sheng302748d2007-03-30 17:20:39 +00001221 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
Reid Spencer8cb68342007-03-12 17:25:59 +00001222
Reid Spencer8cb68342007-03-12 17:25:59 +00001223 // Signed shift right.
Zhou Sheng01542f32007-03-29 02:26:30 +00001224 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
Lauro Ramos Venanciod0499af2007-06-06 17:08:48 +00001225 // If any of the "high bits" are demanded, we should set the sign bit as
1226 // demanded.
1227 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1228 DemandedMaskIn.set(BitWidth-1);
Reid Spencer8cb68342007-03-12 17:25:59 +00001229 if (SimplifyDemandedBits(I->getOperand(0),
Zhou Sheng01542f32007-03-29 02:26:30 +00001230 DemandedMaskIn,
Reid Spencer8cb68342007-03-12 17:25:59 +00001231 RHSKnownZero, RHSKnownOne, Depth+1))
1232 return true;
1233 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1234 "Bits known to be one AND zero?");
1235 // Compute the new bits that are at the top now.
Zhou Sheng01542f32007-03-29 02:26:30 +00001236 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
Reid Spencer8cb68342007-03-12 17:25:59 +00001237 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1238 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1239
1240 // Handle the sign bits.
1241 APInt SignBit(APInt::getSignBit(BitWidth));
1242 // Adjust to where it is now in the mask.
1243 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1244
1245 // If the input sign bit is known to be zero, or if none of the top bits
1246 // are demanded, turn this into an unsigned shift right.
Zhou Shengcc419402008-06-06 08:32:05 +00001247 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
Reid Spencer8cb68342007-03-12 17:25:59 +00001248 (HighBits & ~DemandedMask) == HighBits) {
1249 // Perform the logical shift right.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001250 Value *NewVal = BinaryOperator::CreateLShr(
Reid Spencer8cb68342007-03-12 17:25:59 +00001251 I->getOperand(0), SA, I->getName());
1252 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1253 return UpdateValueUsesWith(I, NewVal);
1254 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1255 RHSKnownOne |= HighBits;
1256 }
1257 }
1258 break;
Nick Lewyckyc1a2a612008-03-06 06:48:30 +00001259 case Instruction::SRem:
1260 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Nick Lewycky8e394322008-11-02 02:41:50 +00001261 APInt RA = Rem->getValue().abs();
1262 if (RA.isPowerOf2()) {
Nick Lewycky3ac9e102008-07-12 05:04:38 +00001263 if (DemandedMask.ule(RA)) // srem won't affect demanded bits
1264 return UpdateValueUsesWith(I, I->getOperand(0));
1265
Nick Lewycky8e394322008-11-02 02:41:50 +00001266 APInt LowBits = RA - 1;
Nick Lewyckyc1a2a612008-03-06 06:48:30 +00001267 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1268 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1269 LHSKnownZero, LHSKnownOne, Depth+1))
1270 return true;
1271
1272 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1273 LHSKnownZero |= ~LowBits;
Nick Lewyckyc1a2a612008-03-06 06:48:30 +00001274
1275 KnownZero |= LHSKnownZero & DemandedMask;
Nick Lewyckyc1a2a612008-03-06 06:48:30 +00001276
1277 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1278 }
1279 }
1280 break;
Dan Gohman23e8b712008-04-28 17:02:21 +00001281 case Instruction::URem: {
Dan Gohman23e8b712008-04-28 17:02:21 +00001282 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1283 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohmane85b7582008-05-01 19:13:24 +00001284 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1285 KnownZero2, KnownOne2, Depth+1))
1286 return true;
1287
Dan Gohman23e8b712008-04-28 17:02:21 +00001288 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohmane85b7582008-05-01 19:13:24 +00001289 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohman23e8b712008-04-28 17:02:21 +00001290 KnownZero2, KnownOne2, Depth+1))
1291 return true;
1292
1293 Leaders = std::max(Leaders,
1294 KnownZero2.countLeadingOnes());
1295 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1a2a612008-03-06 06:48:30 +00001296 break;
Reid Spencer8cb68342007-03-12 17:25:59 +00001297 }
Chris Lattner0521e3c2008-06-18 04:33:20 +00001298 case Instruction::Call:
1299 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1300 switch (II->getIntrinsicID()) {
1301 default: break;
1302 case Intrinsic::bswap: {
1303 // If the only bits demanded come from one byte of the bswap result,
1304 // just shift the input byte into position to eliminate the bswap.
1305 unsigned NLZ = DemandedMask.countLeadingZeros();
1306 unsigned NTZ = DemandedMask.countTrailingZeros();
1307
1308 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1309 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1310 // have 14 leading zeros, round to 8.
1311 NLZ &= ~7;
1312 NTZ &= ~7;
1313 // If we need exactly one byte, we can do this transformation.
1314 if (BitWidth-NLZ-NTZ == 8) {
1315 unsigned ResultBit = NTZ;
1316 unsigned InputBit = BitWidth-NTZ-8;
1317
1318 // Replace this with either a left or right shift to get the byte into
1319 // the right place.
1320 Instruction *NewVal;
1321 if (InputBit > ResultBit)
1322 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1323 ConstantInt::get(I->getType(), InputBit-ResultBit));
1324 else
1325 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1326 ConstantInt::get(I->getType(), ResultBit-InputBit));
1327 NewVal->takeName(I);
1328 InsertNewInstBefore(NewVal, *I);
1329 return UpdateValueUsesWith(I, NewVal);
1330 }
1331
1332 // TODO: Could compute known zero/one bits based on the input.
1333 break;
1334 }
1335 }
1336 }
Chris Lattner6c3bfba2008-06-18 18:11:55 +00001337 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Chris Lattner0521e3c2008-06-18 04:33:20 +00001338 break;
Dan Gohman23e8b712008-04-28 17:02:21 +00001339 }
Reid Spencer8cb68342007-03-12 17:25:59 +00001340
1341 // If the client is only demanding bits that we know, return the known
1342 // constant.
1343 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1344 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1345 return false;
1346}
1347
Chris Lattner867b99f2006-10-05 06:55:50 +00001348
Mon P Wangaeb06d22008-11-10 04:46:22 +00001349/// SimplifyDemandedVectorElts - The specified value produces a vector with
Chris Lattner867b99f2006-10-05 06:55:50 +00001350/// 64 or fewer elements. DemandedElts contains the set of elements that are
1351/// actually used by the caller. This method analyzes which elements of the
1352/// operand are undef and returns that information in UndefElts.
1353///
1354/// If the information about demanded elements can be used to simplify the
1355/// operation, the operation is simplified, then the resultant value is
1356/// returned. This returns null if no change was made.
1357Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1358 uint64_t &UndefElts,
1359 unsigned Depth) {
Reid Spencer9d6565a2007-02-15 02:26:10 +00001360 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
Chris Lattner867b99f2006-10-05 06:55:50 +00001361 assert(VWidth <= 64 && "Vector too wide to analyze!");
1362 uint64_t EltMask = ~0ULL >> (64-VWidth);
Dan Gohman488fbfc2008-09-09 18:11:14 +00001363 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
Chris Lattner867b99f2006-10-05 06:55:50 +00001364
1365 if (isa<UndefValue>(V)) {
1366 // If the entire vector is undefined, just return this info.
1367 UndefElts = EltMask;
1368 return 0;
1369 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1370 UndefElts = EltMask;
1371 return UndefValue::get(V->getType());
1372 }
Mon P Wangaeb06d22008-11-10 04:46:22 +00001373
Chris Lattner867b99f2006-10-05 06:55:50 +00001374 UndefElts = 0;
Reid Spencer9d6565a2007-02-15 02:26:10 +00001375 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1376 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattner867b99f2006-10-05 06:55:50 +00001377 Constant *Undef = UndefValue::get(EltTy);
1378
1379 std::vector<Constant*> Elts;
1380 for (unsigned i = 0; i != VWidth; ++i)
1381 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1382 Elts.push_back(Undef);
1383 UndefElts |= (1ULL << i);
1384 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1385 Elts.push_back(Undef);
1386 UndefElts |= (1ULL << i);
1387 } else { // Otherwise, defined.
1388 Elts.push_back(CP->getOperand(i));
1389 }
Mon P Wangaeb06d22008-11-10 04:46:22 +00001390
Chris Lattner867b99f2006-10-05 06:55:50 +00001391 // If we changed the constant, return it.
Reid Spencer9d6565a2007-02-15 02:26:10 +00001392 Constant *NewCP = ConstantVector::get(Elts);
Chris Lattner867b99f2006-10-05 06:55:50 +00001393 return NewCP != CP ? NewCP : 0;
1394 } else if (isa<ConstantAggregateZero>(V)) {
Reid Spencer9d6565a2007-02-15 02:26:10 +00001395 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
Chris Lattner867b99f2006-10-05 06:55:50 +00001396 // set to undef.
Mon P Wange0b436a2008-11-06 22:52:21 +00001397
1398 // Check if this is identity. If so, return 0 since we are not simplifying
1399 // anything.
1400 if (DemandedElts == ((1ULL << VWidth) -1))
1401 return 0;
1402
Reid Spencer9d6565a2007-02-15 02:26:10 +00001403 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattner867b99f2006-10-05 06:55:50 +00001404 Constant *Zero = Constant::getNullValue(EltTy);
1405 Constant *Undef = UndefValue::get(EltTy);
1406 std::vector<Constant*> Elts;
1407 for (unsigned i = 0; i != VWidth; ++i)
1408 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1409 UndefElts = DemandedElts ^ EltMask;
Reid Spencer9d6565a2007-02-15 02:26:10 +00001410 return ConstantVector::get(Elts);
Chris Lattner867b99f2006-10-05 06:55:50 +00001411 }
1412
Dan Gohman488fbfc2008-09-09 18:11:14 +00001413 // Limit search depth.
1414 if (Depth == 10)
1415 return false;
1416
1417 // If multiple users are using the root value, procede with
1418 // simplification conservatively assuming that all elements
1419 // are needed.
1420 if (!V->hasOneUse()) {
1421 // Quit if we find multiple users of a non-root value though.
1422 // They'll be handled when it's their turn to be visited by
1423 // the main instcombine process.
1424 if (Depth != 0)
Chris Lattner867b99f2006-10-05 06:55:50 +00001425 // TODO: Just compute the UndefElts information recursively.
1426 return false;
Dan Gohman488fbfc2008-09-09 18:11:14 +00001427
1428 // Conservatively assume that all elements are needed.
1429 DemandedElts = EltMask;
Chris Lattner867b99f2006-10-05 06:55:50 +00001430 }
1431
1432 Instruction *I = dyn_cast<Instruction>(V);
1433 if (!I) return false; // Only analyze instructions.
1434
1435 bool MadeChange = false;
1436 uint64_t UndefElts2;
1437 Value *TmpV;
1438 switch (I->getOpcode()) {
1439 default: break;
1440
1441 case Instruction::InsertElement: {
1442 // If this is a variable index, we don't know which element it overwrites.
1443 // demand exactly the same input as we produce.
Reid Spencerb83eb642006-10-20 07:07:24 +00001444 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
Chris Lattner867b99f2006-10-05 06:55:50 +00001445 if (Idx == 0) {
1446 // Note that we can't propagate undef elt info, because we don't know
1447 // which elt is getting updated.
1448 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1449 UndefElts2, Depth+1);
1450 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1451 break;
1452 }
1453
1454 // If this is inserting an element that isn't demanded, remove this
1455 // insertelement.
Reid Spencerb83eb642006-10-20 07:07:24 +00001456 unsigned IdxNo = Idx->getZExtValue();
Chris Lattner867b99f2006-10-05 06:55:50 +00001457 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1458 return AddSoonDeadInstToWorklist(*I, 0);
1459
1460 // Otherwise, the element inserted overwrites whatever was there, so the
1461 // input demanded set is simpler than the output set.
1462 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1463 DemandedElts & ~(1ULL << IdxNo),
1464 UndefElts, Depth+1);
1465 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1466
1467 // The inserted element is defined.
Dan Gohman488fbfc2008-09-09 18:11:14 +00001468 UndefElts &= ~(1ULL << IdxNo);
1469 break;
1470 }
1471 case Instruction::ShuffleVector: {
1472 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Mon P Wangaeb06d22008-11-10 04:46:22 +00001473 uint64_t LHSVWidth =
1474 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
Dan Gohman488fbfc2008-09-09 18:11:14 +00001475 uint64_t LeftDemanded = 0, RightDemanded = 0;
1476 for (unsigned i = 0; i < VWidth; i++) {
1477 if (DemandedElts & (1ULL << i)) {
1478 unsigned MaskVal = Shuffle->getMaskValue(i);
1479 if (MaskVal != -1u) {
Mon P Wangaeb06d22008-11-10 04:46:22 +00001480 assert(MaskVal < LHSVWidth * 2 &&
Dan Gohman488fbfc2008-09-09 18:11:14 +00001481 "shufflevector mask index out of range!");
Mon P Wangaeb06d22008-11-10 04:46:22 +00001482 if (MaskVal < LHSVWidth)
Dan Gohman488fbfc2008-09-09 18:11:14 +00001483 LeftDemanded |= 1ULL << MaskVal;
1484 else
Mon P Wangaeb06d22008-11-10 04:46:22 +00001485 RightDemanded |= 1ULL << (MaskVal - LHSVWidth);
Dan Gohman488fbfc2008-09-09 18:11:14 +00001486 }
1487 }
1488 }
1489
1490 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1491 UndefElts2, Depth+1);
1492 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1493
1494 uint64_t UndefElts3;
1495 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1496 UndefElts3, Depth+1);
1497 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1498
1499 bool NewUndefElts = false;
1500 for (unsigned i = 0; i < VWidth; i++) {
1501 unsigned MaskVal = Shuffle->getMaskValue(i);
Dan Gohmancb893092008-09-10 01:09:32 +00001502 if (MaskVal == -1u) {
Dan Gohman488fbfc2008-09-09 18:11:14 +00001503 uint64_t NewBit = 1ULL << i;
1504 UndefElts |= NewBit;
Mon P Wangaeb06d22008-11-10 04:46:22 +00001505 } else if (MaskVal < LHSVWidth) {
Dan Gohman488fbfc2008-09-09 18:11:14 +00001506 uint64_t NewBit = ((UndefElts2 >> MaskVal) & 1) << i;
1507 NewUndefElts |= NewBit;
1508 UndefElts |= NewBit;
1509 } else {
Mon P Wangaeb06d22008-11-10 04:46:22 +00001510 uint64_t NewBit = ((UndefElts3 >> (MaskVal - LHSVWidth)) & 1) << i;
Dan Gohman488fbfc2008-09-09 18:11:14 +00001511 NewUndefElts |= NewBit;
1512 UndefElts |= NewBit;
1513 }
1514 }
1515
1516 if (NewUndefElts) {
1517 // Add additional discovered undefs.
1518 std::vector<Constant*> Elts;
1519 for (unsigned i = 0; i < VWidth; ++i) {
1520 if (UndefElts & (1ULL << i))
1521 Elts.push_back(UndefValue::get(Type::Int32Ty));
1522 else
1523 Elts.push_back(ConstantInt::get(Type::Int32Ty,
1524 Shuffle->getMaskValue(i)));
1525 }
1526 I->setOperand(2, ConstantVector::get(Elts));
1527 MadeChange = true;
1528 }
Chris Lattner867b99f2006-10-05 06:55:50 +00001529 break;
1530 }
Chris Lattner69878332007-04-14 22:29:23 +00001531 case Instruction::BitCast: {
Dan Gohman07a96762007-07-16 14:29:03 +00001532 // Vector->vector casts only.
Chris Lattner69878332007-04-14 22:29:23 +00001533 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1534 if (!VTy) break;
1535 unsigned InVWidth = VTy->getNumElements();
1536 uint64_t InputDemandedElts = 0;
1537 unsigned Ratio;
1538
1539 if (VWidth == InVWidth) {
Dan Gohman07a96762007-07-16 14:29:03 +00001540 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
Chris Lattner69878332007-04-14 22:29:23 +00001541 // elements as are demanded of us.
1542 Ratio = 1;
1543 InputDemandedElts = DemandedElts;
1544 } else if (VWidth > InVWidth) {
1545 // Untested so far.
1546 break;
1547
1548 // If there are more elements in the result than there are in the source,
1549 // then an input element is live if any of the corresponding output
1550 // elements are live.
1551 Ratio = VWidth/InVWidth;
1552 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1553 if (DemandedElts & (1ULL << OutIdx))
1554 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1555 }
1556 } else {
1557 // Untested so far.
1558 break;
1559
1560 // If there are more elements in the source than there are in the result,
1561 // then an input element is live if the corresponding output element is
1562 // live.
1563 Ratio = InVWidth/VWidth;
1564 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1565 if (DemandedElts & (1ULL << InIdx/Ratio))
1566 InputDemandedElts |= 1ULL << InIdx;
1567 }
Chris Lattner867b99f2006-10-05 06:55:50 +00001568
Chris Lattner69878332007-04-14 22:29:23 +00001569 // div/rem demand all inputs, because they don't want divide by zero.
1570 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1571 UndefElts2, Depth+1);
1572 if (TmpV) {
1573 I->setOperand(0, TmpV);
1574 MadeChange = true;
1575 }
1576
1577 UndefElts = UndefElts2;
1578 if (VWidth > InVWidth) {
1579 assert(0 && "Unimp");
1580 // If there are more elements in the result than there are in the source,
1581 // then an output element is undef if the corresponding input element is
1582 // undef.
1583 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1584 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1585 UndefElts |= 1ULL << OutIdx;
1586 } else if (VWidth < InVWidth) {
1587 assert(0 && "Unimp");
1588 // If there are more elements in the source than there are in the result,
1589 // then a result element is undef if all of the corresponding input
1590 // elements are undef.
1591 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1592 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1593 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1594 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1595 }
1596 break;
1597 }
Chris Lattner867b99f2006-10-05 06:55:50 +00001598 case Instruction::And:
1599 case Instruction::Or:
1600 case Instruction::Xor:
1601 case Instruction::Add:
1602 case Instruction::Sub:
1603 case Instruction::Mul:
1604 // div/rem demand all inputs, because they don't want divide by zero.
1605 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1606 UndefElts, Depth+1);
1607 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1608 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1609 UndefElts2, Depth+1);
1610 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1611
1612 // Output elements are undefined if both are undefined. Consider things
1613 // like undef&0. The result is known zero, not undef.
1614 UndefElts &= UndefElts2;
1615 break;
1616
1617 case Instruction::Call: {
1618 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1619 if (!II) break;
1620 switch (II->getIntrinsicID()) {
1621 default: break;
1622
1623 // Binary vector operations that work column-wise. A dest element is a
1624 // function of the corresponding input elements from the two inputs.
1625 case Intrinsic::x86_sse_sub_ss:
1626 case Intrinsic::x86_sse_mul_ss:
1627 case Intrinsic::x86_sse_min_ss:
1628 case Intrinsic::x86_sse_max_ss:
1629 case Intrinsic::x86_sse2_sub_sd:
1630 case Intrinsic::x86_sse2_mul_sd:
1631 case Intrinsic::x86_sse2_min_sd:
1632 case Intrinsic::x86_sse2_max_sd:
1633 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1634 UndefElts, Depth+1);
1635 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1636 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1637 UndefElts2, Depth+1);
1638 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1639
1640 // If only the low elt is demanded and this is a scalarizable intrinsic,
1641 // scalarize it now.
1642 if (DemandedElts == 1) {
1643 switch (II->getIntrinsicID()) {
1644 default: break;
1645 case Intrinsic::x86_sse_sub_ss:
1646 case Intrinsic::x86_sse_mul_ss:
1647 case Intrinsic::x86_sse2_sub_sd:
1648 case Intrinsic::x86_sse2_mul_sd:
1649 // TODO: Lower MIN/MAX/ABS/etc
1650 Value *LHS = II->getOperand(1);
1651 Value *RHS = II->getOperand(2);
1652 // Extract the element as scalars.
1653 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1654 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1655
1656 switch (II->getIntrinsicID()) {
1657 default: assert(0 && "Case stmts out of sync!");
1658 case Intrinsic::x86_sse_sub_ss:
1659 case Intrinsic::x86_sse2_sub_sd:
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001660 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Chris Lattner867b99f2006-10-05 06:55:50 +00001661 II->getName()), *II);
1662 break;
1663 case Intrinsic::x86_sse_mul_ss:
1664 case Intrinsic::x86_sse2_mul_sd:
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001665 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Chris Lattner867b99f2006-10-05 06:55:50 +00001666 II->getName()), *II);
1667 break;
1668 }
1669
1670 Instruction *New =
Gabor Greif051a9502008-04-06 20:25:17 +00001671 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1672 II->getName());
Chris Lattner867b99f2006-10-05 06:55:50 +00001673 InsertNewInstBefore(New, *II);
1674 AddSoonDeadInstToWorklist(*II, 0);
1675 return New;
1676 }
1677 }
1678
1679 // Output elements are undefined if both are undefined. Consider things
1680 // like undef&0. The result is known zero, not undef.
1681 UndefElts &= UndefElts2;
1682 break;
1683 }
1684 break;
1685 }
1686 }
1687 return MadeChange ? I : 0;
1688}
1689
Dan Gohman45b4e482008-05-19 22:14:15 +00001690
Chris Lattner564a7272003-08-13 19:01:45 +00001691/// AssociativeOpt - Perform an optimization on an associative operator. This
1692/// function is designed to check a chain of associative operators for a
1693/// potential to apply a certain optimization. Since the optimization may be
1694/// applicable if the expression was reassociated, this checks the chain, then
1695/// reassociates the expression as necessary to expose the optimization
1696/// opportunity. This makes use of a special Functor, which must define
1697/// 'shouldApply' and 'apply' methods.
1698///
1699template<typename Functor>
Dan Gohman76d402b2008-05-20 01:14:05 +00001700static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
Chris Lattner564a7272003-08-13 19:01:45 +00001701 unsigned Opcode = Root.getOpcode();
1702 Value *LHS = Root.getOperand(0);
1703
1704 // Quick check, see if the immediate LHS matches...
1705 if (F.shouldApply(LHS))
1706 return F.apply(Root);
1707
1708 // Otherwise, if the LHS is not of the same opcode as the root, return.
1709 Instruction *LHSI = dyn_cast<Instruction>(LHS);
Chris Lattnerfd059242003-10-15 16:48:29 +00001710 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
Chris Lattner564a7272003-08-13 19:01:45 +00001711 // Should we apply this transform to the RHS?
1712 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1713
1714 // If not to the RHS, check to see if we should apply to the LHS...
1715 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1716 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1717 ShouldApply = true;
1718 }
1719
1720 // If the functor wants to apply the optimization to the RHS of LHSI,
1721 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1722 if (ShouldApply) {
Chris Lattner564a7272003-08-13 19:01:45 +00001723 // Now all of the instructions are in the current basic block, go ahead
1724 // and perform the reassociation.
1725 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1726
1727 // First move the selected RHS to the LHS of the root...
1728 Root.setOperand(0, LHSI->getOperand(1));
1729
1730 // Make what used to be the LHS of the root be the user of the root...
1731 Value *ExtraOperand = TmpLHSI->getOperand(1);
Chris Lattner65725312004-04-16 18:08:07 +00001732 if (&Root == TmpLHSI) {
Chris Lattner15a76c02004-04-05 02:10:19 +00001733 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1734 return 0;
1735 }
Chris Lattner65725312004-04-16 18:08:07 +00001736 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
Chris Lattner564a7272003-08-13 19:01:45 +00001737 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Chris Lattner65725312004-04-16 18:08:07 +00001738 BasicBlock::iterator ARI = &Root; ++ARI;
Dan Gohmand02d9172008-06-19 17:47:47 +00001739 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
Chris Lattner65725312004-04-16 18:08:07 +00001740 ARI = Root;
Chris Lattner564a7272003-08-13 19:01:45 +00001741
1742 // Now propagate the ExtraOperand down the chain of instructions until we
1743 // get to LHSI.
1744 while (TmpLHSI != LHSI) {
1745 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
Chris Lattner65725312004-04-16 18:08:07 +00001746 // Move the instruction to immediately before the chain we are
1747 // constructing to avoid breaking dominance properties.
Dan Gohmand02d9172008-06-19 17:47:47 +00001748 NextLHSI->moveBefore(ARI);
Chris Lattner65725312004-04-16 18:08:07 +00001749 ARI = NextLHSI;
1750
Chris Lattner564a7272003-08-13 19:01:45 +00001751 Value *NextOp = NextLHSI->getOperand(1);
1752 NextLHSI->setOperand(1, ExtraOperand);
1753 TmpLHSI = NextLHSI;
1754 ExtraOperand = NextOp;
1755 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001756
Chris Lattner564a7272003-08-13 19:01:45 +00001757 // Now that the instructions are reassociated, have the functor perform
1758 // the transformation...
1759 return F.apply(Root);
1760 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001761
Chris Lattner564a7272003-08-13 19:01:45 +00001762 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1763 }
1764 return 0;
1765}
1766
Dan Gohman844731a2008-05-13 00:00:25 +00001767namespace {
Chris Lattner564a7272003-08-13 19:01:45 +00001768
Nick Lewycky02d639f2008-05-23 04:34:58 +00001769// AddRHS - Implements: X + X --> X << 1
Chris Lattner564a7272003-08-13 19:01:45 +00001770struct AddRHS {
1771 Value *RHS;
1772 AddRHS(Value *rhs) : RHS(rhs) {}
1773 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1774 Instruction *apply(BinaryOperator &Add) const {
Nick Lewycky02d639f2008-05-23 04:34:58 +00001775 return BinaryOperator::CreateShl(Add.getOperand(0),
1776 ConstantInt::get(Add.getType(), 1));
Chris Lattner564a7272003-08-13 19:01:45 +00001777 }
1778};
1779
1780// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1781// iff C1&C2 == 0
1782struct AddMaskingAnd {
1783 Constant *C2;
1784 AddMaskingAnd(Constant *c) : C2(c) {}
1785 bool shouldApply(Value *LHS) const {
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001786 ConstantInt *C1;
Misha Brukmanfd939082005-04-21 23:48:37 +00001787 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001788 ConstantExpr::getAnd(C1, C2)->isNullValue();
Chris Lattner564a7272003-08-13 19:01:45 +00001789 }
1790 Instruction *apply(BinaryOperator &Add) const {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001791 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Chris Lattner564a7272003-08-13 19:01:45 +00001792 }
1793};
1794
Dan Gohman844731a2008-05-13 00:00:25 +00001795}
1796
Chris Lattner6e7ba452005-01-01 16:22:27 +00001797static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner2eefe512004-04-09 19:05:30 +00001798 InstCombiner *IC) {
Reid Spencer3da59db2006-11-27 01:05:10 +00001799 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Eli Friedmand1fd1da2008-11-30 21:09:11 +00001800 return IC->InsertCastBefore(CI->getOpcode(), SO, I.getType(), I);
Chris Lattner6e7ba452005-01-01 16:22:27 +00001801 }
1802
Chris Lattner2eefe512004-04-09 19:05:30 +00001803 // Figure out if the constant is the left or the right argument.
Chris Lattner6e7ba452005-01-01 16:22:27 +00001804 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1805 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattner564a7272003-08-13 19:01:45 +00001806
Chris Lattner2eefe512004-04-09 19:05:30 +00001807 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1808 if (ConstIsRHS)
Chris Lattner6e7ba452005-01-01 16:22:27 +00001809 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1810 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner2eefe512004-04-09 19:05:30 +00001811 }
1812
1813 Value *Op0 = SO, *Op1 = ConstOperand;
1814 if (!ConstIsRHS)
1815 std::swap(Op0, Op1);
1816 Instruction *New;
Chris Lattner6e7ba452005-01-01 16:22:27 +00001817 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001818 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Reid Spencere4d87aa2006-12-23 06:05:41 +00001819 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001820 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Reid Spencere4d87aa2006-12-23 06:05:41 +00001821 SO->getName()+".cmp");
Chris Lattner326c0f32004-04-10 19:15:56 +00001822 else {
Chris Lattner2eefe512004-04-09 19:05:30 +00001823 assert(0 && "Unknown binary instruction type!");
Chris Lattner326c0f32004-04-10 19:15:56 +00001824 abort();
1825 }
Chris Lattner6e7ba452005-01-01 16:22:27 +00001826 return IC->InsertNewInstBefore(New, I);
1827}
1828
1829// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1830// constant as the other operand, try to fold the binary operator into the
1831// select arguments. This also works for Cast instructions, which obviously do
1832// not have a second operand.
1833static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1834 InstCombiner *IC) {
1835 // Don't modify shared select instructions
1836 if (!SI->hasOneUse()) return 0;
1837 Value *TV = SI->getOperand(1);
1838 Value *FV = SI->getOperand(2);
1839
1840 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner956db272005-04-21 05:43:13 +00001841 // Bool selects with constant operands can be folded to logical ops.
Reid Spencer4fe16d62007-01-11 18:21:29 +00001842 if (SI->getType() == Type::Int1Ty) return 0;
Chris Lattner956db272005-04-21 05:43:13 +00001843
Chris Lattner6e7ba452005-01-01 16:22:27 +00001844 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1845 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1846
Gabor Greif051a9502008-04-06 20:25:17 +00001847 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1848 SelectFalseVal);
Chris Lattner6e7ba452005-01-01 16:22:27 +00001849 }
1850 return 0;
Chris Lattner2eefe512004-04-09 19:05:30 +00001851}
1852
Chris Lattner4e998b22004-09-29 05:07:12 +00001853
1854/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1855/// node as operand #0, see if we can fold the instruction into the PHI (which
1856/// is only possible if all operands to the PHI are constants).
1857Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1858 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattnerbac32862004-11-14 19:13:23 +00001859 unsigned NumPHIValues = PN->getNumIncomingValues();
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001860 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
Chris Lattner4e998b22004-09-29 05:07:12 +00001861
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001862 // Check to see if all of the operands of the PHI are constants. If there is
1863 // one non-constant value, remember the BB it is. If there is more than one
Chris Lattnerb3036682007-02-24 01:03:45 +00001864 // or if *it* is a PHI, bail out.
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001865 BasicBlock *NonConstBB = 0;
1866 for (unsigned i = 0; i != NumPHIValues; ++i)
1867 if (!isa<Constant>(PN->getIncomingValue(i))) {
1868 if (NonConstBB) return 0; // More than one non-const value.
Chris Lattnerb3036682007-02-24 01:03:45 +00001869 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001870 NonConstBB = PN->getIncomingBlock(i);
1871
1872 // If the incoming non-constant value is in I's block, we have an infinite
1873 // loop.
1874 if (NonConstBB == I.getParent())
1875 return 0;
1876 }
1877
1878 // If there is exactly one non-constant value, we can insert a copy of the
1879 // operation in that block. However, if this is a critical edge, we would be
1880 // inserting the computation one some other paths (e.g. inside a loop). Only
1881 // do this if the pred block is unconditionally branching into the phi block.
1882 if (NonConstBB) {
1883 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1884 if (!BI || !BI->isUnconditional()) return 0;
1885 }
Chris Lattner4e998b22004-09-29 05:07:12 +00001886
1887 // Okay, we can do the transformation: create the new PHI node.
Gabor Greif051a9502008-04-06 20:25:17 +00001888 PHINode *NewPN = PHINode::Create(I.getType(), "");
Chris Lattner55517062005-01-29 00:39:08 +00001889 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
Chris Lattner4e998b22004-09-29 05:07:12 +00001890 InsertNewInstBefore(NewPN, *PN);
Chris Lattner6934a042007-02-11 01:23:03 +00001891 NewPN->takeName(PN);
Chris Lattner4e998b22004-09-29 05:07:12 +00001892
1893 // Next, add all of the operands to the PHI.
1894 if (I.getNumOperands() == 2) {
1895 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattnerbac32862004-11-14 19:13:23 +00001896 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnera9ff5eb2007-08-05 08:47:58 +00001897 Value *InV = 0;
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001898 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00001899 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1900 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1901 else
1902 InV = ConstantExpr::get(I.getOpcode(), InC, C);
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001903 } else {
1904 assert(PN->getIncomingBlock(i) == NonConstBB);
1905 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001906 InV = BinaryOperator::Create(BO->getOpcode(),
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001907 PN->getIncomingValue(i), C, "phitmp",
1908 NonConstBB->getTerminator());
Reid Spencere4d87aa2006-12-23 06:05:41 +00001909 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001910 InV = CmpInst::Create(CI->getOpcode(),
Reid Spencere4d87aa2006-12-23 06:05:41 +00001911 CI->getPredicate(),
1912 PN->getIncomingValue(i), C, "phitmp",
1913 NonConstBB->getTerminator());
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001914 else
1915 assert(0 && "Unknown binop!");
1916
Chris Lattnerdbab3862007-03-02 21:28:56 +00001917 AddToWorkList(cast<Instruction>(InV));
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001918 }
1919 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner4e998b22004-09-29 05:07:12 +00001920 }
Reid Spencer3da59db2006-11-27 01:05:10 +00001921 } else {
1922 CastInst *CI = cast<CastInst>(&I);
1923 const Type *RetTy = CI->getType();
Chris Lattnerbac32862004-11-14 19:13:23 +00001924 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001925 Value *InV;
1926 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
Reid Spencer3da59db2006-11-27 01:05:10 +00001927 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001928 } else {
1929 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001930 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Reid Spencer3da59db2006-11-27 01:05:10 +00001931 I.getType(), "phitmp",
1932 NonConstBB->getTerminator());
Chris Lattnerdbab3862007-03-02 21:28:56 +00001933 AddToWorkList(cast<Instruction>(InV));
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001934 }
1935 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner4e998b22004-09-29 05:07:12 +00001936 }
1937 }
1938 return ReplaceInstUsesWith(I, NewPN);
1939}
1940
Chris Lattner2454a2e2008-01-29 06:52:45 +00001941
Chris Lattner3d28b1b2008-05-20 05:46:13 +00001942/// WillNotOverflowSignedAdd - Return true if we can prove that:
1943/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
1944/// This basically requires proving that the add in the original type would not
1945/// overflow to change the sign bit or have a carry out.
1946bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
1947 // There are different heuristics we can use for this. Here are some simple
1948 // ones.
1949
1950 // Add has the property that adding any two 2's complement numbers can only
1951 // have one carry bit which can change a sign. As such, if LHS and RHS each
1952 // have at least two sign bits, we know that the addition of the two values will
1953 // sign extend fine.
1954 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
1955 return true;
1956
1957
1958 // If one of the operands only has one non-zero bit, and if the other operand
1959 // has a known-zero bit in a more significant place than it (not including the
1960 // sign bit) the ripple may go up to and fill the zero, but won't change the
1961 // sign. For example, (X & ~4) + 1.
1962
1963 // TODO: Implement.
1964
1965 return false;
1966}
1967
Chris Lattner2454a2e2008-01-29 06:52:45 +00001968
Chris Lattner7e708292002-06-25 16:13:24 +00001969Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00001970 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00001971 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Chris Lattnerb35dde12002-05-06 16:49:18 +00001972
Chris Lattner66331a42004-04-10 22:01:55 +00001973 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
Chris Lattnere87597f2004-10-16 18:11:37 +00001974 // X + undef -> undef
1975 if (isa<UndefValue>(RHS))
1976 return ReplaceInstUsesWith(I, RHS);
1977
Chris Lattner66331a42004-04-10 22:01:55 +00001978 // X + 0 --> X
Chris Lattner9919e3d2006-12-02 00:13:08 +00001979 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
Chris Lattner5e678e02005-10-17 17:56:38 +00001980 if (RHSC->isNullValue())
1981 return ReplaceInstUsesWith(I, LHS);
Chris Lattner8532cf62005-10-17 20:18:38 +00001982 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen9e3d3ab2007-09-14 22:26:36 +00001983 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
1984 (I.getType())->getValueAPF()))
Chris Lattner8532cf62005-10-17 20:18:38 +00001985 return ReplaceInstUsesWith(I, LHS);
Chris Lattner5e678e02005-10-17 17:56:38 +00001986 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001987
Chris Lattner66331a42004-04-10 22:01:55 +00001988 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
Chris Lattnerb4a2f052006-11-09 05:12:27 +00001989 // X + (signbit) --> X ^ signbit
Zhou Sheng3a507fd2007-04-01 17:13:37 +00001990 const APInt& Val = CI->getValue();
Zhou Sheng4351c642007-04-02 08:20:41 +00001991 uint32_t BitWidth = Val.getBitWidth();
Reid Spencer2ec619a2007-03-23 21:24:59 +00001992 if (Val == APInt::getSignBit(BitWidth))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001993 return BinaryOperator::CreateXor(LHS, RHS);
Chris Lattnerb4a2f052006-11-09 05:12:27 +00001994
1995 // See if SimplifyDemandedBits can simplify this. This handles stuff like
1996 // (X & 254)+1 -> (X&254)|1
Reid Spencer2ec619a2007-03-23 21:24:59 +00001997 if (!isa<VectorType>(I.getType())) {
1998 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1999 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2000 KnownZero, KnownOne))
2001 return &I;
2002 }
Dan Gohman1975d032008-10-30 20:40:10 +00002003
2004 // zext(i1) - 1 -> select i1, 0, -1
2005 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
2006 if (CI->isAllOnesValue() &&
2007 ZI->getOperand(0)->getType() == Type::Int1Ty)
2008 return SelectInst::Create(ZI->getOperand(0),
2009 Constant::getNullValue(I.getType()),
2010 ConstantInt::getAllOnesValue(I.getType()));
Chris Lattner66331a42004-04-10 22:01:55 +00002011 }
Chris Lattner4e998b22004-09-29 05:07:12 +00002012
2013 if (isa<PHINode>(LHS))
2014 if (Instruction *NV = FoldOpIntoPhi(I))
2015 return NV;
Chris Lattner5931c542005-09-24 23:43:33 +00002016
Chris Lattner4f637d42006-01-06 17:59:59 +00002017 ConstantInt *XorRHS = 0;
2018 Value *XorLHS = 0;
Chris Lattnerc5eff442007-01-30 22:32:46 +00002019 if (isa<ConstantInt>(RHSC) &&
2020 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
Zhou Sheng4351c642007-04-02 08:20:41 +00002021 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002022 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
Chris Lattner5931c542005-09-24 23:43:33 +00002023
Zhou Sheng4351c642007-04-02 08:20:41 +00002024 uint32_t Size = TySizeBits / 2;
Reid Spencer2ec619a2007-03-23 21:24:59 +00002025 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2026 APInt CFF80Val(-C0080Val);
Chris Lattner5931c542005-09-24 23:43:33 +00002027 do {
2028 if (TySizeBits > Size) {
Chris Lattner5931c542005-09-24 23:43:33 +00002029 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2030 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
Reid Spencer2ec619a2007-03-23 21:24:59 +00002031 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2032 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
Chris Lattner5931c542005-09-24 23:43:33 +00002033 // This is a sign extend if the top bits are known zero.
Zhou Sheng290bec52007-03-29 08:15:12 +00002034 if (!MaskedValueIsZero(XorLHS,
2035 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
Chris Lattner5931c542005-09-24 23:43:33 +00002036 Size = 0; // Not a sign ext, but can't be any others either.
Reid Spencer2ec619a2007-03-23 21:24:59 +00002037 break;
Chris Lattner5931c542005-09-24 23:43:33 +00002038 }
2039 }
2040 Size >>= 1;
Reid Spencer2ec619a2007-03-23 21:24:59 +00002041 C0080Val = APIntOps::lshr(C0080Val, Size);
2042 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2043 } while (Size >= 1);
Chris Lattner5931c542005-09-24 23:43:33 +00002044
Reid Spencer35c38852007-03-28 01:36:16 +00002045 // FIXME: This shouldn't be necessary. When the backends can handle types
Chris Lattner0c7a9a02008-05-19 20:25:04 +00002046 // with funny bit widths then this switch statement should be removed. It
2047 // is just here to get the size of the "middle" type back up to something
2048 // that the back ends can handle.
Reid Spencer35c38852007-03-28 01:36:16 +00002049 const Type *MiddleType = 0;
2050 switch (Size) {
2051 default: break;
2052 case 32: MiddleType = Type::Int32Ty; break;
2053 case 16: MiddleType = Type::Int16Ty; break;
2054 case 8: MiddleType = Type::Int8Ty; break;
2055 }
2056 if (MiddleType) {
Reid Spencerd977d862006-12-12 23:36:14 +00002057 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
Chris Lattner5931c542005-09-24 23:43:33 +00002058 InsertNewInstBefore(NewTrunc, I);
Reid Spencer35c38852007-03-28 01:36:16 +00002059 return new SExtInst(NewTrunc, I.getType(), I.getName());
Chris Lattner5931c542005-09-24 23:43:33 +00002060 }
2061 }
Chris Lattner66331a42004-04-10 22:01:55 +00002062 }
Chris Lattnerb35dde12002-05-06 16:49:18 +00002063
Nick Lewycky9419ddb2008-05-31 17:59:52 +00002064 if (I.getType() == Type::Int1Ty)
2065 return BinaryOperator::CreateXor(LHS, RHS);
2066
Nick Lewycky7d26bd82008-05-23 04:39:38 +00002067 // X + X --> X << 1
Nick Lewycky9419ddb2008-05-31 17:59:52 +00002068 if (I.getType()->isInteger()) {
Chris Lattner564a7272003-08-13 19:01:45 +00002069 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
Chris Lattner7edc8c22005-04-07 17:14:51 +00002070
2071 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2072 if (RHSI->getOpcode() == Instruction::Sub)
2073 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2074 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2075 }
2076 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2077 if (LHSI->getOpcode() == Instruction::Sub)
2078 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2079 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2080 }
Robert Bocchino71698282004-07-27 21:02:21 +00002081 }
Chris Lattnere92d2f42003-08-13 04:18:28 +00002082
Chris Lattner5c4afb92002-05-08 22:46:53 +00002083 // -A + B --> B - A
Chris Lattnerdd12f962008-02-17 21:03:36 +00002084 // -A + -B --> -(A + B)
2085 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattnere10c0b92008-02-18 17:50:16 +00002086 if (LHS->getType()->isIntOrIntVector()) {
2087 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002088 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattnere10c0b92008-02-18 17:50:16 +00002089 InsertNewInstBefore(NewAdd, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002090 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattnere10c0b92008-02-18 17:50:16 +00002091 }
Chris Lattnerdd12f962008-02-17 21:03:36 +00002092 }
2093
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002094 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattnerdd12f962008-02-17 21:03:36 +00002095 }
Chris Lattnerb35dde12002-05-06 16:49:18 +00002096
2097 // A + -B --> A - B
Chris Lattner8d969642003-03-10 23:06:50 +00002098 if (!isa<Constant>(RHS))
2099 if (Value *V = dyn_castNegVal(RHS))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002100 return BinaryOperator::CreateSub(LHS, V);
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002101
Misha Brukmanfd939082005-04-21 23:48:37 +00002102
Chris Lattner50af16a2004-11-13 19:50:12 +00002103 ConstantInt *C2;
2104 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2105 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002106 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Chris Lattner50af16a2004-11-13 19:50:12 +00002107
2108 // X*C1 + X*C2 --> X * (C1+C2)
2109 ConstantInt *C1;
2110 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002111 return BinaryOperator::CreateMul(X, Add(C1, C2));
Chris Lattnerad3448c2003-02-18 19:57:07 +00002112 }
2113
2114 // X + X*C --> X * (C+1)
Chris Lattner50af16a2004-11-13 19:50:12 +00002115 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002116 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Chris Lattner50af16a2004-11-13 19:50:12 +00002117
Chris Lattnere617c9e2007-01-05 02:17:46 +00002118 // X + ~X --> -1 since ~X = -X-1
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00002119 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2120 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattnere617c9e2007-01-05 02:17:46 +00002121
Chris Lattnerad3448c2003-02-18 19:57:07 +00002122
Chris Lattner564a7272003-08-13 19:01:45 +00002123 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002124 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
Chris Lattnere617c9e2007-01-05 02:17:46 +00002125 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2126 return R;
Chris Lattner5e0d7182008-05-19 20:01:56 +00002127
2128 // A+B --> A|B iff A and B have no bits set in common.
2129 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2130 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2131 APInt LHSKnownOne(IT->getBitWidth(), 0);
2132 APInt LHSKnownZero(IT->getBitWidth(), 0);
2133 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2134 if (LHSKnownZero != 0) {
2135 APInt RHSKnownOne(IT->getBitWidth(), 0);
2136 APInt RHSKnownZero(IT->getBitWidth(), 0);
2137 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2138
2139 // No bits in common -> bitwise or.
Chris Lattner9d60ba92008-05-19 20:03:53 +00002140 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
Chris Lattner5e0d7182008-05-19 20:01:56 +00002141 return BinaryOperator::CreateOr(LHS, RHS);
Chris Lattner5e0d7182008-05-19 20:01:56 +00002142 }
2143 }
Chris Lattnerc8802d22003-03-11 00:12:48 +00002144
Nick Lewyckyb6eabff2008-02-03 07:42:09 +00002145 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky0c2c3f62008-02-03 08:19:11 +00002146 if (I.getType()->isIntOrIntVector()) {
Nick Lewyckyb6eabff2008-02-03 07:42:09 +00002147 Value *W, *X, *Y, *Z;
2148 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2149 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2150 if (W != Y) {
2151 if (W == Z) {
Bill Wendling587c01d2008-02-26 10:53:30 +00002152 std::swap(Y, Z);
Nick Lewyckyb6eabff2008-02-03 07:42:09 +00002153 } else if (Y == X) {
Bill Wendling587c01d2008-02-26 10:53:30 +00002154 std::swap(W, X);
2155 } else if (X == Z) {
Nick Lewyckyb6eabff2008-02-03 07:42:09 +00002156 std::swap(Y, Z);
2157 std::swap(W, X);
2158 }
2159 }
2160
2161 if (W == Y) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002162 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewyckyb6eabff2008-02-03 07:42:09 +00002163 LHS->getName()), I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002164 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewyckyb6eabff2008-02-03 07:42:09 +00002165 }
2166 }
2167 }
2168
Chris Lattner6b032052003-10-02 15:11:26 +00002169 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
Chris Lattner4f637d42006-01-06 17:59:59 +00002170 Value *X = 0;
Reid Spencer7177c3a2007-03-25 05:33:51 +00002171 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002172 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002173
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002174 // (X & FF00) + xx00 -> (X+xx00) & FF00
2175 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
Reid Spencer7177c3a2007-03-25 05:33:51 +00002176 Constant *Anded = And(CRHS, C2);
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002177 if (Anded == CRHS) {
2178 // See if all bits from the first bit set in the Add RHS up are included
2179 // in the mask. First, get the rightmost bit.
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002180 const APInt& AddRHSV = CRHS->getValue();
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002181
2182 // Form a mask of all bits from the lowest bit added through the top.
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002183 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002184
2185 // See if the and mask includes all of these bits.
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002186 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
Misha Brukmanfd939082005-04-21 23:48:37 +00002187
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002188 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2189 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002190 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002191 LHS->getName()), I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002192 return BinaryOperator::CreateAnd(NewAdd, C2);
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002193 }
2194 }
2195 }
2196
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002197 // Try to fold constant add into select arguments.
2198 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002199 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002200 return R;
Chris Lattner6b032052003-10-02 15:11:26 +00002201 }
2202
Reid Spencer1628cec2006-10-26 06:15:43 +00002203 // add (cast *A to intptrtype) B ->
Chris Lattner42790482007-12-20 01:56:58 +00002204 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Andrew Lenharth16d79552006-09-19 18:24:51 +00002205 {
Reid Spencer3da59db2006-11-27 01:05:10 +00002206 CastInst *CI = dyn_cast<CastInst>(LHS);
2207 Value *Other = RHS;
Andrew Lenharth16d79552006-09-19 18:24:51 +00002208 if (!CI) {
2209 CI = dyn_cast<CastInst>(RHS);
2210 Other = LHS;
2211 }
Andrew Lenharth45633262006-09-20 15:37:57 +00002212 if (CI && CI->getType()->isSized() &&
Reid Spencerabaa8ca2007-01-08 16:32:00 +00002213 (CI->getType()->getPrimitiveSizeInBits() ==
2214 TD->getIntPtrType()->getPrimitiveSizeInBits())
Andrew Lenharth45633262006-09-20 15:37:57 +00002215 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lamb43ad6b32007-12-17 01:12:55 +00002216 unsigned AS =
2217 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner6d0339d2008-01-13 22:23:22 +00002218 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2219 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greif051a9502008-04-06 20:25:17 +00002220 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Reid Spencer3da59db2006-11-27 01:05:10 +00002221 return new PtrToIntInst(I2, CI->getType());
Andrew Lenharth16d79552006-09-19 18:24:51 +00002222 }
2223 }
Christopher Lamb30f017a2007-12-18 09:34:41 +00002224
Chris Lattner42790482007-12-20 01:56:58 +00002225 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb30f017a2007-12-18 09:34:41 +00002226 {
2227 SelectInst *SI = dyn_cast<SelectInst>(LHS);
Chris Lattner6046fb72008-11-16 04:46:19 +00002228 Value *A = RHS;
Christopher Lamb30f017a2007-12-18 09:34:41 +00002229 if (!SI) {
2230 SI = dyn_cast<SelectInst>(RHS);
Chris Lattner6046fb72008-11-16 04:46:19 +00002231 A = LHS;
Christopher Lamb30f017a2007-12-18 09:34:41 +00002232 }
Chris Lattner42790482007-12-20 01:56:58 +00002233 if (SI && SI->hasOneUse()) {
Christopher Lamb30f017a2007-12-18 09:34:41 +00002234 Value *TV = SI->getTrueValue();
2235 Value *FV = SI->getFalseValue();
Chris Lattner6046fb72008-11-16 04:46:19 +00002236 Value *N;
Christopher Lamb30f017a2007-12-18 09:34:41 +00002237
2238 // Can we fold the add into the argument of the select?
2239 // We check both true and false select arguments for a matching subtract.
Chris Lattner6046fb72008-11-16 04:46:19 +00002240 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
2241 // Fold the add into the true select value.
Gabor Greif051a9502008-04-06 20:25:17 +00002242 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattner6046fb72008-11-16 04:46:19 +00002243 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
2244 // Fold the add into the false select value.
Gabor Greif051a9502008-04-06 20:25:17 +00002245 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb30f017a2007-12-18 09:34:41 +00002246 }
2247 }
Chris Lattner2454a2e2008-01-29 06:52:45 +00002248
2249 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2250 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2251 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2252 return ReplaceInstUsesWith(I, LHS);
Andrew Lenharth16d79552006-09-19 18:24:51 +00002253
Chris Lattner3d28b1b2008-05-20 05:46:13 +00002254 // Check for (add (sext x), y), see if we can merge this into an
2255 // integer add followed by a sext.
2256 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2257 // (add (sext x), cst) --> (sext (add x, cst'))
2258 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2259 Constant *CI =
2260 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2261 if (LHSConv->hasOneUse() &&
2262 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2263 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2264 // Insert the new, smaller add.
2265 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2266 CI, "addconv");
2267 InsertNewInstBefore(NewAdd, I);
2268 return new SExtInst(NewAdd, I.getType());
2269 }
2270 }
2271
2272 // (add (sext x), (sext y)) --> (sext (add int x, y))
2273 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2274 // Only do this if x/y have the same type, if at last one of them has a
2275 // single use (so we don't increase the number of sexts), and if the
2276 // integer add will not overflow.
2277 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2278 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2279 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2280 RHSConv->getOperand(0))) {
2281 // Insert the new integer add.
2282 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2283 RHSConv->getOperand(0),
2284 "addconv");
2285 InsertNewInstBefore(NewAdd, I);
2286 return new SExtInst(NewAdd, I.getType());
2287 }
2288 }
2289 }
2290
2291 // Check for (add double (sitofp x), y), see if we can merge this into an
2292 // integer add followed by a promotion.
2293 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2294 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2295 // ... if the constant fits in the integer value. This is useful for things
2296 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2297 // requires a constant pool load, and generally allows the add to be better
2298 // instcombined.
2299 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2300 Constant *CI =
2301 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2302 if (LHSConv->hasOneUse() &&
2303 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2304 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2305 // Insert the new integer add.
2306 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2307 CI, "addconv");
2308 InsertNewInstBefore(NewAdd, I);
2309 return new SIToFPInst(NewAdd, I.getType());
2310 }
2311 }
2312
2313 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2314 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2315 // Only do this if x/y have the same type, if at last one of them has a
2316 // single use (so we don't increase the number of int->fp conversions),
2317 // and if the integer add will not overflow.
2318 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2319 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2320 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2321 RHSConv->getOperand(0))) {
2322 // Insert the new integer add.
2323 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2324 RHSConv->getOperand(0),
2325 "addconv");
2326 InsertNewInstBefore(NewAdd, I);
2327 return new SIToFPInst(NewAdd, I.getType());
2328 }
2329 }
2330 }
2331
Chris Lattner7e708292002-06-25 16:13:24 +00002332 return Changed ? &I : 0;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002333}
2334
Chris Lattner7e708292002-06-25 16:13:24 +00002335Instruction *InstCombiner::visitSub(BinaryOperator &I) {
Chris Lattner7e708292002-06-25 16:13:24 +00002336 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00002337
Chris Lattnerd137ab42008-07-17 06:07:20 +00002338 if (Op0 == Op1 && // sub X, X -> 0
2339 !I.getType()->isFPOrFPVector())
Chris Lattner233f7dc2002-08-12 21:17:25 +00002340 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002341
Chris Lattner233f7dc2002-08-12 21:17:25 +00002342 // If this is a 'B = x-(-A)', change to B = x+A...
Chris Lattner8d969642003-03-10 23:06:50 +00002343 if (Value *V = dyn_castNegVal(Op1))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002344 return BinaryOperator::CreateAdd(Op0, V);
Chris Lattnerb35dde12002-05-06 16:49:18 +00002345
Chris Lattnere87597f2004-10-16 18:11:37 +00002346 if (isa<UndefValue>(Op0))
2347 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2348 if (isa<UndefValue>(Op1))
2349 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2350
Chris Lattnerd65460f2003-11-05 01:06:05 +00002351 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2352 // Replace (-1 - A) with (~A)...
Chris Lattnera2881962003-02-18 19:28:33 +00002353 if (C->isAllOnesValue())
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002354 return BinaryOperator::CreateNot(Op1);
Chris Lattner40371712002-05-09 01:29:19 +00002355
Chris Lattnerd65460f2003-11-05 01:06:05 +00002356 // C - ~X == X + (1+C)
Reid Spencer4b828e62005-06-18 17:37:34 +00002357 Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002358 if (match(Op1, m_Not(m_Value(X))))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002359 return BinaryOperator::CreateAdd(X, AddOne(C));
Reid Spencer7177c3a2007-03-25 05:33:51 +00002360
Chris Lattner76b7a062007-01-15 07:02:54 +00002361 // -(X >>u 31) -> (X >>s 31)
2362 // -(X >>s 31) -> (X >>u 31)
Zhou Sheng302748d2007-03-30 17:20:39 +00002363 if (C->isZero()) {
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00002364 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Reid Spencer3822ff52006-11-08 06:47:33 +00002365 if (SI->getOpcode() == Instruction::LShr) {
Reid Spencerb83eb642006-10-20 07:07:24 +00002366 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
Chris Lattner9c290672004-03-12 23:53:13 +00002367 // Check to see if we are shifting out everything but the sign bit.
Zhou Sheng302748d2007-03-30 17:20:39 +00002368 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
Reid Spencerb83eb642006-10-20 07:07:24 +00002369 SI->getType()->getPrimitiveSizeInBits()-1) {
Reid Spencer3822ff52006-11-08 06:47:33 +00002370 // Ok, the transformation is safe. Insert AShr.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002371 return BinaryOperator::Create(Instruction::AShr,
Reid Spencer832254e2007-02-02 02:16:23 +00002372 SI->getOperand(0), CU, SI->getName());
Chris Lattner9c290672004-03-12 23:53:13 +00002373 }
2374 }
Reid Spencer3822ff52006-11-08 06:47:33 +00002375 }
2376 else if (SI->getOpcode() == Instruction::AShr) {
2377 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2378 // Check to see if we are shifting out everything but the sign bit.
Zhou Sheng302748d2007-03-30 17:20:39 +00002379 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
Reid Spencer3822ff52006-11-08 06:47:33 +00002380 SI->getType()->getPrimitiveSizeInBits()-1) {
Reid Spencerc5b206b2006-12-31 05:48:39 +00002381 // Ok, the transformation is safe. Insert LShr.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002382 return BinaryOperator::CreateLShr(
Reid Spencer832254e2007-02-02 02:16:23 +00002383 SI->getOperand(0), CU, SI->getName());
Reid Spencer3822ff52006-11-08 06:47:33 +00002384 }
2385 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00002386 }
2387 }
Chris Lattnerbfe492b2004-03-13 00:11:49 +00002388 }
Chris Lattner2eefe512004-04-09 19:05:30 +00002389
2390 // Try to fold constant sub into select arguments.
2391 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002392 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00002393 return R;
Chris Lattnerd65460f2003-11-05 01:06:05 +00002394 }
2395
Nick Lewycky9419ddb2008-05-31 17:59:52 +00002396 if (I.getType() == Type::Int1Ty)
2397 return BinaryOperator::CreateXor(Op0, Op1);
2398
Chris Lattner43d84d62005-04-07 16:15:25 +00002399 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2400 if (Op1I->getOpcode() == Instruction::Add &&
Chris Lattner9919e3d2006-12-02 00:13:08 +00002401 !Op0->getType()->isFPOrFPVector()) {
Chris Lattner08954a22005-04-07 16:28:01 +00002402 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002403 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Chris Lattner08954a22005-04-07 16:28:01 +00002404 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002405 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Chris Lattner08954a22005-04-07 16:28:01 +00002406 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2407 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2408 // C1-(X+C2) --> (C1-C2)-X
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002409 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Chris Lattner08954a22005-04-07 16:28:01 +00002410 Op1I->getOperand(0));
2411 }
Chris Lattner43d84d62005-04-07 16:15:25 +00002412 }
2413
Chris Lattnerfd059242003-10-15 16:48:29 +00002414 if (Op1I->hasOneUse()) {
Chris Lattnera2881962003-02-18 19:28:33 +00002415 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2416 // is not used by anyone else...
2417 //
Chris Lattner0517e722004-02-02 20:09:56 +00002418 if (Op1I->getOpcode() == Instruction::Sub &&
Chris Lattner9919e3d2006-12-02 00:13:08 +00002419 !Op1I->getType()->isFPOrFPVector()) {
Chris Lattnera2881962003-02-18 19:28:33 +00002420 // Swap the two operands of the subexpr...
2421 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2422 Op1I->setOperand(0, IIOp1);
2423 Op1I->setOperand(1, IIOp0);
Misha Brukmanfd939082005-04-21 23:48:37 +00002424
Chris Lattnera2881962003-02-18 19:28:33 +00002425 // Create the new top level add instruction...
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002426 return BinaryOperator::CreateAdd(Op0, Op1);
Chris Lattnera2881962003-02-18 19:28:33 +00002427 }
2428
2429 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2430 //
2431 if (Op1I->getOpcode() == Instruction::And &&
2432 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2433 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2434
Chris Lattnerf523d062004-06-09 05:08:07 +00002435 Value *NewNot =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002436 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2437 return BinaryOperator::CreateAnd(Op0, NewNot);
Chris Lattnera2881962003-02-18 19:28:33 +00002438 }
Chris Lattnerad3448c2003-02-18 19:57:07 +00002439
Reid Spencerac5209e2006-10-16 23:08:08 +00002440 // 0 - (X sdiv C) -> (X sdiv -C)
Reid Spencer1628cec2006-10-26 06:15:43 +00002441 if (Op1I->getOpcode() == Instruction::SDiv)
Reid Spencerb83eb642006-10-20 07:07:24 +00002442 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
Zhou Sheng843f07672007-04-19 05:39:12 +00002443 if (CSI->isZero())
Chris Lattner91ccc152004-10-06 15:08:25 +00002444 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002445 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Chris Lattner91ccc152004-10-06 15:08:25 +00002446 ConstantExpr::getNeg(DivRHS));
2447
Chris Lattnerad3448c2003-02-18 19:57:07 +00002448 // X - X*C --> X * (1-C)
Reid Spencer4b828e62005-06-18 17:37:34 +00002449 ConstantInt *C2 = 0;
Chris Lattner50af16a2004-11-13 19:50:12 +00002450 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
Reid Spencer7177c3a2007-03-25 05:33:51 +00002451 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002452 return BinaryOperator::CreateMul(Op0, CP1);
Chris Lattnerad3448c2003-02-18 19:57:07 +00002453 }
Chris Lattner40371712002-05-09 01:29:19 +00002454 }
Chris Lattner43d84d62005-04-07 16:15:25 +00002455 }
Chris Lattnera2881962003-02-18 19:28:33 +00002456
Chris Lattner9919e3d2006-12-02 00:13:08 +00002457 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00002458 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Chris Lattner7edc8c22005-04-07 17:14:51 +00002459 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00002460 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2461 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2462 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2463 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
Chris Lattner7edc8c22005-04-07 17:14:51 +00002464 } else if (Op0I->getOpcode() == Instruction::Sub) {
2465 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002466 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00002467 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00002468 }
Misha Brukmanfd939082005-04-21 23:48:37 +00002469
Chris Lattner50af16a2004-11-13 19:50:12 +00002470 ConstantInt *C1;
2471 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
Reid Spencer7177c3a2007-03-25 05:33:51 +00002472 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002473 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Chris Lattnerad3448c2003-02-18 19:57:07 +00002474
Chris Lattner50af16a2004-11-13 19:50:12 +00002475 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2476 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002477 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Chris Lattner50af16a2004-11-13 19:50:12 +00002478 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00002479 return 0;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002480}
2481
Chris Lattnera0141b92007-07-15 20:42:37 +00002482/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2483/// comparison only checks the sign bit. If it only checks the sign bit, set
2484/// TrueIfSigned if the result of the comparison is true when the input value is
2485/// signed.
2486static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2487 bool &TrueIfSigned) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00002488 switch (pred) {
Chris Lattnera0141b92007-07-15 20:42:37 +00002489 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2490 TrueIfSigned = true;
2491 return RHS->isZero();
Chris Lattnercb7122b2007-07-16 04:15:34 +00002492 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2493 TrueIfSigned = true;
2494 return RHS->isAllOnesValue();
Chris Lattnera0141b92007-07-15 20:42:37 +00002495 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2496 TrueIfSigned = false;
2497 return RHS->isAllOnesValue();
Chris Lattnercb7122b2007-07-16 04:15:34 +00002498 case ICmpInst::ICMP_UGT:
2499 // True if LHS u> RHS and RHS == high-bit-mask - 1
2500 TrueIfSigned = true;
2501 return RHS->getValue() ==
2502 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2503 case ICmpInst::ICMP_UGE:
2504 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2505 TrueIfSigned = true;
Chris Lattner833f25d2008-06-02 01:29:46 +00002506 return RHS->getValue().isSignBit();
Chris Lattnera0141b92007-07-15 20:42:37 +00002507 default:
2508 return false;
Chris Lattner4cb170c2004-02-23 06:38:22 +00002509 }
Chris Lattner4cb170c2004-02-23 06:38:22 +00002510}
2511
Chris Lattner7e708292002-06-25 16:13:24 +00002512Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00002513 bool Changed = SimplifyCommutative(I);
Chris Lattnera2881962003-02-18 19:28:33 +00002514 Value *Op0 = I.getOperand(0);
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002515
Chris Lattnere87597f2004-10-16 18:11:37 +00002516 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2517 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2518
Chris Lattner233f7dc2002-08-12 21:17:25 +00002519 // Simplify mul instructions with a constant RHS...
Chris Lattnera2881962003-02-18 19:28:33 +00002520 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2521 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnere92d2f42003-08-13 04:18:28 +00002522
2523 // ((X << C1)*C2) == (X * (C2 << C1))
Reid Spencer832254e2007-02-02 02:16:23 +00002524 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
Chris Lattnere92d2f42003-08-13 04:18:28 +00002525 if (SI->getOpcode() == Instruction::Shl)
2526 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002527 return BinaryOperator::CreateMul(SI->getOperand(0),
Chris Lattner48595f12004-06-10 02:07:29 +00002528 ConstantExpr::getShl(CI, ShOp));
Misha Brukmanfd939082005-04-21 23:48:37 +00002529
Zhou Sheng843f07672007-04-19 05:39:12 +00002530 if (CI->isZero())
Chris Lattner515c97c2003-09-11 22:24:54 +00002531 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2532 if (CI->equalsInt(1)) // X * 1 == X
2533 return ReplaceInstUsesWith(I, Op0);
2534 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002535 return BinaryOperator::CreateNeg(Op0, I.getName());
Chris Lattner6c1ce212002-04-29 22:24:47 +00002536
Zhou Sheng97b52c22007-03-29 01:57:21 +00002537 const APInt& Val = cast<ConstantInt>(CI)->getValue();
Reid Spencerbca0e382007-03-23 20:05:17 +00002538 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002539 return BinaryOperator::CreateShl(Op0,
Reid Spencerbca0e382007-03-23 20:05:17 +00002540 ConstantInt::get(Op0->getType(), Val.logBase2()));
Chris Lattnerbcd7db52005-08-02 19:16:58 +00002541 }
Robert Bocchino71698282004-07-27 21:02:21 +00002542 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
Chris Lattnera2881962003-02-18 19:28:33 +00002543 if (Op1F->isNullValue())
2544 return ReplaceInstUsesWith(I, Op1);
Chris Lattner6c1ce212002-04-29 22:24:47 +00002545
Chris Lattnera2881962003-02-18 19:28:33 +00002546 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2547 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Chris Lattnerb8cd4d32008-08-11 22:06:05 +00002548 if (Op1F->isExactlyValue(1.0))
2549 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2550 } else if (isa<VectorType>(Op1->getType())) {
2551 if (isa<ConstantAggregateZero>(Op1))
2552 return ReplaceInstUsesWith(I, Op1);
Nick Lewycky895f0852008-11-27 20:21:08 +00002553
2554 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2555 if (Op1V->isAllOnesValue()) // X * -1 == 0 - X
2556 return BinaryOperator::CreateNeg(Op0, I.getName());
2557
2558 // As above, vector X*splat(1.0) -> X in all defined cases.
2559 if (Constant *Splat = Op1V->getSplatValue()) {
2560 if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
2561 if (F->isExactlyValue(1.0))
2562 return ReplaceInstUsesWith(I, Op0);
2563 if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat))
2564 if (CI->equalsInt(1))
2565 return ReplaceInstUsesWith(I, Op0);
2566 }
2567 }
Chris Lattnera2881962003-02-18 19:28:33 +00002568 }
Chris Lattnerab51f3f2006-03-04 06:04:02 +00002569
2570 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2571 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner47c99092008-05-18 04:11:26 +00002572 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Chris Lattnerab51f3f2006-03-04 06:04:02 +00002573 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002574 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Chris Lattnerab51f3f2006-03-04 06:04:02 +00002575 Op1, "tmp");
2576 InsertNewInstBefore(Add, I);
2577 Value *C1C2 = ConstantExpr::getMul(Op1,
2578 cast<Constant>(Op0I->getOperand(1)));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002579 return BinaryOperator::CreateAdd(Add, C1C2);
Chris Lattnerab51f3f2006-03-04 06:04:02 +00002580
2581 }
Chris Lattner2eefe512004-04-09 19:05:30 +00002582
2583 // Try to fold constant mul into select arguments.
2584 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002585 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00002586 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00002587
2588 if (isa<PHINode>(Op0))
2589 if (Instruction *NV = FoldOpIntoPhi(I))
2590 return NV;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002591 }
2592
Chris Lattnera4f445b2003-03-10 23:23:04 +00002593 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2594 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002595 return BinaryOperator::CreateMul(Op0v, Op1v);
Chris Lattnera4f445b2003-03-10 23:23:04 +00002596
Nick Lewycky0c730792008-11-21 07:33:58 +00002597 // (X / Y) * Y = X - (X % Y)
2598 // (X / Y) * -Y = (X % Y) - X
2599 {
2600 Value *Op1 = I.getOperand(1);
2601 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
2602 if (!BO ||
2603 (BO->getOpcode() != Instruction::UDiv &&
2604 BO->getOpcode() != Instruction::SDiv)) {
2605 Op1 = Op0;
2606 BO = dyn_cast<BinaryOperator>(I.getOperand(1));
2607 }
2608 Value *Neg = dyn_castNegVal(Op1);
2609 if (BO && BO->hasOneUse() &&
2610 (BO->getOperand(1) == Op1 || BO->getOperand(1) == Neg) &&
2611 (BO->getOpcode() == Instruction::UDiv ||
2612 BO->getOpcode() == Instruction::SDiv)) {
2613 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
2614
2615 Instruction *Rem;
2616 if (BO->getOpcode() == Instruction::UDiv)
2617 Rem = BinaryOperator::CreateURem(Op0BO, Op1BO);
2618 else
2619 Rem = BinaryOperator::CreateSRem(Op0BO, Op1BO);
2620
2621 InsertNewInstBefore(Rem, I);
2622 Rem->takeName(BO);
2623
2624 if (Op1BO == Op1)
2625 return BinaryOperator::CreateSub(Op0BO, Rem);
2626 else
2627 return BinaryOperator::CreateSub(Rem, Op0BO);
2628 }
2629 }
2630
Nick Lewycky9419ddb2008-05-31 17:59:52 +00002631 if (I.getType() == Type::Int1Ty)
2632 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2633
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002634 // If one of the operands of the multiply is a cast from a boolean value, then
2635 // we know the bool is either zero or one, so this is a 'masking' multiply.
2636 // See if we can simplify things based on how the boolean was originally
2637 // formed.
2638 CastInst *BoolCast = 0;
Nick Lewycky9419ddb2008-05-31 17:59:52 +00002639 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
Reid Spencer4fe16d62007-01-11 18:21:29 +00002640 if (CI->getOperand(0)->getType() == Type::Int1Ty)
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002641 BoolCast = CI;
2642 if (!BoolCast)
Reid Spencerc55b2432006-12-13 18:21:21 +00002643 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
Reid Spencer4fe16d62007-01-11 18:21:29 +00002644 if (CI->getOperand(0)->getType() == Type::Int1Ty)
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002645 BoolCast = CI;
2646 if (BoolCast) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00002647 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002648 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2649 const Type *SCOpTy = SCIOp0->getType();
Chris Lattnera0141b92007-07-15 20:42:37 +00002650 bool TIS = false;
2651
Reid Spencere4d87aa2006-12-23 06:05:41 +00002652 // If the icmp is true iff the sign bit of X is set, then convert this
Chris Lattner4cb170c2004-02-23 06:38:22 +00002653 // multiply into a shift/and combination.
2654 if (isa<ConstantInt>(SCIOp1) &&
Chris Lattnera0141b92007-07-15 20:42:37 +00002655 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2656 TIS) {
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002657 // Shift the X value right to turn it into "all signbits".
Reid Spencer832254e2007-02-02 02:16:23 +00002658 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
Chris Lattner484d3cf2005-04-24 06:59:08 +00002659 SCOpTy->getPrimitiveSizeInBits()-1);
Chris Lattner4cb170c2004-02-23 06:38:22 +00002660 Value *V =
Reid Spencer832254e2007-02-02 02:16:23 +00002661 InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002662 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Chris Lattner4cb170c2004-02-23 06:38:22 +00002663 BoolCast->getOperand(0)->getName()+
2664 ".mask"), I);
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002665
2666 // If the multiply type is not the same as the source type, sign extend
2667 // or truncate to the multiply type.
Reid Spencer17212df2006-12-12 09:18:51 +00002668 if (I.getType() != V->getType()) {
Zhou Sheng4351c642007-04-02 08:20:41 +00002669 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2670 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
Reid Spencer17212df2006-12-12 09:18:51 +00002671 Instruction::CastOps opcode =
2672 (SrcBits == DstBits ? Instruction::BitCast :
2673 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2674 V = InsertCastBefore(opcode, V, I.getType(), I);
2675 }
Misha Brukmanfd939082005-04-21 23:48:37 +00002676
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002677 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002678 return BinaryOperator::CreateAnd(V, OtherOp);
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002679 }
2680 }
2681 }
2682
Chris Lattner7e708292002-06-25 16:13:24 +00002683 return Changed ? &I : 0;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002684}
2685
Chris Lattnerfdb19e52008-07-14 00:15:52 +00002686/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2687/// instruction.
2688bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
2689 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
2690
2691 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2692 int NonNullOperand = -1;
2693 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2694 if (ST->isNullValue())
2695 NonNullOperand = 2;
2696 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2697 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2698 if (ST->isNullValue())
2699 NonNullOperand = 1;
2700
2701 if (NonNullOperand == -1)
2702 return false;
2703
2704 Value *SelectCond = SI->getOperand(0);
2705
2706 // Change the div/rem to use 'Y' instead of the select.
2707 I.setOperand(1, SI->getOperand(NonNullOperand));
2708
2709 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2710 // problem. However, the select, or the condition of the select may have
2711 // multiple uses. Based on our knowledge that the operand must be non-zero,
2712 // propagate the known value for the select into other uses of it, and
2713 // propagate a known value of the condition into its other users.
2714
2715 // If the select and condition only have a single use, don't bother with this,
2716 // early exit.
2717 if (SI->use_empty() && SelectCond->hasOneUse())
2718 return true;
2719
2720 // Scan the current block backward, looking for other uses of SI.
2721 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
2722
2723 while (BBI != BBFront) {
2724 --BBI;
2725 // If we found a call to a function, we can't assume it will return, so
2726 // information from below it cannot be propagated above it.
2727 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
2728 break;
2729
2730 // Replace uses of the select or its condition with the known values.
2731 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
2732 I != E; ++I) {
2733 if (*I == SI) {
2734 *I = SI->getOperand(NonNullOperand);
2735 AddToWorkList(BBI);
2736 } else if (*I == SelectCond) {
2737 *I = NonNullOperand == 1 ? ConstantInt::getTrue() :
2738 ConstantInt::getFalse();
2739 AddToWorkList(BBI);
2740 }
2741 }
2742
2743 // If we past the instruction, quit looking for it.
2744 if (&*BBI == SI)
2745 SI = 0;
2746 if (&*BBI == SelectCond)
2747 SelectCond = 0;
2748
2749 // If we ran out of things to eliminate, break out of the loop.
2750 if (SelectCond == 0 && SI == 0)
2751 break;
2752
2753 }
2754 return true;
2755}
2756
2757
Reid Spencer1628cec2006-10-26 06:15:43 +00002758/// This function implements the transforms on div instructions that work
2759/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2760/// used by the visitors to those instructions.
2761/// @brief Transforms common to all three div instructions
Reid Spencer3da59db2006-11-27 01:05:10 +00002762Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
Chris Lattner857e8cd2004-12-12 21:48:58 +00002763 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnere87597f2004-10-16 18:11:37 +00002764
Chris Lattner50b2ca42008-02-19 06:12:18 +00002765 // undef / X -> 0 for integer.
2766 // undef / X -> undef for FP (the undef could be a snan).
2767 if (isa<UndefValue>(Op0)) {
2768 if (Op0->getType()->isFPOrFPVector())
2769 return ReplaceInstUsesWith(I, Op0);
Chris Lattner857e8cd2004-12-12 21:48:58 +00002770 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner50b2ca42008-02-19 06:12:18 +00002771 }
Reid Spencer1628cec2006-10-26 06:15:43 +00002772
2773 // X / undef -> undef
Chris Lattner857e8cd2004-12-12 21:48:58 +00002774 if (isa<UndefValue>(Op1))
Reid Spencer1628cec2006-10-26 06:15:43 +00002775 return ReplaceInstUsesWith(I, Op1);
Chris Lattner857e8cd2004-12-12 21:48:58 +00002776
Reid Spencer1628cec2006-10-26 06:15:43 +00002777 return 0;
2778}
Misha Brukmanfd939082005-04-21 23:48:37 +00002779
Reid Spencer1628cec2006-10-26 06:15:43 +00002780/// This function implements the transforms common to both integer division
2781/// instructions (udiv and sdiv). It is called by the visitors to those integer
2782/// division instructions.
2783/// @brief Common integer divide transforms
Reid Spencer3da59db2006-11-27 01:05:10 +00002784Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
Reid Spencer1628cec2006-10-26 06:15:43 +00002785 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2786
Chris Lattnerb2ae9e32008-05-16 02:59:42 +00002787 // (sdiv X, X) --> 1 (udiv X, X) --> 1
Nick Lewycky39ac3b52008-05-23 03:26:47 +00002788 if (Op0 == Op1) {
2789 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2790 ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1);
2791 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2792 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2793 }
2794
2795 ConstantInt *CI = ConstantInt::get(I.getType(), 1);
2796 return ReplaceInstUsesWith(I, CI);
2797 }
Chris Lattnerb2ae9e32008-05-16 02:59:42 +00002798
Reid Spencer1628cec2006-10-26 06:15:43 +00002799 if (Instruction *Common = commonDivTransforms(I))
2800 return Common;
Chris Lattnerfdb19e52008-07-14 00:15:52 +00002801
2802 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2803 // This does not apply for fdiv.
2804 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2805 return &I;
Reid Spencer1628cec2006-10-26 06:15:43 +00002806
2807 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2808 // div X, 1 == X
2809 if (RHS->equalsInt(1))
2810 return ReplaceInstUsesWith(I, Op0);
2811
2812 // (X / C1) / C2 -> X / (C1*C2)
2813 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2814 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2815 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewyckye0cfecf2008-02-18 22:48:05 +00002816 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2817 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2818 else
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002819 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewyckye0cfecf2008-02-18 22:48:05 +00002820 Multiply(RHS, LHSRHS));
Chris Lattnerbf70b832005-04-08 04:03:26 +00002821 }
Reid Spencer1628cec2006-10-26 06:15:43 +00002822
Reid Spencerbca0e382007-03-23 20:05:17 +00002823 if (!RHS->isZero()) { // avoid X udiv 0
Reid Spencer1628cec2006-10-26 06:15:43 +00002824 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2825 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2826 return R;
2827 if (isa<PHINode>(Op0))
2828 if (Instruction *NV = FoldOpIntoPhi(I))
2829 return NV;
2830 }
Chris Lattner8e49e082006-09-09 20:26:32 +00002831 }
Misha Brukmanfd939082005-04-21 23:48:37 +00002832
Chris Lattnera2881962003-02-18 19:28:33 +00002833 // 0 / X == 0, we don't need to preserve faults!
Chris Lattner857e8cd2004-12-12 21:48:58 +00002834 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
Chris Lattnera2881962003-02-18 19:28:33 +00002835 if (LHS->equalsInt(0))
2836 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2837
Nick Lewycky9419ddb2008-05-31 17:59:52 +00002838 // It can't be division by zero, hence it must be division by one.
2839 if (I.getType() == Type::Int1Ty)
2840 return ReplaceInstUsesWith(I, Op0);
2841
Nick Lewycky895f0852008-11-27 20:21:08 +00002842 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2843 if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
2844 // div X, 1 == X
2845 if (X->isOne())
2846 return ReplaceInstUsesWith(I, Op0);
2847 }
2848
Reid Spencer1628cec2006-10-26 06:15:43 +00002849 return 0;
2850}
2851
2852Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2853 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2854
2855 // Handle the integer div common cases
2856 if (Instruction *Common = commonIDivTransforms(I))
2857 return Common;
2858
Reid Spencer1628cec2006-10-26 06:15:43 +00002859 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky8ca52482008-11-27 22:41:10 +00002860 // X udiv C^2 -> X >> C
2861 // Check to see if this is an unsigned division with an exact power of 2,
2862 // if so, convert to a right shift.
Reid Spencer6eb0d992007-03-26 23:58:26 +00002863 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002864 return BinaryOperator::CreateLShr(Op0,
Zhou Sheng0fc50952007-03-25 05:01:29 +00002865 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
Nick Lewycky8ca52482008-11-27 22:41:10 +00002866
2867 // X udiv C, where C >= signbit
2868 if (C->getValue().isNegative()) {
2869 Value *IC = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_ULT, Op0, C),
2870 I);
2871 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
2872 ConstantInt::get(I.getType(), 1));
2873 }
Reid Spencer1628cec2006-10-26 06:15:43 +00002874 }
2875
2876 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
Reid Spencer832254e2007-02-02 02:16:23 +00002877 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
Reid Spencer1628cec2006-10-26 06:15:43 +00002878 if (RHSI->getOpcode() == Instruction::Shl &&
2879 isa<ConstantInt>(RHSI->getOperand(0))) {
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002880 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
Reid Spencerbca0e382007-03-23 20:05:17 +00002881 if (C1.isPowerOf2()) {
Reid Spencer1628cec2006-10-26 06:15:43 +00002882 Value *N = RHSI->getOperand(1);
Reid Spencer3da59db2006-11-27 01:05:10 +00002883 const Type *NTy = N->getType();
Reid Spencer2ec619a2007-03-23 21:24:59 +00002884 if (uint32_t C2 = C1.logBase2()) {
Reid Spencer1628cec2006-10-26 06:15:43 +00002885 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002886 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00002887 }
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002888 return BinaryOperator::CreateLShr(Op0, N);
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00002889 }
2890 }
Chris Lattnerc812e5d2005-11-05 07:40:31 +00002891 }
2892
Reid Spencer1628cec2006-10-26 06:15:43 +00002893 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2894 // where C1&C2 are powers of two.
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00002895 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Reid Spencer1628cec2006-10-26 06:15:43 +00002896 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00002897 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002898 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
Reid Spencerbca0e382007-03-23 20:05:17 +00002899 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00002900 // Compute the shift amounts
Reid Spencerbca0e382007-03-23 20:05:17 +00002901 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00002902 // Construct the "on true" case of the select
2903 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002904 Instruction *TSI = BinaryOperator::CreateLShr(
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00002905 Op0, TC, SI->getName()+".t");
2906 TSI = InsertNewInstBefore(TSI, I);
2907
2908 // Construct the "on false" case of the select
2909 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002910 Instruction *FSI = BinaryOperator::CreateLShr(
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00002911 Op0, FC, SI->getName()+".f");
2912 FSI = InsertNewInstBefore(FSI, I);
Reid Spencer1628cec2006-10-26 06:15:43 +00002913
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00002914 // construct the select instruction and return it.
Gabor Greif051a9502008-04-06 20:25:17 +00002915 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Reid Spencer1628cec2006-10-26 06:15:43 +00002916 }
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00002917 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00002918 return 0;
2919}
2920
Reid Spencer1628cec2006-10-26 06:15:43 +00002921Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2922 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2923
2924 // Handle the integer div common cases
2925 if (Instruction *Common = commonIDivTransforms(I))
2926 return Common;
2927
2928 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2929 // sdiv X, -1 == -X
2930 if (RHS->isAllOnesValue())
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002931 return BinaryOperator::CreateNeg(Op0);
Reid Spencer1628cec2006-10-26 06:15:43 +00002932 }
2933
2934 // If the sign bits of both operands are zero (i.e. we can prove they are
2935 // unsigned inputs), turn this into a udiv.
Chris Lattner42a75512007-01-15 02:27:26 +00002936 if (I.getType()->isInteger()) {
Reid Spencerbca0e382007-03-23 20:05:17 +00002937 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
Reid Spencer1628cec2006-10-26 06:15:43 +00002938 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmancff55092007-11-05 23:16:33 +00002939 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002940 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Reid Spencer1628cec2006-10-26 06:15:43 +00002941 }
2942 }
2943
2944 return 0;
2945}
2946
2947Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2948 return commonDivTransforms(I);
2949}
Chris Lattner3f5b8772002-05-06 16:14:14 +00002950
Reid Spencer0a783f72006-11-02 01:53:59 +00002951/// This function implements the transforms on rem instructions that work
2952/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2953/// is used by the visitors to those instructions.
2954/// @brief Transforms common to all three rem instructions
2955Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
Chris Lattner857e8cd2004-12-12 21:48:58 +00002956 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Reid Spencer0a783f72006-11-02 01:53:59 +00002957
Chris Lattner50b2ca42008-02-19 06:12:18 +00002958 // 0 % X == 0 for integer, we don't need to preserve faults!
Chris Lattner19ccd5c2006-02-28 05:30:45 +00002959 if (Constant *LHS = dyn_cast<Constant>(Op0))
2960 if (LHS->isNullValue())
2961 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2962
Chris Lattner50b2ca42008-02-19 06:12:18 +00002963 if (isa<UndefValue>(Op0)) { // undef % X -> 0
2964 if (I.getType()->isFPOrFPVector())
2965 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Chris Lattner19ccd5c2006-02-28 05:30:45 +00002966 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner50b2ca42008-02-19 06:12:18 +00002967 }
Chris Lattner19ccd5c2006-02-28 05:30:45 +00002968 if (isa<UndefValue>(Op1))
2969 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
Reid Spencer0a783f72006-11-02 01:53:59 +00002970
2971 // Handle cases involving: rem X, (select Cond, Y, Z)
Chris Lattnerfdb19e52008-07-14 00:15:52 +00002972 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2973 return &I;
Chris Lattner5b73c082004-07-06 07:01:22 +00002974
Reid Spencer0a783f72006-11-02 01:53:59 +00002975 return 0;
2976}
2977
2978/// This function implements the transforms common to both integer remainder
2979/// instructions (urem and srem). It is called by the visitors to those integer
2980/// remainder instructions.
2981/// @brief Common integer remainder transforms
2982Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
2983 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2984
2985 if (Instruction *common = commonRemTransforms(I))
2986 return common;
2987
Chris Lattner857e8cd2004-12-12 21:48:58 +00002988 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner19ccd5c2006-02-28 05:30:45 +00002989 // X % 0 == undef, we don't need to preserve faults!
2990 if (RHS->equalsInt(0))
2991 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
2992
Chris Lattnera2881962003-02-18 19:28:33 +00002993 if (RHS->equalsInt(1)) // X % 1 == 0
2994 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2995
Chris Lattner97943922006-02-28 05:49:21 +00002996 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2997 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2998 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2999 return R;
3000 } else if (isa<PHINode>(Op0I)) {
3001 if (Instruction *NV = FoldOpIntoPhi(I))
3002 return NV;
Chris Lattner97943922006-02-28 05:49:21 +00003003 }
Nick Lewyckyc1a2a612008-03-06 06:48:30 +00003004
3005 // See if we can fold away this rem instruction.
3006 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3007 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3008 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3009 KnownZero, KnownOne))
3010 return &I;
Chris Lattner97943922006-02-28 05:49:21 +00003011 }
Chris Lattnera2881962003-02-18 19:28:33 +00003012 }
3013
Reid Spencer0a783f72006-11-02 01:53:59 +00003014 return 0;
3015}
3016
3017Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3018 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3019
3020 if (Instruction *common = commonIRemTransforms(I))
3021 return common;
3022
3023 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3024 // X urem C^2 -> X and C
3025 // Check to see if this is an unsigned remainder with an exact power of 2,
3026 // if so, convert to a bitwise and.
3027 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
Reid Spencerbca0e382007-03-23 20:05:17 +00003028 if (C->getValue().isPowerOf2())
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003029 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Reid Spencer0a783f72006-11-02 01:53:59 +00003030 }
3031
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00003032 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
Reid Spencer0a783f72006-11-02 01:53:59 +00003033 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3034 if (RHSI->getOpcode() == Instruction::Shl &&
3035 isa<ConstantInt>(RHSI->getOperand(0))) {
Zhou Sheng0fc50952007-03-25 05:01:29 +00003036 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00003037 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003038 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00003039 "tmp"), I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003040 return BinaryOperator::CreateAnd(Op0, Add);
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00003041 }
3042 }
Reid Spencer0a783f72006-11-02 01:53:59 +00003043 }
Chris Lattner8e49e082006-09-09 20:26:32 +00003044
Reid Spencer0a783f72006-11-02 01:53:59 +00003045 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3046 // where C1&C2 are powers of two.
3047 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3048 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3049 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3050 // STO == 0 and SFO == 0 handled above.
Reid Spencerbca0e382007-03-23 20:05:17 +00003051 if ((STO->getValue().isPowerOf2()) &&
3052 (SFO->getValue().isPowerOf2())) {
Reid Spencer0a783f72006-11-02 01:53:59 +00003053 Value *TrueAnd = InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003054 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Reid Spencer0a783f72006-11-02 01:53:59 +00003055 Value *FalseAnd = InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003056 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greif051a9502008-04-06 20:25:17 +00003057 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Reid Spencer0a783f72006-11-02 01:53:59 +00003058 }
3059 }
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00003060 }
3061
Chris Lattner3f5b8772002-05-06 16:14:14 +00003062 return 0;
3063}
3064
Reid Spencer0a783f72006-11-02 01:53:59 +00003065Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3066 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3067
Dan Gohmancff55092007-11-05 23:16:33 +00003068 // Handle the integer rem common cases
Reid Spencer0a783f72006-11-02 01:53:59 +00003069 if (Instruction *common = commonIRemTransforms(I))
3070 return common;
3071
3072 if (Value *RHSNeg = dyn_castNegVal(Op1))
Nick Lewycky23c04302008-09-03 06:24:21 +00003073 if (!isa<Constant>(RHSNeg) ||
3074 (isa<ConstantInt>(RHSNeg) &&
3075 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
Reid Spencer0a783f72006-11-02 01:53:59 +00003076 // X % -Y -> X % Y
3077 AddUsesToWorkList(I);
3078 I.setOperand(1, RHSNeg);
3079 return &I;
3080 }
Nick Lewyckya06cf822008-09-30 06:08:34 +00003081
Dan Gohmancff55092007-11-05 23:16:33 +00003082 // If the sign bits of both operands are zero (i.e. we can prove they are
Reid Spencer0a783f72006-11-02 01:53:59 +00003083 // unsigned inputs), turn this into a urem.
Dan Gohmancff55092007-11-05 23:16:33 +00003084 if (I.getType()->isInteger()) {
3085 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3086 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3087 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003088 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmancff55092007-11-05 23:16:33 +00003089 }
Reid Spencer0a783f72006-11-02 01:53:59 +00003090 }
3091
Nick Lewycky2a8f6592008-12-18 06:31:11 +00003092 // If it's a constant vector, flip any negative values positive.
3093 if (isa<VectorType>(I.getType())) {
3094 if (ConstantVector *RHSV = dyn_cast<ConstantVector>(Op1)) {
3095 unsigned VWidth = RHSV->getNumOperands();
3096 std::vector<Constant *> Elts(VWidth);
3097
3098 for (unsigned i = 0; i != VWidth; ++i) {
3099 if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) {
3100 if (RHS->getValue().isNegative())
3101 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
3102 else
3103 Elts[i] = RHS;
3104 }
3105 }
3106
3107 Constant *NewRHSV = ConstantVector::get(Elts);
3108 if (NewRHSV != RHSV) {
Nick Lewycky19c28922008-12-18 06:42:28 +00003109 AddUsesToWorkList(I);
Nick Lewycky2a8f6592008-12-18 06:31:11 +00003110 I.setOperand(1, NewRHSV);
3111 return &I;
3112 }
3113 }
3114 }
3115
Reid Spencer0a783f72006-11-02 01:53:59 +00003116 return 0;
3117}
3118
3119Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
Reid Spencer0a783f72006-11-02 01:53:59 +00003120 return commonRemTransforms(I);
3121}
3122
Chris Lattner457dd822004-06-09 07:59:58 +00003123// isOneBitSet - Return true if there is exactly one bit set in the specified
3124// constant.
3125static bool isOneBitSet(const ConstantInt *CI) {
Reid Spencer5f6a8952007-03-20 00:16:52 +00003126 return CI->getValue().isPowerOf2();
Chris Lattner457dd822004-06-09 07:59:58 +00003127}
3128
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00003129// isHighOnes - Return true if the constant is of the form 1+0+.
3130// This is the same as lowones(~X).
3131static bool isHighOnes(const ConstantInt *CI) {
Zhou Sheng2cde46c2007-03-20 12:49:06 +00003132 return (~CI->getValue() + 1).isPowerOf2();
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00003133}
3134
Reid Spencere4d87aa2006-12-23 06:05:41 +00003135/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003136/// are carefully arranged to allow folding of expressions such as:
3137///
3138/// (A < B) | (A > B) --> (A != B)
3139///
Reid Spencere4d87aa2006-12-23 06:05:41 +00003140/// Note that this is only valid if the first and second predicates have the
3141/// same sign. Is illegal to do: (A u< B) | (A s> B)
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003142///
Reid Spencere4d87aa2006-12-23 06:05:41 +00003143/// Three bits are used to represent the condition, as follows:
3144/// 0 A > B
3145/// 1 A == B
3146/// 2 A < B
3147///
3148/// <=> Value Definition
3149/// 000 0 Always false
3150/// 001 1 A > B
3151/// 010 2 A == B
3152/// 011 3 A >= B
3153/// 100 4 A < B
3154/// 101 5 A != B
3155/// 110 6 A <= B
3156/// 111 7 Always true
3157///
3158static unsigned getICmpCode(const ICmpInst *ICI) {
3159 switch (ICI->getPredicate()) {
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003160 // False -> 0
Reid Spencere4d87aa2006-12-23 06:05:41 +00003161 case ICmpInst::ICMP_UGT: return 1; // 001
3162 case ICmpInst::ICMP_SGT: return 1; // 001
3163 case ICmpInst::ICMP_EQ: return 2; // 010
3164 case ICmpInst::ICMP_UGE: return 3; // 011
3165 case ICmpInst::ICMP_SGE: return 3; // 011
3166 case ICmpInst::ICMP_ULT: return 4; // 100
3167 case ICmpInst::ICMP_SLT: return 4; // 100
3168 case ICmpInst::ICMP_NE: return 5; // 101
3169 case ICmpInst::ICMP_ULE: return 6; // 110
3170 case ICmpInst::ICMP_SLE: return 6; // 110
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003171 // True -> 7
3172 default:
Reid Spencere4d87aa2006-12-23 06:05:41 +00003173 assert(0 && "Invalid ICmp predicate!");
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003174 return 0;
3175 }
3176}
3177
Evan Cheng8db90722008-10-14 17:15:11 +00003178/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
3179/// predicate into a three bit mask. It also returns whether it is an ordered
3180/// predicate by reference.
3181static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
3182 isOrdered = false;
3183 switch (CC) {
3184 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
3185 case FCmpInst::FCMP_UNO: return 0; // 000
Evan Cheng4990b252008-10-14 18:13:38 +00003186 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
3187 case FCmpInst::FCMP_UGT: return 1; // 001
3188 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
3189 case FCmpInst::FCMP_UEQ: return 2; // 010
Evan Cheng8db90722008-10-14 17:15:11 +00003190 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
3191 case FCmpInst::FCMP_UGE: return 3; // 011
3192 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
3193 case FCmpInst::FCMP_ULT: return 4; // 100
Evan Cheng4990b252008-10-14 18:13:38 +00003194 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
3195 case FCmpInst::FCMP_UNE: return 5; // 101
Evan Cheng8db90722008-10-14 17:15:11 +00003196 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
3197 case FCmpInst::FCMP_ULE: return 6; // 110
Evan Cheng40300622008-10-14 18:44:08 +00003198 // True -> 7
Evan Cheng8db90722008-10-14 17:15:11 +00003199 default:
3200 // Not expecting FCMP_FALSE and FCMP_TRUE;
3201 assert(0 && "Unexpected FCmp predicate!");
3202 return 0;
3203 }
3204}
3205
Reid Spencere4d87aa2006-12-23 06:05:41 +00003206/// getICmpValue - This is the complement of getICmpCode, which turns an
3207/// opcode and two operands into either a constant true or false, or a brand
Dan Gohman5d066ff2007-09-17 17:31:57 +00003208/// new ICmp instruction. The sign is passed in to determine which kind
Evan Cheng8db90722008-10-14 17:15:11 +00003209/// of predicate to use in the new icmp instruction.
Reid Spencere4d87aa2006-12-23 06:05:41 +00003210static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3211 switch (code) {
3212 default: assert(0 && "Illegal ICmp code!");
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003213 case 0: return ConstantInt::getFalse();
Reid Spencere4d87aa2006-12-23 06:05:41 +00003214 case 1:
3215 if (sign)
3216 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3217 else
3218 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3219 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3220 case 3:
3221 if (sign)
3222 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3223 else
3224 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3225 case 4:
3226 if (sign)
3227 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3228 else
3229 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3230 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3231 case 6:
3232 if (sign)
3233 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3234 else
3235 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003236 case 7: return ConstantInt::getTrue();
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003237 }
3238}
3239
Evan Cheng8db90722008-10-14 17:15:11 +00003240/// getFCmpValue - This is the complement of getFCmpCode, which turns an
3241/// opcode and two operands into either a FCmp instruction. isordered is passed
3242/// in to determine which kind of predicate to use in the new fcmp instruction.
3243static Value *getFCmpValue(bool isordered, unsigned code,
3244 Value *LHS, Value *RHS) {
3245 switch (code) {
Evan Cheng4990b252008-10-14 18:13:38 +00003246 default: assert(0 && "Illegal FCmp code!");
Evan Cheng8db90722008-10-14 17:15:11 +00003247 case 0:
3248 if (isordered)
3249 return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
3250 else
3251 return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
3252 case 1:
3253 if (isordered)
Evan Cheng8db90722008-10-14 17:15:11 +00003254 return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
3255 else
3256 return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
Evan Cheng4990b252008-10-14 18:13:38 +00003257 case 2:
3258 if (isordered)
3259 return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
3260 else
3261 return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
Evan Cheng8db90722008-10-14 17:15:11 +00003262 case 3:
3263 if (isordered)
3264 return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
3265 else
3266 return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
3267 case 4:
3268 if (isordered)
3269 return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
3270 else
3271 return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
3272 case 5:
3273 if (isordered)
Evan Cheng4990b252008-10-14 18:13:38 +00003274 return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
3275 else
3276 return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
3277 case 6:
3278 if (isordered)
Evan Cheng8db90722008-10-14 17:15:11 +00003279 return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
3280 else
3281 return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
Evan Cheng40300622008-10-14 18:44:08 +00003282 case 7: return ConstantInt::getTrue();
Evan Cheng8db90722008-10-14 17:15:11 +00003283 }
3284}
3285
Chris Lattnerb9553d62008-11-16 04:55:20 +00003286/// PredicatesFoldable - Return true if both predicates match sign or if at
3287/// least one of them is an equality comparison (which is signless).
Reid Spencere4d87aa2006-12-23 06:05:41 +00003288static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3289 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
Chris Lattnerb9553d62008-11-16 04:55:20 +00003290 (ICmpInst::isSignedPredicate(p1) && ICmpInst::isEquality(p2)) ||
3291 (ICmpInst::isSignedPredicate(p2) && ICmpInst::isEquality(p1));
Reid Spencere4d87aa2006-12-23 06:05:41 +00003292}
3293
3294namespace {
3295// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3296struct FoldICmpLogical {
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003297 InstCombiner &IC;
3298 Value *LHS, *RHS;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003299 ICmpInst::Predicate pred;
3300 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3301 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3302 pred(ICI->getPredicate()) {}
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003303 bool shouldApply(Value *V) const {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003304 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3305 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00003306 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3307 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003308 return false;
3309 }
Reid Spencere4d87aa2006-12-23 06:05:41 +00003310 Instruction *apply(Instruction &Log) const {
3311 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3312 if (ICI->getOperand(0) != LHS) {
3313 assert(ICI->getOperand(1) == LHS);
3314 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003315 }
3316
Chris Lattnerbc1dbfc2007-03-13 14:27:42 +00003317 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
Reid Spencere4d87aa2006-12-23 06:05:41 +00003318 unsigned LHSCode = getICmpCode(ICI);
Chris Lattnerbc1dbfc2007-03-13 14:27:42 +00003319 unsigned RHSCode = getICmpCode(RHSICI);
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003320 unsigned Code;
3321 switch (Log.getOpcode()) {
3322 case Instruction::And: Code = LHSCode & RHSCode; break;
3323 case Instruction::Or: Code = LHSCode | RHSCode; break;
3324 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
Chris Lattner021c1902003-09-22 20:33:34 +00003325 default: assert(0 && "Illegal logical opcode!"); return 0;
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003326 }
3327
Chris Lattnerbc1dbfc2007-03-13 14:27:42 +00003328 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3329 ICmpInst::isSignedPredicate(ICI->getPredicate());
3330
3331 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003332 if (Instruction *I = dyn_cast<Instruction>(RV))
3333 return I;
3334 // Otherwise, it's a constant boolean value...
3335 return IC.ReplaceInstUsesWith(Log, RV);
3336 }
3337};
Chris Lattnerd23b5ba2006-11-15 04:53:24 +00003338} // end anonymous namespace
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003339
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003340// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3341// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
Reid Spencer832254e2007-02-02 02:16:23 +00003342// guaranteed to be a binary operator.
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003343Instruction *InstCombiner::OptAndOp(Instruction *Op,
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003344 ConstantInt *OpRHS,
3345 ConstantInt *AndRHS,
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003346 BinaryOperator &TheAnd) {
3347 Value *X = Op->getOperand(0);
Chris Lattner76f7fe22004-01-12 19:47:05 +00003348 Constant *Together = 0;
Reid Spencer832254e2007-02-02 02:16:23 +00003349 if (!Op->isShift())
Reid Spencer7177c3a2007-03-25 05:33:51 +00003350 Together = And(AndRHS, OpRHS);
Chris Lattner7c4049c2004-01-12 19:35:11 +00003351
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003352 switch (Op->getOpcode()) {
3353 case Instruction::Xor:
Chris Lattner6e7ba452005-01-01 16:22:27 +00003354 if (Op->hasOneUse()) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003355 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003356 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003357 InsertNewInstBefore(And, TheAnd);
Chris Lattner6934a042007-02-11 01:23:03 +00003358 And->takeName(Op);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003359 return BinaryOperator::CreateXor(And, Together);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003360 }
3361 break;
3362 case Instruction::Or:
Chris Lattner6e7ba452005-01-01 16:22:27 +00003363 if (Together == AndRHS) // (X | C) & C --> C
3364 return ReplaceInstUsesWith(TheAnd, AndRHS);
Misha Brukmanfd939082005-04-21 23:48:37 +00003365
Chris Lattner6e7ba452005-01-01 16:22:27 +00003366 if (Op->hasOneUse() && Together != OpRHS) {
3367 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003368 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Chris Lattner6e7ba452005-01-01 16:22:27 +00003369 InsertNewInstBefore(Or, TheAnd);
Chris Lattner6934a042007-02-11 01:23:03 +00003370 Or->takeName(Op);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003371 return BinaryOperator::CreateAnd(Or, AndRHS);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003372 }
3373 break;
3374 case Instruction::Add:
Chris Lattnerfd059242003-10-15 16:48:29 +00003375 if (Op->hasOneUse()) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003376 // Adding a one to a single bit bit-field should be turned into an XOR
3377 // of the bit. First thing to check is to see if this AND is with a
3378 // single bit constant.
Zhou Sheng3a507fd2007-04-01 17:13:37 +00003379 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003380
3381 // If there is only one bit set...
Chris Lattner457dd822004-06-09 07:59:58 +00003382 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003383 // Ok, at this point, we know that we are masking the result of the
3384 // ADD down to exactly one bit. If the constant we are adding has
3385 // no bits set below this bit, then we can eliminate the ADD.
Zhou Sheng3a507fd2007-04-01 17:13:37 +00003386 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
Misha Brukmanfd939082005-04-21 23:48:37 +00003387
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003388 // Check to see if any bits below the one bit set in AndRHSV are set.
3389 if ((AddRHS & (AndRHSV-1)) == 0) {
3390 // If not, the only thing that can effect the output of the AND is
3391 // the bit specified by AndRHSV. If that bit is set, the effect of
3392 // the XOR is to toggle the bit. If it is clear, then the ADD has
3393 // no effect.
3394 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3395 TheAnd.setOperand(0, X);
3396 return &TheAnd;
3397 } else {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003398 // Pull the XOR out of the AND.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003399 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003400 InsertNewInstBefore(NewAnd, TheAnd);
Chris Lattner6934a042007-02-11 01:23:03 +00003401 NewAnd->takeName(Op);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003402 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003403 }
3404 }
3405 }
3406 }
3407 break;
Chris Lattner62a355c2003-09-19 19:05:02 +00003408
3409 case Instruction::Shl: {
3410 // We know that the AND will not produce any of the bits shifted in, so if
3411 // the anded constant includes them, clear them now!
3412 //
Zhou Sheng290bec52007-03-29 08:15:12 +00003413 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00003414 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
Zhou Sheng290bec52007-03-29 08:15:12 +00003415 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3416 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
Misha Brukmanfd939082005-04-21 23:48:37 +00003417
Zhou Sheng290bec52007-03-29 08:15:12 +00003418 if (CI->getValue() == ShlMask) {
3419 // Masking out bits that the shift already masks
Chris Lattner0c967662004-09-24 15:21:34 +00003420 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3421 } else if (CI != AndRHS) { // Reducing bits set in and.
Chris Lattner62a355c2003-09-19 19:05:02 +00003422 TheAnd.setOperand(1, CI);
3423 return &TheAnd;
3424 }
3425 break;
Misha Brukmanfd939082005-04-21 23:48:37 +00003426 }
Reid Spencer3822ff52006-11-08 06:47:33 +00003427 case Instruction::LShr:
3428 {
Chris Lattner62a355c2003-09-19 19:05:02 +00003429 // We know that the AND will not produce any of the bits shifted in, so if
3430 // the anded constant includes them, clear them now! This only applies to
3431 // unsigned shifts, because a signed shr may bring in set bits!
3432 //
Zhou Sheng290bec52007-03-29 08:15:12 +00003433 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00003434 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
Zhou Sheng290bec52007-03-29 08:15:12 +00003435 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3436 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
Chris Lattner0c967662004-09-24 15:21:34 +00003437
Zhou Sheng290bec52007-03-29 08:15:12 +00003438 if (CI->getValue() == ShrMask) {
3439 // Masking out bits that the shift already masks.
Reid Spencer3822ff52006-11-08 06:47:33 +00003440 return ReplaceInstUsesWith(TheAnd, Op);
3441 } else if (CI != AndRHS) {
3442 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3443 return &TheAnd;
3444 }
3445 break;
3446 }
3447 case Instruction::AShr:
3448 // Signed shr.
3449 // See if this is shifting in some sign extension, then masking it out
3450 // with an and.
3451 if (Op->hasOneUse()) {
Zhou Sheng290bec52007-03-29 08:15:12 +00003452 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00003453 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
Zhou Sheng290bec52007-03-29 08:15:12 +00003454 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3455 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
Reid Spencer7eb76382006-12-13 17:19:09 +00003456 if (C == AndRHS) { // Masking out bits shifted in.
Reid Spencer17212df2006-12-12 09:18:51 +00003457 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
Reid Spencer3822ff52006-11-08 06:47:33 +00003458 // Make the argument unsigned.
3459 Value *ShVal = Op->getOperand(0);
Reid Spencer832254e2007-02-02 02:16:23 +00003460 ShVal = InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003461 BinaryOperator::CreateLShr(ShVal, OpRHS,
Reid Spencer832254e2007-02-02 02:16:23 +00003462 Op->getName()), TheAnd);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003463 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Chris Lattner0c967662004-09-24 15:21:34 +00003464 }
Chris Lattner62a355c2003-09-19 19:05:02 +00003465 }
3466 break;
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003467 }
3468 return 0;
3469}
3470
Chris Lattner8b170942002-08-09 23:47:40 +00003471
Chris Lattnera96879a2004-09-29 17:40:11 +00003472/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3473/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
Reid Spencere4d87aa2006-12-23 06:05:41 +00003474/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3475/// whether to treat the V, Lo and HI as signed or not. IB is the location to
Chris Lattnera96879a2004-09-29 17:40:11 +00003476/// insert new instructions.
3477Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
Reid Spencere4d87aa2006-12-23 06:05:41 +00003478 bool isSigned, bool Inside,
3479 Instruction &IB) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003480 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
Reid Spencer579dca12007-01-12 04:24:46 +00003481 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
Chris Lattnera96879a2004-09-29 17:40:11 +00003482 "Lo is not <= Hi in range emission code!");
Reid Spencere4d87aa2006-12-23 06:05:41 +00003483
Chris Lattnera96879a2004-09-29 17:40:11 +00003484 if (Inside) {
3485 if (Lo == Hi) // Trivially false.
Reid Spencere4d87aa2006-12-23 06:05:41 +00003486 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
Misha Brukmanfd939082005-04-21 23:48:37 +00003487
Reid Spencere4d87aa2006-12-23 06:05:41 +00003488 // V >= Min && V < Hi --> V < Hi
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003489 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
Reid Spencere4e40032007-03-21 23:19:50 +00003490 ICmpInst::Predicate pred = (isSigned ?
Reid Spencere4d87aa2006-12-23 06:05:41 +00003491 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3492 return new ICmpInst(pred, V, Hi);
3493 }
3494
3495 // Emit V-Lo <u Hi-Lo
3496 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003497 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Chris Lattnera96879a2004-09-29 17:40:11 +00003498 InsertNewInstBefore(Add, IB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003499 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3500 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
Chris Lattnera96879a2004-09-29 17:40:11 +00003501 }
3502
3503 if (Lo == Hi) // Trivially true.
Reid Spencere4d87aa2006-12-23 06:05:41 +00003504 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
Chris Lattnera96879a2004-09-29 17:40:11 +00003505
Reid Spencere4e40032007-03-21 23:19:50 +00003506 // V < Min || V >= Hi -> V > Hi-1
Chris Lattnera96879a2004-09-29 17:40:11 +00003507 Hi = SubOne(cast<ConstantInt>(Hi));
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003508 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003509 ICmpInst::Predicate pred = (isSigned ?
3510 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3511 return new ICmpInst(pred, V, Hi);
3512 }
Reid Spencerb83eb642006-10-20 07:07:24 +00003513
Reid Spencere4e40032007-03-21 23:19:50 +00003514 // Emit V-Lo >u Hi-1-Lo
3515 // Note that Hi has already had one subtracted from it, above.
3516 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003517 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Chris Lattnera96879a2004-09-29 17:40:11 +00003518 InsertNewInstBefore(Add, IB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003519 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3520 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
Chris Lattnera96879a2004-09-29 17:40:11 +00003521}
3522
Chris Lattner7203e152005-09-18 07:22:02 +00003523// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3524// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3525// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3526// not, since all 1s are not contiguous.
Zhou Sheng4351c642007-04-02 08:20:41 +00003527static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
Zhou Sheng3a507fd2007-04-01 17:13:37 +00003528 const APInt& V = Val->getValue();
Reid Spencerf2442522007-03-24 00:42:08 +00003529 uint32_t BitWidth = Val->getType()->getBitWidth();
3530 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
Chris Lattner7203e152005-09-18 07:22:02 +00003531
3532 // look for the first zero bit after the run of ones
Reid Spencerf2442522007-03-24 00:42:08 +00003533 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
Chris Lattner7203e152005-09-18 07:22:02 +00003534 // look for the first non-zero bit
Reid Spencerf2442522007-03-24 00:42:08 +00003535 ME = V.getActiveBits();
Chris Lattner7203e152005-09-18 07:22:02 +00003536 return true;
3537}
3538
Chris Lattner7203e152005-09-18 07:22:02 +00003539/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3540/// where isSub determines whether the operator is a sub. If we can fold one of
3541/// the following xforms:
Chris Lattnerc8e77562005-09-18 04:24:45 +00003542///
3543/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3544/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3545/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3546///
3547/// return (A +/- B).
3548///
3549Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003550 ConstantInt *Mask, bool isSub,
Chris Lattnerc8e77562005-09-18 04:24:45 +00003551 Instruction &I) {
3552 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3553 if (!LHSI || LHSI->getNumOperands() != 2 ||
3554 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3555
3556 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3557
3558 switch (LHSI->getOpcode()) {
3559 default: return 0;
3560 case Instruction::And:
Reid Spencer7177c3a2007-03-25 05:33:51 +00003561 if (And(N, Mask) == Mask) {
Chris Lattner7203e152005-09-18 07:22:02 +00003562 // If the AndRHS is a power of two minus one (0+1+), this is simple.
Zhou Sheng00f436c2007-03-24 15:34:37 +00003563 if ((Mask->getValue().countLeadingZeros() +
3564 Mask->getValue().countPopulation()) ==
3565 Mask->getValue().getBitWidth())
Chris Lattner7203e152005-09-18 07:22:02 +00003566 break;
3567
3568 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3569 // part, we don't need any explicit masks to take them out of A. If that
3570 // is all N is, ignore it.
Zhou Sheng4351c642007-04-02 08:20:41 +00003571 uint32_t MB = 0, ME = 0;
Chris Lattner7203e152005-09-18 07:22:02 +00003572 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
Reid Spencerb35ae032007-03-23 18:46:34 +00003573 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
Zhou Sheng290bec52007-03-29 08:15:12 +00003574 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
Chris Lattner3bedbd92006-02-07 07:27:52 +00003575 if (MaskedValueIsZero(RHS, Mask))
Chris Lattner7203e152005-09-18 07:22:02 +00003576 break;
3577 }
3578 }
Chris Lattnerc8e77562005-09-18 04:24:45 +00003579 return 0;
3580 case Instruction::Or:
3581 case Instruction::Xor:
Chris Lattner7203e152005-09-18 07:22:02 +00003582 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
Zhou Sheng00f436c2007-03-24 15:34:37 +00003583 if ((Mask->getValue().countLeadingZeros() +
3584 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
Reid Spencer6eb0d992007-03-26 23:58:26 +00003585 && And(N, Mask)->isZero())
Chris Lattnerc8e77562005-09-18 04:24:45 +00003586 break;
3587 return 0;
3588 }
3589
3590 Instruction *New;
3591 if (isSub)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003592 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Chris Lattnerc8e77562005-09-18 04:24:45 +00003593 else
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003594 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Chris Lattnerc8e77562005-09-18 04:24:45 +00003595 return InsertNewInstBefore(New, I);
3596}
3597
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003598/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
3599Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
3600 ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattnerea065fb2008-11-16 05:10:52 +00003601 Value *Val, *Val2;
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003602 ConstantInt *LHSCst, *RHSCst;
3603 ICmpInst::Predicate LHSCC, RHSCC;
3604
Chris Lattnerea065fb2008-11-16 05:10:52 +00003605 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003606 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
Chris Lattnerea065fb2008-11-16 05:10:52 +00003607 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003608 return 0;
Chris Lattnerea065fb2008-11-16 05:10:52 +00003609
3610 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3611 // where C is a power of 2
3612 if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
3613 LHSCst->getValue().isPowerOf2()) {
3614 Instruction *NewOr = BinaryOperator::CreateOr(Val, Val2);
3615 InsertNewInstBefore(NewOr, I);
3616 return new ICmpInst(LHSCC, NewOr, LHSCst);
3617 }
3618
3619 // From here on, we only handle:
3620 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
3621 if (Val != Val2) return 0;
3622
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003623 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
3624 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
3625 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
3626 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
3627 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
3628 return 0;
3629
3630 // We can't fold (ugt x, C) & (sgt x, C2).
3631 if (!PredicatesFoldable(LHSCC, RHSCC))
3632 return 0;
3633
3634 // Ensure that the larger constant is on the RHS.
Chris Lattneraa3e1572008-11-16 05:14:43 +00003635 bool ShouldSwap;
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003636 if (ICmpInst::isSignedPredicate(LHSCC) ||
3637 (ICmpInst::isEquality(LHSCC) &&
3638 ICmpInst::isSignedPredicate(RHSCC)))
Chris Lattneraa3e1572008-11-16 05:14:43 +00003639 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003640 else
Chris Lattneraa3e1572008-11-16 05:14:43 +00003641 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
3642
3643 if (ShouldSwap) {
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003644 std::swap(LHS, RHS);
3645 std::swap(LHSCst, RHSCst);
3646 std::swap(LHSCC, RHSCC);
3647 }
3648
3649 // At this point, we know we have have two icmp instructions
3650 // comparing a value against two constants and and'ing the result
3651 // together. Because of the above check, we know that we only have
3652 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3653 // (from the FoldICmpLogical check above), that the two constants
3654 // are not equal and that the larger constant is on the RHS
3655 assert(LHSCst != RHSCst && "Compares not folded above?");
3656
3657 switch (LHSCC) {
3658 default: assert(0 && "Unknown integer condition code!");
3659 case ICmpInst::ICMP_EQ:
3660 switch (RHSCC) {
3661 default: assert(0 && "Unknown integer condition code!");
3662 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3663 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3664 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3665 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3666 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3667 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3668 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3669 return ReplaceInstUsesWith(I, LHS);
3670 }
3671 case ICmpInst::ICMP_NE:
3672 switch (RHSCC) {
3673 default: assert(0 && "Unknown integer condition code!");
3674 case ICmpInst::ICMP_ULT:
3675 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3676 return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
3677 break; // (X != 13 & X u< 15) -> no change
3678 case ICmpInst::ICMP_SLT:
3679 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3680 return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
3681 break; // (X != 13 & X s< 15) -> no change
3682 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3683 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3684 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3685 return ReplaceInstUsesWith(I, RHS);
3686 case ICmpInst::ICMP_NE:
3687 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3688 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3689 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
3690 Val->getName()+".off");
3691 InsertNewInstBefore(Add, I);
3692 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3693 ConstantInt::get(Add->getType(), 1));
3694 }
3695 break; // (X != 13 & X != 15) -> no change
3696 }
3697 break;
3698 case ICmpInst::ICMP_ULT:
3699 switch (RHSCC) {
3700 default: assert(0 && "Unknown integer condition code!");
3701 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3702 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3703 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3704 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3705 break;
3706 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3707 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3708 return ReplaceInstUsesWith(I, LHS);
3709 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3710 break;
3711 }
3712 break;
3713 case ICmpInst::ICMP_SLT:
3714 switch (RHSCC) {
3715 default: assert(0 && "Unknown integer condition code!");
3716 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3717 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3718 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3719 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3720 break;
3721 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3722 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3723 return ReplaceInstUsesWith(I, LHS);
3724 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3725 break;
3726 }
3727 break;
3728 case ICmpInst::ICMP_UGT:
3729 switch (RHSCC) {
3730 default: assert(0 && "Unknown integer condition code!");
3731 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
3732 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3733 return ReplaceInstUsesWith(I, RHS);
3734 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3735 break;
3736 case ICmpInst::ICMP_NE:
3737 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3738 return new ICmpInst(LHSCC, Val, RHSCst);
3739 break; // (X u> 13 & X != 15) -> no change
Chris Lattner69d4ced2008-11-16 05:20:07 +00003740 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003741 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true, I);
3742 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3743 break;
3744 }
3745 break;
3746 case ICmpInst::ICMP_SGT:
3747 switch (RHSCC) {
3748 default: assert(0 && "Unknown integer condition code!");
3749 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
3750 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3751 return ReplaceInstUsesWith(I, RHS);
3752 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3753 break;
3754 case ICmpInst::ICMP_NE:
3755 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3756 return new ICmpInst(LHSCC, Val, RHSCst);
3757 break; // (X s> 13 & X != 15) -> no change
Chris Lattner69d4ced2008-11-16 05:20:07 +00003758 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003759 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true, I);
3760 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3761 break;
3762 }
3763 break;
3764 }
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003765
3766 return 0;
3767}
3768
3769
Chris Lattner7e708292002-06-25 16:13:24 +00003770Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00003771 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00003772 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00003773
Chris Lattnere87597f2004-10-16 18:11:37 +00003774 if (isa<UndefValue>(Op1)) // X & undef -> 0
3775 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3776
Chris Lattner6e7ba452005-01-01 16:22:27 +00003777 // and X, X = X
3778 if (Op0 == Op1)
Chris Lattner233f7dc2002-08-12 21:17:25 +00003779 return ReplaceInstUsesWith(I, Op1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00003780
Chris Lattnerf8c36f52006-02-12 08:02:11 +00003781 // See if we can simplify any instructions used by the instruction whose sole
Chris Lattner9ca96412006-02-08 03:25:32 +00003782 // purpose is to compute bits we don't care about.
Reid Spencer9d6565a2007-02-15 02:26:10 +00003783 if (!isa<VectorType>(I.getType())) {
Reid Spencera03d45f2007-03-22 22:19:58 +00003784 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3785 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3786 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
Chris Lattner696ee0a2007-01-18 22:16:33 +00003787 KnownZero, KnownOne))
Reid Spencer6eb0d992007-03-26 23:58:26 +00003788 return &I;
Chris Lattner696ee0a2007-01-18 22:16:33 +00003789 } else {
Reid Spencer9d6565a2007-02-15 02:26:10 +00003790 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
Chris Lattner041a6c92007-06-15 05:26:55 +00003791 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
Chris Lattner696ee0a2007-01-18 22:16:33 +00003792 return ReplaceInstUsesWith(I, I.getOperand(0));
Chris Lattner041a6c92007-06-15 05:26:55 +00003793 } else if (isa<ConstantAggregateZero>(Op1)) {
3794 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
Chris Lattner696ee0a2007-01-18 22:16:33 +00003795 }
3796 }
Chris Lattner9ca96412006-02-08 03:25:32 +00003797
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003798 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
Zhou Sheng3a507fd2007-04-01 17:13:37 +00003799 const APInt& AndRHSMask = AndRHS->getValue();
3800 APInt NotAndRHS(~AndRHSMask);
Chris Lattner6e7ba452005-01-01 16:22:27 +00003801
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003802 // Optimize a variety of ((val OP C1) & C2) combinations...
Reid Spencer832254e2007-02-02 02:16:23 +00003803 if (isa<BinaryOperator>(Op0)) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003804 Instruction *Op0I = cast<Instruction>(Op0);
Chris Lattner6e7ba452005-01-01 16:22:27 +00003805 Value *Op0LHS = Op0I->getOperand(0);
3806 Value *Op0RHS = Op0I->getOperand(1);
3807 switch (Op0I->getOpcode()) {
3808 case Instruction::Xor:
3809 case Instruction::Or:
Chris Lattnerad1e3022005-01-23 20:26:55 +00003810 // If the mask is only needed on one incoming arm, push it up.
3811 if (Op0I->hasOneUse()) {
3812 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3813 // Not masking anything out for the LHS, move to RHS.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003814 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Chris Lattnerad1e3022005-01-23 20:26:55 +00003815 Op0RHS->getName()+".masked");
3816 InsertNewInstBefore(NewRHS, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003817 return BinaryOperator::Create(
Chris Lattnerad1e3022005-01-23 20:26:55 +00003818 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
Misha Brukmanfd939082005-04-21 23:48:37 +00003819 }
Chris Lattner3bedbd92006-02-07 07:27:52 +00003820 if (!isa<Constant>(Op0RHS) &&
Chris Lattnerad1e3022005-01-23 20:26:55 +00003821 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3822 // Not masking anything out for the RHS, move to LHS.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003823 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Chris Lattnerad1e3022005-01-23 20:26:55 +00003824 Op0LHS->getName()+".masked");
3825 InsertNewInstBefore(NewLHS, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003826 return BinaryOperator::Create(
Chris Lattnerad1e3022005-01-23 20:26:55 +00003827 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3828 }
3829 }
3830
Chris Lattner6e7ba452005-01-01 16:22:27 +00003831 break;
Chris Lattnerc8e77562005-09-18 04:24:45 +00003832 case Instruction::Add:
Chris Lattner7203e152005-09-18 07:22:02 +00003833 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3834 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3835 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3836 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003837 return BinaryOperator::CreateAnd(V, AndRHS);
Chris Lattner7203e152005-09-18 07:22:02 +00003838 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003839 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Chris Lattnerc8e77562005-09-18 04:24:45 +00003840 break;
3841
3842 case Instruction::Sub:
Chris Lattner7203e152005-09-18 07:22:02 +00003843 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3844 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3845 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3846 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003847 return BinaryOperator::CreateAnd(V, AndRHS);
Nick Lewyckyb4d1bc92008-07-09 04:32:37 +00003848
Nick Lewycky5dcc41f2008-07-10 05:51:40 +00003849 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3850 // has 1's for all bits that the subtraction with A might affect.
3851 if (Op0I->hasOneUse()) {
3852 uint32_t BitWidth = AndRHSMask.getBitWidth();
3853 uint32_t Zeros = AndRHSMask.countLeadingZeros();
3854 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
3855
Nick Lewyckyb4d1bc92008-07-09 04:32:37 +00003856 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
Nick Lewycky5dcc41f2008-07-10 05:51:40 +00003857 if (!(A && A->isZero()) && // avoid infinite recursion.
3858 MaskedValueIsZero(Op0LHS, Mask)) {
Nick Lewyckyb4d1bc92008-07-09 04:32:37 +00003859 Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
3860 InsertNewInstBefore(NewNeg, I);
3861 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
3862 }
3863 }
Chris Lattnerc8e77562005-09-18 04:24:45 +00003864 break;
Nick Lewyckyd1f77bf2008-07-09 05:20:13 +00003865
3866 case Instruction::Shl:
3867 case Instruction::LShr:
3868 // (1 << x) & 1 --> zext(x == 0)
3869 // (1 >> x) & 1 --> zext(x == 0)
Nick Lewyckyd8ad4922008-07-09 07:35:26 +00003870 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
Nick Lewyckyd1f77bf2008-07-09 05:20:13 +00003871 Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
3872 Constant::getNullValue(I.getType()));
3873 InsertNewInstBefore(NewICmp, I);
3874 return new ZExtInst(NewICmp, I.getType());
3875 }
3876 break;
Chris Lattner6e7ba452005-01-01 16:22:27 +00003877 }
3878
Chris Lattner58403262003-07-23 19:25:52 +00003879 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
Chris Lattner6e7ba452005-01-01 16:22:27 +00003880 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003881 return Res;
Chris Lattner6e7ba452005-01-01 16:22:27 +00003882 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
Chris Lattner2b83af22005-08-07 07:03:10 +00003883 // If this is an integer truncation or change from signed-to-unsigned, and
3884 // if the source is an and/or with immediate, transform it. This
3885 // frequently occurs for bitfield accesses.
3886 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
Reid Spencer3da59db2006-11-27 01:05:10 +00003887 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
Chris Lattner2b83af22005-08-07 07:03:10 +00003888 CastOp->getNumOperands() == 2)
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00003889 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Chris Lattner2b83af22005-08-07 07:03:10 +00003890 if (CastOp->getOpcode() == Instruction::And) {
3891 // Change: and (cast (and X, C1) to T), C2
Reid Spencer3da59db2006-11-27 01:05:10 +00003892 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3893 // This will fold the two constants together, which may allow
3894 // other simplifications.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003895 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Reid Spencerd977d862006-12-12 23:36:14 +00003896 CastOp->getOperand(0), I.getType(),
3897 CastOp->getName()+".shrunk");
Chris Lattner2b83af22005-08-07 07:03:10 +00003898 NewCast = InsertNewInstBefore(NewCast, I);
Reid Spencer3da59db2006-11-27 01:05:10 +00003899 // trunc_or_bitcast(C1)&C2
Reid Spencerd977d862006-12-12 23:36:14 +00003900 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
Reid Spencer3da59db2006-11-27 01:05:10 +00003901 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003902 return BinaryOperator::CreateAnd(NewCast, C3);
Chris Lattner2b83af22005-08-07 07:03:10 +00003903 } else if (CastOp->getOpcode() == Instruction::Or) {
3904 // Change: and (cast (or X, C1) to T), C2
3905 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
Chris Lattnerbb4e7b22006-12-12 19:11:20 +00003906 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
Chris Lattner2b83af22005-08-07 07:03:10 +00003907 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3908 return ReplaceInstUsesWith(I, AndRHS);
3909 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00003910 }
Chris Lattner2b83af22005-08-07 07:03:10 +00003911 }
Chris Lattner06782f82003-07-23 19:36:21 +00003912 }
Chris Lattner2eefe512004-04-09 19:05:30 +00003913
3914 // Try to fold constant and into select arguments.
3915 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00003916 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00003917 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00003918 if (isa<PHINode>(Op0))
3919 if (Instruction *NV = FoldOpIntoPhi(I))
3920 return NV;
Chris Lattnerc6a8aff2003-07-23 17:57:01 +00003921 }
3922
Chris Lattner8d969642003-03-10 23:06:50 +00003923 Value *Op0NotVal = dyn_castNotVal(Op0);
3924 Value *Op1NotVal = dyn_castNotVal(Op1);
Chris Lattnera2881962003-02-18 19:28:33 +00003925
Chris Lattner5b62aa72004-06-18 06:07:51 +00003926 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3927 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3928
Misha Brukmancb6267b2004-07-30 12:50:08 +00003929 // (~A & ~B) == (~(A | B)) - De Morgan's Law
Chris Lattner8d969642003-03-10 23:06:50 +00003930 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003931 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Chris Lattner48595f12004-06-10 02:07:29 +00003932 I.getName()+".demorgan");
Chris Lattnerc6a8aff2003-07-23 17:57:01 +00003933 InsertNewInstBefore(Or, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003934 return BinaryOperator::CreateNot(Or);
Chris Lattnera2881962003-02-18 19:28:33 +00003935 }
Chris Lattner2082ad92006-02-13 23:07:23 +00003936
3937 {
Chris Lattner003b6202007-06-15 05:58:24 +00003938 Value *A = 0, *B = 0, *C = 0, *D = 0;
3939 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
Chris Lattner2082ad92006-02-13 23:07:23 +00003940 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3941 return ReplaceInstUsesWith(I, Op1);
Chris Lattner003b6202007-06-15 05:58:24 +00003942
3943 // (A|B) & ~(A&B) -> A^B
3944 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3945 if ((A == C && B == D) || (A == D && B == C))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003946 return BinaryOperator::CreateXor(A, B);
Chris Lattner003b6202007-06-15 05:58:24 +00003947 }
3948 }
3949
3950 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
Chris Lattner2082ad92006-02-13 23:07:23 +00003951 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3952 return ReplaceInstUsesWith(I, Op0);
Chris Lattner003b6202007-06-15 05:58:24 +00003953
3954 // ~(A&B) & (A|B) -> A^B
3955 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3956 if ((A == C && B == D) || (A == D && B == C))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003957 return BinaryOperator::CreateXor(A, B);
Chris Lattner003b6202007-06-15 05:58:24 +00003958 }
3959 }
Chris Lattner64daab52006-04-01 08:03:55 +00003960
3961 if (Op0->hasOneUse() &&
3962 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3963 if (A == Op1) { // (A^B)&A -> A&(A^B)
3964 I.swapOperands(); // Simplify below
3965 std::swap(Op0, Op1);
3966 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3967 cast<BinaryOperator>(Op0)->swapOperands();
3968 I.swapOperands(); // Simplify below
3969 std::swap(Op0, Op1);
3970 }
3971 }
Bill Wendling7f0ef6b2008-11-30 13:08:13 +00003972
Chris Lattner64daab52006-04-01 08:03:55 +00003973 if (Op1->hasOneUse() &&
3974 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3975 if (B == Op0) { // B&(A^B) -> B&(B^A)
3976 cast<BinaryOperator>(Op1)->swapOperands();
3977 std::swap(A, B);
3978 }
3979 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003980 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Chris Lattner64daab52006-04-01 08:03:55 +00003981 InsertNewInstBefore(NotB, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003982 return BinaryOperator::CreateAnd(A, NotB);
Chris Lattner64daab52006-04-01 08:03:55 +00003983 }
3984 }
Bill Wendling7f0ef6b2008-11-30 13:08:13 +00003985
3986 // (A&((~A)|B)) -> A&B
Chris Lattnerd8aafcb2008-12-01 05:16:26 +00003987 if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
3988 match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
3989 return BinaryOperator::CreateAnd(A, Op1);
3990 if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
3991 match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
3992 return BinaryOperator::CreateAnd(A, Op0);
Chris Lattner2082ad92006-02-13 23:07:23 +00003993 }
3994
Reid Spencere4d87aa2006-12-23 06:05:41 +00003995 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3996 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3997 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003998 return R;
3999
Chris Lattner29cd5ba2008-11-16 05:06:21 +00004000 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
4001 if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
4002 return Res;
Chris Lattner955f3312004-09-28 21:48:02 +00004003 }
4004
Chris Lattner6fc205f2006-05-05 06:39:07 +00004005 // fold (and (cast A), (cast B)) -> (cast (and A, B))
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004006 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
4007 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4008 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
4009 const Type *SrcTy = Op0C->getOperand(0)->getType();
Chris Lattner42a75512007-01-15 02:27:26 +00004010 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004011 // Only do this if the casts both really cause code to be generated.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004012 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4013 I.getType(), TD) &&
4014 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4015 I.getType(), TD)) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004016 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004017 Op1C->getOperand(0),
4018 I.getName());
4019 InsertNewInstBefore(NewOp, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004020 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004021 }
Chris Lattner6fc205f2006-05-05 06:39:07 +00004022 }
Chris Lattnere511b742006-11-14 07:46:50 +00004023
4024 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
Reid Spencer832254e2007-02-02 02:16:23 +00004025 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4026 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4027 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
Chris Lattnere511b742006-11-14 07:46:50 +00004028 SI0->getOperand(1) == SI1->getOperand(1) &&
4029 (SI0->hasOneUse() || SI1->hasOneUse())) {
4030 Instruction *NewOp =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004031 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Chris Lattnere511b742006-11-14 07:46:50 +00004032 SI1->getOperand(0),
4033 SI0->getName()), I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004034 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Reid Spencer832254e2007-02-02 02:16:23 +00004035 SI1->getOperand(1));
Chris Lattnere511b742006-11-14 07:46:50 +00004036 }
Chris Lattner6fc205f2006-05-05 06:39:07 +00004037 }
4038
Evan Cheng8db90722008-10-14 17:15:11 +00004039 // If and'ing two fcmp, try combine them into one.
Chris Lattner99c65742007-10-24 05:38:08 +00004040 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4041 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4042 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
Evan Cheng8db90722008-10-14 17:15:11 +00004043 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
4044 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
Chris Lattner99c65742007-10-24 05:38:08 +00004045 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4046 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4047 // If either of the constants are nans, then the whole thing returns
4048 // false.
Chris Lattnerbe3e3482007-10-24 18:54:45 +00004049 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner99c65742007-10-24 05:38:08 +00004050 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4051 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
4052 RHS->getOperand(0));
4053 }
Evan Cheng8db90722008-10-14 17:15:11 +00004054 } else {
4055 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4056 FCmpInst::Predicate Op0CC, Op1CC;
4057 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4058 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
Evan Cheng4990b252008-10-14 18:13:38 +00004059 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4060 // Swap RHS operands to match LHS.
4061 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4062 std::swap(Op1LHS, Op1RHS);
4063 }
Evan Cheng8db90722008-10-14 17:15:11 +00004064 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4065 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
4066 if (Op0CC == Op1CC)
4067 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4068 else if (Op0CC == FCmpInst::FCMP_FALSE ||
4069 Op1CC == FCmpInst::FCMP_FALSE)
4070 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4071 else if (Op0CC == FCmpInst::FCMP_TRUE)
4072 return ReplaceInstUsesWith(I, Op1);
4073 else if (Op1CC == FCmpInst::FCMP_TRUE)
4074 return ReplaceInstUsesWith(I, Op0);
4075 bool Op0Ordered;
4076 bool Op1Ordered;
4077 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4078 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4079 if (Op1Pred == 0) {
4080 std::swap(Op0, Op1);
4081 std::swap(Op0Pred, Op1Pred);
4082 std::swap(Op0Ordered, Op1Ordered);
4083 }
4084 if (Op0Pred == 0) {
4085 // uno && ueq -> uno && (uno || eq) -> ueq
4086 // ord && olt -> ord && (ord && lt) -> olt
4087 if (Op0Ordered == Op1Ordered)
4088 return ReplaceInstUsesWith(I, Op1);
4089 // uno && oeq -> uno && (ord && eq) -> false
4090 // uno && ord -> false
4091 if (!Op0Ordered)
4092 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4093 // ord && ueq -> ord && (uno || eq) -> oeq
4094 return cast<Instruction>(getFCmpValue(true, Op1Pred,
4095 Op0LHS, Op0RHS));
4096 }
4097 }
4098 }
4099 }
Chris Lattner99c65742007-10-24 05:38:08 +00004100 }
4101 }
Nick Lewyckyb4d1bc92008-07-09 04:32:37 +00004102
Chris Lattner7e708292002-06-25 16:13:24 +00004103 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00004104}
4105
Chris Lattner8c34cd22008-10-05 02:13:19 +00004106/// CollectBSwapParts - Analyze the specified subexpression and see if it is
4107/// capable of providing pieces of a bswap. The subexpression provides pieces
4108/// of a bswap if it is proven that each of the non-zero bytes in the output of
4109/// the expression came from the corresponding "byte swapped" byte in some other
4110/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
4111/// we know that the expression deposits the low byte of %X into the high byte
4112/// of the bswap result and that all other bytes are zero. This expression is
4113/// accepted, the high byte of ByteValues is set to X to indicate a correct
4114/// match.
4115///
4116/// This function returns true if the match was unsuccessful and false if so.
4117/// On entry to the function the "OverallLeftShift" is a signed integer value
4118/// indicating the number of bytes that the subexpression is later shifted. For
4119/// example, if the expression is later right shifted by 16 bits, the
4120/// OverallLeftShift value would be -2 on entry. This is used to specify which
4121/// byte of ByteValues is actually being set.
4122///
4123/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
4124/// byte is masked to zero by a user. For example, in (X & 255), X will be
4125/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
4126/// this function to working on up to 32-byte (256 bit) values. ByteMask is
4127/// always in the local (OverallLeftShift) coordinate space.
4128///
4129static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
4130 SmallVector<Value*, 8> &ByteValues) {
4131 if (Instruction *I = dyn_cast<Instruction>(V)) {
4132 // If this is an or instruction, it may be an inner node of the bswap.
4133 if (I->getOpcode() == Instruction::Or) {
4134 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4135 ByteValues) ||
4136 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
4137 ByteValues);
Chris Lattnerafe91a52006-06-15 19:07:26 +00004138 }
Chris Lattner8c34cd22008-10-05 02:13:19 +00004139
4140 // If this is a logical shift by a constant multiple of 8, recurse with
4141 // OverallLeftShift and ByteMask adjusted.
4142 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
4143 unsigned ShAmt =
4144 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
4145 // Ensure the shift amount is defined and of a byte value.
4146 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
4147 return true;
4148
4149 unsigned ByteShift = ShAmt >> 3;
4150 if (I->getOpcode() == Instruction::Shl) {
4151 // X << 2 -> collect(X, +2)
4152 OverallLeftShift += ByteShift;
4153 ByteMask >>= ByteShift;
4154 } else {
4155 // X >>u 2 -> collect(X, -2)
4156 OverallLeftShift -= ByteShift;
4157 ByteMask <<= ByteShift;
Chris Lattnerde17ddc2008-10-08 06:42:28 +00004158 ByteMask &= (~0U >> (32-ByteValues.size()));
Chris Lattner8c34cd22008-10-05 02:13:19 +00004159 }
4160
4161 if (OverallLeftShift >= (int)ByteValues.size()) return true;
4162 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
4163
4164 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4165 ByteValues);
4166 }
4167
4168 // If this is a logical 'and' with a mask that clears bytes, clear the
4169 // corresponding bytes in ByteMask.
4170 if (I->getOpcode() == Instruction::And &&
4171 isa<ConstantInt>(I->getOperand(1))) {
4172 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
4173 unsigned NumBytes = ByteValues.size();
4174 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
4175 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
4176
4177 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
4178 // If this byte is masked out by a later operation, we don't care what
4179 // the and mask is.
4180 if ((ByteMask & (1 << i)) == 0)
4181 continue;
4182
4183 // If the AndMask is all zeros for this byte, clear the bit.
4184 APInt MaskB = AndMask & Byte;
4185 if (MaskB == 0) {
4186 ByteMask &= ~(1U << i);
4187 continue;
4188 }
4189
4190 // If the AndMask is not all ones for this byte, it's not a bytezap.
4191 if (MaskB != Byte)
4192 return true;
4193
4194 // Otherwise, this byte is kept.
4195 }
4196
4197 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4198 ByteValues);
4199 }
Chris Lattnerafe91a52006-06-15 19:07:26 +00004200 }
4201
Chris Lattner8c34cd22008-10-05 02:13:19 +00004202 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
4203 // the input value to the bswap. Some observations: 1) if more than one byte
4204 // is demanded from this input, then it could not be successfully assembled
4205 // into a byteswap. At least one of the two bytes would not be aligned with
4206 // their ultimate destination.
4207 if (!isPowerOf2_32(ByteMask)) return true;
4208 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
Chris Lattnerafe91a52006-06-15 19:07:26 +00004209
Chris Lattner8c34cd22008-10-05 02:13:19 +00004210 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
4211 // is demanded, it needs to go into byte 0 of the result. This means that the
4212 // byte needs to be shifted until it lands in the right byte bucket. The
4213 // shift amount depends on the position: if the byte is coming from the high
4214 // part of the value (e.g. byte 3) then it must be shifted right. If from the
4215 // low part, it must be shifted left.
4216 unsigned DestByteNo = InputByteNo + OverallLeftShift;
4217 if (InputByteNo < ByteValues.size()/2) {
4218 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4219 return true;
4220 } else {
4221 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4222 return true;
4223 }
Chris Lattnerafe91a52006-06-15 19:07:26 +00004224
4225 // If the destination byte value is already defined, the values are or'd
4226 // together, which isn't a bswap (unless it's an or of the same bits).
Chris Lattner8c34cd22008-10-05 02:13:19 +00004227 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
Chris Lattnerafe91a52006-06-15 19:07:26 +00004228 return true;
Chris Lattner8c34cd22008-10-05 02:13:19 +00004229 ByteValues[DestByteNo] = V;
Chris Lattnerafe91a52006-06-15 19:07:26 +00004230 return false;
4231}
4232
4233/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4234/// If so, insert the new bswap intrinsic and return it.
4235Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
Chris Lattner55fc8c42007-04-01 20:57:36 +00004236 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
Chris Lattner8c34cd22008-10-05 02:13:19 +00004237 if (!ITy || ITy->getBitWidth() % 16 ||
4238 // ByteMask only allows up to 32-byte values.
4239 ITy->getBitWidth() > 32*8)
Chris Lattner55fc8c42007-04-01 20:57:36 +00004240 return 0; // Can only bswap pairs of bytes. Can't do vectors.
Chris Lattnerafe91a52006-06-15 19:07:26 +00004241
4242 /// ByteValues - For each byte of the result, we keep track of which value
4243 /// defines each byte.
Chris Lattner535014f2007-02-15 22:52:10 +00004244 SmallVector<Value*, 8> ByteValues;
Chris Lattner55fc8c42007-04-01 20:57:36 +00004245 ByteValues.resize(ITy->getBitWidth()/8);
Chris Lattnerafe91a52006-06-15 19:07:26 +00004246
4247 // Try to find all the pieces corresponding to the bswap.
Chris Lattner8c34cd22008-10-05 02:13:19 +00004248 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
4249 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
Chris Lattnerafe91a52006-06-15 19:07:26 +00004250 return 0;
4251
4252 // Check to see if all of the bytes come from the same value.
4253 Value *V = ByteValues[0];
4254 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4255
4256 // Check to make sure that all of the bytes come from the same value.
4257 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4258 if (ByteValues[i] != V)
4259 return 0;
Chandler Carruth69940402007-08-04 01:51:18 +00004260 const Type *Tys[] = { ITy };
Chris Lattnerafe91a52006-06-15 19:07:26 +00004261 Module *M = I.getParent()->getParent()->getParent();
Chandler Carruth69940402007-08-04 01:51:18 +00004262 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greif051a9502008-04-06 20:25:17 +00004263 return CallInst::Create(F, V);
Chris Lattnerafe91a52006-06-15 19:07:26 +00004264}
4265
Chris Lattnerfaaf9512008-11-16 04:24:12 +00004266/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
4267/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
4268/// we can simplify this expression to "cond ? C : D or B".
4269static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
4270 Value *C, Value *D) {
Chris Lattnera6a474d2008-11-16 04:26:55 +00004271 // If A is not a select of -1/0, this cannot match.
Chris Lattner6046fb72008-11-16 04:46:19 +00004272 Value *Cond = 0;
Chris Lattner321e6a62008-11-16 04:33:38 +00004273 if (!match(A, m_SelectCst(m_Value(Cond), -1, 0)))
Chris Lattnerfaaf9512008-11-16 04:24:12 +00004274 return 0;
4275
Chris Lattnera6a474d2008-11-16 04:26:55 +00004276 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
Chris Lattner6046fb72008-11-16 04:46:19 +00004277 if (match(D, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnera6a474d2008-11-16 04:26:55 +00004278 return SelectInst::Create(Cond, C, B);
Chris Lattner6046fb72008-11-16 04:46:19 +00004279 if (match(D, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnera6a474d2008-11-16 04:26:55 +00004280 return SelectInst::Create(Cond, C, B);
4281 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
Chris Lattner6046fb72008-11-16 04:46:19 +00004282 if (match(B, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnera6a474d2008-11-16 04:26:55 +00004283 return SelectInst::Create(Cond, C, D);
Chris Lattner6046fb72008-11-16 04:46:19 +00004284 if (match(B, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnera6a474d2008-11-16 04:26:55 +00004285 return SelectInst::Create(Cond, C, D);
Chris Lattnerfaaf9512008-11-16 04:24:12 +00004286 return 0;
4287}
Chris Lattnerafe91a52006-06-15 19:07:26 +00004288
Chris Lattner69d4ced2008-11-16 05:20:07 +00004289/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
4290Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
4291 ICmpInst *LHS, ICmpInst *RHS) {
4292 Value *Val, *Val2;
4293 ConstantInt *LHSCst, *RHSCst;
4294 ICmpInst::Predicate LHSCC, RHSCC;
4295
4296 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
4297 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
4298 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
4299 return 0;
4300
4301 // From here on, we only handle:
4302 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
4303 if (Val != Val2) return 0;
4304
4305 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
4306 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
4307 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
4308 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
4309 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
4310 return 0;
4311
4312 // We can't fold (ugt x, C) | (sgt x, C2).
4313 if (!PredicatesFoldable(LHSCC, RHSCC))
4314 return 0;
4315
4316 // Ensure that the larger constant is on the RHS.
4317 bool ShouldSwap;
4318 if (ICmpInst::isSignedPredicate(LHSCC) ||
4319 (ICmpInst::isEquality(LHSCC) &&
4320 ICmpInst::isSignedPredicate(RHSCC)))
4321 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4322 else
4323 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4324
4325 if (ShouldSwap) {
4326 std::swap(LHS, RHS);
4327 std::swap(LHSCst, RHSCst);
4328 std::swap(LHSCC, RHSCC);
4329 }
4330
4331 // At this point, we know we have have two icmp instructions
4332 // comparing a value against two constants and or'ing the result
4333 // together. Because of the above check, we know that we only have
4334 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4335 // FoldICmpLogical check above), that the two constants are not
4336 // equal.
4337 assert(LHSCst != RHSCst && "Compares not folded above?");
4338
4339 switch (LHSCC) {
4340 default: assert(0 && "Unknown integer condition code!");
4341 case ICmpInst::ICMP_EQ:
4342 switch (RHSCC) {
4343 default: assert(0 && "Unknown integer condition code!");
4344 case ICmpInst::ICMP_EQ:
4345 if (LHSCst == SubOne(RHSCst)) { // (X == 13 | X == 14) -> X-13 <u 2
4346 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4347 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
4348 Val->getName()+".off");
4349 InsertNewInstBefore(Add, I);
4350 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4351 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4352 }
4353 break; // (X == 13 | X == 15) -> no change
4354 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4355 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4356 break;
4357 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4358 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4359 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4360 return ReplaceInstUsesWith(I, RHS);
4361 }
4362 break;
4363 case ICmpInst::ICMP_NE:
4364 switch (RHSCC) {
4365 default: assert(0 && "Unknown integer condition code!");
4366 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4367 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4368 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4369 return ReplaceInstUsesWith(I, LHS);
4370 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4371 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4372 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4373 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4374 }
4375 break;
4376 case ICmpInst::ICMP_ULT:
4377 switch (RHSCC) {
4378 default: assert(0 && "Unknown integer condition code!");
4379 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4380 break;
4381 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
4382 // If RHSCst is [us]MAXINT, it is always false. Not handling
4383 // this can cause overflow.
4384 if (RHSCst->isMaxValue(false))
4385 return ReplaceInstUsesWith(I, LHS);
4386 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false, I);
4387 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4388 break;
4389 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4390 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4391 return ReplaceInstUsesWith(I, RHS);
4392 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4393 break;
4394 }
4395 break;
4396 case ICmpInst::ICMP_SLT:
4397 switch (RHSCC) {
4398 default: assert(0 && "Unknown integer condition code!");
4399 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4400 break;
4401 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
4402 // If RHSCst is [us]MAXINT, it is always false. Not handling
4403 // this can cause overflow.
4404 if (RHSCst->isMaxValue(true))
4405 return ReplaceInstUsesWith(I, LHS);
4406 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false, I);
4407 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4408 break;
4409 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4410 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4411 return ReplaceInstUsesWith(I, RHS);
4412 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4413 break;
4414 }
4415 break;
4416 case ICmpInst::ICMP_UGT:
4417 switch (RHSCC) {
4418 default: assert(0 && "Unknown integer condition code!");
4419 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4420 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4421 return ReplaceInstUsesWith(I, LHS);
4422 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4423 break;
4424 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4425 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4426 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4427 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4428 break;
4429 }
4430 break;
4431 case ICmpInst::ICMP_SGT:
4432 switch (RHSCC) {
4433 default: assert(0 && "Unknown integer condition code!");
4434 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4435 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4436 return ReplaceInstUsesWith(I, LHS);
4437 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4438 break;
4439 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4440 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4441 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4442 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4443 break;
4444 }
4445 break;
4446 }
4447 return 0;
4448}
4449
Bill Wendlinga698a472008-12-01 08:23:25 +00004450/// FoldOrWithConstants - This helper function folds:
4451///
Bill Wendlinga8bb13f2008-12-02 05:09:00 +00004452/// ((A | B) & C1) | (B & C2)
Bill Wendlinga698a472008-12-01 08:23:25 +00004453///
4454/// into:
4455///
Bill Wendlinga8bb13f2008-12-02 05:09:00 +00004456/// (A & C1) | B
Bill Wendlingd54d8602008-12-01 08:32:40 +00004457///
Bill Wendlinga8bb13f2008-12-02 05:09:00 +00004458/// when the XOR of the two constants is "all ones" (-1).
Bill Wendlingd54d8602008-12-01 08:32:40 +00004459Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
Bill Wendlinga698a472008-12-01 08:23:25 +00004460 Value *A, Value *B, Value *C) {
Bill Wendlingdda74e02008-12-02 05:06:43 +00004461 ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
4462 if (!CI1) return 0;
Bill Wendlinga698a472008-12-01 08:23:25 +00004463
Bill Wendling286a0542008-12-02 06:24:20 +00004464 Value *V1 = 0;
4465 ConstantInt *CI2 = 0;
4466 if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
Bill Wendlinga698a472008-12-01 08:23:25 +00004467
Bill Wendling29976b92008-12-02 06:18:11 +00004468 APInt Xor = CI1->getValue() ^ CI2->getValue();
4469 if (!Xor.isAllOnesValue()) return 0;
4470
Bill Wendling286a0542008-12-02 06:24:20 +00004471 if (V1 == A || V1 == B) {
Bill Wendling29976b92008-12-02 06:18:11 +00004472 Instruction *NewOp =
Bill Wendlingd16c6e92008-12-02 06:22:04 +00004473 InsertNewInstBefore(BinaryOperator::CreateAnd((V1 == A) ? B : A, CI1), I);
4474 return BinaryOperator::CreateOr(NewOp, V1);
Bill Wendlinga698a472008-12-01 08:23:25 +00004475 }
4476
4477 return 0;
4478}
4479
Chris Lattner7e708292002-06-25 16:13:24 +00004480Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00004481 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00004482 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00004483
Chris Lattner42593e62007-03-24 23:56:43 +00004484 if (isa<UndefValue>(Op1)) // X | undef -> -1
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004485 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattnere87597f2004-10-16 18:11:37 +00004486
Chris Lattnerf8c36f52006-02-12 08:02:11 +00004487 // or X, X = X
4488 if (Op0 == Op1)
Chris Lattner233f7dc2002-08-12 21:17:25 +00004489 return ReplaceInstUsesWith(I, Op0);
Chris Lattner3f5b8772002-05-06 16:14:14 +00004490
Chris Lattnerf8c36f52006-02-12 08:02:11 +00004491 // See if we can simplify any instructions used by the instruction whose sole
4492 // purpose is to compute bits we don't care about.
Chris Lattner42593e62007-03-24 23:56:43 +00004493 if (!isa<VectorType>(I.getType())) {
4494 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4495 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4496 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4497 KnownZero, KnownOne))
4498 return &I;
Chris Lattner041a6c92007-06-15 05:26:55 +00004499 } else if (isa<ConstantAggregateZero>(Op1)) {
4500 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4501 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4502 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4503 return ReplaceInstUsesWith(I, I.getOperand(1));
Chris Lattner42593e62007-03-24 23:56:43 +00004504 }
Chris Lattner041a6c92007-06-15 05:26:55 +00004505
4506
Chris Lattnerf8c36f52006-02-12 08:02:11 +00004507
Chris Lattner3f5b8772002-05-06 16:14:14 +00004508 // or X, -1 == -1
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004509 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner4f637d42006-01-06 17:59:59 +00004510 ConstantInt *C1 = 0; Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004511 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4512 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004513 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004514 InsertNewInstBefore(Or, I);
Chris Lattner6934a042007-02-11 01:23:03 +00004515 Or->takeName(Op0);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004516 return BinaryOperator::CreateAnd(Or,
Zhou Sheng4a1822a2007-04-02 13:45:30 +00004517 ConstantInt::get(RHS->getValue() | C1->getValue()));
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004518 }
Chris Lattnerad44ebf2003-07-23 18:29:44 +00004519
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004520 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4521 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004522 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004523 InsertNewInstBefore(Or, I);
Chris Lattner6934a042007-02-11 01:23:03 +00004524 Or->takeName(Op0);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004525 return BinaryOperator::CreateXor(Or,
Zhou Sheng4a1822a2007-04-02 13:45:30 +00004526 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
Chris Lattnerad44ebf2003-07-23 18:29:44 +00004527 }
Chris Lattner2eefe512004-04-09 19:05:30 +00004528
4529 // Try to fold constant and into select arguments.
4530 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00004531 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00004532 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00004533 if (isa<PHINode>(Op0))
4534 if (Instruction *NV = FoldOpIntoPhi(I))
4535 return NV;
Chris Lattnerad44ebf2003-07-23 18:29:44 +00004536 }
4537
Chris Lattner4f637d42006-01-06 17:59:59 +00004538 Value *A = 0, *B = 0;
4539 ConstantInt *C1 = 0, *C2 = 0;
Chris Lattnerf4d4c872005-05-07 23:49:08 +00004540
4541 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4542 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4543 return ReplaceInstUsesWith(I, Op1);
4544 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4545 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4546 return ReplaceInstUsesWith(I, Op0);
4547
Chris Lattner6423d4c2006-07-10 20:25:24 +00004548 // (A | B) | C and A | (B | C) -> bswap if possible.
4549 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
Chris Lattnerafe91a52006-06-15 19:07:26 +00004550 if (match(Op0, m_Or(m_Value(), m_Value())) ||
Chris Lattner6423d4c2006-07-10 20:25:24 +00004551 match(Op1, m_Or(m_Value(), m_Value())) ||
4552 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4553 match(Op1, m_Shift(m_Value(), m_Value())))) {
Chris Lattnerafe91a52006-06-15 19:07:26 +00004554 if (Instruction *BSwap = MatchBSwap(I))
4555 return BSwap;
4556 }
4557
Chris Lattner6e4c6492005-05-09 04:58:36 +00004558 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4559 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Reid Spencera03d45f2007-03-22 22:19:58 +00004560 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004561 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Chris Lattner6934a042007-02-11 01:23:03 +00004562 InsertNewInstBefore(NOr, I);
4563 NOr->takeName(Op0);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004564 return BinaryOperator::CreateXor(NOr, C1);
Chris Lattner6e4c6492005-05-09 04:58:36 +00004565 }
4566
4567 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4568 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Reid Spencera03d45f2007-03-22 22:19:58 +00004569 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004570 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Chris Lattner6934a042007-02-11 01:23:03 +00004571 InsertNewInstBefore(NOr, I);
4572 NOr->takeName(Op0);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004573 return BinaryOperator::CreateXor(NOr, C1);
Chris Lattner6e4c6492005-05-09 04:58:36 +00004574 }
4575
Chris Lattnerc5e7ea42007-04-08 07:47:01 +00004576 // (A & C)|(B & D)
Chris Lattner2384d7b2007-06-19 05:43:49 +00004577 Value *C = 0, *D = 0;
Chris Lattnerc5e7ea42007-04-08 07:47:01 +00004578 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4579 match(Op1, m_And(m_Value(B), m_Value(D)))) {
Chris Lattner6cae0e02007-04-08 07:55:22 +00004580 Value *V1 = 0, *V2 = 0, *V3 = 0;
4581 C1 = dyn_cast<ConstantInt>(C);
4582 C2 = dyn_cast<ConstantInt>(D);
4583 if (C1 && C2) { // (A & C1)|(B & C2)
4584 // If we have: ((V + N) & C1) | (V & C2)
4585 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4586 // replace with V+N.
4587 if (C1->getValue() == ~C2->getValue()) {
4588 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4589 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4590 // Add commutes, try both ways.
4591 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4592 return ReplaceInstUsesWith(I, A);
4593 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4594 return ReplaceInstUsesWith(I, A);
4595 }
4596 // Or commutes, try both ways.
4597 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4598 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4599 // Add commutes, try both ways.
4600 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4601 return ReplaceInstUsesWith(I, B);
4602 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4603 return ReplaceInstUsesWith(I, B);
4604 }
4605 }
Chris Lattner044e5332007-04-08 08:01:49 +00004606 V1 = 0; V2 = 0; V3 = 0;
Chris Lattner6cae0e02007-04-08 07:55:22 +00004607 }
4608
Chris Lattnerc5e7ea42007-04-08 07:47:01 +00004609 // Check to see if we have any common things being and'ed. If so, find the
4610 // terms for V1 & (V2|V3).
Chris Lattnerc5e7ea42007-04-08 07:47:01 +00004611 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4612 if (A == B) // (A & C)|(A & D) == A & (C|D)
4613 V1 = A, V2 = C, V3 = D;
4614 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4615 V1 = A, V2 = B, V3 = C;
4616 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4617 V1 = C, V2 = A, V3 = D;
4618 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4619 V1 = C, V2 = A, V3 = B;
4620
4621 if (V1) {
4622 Value *Or =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004623 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4624 return BinaryOperator::CreateAnd(V1, Or);
Chris Lattner0b7c0bf2005-09-18 06:02:59 +00004625 }
Chris Lattnerc5e7ea42007-04-08 07:47:01 +00004626 }
Dan Gohmanb493b272008-10-28 22:38:57 +00004627
Dan Gohman1975d032008-10-30 20:40:10 +00004628 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
Chris Lattnerfaaf9512008-11-16 04:24:12 +00004629 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
4630 return Match;
4631 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
4632 return Match;
4633 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
4634 return Match;
4635 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
4636 return Match;
Bill Wendlingb01865c2008-11-30 13:52:49 +00004637
Bill Wendlingb01865c2008-11-30 13:52:49 +00004638 // ((A&~B)|(~A&B)) -> A^B
Bill Wendling03aae5f2008-12-01 08:09:47 +00004639 if ((match(C, m_Not(m_Specific(D))) &&
4640 match(B, m_Not(m_Specific(A)))))
4641 return BinaryOperator::CreateXor(A, D);
Bill Wendlingb01865c2008-11-30 13:52:49 +00004642 // ((~B&A)|(~A&B)) -> A^B
Bill Wendling03aae5f2008-12-01 08:09:47 +00004643 if ((match(A, m_Not(m_Specific(D))) &&
4644 match(B, m_Not(m_Specific(C)))))
4645 return BinaryOperator::CreateXor(C, D);
Bill Wendlingb01865c2008-11-30 13:52:49 +00004646 // ((A&~B)|(B&~A)) -> A^B
Bill Wendling03aae5f2008-12-01 08:09:47 +00004647 if ((match(C, m_Not(m_Specific(B))) &&
4648 match(D, m_Not(m_Specific(A)))))
4649 return BinaryOperator::CreateXor(A, B);
Bill Wendlingb01865c2008-11-30 13:52:49 +00004650 // ((~B&A)|(B&~A)) -> A^B
Bill Wendling03aae5f2008-12-01 08:09:47 +00004651 if ((match(A, m_Not(m_Specific(B))) &&
4652 match(D, m_Not(m_Specific(C)))))
4653 return BinaryOperator::CreateXor(C, B);
Chris Lattnere9bed7d2005-09-18 03:42:07 +00004654 }
Chris Lattnere511b742006-11-14 07:46:50 +00004655
4656 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
Reid Spencer832254e2007-02-02 02:16:23 +00004657 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4658 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4659 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
Chris Lattnere511b742006-11-14 07:46:50 +00004660 SI0->getOperand(1) == SI1->getOperand(1) &&
4661 (SI0->hasOneUse() || SI1->hasOneUse())) {
4662 Instruction *NewOp =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004663 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Chris Lattnere511b742006-11-14 07:46:50 +00004664 SI1->getOperand(0),
4665 SI0->getName()), I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004666 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Reid Spencer832254e2007-02-02 02:16:23 +00004667 SI1->getOperand(1));
Chris Lattnere511b742006-11-14 07:46:50 +00004668 }
4669 }
Chris Lattner67ca7682003-08-12 19:11:07 +00004670
Bill Wendlingb3833d12008-12-01 01:07:11 +00004671 // ((A|B)&1)|(B&-2) -> (A&1) | B
4672 if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
4673 match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
Bill Wendlingd54d8602008-12-01 08:32:40 +00004674 Instruction *Ret = FoldOrWithConstants(I, Op1, A, B, C);
Bill Wendlinga698a472008-12-01 08:23:25 +00004675 if (Ret) return Ret;
Bill Wendlingb3833d12008-12-01 01:07:11 +00004676 }
4677 // (B&-2)|((A|B)&1) -> (A&1) | B
4678 if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
4679 match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
Bill Wendlingd54d8602008-12-01 08:32:40 +00004680 Instruction *Ret = FoldOrWithConstants(I, Op0, A, B, C);
Bill Wendlinga698a472008-12-01 08:23:25 +00004681 if (Ret) return Ret;
Bill Wendlingb3833d12008-12-01 01:07:11 +00004682 }
4683
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004684 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4685 if (A == Op1) // ~A | A == -1
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004686 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004687 } else {
4688 A = 0;
4689 }
Chris Lattnerf4d4c872005-05-07 23:49:08 +00004690 // Note, A is still live here!
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004691 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4692 if (Op0 == B)
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004693 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattnera27231a2003-03-10 23:13:59 +00004694
Misha Brukmancb6267b2004-07-30 12:50:08 +00004695 // (~A | ~B) == (~(A & B)) - De Morgan's Law
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004696 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004697 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004698 I.getName()+".demorgan"), I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004699 return BinaryOperator::CreateNot(And);
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004700 }
Chris Lattnera27231a2003-03-10 23:13:59 +00004701 }
Chris Lattnera2881962003-02-18 19:28:33 +00004702
Reid Spencere4d87aa2006-12-23 06:05:41 +00004703 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4704 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4705 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
Chris Lattneraa9c1f12003-08-13 20:16:26 +00004706 return R;
4707
Chris Lattner69d4ced2008-11-16 05:20:07 +00004708 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
4709 if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS))
4710 return Res;
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004711 }
Chris Lattner6fc205f2006-05-05 06:39:07 +00004712
4713 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner99c65742007-10-24 05:38:08 +00004714 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Chris Lattner6fc205f2006-05-05 06:39:07 +00004715 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004716 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chengb98a10e2008-03-24 00:21:34 +00004717 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4718 !isa<ICmpInst>(Op1C->getOperand(0))) {
4719 const Type *SrcTy = Op0C->getOperand(0)->getType();
4720 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4721 // Only do this if the casts both really cause code to be
4722 // generated.
4723 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4724 I.getType(), TD) &&
4725 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4726 I.getType(), TD)) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004727 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chengb98a10e2008-03-24 00:21:34 +00004728 Op1C->getOperand(0),
4729 I.getName());
4730 InsertNewInstBefore(NewOp, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004731 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chengb98a10e2008-03-24 00:21:34 +00004732 }
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004733 }
Chris Lattner6fc205f2006-05-05 06:39:07 +00004734 }
Chris Lattner99c65742007-10-24 05:38:08 +00004735 }
4736
4737
4738 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4739 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4740 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4741 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattner5ebd9362008-02-29 06:09:11 +00004742 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
Evan Cheng40300622008-10-14 18:44:08 +00004743 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
Chris Lattner99c65742007-10-24 05:38:08 +00004744 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4745 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4746 // If either of the constants are nans, then the whole thing returns
4747 // true.
Chris Lattnerbe3e3482007-10-24 18:54:45 +00004748 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner99c65742007-10-24 05:38:08 +00004749 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4750
4751 // Otherwise, no need to compare the two constants, compare the
4752 // rest.
4753 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4754 RHS->getOperand(0));
4755 }
Evan Cheng40300622008-10-14 18:44:08 +00004756 } else {
4757 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4758 FCmpInst::Predicate Op0CC, Op1CC;
4759 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4760 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
4761 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4762 // Swap RHS operands to match LHS.
4763 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4764 std::swap(Op1LHS, Op1RHS);
4765 }
4766 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4767 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
4768 if (Op0CC == Op1CC)
4769 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4770 else if (Op0CC == FCmpInst::FCMP_TRUE ||
4771 Op1CC == FCmpInst::FCMP_TRUE)
4772 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4773 else if (Op0CC == FCmpInst::FCMP_FALSE)
4774 return ReplaceInstUsesWith(I, Op1);
4775 else if (Op1CC == FCmpInst::FCMP_FALSE)
4776 return ReplaceInstUsesWith(I, Op0);
4777 bool Op0Ordered;
4778 bool Op1Ordered;
4779 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4780 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4781 if (Op0Ordered == Op1Ordered) {
4782 // If both are ordered or unordered, return a new fcmp with
4783 // or'ed predicates.
4784 Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
4785 Op0LHS, Op0RHS);
4786 if (Instruction *I = dyn_cast<Instruction>(RV))
4787 return I;
4788 // Otherwise, it's a constant boolean value...
4789 return ReplaceInstUsesWith(I, RV);
4790 }
4791 }
4792 }
4793 }
Chris Lattner99c65742007-10-24 05:38:08 +00004794 }
4795 }
Chris Lattnere9bed7d2005-09-18 03:42:07 +00004796
Chris Lattner7e708292002-06-25 16:13:24 +00004797 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00004798}
4799
Dan Gohman844731a2008-05-13 00:00:25 +00004800namespace {
4801
Chris Lattnerc317d392004-02-16 01:20:27 +00004802// XorSelf - Implements: X ^ X --> 0
4803struct XorSelf {
4804 Value *RHS;
4805 XorSelf(Value *rhs) : RHS(rhs) {}
4806 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4807 Instruction *apply(BinaryOperator &Xor) const {
4808 return &Xor;
4809 }
4810};
Chris Lattner3f5b8772002-05-06 16:14:14 +00004811
Dan Gohman844731a2008-05-13 00:00:25 +00004812}
Chris Lattner3f5b8772002-05-06 16:14:14 +00004813
Chris Lattner7e708292002-06-25 16:13:24 +00004814Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00004815 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00004816 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00004817
Evan Chengd34af782008-03-25 20:07:13 +00004818 if (isa<UndefValue>(Op1)) {
4819 if (isa<UndefValue>(Op0))
4820 // Handle undef ^ undef -> 0 special case. This is a common
4821 // idiom (misuse).
4822 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnere87597f2004-10-16 18:11:37 +00004823 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chengd34af782008-03-25 20:07:13 +00004824 }
Chris Lattnere87597f2004-10-16 18:11:37 +00004825
Chris Lattnerc317d392004-02-16 01:20:27 +00004826 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4827 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnera9ff5eb2007-08-05 08:47:58 +00004828 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Chris Lattner233f7dc2002-08-12 21:17:25 +00004829 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerc317d392004-02-16 01:20:27 +00004830 }
Chris Lattnerf8c36f52006-02-12 08:02:11 +00004831
4832 // See if we can simplify any instructions used by the instruction whose sole
4833 // purpose is to compute bits we don't care about.
Reid Spencera03d45f2007-03-22 22:19:58 +00004834 if (!isa<VectorType>(I.getType())) {
4835 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4836 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4837 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4838 KnownZero, KnownOne))
4839 return &I;
Chris Lattner041a6c92007-06-15 05:26:55 +00004840 } else if (isa<ConstantAggregateZero>(Op1)) {
4841 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
Reid Spencera03d45f2007-03-22 22:19:58 +00004842 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00004843
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004844 // Is this a ~ operation?
4845 if (Value *NotOp = dyn_castNotVal(&I)) {
4846 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4847 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4848 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4849 if (Op0I->getOpcode() == Instruction::And ||
4850 Op0I->getOpcode() == Instruction::Or) {
4851 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4852 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4853 Instruction *NotY =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004854 BinaryOperator::CreateNot(Op0I->getOperand(1),
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004855 Op0I->getOperand(1)->getName()+".not");
4856 InsertNewInstBefore(NotY, I);
4857 if (Op0I->getOpcode() == Instruction::And)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004858 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004859 else
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004860 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004861 }
4862 }
4863 }
4864 }
4865
4866
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004867 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewyckyf947b3e2007-08-06 20:04:16 +00004868 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4869 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4870 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004871 return new ICmpInst(ICI->getInversePredicate(),
4872 ICI->getOperand(0), ICI->getOperand(1));
Chris Lattnerad5b4fb2003-11-04 23:50:51 +00004873
Nick Lewyckyf947b3e2007-08-06 20:04:16 +00004874 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4875 return new FCmpInst(FCI->getInversePredicate(),
4876 FCI->getOperand(0), FCI->getOperand(1));
4877 }
4878
Nick Lewycky517e1f52008-05-31 19:01:33 +00004879 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4880 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4881 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
4882 if (CI->hasOneUse() && Op0C->hasOneUse()) {
4883 Instruction::CastOps Opcode = Op0C->getOpcode();
4884 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
4885 if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(),
4886 Op0C->getDestTy())) {
4887 Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
4888 CI->getOpcode(), CI->getInversePredicate(),
4889 CI->getOperand(0), CI->getOperand(1)), I);
4890 NewCI->takeName(CI);
4891 return CastInst::Create(Opcode, NewCI, Op0C->getType());
4892 }
4893 }
4894 }
4895 }
4896 }
4897
Reid Spencere4d87aa2006-12-23 06:05:41 +00004898 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Chris Lattnerd65460f2003-11-05 01:06:05 +00004899 // ~(c-X) == X-c-1 == X+(-c-1)
Chris Lattner7c4049c2004-01-12 19:35:11 +00004900 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4901 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
Chris Lattner48595f12004-06-10 02:07:29 +00004902 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4903 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
Chris Lattner7c4049c2004-01-12 19:35:11 +00004904 ConstantInt::get(I.getType(), 1));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004905 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Chris Lattner7c4049c2004-01-12 19:35:11 +00004906 }
Chris Lattner5c6e2db2007-04-02 05:36:22 +00004907
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00004908 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Chris Lattnerf8c36f52006-02-12 08:02:11 +00004909 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner689d24b2003-11-04 23:37:10 +00004910 // ~(X-c) --> (-c-1)-X
Chris Lattner7c4049c2004-01-12 19:35:11 +00004911 if (RHS->isAllOnesValue()) {
Chris Lattner48595f12004-06-10 02:07:29 +00004912 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004913 return BinaryOperator::CreateSub(
Chris Lattner48595f12004-06-10 02:07:29 +00004914 ConstantExpr::getSub(NegOp0CI,
Chris Lattner7c4049c2004-01-12 19:35:11 +00004915 ConstantInt::get(I.getType(), 1)),
Chris Lattner689d24b2003-11-04 23:37:10 +00004916 Op0I->getOperand(0));
Chris Lattneracf4e072007-04-02 05:42:22 +00004917 } else if (RHS->getValue().isSignBit()) {
Chris Lattner5c6e2db2007-04-02 05:36:22 +00004918 // (X + C) ^ signbit -> (X + C + signbit)
4919 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004920 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Chris Lattnercd1d6d52007-04-02 05:48:58 +00004921
Chris Lattner7c4049c2004-01-12 19:35:11 +00004922 }
Chris Lattner02bd1b32006-02-26 19:57:54 +00004923 } else if (Op0I->getOpcode() == Instruction::Or) {
4924 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
Reid Spencera03d45f2007-03-22 22:19:58 +00004925 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
Chris Lattner02bd1b32006-02-26 19:57:54 +00004926 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4927 // Anything in both C1 and C2 is known to be zero, remove it from
4928 // NewRHS.
Zhou Sheng4a1822a2007-04-02 13:45:30 +00004929 Constant *CommonBits = And(Op0CI, RHS);
Chris Lattner02bd1b32006-02-26 19:57:54 +00004930 NewRHS = ConstantExpr::getAnd(NewRHS,
4931 ConstantExpr::getNot(CommonBits));
Chris Lattnerdbab3862007-03-02 21:28:56 +00004932 AddToWorkList(Op0I);
Chris Lattner02bd1b32006-02-26 19:57:54 +00004933 I.setOperand(0, Op0I->getOperand(0));
4934 I.setOperand(1, NewRHS);
4935 return &I;
4936 }
Chris Lattnereca0c5c2003-07-23 21:37:07 +00004937 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00004938 }
Chris Lattner05bd1b22002-08-20 18:24:26 +00004939 }
Chris Lattner2eefe512004-04-09 19:05:30 +00004940
4941 // Try to fold constant and into select arguments.
4942 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00004943 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00004944 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00004945 if (isa<PHINode>(Op0))
4946 if (Instruction *NV = FoldOpIntoPhi(I))
4947 return NV;
Chris Lattner3f5b8772002-05-06 16:14:14 +00004948 }
4949
Chris Lattner8d969642003-03-10 23:06:50 +00004950 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
Chris Lattnera2881962003-02-18 19:28:33 +00004951 if (X == Op1)
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004952 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattnera2881962003-02-18 19:28:33 +00004953
Chris Lattner8d969642003-03-10 23:06:50 +00004954 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
Chris Lattnera2881962003-02-18 19:28:33 +00004955 if (X == Op0)
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004956 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattnera2881962003-02-18 19:28:33 +00004957
Chris Lattner318bf792007-03-18 22:51:34 +00004958
4959 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4960 if (Op1I) {
4961 Value *A, *B;
4962 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4963 if (A == Op0) { // B^(B|A) == (A|B)^B
Chris Lattner64daab52006-04-01 08:03:55 +00004964 Op1I->swapOperands();
Chris Lattnercb40a372003-03-10 18:24:17 +00004965 I.swapOperands();
4966 std::swap(Op0, Op1);
Chris Lattner318bf792007-03-18 22:51:34 +00004967 } else if (B == Op0) { // B^(A|B) == (A|B)^B
Chris Lattner64daab52006-04-01 08:03:55 +00004968 I.swapOperands(); // Simplified below.
Chris Lattnercb40a372003-03-10 18:24:17 +00004969 std::swap(Op0, Op1);
Misha Brukmanfd939082005-04-21 23:48:37 +00004970 }
Chris Lattnercb504b92008-11-16 05:38:51 +00004971 } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
4972 return ReplaceInstUsesWith(I, B); // A^(A^B) == B
4973 } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
4974 return ReplaceInstUsesWith(I, A); // A^(B^A) == B
Chris Lattner318bf792007-03-18 22:51:34 +00004975 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
Chris Lattner6abbdf92007-04-01 05:36:37 +00004976 if (A == Op0) { // A^(A&B) -> A^(B&A)
Chris Lattner64daab52006-04-01 08:03:55 +00004977 Op1I->swapOperands();
Chris Lattner6abbdf92007-04-01 05:36:37 +00004978 std::swap(A, B);
4979 }
Chris Lattner318bf792007-03-18 22:51:34 +00004980 if (B == Op0) { // A^(B&A) -> (B&A)^A
Chris Lattner64daab52006-04-01 08:03:55 +00004981 I.swapOperands(); // Simplified below.
4982 std::swap(Op0, Op1);
4983 }
Chris Lattner26ca7e12004-02-16 03:54:20 +00004984 }
Chris Lattner318bf792007-03-18 22:51:34 +00004985 }
4986
4987 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4988 if (Op0I) {
4989 Value *A, *B;
4990 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4991 if (A == Op1) // (B|A)^B == (A|B)^B
4992 std::swap(A, B);
4993 if (B == Op1) { // (A|B)^B == A & ~B
4994 Instruction *NotB =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004995 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
4996 return BinaryOperator::CreateAnd(A, NotB);
Chris Lattnercb40a372003-03-10 18:24:17 +00004997 }
Chris Lattnercb504b92008-11-16 05:38:51 +00004998 } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
4999 return ReplaceInstUsesWith(I, B); // (A^B)^A == B
5000 } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
5001 return ReplaceInstUsesWith(I, A); // (B^A)^A == B
Chris Lattner318bf792007-03-18 22:51:34 +00005002 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
5003 if (A == Op1) // (A&B)^A -> (B&A)^A
5004 std::swap(A, B);
5005 if (B == Op1 && // (B&A)^A == ~B & A
Chris Lattnerae1ab392006-04-01 22:05:01 +00005006 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
Chris Lattner318bf792007-03-18 22:51:34 +00005007 Instruction *N =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005008 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
5009 return BinaryOperator::CreateAnd(N, Op1);
Chris Lattner64daab52006-04-01 08:03:55 +00005010 }
Chris Lattnercb40a372003-03-10 18:24:17 +00005011 }
Chris Lattner318bf792007-03-18 22:51:34 +00005012 }
5013
5014 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
5015 if (Op0I && Op1I && Op0I->isShift() &&
5016 Op0I->getOpcode() == Op1I->getOpcode() &&
5017 Op0I->getOperand(1) == Op1I->getOperand(1) &&
5018 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
5019 Instruction *NewOp =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005020 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Chris Lattner318bf792007-03-18 22:51:34 +00005021 Op1I->getOperand(0),
5022 Op0I->getName()), I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005023 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Chris Lattner318bf792007-03-18 22:51:34 +00005024 Op1I->getOperand(1));
5025 }
5026
5027 if (Op0I && Op1I) {
5028 Value *A, *B, *C, *D;
5029 // (A & B)^(A | B) -> A ^ B
5030 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5031 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
5032 if ((A == C && B == D) || (A == D && B == C))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005033 return BinaryOperator::CreateXor(A, B);
Chris Lattner318bf792007-03-18 22:51:34 +00005034 }
5035 // (A | B)^(A & B) -> A ^ B
5036 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
5037 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5038 if ((A == C && B == D) || (A == D && B == C))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005039 return BinaryOperator::CreateXor(A, B);
Chris Lattner318bf792007-03-18 22:51:34 +00005040 }
5041
5042 // (A & B)^(C & D)
5043 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
5044 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5045 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5046 // (X & Y)^(X & Y) -> (Y^Z) & X
5047 Value *X = 0, *Y = 0, *Z = 0;
5048 if (A == C)
5049 X = A, Y = B, Z = D;
5050 else if (A == D)
5051 X = A, Y = B, Z = C;
5052 else if (B == C)
5053 X = B, Y = A, Z = D;
5054 else if (B == D)
5055 X = B, Y = A, Z = C;
5056
5057 if (X) {
5058 Instruction *NewOp =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005059 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
5060 return BinaryOperator::CreateAnd(NewOp, X);
Chris Lattner318bf792007-03-18 22:51:34 +00005061 }
5062 }
5063 }
5064
Reid Spencere4d87aa2006-12-23 06:05:41 +00005065 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
5066 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
5067 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
Chris Lattneraa9c1f12003-08-13 20:16:26 +00005068 return R;
5069
Chris Lattner6fc205f2006-05-05 06:39:07 +00005070 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner99c65742007-10-24 05:38:08 +00005071 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Chris Lattner6fc205f2006-05-05 06:39:07 +00005072 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00005073 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
5074 const Type *SrcTy = Op0C->getOperand(0)->getType();
Chris Lattner42a75512007-01-15 02:27:26 +00005075 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00005076 // Only do this if the casts both really cause code to be generated.
Reid Spencere4d87aa2006-12-23 06:05:41 +00005077 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
5078 I.getType(), TD) &&
5079 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
5080 I.getType(), TD)) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005081 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00005082 Op1C->getOperand(0),
5083 I.getName());
5084 InsertNewInstBefore(NewOp, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005085 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00005086 }
Chris Lattner6fc205f2006-05-05 06:39:07 +00005087 }
Chris Lattner99c65742007-10-24 05:38:08 +00005088 }
Nick Lewycky517e1f52008-05-31 19:01:33 +00005089
Chris Lattner7e708292002-06-25 16:13:24 +00005090 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00005091}
5092
Chris Lattnera96879a2004-09-29 17:40:11 +00005093/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
5094/// overflowed for this type.
5095static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
Reid Spencere4e40032007-03-21 23:19:50 +00005096 ConstantInt *In2, bool IsSigned = false) {
Zhou Sheng4a1822a2007-04-02 13:45:30 +00005097 Result = cast<ConstantInt>(Add(In1, In2));
Chris Lattnera96879a2004-09-29 17:40:11 +00005098
Reid Spencere4e40032007-03-21 23:19:50 +00005099 if (IsSigned)
5100 if (In2->getValue().isNegative())
5101 return Result->getValue().sgt(In1->getValue());
5102 else
5103 return Result->getValue().slt(In1->getValue());
5104 else
5105 return Result->getValue().ult(In1->getValue());
Chris Lattnera96879a2004-09-29 17:40:11 +00005106}
5107
Dan Gohman1df3fd62008-09-10 23:30:57 +00005108/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
5109/// overflowed for this type.
5110static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1,
5111 ConstantInt *In2, bool IsSigned = false) {
Dan Gohmanbcb37fd2008-09-11 18:53:02 +00005112 Result = cast<ConstantInt>(Subtract(In1, In2));
Dan Gohman1df3fd62008-09-10 23:30:57 +00005113
5114 if (IsSigned)
5115 if (In2->getValue().isNegative())
5116 return Result->getValue().slt(In1->getValue());
5117 else
5118 return Result->getValue().sgt(In1->getValue());
5119 else
5120 return Result->getValue().ugt(In1->getValue());
5121}
5122
Chris Lattner574da9b2005-01-13 20:14:25 +00005123/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
5124/// code necessary to compute the offset from the base pointer (without adding
5125/// in the base pointer). Return the result as a signed integer of intptr size.
5126static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
5127 TargetData &TD = IC.getTargetData();
5128 gep_type_iterator GTI = gep_type_begin(GEP);
Reid Spencere4d87aa2006-12-23 06:05:41 +00005129 const Type *IntPtrTy = TD.getIntPtrType();
5130 Value *Result = Constant::getNullValue(IntPtrTy);
Chris Lattner574da9b2005-01-13 20:14:25 +00005131
5132 // Build a mask for high order bits.
Chris Lattner10c0d912008-04-22 02:53:33 +00005133 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Chris Lattnere62f0212007-04-28 04:52:43 +00005134 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
Chris Lattner574da9b2005-01-13 20:14:25 +00005135
Gabor Greif177dd3f2008-06-12 21:37:33 +00005136 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
5137 ++i, ++GTI) {
5138 Value *Op = *i;
Duncan Sands514ab342007-11-01 20:53:16 +00005139 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Chris Lattnere62f0212007-04-28 04:52:43 +00005140 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
5141 if (OpC->isZero()) continue;
5142
5143 // Handle a struct index, which adds its field offset to the pointer.
5144 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5145 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5146
5147 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
5148 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
Chris Lattner9bc14642007-04-28 00:57:34 +00005149 else
Chris Lattnere62f0212007-04-28 04:52:43 +00005150 Result = IC.InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005151 BinaryOperator::CreateAdd(Result,
Chris Lattnere62f0212007-04-28 04:52:43 +00005152 ConstantInt::get(IntPtrTy, Size),
5153 GEP->getName()+".offs"), I);
5154 continue;
Chris Lattner9bc14642007-04-28 00:57:34 +00005155 }
Chris Lattnere62f0212007-04-28 04:52:43 +00005156
5157 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5158 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
5159 Scale = ConstantExpr::getMul(OC, Scale);
5160 if (Constant *RC = dyn_cast<Constant>(Result))
5161 Result = ConstantExpr::getAdd(RC, Scale);
5162 else {
5163 // Emit an add instruction.
5164 Result = IC.InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005165 BinaryOperator::CreateAdd(Result, Scale,
Chris Lattnere62f0212007-04-28 04:52:43 +00005166 GEP->getName()+".offs"), I);
Chris Lattner9bc14642007-04-28 00:57:34 +00005167 }
Chris Lattnere62f0212007-04-28 04:52:43 +00005168 continue;
Chris Lattner574da9b2005-01-13 20:14:25 +00005169 }
Chris Lattnere62f0212007-04-28 04:52:43 +00005170 // Convert to correct type.
5171 if (Op->getType() != IntPtrTy) {
5172 if (Constant *OpC = dyn_cast<Constant>(Op))
5173 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
5174 else
5175 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
5176 Op->getName()+".c"), I);
5177 }
5178 if (Size != 1) {
5179 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5180 if (Constant *OpC = dyn_cast<Constant>(Op))
5181 Op = ConstantExpr::getMul(OpC, Scale);
5182 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005183 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Chris Lattnere62f0212007-04-28 04:52:43 +00005184 GEP->getName()+".idx"), I);
5185 }
5186
5187 // Emit an add instruction.
5188 if (isa<Constant>(Op) && isa<Constant>(Result))
5189 Result = ConstantExpr::getAdd(cast<Constant>(Op),
5190 cast<Constant>(Result));
5191 else
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005192 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Chris Lattnere62f0212007-04-28 04:52:43 +00005193 GEP->getName()+".offs"), I);
Chris Lattner574da9b2005-01-13 20:14:25 +00005194 }
5195 return Result;
5196}
5197
Chris Lattner10c0d912008-04-22 02:53:33 +00005198
5199/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
5200/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
5201/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
5202/// complex, and scales are involved. The above expression would also be legal
5203/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
5204/// later form is less amenable to optimization though, and we are allowed to
5205/// generate the first by knowing that pointer arithmetic doesn't overflow.
5206///
5207/// If we can't emit an optimized form for this expression, this returns null.
5208///
5209static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
5210 InstCombiner &IC) {
Chris Lattner10c0d912008-04-22 02:53:33 +00005211 TargetData &TD = IC.getTargetData();
5212 gep_type_iterator GTI = gep_type_begin(GEP);
5213
5214 // Check to see if this gep only has a single variable index. If so, and if
5215 // any constant indices are a multiple of its scale, then we can compute this
5216 // in terms of the scale of the variable index. For example, if the GEP
5217 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5218 // because the expression will cross zero at the same point.
5219 unsigned i, e = GEP->getNumOperands();
5220 int64_t Offset = 0;
5221 for (i = 1; i != e; ++i, ++GTI) {
5222 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5223 // Compute the aggregate offset of constant indices.
5224 if (CI->isZero()) continue;
5225
5226 // Handle a struct index, which adds its field offset to the pointer.
5227 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5228 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5229 } else {
5230 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5231 Offset += Size*CI->getSExtValue();
5232 }
5233 } else {
5234 // Found our variable index.
5235 break;
5236 }
5237 }
5238
5239 // If there are no variable indices, we must have a constant offset, just
5240 // evaluate it the general way.
5241 if (i == e) return 0;
5242
5243 Value *VariableIdx = GEP->getOperand(i);
5244 // Determine the scale factor of the variable element. For example, this is
5245 // 4 if the variable index is into an array of i32.
5246 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
5247
5248 // Verify that there are no other variable indices. If so, emit the hard way.
5249 for (++i, ++GTI; i != e; ++i, ++GTI) {
5250 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5251 if (!CI) return 0;
5252
5253 // Compute the aggregate offset of constant indices.
5254 if (CI->isZero()) continue;
5255
5256 // Handle a struct index, which adds its field offset to the pointer.
5257 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5258 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5259 } else {
5260 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5261 Offset += Size*CI->getSExtValue();
5262 }
5263 }
5264
5265 // Okay, we know we have a single variable index, which must be a
5266 // pointer/array/vector index. If there is no offset, life is simple, return
5267 // the index.
5268 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5269 if (Offset == 0) {
5270 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5271 // we don't need to bother extending: the extension won't affect where the
5272 // computation crosses zero.
5273 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5274 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5275 VariableIdx->getNameStart(), &I);
5276 return VariableIdx;
5277 }
5278
5279 // Otherwise, there is an index. The computation we will do will be modulo
5280 // the pointer size, so get it.
5281 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5282
5283 Offset &= PtrSizeMask;
5284 VariableScale &= PtrSizeMask;
5285
5286 // To do this transformation, any constant index must be a multiple of the
5287 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5288 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5289 // multiple of the variable scale.
5290 int64_t NewOffs = Offset / (int64_t)VariableScale;
5291 if (Offset != NewOffs*(int64_t)VariableScale)
5292 return 0;
5293
5294 // Okay, we can do this evaluation. Start by converting the index to intptr.
5295 const Type *IntPtrTy = TD.getIntPtrType();
5296 if (VariableIdx->getType() != IntPtrTy)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005297 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattner10c0d912008-04-22 02:53:33 +00005298 true /*SExt*/,
5299 VariableIdx->getNameStart(), &I);
5300 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005301 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattner10c0d912008-04-22 02:53:33 +00005302}
5303
5304
Reid Spencere4d87aa2006-12-23 06:05:41 +00005305/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
Chris Lattner574da9b2005-01-13 20:14:25 +00005306/// else. At this point we know that the GEP is on the LHS of the comparison.
Reid Spencere4d87aa2006-12-23 06:05:41 +00005307Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5308 ICmpInst::Predicate Cond,
5309 Instruction &I) {
Chris Lattner574da9b2005-01-13 20:14:25 +00005310 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
Chris Lattnere9d782b2005-01-13 22:25:21 +00005311
Chris Lattner10c0d912008-04-22 02:53:33 +00005312 // Look through bitcasts.
5313 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5314 RHS = BCI->getOperand(0);
Chris Lattnere9d782b2005-01-13 22:25:21 +00005315
Chris Lattner574da9b2005-01-13 20:14:25 +00005316 Value *PtrBase = GEPLHS->getOperand(0);
5317 if (PtrBase == RHS) {
Chris Lattner7c95deb2008-02-05 04:45:32 +00005318 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattner10c0d912008-04-22 02:53:33 +00005319 // This transformation (ignoring the base and scales) is valid because we
5320 // know pointers can't overflow. See if we can output an optimized form.
5321 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5322
5323 // If not, synthesize the offset the hard way.
5324 if (Offset == 0)
5325 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattner7c95deb2008-02-05 04:45:32 +00005326 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5327 Constant::getNullValue(Offset->getType()));
Chris Lattner574da9b2005-01-13 20:14:25 +00005328 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
Chris Lattnera70b66d2005-04-25 20:17:30 +00005329 // If the base pointers are different, but the indices are the same, just
5330 // compare the base pointer.
5331 if (PtrBase != GEPRHS->getOperand(0)) {
5332 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
Jeff Cohen00b168892005-07-27 06:12:32 +00005333 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
Chris Lattner93b94a62005-04-26 14:40:41 +00005334 GEPRHS->getOperand(0)->getType();
Chris Lattnera70b66d2005-04-25 20:17:30 +00005335 if (IndicesTheSame)
5336 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5337 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5338 IndicesTheSame = false;
5339 break;
5340 }
5341
5342 // If all indices are the same, just compare the base pointers.
5343 if (IndicesTheSame)
Reid Spencere4d87aa2006-12-23 06:05:41 +00005344 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5345 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
Chris Lattnera70b66d2005-04-25 20:17:30 +00005346
5347 // Otherwise, the base pointers are different and the indices are
5348 // different, bail out.
Chris Lattner574da9b2005-01-13 20:14:25 +00005349 return 0;
Chris Lattnera70b66d2005-04-25 20:17:30 +00005350 }
Chris Lattner574da9b2005-01-13 20:14:25 +00005351
Chris Lattnere9d782b2005-01-13 22:25:21 +00005352 // If one of the GEPs has all zero indices, recurse.
5353 bool AllZeros = true;
5354 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5355 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5356 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5357 AllZeros = false;
5358 break;
5359 }
5360 if (AllZeros)
Reid Spencere4d87aa2006-12-23 06:05:41 +00005361 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5362 ICmpInst::getSwappedPredicate(Cond), I);
Chris Lattner4401c9c2005-01-14 00:20:05 +00005363
5364 // If the other GEP has all zero indices, recurse.
Chris Lattnere9d782b2005-01-13 22:25:21 +00005365 AllZeros = true;
5366 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5367 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5368 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5369 AllZeros = false;
5370 break;
5371 }
5372 if (AllZeros)
Reid Spencere4d87aa2006-12-23 06:05:41 +00005373 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
Chris Lattnere9d782b2005-01-13 22:25:21 +00005374
Chris Lattner4401c9c2005-01-14 00:20:05 +00005375 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5376 // If the GEPs only differ by one index, compare it.
5377 unsigned NumDifferences = 0; // Keep track of # differences.
5378 unsigned DiffOperand = 0; // The operand that differs.
5379 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5380 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
Chris Lattner484d3cf2005-04-24 06:59:08 +00005381 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5382 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
Chris Lattner45f57b82005-01-21 23:06:49 +00005383 // Irreconcilable differences.
Chris Lattner4401c9c2005-01-14 00:20:05 +00005384 NumDifferences = 2;
5385 break;
5386 } else {
5387 if (NumDifferences++) break;
5388 DiffOperand = i;
5389 }
5390 }
5391
5392 if (NumDifferences == 0) // SAME GEP?
5393 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky455e1762007-09-06 02:40:25 +00005394 ConstantInt::get(Type::Int1Ty,
Nick Lewyckyfc1efbb2008-05-17 07:33:39 +00005395 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky455e1762007-09-06 02:40:25 +00005396
Chris Lattner4401c9c2005-01-14 00:20:05 +00005397 else if (NumDifferences == 1) {
Chris Lattner45f57b82005-01-21 23:06:49 +00005398 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5399 Value *RHSV = GEPRHS->getOperand(DiffOperand);
Reid Spencere4d87aa2006-12-23 06:05:41 +00005400 // Make sure we do a signed comparison here.
5401 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
Chris Lattner4401c9c2005-01-14 00:20:05 +00005402 }
5403 }
5404
Reid Spencere4d87aa2006-12-23 06:05:41 +00005405 // Only lower this if the icmp is the only user of the GEP or if we expect
Chris Lattner574da9b2005-01-13 20:14:25 +00005406 // the result to fold to a constant!
5407 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5408 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5409 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5410 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5411 Value *R = EmitGEPOffset(GEPRHS, I, *this);
Reid Spencere4d87aa2006-12-23 06:05:41 +00005412 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
Chris Lattner574da9b2005-01-13 20:14:25 +00005413 }
5414 }
5415 return 0;
5416}
5417
Chris Lattnera5406232008-05-19 20:18:56 +00005418/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5419///
5420Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
5421 Instruction *LHSI,
5422 Constant *RHSC) {
5423 if (!isa<ConstantFP>(RHSC)) return 0;
5424 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5425
5426 // Get the width of the mantissa. We don't want to hack on conversions that
5427 // might lose information from the integer, e.g. "i64 -> float"
Chris Lattner7be1c452008-05-19 21:17:23 +00005428 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Chris Lattnera5406232008-05-19 20:18:56 +00005429 if (MantissaWidth == -1) return 0; // Unknown.
5430
5431 // Check to see that the input is converted from an integer type that is small
5432 // enough that preserves all bits. TODO: check here for "known" sign bits.
5433 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5434 unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
5435
5436 // If this is a uitofp instruction, we need an extra bit to hold the sign.
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005437 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5438 if (LHSUnsigned)
Chris Lattnera5406232008-05-19 20:18:56 +00005439 ++InputSize;
5440
5441 // If the conversion would lose info, don't hack on this.
5442 if ((int)InputSize > MantissaWidth)
5443 return 0;
5444
5445 // Otherwise, we can potentially simplify the comparison. We know that it
5446 // will always come through as an integer value and we know the constant is
5447 // not a NAN (it would have been previously simplified).
5448 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5449
5450 ICmpInst::Predicate Pred;
5451 switch (I.getPredicate()) {
5452 default: assert(0 && "Unexpected predicate!");
5453 case FCmpInst::FCMP_UEQ:
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005454 case FCmpInst::FCMP_OEQ:
5455 Pred = ICmpInst::ICMP_EQ;
5456 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005457 case FCmpInst::FCMP_UGT:
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005458 case FCmpInst::FCMP_OGT:
5459 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5460 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005461 case FCmpInst::FCMP_UGE:
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005462 case FCmpInst::FCMP_OGE:
5463 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5464 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005465 case FCmpInst::FCMP_ULT:
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005466 case FCmpInst::FCMP_OLT:
5467 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5468 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005469 case FCmpInst::FCMP_ULE:
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005470 case FCmpInst::FCMP_OLE:
5471 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5472 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005473 case FCmpInst::FCMP_UNE:
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005474 case FCmpInst::FCMP_ONE:
5475 Pred = ICmpInst::ICMP_NE;
5476 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005477 case FCmpInst::FCMP_ORD:
Eli Friedman8b019c82008-11-30 22:48:49 +00005478 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera5406232008-05-19 20:18:56 +00005479 case FCmpInst::FCMP_UNO:
Eli Friedman8b019c82008-11-30 22:48:49 +00005480 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera5406232008-05-19 20:18:56 +00005481 }
5482
5483 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5484
5485 // Now we know that the APFloat is a normal number, zero or inf.
5486
Chris Lattner85162782008-05-20 03:50:52 +00005487 // See if the FP constant is too large for the integer. For example,
Chris Lattnera5406232008-05-19 20:18:56 +00005488 // comparing an i8 to 300.0.
5489 unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
5490
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005491 if (!LHSUnsigned) {
5492 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5493 // and large values.
5494 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
5495 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5496 APFloat::rmNearestTiesToEven);
5497 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
5498 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5499 Pred == ICmpInst::ICMP_SLE)
Eli Friedman8b019c82008-11-30 22:48:49 +00005500 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5501 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005502 }
5503 } else {
5504 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5505 // +INF and large values.
5506 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
5507 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5508 APFloat::rmNearestTiesToEven);
5509 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
5510 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5511 Pred == ICmpInst::ICMP_ULE)
Eli Friedman8b019c82008-11-30 22:48:49 +00005512 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5513 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005514 }
Chris Lattnera5406232008-05-19 20:18:56 +00005515 }
5516
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005517 if (!LHSUnsigned) {
5518 // See if the RHS value is < SignedMin.
5519 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5520 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5521 APFloat::rmNearestTiesToEven);
5522 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5523 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5524 Pred == ICmpInst::ICMP_SGE)
Eli Friedman8b019c82008-11-30 22:48:49 +00005525 return ReplaceInstUsesWith(I,ConstantInt::getTrue());
5526 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005527 }
Chris Lattnera5406232008-05-19 20:18:56 +00005528 }
5529
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005530 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5531 // [0, UMAX], but it may still be fractional. See if it is fractional by
5532 // casting the FP value to the integer value and back, checking for equality.
5533 // Don't do this for zero, because -0.0 is not fractional.
Chris Lattnera5406232008-05-19 20:18:56 +00005534 Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
5535 if (!RHS.isZero() &&
5536 ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005537 // If we had a comparison against a fractional value, we have to adjust the
5538 // compare predicate and sometimes the value. RHSC is rounded towards zero
5539 // at this point.
Chris Lattnera5406232008-05-19 20:18:56 +00005540 switch (Pred) {
5541 default: assert(0 && "Unexpected integer comparison!");
5542 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
Eli Friedman8b019c82008-11-30 22:48:49 +00005543 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera5406232008-05-19 20:18:56 +00005544 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
Eli Friedman8b019c82008-11-30 22:48:49 +00005545 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005546 case ICmpInst::ICMP_ULE:
5547 // (float)int <= 4.4 --> int <= 4
5548 // (float)int <= -4.4 --> false
5549 if (RHS.isNegative())
Eli Friedman8b019c82008-11-30 22:48:49 +00005550 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005551 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005552 case ICmpInst::ICMP_SLE:
5553 // (float)int <= 4.4 --> int <= 4
5554 // (float)int <= -4.4 --> int < -4
5555 if (RHS.isNegative())
5556 Pred = ICmpInst::ICMP_SLT;
5557 break;
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005558 case ICmpInst::ICMP_ULT:
5559 // (float)int < -4.4 --> false
5560 // (float)int < 4.4 --> int <= 4
5561 if (RHS.isNegative())
Eli Friedman8b019c82008-11-30 22:48:49 +00005562 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005563 Pred = ICmpInst::ICMP_ULE;
5564 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005565 case ICmpInst::ICMP_SLT:
5566 // (float)int < -4.4 --> int < -4
5567 // (float)int < 4.4 --> int <= 4
5568 if (!RHS.isNegative())
5569 Pred = ICmpInst::ICMP_SLE;
5570 break;
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005571 case ICmpInst::ICMP_UGT:
5572 // (float)int > 4.4 --> int > 4
5573 // (float)int > -4.4 --> true
5574 if (RHS.isNegative())
Eli Friedman8b019c82008-11-30 22:48:49 +00005575 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005576 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005577 case ICmpInst::ICMP_SGT:
5578 // (float)int > 4.4 --> int > 4
5579 // (float)int > -4.4 --> int >= -4
5580 if (RHS.isNegative())
5581 Pred = ICmpInst::ICMP_SGE;
5582 break;
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005583 case ICmpInst::ICMP_UGE:
5584 // (float)int >= -4.4 --> true
5585 // (float)int >= 4.4 --> int > 4
5586 if (!RHS.isNegative())
Eli Friedman8b019c82008-11-30 22:48:49 +00005587 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005588 Pred = ICmpInst::ICMP_UGT;
5589 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005590 case ICmpInst::ICMP_SGE:
5591 // (float)int >= -4.4 --> int >= -4
5592 // (float)int >= 4.4 --> int > 4
5593 if (!RHS.isNegative())
5594 Pred = ICmpInst::ICMP_SGT;
5595 break;
5596 }
5597 }
5598
5599 // Lower this FP comparison into an appropriate integer version of the
5600 // comparison.
5601 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5602}
5603
Reid Spencere4d87aa2006-12-23 06:05:41 +00005604Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5605 bool Changed = SimplifyCompare(I);
Chris Lattner8b170942002-08-09 23:47:40 +00005606 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00005607
Chris Lattner58e97462007-01-14 19:42:17 +00005608 // Fold trivial predicates.
5609 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
Eli Friedman8b019c82008-11-30 22:48:49 +00005610 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattner58e97462007-01-14 19:42:17 +00005611 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
Eli Friedman8b019c82008-11-30 22:48:49 +00005612 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner58e97462007-01-14 19:42:17 +00005613
5614 // Simplify 'fcmp pred X, X'
5615 if (Op0 == Op1) {
5616 switch (I.getPredicate()) {
5617 default: assert(0 && "Unknown predicate!");
5618 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5619 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5620 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
Eli Friedman8b019c82008-11-30 22:48:49 +00005621 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner58e97462007-01-14 19:42:17 +00005622 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5623 case FCmpInst::FCMP_OLT: // True if ordered and less than
5624 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
Eli Friedman8b019c82008-11-30 22:48:49 +00005625 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattner58e97462007-01-14 19:42:17 +00005626
5627 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5628 case FCmpInst::FCMP_ULT: // True if unordered or less than
5629 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5630 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5631 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5632 I.setPredicate(FCmpInst::FCMP_UNO);
5633 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5634 return &I;
5635
5636 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5637 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5638 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5639 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5640 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5641 I.setPredicate(FCmpInst::FCMP_ORD);
5642 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5643 return &I;
5644 }
5645 }
5646
Reid Spencere4d87aa2006-12-23 06:05:41 +00005647 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
Reid Spencer4fe16d62007-01-11 18:21:29 +00005648 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Chris Lattnere87597f2004-10-16 18:11:37 +00005649
Reid Spencere4d87aa2006-12-23 06:05:41 +00005650 // Handle fcmp with constant RHS
5651 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
Chris Lattnera5406232008-05-19 20:18:56 +00005652 // If the constant is a nan, see if we can fold the comparison based on it.
5653 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5654 if (CFP->getValueAPF().isNaN()) {
5655 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
Eli Friedman8b019c82008-11-30 22:48:49 +00005656 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattner85162782008-05-20 03:50:52 +00005657 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5658 "Comparison must be either ordered or unordered!");
5659 // True if unordered.
Eli Friedman8b019c82008-11-30 22:48:49 +00005660 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera5406232008-05-19 20:18:56 +00005661 }
5662 }
5663
Reid Spencere4d87aa2006-12-23 06:05:41 +00005664 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5665 switch (LHSI->getOpcode()) {
5666 case Instruction::PHI:
Chris Lattner7d8ab4e2008-06-08 20:52:11 +00005667 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5668 // block. If in the same block, we're encouraging jump threading. If
5669 // not, we are just pessimizing the code by making an i1 phi.
5670 if (LHSI->getParent() == I.getParent())
5671 if (Instruction *NV = FoldOpIntoPhi(I))
5672 return NV;
Reid Spencere4d87aa2006-12-23 06:05:41 +00005673 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005674 case Instruction::SIToFP:
5675 case Instruction::UIToFP:
5676 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5677 return NV;
5678 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00005679 case Instruction::Select:
5680 // If either operand of the select is a constant, we can fold the
5681 // comparison into the select arms, which will cause one to be
5682 // constant folded and the select turned into a bitwise or.
5683 Value *Op1 = 0, *Op2 = 0;
5684 if (LHSI->hasOneUse()) {
5685 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5686 // Fold the known value into the constant operand.
5687 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5688 // Insert a new FCmp of the other select operand.
5689 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5690 LHSI->getOperand(2), RHSC,
5691 I.getName()), I);
5692 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5693 // Fold the known value into the constant operand.
5694 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5695 // Insert a new FCmp of the other select operand.
5696 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5697 LHSI->getOperand(1), RHSC,
5698 I.getName()), I);
5699 }
5700 }
5701
5702 if (Op1)
Gabor Greif051a9502008-04-06 20:25:17 +00005703 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Reid Spencere4d87aa2006-12-23 06:05:41 +00005704 break;
5705 }
5706 }
5707
5708 return Changed ? &I : 0;
5709}
5710
5711Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5712 bool Changed = SimplifyCompare(I);
5713 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5714 const Type *Ty = Op0->getType();
5715
5716 // icmp X, X
5717 if (Op0 == Op1)
Reid Spencer579dca12007-01-12 04:24:46 +00005718 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewyckyfc1efbb2008-05-17 07:33:39 +00005719 I.isTrueWhenEqual()));
Reid Spencere4d87aa2006-12-23 06:05:41 +00005720
5721 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
Reid Spencer4fe16d62007-01-11 18:21:29 +00005722 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lamb7a0678c2007-12-18 21:32:20 +00005723
Reid Spencere4d87aa2006-12-23 06:05:41 +00005724 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
Chris Lattner711b3402004-11-14 07:33:16 +00005725 // addresses never equal each other! We already know that Op0 != Op1.
Misha Brukmanfd939082005-04-21 23:48:37 +00005726 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5727 isa<ConstantPointerNull>(Op0)) &&
5728 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
Chris Lattner711b3402004-11-14 07:33:16 +00005729 isa<ConstantPointerNull>(Op1)))
Reid Spencer579dca12007-01-12 04:24:46 +00005730 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewyckyfc1efbb2008-05-17 07:33:39 +00005731 !I.isTrueWhenEqual()));
Chris Lattner8b170942002-08-09 23:47:40 +00005732
Reid Spencere4d87aa2006-12-23 06:05:41 +00005733 // icmp's with boolean values can always be turned into bitwise operations
Reid Spencer4fe16d62007-01-11 18:21:29 +00005734 if (Ty == Type::Int1Ty) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00005735 switch (I.getPredicate()) {
5736 default: assert(0 && "Invalid icmp instruction!");
Chris Lattner85b5eb02008-07-11 04:20:58 +00005737 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005738 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Chris Lattner8b170942002-08-09 23:47:40 +00005739 InsertNewInstBefore(Xor, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005740 return BinaryOperator::CreateNot(Xor);
Chris Lattner8b170942002-08-09 23:47:40 +00005741 }
Chris Lattner85b5eb02008-07-11 04:20:58 +00005742 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005743 return BinaryOperator::CreateXor(Op0, Op1);
Chris Lattner8b170942002-08-09 23:47:40 +00005744
Reid Spencere4d87aa2006-12-23 06:05:41 +00005745 case ICmpInst::ICMP_UGT:
Chris Lattner85b5eb02008-07-11 04:20:58 +00005746 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Chris Lattner5dbef222004-08-11 00:50:51 +00005747 // FALL THROUGH
Chris Lattner85b5eb02008-07-11 04:20:58 +00005748 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005749 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Chris Lattner5dbef222004-08-11 00:50:51 +00005750 InsertNewInstBefore(Not, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005751 return BinaryOperator::CreateAnd(Not, Op1);
Chris Lattner5dbef222004-08-11 00:50:51 +00005752 }
Chris Lattner85b5eb02008-07-11 04:20:58 +00005753 case ICmpInst::ICMP_SGT:
5754 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Chris Lattner5dbef222004-08-11 00:50:51 +00005755 // FALL THROUGH
Chris Lattner85b5eb02008-07-11 04:20:58 +00005756 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5757 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5758 InsertNewInstBefore(Not, I);
5759 return BinaryOperator::CreateAnd(Not, Op0);
5760 }
5761 case ICmpInst::ICMP_UGE:
5762 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5763 // FALL THROUGH
5764 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005765 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Chris Lattner5dbef222004-08-11 00:50:51 +00005766 InsertNewInstBefore(Not, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005767 return BinaryOperator::CreateOr(Not, Op1);
Chris Lattner5dbef222004-08-11 00:50:51 +00005768 }
Chris Lattner85b5eb02008-07-11 04:20:58 +00005769 case ICmpInst::ICMP_SGE:
5770 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5771 // FALL THROUGH
5772 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5773 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5774 InsertNewInstBefore(Not, I);
5775 return BinaryOperator::CreateOr(Not, Op0);
5776 }
Chris Lattner5dbef222004-08-11 00:50:51 +00005777 }
Chris Lattner8b170942002-08-09 23:47:40 +00005778 }
5779
Dan Gohman81b28ce2008-09-16 18:46:06 +00005780 // See if we are doing a comparison with a constant.
Chris Lattner8b170942002-08-09 23:47:40 +00005781 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerf2991842008-07-11 04:09:09 +00005782 Value *A, *B;
Christopher Lamb103e1a32007-12-20 07:21:11 +00005783
Chris Lattnerb6566012008-01-05 01:18:20 +00005784 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5785 if (I.isEquality() && CI->isNullValue() &&
5786 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5787 // (icmp cond A B) if cond is equality
5788 return new ICmpInst(I.getPredicate(), A, B);
Owen Andersonf5783f82007-12-28 07:42:12 +00005789 }
Christopher Lamb103e1a32007-12-20 07:21:11 +00005790
Dan Gohman81b28ce2008-09-16 18:46:06 +00005791 // If we have an icmp le or icmp ge instruction, turn it into the
5792 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
5793 // them being folded in the code below.
Chris Lattner84dff672008-07-11 05:08:55 +00005794 switch (I.getPredicate()) {
5795 default: break;
5796 case ICmpInst::ICMP_ULE:
5797 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5798 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5799 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5800 case ICmpInst::ICMP_SLE:
5801 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5802 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5803 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5804 case ICmpInst::ICMP_UGE:
5805 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5806 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5807 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5808 case ICmpInst::ICMP_SGE:
5809 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5810 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5811 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5812 }
5813
Chris Lattner183661e2008-07-11 05:40:05 +00005814 // See if we can fold the comparison based on range information we can get
5815 // by checking whether bits are known to be zero or one in the input.
5816 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5817 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5818
5819 // If this comparison is a normal comparison, it demands all
Chris Lattner4241e4d2007-07-15 20:54:51 +00005820 // bits, if it is a sign bit comparison, it only demands the sign bit.
Chris Lattner4241e4d2007-07-15 20:54:51 +00005821 bool UnusedBit;
5822 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5823
Chris Lattner4241e4d2007-07-15 20:54:51 +00005824 if (SimplifyDemandedBits(Op0,
5825 isSignBit ? APInt::getSignBit(BitWidth)
5826 : APInt::getAllOnesValue(BitWidth),
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00005827 KnownZero, KnownOne, 0))
5828 return &I;
5829
5830 // Given the known and unknown bits, compute a range that the LHS could be
Chris Lattner84dff672008-07-11 05:08:55 +00005831 // in. Compute the Min, Max and RHS values based on the known bits. For the
5832 // EQ and NE we use unsigned values.
5833 APInt Min(BitWidth, 0), Max(BitWidth, 0);
Chris Lattner84dff672008-07-11 05:08:55 +00005834 if (ICmpInst::isSignedPredicate(I.getPredicate()))
5835 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max);
5836 else
5837 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,Min,Max);
5838
Chris Lattner183661e2008-07-11 05:40:05 +00005839 // If Min and Max are known to be the same, then SimplifyDemandedBits
5840 // figured out that the LHS is a constant. Just constant fold this now so
5841 // that code below can assume that Min != Max.
5842 if (Min == Max)
5843 return ReplaceInstUsesWith(I, ConstantExpr::getICmp(I.getPredicate(),
5844 ConstantInt::get(Min),
5845 CI));
5846
5847 // Based on the range information we know about the LHS, see if we can
5848 // simplify this comparison. For example, (x&4) < 8 is always true.
5849 const APInt &RHSVal = CI->getValue();
Chris Lattner84dff672008-07-11 05:08:55 +00005850 switch (I.getPredicate()) { // LE/GE have been folded already.
5851 default: assert(0 && "Unknown icmp opcode!");
5852 case ICmpInst::ICMP_EQ:
5853 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5854 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5855 break;
5856 case ICmpInst::ICMP_NE:
5857 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5858 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5859 break;
5860 case ICmpInst::ICMP_ULT:
Chris Lattner183661e2008-07-11 05:40:05 +00005861 if (Max.ult(RHSVal)) // A <u C -> true iff max(A) < C
Chris Lattner84dff672008-07-11 05:08:55 +00005862 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner183661e2008-07-11 05:40:05 +00005863 if (Min.uge(RHSVal)) // A <u C -> false iff min(A) >= C
Chris Lattner84dff672008-07-11 05:08:55 +00005864 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattner183661e2008-07-11 05:40:05 +00005865 if (RHSVal == Max) // A <u MAX -> A != MAX
5866 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5867 if (RHSVal == Min+1) // A <u MIN+1 -> A == MIN
5868 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5869
5870 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5871 if (CI->isMinValue(true))
5872 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5873 ConstantInt::getAllOnesValue(Op0->getType()));
Chris Lattner84dff672008-07-11 05:08:55 +00005874 break;
5875 case ICmpInst::ICMP_UGT:
Chris Lattner183661e2008-07-11 05:40:05 +00005876 if (Min.ugt(RHSVal)) // A >u C -> true iff min(A) > C
Chris Lattner84dff672008-07-11 05:08:55 +00005877 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner183661e2008-07-11 05:40:05 +00005878 if (Max.ule(RHSVal)) // A >u C -> false iff max(A) <= C
Chris Lattner84dff672008-07-11 05:08:55 +00005879 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattner183661e2008-07-11 05:40:05 +00005880
5881 if (RHSVal == Min) // A >u MIN -> A != MIN
5882 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5883 if (RHSVal == Max-1) // A >u MAX-1 -> A == MAX
5884 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5885
5886 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5887 if (CI->isMaxValue(true))
5888 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5889 ConstantInt::getNullValue(Op0->getType()));
Chris Lattner84dff672008-07-11 05:08:55 +00005890 break;
5891 case ICmpInst::ICMP_SLT:
Chris Lattner183661e2008-07-11 05:40:05 +00005892 if (Max.slt(RHSVal)) // A <s C -> true iff max(A) < C
Chris Lattner84dff672008-07-11 05:08:55 +00005893 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnerd01bee72008-07-11 06:40:29 +00005894 if (Min.sge(RHSVal)) // A <s C -> false iff min(A) >= C
Chris Lattner84dff672008-07-11 05:08:55 +00005895 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattner183661e2008-07-11 05:40:05 +00005896 if (RHSVal == Max) // A <s MAX -> A != MAX
5897 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
Chris Lattnera8ff4a82008-07-11 06:36:01 +00005898 if (RHSVal == Min+1) // A <s MIN+1 -> A == MIN
Chris Lattnerf9685ac2008-07-11 06:38:16 +00005899 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
Chris Lattner84dff672008-07-11 05:08:55 +00005900 break;
5901 case ICmpInst::ICMP_SGT:
Chris Lattner183661e2008-07-11 05:40:05 +00005902 if (Min.sgt(RHSVal)) // A >s C -> true iff min(A) > C
Chris Lattner84dff672008-07-11 05:08:55 +00005903 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner183661e2008-07-11 05:40:05 +00005904 if (Max.sle(RHSVal)) // A >s C -> false iff max(A) <= C
Chris Lattner84dff672008-07-11 05:08:55 +00005905 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattner183661e2008-07-11 05:40:05 +00005906
5907 if (RHSVal == Min) // A >s MIN -> A != MIN
5908 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5909 if (RHSVal == Max-1) // A >s MAX-1 -> A == MAX
5910 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
Chris Lattner84dff672008-07-11 05:08:55 +00005911 break;
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00005912 }
Dan Gohman81b28ce2008-09-16 18:46:06 +00005913 }
5914
5915 // Test if the ICmpInst instruction is used exclusively by a select as
5916 // part of a minimum or maximum operation. If so, refrain from doing
5917 // any other folding. This helps out other analyses which understand
5918 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5919 // and CodeGen. And in this case, at least one of the comparison
5920 // operands has at least one user besides the compare (the select),
5921 // which would often largely negate the benefit of folding anyway.
5922 if (I.hasOneUse())
5923 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
5924 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
5925 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
5926 return 0;
5927
5928 // See if we are doing a comparison between a constant and an instruction that
5929 // can be folded into the comparison.
5930 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00005931 // Since the RHS is a ConstantInt (CI), if the left hand side is an
Reid Spencer1628cec2006-10-26 06:15:43 +00005932 // instruction, see if that instruction also has constants so that the
Reid Spencere4d87aa2006-12-23 06:05:41 +00005933 // instruction can be folded into the icmp
Chris Lattner3c6a0d42004-05-25 06:32:08 +00005934 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
Chris Lattner01deb9d2007-04-03 17:43:25 +00005935 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5936 return Res;
Chris Lattner3f5b8772002-05-06 16:14:14 +00005937 }
5938
Chris Lattner01deb9d2007-04-03 17:43:25 +00005939 // Handle icmp with constant (but not simple integer constant) RHS
Chris Lattner6970b662005-04-23 15:31:55 +00005940 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5941 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5942 switch (LHSI->getOpcode()) {
Chris Lattner9fb25db2005-05-01 04:42:15 +00005943 case Instruction::GetElementPtr:
5944 if (RHSC->isNullValue()) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00005945 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
Chris Lattner9fb25db2005-05-01 04:42:15 +00005946 bool isAllZeros = true;
5947 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5948 if (!isa<Constant>(LHSI->getOperand(i)) ||
5949 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5950 isAllZeros = false;
5951 break;
5952 }
5953 if (isAllZeros)
Reid Spencere4d87aa2006-12-23 06:05:41 +00005954 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
Chris Lattner9fb25db2005-05-01 04:42:15 +00005955 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5956 }
5957 break;
5958
Chris Lattner6970b662005-04-23 15:31:55 +00005959 case Instruction::PHI:
Chris Lattner7d8ab4e2008-06-08 20:52:11 +00005960 // Only fold icmp into the PHI if the phi and fcmp are in the same
5961 // block. If in the same block, we're encouraging jump threading. If
5962 // not, we are just pessimizing the code by making an i1 phi.
5963 if (LHSI->getParent() == I.getParent())
5964 if (Instruction *NV = FoldOpIntoPhi(I))
5965 return NV;
Chris Lattner6970b662005-04-23 15:31:55 +00005966 break;
Chris Lattner4802d902007-04-06 18:57:34 +00005967 case Instruction::Select: {
Chris Lattner6970b662005-04-23 15:31:55 +00005968 // If either operand of the select is a constant, we can fold the
5969 // comparison into the select arms, which will cause one to be
5970 // constant folded and the select turned into a bitwise or.
5971 Value *Op1 = 0, *Op2 = 0;
5972 if (LHSI->hasOneUse()) {
5973 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5974 // Fold the known value into the constant operand.
Reid Spencere4d87aa2006-12-23 06:05:41 +00005975 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5976 // Insert a new ICmp of the other select operand.
5977 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5978 LHSI->getOperand(2), RHSC,
5979 I.getName()), I);
Chris Lattner6970b662005-04-23 15:31:55 +00005980 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5981 // Fold the known value into the constant operand.
Reid Spencere4d87aa2006-12-23 06:05:41 +00005982 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5983 // Insert a new ICmp of the other select operand.
5984 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5985 LHSI->getOperand(1), RHSC,
5986 I.getName()), I);
Chris Lattner6970b662005-04-23 15:31:55 +00005987 }
5988 }
Jeff Cohen9d809302005-04-23 21:38:35 +00005989
Chris Lattner6970b662005-04-23 15:31:55 +00005990 if (Op1)
Gabor Greif051a9502008-04-06 20:25:17 +00005991 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Chris Lattner6970b662005-04-23 15:31:55 +00005992 break;
5993 }
Chris Lattner4802d902007-04-06 18:57:34 +00005994 case Instruction::Malloc:
5995 // If we have (malloc != null), and if the malloc has a single use, we
5996 // can assume it is successful and remove the malloc.
5997 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5998 AddToWorkList(LHSI);
5999 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewyckyfc1efbb2008-05-17 07:33:39 +00006000 !I.isTrueWhenEqual()));
Chris Lattner4802d902007-04-06 18:57:34 +00006001 }
6002 break;
6003 }
Chris Lattner6970b662005-04-23 15:31:55 +00006004 }
6005
Reid Spencere4d87aa2006-12-23 06:05:41 +00006006 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
Chris Lattner574da9b2005-01-13 20:14:25 +00006007 if (User *GEP = dyn_castGetElementPtr(Op0))
Reid Spencere4d87aa2006-12-23 06:05:41 +00006008 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
Chris Lattner574da9b2005-01-13 20:14:25 +00006009 return NI;
6010 if (User *GEP = dyn_castGetElementPtr(Op1))
Reid Spencere4d87aa2006-12-23 06:05:41 +00006011 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
6012 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
Chris Lattner574da9b2005-01-13 20:14:25 +00006013 return NI;
6014
Reid Spencere4d87aa2006-12-23 06:05:41 +00006015 // Test to see if the operands of the icmp are casted versions of other
Chris Lattner57d86372007-01-06 01:45:59 +00006016 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
6017 // now.
6018 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
6019 if (isa<PointerType>(Op0->getType()) &&
6020 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
Chris Lattnerde90b762003-11-03 04:25:02 +00006021 // We keep moving the cast from the left operand over to the right
6022 // operand, where it can often be eliminated completely.
Chris Lattner57d86372007-01-06 01:45:59 +00006023 Op0 = CI->getOperand(0);
Misha Brukmanfd939082005-04-21 23:48:37 +00006024
Chris Lattner57d86372007-01-06 01:45:59 +00006025 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
6026 // so eliminate it as well.
6027 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
6028 Op1 = CI2->getOperand(0);
Misha Brukmanfd939082005-04-21 23:48:37 +00006029
Chris Lattnerde90b762003-11-03 04:25:02 +00006030 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00006031 if (Op0->getType() != Op1->getType()) {
Chris Lattnerde90b762003-11-03 04:25:02 +00006032 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
Reid Spencerd977d862006-12-12 23:36:14 +00006033 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
Chris Lattnerde90b762003-11-03 04:25:02 +00006034 } else {
Reid Spencere4d87aa2006-12-23 06:05:41 +00006035 // Otherwise, cast the RHS right before the icmp
Chris Lattner6d0339d2008-01-13 22:23:22 +00006036 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Chris Lattnerde90b762003-11-03 04:25:02 +00006037 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00006038 }
Reid Spencere4d87aa2006-12-23 06:05:41 +00006039 return new ICmpInst(I.getPredicate(), Op0, Op1);
Chris Lattnerde90b762003-11-03 04:25:02 +00006040 }
Chris Lattner57d86372007-01-06 01:45:59 +00006041 }
6042
6043 if (isa<CastInst>(Op0)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00006044 // Handle the special case of: icmp (cast bool to X), <cst>
Chris Lattner68708052003-11-03 05:17:03 +00006045 // This comes up when you have code like
6046 // int X = A < B;
6047 // if (X) ...
6048 // For generality, we handle any zero-extension of any operand comparison
Chris Lattner484d3cf2005-04-24 06:59:08 +00006049 // with a constant or another cast from the same type.
6050 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
Reid Spencere4d87aa2006-12-23 06:05:41 +00006051 if (Instruction *R = visitICmpInstWithCastAndCast(I))
Chris Lattner484d3cf2005-04-24 06:59:08 +00006052 return R;
Chris Lattner68708052003-11-03 05:17:03 +00006053 }
Chris Lattner26ab9a92006-02-27 01:44:11 +00006054
Nick Lewycky4bf1e592008-07-11 07:20:53 +00006055 // See if it's the same type of instruction on the left and right.
6056 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
6057 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
Nick Lewycky5d52c452008-08-21 05:56:10 +00006058 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
6059 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1) &&
6060 I.isEquality()) {
Nick Lewycky23c04302008-09-03 06:24:21 +00006061 switch (Op0I->getOpcode()) {
Nick Lewycky4bf1e592008-07-11 07:20:53 +00006062 default: break;
6063 case Instruction::Add:
6064 case Instruction::Sub:
6065 case Instruction::Xor:
Nick Lewycky5d52c452008-08-21 05:56:10 +00006066 // a+x icmp eq/ne b+x --> a icmp b
6067 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
6068 Op1I->getOperand(0));
Nick Lewycky4bf1e592008-07-11 07:20:53 +00006069 break;
6070 case Instruction::Mul:
Nick Lewycky5d52c452008-08-21 05:56:10 +00006071 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
6072 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
6073 // Mask = -1 >> count-trailing-zeros(Cst).
6074 if (!CI->isZero() && !CI->isOne()) {
6075 const APInt &AP = CI->getValue();
6076 ConstantInt *Mask = ConstantInt::get(
6077 APInt::getLowBitsSet(AP.getBitWidth(),
6078 AP.getBitWidth() -
Nick Lewycky4bf1e592008-07-11 07:20:53 +00006079 AP.countTrailingZeros()));
Nick Lewycky5d52c452008-08-21 05:56:10 +00006080 Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
6081 Mask);
6082 Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
6083 Mask);
6084 InsertNewInstBefore(And1, I);
6085 InsertNewInstBefore(And2, I);
6086 return new ICmpInst(I.getPredicate(), And1, And2);
Nick Lewycky4bf1e592008-07-11 07:20:53 +00006087 }
6088 }
6089 break;
6090 }
6091 }
6092 }
6093 }
6094
Chris Lattner7d2cbd22008-05-09 05:19:28 +00006095 // ~x < ~y --> y < x
6096 { Value *A, *B;
6097 if (match(Op0, m_Not(m_Value(A))) &&
6098 match(Op1, m_Not(m_Value(B))))
6099 return new ICmpInst(I.getPredicate(), B, A);
6100 }
6101
Chris Lattner65b72ba2006-09-18 04:22:48 +00006102 if (I.isEquality()) {
Chris Lattner4f0e33d2007-01-05 03:04:57 +00006103 Value *A, *B, *C, *D;
Chris Lattner7d2cbd22008-05-09 05:19:28 +00006104
6105 // -x == -y --> x == y
6106 if (match(Op0, m_Neg(m_Value(A))) &&
6107 match(Op1, m_Neg(m_Value(B))))
6108 return new ICmpInst(I.getPredicate(), A, B);
6109
Chris Lattner4f0e33d2007-01-05 03:04:57 +00006110 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
6111 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
6112 Value *OtherVal = A == Op1 ? B : A;
6113 return new ICmpInst(I.getPredicate(), OtherVal,
6114 Constant::getNullValue(A->getType()));
6115 }
6116
6117 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
6118 // A^c1 == C^c2 --> A == C^(c1^c2)
Chris Lattnercb504b92008-11-16 05:38:51 +00006119 ConstantInt *C1, *C2;
6120 if (match(B, m_ConstantInt(C1)) &&
6121 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
6122 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
6123 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
6124 return new ICmpInst(I.getPredicate(), A,
6125 InsertNewInstBefore(Xor, I));
6126 }
Chris Lattner4f0e33d2007-01-05 03:04:57 +00006127
6128 // A^B == A^D -> B == D
6129 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
6130 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
6131 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
6132 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
6133 }
6134 }
6135
6136 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
6137 (A == Op0 || B == Op0)) {
Chris Lattner26ab9a92006-02-27 01:44:11 +00006138 // A == (A^B) -> B == 0
6139 Value *OtherVal = A == Op0 ? B : A;
Reid Spencere4d87aa2006-12-23 06:05:41 +00006140 return new ICmpInst(I.getPredicate(), OtherVal,
6141 Constant::getNullValue(A->getType()));
Chris Lattner4f0e33d2007-01-05 03:04:57 +00006142 }
Chris Lattnercb504b92008-11-16 05:38:51 +00006143
6144 // (A-B) == A -> B == 0
6145 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
6146 return new ICmpInst(I.getPredicate(), B,
6147 Constant::getNullValue(B->getType()));
6148
6149 // A == (A-B) -> B == 0
6150 if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
Reid Spencere4d87aa2006-12-23 06:05:41 +00006151 return new ICmpInst(I.getPredicate(), B,
6152 Constant::getNullValue(B->getType()));
Chris Lattner9c2328e2006-11-14 06:06:06 +00006153
Chris Lattner9c2328e2006-11-14 06:06:06 +00006154 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
6155 if (Op0->hasOneUse() && Op1->hasOneUse() &&
6156 match(Op0, m_And(m_Value(A), m_Value(B))) &&
6157 match(Op1, m_And(m_Value(C), m_Value(D)))) {
6158 Value *X = 0, *Y = 0, *Z = 0;
6159
6160 if (A == C) {
6161 X = B; Y = D; Z = A;
6162 } else if (A == D) {
6163 X = B; Y = C; Z = A;
6164 } else if (B == C) {
6165 X = A; Y = D; Z = B;
6166 } else if (B == D) {
6167 X = A; Y = C; Z = B;
6168 }
6169
6170 if (X) { // Build (X^Y) & Z
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006171 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
6172 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Chris Lattner9c2328e2006-11-14 06:06:06 +00006173 I.setOperand(0, Op1);
6174 I.setOperand(1, Constant::getNullValue(Op1->getType()));
6175 return &I;
6176 }
6177 }
Chris Lattner26ab9a92006-02-27 01:44:11 +00006178 }
Chris Lattner7e708292002-06-25 16:13:24 +00006179 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00006180}
6181
Chris Lattner562ef782007-06-20 23:46:26 +00006182
6183/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
6184/// and CmpRHS are both known to be integer constants.
6185Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
6186 ConstantInt *DivRHS) {
6187 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
6188 const APInt &CmpRHSV = CmpRHS->getValue();
6189
6190 // FIXME: If the operand types don't match the type of the divide
6191 // then don't attempt this transform. The code below doesn't have the
6192 // logic to deal with a signed divide and an unsigned compare (and
6193 // vice versa). This is because (x /s C1) <s C2 produces different
6194 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
6195 // (x /u C1) <u C2. Simply casting the operands and result won't
6196 // work. :( The if statement below tests that condition and bails
6197 // if it finds it.
6198 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
6199 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
6200 return 0;
6201 if (DivRHS->isZero())
Chris Lattner1dbfd482007-06-21 18:11:19 +00006202 return 0; // The ProdOV computation fails on divide by zero.
Chris Lattnera6321b42008-10-11 22:55:00 +00006203 if (DivIsSigned && DivRHS->isAllOnesValue())
6204 return 0; // The overflow computation also screws up here
6205 if (DivRHS->isOne())
6206 return 0; // Not worth bothering, and eliminates some funny cases
6207 // with INT_MIN.
Chris Lattner562ef782007-06-20 23:46:26 +00006208
6209 // Compute Prod = CI * DivRHS. We are essentially solving an equation
6210 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
6211 // C2 (CI). By solving for X we can turn this into a range check
6212 // instead of computing a divide.
6213 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
6214
6215 // Determine if the product overflows by seeing if the product is
6216 // not equal to the divide. Make sure we do the same kind of divide
6217 // as in the LHS instruction that we're folding.
6218 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
6219 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
6220
6221 // Get the ICmp opcode
Chris Lattner1dbfd482007-06-21 18:11:19 +00006222 ICmpInst::Predicate Pred = ICI.getPredicate();
Chris Lattner562ef782007-06-20 23:46:26 +00006223
Chris Lattner1dbfd482007-06-21 18:11:19 +00006224 // Figure out the interval that is being checked. For example, a comparison
6225 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
6226 // Compute this interval based on the constants involved and the signedness of
6227 // the compare/divide. This computes a half-open interval, keeping track of
6228 // whether either value in the interval overflows. After analysis each
6229 // overflow variable is set to 0 if it's corresponding bound variable is valid
6230 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
6231 int LoOverflow = 0, HiOverflow = 0;
6232 ConstantInt *LoBound = 0, *HiBound = 0;
6233
Chris Lattner562ef782007-06-20 23:46:26 +00006234 if (!DivIsSigned) { // udiv
Chris Lattner1dbfd482007-06-21 18:11:19 +00006235 // e.g. X/5 op 3 --> [15, 20)
Chris Lattner562ef782007-06-20 23:46:26 +00006236 LoBound = Prod;
Chris Lattner1dbfd482007-06-21 18:11:19 +00006237 HiOverflow = LoOverflow = ProdOV;
6238 if (!HiOverflow)
6239 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman76491272008-02-13 22:09:18 +00006240 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Chris Lattner562ef782007-06-20 23:46:26 +00006241 if (CmpRHSV == 0) { // (X / pos) op 0
Chris Lattner1dbfd482007-06-21 18:11:19 +00006242 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
Chris Lattner562ef782007-06-20 23:46:26 +00006243 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
6244 HiBound = DivRHS;
Dan Gohman76491272008-02-13 22:09:18 +00006245 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Chris Lattner1dbfd482007-06-21 18:11:19 +00006246 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
6247 HiOverflow = LoOverflow = ProdOV;
6248 if (!HiOverflow)
6249 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
Chris Lattner562ef782007-06-20 23:46:26 +00006250 } else { // (X / pos) op neg
Chris Lattner1dbfd482007-06-21 18:11:19 +00006251 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
Chris Lattner562ef782007-06-20 23:46:26 +00006252 HiBound = AddOne(Prod);
Chris Lattnera6321b42008-10-11 22:55:00 +00006253 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
6254 if (!LoOverflow) {
6255 ConstantInt* DivNeg = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6256 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg,
6257 true) ? -1 : 0;
6258 }
Chris Lattner562ef782007-06-20 23:46:26 +00006259 }
Dan Gohman76491272008-02-13 22:09:18 +00006260 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Chris Lattner562ef782007-06-20 23:46:26 +00006261 if (CmpRHSV == 0) { // (X / neg) op 0
Chris Lattner1dbfd482007-06-21 18:11:19 +00006262 // e.g. X/-5 op 0 --> [-4, 5)
Chris Lattner562ef782007-06-20 23:46:26 +00006263 LoBound = AddOne(DivRHS);
6264 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
Chris Lattner1dbfd482007-06-21 18:11:19 +00006265 if (HiBound == DivRHS) { // -INTMIN = INTMIN
6266 HiOverflow = 1; // [INTMIN+1, overflow)
6267 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
6268 }
Dan Gohman76491272008-02-13 22:09:18 +00006269 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Chris Lattner1dbfd482007-06-21 18:11:19 +00006270 // e.g. X/-5 op 3 --> [-19, -14)
Chris Lattnera6321b42008-10-11 22:55:00 +00006271 HiBound = AddOne(Prod);
Chris Lattner1dbfd482007-06-21 18:11:19 +00006272 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
Chris Lattner562ef782007-06-20 23:46:26 +00006273 if (!LoOverflow)
Chris Lattnera6321b42008-10-11 22:55:00 +00006274 LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
Chris Lattner562ef782007-06-20 23:46:26 +00006275 } else { // (X / neg) op neg
Chris Lattnera6321b42008-10-11 22:55:00 +00006276 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
6277 LoOverflow = HiOverflow = ProdOV;
Dan Gohman7f85fbd2008-09-11 00:25:00 +00006278 if (!HiOverflow)
6279 HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
Chris Lattner562ef782007-06-20 23:46:26 +00006280 }
6281
Chris Lattner1dbfd482007-06-21 18:11:19 +00006282 // Dividing by a negative swaps the condition. LT <-> GT
6283 Pred = ICmpInst::getSwappedPredicate(Pred);
Chris Lattner562ef782007-06-20 23:46:26 +00006284 }
6285
6286 Value *X = DivI->getOperand(0);
Chris Lattner1dbfd482007-06-21 18:11:19 +00006287 switch (Pred) {
Chris Lattner562ef782007-06-20 23:46:26 +00006288 default: assert(0 && "Unhandled icmp opcode!");
6289 case ICmpInst::ICMP_EQ:
6290 if (LoOverflow && HiOverflow)
6291 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6292 else if (HiOverflow)
Chris Lattner1dbfd482007-06-21 18:11:19 +00006293 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
Chris Lattner562ef782007-06-20 23:46:26 +00006294 ICmpInst::ICMP_UGE, X, LoBound);
6295 else if (LoOverflow)
6296 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6297 ICmpInst::ICMP_ULT, X, HiBound);
6298 else
Chris Lattner1dbfd482007-06-21 18:11:19 +00006299 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
Chris Lattner562ef782007-06-20 23:46:26 +00006300 case ICmpInst::ICMP_NE:
6301 if (LoOverflow && HiOverflow)
6302 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6303 else if (HiOverflow)
Chris Lattner1dbfd482007-06-21 18:11:19 +00006304 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
Chris Lattner562ef782007-06-20 23:46:26 +00006305 ICmpInst::ICMP_ULT, X, LoBound);
6306 else if (LoOverflow)
6307 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6308 ICmpInst::ICMP_UGE, X, HiBound);
6309 else
Chris Lattner1dbfd482007-06-21 18:11:19 +00006310 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
Chris Lattner562ef782007-06-20 23:46:26 +00006311 case ICmpInst::ICMP_ULT:
6312 case ICmpInst::ICMP_SLT:
Chris Lattner1dbfd482007-06-21 18:11:19 +00006313 if (LoOverflow == +1) // Low bound is greater than input range.
6314 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6315 if (LoOverflow == -1) // Low bound is less than input range.
Chris Lattner562ef782007-06-20 23:46:26 +00006316 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
Chris Lattner1dbfd482007-06-21 18:11:19 +00006317 return new ICmpInst(Pred, X, LoBound);
Chris Lattner562ef782007-06-20 23:46:26 +00006318 case ICmpInst::ICMP_UGT:
6319 case ICmpInst::ICMP_SGT:
Chris Lattner1dbfd482007-06-21 18:11:19 +00006320 if (HiOverflow == +1) // High bound greater than input range.
Chris Lattner562ef782007-06-20 23:46:26 +00006321 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
Chris Lattner1dbfd482007-06-21 18:11:19 +00006322 else if (HiOverflow == -1) // High bound less than input range.
6323 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6324 if (Pred == ICmpInst::ICMP_UGT)
Chris Lattner562ef782007-06-20 23:46:26 +00006325 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
6326 else
6327 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
6328 }
6329}
6330
6331
Chris Lattner01deb9d2007-04-03 17:43:25 +00006332/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
6333///
6334Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
6335 Instruction *LHSI,
6336 ConstantInt *RHS) {
6337 const APInt &RHSV = RHS->getValue();
6338
6339 switch (LHSI->getOpcode()) {
Duncan Sands0091bf22007-04-04 06:42:45 +00006340 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
Chris Lattner01deb9d2007-04-03 17:43:25 +00006341 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
6342 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
6343 // fold the xor.
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00006344 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
6345 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Chris Lattner01deb9d2007-04-03 17:43:25 +00006346 Value *CompareVal = LHSI->getOperand(0);
6347
6348 // If the sign bit of the XorCST is not set, there is no change to
6349 // the operation, just stop using the Xor.
6350 if (!XorCST->getValue().isNegative()) {
6351 ICI.setOperand(0, CompareVal);
6352 AddToWorkList(LHSI);
6353 return &ICI;
6354 }
6355
6356 // Was the old condition true if the operand is positive?
6357 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
6358
6359 // If so, the new one isn't.
6360 isTrueIfPositive ^= true;
6361
6362 if (isTrueIfPositive)
6363 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
6364 else
6365 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
6366 }
6367 }
6368 break;
6369 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
6370 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
6371 LHSI->getOperand(0)->hasOneUse()) {
6372 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
6373
6374 // If the LHS is an AND of a truncating cast, we can widen the
6375 // and/compare to be the input width without changing the value
6376 // produced, eliminating a cast.
6377 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
6378 // We can do this transformation if either the AND constant does not
6379 // have its sign bit set or if it is an equality comparison.
6380 // Extending a relational comparison when we're checking the sign
6381 // bit would not work.
6382 if (Cast->hasOneUse() &&
Anton Korobeynikov4aefd6b2008-02-20 12:07:57 +00006383 (ICI.isEquality() ||
6384 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Chris Lattner01deb9d2007-04-03 17:43:25 +00006385 uint32_t BitWidth =
6386 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
6387 APInt NewCST = AndCST->getValue();
6388 NewCST.zext(BitWidth);
6389 APInt NewCI = RHSV;
6390 NewCI.zext(BitWidth);
6391 Instruction *NewAnd =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006392 BinaryOperator::CreateAnd(Cast->getOperand(0),
Chris Lattner01deb9d2007-04-03 17:43:25 +00006393 ConstantInt::get(NewCST),LHSI->getName());
6394 InsertNewInstBefore(NewAnd, ICI);
6395 return new ICmpInst(ICI.getPredicate(), NewAnd,
6396 ConstantInt::get(NewCI));
6397 }
6398 }
6399
6400 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
6401 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
6402 // happens a LOT in code produced by the C front-end, for bitfield
6403 // access.
6404 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
6405 if (Shift && !Shift->isShift())
6406 Shift = 0;
6407
6408 ConstantInt *ShAmt;
6409 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
6410 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
6411 const Type *AndTy = AndCST->getType(); // Type of the and.
6412
6413 // We can fold this as long as we can't shift unknown bits
6414 // into the mask. This can only happen with signed shift
6415 // rights, as they sign-extend.
6416 if (ShAmt) {
6417 bool CanFold = Shift->isLogicalShift();
6418 if (!CanFold) {
6419 // To test for the bad case of the signed shr, see if any
6420 // of the bits shifted in could be tested after the mask.
6421 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
6422 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
6423
6424 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
6425 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
6426 AndCST->getValue()) == 0)
6427 CanFold = true;
6428 }
6429
6430 if (CanFold) {
6431 Constant *NewCst;
6432 if (Shift->getOpcode() == Instruction::Shl)
6433 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
6434 else
6435 NewCst = ConstantExpr::getShl(RHS, ShAmt);
6436
6437 // Check to see if we are shifting out any of the bits being
6438 // compared.
6439 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
6440 // If we shifted bits out, the fold is not going to work out.
6441 // As a special case, check to see if this means that the
6442 // result is always true or false now.
6443 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6444 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6445 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6446 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6447 } else {
6448 ICI.setOperand(1, NewCst);
6449 Constant *NewAndCST;
6450 if (Shift->getOpcode() == Instruction::Shl)
6451 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6452 else
6453 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6454 LHSI->setOperand(1, NewAndCST);
6455 LHSI->setOperand(0, Shift->getOperand(0));
6456 AddToWorkList(Shift); // Shift is dead.
6457 AddUsesToWorkList(ICI);
6458 return &ICI;
6459 }
6460 }
6461 }
6462
6463 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6464 // preferable because it allows the C<<Y expression to be hoisted out
6465 // of a loop if Y is invariant and X is not.
6466 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6467 ICI.isEquality() && !Shift->isArithmeticShift() &&
6468 isa<Instruction>(Shift->getOperand(0))) {
6469 // Compute C << Y.
6470 Value *NS;
6471 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006472 NS = BinaryOperator::CreateShl(AndCST,
Chris Lattner01deb9d2007-04-03 17:43:25 +00006473 Shift->getOperand(1), "tmp");
6474 } else {
6475 // Insert a logical shift.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006476 NS = BinaryOperator::CreateLShr(AndCST,
Chris Lattner01deb9d2007-04-03 17:43:25 +00006477 Shift->getOperand(1), "tmp");
6478 }
6479 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6480
6481 // Compute X & (C << Y).
6482 Instruction *NewAnd =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006483 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Chris Lattner01deb9d2007-04-03 17:43:25 +00006484 InsertNewInstBefore(NewAnd, ICI);
6485
6486 ICI.setOperand(0, NewAnd);
6487 return &ICI;
6488 }
6489 }
6490 break;
6491
Chris Lattnera0141b92007-07-15 20:42:37 +00006492 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6493 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6494 if (!ShAmt) break;
6495
6496 uint32_t TypeBits = RHSV.getBitWidth();
6497
6498 // Check that the shift amount is in range. If not, don't perform
6499 // undefined shifts. When the shift is visited it will be
6500 // simplified.
6501 if (ShAmt->uge(TypeBits))
6502 break;
6503
6504 if (ICI.isEquality()) {
6505 // If we are comparing against bits always shifted out, the
6506 // comparison cannot succeed.
6507 Constant *Comp =
6508 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6509 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6510 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6511 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6512 return ReplaceInstUsesWith(ICI, Cst);
6513 }
6514
6515 if (LHSI->hasOneUse()) {
6516 // Otherwise strength reduce the shift into an and.
6517 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6518 Constant *Mask =
6519 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
Chris Lattner01deb9d2007-04-03 17:43:25 +00006520
Chris Lattnera0141b92007-07-15 20:42:37 +00006521 Instruction *AndI =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006522 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattnera0141b92007-07-15 20:42:37 +00006523 Mask, LHSI->getName()+".mask");
6524 Value *And = InsertNewInstBefore(AndI, ICI);
6525 return new ICmpInst(ICI.getPredicate(), And,
6526 ConstantInt::get(RHSV.lshr(ShAmtVal)));
Chris Lattner01deb9d2007-04-03 17:43:25 +00006527 }
6528 }
Chris Lattnera0141b92007-07-15 20:42:37 +00006529
6530 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6531 bool TrueIfSigned = false;
6532 if (LHSI->hasOneUse() &&
6533 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6534 // (X << 31) <s 0 --> (X&1) != 0
6535 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6536 (TypeBits-ShAmt->getZExtValue()-1));
6537 Instruction *AndI =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006538 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattnera0141b92007-07-15 20:42:37 +00006539 Mask, LHSI->getName()+".mask");
6540 Value *And = InsertNewInstBefore(AndI, ICI);
6541
6542 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6543 And, Constant::getNullValue(And->getType()));
6544 }
Chris Lattner01deb9d2007-04-03 17:43:25 +00006545 break;
Chris Lattnera0141b92007-07-15 20:42:37 +00006546 }
Chris Lattner01deb9d2007-04-03 17:43:25 +00006547
6548 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
Chris Lattnera0141b92007-07-15 20:42:37 +00006549 case Instruction::AShr: {
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006550 // Only handle equality comparisons of shift-by-constant.
Chris Lattnera0141b92007-07-15 20:42:37 +00006551 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006552 if (!ShAmt || !ICI.isEquality()) break;
Chris Lattnera0141b92007-07-15 20:42:37 +00006553
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006554 // Check that the shift amount is in range. If not, don't perform
6555 // undefined shifts. When the shift is visited it will be
6556 // simplified.
6557 uint32_t TypeBits = RHSV.getBitWidth();
6558 if (ShAmt->uge(TypeBits))
6559 break;
6560
6561 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Chris Lattnera0141b92007-07-15 20:42:37 +00006562
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006563 // If we are comparing against bits always shifted out, the
6564 // comparison cannot succeed.
6565 APInt Comp = RHSV << ShAmtVal;
6566 if (LHSI->getOpcode() == Instruction::LShr)
6567 Comp = Comp.lshr(ShAmtVal);
6568 else
6569 Comp = Comp.ashr(ShAmtVal);
6570
6571 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6572 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6573 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6574 return ReplaceInstUsesWith(ICI, Cst);
6575 }
6576
6577 // Otherwise, check to see if the bits shifted out are known to be zero.
6578 // If so, we can compare against the unshifted value:
6579 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengf30752c2008-04-23 00:38:06 +00006580 if (LHSI->hasOneUse() &&
6581 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006582 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6583 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6584 ConstantExpr::getShl(RHS, ShAmt));
6585 }
Chris Lattnera0141b92007-07-15 20:42:37 +00006586
Evan Chengf30752c2008-04-23 00:38:06 +00006587 if (LHSI->hasOneUse()) {
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006588 // Otherwise strength reduce the shift into an and.
6589 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6590 Constant *Mask = ConstantInt::get(Val);
Chris Lattnera0141b92007-07-15 20:42:37 +00006591
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006592 Instruction *AndI =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006593 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006594 Mask, LHSI->getName()+".mask");
6595 Value *And = InsertNewInstBefore(AndI, ICI);
6596 return new ICmpInst(ICI.getPredicate(), And,
6597 ConstantExpr::getShl(RHS, ShAmt));
Chris Lattner01deb9d2007-04-03 17:43:25 +00006598 }
6599 break;
Chris Lattnera0141b92007-07-15 20:42:37 +00006600 }
Chris Lattner01deb9d2007-04-03 17:43:25 +00006601
6602 case Instruction::SDiv:
6603 case Instruction::UDiv:
6604 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6605 // Fold this div into the comparison, producing a range check.
6606 // Determine, based on the divide type, what the range is being
6607 // checked. If there is an overflow on the low or high side, remember
6608 // it, otherwise compute the range [low, hi) bounding the new value.
6609 // See: InsertRangeTest above for the kinds of replacements possible.
Chris Lattner562ef782007-06-20 23:46:26 +00006610 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6611 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6612 DivRHS))
6613 return R;
Chris Lattner01deb9d2007-04-03 17:43:25 +00006614 break;
Nick Lewycky5be29202008-02-03 16:33:09 +00006615
6616 case Instruction::Add:
6617 // Fold: icmp pred (add, X, C1), C2
6618
6619 if (!ICI.isEquality()) {
6620 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6621 if (!LHSC) break;
6622 const APInt &LHSV = LHSC->getValue();
6623
6624 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6625 .subtract(LHSV);
6626
6627 if (ICI.isSignedPredicate()) {
6628 if (CR.getLower().isSignBit()) {
6629 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6630 ConstantInt::get(CR.getUpper()));
6631 } else if (CR.getUpper().isSignBit()) {
6632 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6633 ConstantInt::get(CR.getLower()));
6634 }
6635 } else {
6636 if (CR.getLower().isMinValue()) {
6637 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6638 ConstantInt::get(CR.getUpper()));
6639 } else if (CR.getUpper().isMinValue()) {
6640 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6641 ConstantInt::get(CR.getLower()));
6642 }
6643 }
6644 }
6645 break;
Chris Lattner01deb9d2007-04-03 17:43:25 +00006646 }
6647
6648 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6649 if (ICI.isEquality()) {
6650 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6651
6652 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6653 // the second operand is a constant, simplify a bit.
6654 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6655 switch (BO->getOpcode()) {
6656 case Instruction::SRem:
6657 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6658 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6659 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6660 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6661 Instruction *NewRem =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006662 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Chris Lattner01deb9d2007-04-03 17:43:25 +00006663 BO->getName());
6664 InsertNewInstBefore(NewRem, ICI);
6665 return new ICmpInst(ICI.getPredicate(), NewRem,
6666 Constant::getNullValue(BO->getType()));
6667 }
6668 }
6669 break;
6670 case Instruction::Add:
6671 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6672 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6673 if (BO->hasOneUse())
6674 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6675 Subtract(RHS, BOp1C));
6676 } else if (RHSV == 0) {
6677 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6678 // efficiently invertible, or if the add has just this one use.
6679 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6680
6681 if (Value *NegVal = dyn_castNegVal(BOp1))
6682 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6683 else if (Value *NegVal = dyn_castNegVal(BOp0))
6684 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6685 else if (BO->hasOneUse()) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006686 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Chris Lattner01deb9d2007-04-03 17:43:25 +00006687 InsertNewInstBefore(Neg, ICI);
6688 Neg->takeName(BO);
6689 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6690 }
6691 }
6692 break;
6693 case Instruction::Xor:
6694 // For the xor case, we can xor two constants together, eliminating
6695 // the explicit xor.
6696 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6697 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6698 ConstantExpr::getXor(RHS, BOC));
6699
6700 // FALLTHROUGH
6701 case Instruction::Sub:
6702 // Replace (([sub|xor] A, B) != 0) with (A != B)
6703 if (RHSV == 0)
6704 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6705 BO->getOperand(1));
6706 break;
6707
6708 case Instruction::Or:
6709 // If bits are being or'd in that are not present in the constant we
6710 // are comparing against, then the comparison could never succeed!
6711 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6712 Constant *NotCI = ConstantExpr::getNot(RHS);
6713 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6714 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6715 isICMP_NE));
6716 }
6717 break;
6718
6719 case Instruction::And:
6720 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6721 // If bits are being compared against that are and'd out, then the
6722 // comparison can never succeed!
6723 if ((RHSV & ~BOC->getValue()) != 0)
6724 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6725 isICMP_NE));
6726
6727 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6728 if (RHS == BOC && RHSV.isPowerOf2())
6729 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6730 ICmpInst::ICMP_NE, LHSI,
6731 Constant::getNullValue(RHS->getType()));
6732
6733 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattner833f25d2008-06-02 01:29:46 +00006734 if (BOC->getValue().isSignBit()) {
Chris Lattner01deb9d2007-04-03 17:43:25 +00006735 Value *X = BO->getOperand(0);
6736 Constant *Zero = Constant::getNullValue(X->getType());
6737 ICmpInst::Predicate pred = isICMP_NE ?
6738 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6739 return new ICmpInst(pred, X, Zero);
6740 }
6741
6742 // ((X & ~7) == 0) --> X < 8
6743 if (RHSV == 0 && isHighOnes(BOC)) {
6744 Value *X = BO->getOperand(0);
6745 Constant *NegX = ConstantExpr::getNeg(BOC);
6746 ICmpInst::Predicate pred = isICMP_NE ?
6747 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6748 return new ICmpInst(pred, X, NegX);
6749 }
6750 }
6751 default: break;
6752 }
6753 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6754 // Handle icmp {eq|ne} <intrinsic>, intcst.
6755 if (II->getIntrinsicID() == Intrinsic::bswap) {
6756 AddToWorkList(II);
6757 ICI.setOperand(0, II->getOperand(1));
6758 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6759 return &ICI;
6760 }
6761 }
6762 } else { // Not a ICMP_EQ/ICMP_NE
Chris Lattnere34e9a22007-04-14 23:32:02 +00006763 // If the LHS is a cast from an integral value of the same size,
6764 // then since we know the RHS is a constant, try to simlify.
Chris Lattner01deb9d2007-04-03 17:43:25 +00006765 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6766 Value *CastOp = Cast->getOperand(0);
6767 const Type *SrcTy = CastOp->getType();
6768 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6769 if (SrcTy->isInteger() &&
6770 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6771 // If this is an unsigned comparison, try to make the comparison use
6772 // smaller constant values.
6773 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6774 // X u< 128 => X s> -1
6775 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6776 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6777 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6778 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6779 // X u> 127 => X s< 0
6780 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6781 Constant::getNullValue(SrcTy));
6782 }
6783 }
6784 }
6785 }
6786 return 0;
6787}
6788
6789/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6790/// We only handle extending casts so far.
6791///
Reid Spencere4d87aa2006-12-23 06:05:41 +00006792Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6793 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
Reid Spencer3da59db2006-11-27 01:05:10 +00006794 Value *LHSCIOp = LHSCI->getOperand(0);
6795 const Type *SrcTy = LHSCIOp->getType();
Reid Spencere4d87aa2006-12-23 06:05:41 +00006796 const Type *DestTy = LHSCI->getType();
Chris Lattner484d3cf2005-04-24 06:59:08 +00006797 Value *RHSCIOp;
6798
Chris Lattner8c756c12007-05-05 22:41:33 +00006799 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6800 // integer type is the same size as the pointer type.
6801 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6802 getTargetData().getPointerSizeInBits() ==
6803 cast<IntegerType>(DestTy)->getBitWidth()) {
6804 Value *RHSOp = 0;
6805 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
Chris Lattner6f6f5122007-05-06 07:24:03 +00006806 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
Chris Lattner8c756c12007-05-05 22:41:33 +00006807 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6808 RHSOp = RHSC->getOperand(0);
6809 // If the pointer types don't match, insert a bitcast.
6810 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner6d0339d2008-01-13 22:23:22 +00006811 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Chris Lattner8c756c12007-05-05 22:41:33 +00006812 }
6813
6814 if (RHSOp)
6815 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6816 }
6817
6818 // The code below only handles extension cast instructions, so far.
6819 // Enforce this.
Reid Spencere4d87aa2006-12-23 06:05:41 +00006820 if (LHSCI->getOpcode() != Instruction::ZExt &&
6821 LHSCI->getOpcode() != Instruction::SExt)
Chris Lattnerb352fa52005-01-17 03:20:02 +00006822 return 0;
6823
Reid Spencere4d87aa2006-12-23 06:05:41 +00006824 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6825 bool isSignedCmp = ICI.isSignedPredicate();
Chris Lattner484d3cf2005-04-24 06:59:08 +00006826
Reid Spencere4d87aa2006-12-23 06:05:41 +00006827 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
Chris Lattner484d3cf2005-04-24 06:59:08 +00006828 // Not an extension from the same type?
6829 RHSCIOp = CI->getOperand(0);
Reid Spencere4d87aa2006-12-23 06:05:41 +00006830 if (RHSCIOp->getType() != LHSCIOp->getType())
6831 return 0;
Chris Lattnera5c5e772007-01-13 23:11:38 +00006832
Nick Lewycky4189a532008-01-28 03:48:02 +00006833 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Chris Lattnera5c5e772007-01-13 23:11:38 +00006834 // and the other is a zext), then we can't handle this.
6835 if (CI->getOpcode() != LHSCI->getOpcode())
6836 return 0;
6837
Nick Lewycky4189a532008-01-28 03:48:02 +00006838 // Deal with equality cases early.
6839 if (ICI.isEquality())
6840 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6841
6842 // A signed comparison of sign extended values simplifies into a
6843 // signed comparison.
6844 if (isSignedCmp && isSignedExt)
6845 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6846
6847 // The other three cases all fold into an unsigned comparison.
6848 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Reid Spencer6731d5c2004-11-28 21:31:15 +00006849 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00006850
Reid Spencere4d87aa2006-12-23 06:05:41 +00006851 // If we aren't dealing with a constant on the RHS, exit early
6852 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6853 if (!CI)
6854 return 0;
6855
6856 // Compute the constant that would happen if we truncated to SrcTy then
6857 // reextended to DestTy.
6858 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6859 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6860
6861 // If the re-extended constant didn't change...
6862 if (Res2 == CI) {
6863 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6864 // For example, we might have:
6865 // %A = sext short %X to uint
6866 // %B = icmp ugt uint %A, 1330
6867 // It is incorrect to transform this into
6868 // %B = icmp ugt short %X, 1330
6869 // because %A may have negative value.
6870 //
Chris Lattnerf2991842008-07-11 04:09:09 +00006871 // However, we allow this when the compare is EQ/NE, because they are
6872 // signless.
6873 if (isSignedExt == isSignedCmp || ICI.isEquality())
Reid Spencere4d87aa2006-12-23 06:05:41 +00006874 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
Chris Lattnerf2991842008-07-11 04:09:09 +00006875 return 0;
Reid Spencere4d87aa2006-12-23 06:05:41 +00006876 }
6877
6878 // The re-extended constant changed so the constant cannot be represented
6879 // in the shorter type. Consequently, we cannot emit a simple comparison.
6880
6881 // First, handle some easy cases. We know the result cannot be equal at this
6882 // point so handle the ICI.isEquality() cases
6883 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006884 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
Reid Spencere4d87aa2006-12-23 06:05:41 +00006885 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006886 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
Reid Spencere4d87aa2006-12-23 06:05:41 +00006887
6888 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6889 // should have been folded away previously and not enter in here.
6890 Value *Result;
6891 if (isSignedCmp) {
6892 // We're performing a signed comparison.
Reid Spencer0460fb32007-03-22 20:36:03 +00006893 if (cast<ConstantInt>(CI)->getValue().isNegative())
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006894 Result = ConstantInt::getFalse(); // X < (small) --> false
Reid Spencere4d87aa2006-12-23 06:05:41 +00006895 else
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006896 Result = ConstantInt::getTrue(); // X < (large) --> true
Reid Spencere4d87aa2006-12-23 06:05:41 +00006897 } else {
6898 // We're performing an unsigned comparison.
6899 if (isSignedExt) {
6900 // We're performing an unsigned comp with a sign extended value.
6901 // This is true if the input is >= 0. [aka >s -1]
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006902 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
Reid Spencere4d87aa2006-12-23 06:05:41 +00006903 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6904 NegOne, ICI.getName()), ICI);
6905 } else {
6906 // Unsigned extend & unsigned compare -> always true.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006907 Result = ConstantInt::getTrue();
Reid Spencere4d87aa2006-12-23 06:05:41 +00006908 }
6909 }
6910
6911 // Finally, return the value computed.
6912 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
Chris Lattnerf2991842008-07-11 04:09:09 +00006913 ICI.getPredicate() == ICmpInst::ICMP_SLT)
Reid Spencere4d87aa2006-12-23 06:05:41 +00006914 return ReplaceInstUsesWith(ICI, Result);
Chris Lattnerf2991842008-07-11 04:09:09 +00006915
6916 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6917 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6918 "ICmp should be folded!");
6919 if (Constant *CI = dyn_cast<Constant>(Result))
6920 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6921 return BinaryOperator::CreateNot(Result);
Chris Lattner484d3cf2005-04-24 06:59:08 +00006922}
Chris Lattner3f5b8772002-05-06 16:14:14 +00006923
Reid Spencer832254e2007-02-02 02:16:23 +00006924Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6925 return commonShiftTransforms(I);
6926}
6927
6928Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6929 return commonShiftTransforms(I);
6930}
6931
6932Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattner348f6652007-12-06 01:59:46 +00006933 if (Instruction *R = commonShiftTransforms(I))
6934 return R;
6935
6936 Value *Op0 = I.getOperand(0);
6937
6938 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6939 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6940 if (CSI->isAllOnesValue())
6941 return ReplaceInstUsesWith(I, CSI);
6942
6943 // See if we can turn a signed shr into an unsigned shr.
Nate Begeman5bc1ea02008-07-29 15:49:41 +00006944 if (!isa<VectorType>(I.getType()) &&
6945 MaskedValueIsZero(Op0,
Chris Lattner348f6652007-12-06 01:59:46 +00006946 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006947 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattner348f6652007-12-06 01:59:46 +00006948
6949 return 0;
Reid Spencer832254e2007-02-02 02:16:23 +00006950}
6951
6952Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6953 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
Chris Lattner7e708292002-06-25 16:13:24 +00006954 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00006955
6956 // shl X, 0 == X and shr X, 0 == X
6957 // shl 0, X == 0 and shr 0, X == 0
Reid Spencer832254e2007-02-02 02:16:23 +00006958 if (Op1 == Constant::getNullValue(Op1->getType()) ||
Chris Lattner233f7dc2002-08-12 21:17:25 +00006959 Op0 == Constant::getNullValue(Op0->getType()))
6960 return ReplaceInstUsesWith(I, Op0);
Chris Lattner8d6bbdb2006-02-12 08:07:37 +00006961
Reid Spencere4d87aa2006-12-23 06:05:41 +00006962 if (isa<UndefValue>(Op0)) {
6963 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
Chris Lattner79a564c2004-10-16 23:28:04 +00006964 return ReplaceInstUsesWith(I, Op0);
Reid Spencere4d87aa2006-12-23 06:05:41 +00006965 else // undef << X -> 0, undef >>u X -> 0
Chris Lattnere87597f2004-10-16 18:11:37 +00006966 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6967 }
6968 if (isa<UndefValue>(Op1)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00006969 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6970 return ReplaceInstUsesWith(I, Op0);
6971 else // X << undef, X >>u undef -> 0
Chris Lattnere87597f2004-10-16 18:11:37 +00006972 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnere87597f2004-10-16 18:11:37 +00006973 }
6974
Chris Lattner2eefe512004-04-09 19:05:30 +00006975 // Try to fold constant and into select arguments.
6976 if (isa<Constant>(Op0))
6977 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner6e7ba452005-01-01 16:22:27 +00006978 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00006979 return R;
6980
Reid Spencerb83eb642006-10-20 07:07:24 +00006981 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
Reid Spencerc5b206b2006-12-31 05:48:39 +00006982 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6983 return Res;
Chris Lattner4d5542c2006-01-06 07:12:35 +00006984 return 0;
6985}
6986
Reid Spencerb83eb642006-10-20 07:07:24 +00006987Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
Reid Spencer832254e2007-02-02 02:16:23 +00006988 BinaryOperator &I) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00006989 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner4d5542c2006-01-06 07:12:35 +00006990
Chris Lattner8d6bbdb2006-02-12 08:07:37 +00006991 // See if we can simplify any instructions used by the instruction whose sole
6992 // purpose is to compute bits we don't care about.
Reid Spencerb35ae032007-03-23 18:46:34 +00006993 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6994 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6995 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
Chris Lattner8d6bbdb2006-02-12 08:07:37 +00006996 KnownZero, KnownOne))
6997 return &I;
6998
Chris Lattner4d5542c2006-01-06 07:12:35 +00006999 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
7000 // of a signed value.
7001 //
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00007002 if (Op1->uge(TypeBits)) {
Chris Lattner0737c242007-02-02 05:29:55 +00007003 if (I.getOpcode() != Instruction::AShr)
Chris Lattner4d5542c2006-01-06 07:12:35 +00007004 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
7005 else {
Chris Lattner0737c242007-02-02 05:29:55 +00007006 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
Chris Lattner4d5542c2006-01-06 07:12:35 +00007007 return &I;
Chris Lattner8adac752004-02-23 20:30:06 +00007008 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00007009 }
7010
7011 // ((X*C1) << C2) == (X * (C1 << C2))
7012 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
7013 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
7014 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007015 return BinaryOperator::CreateMul(BO->getOperand(0),
Chris Lattner4d5542c2006-01-06 07:12:35 +00007016 ConstantExpr::getShl(BOOp, Op1));
7017
7018 // Try to fold constant and into select arguments.
7019 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
7020 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
7021 return R;
7022 if (isa<PHINode>(Op0))
7023 if (Instruction *NV = FoldOpIntoPhi(I))
7024 return NV;
7025
Chris Lattner8999dd32007-12-22 09:07:47 +00007026 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
7027 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
7028 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
7029 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
7030 // place. Don't try to do this transformation in this case. Also, we
7031 // require that the input operand is a shift-by-constant so that we have
7032 // confidence that the shifts will get folded together. We could do this
7033 // xform in more cases, but it is unlikely to be profitable.
7034 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
7035 isa<ConstantInt>(TrOp->getOperand(1))) {
7036 // Okay, we'll do this xform. Make the shift of shift.
7037 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007038 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattner8999dd32007-12-22 09:07:47 +00007039 I.getName());
7040 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
7041
7042 // For logical shifts, the truncation has the effect of making the high
7043 // part of the register be zeros. Emulate this by inserting an AND to
7044 // clear the top bits as needed. This 'and' will usually be zapped by
7045 // other xforms later if dead.
7046 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
7047 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
7048 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
7049
7050 // The mask we constructed says what the trunc would do if occurring
7051 // between the shifts. We want to know the effect *after* the second
7052 // shift. We know that it is a logical shift by a constant, so adjust the
7053 // mask as appropriate.
7054 if (I.getOpcode() == Instruction::Shl)
7055 MaskV <<= Op1->getZExtValue();
7056 else {
7057 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
7058 MaskV = MaskV.lshr(Op1->getZExtValue());
7059 }
7060
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007061 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattner8999dd32007-12-22 09:07:47 +00007062 TI->getName());
7063 InsertNewInstBefore(And, I); // shift1 & 0x00FF
7064
7065 // Return the value truncated to the interesting size.
7066 return new TruncInst(And, I.getType());
7067 }
7068 }
7069
Chris Lattner4d5542c2006-01-06 07:12:35 +00007070 if (Op0->hasOneUse()) {
Chris Lattner4d5542c2006-01-06 07:12:35 +00007071 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
7072 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7073 Value *V1, *V2;
7074 ConstantInt *CC;
7075 switch (Op0BO->getOpcode()) {
Chris Lattner11021cb2005-09-18 05:12:10 +00007076 default: break;
7077 case Instruction::Add:
7078 case Instruction::And:
7079 case Instruction::Or:
Reid Spencera07cb7d2007-02-02 14:41:37 +00007080 case Instruction::Xor: {
Chris Lattner11021cb2005-09-18 05:12:10 +00007081 // These operators commute.
7082 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner150f12a2005-09-18 06:30:59 +00007083 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
Chris Lattnercb504b92008-11-16 05:38:51 +00007084 match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007085 Instruction *YS = BinaryOperator::CreateShl(
Chris Lattner4d5542c2006-01-06 07:12:35 +00007086 Op0BO->getOperand(0), Op1,
Chris Lattner150f12a2005-09-18 06:30:59 +00007087 Op0BO->getName());
7088 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner9a4cacb2006-02-09 07:41:14 +00007089 Instruction *X =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007090 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Chris Lattner9a4cacb2006-02-09 07:41:14 +00007091 Op0BO->getOperand(1)->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00007092 InsertNewInstBefore(X, I); // (X + (Y << C))
Zhou Sheng302748d2007-03-30 17:20:39 +00007093 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007094 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Zhou Sheng90b96812007-03-30 05:45:18 +00007095 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
Chris Lattner150f12a2005-09-18 06:30:59 +00007096 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00007097
Chris Lattner150f12a2005-09-18 06:30:59 +00007098 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
Reid Spencera07cb7d2007-02-02 14:41:37 +00007099 Value *Op0BOOp1 = Op0BO->getOperand(1);
Chris Lattner3c698492007-03-05 00:11:19 +00007100 if (isLeftShift && Op0BOOp1->hasOneUse() &&
Reid Spencera07cb7d2007-02-02 14:41:37 +00007101 match(Op0BOOp1,
Chris Lattnercb504b92008-11-16 05:38:51 +00007102 m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
7103 m_ConstantInt(CC))) &&
7104 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007105 Instruction *YS = BinaryOperator::CreateShl(
Reid Spencer832254e2007-02-02 02:16:23 +00007106 Op0BO->getOperand(0), Op1,
7107 Op0BO->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00007108 InsertNewInstBefore(YS, I); // (Y << C)
7109 Instruction *XM =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007110 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner150f12a2005-09-18 06:30:59 +00007111 V1->getName()+".mask");
7112 InsertNewInstBefore(XM, I); // X & (CC << C)
7113
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007114 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Chris Lattner150f12a2005-09-18 06:30:59 +00007115 }
Reid Spencera07cb7d2007-02-02 14:41:37 +00007116 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00007117
Reid Spencera07cb7d2007-02-02 14:41:37 +00007118 // FALL THROUGH.
7119 case Instruction::Sub: {
Chris Lattner11021cb2005-09-18 05:12:10 +00007120 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner150f12a2005-09-18 06:30:59 +00007121 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
Chris Lattnercb504b92008-11-16 05:38:51 +00007122 match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007123 Instruction *YS = BinaryOperator::CreateShl(
Reid Spencer832254e2007-02-02 02:16:23 +00007124 Op0BO->getOperand(1), Op1,
7125 Op0BO->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00007126 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner9a4cacb2006-02-09 07:41:14 +00007127 Instruction *X =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007128 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Chris Lattner9a4cacb2006-02-09 07:41:14 +00007129 Op0BO->getOperand(0)->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00007130 InsertNewInstBefore(X, I); // (X + (Y << C))
Zhou Sheng302748d2007-03-30 17:20:39 +00007131 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007132 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Zhou Sheng90b96812007-03-30 05:45:18 +00007133 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
Chris Lattner150f12a2005-09-18 06:30:59 +00007134 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00007135
Chris Lattner13d4ab42006-05-31 21:14:00 +00007136 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
Chris Lattner150f12a2005-09-18 06:30:59 +00007137 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
7138 match(Op0BO->getOperand(0),
7139 m_And(m_Shr(m_Value(V1), m_Value(V2)),
Chris Lattner4d5542c2006-01-06 07:12:35 +00007140 m_ConstantInt(CC))) && V2 == Op1 &&
Chris Lattner9a4cacb2006-02-09 07:41:14 +00007141 cast<BinaryOperator>(Op0BO->getOperand(0))
7142 ->getOperand(0)->hasOneUse()) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007143 Instruction *YS = BinaryOperator::CreateShl(
Reid Spencer832254e2007-02-02 02:16:23 +00007144 Op0BO->getOperand(1), Op1,
7145 Op0BO->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00007146 InsertNewInstBefore(YS, I); // (Y << C)
7147 Instruction *XM =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007148 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner150f12a2005-09-18 06:30:59 +00007149 V1->getName()+".mask");
7150 InsertNewInstBefore(XM, I); // X & (CC << C)
7151
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007152 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Chris Lattner150f12a2005-09-18 06:30:59 +00007153 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00007154
Chris Lattner11021cb2005-09-18 05:12:10 +00007155 break;
Reid Spencera07cb7d2007-02-02 14:41:37 +00007156 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00007157 }
7158
7159
7160 // If the operand is an bitwise operator with a constant RHS, and the
7161 // shift is the only use, we can pull it out of the shift.
7162 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
7163 bool isValid = true; // Valid only for And, Or, Xor
7164 bool highBitSet = false; // Transform if high bit of constant set?
7165
7166 switch (Op0BO->getOpcode()) {
Chris Lattnerdf17af12003-08-12 21:53:41 +00007167 default: isValid = false; break; // Do not perform transform!
Chris Lattner1f7e1602004-10-08 03:46:20 +00007168 case Instruction::Add:
7169 isValid = isLeftShift;
7170 break;
Chris Lattnerdf17af12003-08-12 21:53:41 +00007171 case Instruction::Or:
7172 case Instruction::Xor:
7173 highBitSet = false;
7174 break;
7175 case Instruction::And:
7176 highBitSet = true;
7177 break;
Chris Lattner4d5542c2006-01-06 07:12:35 +00007178 }
7179
7180 // If this is a signed shift right, and the high bit is modified
7181 // by the logical operation, do not perform the transformation.
7182 // The highBitSet boolean indicates the value of the high bit of
7183 // the constant which would cause it to be modified for this
7184 // operation.
7185 //
Chris Lattnerc95ba442007-12-06 06:25:04 +00007186 if (isValid && I.getOpcode() == Instruction::AShr)
Zhou Shenge9e03f62007-03-28 15:02:20 +00007187 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Chris Lattner4d5542c2006-01-06 07:12:35 +00007188
7189 if (isValid) {
7190 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
7191
7192 Instruction *NewShift =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007193 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Chris Lattner4d5542c2006-01-06 07:12:35 +00007194 InsertNewInstBefore(NewShift, I);
Chris Lattner6934a042007-02-11 01:23:03 +00007195 NewShift->takeName(Op0BO);
Chris Lattner4d5542c2006-01-06 07:12:35 +00007196
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007197 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Chris Lattner4d5542c2006-01-06 07:12:35 +00007198 NewRHS);
7199 }
7200 }
7201 }
7202 }
7203
Chris Lattnerad0124c2006-01-06 07:52:12 +00007204 // Find out if this is a shift of a shift by a constant.
Reid Spencer832254e2007-02-02 02:16:23 +00007205 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
7206 if (ShiftOp && !ShiftOp->isShift())
7207 ShiftOp = 0;
Chris Lattnerad0124c2006-01-06 07:52:12 +00007208
Reid Spencerb83eb642006-10-20 07:07:24 +00007209 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
Reid Spencerb83eb642006-10-20 07:07:24 +00007210 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00007211 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
7212 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
Chris Lattnerb87056f2007-02-05 00:57:54 +00007213 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
7214 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
7215 Value *X = ShiftOp->getOperand(0);
Chris Lattnerad0124c2006-01-06 07:52:12 +00007216
Zhou Sheng4351c642007-04-02 08:20:41 +00007217 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
Reid Spencerb35ae032007-03-23 18:46:34 +00007218 if (AmtSum > TypeBits)
7219 AmtSum = TypeBits;
Chris Lattnerb87056f2007-02-05 00:57:54 +00007220
7221 const IntegerType *Ty = cast<IntegerType>(I.getType());
7222
7223 // Check for (X << c1) << c2 and (X >> c1) >> c2
Chris Lattner7f3da2d2007-02-03 23:28:07 +00007224 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007225 return BinaryOperator::Create(I.getOpcode(), X,
Chris Lattnerb87056f2007-02-05 00:57:54 +00007226 ConstantInt::get(Ty, AmtSum));
7227 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
7228 I.getOpcode() == Instruction::AShr) {
7229 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007230 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Chris Lattnerb87056f2007-02-05 00:57:54 +00007231 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
7232 I.getOpcode() == Instruction::LShr) {
7233 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
7234 Instruction *Shift =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007235 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Chris Lattnerb87056f2007-02-05 00:57:54 +00007236 InsertNewInstBefore(Shift, I);
7237
Zhou Shenge9e03f62007-03-28 15:02:20 +00007238 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007239 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Chris Lattnerad0124c2006-01-06 07:52:12 +00007240 }
7241
Chris Lattnerb87056f2007-02-05 00:57:54 +00007242 // Okay, if we get here, one shift must be left, and the other shift must be
7243 // right. See if the amounts are equal.
7244 if (ShiftAmt1 == ShiftAmt2) {
7245 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
7246 if (I.getOpcode() == Instruction::Shl) {
Reid Spencer55702aa2007-03-25 21:11:44 +00007247 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007248 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Chris Lattnerb87056f2007-02-05 00:57:54 +00007249 }
7250 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
7251 if (I.getOpcode() == Instruction::LShr) {
Zhou Sheng3a507fd2007-04-01 17:13:37 +00007252 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007253 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Chris Lattnerb87056f2007-02-05 00:57:54 +00007254 }
7255 // We can simplify ((X << C) >>s C) into a trunc + sext.
7256 // NOTE: we could do this for any C, but that would make 'unusual' integer
7257 // types. For now, just stick to ones well-supported by the code
7258 // generators.
7259 const Type *SExtType = 0;
7260 switch (Ty->getBitWidth() - ShiftAmt1) {
Zhou Shenge9e03f62007-03-28 15:02:20 +00007261 case 1 :
7262 case 8 :
7263 case 16 :
7264 case 32 :
7265 case 64 :
7266 case 128:
7267 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
7268 break;
Chris Lattnerb87056f2007-02-05 00:57:54 +00007269 default: break;
7270 }
7271 if (SExtType) {
7272 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
7273 InsertNewInstBefore(NewTrunc, I);
7274 return new SExtInst(NewTrunc, Ty);
7275 }
7276 // Otherwise, we can't handle it yet.
7277 } else if (ShiftAmt1 < ShiftAmt2) {
Zhou Sheng4351c642007-04-02 08:20:41 +00007278 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
Chris Lattnerad0124c2006-01-06 07:52:12 +00007279
Chris Lattnerb0b991a2007-02-05 05:57:49 +00007280 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
Chris Lattnerb87056f2007-02-05 00:57:54 +00007281 if (I.getOpcode() == Instruction::Shl) {
7282 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7283 ShiftOp->getOpcode() == Instruction::AShr);
Chris Lattnere8d56c52006-01-07 01:32:28 +00007284 Instruction *Shift =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007285 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Chris Lattnere8d56c52006-01-07 01:32:28 +00007286 InsertNewInstBefore(Shift, I);
7287
Reid Spencer55702aa2007-03-25 21:11:44 +00007288 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007289 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Chris Lattnerad0124c2006-01-06 07:52:12 +00007290 }
Chris Lattnerb87056f2007-02-05 00:57:54 +00007291
Chris Lattnerb0b991a2007-02-05 05:57:49 +00007292 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
Chris Lattnerb87056f2007-02-05 00:57:54 +00007293 if (I.getOpcode() == Instruction::LShr) {
7294 assert(ShiftOp->getOpcode() == Instruction::Shl);
7295 Instruction *Shift =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007296 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Chris Lattnerb87056f2007-02-05 00:57:54 +00007297 InsertNewInstBefore(Shift, I);
Chris Lattnerad0124c2006-01-06 07:52:12 +00007298
Reid Spencerd5e30f02007-03-26 17:18:58 +00007299 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007300 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Chris Lattner11021cb2005-09-18 05:12:10 +00007301 }
Chris Lattnerb87056f2007-02-05 00:57:54 +00007302
7303 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
7304 } else {
7305 assert(ShiftAmt2 < ShiftAmt1);
Zhou Sheng4351c642007-04-02 08:20:41 +00007306 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
Chris Lattnerb87056f2007-02-05 00:57:54 +00007307
Chris Lattnerb0b991a2007-02-05 05:57:49 +00007308 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
Chris Lattnerb87056f2007-02-05 00:57:54 +00007309 if (I.getOpcode() == Instruction::Shl) {
7310 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7311 ShiftOp->getOpcode() == Instruction::AShr);
7312 Instruction *Shift =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007313 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Chris Lattnerb87056f2007-02-05 00:57:54 +00007314 ConstantInt::get(Ty, ShiftDiff));
7315 InsertNewInstBefore(Shift, I);
7316
Reid Spencer55702aa2007-03-25 21:11:44 +00007317 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007318 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Chris Lattnerb87056f2007-02-05 00:57:54 +00007319 }
7320
Chris Lattnerb0b991a2007-02-05 05:57:49 +00007321 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
Chris Lattnerb87056f2007-02-05 00:57:54 +00007322 if (I.getOpcode() == Instruction::LShr) {
7323 assert(ShiftOp->getOpcode() == Instruction::Shl);
7324 Instruction *Shift =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007325 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Chris Lattnerb87056f2007-02-05 00:57:54 +00007326 InsertNewInstBefore(Shift, I);
7327
Reid Spencer68d27cf2007-03-26 23:45:51 +00007328 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007329 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Chris Lattnerb87056f2007-02-05 00:57:54 +00007330 }
7331
7332 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
Chris Lattner6e7ba452005-01-01 16:22:27 +00007333 }
Chris Lattnerad0124c2006-01-06 07:52:12 +00007334 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00007335 return 0;
7336}
7337
Chris Lattnera1be5662002-05-02 17:06:02 +00007338
Chris Lattnercfd65102005-10-29 04:36:15 +00007339/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
7340/// expression. If so, decompose it, returning some value X, such that Val is
7341/// X*Scale+Offset.
7342///
7343static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
Jeff Cohen86796be2007-04-04 16:58:57 +00007344 int &Offset) {
Reid Spencerc5b206b2006-12-31 05:48:39 +00007345 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
Reid Spencerb83eb642006-10-20 07:07:24 +00007346 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
Reid Spencerc5b206b2006-12-31 05:48:39 +00007347 Offset = CI->getZExtValue();
Chris Lattner6a94de22007-10-12 05:30:59 +00007348 Scale = 0;
Reid Spencerc5b206b2006-12-31 05:48:39 +00007349 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattner6a94de22007-10-12 05:30:59 +00007350 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
7351 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
7352 if (I->getOpcode() == Instruction::Shl) {
7353 // This is a value scaled by '1 << the shift amt'.
7354 Scale = 1U << RHS->getZExtValue();
7355 Offset = 0;
7356 return I->getOperand(0);
7357 } else if (I->getOpcode() == Instruction::Mul) {
7358 // This value is scaled by 'RHS'.
7359 Scale = RHS->getZExtValue();
7360 Offset = 0;
7361 return I->getOperand(0);
7362 } else if (I->getOpcode() == Instruction::Add) {
7363 // We have X+C. Check to see if we really have (X*C2)+C1,
7364 // where C1 is divisible by C2.
7365 unsigned SubScale;
7366 Value *SubVal =
7367 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
7368 Offset += RHS->getZExtValue();
7369 Scale = SubScale;
7370 return SubVal;
Chris Lattnercfd65102005-10-29 04:36:15 +00007371 }
7372 }
7373 }
7374
7375 // Otherwise, we can't look past this.
7376 Scale = 1;
7377 Offset = 0;
7378 return Val;
7379}
7380
7381
Chris Lattnerb3f83972005-10-24 06:03:58 +00007382/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
7383/// try to eliminate the cast by moving the type information into the alloc.
Chris Lattnerd3e28342007-04-27 17:44:50 +00007384Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
Chris Lattnerb3f83972005-10-24 06:03:58 +00007385 AllocationInst &AI) {
Chris Lattnerd3e28342007-04-27 17:44:50 +00007386 const PointerType *PTy = cast<PointerType>(CI.getType());
Chris Lattnerb3f83972005-10-24 06:03:58 +00007387
Chris Lattnerb53c2382005-10-24 06:22:12 +00007388 // Remove any uses of AI that are dead.
7389 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
Chris Lattner535014f2007-02-15 22:52:10 +00007390
Chris Lattnerb53c2382005-10-24 06:22:12 +00007391 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
7392 Instruction *User = cast<Instruction>(*UI++);
7393 if (isInstructionTriviallyDead(User)) {
7394 while (UI != E && *UI == User)
7395 ++UI; // If this instruction uses AI more than once, don't break UI.
7396
Chris Lattnerb53c2382005-10-24 06:22:12 +00007397 ++NumDeadInst;
Bill Wendlingb7427032006-11-26 09:46:52 +00007398 DOUT << "IC: DCE: " << *User;
Chris Lattnerf22a5c62007-03-02 19:59:19 +00007399 EraseInstFromFunction(*User);
Chris Lattnerb53c2382005-10-24 06:22:12 +00007400 }
7401 }
7402
Chris Lattnerb3f83972005-10-24 06:03:58 +00007403 // Get the type really allocated and the type casted to.
7404 const Type *AllocElTy = AI.getAllocatedType();
7405 const Type *CastElTy = PTy->getElementType();
7406 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
Chris Lattner18e78bb2005-10-24 06:26:18 +00007407
Chris Lattnerd2b7cec2007-02-14 05:52:17 +00007408 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
7409 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
Chris Lattner18e78bb2005-10-24 06:26:18 +00007410 if (CastElTyAlign < AllocElTyAlign) return 0;
7411
Chris Lattner39387a52005-10-24 06:35:18 +00007412 // If the allocation has multiple uses, only promote it if we are strictly
7413 // increasing the alignment of the resultant allocation. If we keep it the
7414 // same, we open the door to infinite loops of various kinds.
7415 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
7416
Duncan Sands514ab342007-11-01 20:53:16 +00007417 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
7418 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Chris Lattner0ddac2a2005-10-27 05:53:56 +00007419 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
Chris Lattner18e78bb2005-10-24 06:26:18 +00007420
Chris Lattner455fcc82005-10-29 03:19:53 +00007421 // See if we can satisfy the modulus by pulling a scale out of the array
7422 // size argument.
Jeff Cohen86796be2007-04-04 16:58:57 +00007423 unsigned ArraySizeScale;
7424 int ArrayOffset;
Chris Lattnercfd65102005-10-29 04:36:15 +00007425 Value *NumElements = // See if the array size is a decomposable linear expr.
7426 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
7427
Chris Lattner455fcc82005-10-29 03:19:53 +00007428 // If we can now satisfy the modulus, by using a non-1 scale, we really can
7429 // do the xform.
Chris Lattnercfd65102005-10-29 04:36:15 +00007430 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
7431 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
Chris Lattner8142b0a2005-10-27 06:12:00 +00007432
Chris Lattner455fcc82005-10-29 03:19:53 +00007433 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
7434 Value *Amt = 0;
7435 if (Scale == 1) {
7436 Amt = NumElements;
7437 } else {
Reid Spencerb83eb642006-10-20 07:07:24 +00007438 // If the allocation size is constant, form a constant mul expression
Reid Spencerc5b206b2006-12-31 05:48:39 +00007439 Amt = ConstantInt::get(Type::Int32Ty, Scale);
7440 if (isa<ConstantInt>(NumElements))
Zhou Sheng4a1822a2007-04-02 13:45:30 +00007441 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
Reid Spencerb83eb642006-10-20 07:07:24 +00007442 // otherwise multiply the amount and the number of elements
Chris Lattner455fcc82005-10-29 03:19:53 +00007443 else if (Scale != 1) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007444 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Chris Lattner455fcc82005-10-29 03:19:53 +00007445 Amt = InsertNewInstBefore(Tmp, AI);
Chris Lattner8142b0a2005-10-27 06:12:00 +00007446 }
Chris Lattner0ddac2a2005-10-27 05:53:56 +00007447 }
7448
Jeff Cohen86796be2007-04-04 16:58:57 +00007449 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7450 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007451 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Chris Lattnercfd65102005-10-29 04:36:15 +00007452 Amt = InsertNewInstBefore(Tmp, AI);
7453 }
7454
Chris Lattnerb3f83972005-10-24 06:03:58 +00007455 AllocationInst *New;
7456 if (isa<MallocInst>(AI))
Chris Lattner6934a042007-02-11 01:23:03 +00007457 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
Chris Lattnerb3f83972005-10-24 06:03:58 +00007458 else
Chris Lattner6934a042007-02-11 01:23:03 +00007459 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
Chris Lattnerb3f83972005-10-24 06:03:58 +00007460 InsertNewInstBefore(New, AI);
Chris Lattner6934a042007-02-11 01:23:03 +00007461 New->takeName(&AI);
Chris Lattner39387a52005-10-24 06:35:18 +00007462
7463 // If the allocation has multiple uses, insert a cast and change all things
7464 // that used it to use the new cast. This will also hack on CI, but it will
7465 // die soon.
7466 if (!AI.hasOneUse()) {
7467 AddUsesToWorkList(AI);
Reid Spencer3da59db2006-11-27 01:05:10 +00007468 // New is the allocation instruction, pointer typed. AI is the original
7469 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7470 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
Chris Lattner39387a52005-10-24 06:35:18 +00007471 InsertNewInstBefore(NewCast, AI);
7472 AI.replaceAllUsesWith(NewCast);
7473 }
Chris Lattnerb3f83972005-10-24 06:03:58 +00007474 return ReplaceInstUsesWith(CI, New);
7475}
7476
Chris Lattner70074e02006-05-13 02:06:03 +00007477/// CanEvaluateInDifferentType - Return true if we can take the specified value
Chris Lattnerc739cd62007-03-03 05:27:34 +00007478/// and return it as type Ty without inserting any new casts and without
7479/// changing the computed value. This is used by code that tries to decide
7480/// whether promoting or shrinking integer operations to wider or smaller types
7481/// will allow us to eliminate a truncate or extend.
7482///
7483/// This is a truncation operation if Ty is smaller than V->getType(), or an
7484/// extension operation if Ty is larger.
Chris Lattner8114b712008-06-18 04:00:49 +00007485///
7486/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7487/// should return true if trunc(V) can be computed by computing V in the smaller
7488/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7489/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7490/// efficiently truncated.
7491///
7492/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7493/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7494/// the final result.
Dan Gohmaneee962e2008-04-10 18:43:06 +00007495bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7496 unsigned CastOpc,
7497 int &NumCastsRemoved) {
Chris Lattnerc739cd62007-03-03 05:27:34 +00007498 // We can always evaluate constants in another type.
7499 if (isa<ConstantInt>(V))
7500 return true;
Chris Lattner70074e02006-05-13 02:06:03 +00007501
7502 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerc739cd62007-03-03 05:27:34 +00007503 if (!I) return false;
7504
7505 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
Chris Lattner70074e02006-05-13 02:06:03 +00007506
Chris Lattner951626b2007-08-02 06:11:14 +00007507 // If this is an extension or truncate, we can often eliminate it.
7508 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7509 // If this is a cast from the destination type, we can trivially eliminate
7510 // it, and this will remove a cast overall.
7511 if (I->getOperand(0)->getType() == Ty) {
7512 // If the first operand is itself a cast, and is eliminable, do not count
7513 // this as an eliminable cast. We would prefer to eliminate those two
7514 // casts first.
Chris Lattner8114b712008-06-18 04:00:49 +00007515 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
Chris Lattner951626b2007-08-02 06:11:14 +00007516 ++NumCastsRemoved;
7517 return true;
7518 }
7519 }
7520
7521 // We can't extend or shrink something that has multiple uses: doing so would
7522 // require duplicating the instruction in general, which isn't profitable.
7523 if (!I->hasOneUse()) return false;
7524
Chris Lattner70074e02006-05-13 02:06:03 +00007525 switch (I->getOpcode()) {
Chris Lattnerc739cd62007-03-03 05:27:34 +00007526 case Instruction::Add:
7527 case Instruction::Sub:
Nick Lewyckyb8cd6a42008-07-05 21:19:34 +00007528 case Instruction::Mul:
Chris Lattner70074e02006-05-13 02:06:03 +00007529 case Instruction::And:
7530 case Instruction::Or:
7531 case Instruction::Xor:
7532 // These operators can all arbitrarily be extended or truncated.
Chris Lattner951626b2007-08-02 06:11:14 +00007533 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7534 NumCastsRemoved) &&
7535 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7536 NumCastsRemoved);
Chris Lattnerc739cd62007-03-03 05:27:34 +00007537
Chris Lattner46b96052006-11-29 07:18:39 +00007538 case Instruction::Shl:
Chris Lattnerc739cd62007-03-03 05:27:34 +00007539 // If we are truncating the result of this SHL, and if it's a shift of a
7540 // constant amount, we can always perform a SHL in a smaller type.
7541 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
Zhou Sheng302748d2007-03-30 17:20:39 +00007542 uint32_t BitWidth = Ty->getBitWidth();
7543 if (BitWidth < OrigTy->getBitWidth() &&
7544 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattner951626b2007-08-02 06:11:14 +00007545 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7546 NumCastsRemoved);
Chris Lattnerc739cd62007-03-03 05:27:34 +00007547 }
7548 break;
7549 case Instruction::LShr:
Chris Lattnerc739cd62007-03-03 05:27:34 +00007550 // If this is a truncate of a logical shr, we can truncate it to a smaller
7551 // lshr iff we know that the bits we would otherwise be shifting in are
7552 // already zeros.
7553 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
Zhou Sheng302748d2007-03-30 17:20:39 +00007554 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7555 uint32_t BitWidth = Ty->getBitWidth();
7556 if (BitWidth < OrigBitWidth &&
Chris Lattnerc739cd62007-03-03 05:27:34 +00007557 MaskedValueIsZero(I->getOperand(0),
Zhou Sheng302748d2007-03-30 17:20:39 +00007558 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7559 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattner951626b2007-08-02 06:11:14 +00007560 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7561 NumCastsRemoved);
Chris Lattnerc739cd62007-03-03 05:27:34 +00007562 }
7563 }
Chris Lattner46b96052006-11-29 07:18:39 +00007564 break;
Reid Spencer3da59db2006-11-27 01:05:10 +00007565 case Instruction::ZExt:
7566 case Instruction::SExt:
Chris Lattner951626b2007-08-02 06:11:14 +00007567 case Instruction::Trunc:
7568 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner5543a852007-08-02 17:23:38 +00007569 // can safely replace it. Note that replacing it does not reduce the number
7570 // of casts in the input.
7571 if (I->getOpcode() == CastOpc)
Chris Lattner70074e02006-05-13 02:06:03 +00007572 return true;
Reid Spencer3da59db2006-11-27 01:05:10 +00007573 break;
Nick Lewyckyb8cd6a42008-07-05 21:19:34 +00007574 case Instruction::Select: {
7575 SelectInst *SI = cast<SelectInst>(I);
7576 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
7577 NumCastsRemoved) &&
7578 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
7579 NumCastsRemoved);
7580 }
Chris Lattner8114b712008-06-18 04:00:49 +00007581 case Instruction::PHI: {
7582 // We can change a phi if we can change all operands.
7583 PHINode *PN = cast<PHINode>(I);
7584 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7585 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
7586 NumCastsRemoved))
7587 return false;
7588 return true;
7589 }
Reid Spencer3da59db2006-11-27 01:05:10 +00007590 default:
Chris Lattner70074e02006-05-13 02:06:03 +00007591 // TODO: Can handle more cases here.
7592 break;
7593 }
7594
7595 return false;
7596}
7597
7598/// EvaluateInDifferentType - Given an expression that
7599/// CanEvaluateInDifferentType returns true for, actually insert the code to
7600/// evaluate the expression.
Reid Spencerc55b2432006-12-13 18:21:21 +00007601Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
Chris Lattnerc739cd62007-03-03 05:27:34 +00007602 bool isSigned) {
Chris Lattner70074e02006-05-13 02:06:03 +00007603 if (Constant *C = dyn_cast<Constant>(V))
Reid Spencerc55b2432006-12-13 18:21:21 +00007604 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
Chris Lattner70074e02006-05-13 02:06:03 +00007605
7606 // Otherwise, it must be an instruction.
7607 Instruction *I = cast<Instruction>(V);
Chris Lattner01859e82006-05-20 23:14:03 +00007608 Instruction *Res = 0;
Chris Lattner70074e02006-05-13 02:06:03 +00007609 switch (I->getOpcode()) {
Chris Lattnerc739cd62007-03-03 05:27:34 +00007610 case Instruction::Add:
7611 case Instruction::Sub:
Nick Lewyckye6b0c002008-01-22 05:08:48 +00007612 case Instruction::Mul:
Chris Lattner70074e02006-05-13 02:06:03 +00007613 case Instruction::And:
7614 case Instruction::Or:
Chris Lattnerc739cd62007-03-03 05:27:34 +00007615 case Instruction::Xor:
Chris Lattner46b96052006-11-29 07:18:39 +00007616 case Instruction::AShr:
7617 case Instruction::LShr:
7618 case Instruction::Shl: {
Reid Spencerc55b2432006-12-13 18:21:21 +00007619 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
Chris Lattnerc739cd62007-03-03 05:27:34 +00007620 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007621 Res = BinaryOperator::Create((Instruction::BinaryOps)I->getOpcode(),
Chris Lattner8114b712008-06-18 04:00:49 +00007622 LHS, RHS);
Chris Lattner46b96052006-11-29 07:18:39 +00007623 break;
7624 }
Reid Spencer3da59db2006-11-27 01:05:10 +00007625 case Instruction::Trunc:
7626 case Instruction::ZExt:
7627 case Instruction::SExt:
Reid Spencer3da59db2006-11-27 01:05:10 +00007628 // If the source type of the cast is the type we're trying for then we can
Chris Lattner951626b2007-08-02 06:11:14 +00007629 // just return the source. There's no need to insert it because it is not
7630 // new.
Chris Lattner70074e02006-05-13 02:06:03 +00007631 if (I->getOperand(0)->getType() == Ty)
7632 return I->getOperand(0);
7633
Chris Lattner8114b712008-06-18 04:00:49 +00007634 // Otherwise, must be the same type of cast, so just reinsert a new one.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007635 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattner8114b712008-06-18 04:00:49 +00007636 Ty);
Chris Lattner951626b2007-08-02 06:11:14 +00007637 break;
Nick Lewyckyb8cd6a42008-07-05 21:19:34 +00007638 case Instruction::Select: {
7639 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7640 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7641 Res = SelectInst::Create(I->getOperand(0), True, False);
7642 break;
7643 }
Chris Lattner8114b712008-06-18 04:00:49 +00007644 case Instruction::PHI: {
7645 PHINode *OPN = cast<PHINode>(I);
7646 PHINode *NPN = PHINode::Create(Ty);
7647 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
7648 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
7649 NPN->addIncoming(V, OPN->getIncomingBlock(i));
7650 }
7651 Res = NPN;
7652 break;
7653 }
Reid Spencer3da59db2006-11-27 01:05:10 +00007654 default:
Chris Lattner70074e02006-05-13 02:06:03 +00007655 // TODO: Can handle more cases here.
7656 assert(0 && "Unreachable!");
7657 break;
7658 }
7659
Chris Lattner8114b712008-06-18 04:00:49 +00007660 Res->takeName(I);
Chris Lattner70074e02006-05-13 02:06:03 +00007661 return InsertNewInstBefore(Res, *I);
7662}
7663
Reid Spencer3da59db2006-11-27 01:05:10 +00007664/// @brief Implement the transforms common to all CastInst visitors.
7665Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
Chris Lattner79d35b32003-06-23 21:59:52 +00007666 Value *Src = CI.getOperand(0);
7667
Dan Gohman23d9d272007-05-11 21:10:54 +00007668 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
Reid Spencer3da59db2006-11-27 01:05:10 +00007669 // eliminate it now.
Chris Lattner6e7ba452005-01-01 16:22:27 +00007670 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
Reid Spencer3da59db2006-11-27 01:05:10 +00007671 if (Instruction::CastOps opc =
7672 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7673 // The first cast (CSrc) is eliminable so we need to fix up or replace
7674 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007675 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Chris Lattner8fd217c2002-08-02 20:00:25 +00007676 }
7677 }
Chris Lattnera710ddc2004-05-25 04:29:21 +00007678
Reid Spencer3da59db2006-11-27 01:05:10 +00007679 // If we are casting a select then fold the cast into the select
Chris Lattner6e7ba452005-01-01 16:22:27 +00007680 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7681 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7682 return NV;
Reid Spencer3da59db2006-11-27 01:05:10 +00007683
7684 // If we are casting a PHI then fold the cast into the PHI
Chris Lattner4e998b22004-09-29 05:07:12 +00007685 if (isa<PHINode>(Src))
7686 if (Instruction *NV = FoldOpIntoPhi(CI))
7687 return NV;
Chris Lattner9fb92132006-04-12 18:09:35 +00007688
Reid Spencer3da59db2006-11-27 01:05:10 +00007689 return 0;
7690}
7691
Chris Lattnerd3e28342007-04-27 17:44:50 +00007692/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7693Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7694 Value *Src = CI.getOperand(0);
7695
Chris Lattnerd3e28342007-04-27 17:44:50 +00007696 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
Chris Lattner9bc14642007-04-28 00:57:34 +00007697 // If casting the result of a getelementptr instruction with no offset, turn
7698 // this into a cast of the original pointer!
Chris Lattnerd3e28342007-04-27 17:44:50 +00007699 if (GEP->hasAllZeroIndices()) {
7700 // Changing the cast operand is usually not a good idea but it is safe
7701 // here because the pointer operand is being replaced with another
7702 // pointer operand so the opcode doesn't need to change.
Chris Lattner9bc14642007-04-28 00:57:34 +00007703 AddToWorkList(GEP);
Chris Lattnerd3e28342007-04-27 17:44:50 +00007704 CI.setOperand(0, GEP->getOperand(0));
7705 return &CI;
7706 }
Chris Lattner9bc14642007-04-28 00:57:34 +00007707
7708 // If the GEP has a single use, and the base pointer is a bitcast, and the
7709 // GEP computes a constant offset, see if we can convert these three
7710 // instructions into fewer. This typically happens with unions and other
7711 // non-type-safe code.
7712 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7713 if (GEP->hasAllConstantIndices()) {
7714 // We are guaranteed to get a constant from EmitGEPOffset.
7715 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7716 int64_t Offset = OffsetV->getSExtValue();
7717
7718 // Get the base pointer input of the bitcast, and the type it points to.
7719 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7720 const Type *GEPIdxTy =
7721 cast<PointerType>(OrigBase->getType())->getElementType();
7722 if (GEPIdxTy->isSized()) {
7723 SmallVector<Value*, 8> NewIndices;
7724
Chris Lattnerc42e2262007-05-05 01:59:31 +00007725 // Start with the index over the outer type. Note that the type size
7726 // might be zero (even if the offset isn't zero) if the indexed type
7727 // is something like [0 x {int, int}]
Chris Lattner9bc14642007-04-28 00:57:34 +00007728 const Type *IntPtrTy = TD->getIntPtrType();
Chris Lattnerc42e2262007-05-05 01:59:31 +00007729 int64_t FirstIdx = 0;
Duncan Sands514ab342007-11-01 20:53:16 +00007730 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Chris Lattnerc42e2262007-05-05 01:59:31 +00007731 FirstIdx = Offset/TySize;
7732 Offset %= TySize;
Chris Lattner9bc14642007-04-28 00:57:34 +00007733
Chris Lattnerc42e2262007-05-05 01:59:31 +00007734 // Handle silly modulus not returning values values [0..TySize).
7735 if (Offset < 0) {
7736 --FirstIdx;
7737 Offset += TySize;
7738 assert(Offset >= 0);
7739 }
Chris Lattnerd717c182007-05-05 22:32:24 +00007740 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
Chris Lattner9bc14642007-04-28 00:57:34 +00007741 }
7742
7743 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
Chris Lattner9bc14642007-04-28 00:57:34 +00007744
7745 // Index into the types. If we fail, set OrigBase to null.
7746 while (Offset) {
7747 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7748 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattner6b6aef82007-05-15 00:16:00 +00007749 if (Offset < (int64_t)SL->getSizeInBytes()) {
7750 unsigned Elt = SL->getElementContainingOffset(Offset);
7751 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
Chris Lattner9bc14642007-04-28 00:57:34 +00007752
Chris Lattner6b6aef82007-05-15 00:16:00 +00007753 Offset -= SL->getElementOffset(Elt);
7754 GEPIdxTy = STy->getElementType(Elt);
7755 } else {
7756 // Otherwise, we can't index into this, bail out.
7757 Offset = 0;
7758 OrigBase = 0;
7759 }
Chris Lattner9bc14642007-04-28 00:57:34 +00007760 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7761 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sands514ab342007-11-01 20:53:16 +00007762 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Chris Lattner6b6aef82007-05-15 00:16:00 +00007763 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7764 Offset %= EltSize;
7765 } else {
7766 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7767 }
Chris Lattner9bc14642007-04-28 00:57:34 +00007768 GEPIdxTy = STy->getElementType();
7769 } else {
7770 // Otherwise, we can't index into this, bail out.
7771 Offset = 0;
7772 OrigBase = 0;
7773 }
7774 }
7775 if (OrigBase) {
7776 // If we were able to index down into an element, create the GEP
7777 // and bitcast the result. This eliminates one bitcast, potentially
7778 // two.
Gabor Greif051a9502008-04-06 20:25:17 +00007779 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7780 NewIndices.begin(),
7781 NewIndices.end(), "");
Chris Lattner9bc14642007-04-28 00:57:34 +00007782 InsertNewInstBefore(NGEP, CI);
7783 NGEP->takeName(GEP);
7784
Chris Lattner9bc14642007-04-28 00:57:34 +00007785 if (isa<BitCastInst>(CI))
7786 return new BitCastInst(NGEP, CI.getType());
7787 assert(isa<PtrToIntInst>(CI));
7788 return new PtrToIntInst(NGEP, CI.getType());
7789 }
7790 }
7791 }
7792 }
Chris Lattnerd3e28342007-04-27 17:44:50 +00007793 }
7794
7795 return commonCastTransforms(CI);
7796}
7797
7798
7799
Chris Lattnerc739cd62007-03-03 05:27:34 +00007800/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7801/// integer types. This function implements the common transforms for all those
Reid Spencer3da59db2006-11-27 01:05:10 +00007802/// cases.
7803/// @brief Implement the transforms common to CastInst with integer operands
7804Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7805 if (Instruction *Result = commonCastTransforms(CI))
7806 return Result;
7807
7808 Value *Src = CI.getOperand(0);
7809 const Type *SrcTy = Src->getType();
7810 const Type *DestTy = CI.getType();
Zhou Sheng4351c642007-04-02 08:20:41 +00007811 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7812 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
Reid Spencer3da59db2006-11-27 01:05:10 +00007813
Reid Spencer3da59db2006-11-27 01:05:10 +00007814 // See if we can simplify any instructions used by the LHS whose sole
7815 // purpose is to compute bits we don't care about.
Reid Spencerad6676e2007-03-22 20:56:53 +00007816 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7817 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
Reid Spencer3da59db2006-11-27 01:05:10 +00007818 KnownZero, KnownOne))
7819 return &CI;
7820
7821 // If the source isn't an instruction or has more than one use then we
7822 // can't do anything more.
Reid Spencere4d87aa2006-12-23 06:05:41 +00007823 Instruction *SrcI = dyn_cast<Instruction>(Src);
7824 if (!SrcI || !Src->hasOneUse())
Reid Spencer3da59db2006-11-27 01:05:10 +00007825 return 0;
7826
Chris Lattnerc739cd62007-03-03 05:27:34 +00007827 // Attempt to propagate the cast into the instruction for int->int casts.
Reid Spencer3da59db2006-11-27 01:05:10 +00007828 int NumCastsRemoved = 0;
Chris Lattnerc739cd62007-03-03 05:27:34 +00007829 if (!isa<BitCastInst>(CI) &&
7830 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattner951626b2007-08-02 06:11:14 +00007831 CI.getOpcode(), NumCastsRemoved)) {
Reid Spencer3da59db2006-11-27 01:05:10 +00007832 // If this cast is a truncate, evaluting in a different type always
Chris Lattner951626b2007-08-02 06:11:14 +00007833 // eliminates the cast, so it is always a win. If this is a zero-extension,
7834 // we need to do an AND to maintain the clear top-part of the computation,
7835 // so we require that the input have eliminated at least one cast. If this
7836 // is a sign extension, we insert two new casts (to do the extension) so we
Reid Spencer3da59db2006-11-27 01:05:10 +00007837 // require that two casts have been eliminated.
Chris Lattnerc739cd62007-03-03 05:27:34 +00007838 bool DoXForm;
7839 switch (CI.getOpcode()) {
7840 default:
7841 // All the others use floating point so we shouldn't actually
7842 // get here because of the check above.
7843 assert(0 && "Unknown cast type");
7844 case Instruction::Trunc:
7845 DoXForm = true;
7846 break;
7847 case Instruction::ZExt:
7848 DoXForm = NumCastsRemoved >= 1;
7849 break;
7850 case Instruction::SExt:
7851 DoXForm = NumCastsRemoved >= 2;
7852 break;
Reid Spencer3da59db2006-11-27 01:05:10 +00007853 }
7854
7855 if (DoXForm) {
Reid Spencerc55b2432006-12-13 18:21:21 +00007856 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7857 CI.getOpcode() == Instruction::SExt);
Reid Spencer3da59db2006-11-27 01:05:10 +00007858 assert(Res->getType() == DestTy);
7859 switch (CI.getOpcode()) {
7860 default: assert(0 && "Unknown cast type!");
7861 case Instruction::Trunc:
7862 case Instruction::BitCast:
7863 // Just replace this cast with the result.
7864 return ReplaceInstUsesWith(CI, Res);
7865 case Instruction::ZExt: {
7866 // We need to emit an AND to clear the high bits.
7867 assert(SrcBitSize < DestBitSize && "Not a zext?");
Chris Lattnercd1d6d52007-04-02 05:48:58 +00007868 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7869 SrcBitSize));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007870 return BinaryOperator::CreateAnd(Res, C);
Reid Spencer3da59db2006-11-27 01:05:10 +00007871 }
7872 case Instruction::SExt:
7873 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007874 return CastInst::Create(Instruction::SExt,
Reid Spencer17212df2006-12-12 09:18:51 +00007875 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7876 CI), DestTy);
Reid Spencer3da59db2006-11-27 01:05:10 +00007877 }
7878 }
7879 }
7880
7881 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7882 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7883
7884 switch (SrcI->getOpcode()) {
7885 case Instruction::Add:
7886 case Instruction::Mul:
7887 case Instruction::And:
7888 case Instruction::Or:
7889 case Instruction::Xor:
Chris Lattner01deb9d2007-04-03 17:43:25 +00007890 // If we are discarding information, rewrite.
Reid Spencer3da59db2006-11-27 01:05:10 +00007891 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7892 // Don't insert two casts if they cannot be eliminated. We allow
7893 // two casts to be inserted if the sizes are the same. This could
7894 // only be converting signedness, which is a noop.
7895 if (DestBitSize == SrcBitSize ||
Reid Spencere4d87aa2006-12-23 06:05:41 +00007896 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7897 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
Reid Spencer7eb76382006-12-13 17:19:09 +00007898 Instruction::CastOps opcode = CI.getOpcode();
Eli Friedmand1fd1da2008-11-30 21:09:11 +00007899 Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
7900 Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007901 return BinaryOperator::Create(
Reid Spencer17212df2006-12-12 09:18:51 +00007902 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
Reid Spencer3da59db2006-11-27 01:05:10 +00007903 }
7904 }
7905
7906 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7907 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7908 SrcI->getOpcode() == Instruction::Xor &&
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00007909 Op1 == ConstantInt::getTrue() &&
Reid Spencere4d87aa2006-12-23 06:05:41 +00007910 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
Eli Friedmand1fd1da2008-11-30 21:09:11 +00007911 Value *New = InsertCastBefore(Instruction::ZExt, Op0, DestTy, CI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007912 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Reid Spencer3da59db2006-11-27 01:05:10 +00007913 }
7914 break;
7915 case Instruction::SDiv:
7916 case Instruction::UDiv:
7917 case Instruction::SRem:
7918 case Instruction::URem:
7919 // If we are just changing the sign, rewrite.
7920 if (DestBitSize == SrcBitSize) {
7921 // Don't insert two casts if they cannot be eliminated. We allow
7922 // two casts to be inserted if the sizes are the same. This could
7923 // only be converting signedness, which is a noop.
Reid Spencere4d87aa2006-12-23 06:05:41 +00007924 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7925 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
Eli Friedmand1fd1da2008-11-30 21:09:11 +00007926 Value *Op0c = InsertCastBefore(Instruction::BitCast,
7927 Op0, DestTy, *SrcI);
7928 Value *Op1c = InsertCastBefore(Instruction::BitCast,
7929 Op1, DestTy, *SrcI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007930 return BinaryOperator::Create(
Reid Spencer3da59db2006-11-27 01:05:10 +00007931 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7932 }
7933 }
7934 break;
7935
7936 case Instruction::Shl:
7937 // Allow changing the sign of the source operand. Do not allow
7938 // changing the size of the shift, UNLESS the shift amount is a
7939 // constant. We must not change variable sized shifts to a smaller
7940 // size, because it is undefined to shift more bits out than exist
7941 // in the value.
7942 if (DestBitSize == SrcBitSize ||
7943 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
Reid Spencer17212df2006-12-12 09:18:51 +00007944 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7945 Instruction::BitCast : Instruction::Trunc);
Eli Friedmand1fd1da2008-11-30 21:09:11 +00007946 Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
7947 Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007948 return BinaryOperator::CreateShl(Op0c, Op1c);
Reid Spencer3da59db2006-11-27 01:05:10 +00007949 }
7950 break;
7951 case Instruction::AShr:
7952 // If this is a signed shr, and if all bits shifted in are about to be
7953 // truncated off, turn it into an unsigned shr to allow greater
7954 // simplifications.
7955 if (DestBitSize < SrcBitSize &&
7956 isa<ConstantInt>(Op1)) {
Zhou Sheng302748d2007-03-30 17:20:39 +00007957 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
Reid Spencer3da59db2006-11-27 01:05:10 +00007958 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7959 // Insert the new logical shift right.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007960 return BinaryOperator::CreateLShr(Op0, Op1);
Reid Spencer3da59db2006-11-27 01:05:10 +00007961 }
7962 }
7963 break;
Reid Spencer3da59db2006-11-27 01:05:10 +00007964 }
7965 return 0;
7966}
7967
Chris Lattner8a9f5712007-04-11 06:57:46 +00007968Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007969 if (Instruction *Result = commonIntCastTransforms(CI))
7970 return Result;
7971
7972 Value *Src = CI.getOperand(0);
7973 const Type *Ty = CI.getType();
Zhou Sheng4351c642007-04-02 08:20:41 +00007974 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7975 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007976
7977 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7978 switch (SrcI->getOpcode()) {
7979 default: break;
7980 case Instruction::LShr:
7981 // We can shrink lshr to something smaller if we know the bits shifted in
7982 // are already zeros.
7983 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
Zhou Sheng302748d2007-03-30 17:20:39 +00007984 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007985
7986 // Get a mask for the bits shifting in.
Zhou Shenge82fca02007-03-28 09:19:01 +00007987 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
Reid Spencer17212df2006-12-12 09:18:51 +00007988 Value* SrcIOp0 = SrcI->getOperand(0);
7989 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007990 if (ShAmt >= DestBitWidth) // All zeros.
7991 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7992
7993 // Okay, we can shrink this. Truncate the input, then return a new
7994 // shift.
Reid Spencer832254e2007-02-02 02:16:23 +00007995 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7996 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7997 Ty, CI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007998 return BinaryOperator::CreateLShr(V1, V2);
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007999 }
Chris Lattnere13ab2a2006-12-05 01:26:29 +00008000 } else { // This is a variable shr.
8001
8002 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
8003 // more LLVM instructions, but allows '1 << Y' to be hoisted if
8004 // loop-invariant and CSE'd.
Reid Spencer4fe16d62007-01-11 18:21:29 +00008005 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
Chris Lattnere13ab2a2006-12-05 01:26:29 +00008006 Value *One = ConstantInt::get(SrcI->getType(), 1);
8007
Reid Spencer832254e2007-02-02 02:16:23 +00008008 Value *V = InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008009 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Reid Spencer832254e2007-02-02 02:16:23 +00008010 "tmp"), CI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008011 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Chris Lattnere13ab2a2006-12-05 01:26:29 +00008012 SrcI->getOperand(0),
8013 "tmp"), CI);
8014 Value *Zero = Constant::getNullValue(V->getType());
Reid Spencere4d87aa2006-12-23 06:05:41 +00008015 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
Chris Lattnere13ab2a2006-12-05 01:26:29 +00008016 }
Chris Lattner6aa5eb12006-11-29 07:04:07 +00008017 }
8018 break;
8019 }
8020 }
8021
8022 return 0;
Reid Spencer3da59db2006-11-27 01:05:10 +00008023}
8024
Evan Chengb98a10e2008-03-24 00:21:34 +00008025/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
8026/// in order to eliminate the icmp.
8027Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
8028 bool DoXform) {
8029 // If we are just checking for a icmp eq of a single bit and zext'ing it
8030 // to an integer, then shift the bit to the appropriate place and then
8031 // cast to integer to avoid the comparison.
8032 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
8033 const APInt &Op1CV = Op1C->getValue();
8034
8035 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
8036 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
8037 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
8038 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
8039 if (!DoXform) return ICI;
8040
8041 Value *In = ICI->getOperand(0);
8042 Value *Sh = ConstantInt::get(In->getType(),
8043 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008044 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chengb98a10e2008-03-24 00:21:34 +00008045 In->getName()+".lobit"),
8046 CI);
8047 if (In->getType() != CI.getType())
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008048 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chengb98a10e2008-03-24 00:21:34 +00008049 false/*ZExt*/, "tmp", &CI);
8050
8051 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
8052 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008053 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chengb98a10e2008-03-24 00:21:34 +00008054 In->getName()+".not"),
8055 CI);
8056 }
8057
8058 return ReplaceInstUsesWith(CI, In);
8059 }
8060
8061
8062
8063 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
8064 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8065 // zext (X == 1) to i32 --> X iff X has only the low bit set.
8066 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
8067 // zext (X != 0) to i32 --> X iff X has only the low bit set.
8068 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
8069 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
8070 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8071 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
8072 // This only works for EQ and NE
8073 ICI->isEquality()) {
8074 // If Op1C some other power of two, convert:
8075 uint32_t BitWidth = Op1C->getType()->getBitWidth();
8076 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8077 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
8078 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
8079
8080 APInt KnownZeroMask(~KnownZero);
8081 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
8082 if (!DoXform) return ICI;
8083
8084 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
8085 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
8086 // (X&4) == 2 --> false
8087 // (X&4) != 2 --> true
8088 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
8089 Res = ConstantExpr::getZExt(Res, CI.getType());
8090 return ReplaceInstUsesWith(CI, Res);
8091 }
8092
8093 uint32_t ShiftAmt = KnownZeroMask.logBase2();
8094 Value *In = ICI->getOperand(0);
8095 if (ShiftAmt) {
8096 // Perform a logical shr by shiftamt.
8097 // Insert the shift to put the result in the low bit.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008098 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chengb98a10e2008-03-24 00:21:34 +00008099 ConstantInt::get(In->getType(), ShiftAmt),
8100 In->getName()+".lobit"), CI);
8101 }
8102
8103 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
8104 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008105 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chengb98a10e2008-03-24 00:21:34 +00008106 InsertNewInstBefore(cast<Instruction>(In), CI);
8107 }
8108
8109 if (CI.getType() == In->getType())
8110 return ReplaceInstUsesWith(CI, In);
8111 else
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008112 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chengb98a10e2008-03-24 00:21:34 +00008113 }
8114 }
8115 }
8116
8117 return 0;
8118}
8119
Chris Lattner8a9f5712007-04-11 06:57:46 +00008120Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
Reid Spencer3da59db2006-11-27 01:05:10 +00008121 // If one of the common conversion will work ..
8122 if (Instruction *Result = commonIntCastTransforms(CI))
8123 return Result;
8124
8125 Value *Src = CI.getOperand(0);
8126
8127 // If this is a cast of a cast
8128 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
Reid Spencer3da59db2006-11-27 01:05:10 +00008129 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
8130 // types and if the sizes are just right we can convert this into a logical
8131 // 'and' which will be much cheaper than the pair of casts.
8132 if (isa<TruncInst>(CSrc)) {
8133 // Get the sizes of the types involved
8134 Value *A = CSrc->getOperand(0);
Zhou Sheng4351c642007-04-02 08:20:41 +00008135 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
8136 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
8137 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
Reid Spencer3da59db2006-11-27 01:05:10 +00008138 // If we're actually extending zero bits and the trunc is a no-op
8139 if (MidSize < DstSize && SrcSize == DstSize) {
8140 // Replace both of the casts with an And of the type mask.
Zhou Shenge82fca02007-03-28 09:19:01 +00008141 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
Reid Spencerad6676e2007-03-22 20:56:53 +00008142 Constant *AndConst = ConstantInt::get(AndValue);
Reid Spencer3da59db2006-11-27 01:05:10 +00008143 Instruction *And =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008144 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Reid Spencer3da59db2006-11-27 01:05:10 +00008145 // Unfortunately, if the type changed, we need to cast it back.
8146 if (And->getType() != CI.getType()) {
8147 And->setName(CSrc->getName()+".mask");
8148 InsertNewInstBefore(And, CI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008149 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Reid Spencer3da59db2006-11-27 01:05:10 +00008150 }
8151 return And;
8152 }
8153 }
8154 }
8155
Evan Chengb98a10e2008-03-24 00:21:34 +00008156 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
8157 return transformZExtICmp(ICI, CI);
Chris Lattnera2e2c9b2007-04-11 06:53:04 +00008158
Evan Chengb98a10e2008-03-24 00:21:34 +00008159 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
8160 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
8161 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
8162 // of the (zext icmp) will be transformed.
8163 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
8164 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
8165 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
8166 (transformZExtICmp(LHS, CI, false) ||
8167 transformZExtICmp(RHS, CI, false))) {
8168 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
8169 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008170 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Chris Lattner66bc3252007-04-11 05:45:39 +00008171 }
Evan Chengb98a10e2008-03-24 00:21:34 +00008172 }
8173
Reid Spencer3da59db2006-11-27 01:05:10 +00008174 return 0;
8175}
8176
Chris Lattner8a9f5712007-04-11 06:57:46 +00008177Instruction *InstCombiner::visitSExt(SExtInst &CI) {
Chris Lattnerba417832007-04-11 06:12:58 +00008178 if (Instruction *I = commonIntCastTransforms(CI))
8179 return I;
8180
Chris Lattner8a9f5712007-04-11 06:57:46 +00008181 Value *Src = CI.getOperand(0);
8182
Dan Gohman1975d032008-10-30 20:40:10 +00008183 // Canonicalize sign-extend from i1 to a select.
8184 if (Src->getType() == Type::Int1Ty)
8185 return SelectInst::Create(Src,
8186 ConstantInt::getAllOnesValue(CI.getType()),
8187 Constant::getNullValue(CI.getType()));
Dan Gohmanf35c8822008-05-20 21:01:12 +00008188
8189 // See if the value being truncated is already sign extended. If so, just
8190 // eliminate the trunc/sext pair.
8191 if (getOpcode(Src) == Instruction::Trunc) {
8192 Value *Op = cast<User>(Src)->getOperand(0);
8193 unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth();
8194 unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth();
8195 unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth();
8196 unsigned NumSignBits = ComputeNumSignBits(Op);
8197
8198 if (OpBits == DestBits) {
8199 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8200 // bits, it is already ready.
8201 if (NumSignBits > DestBits-MidBits)
8202 return ReplaceInstUsesWith(CI, Op);
8203 } else if (OpBits < DestBits) {
8204 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8205 // bits, just sext from i32.
8206 if (NumSignBits > OpBits-MidBits)
8207 return new SExtInst(Op, CI.getType(), "tmp");
8208 } else {
8209 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8210 // bits, just truncate to i32.
8211 if (NumSignBits > OpBits-MidBits)
8212 return new TruncInst(Op, CI.getType(), "tmp");
8213 }
8214 }
Chris Lattner46bbad22008-08-06 07:35:52 +00008215
8216 // If the input is a shl/ashr pair of a same constant, then this is a sign
8217 // extension from a smaller value. If we could trust arbitrary bitwidth
8218 // integers, we could turn this into a truncate to the smaller bit and then
8219 // use a sext for the whole extension. Since we don't, look deeper and check
8220 // for a truncate. If the source and dest are the same type, eliminate the
8221 // trunc and extend and just do shifts. For example, turn:
8222 // %a = trunc i32 %i to i8
8223 // %b = shl i8 %a, 6
8224 // %c = ashr i8 %b, 6
8225 // %d = sext i8 %c to i32
8226 // into:
8227 // %a = shl i32 %i, 30
8228 // %d = ashr i32 %a, 30
8229 Value *A = 0;
8230 ConstantInt *BA = 0, *CA = 0;
8231 if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
8232 m_ConstantInt(CA))) &&
8233 BA == CA && isa<TruncInst>(A)) {
8234 Value *I = cast<TruncInst>(A)->getOperand(0);
8235 if (I->getType() == CI.getType()) {
8236 unsigned MidSize = Src->getType()->getPrimitiveSizeInBits();
8237 unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits();
8238 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
8239 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
8240 I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
8241 CI.getName()), CI);
8242 return BinaryOperator::CreateAShr(I, ShAmtV);
8243 }
8244 }
8245
Chris Lattnerba417832007-04-11 06:12:58 +00008246 return 0;
Reid Spencer3da59db2006-11-27 01:05:10 +00008247}
8248
Chris Lattnerb7530652008-01-27 05:29:54 +00008249/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
8250/// in the specified FP type without changing its value.
Chris Lattner02a260a2008-04-20 00:41:09 +00008251static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Dale Johannesen23a98552008-10-09 23:00:39 +00008252 bool losesInfo;
Chris Lattnerb7530652008-01-27 05:29:54 +00008253 APFloat F = CFP->getValueAPF();
Dale Johannesen23a98552008-10-09 23:00:39 +00008254 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
8255 if (!losesInfo)
Chris Lattner02a260a2008-04-20 00:41:09 +00008256 return ConstantFP::get(F);
Chris Lattnerb7530652008-01-27 05:29:54 +00008257 return 0;
8258}
8259
8260/// LookThroughFPExtensions - If this is an fp extension instruction, look
8261/// through it until we get the source value.
8262static Value *LookThroughFPExtensions(Value *V) {
8263 if (Instruction *I = dyn_cast<Instruction>(V))
8264 if (I->getOpcode() == Instruction::FPExt)
8265 return LookThroughFPExtensions(I->getOperand(0));
8266
8267 // If this value is a constant, return the constant in the smallest FP type
8268 // that can accurately represent it. This allows us to turn
8269 // (float)((double)X+2.0) into x+2.0f.
8270 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
8271 if (CFP->getType() == Type::PPC_FP128Ty)
8272 return V; // No constant folding of this.
8273 // See if the value can be truncated to float and then reextended.
Chris Lattner02a260a2008-04-20 00:41:09 +00008274 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerb7530652008-01-27 05:29:54 +00008275 return V;
8276 if (CFP->getType() == Type::DoubleTy)
8277 return V; // Won't shrink.
Chris Lattner02a260a2008-04-20 00:41:09 +00008278 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerb7530652008-01-27 05:29:54 +00008279 return V;
8280 // Don't try to shrink to various long double types.
8281 }
8282
8283 return V;
8284}
8285
8286Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
8287 if (Instruction *I = commonCastTransforms(CI))
8288 return I;
8289
8290 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
8291 // smaller than the destination type, we can eliminate the truncate by doing
8292 // the add as the smaller type. This applies to add/sub/mul/div as well as
8293 // many builtins (sqrt, etc).
8294 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
8295 if (OpI && OpI->hasOneUse()) {
8296 switch (OpI->getOpcode()) {
8297 default: break;
8298 case Instruction::Add:
8299 case Instruction::Sub:
8300 case Instruction::Mul:
8301 case Instruction::FDiv:
8302 case Instruction::FRem:
8303 const Type *SrcTy = OpI->getType();
8304 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
8305 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
8306 if (LHSTrunc->getType() != SrcTy &&
8307 RHSTrunc->getType() != SrcTy) {
8308 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
8309 // If the source types were both smaller than the destination type of
8310 // the cast, do this xform.
8311 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
8312 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
8313 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
8314 CI.getType(), CI);
8315 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
8316 CI.getType(), CI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008317 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerb7530652008-01-27 05:29:54 +00008318 }
8319 }
8320 break;
8321 }
8322 }
8323 return 0;
Reid Spencer3da59db2006-11-27 01:05:10 +00008324}
8325
8326Instruction *InstCombiner::visitFPExt(CastInst &CI) {
8327 return commonCastTransforms(CI);
8328}
8329
Chris Lattner0c7a9a02008-05-19 20:25:04 +00008330Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Chris Lattner5af5f462008-08-06 05:13:06 +00008331 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8332 if (OpI == 0)
8333 return commonCastTransforms(FI);
8334
8335 // fptoui(uitofp(X)) --> X
8336 // fptoui(sitofp(X)) --> X
8337 // This is safe if the intermediate type has enough bits in its mantissa to
8338 // accurately represent all values of X. For example, do not do this with
8339 // i64->float->i64. This is also safe for sitofp case, because any negative
8340 // 'X' value would cause an undefined result for the fptoui.
8341 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8342 OpI->getOperand(0)->getType() == FI.getType() &&
8343 (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
8344 OpI->getType()->getFPMantissaWidth())
8345 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattner0c7a9a02008-05-19 20:25:04 +00008346
8347 return commonCastTransforms(FI);
Reid Spencer3da59db2006-11-27 01:05:10 +00008348}
8349
Chris Lattner0c7a9a02008-05-19 20:25:04 +00008350Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Chris Lattner5af5f462008-08-06 05:13:06 +00008351 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8352 if (OpI == 0)
8353 return commonCastTransforms(FI);
8354
8355 // fptosi(sitofp(X)) --> X
8356 // fptosi(uitofp(X)) --> X
8357 // This is safe if the intermediate type has enough bits in its mantissa to
8358 // accurately represent all values of X. For example, do not do this with
8359 // i64->float->i64. This is also safe for sitofp case, because any negative
8360 // 'X' value would cause an undefined result for the fptoui.
8361 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8362 OpI->getOperand(0)->getType() == FI.getType() &&
8363 (int)FI.getType()->getPrimitiveSizeInBits() <=
8364 OpI->getType()->getFPMantissaWidth())
8365 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattner0c7a9a02008-05-19 20:25:04 +00008366
8367 return commonCastTransforms(FI);
Reid Spencer3da59db2006-11-27 01:05:10 +00008368}
8369
8370Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
8371 return commonCastTransforms(CI);
8372}
8373
8374Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
8375 return commonCastTransforms(CI);
8376}
8377
8378Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
Chris Lattnerd3e28342007-04-27 17:44:50 +00008379 return commonPointerCastTransforms(CI);
Reid Spencer3da59db2006-11-27 01:05:10 +00008380}
8381
Chris Lattnerf9d9e452008-01-08 07:23:51 +00008382Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
8383 if (Instruction *I = commonCastTransforms(CI))
8384 return I;
8385
8386 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
8387 if (!DestPointee->isSized()) return 0;
8388
8389 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
8390 ConstantInt *Cst;
8391 Value *X;
8392 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
8393 m_ConstantInt(Cst)))) {
8394 // If the source and destination operands have the same type, see if this
8395 // is a single-index GEP.
8396 if (X->getType() == CI.getType()) {
8397 // Get the size of the pointee type.
Bill Wendlingb9d4f8d2008-03-14 05:12:19 +00008398 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattnerf9d9e452008-01-08 07:23:51 +00008399
8400 // Convert the constant to intptr type.
8401 APInt Offset = Cst->getValue();
8402 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8403
8404 // If Offset is evenly divisible by Size, we can do this xform.
8405 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8406 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greif051a9502008-04-06 20:25:17 +00008407 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattnerf9d9e452008-01-08 07:23:51 +00008408 }
8409 }
8410 // TODO: Could handle other cases, e.g. where add is indexing into field of
8411 // struct etc.
8412 } else if (CI.getOperand(0)->hasOneUse() &&
8413 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
8414 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
8415 // "inttoptr+GEP" instead of "add+intptr".
8416
8417 // Get the size of the pointee type.
8418 uint64_t Size = TD->getABITypeSize(DestPointee);
8419
8420 // Convert the constant to intptr type.
8421 APInt Offset = Cst->getValue();
8422 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8423
8424 // If Offset is evenly divisible by Size, we can do this xform.
8425 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8426 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
8427
8428 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
8429 "tmp"), CI);
Gabor Greif051a9502008-04-06 20:25:17 +00008430 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattnerf9d9e452008-01-08 07:23:51 +00008431 }
8432 }
8433 return 0;
Reid Spencer3da59db2006-11-27 01:05:10 +00008434}
8435
Chris Lattnerd3e28342007-04-27 17:44:50 +00008436Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
Reid Spencer3da59db2006-11-27 01:05:10 +00008437 // If the operands are integer typed then apply the integer transforms,
8438 // otherwise just apply the common ones.
8439 Value *Src = CI.getOperand(0);
8440 const Type *SrcTy = Src->getType();
8441 const Type *DestTy = CI.getType();
8442
Chris Lattner42a75512007-01-15 02:27:26 +00008443 if (SrcTy->isInteger() && DestTy->isInteger()) {
Reid Spencer3da59db2006-11-27 01:05:10 +00008444 if (Instruction *Result = commonIntCastTransforms(CI))
8445 return Result;
Chris Lattnerd3e28342007-04-27 17:44:50 +00008446 } else if (isa<PointerType>(SrcTy)) {
8447 if (Instruction *I = commonPointerCastTransforms(CI))
8448 return I;
Reid Spencer3da59db2006-11-27 01:05:10 +00008449 } else {
8450 if (Instruction *Result = commonCastTransforms(CI))
8451 return Result;
8452 }
8453
8454
8455 // Get rid of casts from one type to the same type. These are useless and can
8456 // be replaced by the operand.
8457 if (DestTy == Src->getType())
8458 return ReplaceInstUsesWith(CI, Src);
8459
Reid Spencer3da59db2006-11-27 01:05:10 +00008460 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
Chris Lattnerd3e28342007-04-27 17:44:50 +00008461 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
8462 const Type *DstElTy = DstPTy->getElementType();
8463 const Type *SrcElTy = SrcPTy->getElementType();
8464
Nate Begeman83ad90a2008-03-31 00:22:16 +00008465 // If the address spaces don't match, don't eliminate the bitcast, which is
8466 // required for changing types.
8467 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
8468 return 0;
8469
Chris Lattnerd3e28342007-04-27 17:44:50 +00008470 // If we are casting a malloc or alloca to a pointer to a type of the same
8471 // size, rewrite the allocation instruction to allocate the "right" type.
8472 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
8473 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
8474 return V;
8475
Chris Lattnerd717c182007-05-05 22:32:24 +00008476 // If the source and destination are pointers, and this cast is equivalent
8477 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
Chris Lattnerd3e28342007-04-27 17:44:50 +00008478 // This can enhance SROA and other transforms that want type-safe pointers.
8479 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
8480 unsigned NumZeros = 0;
8481 while (SrcElTy != DstElTy &&
8482 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
8483 SrcElTy->getNumContainedTypes() /* not "{}" */) {
8484 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
8485 ++NumZeros;
8486 }
Chris Lattner4e998b22004-09-29 05:07:12 +00008487
Chris Lattnerd3e28342007-04-27 17:44:50 +00008488 // If we found a path from the src to dest, create the getelementptr now.
8489 if (SrcElTy == DstElTy) {
8490 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greif051a9502008-04-06 20:25:17 +00008491 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
8492 ((Instruction*) NULL));
Chris Lattner9fb92132006-04-12 18:09:35 +00008493 }
Reid Spencer3da59db2006-11-27 01:05:10 +00008494 }
Chris Lattner24c8e382003-07-24 17:35:25 +00008495
Reid Spencer3da59db2006-11-27 01:05:10 +00008496 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
8497 if (SVI->hasOneUse()) {
8498 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8499 // a bitconvert to a vector with the same # elts.
Reid Spencer9d6565a2007-02-15 02:26:10 +00008500 if (isa<VectorType>(DestTy) &&
Mon P Wangaeb06d22008-11-10 04:46:22 +00008501 cast<VectorType>(DestTy)->getNumElements() ==
8502 SVI->getType()->getNumElements() &&
8503 SVI->getType()->getNumElements() ==
8504 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
Reid Spencer3da59db2006-11-27 01:05:10 +00008505 CastInst *Tmp;
8506 // If either of the operands is a cast from CI.getType(), then
8507 // evaluating the shuffle in the casted destination's type will allow
8508 // us to eliminate at least one cast.
8509 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
8510 Tmp->getOperand(0)->getType() == DestTy) ||
8511 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
8512 Tmp->getOperand(0)->getType() == DestTy)) {
Eli Friedmand1fd1da2008-11-30 21:09:11 +00008513 Value *LHS = InsertCastBefore(Instruction::BitCast,
8514 SVI->getOperand(0), DestTy, CI);
8515 Value *RHS = InsertCastBefore(Instruction::BitCast,
8516 SVI->getOperand(1), DestTy, CI);
Reid Spencer3da59db2006-11-27 01:05:10 +00008517 // Return a new shuffle vector. Use the same element ID's, as we
8518 // know the vector types match #elts.
8519 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
Chris Lattner01575b72006-05-25 23:24:33 +00008520 }
8521 }
8522 }
8523 }
Chris Lattnerdd841ae2002-04-18 17:39:14 +00008524 return 0;
Chris Lattner8a2a3112001-12-14 16:52:21 +00008525}
8526
Chris Lattnere576b912004-04-09 23:46:01 +00008527/// GetSelectFoldableOperands - We want to turn code that looks like this:
8528/// %C = or %A, %B
8529/// %D = select %cond, %C, %A
8530/// into:
8531/// %C = select %cond, %B, 0
8532/// %D = or %A, %C
8533///
8534/// Assuming that the specified instruction is an operand to the select, return
8535/// a bitmask indicating which operands of this instruction are foldable if they
8536/// equal the other incoming value of the select.
8537///
8538static unsigned GetSelectFoldableOperands(Instruction *I) {
8539 switch (I->getOpcode()) {
8540 case Instruction::Add:
8541 case Instruction::Mul:
8542 case Instruction::And:
8543 case Instruction::Or:
8544 case Instruction::Xor:
8545 return 3; // Can fold through either operand.
8546 case Instruction::Sub: // Can only fold on the amount subtracted.
8547 case Instruction::Shl: // Can only fold on the shift amount.
Reid Spencer3822ff52006-11-08 06:47:33 +00008548 case Instruction::LShr:
8549 case Instruction::AShr:
Misha Brukmanfd939082005-04-21 23:48:37 +00008550 return 1;
Chris Lattnere576b912004-04-09 23:46:01 +00008551 default:
8552 return 0; // Cannot fold
8553 }
8554}
8555
8556/// GetSelectFoldableConstant - For the same transformation as the previous
8557/// function, return the identity constant that goes into the select.
8558static Constant *GetSelectFoldableConstant(Instruction *I) {
8559 switch (I->getOpcode()) {
8560 default: assert(0 && "This cannot happen!"); abort();
8561 case Instruction::Add:
8562 case Instruction::Sub:
8563 case Instruction::Or:
8564 case Instruction::Xor:
Chris Lattnere576b912004-04-09 23:46:01 +00008565 case Instruction::Shl:
Reid Spencer3822ff52006-11-08 06:47:33 +00008566 case Instruction::LShr:
8567 case Instruction::AShr:
Reid Spencer832254e2007-02-02 02:16:23 +00008568 return Constant::getNullValue(I->getType());
Chris Lattnere576b912004-04-09 23:46:01 +00008569 case Instruction::And:
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00008570 return Constant::getAllOnesValue(I->getType());
Chris Lattnere576b912004-04-09 23:46:01 +00008571 case Instruction::Mul:
8572 return ConstantInt::get(I->getType(), 1);
8573 }
8574}
8575
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008576/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8577/// have the same opcode and only one use each. Try to simplify this.
8578Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8579 Instruction *FI) {
8580 if (TI->getNumOperands() == 1) {
8581 // If this is a non-volatile load or a cast from the same type,
8582 // merge.
Reid Spencer3da59db2006-11-27 01:05:10 +00008583 if (TI->isCast()) {
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008584 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8585 return 0;
8586 } else {
8587 return 0; // unknown unary op.
8588 }
Misha Brukmanfd939082005-04-21 23:48:37 +00008589
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008590 // Fold this by inserting a select from the input values.
Gabor Greif051a9502008-04-06 20:25:17 +00008591 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8592 FI->getOperand(0), SI.getName()+".v");
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008593 InsertNewInstBefore(NewSI, SI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008594 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Reid Spencer3da59db2006-11-27 01:05:10 +00008595 TI->getType());
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008596 }
8597
Reid Spencer832254e2007-02-02 02:16:23 +00008598 // Only handle binary operators here.
8599 if (!isa<BinaryOperator>(TI))
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008600 return 0;
8601
8602 // Figure out if the operations have any operands in common.
8603 Value *MatchOp, *OtherOpT, *OtherOpF;
8604 bool MatchIsOpZero;
8605 if (TI->getOperand(0) == FI->getOperand(0)) {
8606 MatchOp = TI->getOperand(0);
8607 OtherOpT = TI->getOperand(1);
8608 OtherOpF = FI->getOperand(1);
8609 MatchIsOpZero = true;
8610 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8611 MatchOp = TI->getOperand(1);
8612 OtherOpT = TI->getOperand(0);
8613 OtherOpF = FI->getOperand(0);
8614 MatchIsOpZero = false;
8615 } else if (!TI->isCommutative()) {
8616 return 0;
8617 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8618 MatchOp = TI->getOperand(0);
8619 OtherOpT = TI->getOperand(1);
8620 OtherOpF = FI->getOperand(0);
8621 MatchIsOpZero = true;
8622 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8623 MatchOp = TI->getOperand(1);
8624 OtherOpT = TI->getOperand(0);
8625 OtherOpF = FI->getOperand(1);
8626 MatchIsOpZero = true;
8627 } else {
8628 return 0;
8629 }
8630
8631 // If we reach here, they do have operations in common.
Gabor Greif051a9502008-04-06 20:25:17 +00008632 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8633 OtherOpF, SI.getName()+".v");
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008634 InsertNewInstBefore(NewSI, SI);
8635
8636 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8637 if (MatchIsOpZero)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008638 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008639 else
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008640 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008641 }
Reid Spencera07cb7d2007-02-02 14:41:37 +00008642 assert(0 && "Shouldn't get here");
8643 return 0;
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008644}
8645
Dan Gohman81b28ce2008-09-16 18:46:06 +00008646/// visitSelectInstWithICmp - Visit a SelectInst that has an
8647/// ICmpInst as its first operand.
8648///
8649Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
8650 ICmpInst *ICI) {
8651 bool Changed = false;
8652 ICmpInst::Predicate Pred = ICI->getPredicate();
8653 Value *CmpLHS = ICI->getOperand(0);
8654 Value *CmpRHS = ICI->getOperand(1);
8655 Value *TrueVal = SI.getTrueValue();
8656 Value *FalseVal = SI.getFalseValue();
8657
8658 // Check cases where the comparison is with a constant that
8659 // can be adjusted to fit the min/max idiom. We may edit ICI in
8660 // place here, so make sure the select is the only user.
8661 if (ICI->hasOneUse())
Dan Gohman1975d032008-10-30 20:40:10 +00008662 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
Dan Gohman81b28ce2008-09-16 18:46:06 +00008663 switch (Pred) {
8664 default: break;
8665 case ICmpInst::ICMP_ULT:
8666 case ICmpInst::ICMP_SLT: {
8667 // X < MIN ? T : F --> F
8668 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
8669 return ReplaceInstUsesWith(SI, FalseVal);
8670 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
8671 Constant *AdjustedRHS = SubOne(CI);
8672 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8673 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8674 Pred = ICmpInst::getSwappedPredicate(Pred);
8675 CmpRHS = AdjustedRHS;
8676 std::swap(FalseVal, TrueVal);
8677 ICI->setPredicate(Pred);
8678 ICI->setOperand(1, CmpRHS);
8679 SI.setOperand(1, TrueVal);
8680 SI.setOperand(2, FalseVal);
8681 Changed = true;
8682 }
8683 break;
8684 }
8685 case ICmpInst::ICMP_UGT:
8686 case ICmpInst::ICMP_SGT: {
8687 // X > MAX ? T : F --> F
8688 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
8689 return ReplaceInstUsesWith(SI, FalseVal);
8690 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
8691 Constant *AdjustedRHS = AddOne(CI);
8692 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8693 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8694 Pred = ICmpInst::getSwappedPredicate(Pred);
8695 CmpRHS = AdjustedRHS;
8696 std::swap(FalseVal, TrueVal);
8697 ICI->setPredicate(Pred);
8698 ICI->setOperand(1, CmpRHS);
8699 SI.setOperand(1, TrueVal);
8700 SI.setOperand(2, FalseVal);
8701 Changed = true;
8702 }
8703 break;
8704 }
8705 }
8706
Dan Gohman1975d032008-10-30 20:40:10 +00008707 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
8708 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
Chris Lattnercb504b92008-11-16 05:38:51 +00008709 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
8710 if (match(TrueVal, m_ConstantInt(-1)) &&
8711 match(FalseVal, m_ConstantInt(0)))
8712 Pred = ICI->getPredicate();
8713 else if (match(TrueVal, m_ConstantInt(0)) &&
8714 match(FalseVal, m_ConstantInt(-1)))
8715 Pred = CmpInst::getInversePredicate(ICI->getPredicate());
8716
Dan Gohman1975d032008-10-30 20:40:10 +00008717 if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
8718 // If we are just checking for a icmp eq of a single bit and zext'ing it
8719 // to an integer, then shift the bit to the appropriate place and then
8720 // cast to integer to avoid the comparison.
8721 const APInt &Op1CV = CI->getValue();
8722
8723 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
8724 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
8725 if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
Chris Lattnercb504b92008-11-16 05:38:51 +00008726 (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
Dan Gohman1975d032008-10-30 20:40:10 +00008727 Value *In = ICI->getOperand(0);
8728 Value *Sh = ConstantInt::get(In->getType(),
8729 In->getType()->getPrimitiveSizeInBits()-1);
8730 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
8731 In->getName()+".lobit"),
8732 *ICI);
Dan Gohman21440ac2008-11-02 00:17:33 +00008733 if (In->getType() != SI.getType())
8734 In = CastInst::CreateIntegerCast(In, SI.getType(),
Dan Gohman1975d032008-10-30 20:40:10 +00008735 true/*SExt*/, "tmp", ICI);
8736
8737 if (Pred == ICmpInst::ICMP_SGT)
8738 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
8739 In->getName()+".not"), *ICI);
8740
8741 return ReplaceInstUsesWith(SI, In);
8742 }
8743 }
8744 }
8745
Dan Gohman81b28ce2008-09-16 18:46:06 +00008746 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
8747 // Transform (X == Y) ? X : Y -> Y
8748 if (Pred == ICmpInst::ICMP_EQ)
8749 return ReplaceInstUsesWith(SI, FalseVal);
8750 // Transform (X != Y) ? X : Y -> X
8751 if (Pred == ICmpInst::ICMP_NE)
8752 return ReplaceInstUsesWith(SI, TrueVal);
8753 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8754
8755 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
8756 // Transform (X == Y) ? Y : X -> X
8757 if (Pred == ICmpInst::ICMP_EQ)
8758 return ReplaceInstUsesWith(SI, FalseVal);
8759 // Transform (X != Y) ? Y : X -> Y
8760 if (Pred == ICmpInst::ICMP_NE)
8761 return ReplaceInstUsesWith(SI, TrueVal);
8762 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8763 }
8764
8765 /// NOTE: if we wanted to, this is where to detect integer ABS
8766
8767 return Changed ? &SI : 0;
8768}
8769
Chris Lattner3d69f462004-03-12 05:52:32 +00008770Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Chris Lattnerc32b30a2004-03-30 19:37:13 +00008771 Value *CondVal = SI.getCondition();
8772 Value *TrueVal = SI.getTrueValue();
8773 Value *FalseVal = SI.getFalseValue();
8774
8775 // select true, X, Y -> X
8776 // select false, X, Y -> Y
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00008777 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
Reid Spencer579dca12007-01-12 04:24:46 +00008778 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
Chris Lattnerc32b30a2004-03-30 19:37:13 +00008779
8780 // select C, X, X -> X
8781 if (TrueVal == FalseVal)
8782 return ReplaceInstUsesWith(SI, TrueVal);
8783
Chris Lattnere87597f2004-10-16 18:11:37 +00008784 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8785 return ReplaceInstUsesWith(SI, FalseVal);
8786 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8787 return ReplaceInstUsesWith(SI, TrueVal);
8788 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8789 if (isa<Constant>(TrueVal))
8790 return ReplaceInstUsesWith(SI, TrueVal);
8791 else
8792 return ReplaceInstUsesWith(SI, FalseVal);
8793 }
8794
Reid Spencer4fe16d62007-01-11 18:21:29 +00008795 if (SI.getType() == Type::Int1Ty) {
Reid Spencera54b7cb2007-01-12 07:05:14 +00008796 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
Reid Spencer579dca12007-01-12 04:24:46 +00008797 if (C->getZExtValue()) {
Chris Lattner0c199a72004-04-08 04:43:23 +00008798 // Change: A = select B, true, C --> A = or B, C
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008799 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00008800 } else {
8801 // Change: A = select B, false, C --> A = and !B, C
8802 Value *NotCond =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008803 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Chris Lattner0c199a72004-04-08 04:43:23 +00008804 "not."+CondVal->getName()), SI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008805 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00008806 }
Reid Spencera54b7cb2007-01-12 07:05:14 +00008807 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
Reid Spencer579dca12007-01-12 04:24:46 +00008808 if (C->getZExtValue() == false) {
Chris Lattner0c199a72004-04-08 04:43:23 +00008809 // Change: A = select B, C, false --> A = and B, C
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008810 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00008811 } else {
8812 // Change: A = select B, C, true --> A = or !B, C
8813 Value *NotCond =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008814 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Chris Lattner0c199a72004-04-08 04:43:23 +00008815 "not."+CondVal->getName()), SI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008816 return BinaryOperator::CreateOr(NotCond, TrueVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00008817 }
8818 }
Chris Lattnercfa59752007-11-25 21:27:53 +00008819
8820 // select a, b, a -> a&b
8821 // select a, a, b -> a|b
8822 if (CondVal == TrueVal)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008823 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattnercfa59752007-11-25 21:27:53 +00008824 else if (CondVal == FalseVal)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008825 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00008826 }
Chris Lattner0c199a72004-04-08 04:43:23 +00008827
Chris Lattner2eefe512004-04-09 19:05:30 +00008828 // Selecting between two integer constants?
8829 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8830 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
Chris Lattnerba417832007-04-11 06:12:58 +00008831 // select C, 1, 0 -> zext C to int
Reid Spencer2ec619a2007-03-23 21:24:59 +00008832 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008833 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Reid Spencer2ec619a2007-03-23 21:24:59 +00008834 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
Chris Lattnerba417832007-04-11 06:12:58 +00008835 // select C, 0, 1 -> zext !C to int
Chris Lattner2eefe512004-04-09 19:05:30 +00008836 Value *NotCond =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008837 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Chris Lattner82e14fe2004-04-09 18:19:44 +00008838 "not."+CondVal->getName()), SI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008839 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Chris Lattner82e14fe2004-04-09 18:19:44 +00008840 }
Chris Lattner457dd822004-06-09 07:59:58 +00008841
Reid Spencere4d87aa2006-12-23 06:05:41 +00008842 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
Chris Lattnerb8456462006-09-20 04:44:59 +00008843
Reid Spencere4d87aa2006-12-23 06:05:41 +00008844 // (x <s 0) ? -1 : 0 -> ashr x, 31
Reid Spencer2ec619a2007-03-23 21:24:59 +00008845 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
Chris Lattnerb8456462006-09-20 04:44:59 +00008846 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
Chris Lattnerba417832007-04-11 06:12:58 +00008847 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
Chris Lattnerb8456462006-09-20 04:44:59 +00008848 // The comparison constant and the result are not neccessarily the
Reid Spencer3da59db2006-11-27 01:05:10 +00008849 // same width. Make an all-ones value by inserting a AShr.
Chris Lattnerb8456462006-09-20 04:44:59 +00008850 Value *X = IC->getOperand(0);
Zhou Sheng4351c642007-04-02 08:20:41 +00008851 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
Reid Spencer832254e2007-02-02 02:16:23 +00008852 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008853 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Reid Spencer832254e2007-02-02 02:16:23 +00008854 ShAmt, "ones");
Chris Lattnerb8456462006-09-20 04:44:59 +00008855 InsertNewInstBefore(SRA, SI);
Eli Friedmand1fd1da2008-11-30 21:09:11 +00008856
8857 // Then cast to the appropriate width.
8858 return CastInst::CreateIntegerCast(SRA, SI.getType(), true);
Chris Lattnerb8456462006-09-20 04:44:59 +00008859 }
8860 }
8861
8862
8863 // If one of the constants is zero (we know they can't both be) and we
Chris Lattnerba417832007-04-11 06:12:58 +00008864 // have an icmp instruction with zero, and we have an 'and' with the
Chris Lattnerb8456462006-09-20 04:44:59 +00008865 // non-constant value, eliminate this whole mess. This corresponds to
8866 // cases like this: ((X & 27) ? 27 : 0)
Reid Spencer2ec619a2007-03-23 21:24:59 +00008867 if (TrueValC->isZero() || FalseValC->isZero())
Chris Lattner65b72ba2006-09-18 04:22:48 +00008868 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
Chris Lattner457dd822004-06-09 07:59:58 +00008869 cast<Constant>(IC->getOperand(1))->isNullValue())
8870 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8871 if (ICA->getOpcode() == Instruction::And &&
Misha Brukmanfd939082005-04-21 23:48:37 +00008872 isa<ConstantInt>(ICA->getOperand(1)) &&
8873 (ICA->getOperand(1) == TrueValC ||
8874 ICA->getOperand(1) == FalseValC) &&
Chris Lattner457dd822004-06-09 07:59:58 +00008875 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8876 // Okay, now we know that everything is set up, we just don't
Reid Spencere4d87aa2006-12-23 06:05:41 +00008877 // know whether we have a icmp_ne or icmp_eq and whether the
8878 // true or false val is the zero.
Reid Spencer2ec619a2007-03-23 21:24:59 +00008879 bool ShouldNotVal = !TrueValC->isZero();
Reid Spencere4d87aa2006-12-23 06:05:41 +00008880 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
Chris Lattner457dd822004-06-09 07:59:58 +00008881 Value *V = ICA;
8882 if (ShouldNotVal)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008883 V = InsertNewInstBefore(BinaryOperator::Create(
Chris Lattner457dd822004-06-09 07:59:58 +00008884 Instruction::Xor, V, ICA->getOperand(1)), SI);
8885 return ReplaceInstUsesWith(SI, V);
8886 }
Chris Lattnerb8456462006-09-20 04:44:59 +00008887 }
Chris Lattnerc32b30a2004-03-30 19:37:13 +00008888 }
Chris Lattnerd76956d2004-04-10 22:21:27 +00008889
8890 // See if we are selecting two values based on a comparison of the two values.
Reid Spencere4d87aa2006-12-23 06:05:41 +00008891 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8892 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
Chris Lattnerd76956d2004-04-10 22:21:27 +00008893 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen5a2174f2007-10-03 17:45:27 +00008894 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8895 // This is not safe in general for floating point:
8896 // consider X== -0, Y== +0.
8897 // It becomes safe if either operand is a nonzero constant.
8898 ConstantFP *CFPt, *CFPf;
8899 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8900 !CFPt->getValueAPF().isZero()) ||
8901 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8902 !CFPf->getValueAPF().isZero()))
Chris Lattnerd76956d2004-04-10 22:21:27 +00008903 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen5a2174f2007-10-03 17:45:27 +00008904 }
Chris Lattnerd76956d2004-04-10 22:21:27 +00008905 // Transform (X != Y) ? X : Y -> X
Reid Spencere4d87aa2006-12-23 06:05:41 +00008906 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
Chris Lattnerd76956d2004-04-10 22:21:27 +00008907 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman81b28ce2008-09-16 18:46:06 +00008908 // NOTE: if we wanted to, this is where to detect MIN/MAX
Chris Lattnerd76956d2004-04-10 22:21:27 +00008909
Reid Spencere4d87aa2006-12-23 06:05:41 +00008910 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
Chris Lattnerd76956d2004-04-10 22:21:27 +00008911 // Transform (X == Y) ? Y : X -> X
Dale Johannesen5a2174f2007-10-03 17:45:27 +00008912 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8913 // This is not safe in general for floating point:
8914 // consider X== -0, Y== +0.
8915 // It becomes safe if either operand is a nonzero constant.
8916 ConstantFP *CFPt, *CFPf;
8917 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8918 !CFPt->getValueAPF().isZero()) ||
8919 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8920 !CFPf->getValueAPF().isZero()))
8921 return ReplaceInstUsesWith(SI, FalseVal);
8922 }
Chris Lattnerd76956d2004-04-10 22:21:27 +00008923 // Transform (X != Y) ? Y : X -> Y
Reid Spencere4d87aa2006-12-23 06:05:41 +00008924 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8925 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman81b28ce2008-09-16 18:46:06 +00008926 // NOTE: if we wanted to, this is where to detect MIN/MAX
Reid Spencere4d87aa2006-12-23 06:05:41 +00008927 }
Dan Gohman81b28ce2008-09-16 18:46:06 +00008928 // NOTE: if we wanted to, this is where to detect ABS
Reid Spencere4d87aa2006-12-23 06:05:41 +00008929 }
8930
8931 // See if we are selecting two values based on a comparison of the two values.
Dan Gohman81b28ce2008-09-16 18:46:06 +00008932 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
8933 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
8934 return Result;
Misha Brukmanfd939082005-04-21 23:48:37 +00008935
Chris Lattner87875da2005-01-13 22:52:24 +00008936 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8937 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8938 if (TI->hasOneUse() && FI->hasOneUse()) {
Chris Lattner87875da2005-01-13 22:52:24 +00008939 Instruction *AddOp = 0, *SubOp = 0;
8940
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008941 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8942 if (TI->getOpcode() == FI->getOpcode())
8943 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8944 return IV;
8945
8946 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8947 // even legal for FP.
Chris Lattner87875da2005-01-13 22:52:24 +00008948 if (TI->getOpcode() == Instruction::Sub &&
8949 FI->getOpcode() == Instruction::Add) {
8950 AddOp = FI; SubOp = TI;
8951 } else if (FI->getOpcode() == Instruction::Sub &&
8952 TI->getOpcode() == Instruction::Add) {
8953 AddOp = TI; SubOp = FI;
8954 }
8955
8956 if (AddOp) {
8957 Value *OtherAddOp = 0;
8958 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8959 OtherAddOp = AddOp->getOperand(1);
8960 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8961 OtherAddOp = AddOp->getOperand(0);
8962 }
8963
8964 if (OtherAddOp) {
Chris Lattner97f37a42006-02-24 18:05:58 +00008965 // So at this point we know we have (Y -> OtherAddOp):
8966 // select C, (add X, Y), (sub X, Z)
8967 Value *NegVal; // Compute -Z
8968 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8969 NegVal = ConstantExpr::getNeg(C);
8970 } else {
8971 NegVal = InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008972 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Chris Lattner87875da2005-01-13 22:52:24 +00008973 }
Chris Lattner97f37a42006-02-24 18:05:58 +00008974
8975 Value *NewTrueOp = OtherAddOp;
8976 Value *NewFalseOp = NegVal;
8977 if (AddOp != TI)
8978 std::swap(NewTrueOp, NewFalseOp);
8979 Instruction *NewSel =
Gabor Greifb1dbcd82008-05-15 10:04:30 +00008980 SelectInst::Create(CondVal, NewTrueOp,
8981 NewFalseOp, SI.getName() + ".p");
Chris Lattner97f37a42006-02-24 18:05:58 +00008982
8983 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008984 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Chris Lattner87875da2005-01-13 22:52:24 +00008985 }
8986 }
8987 }
Misha Brukmanfd939082005-04-21 23:48:37 +00008988
Chris Lattnere576b912004-04-09 23:46:01 +00008989 // See if we can fold the select into one of our operands.
Chris Lattner42a75512007-01-15 02:27:26 +00008990 if (SI.getType()->isInteger()) {
Chris Lattnere576b912004-04-09 23:46:01 +00008991 // See the comment above GetSelectFoldableOperands for a description of the
8992 // transformation we are doing here.
8993 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8994 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8995 !isa<Constant>(FalseVal))
8996 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8997 unsigned OpToFold = 0;
8998 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
8999 OpToFold = 1;
9000 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
9001 OpToFold = 2;
9002 }
9003
9004 if (OpToFold) {
9005 Constant *C = GetSelectFoldableConstant(TVI);
Chris Lattnere576b912004-04-09 23:46:01 +00009006 Instruction *NewSel =
Gabor Greifb1dbcd82008-05-15 10:04:30 +00009007 SelectInst::Create(SI.getCondition(),
9008 TVI->getOperand(2-OpToFold), C);
Chris Lattnere576b912004-04-09 23:46:01 +00009009 InsertNewInstBefore(NewSel, SI);
Chris Lattner6934a042007-02-11 01:23:03 +00009010 NewSel->takeName(TVI);
Chris Lattnere576b912004-04-09 23:46:01 +00009011 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00009012 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Chris Lattnere576b912004-04-09 23:46:01 +00009013 else {
9014 assert(0 && "Unknown instruction!!");
9015 }
9016 }
9017 }
Chris Lattnera96879a2004-09-29 17:40:11 +00009018
Chris Lattnere576b912004-04-09 23:46:01 +00009019 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
9020 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
9021 !isa<Constant>(TrueVal))
9022 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
9023 unsigned OpToFold = 0;
9024 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
9025 OpToFold = 1;
9026 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
9027 OpToFold = 2;
9028 }
9029
9030 if (OpToFold) {
9031 Constant *C = GetSelectFoldableConstant(FVI);
Chris Lattnere576b912004-04-09 23:46:01 +00009032 Instruction *NewSel =
Gabor Greifb1dbcd82008-05-15 10:04:30 +00009033 SelectInst::Create(SI.getCondition(), C,
9034 FVI->getOperand(2-OpToFold));
Chris Lattnere576b912004-04-09 23:46:01 +00009035 InsertNewInstBefore(NewSel, SI);
Chris Lattner6934a042007-02-11 01:23:03 +00009036 NewSel->takeName(FVI);
Chris Lattnere576b912004-04-09 23:46:01 +00009037 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00009038 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Reid Spencer832254e2007-02-02 02:16:23 +00009039 else
Chris Lattnere576b912004-04-09 23:46:01 +00009040 assert(0 && "Unknown instruction!!");
Chris Lattnere576b912004-04-09 23:46:01 +00009041 }
9042 }
9043 }
Chris Lattnera1df33c2005-04-24 07:30:14 +00009044
9045 if (BinaryOperator::isNot(CondVal)) {
9046 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
9047 SI.setOperand(1, FalseVal);
9048 SI.setOperand(2, TrueVal);
9049 return &SI;
9050 }
9051
Chris Lattner3d69f462004-03-12 05:52:32 +00009052 return 0;
9053}
9054
Dan Gohmaneee962e2008-04-10 18:43:06 +00009055/// EnforceKnownAlignment - If the specified pointer points to an object that
9056/// we control, modify the object's alignment to PrefAlign. This isn't
9057/// often possible though. If alignment is important, a more reliable approach
9058/// is to simply align all global variables and allocation instructions to
9059/// their preferred alignment from the beginning.
9060///
9061static unsigned EnforceKnownAlignment(Value *V,
9062 unsigned Align, unsigned PrefAlign) {
Chris Lattnerf2369f22007-08-09 19:05:49 +00009063
Dan Gohmaneee962e2008-04-10 18:43:06 +00009064 User *U = dyn_cast<User>(V);
9065 if (!U) return Align;
9066
9067 switch (getOpcode(U)) {
9068 default: break;
9069 case Instruction::BitCast:
9070 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
9071 case Instruction::GetElementPtr: {
Chris Lattner95a959d2006-03-06 20:18:44 +00009072 // If all indexes are zero, it is just the alignment of the base pointer.
9073 bool AllZeroOperands = true;
Gabor Greif52ed3632008-06-12 21:51:29 +00009074 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
Gabor Greif177dd3f2008-06-12 21:37:33 +00009075 if (!isa<Constant>(*i) ||
9076 !cast<Constant>(*i)->isNullValue()) {
Chris Lattner95a959d2006-03-06 20:18:44 +00009077 AllZeroOperands = false;
9078 break;
9079 }
Chris Lattnerf2369f22007-08-09 19:05:49 +00009080
9081 if (AllZeroOperands) {
9082 // Treat this like a bitcast.
Dan Gohmaneee962e2008-04-10 18:43:06 +00009083 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattnerf2369f22007-08-09 19:05:49 +00009084 }
Dan Gohmaneee962e2008-04-10 18:43:06 +00009085 break;
Chris Lattner95a959d2006-03-06 20:18:44 +00009086 }
Dan Gohmaneee962e2008-04-10 18:43:06 +00009087 }
9088
9089 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
9090 // If there is a large requested alignment and we can, bump up the alignment
9091 // of the global.
9092 if (!GV->isDeclaration()) {
9093 GV->setAlignment(PrefAlign);
9094 Align = PrefAlign;
9095 }
9096 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
9097 // If there is a requested alignment and if this is an alloca, round up. We
9098 // don't do this for malloc, because some systems can't respect the request.
9099 if (isa<AllocaInst>(AI)) {
9100 AI->setAlignment(PrefAlign);
9101 Align = PrefAlign;
9102 }
9103 }
9104
9105 return Align;
9106}
9107
9108/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
9109/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
9110/// and it is more than the alignment of the ultimate object, see if we can
9111/// increase the alignment of the ultimate object, making this check succeed.
9112unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
9113 unsigned PrefAlign) {
9114 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
9115 sizeof(PrefAlign) * CHAR_BIT;
9116 APInt Mask = APInt::getAllOnesValue(BitWidth);
9117 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
9118 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
9119 unsigned TrailZ = KnownZero.countTrailingOnes();
9120 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
9121
9122 if (PrefAlign > Align)
9123 Align = EnforceKnownAlignment(V, Align, PrefAlign);
9124
9125 // We don't need to make any adjustment.
9126 return Align;
Chris Lattner95a959d2006-03-06 20:18:44 +00009127}
9128
Chris Lattnerf497b022008-01-13 23:50:23 +00009129Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohmaneee962e2008-04-10 18:43:06 +00009130 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
9131 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattnerf497b022008-01-13 23:50:23 +00009132 unsigned MinAlign = std::min(DstAlign, SrcAlign);
9133 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
9134
9135 if (CopyAlign < MinAlign) {
9136 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
9137 return MI;
9138 }
9139
9140 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
9141 // load/store.
9142 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
9143 if (MemOpLength == 0) return 0;
9144
Chris Lattner37ac6082008-01-14 00:28:35 +00009145 // Source and destination pointer types are always "i8*" for intrinsic. See
9146 // if the size is something we can handle with a single primitive load/store.
9147 // A single load+store correctly handles overlapping memory in the memmove
9148 // case.
Chris Lattnerf497b022008-01-13 23:50:23 +00009149 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner69ea9d22008-04-30 06:39:11 +00009150 if (Size == 0) return MI; // Delete this mem transfer.
9151
9152 if (Size > 8 || (Size&(Size-1)))
Chris Lattner37ac6082008-01-14 00:28:35 +00009153 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattnerf497b022008-01-13 23:50:23 +00009154
Chris Lattner37ac6082008-01-14 00:28:35 +00009155 // Use an integer load+store unless we can find something better.
Chris Lattnerf497b022008-01-13 23:50:23 +00009156 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattner37ac6082008-01-14 00:28:35 +00009157
9158 // Memcpy forces the use of i8* for the source and destination. That means
9159 // that if you're using memcpy to move one double around, you'll get a cast
9160 // from double* to i8*. We'd much rather use a double load+store rather than
9161 // an i64 load+store, here because this improves the odds that the source or
9162 // dest address will be promotable. See if we can find a better type than the
9163 // integer datatype.
9164 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
9165 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
9166 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
9167 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
9168 // down through these levels if so.
Dan Gohman8f8e2692008-05-23 01:52:21 +00009169 while (!SrcETy->isSingleValueType()) {
Chris Lattner37ac6082008-01-14 00:28:35 +00009170 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
9171 if (STy->getNumElements() == 1)
9172 SrcETy = STy->getElementType(0);
9173 else
9174 break;
9175 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
9176 if (ATy->getNumElements() == 1)
9177 SrcETy = ATy->getElementType();
9178 else
9179 break;
9180 } else
9181 break;
9182 }
9183
Dan Gohman8f8e2692008-05-23 01:52:21 +00009184 if (SrcETy->isSingleValueType())
Chris Lattner37ac6082008-01-14 00:28:35 +00009185 NewPtrTy = PointerType::getUnqual(SrcETy);
9186 }
9187 }
9188
9189
Chris Lattnerf497b022008-01-13 23:50:23 +00009190 // If the memcpy/memmove provides better alignment info than we can
9191 // infer, use it.
9192 SrcAlign = std::max(SrcAlign, CopyAlign);
9193 DstAlign = std::max(DstAlign, CopyAlign);
9194
9195 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
9196 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattner37ac6082008-01-14 00:28:35 +00009197 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
9198 InsertNewInstBefore(L, *MI);
9199 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
9200
9201 // Set the size of the copy to 0, it will be deleted on the next iteration.
9202 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
9203 return MI;
Chris Lattnerf497b022008-01-13 23:50:23 +00009204}
Chris Lattner3d69f462004-03-12 05:52:32 +00009205
Chris Lattner69ea9d22008-04-30 06:39:11 +00009206Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
9207 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
9208 if (MI->getAlignment()->getZExtValue() < Alignment) {
9209 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
9210 return MI;
9211 }
9212
9213 // Extract the length and alignment and fill if they are constant.
9214 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
9215 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
9216 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
9217 return 0;
9218 uint64_t Len = LenC->getZExtValue();
9219 Alignment = MI->getAlignment()->getZExtValue();
9220
9221 // If the length is zero, this is a no-op
9222 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
9223
9224 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
9225 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
9226 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
9227
9228 Value *Dest = MI->getDest();
9229 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
9230
9231 // Alignment 0 is identity for alignment 1 for memset, but not store.
9232 if (Alignment == 0) Alignment = 1;
9233
9234 // Extract the fill value and store.
9235 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
9236 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
9237 Alignment), *MI);
9238
9239 // Set the size of the copy to 0, it will be deleted on the next iteration.
9240 MI->setLength(Constant::getNullValue(LenC->getType()));
9241 return MI;
9242 }
9243
9244 return 0;
9245}
9246
9247
Chris Lattner8b0ea312006-01-13 20:11:04 +00009248/// visitCallInst - CallInst simplification. This mostly only handles folding
9249/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
9250/// the heavy lifting.
9251///
Chris Lattner9fe38862003-06-19 17:00:31 +00009252Instruction *InstCombiner::visitCallInst(CallInst &CI) {
Chris Lattner8b0ea312006-01-13 20:11:04 +00009253 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
9254 if (!II) return visitCallSite(&CI);
9255
Chris Lattner7bcc0e72004-02-28 05:22:00 +00009256 // Intrinsics cannot occur in an invoke, so handle them here instead of in
9257 // visitCallSite.
Chris Lattner8b0ea312006-01-13 20:11:04 +00009258 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
Chris Lattner35b9e482004-10-12 04:52:52 +00009259 bool Changed = false;
9260
9261 // memmove/cpy/set of zero bytes is a noop.
9262 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
9263 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
9264
Chris Lattner35b9e482004-10-12 04:52:52 +00009265 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
Reid Spencerb83eb642006-10-20 07:07:24 +00009266 if (CI->getZExtValue() == 1) {
Chris Lattner35b9e482004-10-12 04:52:52 +00009267 // Replace the instruction with just byte operations. We would
9268 // transform other cases to loads/stores, but we don't know if
9269 // alignment is sufficient.
9270 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +00009271 }
9272
Chris Lattner35b9e482004-10-12 04:52:52 +00009273 // If we have a memmove and the source operation is a constant global,
9274 // then the source and dest pointers can't alias, so we can change this
9275 // into a call to memcpy.
Chris Lattnerf497b022008-01-13 23:50:23 +00009276 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Chris Lattner35b9e482004-10-12 04:52:52 +00009277 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
9278 if (GVSrc->isConstant()) {
9279 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner824b9582008-11-21 16:42:48 +00009280 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
9281 const Type *Tys[1];
9282 Tys[0] = CI.getOperand(3)->getType();
9283 CI.setOperand(0,
9284 Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
Chris Lattner35b9e482004-10-12 04:52:52 +00009285 Changed = true;
9286 }
Chris Lattnera935db82008-05-28 05:30:41 +00009287
9288 // memmove(x,x,size) -> noop.
9289 if (MMI->getSource() == MMI->getDest())
9290 return EraseInstFromFunction(CI);
Chris Lattner95a959d2006-03-06 20:18:44 +00009291 }
Chris Lattner35b9e482004-10-12 04:52:52 +00009292
Chris Lattner95a959d2006-03-06 20:18:44 +00009293 // If we can determine a pointer alignment that is bigger than currently
9294 // set, update the alignment.
9295 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattnerf497b022008-01-13 23:50:23 +00009296 if (Instruction *I = SimplifyMemTransfer(MI))
9297 return I;
Chris Lattner69ea9d22008-04-30 06:39:11 +00009298 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
9299 if (Instruction *I = SimplifyMemSet(MSI))
9300 return I;
Chris Lattner95a959d2006-03-06 20:18:44 +00009301 }
9302
Chris Lattner8b0ea312006-01-13 20:11:04 +00009303 if (Changed) return II;
Chris Lattner0521e3c2008-06-18 04:33:20 +00009304 }
9305
9306 switch (II->getIntrinsicID()) {
9307 default: break;
9308 case Intrinsic::bswap:
9309 // bswap(bswap(x)) -> x
9310 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
9311 if (Operand->getIntrinsicID() == Intrinsic::bswap)
9312 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
9313 break;
9314 case Intrinsic::ppc_altivec_lvx:
9315 case Intrinsic::ppc_altivec_lvxl:
9316 case Intrinsic::x86_sse_loadu_ps:
9317 case Intrinsic::x86_sse2_loadu_pd:
9318 case Intrinsic::x86_sse2_loadu_dq:
9319 // Turn PPC lvx -> load if the pointer is known aligned.
9320 // Turn X86 loadups -> load if the pointer is known aligned.
9321 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9322 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
9323 PointerType::getUnqual(II->getType()),
9324 CI);
9325 return new LoadInst(Ptr);
Chris Lattner867b99f2006-10-05 06:55:50 +00009326 }
Chris Lattner0521e3c2008-06-18 04:33:20 +00009327 break;
9328 case Intrinsic::ppc_altivec_stvx:
9329 case Intrinsic::ppc_altivec_stvxl:
9330 // Turn stvx -> store if the pointer is known aligned.
9331 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
9332 const Type *OpPtrTy =
9333 PointerType::getUnqual(II->getOperand(1)->getType());
9334 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
9335 return new StoreInst(II->getOperand(1), Ptr);
9336 }
9337 break;
9338 case Intrinsic::x86_sse_storeu_ps:
9339 case Intrinsic::x86_sse2_storeu_pd:
9340 case Intrinsic::x86_sse2_storeu_dq:
Chris Lattner0521e3c2008-06-18 04:33:20 +00009341 // Turn X86 storeu -> store if the pointer is known aligned.
9342 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9343 const Type *OpPtrTy =
9344 PointerType::getUnqual(II->getOperand(2)->getType());
9345 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
9346 return new StoreInst(II->getOperand(2), Ptr);
9347 }
9348 break;
9349
9350 case Intrinsic::x86_sse_cvttss2si: {
9351 // These intrinsics only demands the 0th element of its input vector. If
9352 // we can simplify the input based on that, do so now.
9353 uint64_t UndefElts;
9354 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
9355 UndefElts)) {
9356 II->setOperand(1, V);
9357 return II;
9358 }
9359 break;
9360 }
9361
9362 case Intrinsic::ppc_altivec_vperm:
9363 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
9364 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
9365 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Chris Lattner867b99f2006-10-05 06:55:50 +00009366
Chris Lattner0521e3c2008-06-18 04:33:20 +00009367 // Check that all of the elements are integer constants or undefs.
9368 bool AllEltsOk = true;
9369 for (unsigned i = 0; i != 16; ++i) {
9370 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
9371 !isa<UndefValue>(Mask->getOperand(i))) {
9372 AllEltsOk = false;
9373 break;
9374 }
9375 }
9376
9377 if (AllEltsOk) {
9378 // Cast the input vectors to byte vectors.
9379 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
9380 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
9381 Value *Result = UndefValue::get(Op0->getType());
Chris Lattnere2ed0572006-04-06 19:19:17 +00009382
Chris Lattner0521e3c2008-06-18 04:33:20 +00009383 // Only extract each element once.
9384 Value *ExtractedElts[32];
9385 memset(ExtractedElts, 0, sizeof(ExtractedElts));
9386
Chris Lattnere2ed0572006-04-06 19:19:17 +00009387 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner0521e3c2008-06-18 04:33:20 +00009388 if (isa<UndefValue>(Mask->getOperand(i)))
9389 continue;
9390 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
9391 Idx &= 31; // Match the hardware behavior.
9392
9393 if (ExtractedElts[Idx] == 0) {
9394 Instruction *Elt =
9395 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
9396 InsertNewInstBefore(Elt, CI);
9397 ExtractedElts[Idx] = Elt;
Chris Lattnere2ed0572006-04-06 19:19:17 +00009398 }
Chris Lattnere2ed0572006-04-06 19:19:17 +00009399
Chris Lattner0521e3c2008-06-18 04:33:20 +00009400 // Insert this value into the result vector.
9401 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
9402 i, "tmp");
9403 InsertNewInstBefore(cast<Instruction>(Result), CI);
Chris Lattnere2ed0572006-04-06 19:19:17 +00009404 }
Chris Lattner0521e3c2008-06-18 04:33:20 +00009405 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Chris Lattnere2ed0572006-04-06 19:19:17 +00009406 }
Chris Lattner0521e3c2008-06-18 04:33:20 +00009407 }
9408 break;
Chris Lattnere2ed0572006-04-06 19:19:17 +00009409
Chris Lattner0521e3c2008-06-18 04:33:20 +00009410 case Intrinsic::stackrestore: {
9411 // If the save is right next to the restore, remove the restore. This can
9412 // happen when variable allocas are DCE'd.
9413 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
9414 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
9415 BasicBlock::iterator BI = SS;
9416 if (&*++BI == II)
9417 return EraseInstFromFunction(CI);
Chris Lattnera728ddc2006-01-13 21:28:09 +00009418 }
Chris Lattner0521e3c2008-06-18 04:33:20 +00009419 }
9420
9421 // Scan down this block to see if there is another stack restore in the
9422 // same block without an intervening call/alloca.
9423 BasicBlock::iterator BI = II;
9424 TerminatorInst *TI = II->getParent()->getTerminator();
9425 bool CannotRemove = false;
9426 for (++BI; &*BI != TI; ++BI) {
9427 if (isa<AllocaInst>(BI)) {
9428 CannotRemove = true;
9429 break;
9430 }
Chris Lattneraa0bf522008-06-25 05:59:28 +00009431 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
9432 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
9433 // If there is a stackrestore below this one, remove this one.
9434 if (II->getIntrinsicID() == Intrinsic::stackrestore)
9435 return EraseInstFromFunction(CI);
9436 // Otherwise, ignore the intrinsic.
9437 } else {
9438 // If we found a non-intrinsic call, we can't remove the stack
9439 // restore.
Chris Lattnerbf1d8a72008-02-18 06:12:38 +00009440 CannotRemove = true;
9441 break;
9442 }
Chris Lattner0521e3c2008-06-18 04:33:20 +00009443 }
Chris Lattnera728ddc2006-01-13 21:28:09 +00009444 }
Chris Lattner0521e3c2008-06-18 04:33:20 +00009445
9446 // If the stack restore is in a return/unwind block and if there are no
9447 // allocas or calls between the restore and the return, nuke the restore.
9448 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
9449 return EraseInstFromFunction(CI);
9450 break;
9451 }
Chris Lattner35b9e482004-10-12 04:52:52 +00009452 }
9453
Chris Lattner8b0ea312006-01-13 20:11:04 +00009454 return visitCallSite(II);
Chris Lattner9fe38862003-06-19 17:00:31 +00009455}
9456
9457// InvokeInst simplification
9458//
9459Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
Chris Lattnera44d8a22003-10-07 22:32:43 +00009460 return visitCallSite(&II);
Chris Lattner9fe38862003-06-19 17:00:31 +00009461}
9462
Dale Johannesenda30ccb2008-04-25 21:16:07 +00009463/// isSafeToEliminateVarargsCast - If this cast does not affect the value
9464/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen1f530a52008-04-23 18:34:37 +00009465static bool isSafeToEliminateVarargsCast(const CallSite CS,
9466 const CastInst * const CI,
9467 const TargetData * const TD,
9468 const int ix) {
9469 if (!CI->isLosslessCast())
9470 return false;
9471
9472 // The size of ByVal arguments is derived from the type, so we
9473 // can't change to a type with a different size. If the size were
9474 // passed explicitly we could avoid this check.
Devang Patel05988662008-09-25 21:00:45 +00009475 if (!CS.paramHasAttr(ix, Attribute::ByVal))
Dale Johannesen1f530a52008-04-23 18:34:37 +00009476 return true;
9477
9478 const Type* SrcTy =
9479 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
9480 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
9481 if (!SrcTy->isSized() || !DstTy->isSized())
9482 return false;
9483 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
9484 return false;
9485 return true;
9486}
9487
Chris Lattnera44d8a22003-10-07 22:32:43 +00009488// visitCallSite - Improvements for call and invoke instructions.
9489//
9490Instruction *InstCombiner::visitCallSite(CallSite CS) {
Chris Lattner6c266db2003-10-07 22:54:13 +00009491 bool Changed = false;
9492
9493 // If the callee is a constexpr cast of a function, attempt to move the cast
9494 // to the arguments of the call/invoke.
Chris Lattnera44d8a22003-10-07 22:32:43 +00009495 if (transformConstExprCastCall(CS)) return 0;
9496
Chris Lattner6c266db2003-10-07 22:54:13 +00009497 Value *Callee = CS.getCalledValue();
Chris Lattnere87597f2004-10-16 18:11:37 +00009498
Chris Lattner08b22ec2005-05-13 07:09:09 +00009499 if (Function *CalleeF = dyn_cast<Function>(Callee))
9500 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
9501 Instruction *OldCall = CS.getInstruction();
9502 // If the call and callee calling conventions don't match, this call must
9503 // be unreachable, as the call is undefined.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00009504 new StoreInst(ConstantInt::getTrue(),
Christopher Lamb43ad6b32007-12-17 01:12:55 +00009505 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
9506 OldCall);
Chris Lattner08b22ec2005-05-13 07:09:09 +00009507 if (!OldCall->use_empty())
9508 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
9509 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
9510 return EraseInstFromFunction(*OldCall);
9511 return 0;
9512 }
9513
Chris Lattner17be6352004-10-18 02:59:09 +00009514 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
9515 // This instruction is not reachable, just remove it. We insert a store to
9516 // undef so that we know that this code is not reachable, despite the fact
9517 // that we can't modify the CFG here.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00009518 new StoreInst(ConstantInt::getTrue(),
Christopher Lamb43ad6b32007-12-17 01:12:55 +00009519 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Chris Lattner17be6352004-10-18 02:59:09 +00009520 CS.getInstruction());
9521
9522 if (!CS.getInstruction()->use_empty())
9523 CS.getInstruction()->
9524 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
9525
9526 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
9527 // Don't break the CFG, insert a dummy cond branch.
Gabor Greif051a9502008-04-06 20:25:17 +00009528 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
9529 ConstantInt::getTrue(), II);
Chris Lattnere87597f2004-10-16 18:11:37 +00009530 }
Chris Lattner17be6352004-10-18 02:59:09 +00009531 return EraseInstFromFunction(*CS.getInstruction());
9532 }
Chris Lattnere87597f2004-10-16 18:11:37 +00009533
Duncan Sandscdb6d922007-09-17 10:26:40 +00009534 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
9535 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
9536 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
9537 return transformCallThroughTrampoline(CS);
9538
Chris Lattner6c266db2003-10-07 22:54:13 +00009539 const PointerType *PTy = cast<PointerType>(Callee->getType());
9540 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9541 if (FTy->isVarArg()) {
Dale Johannesen63e7eb42008-04-23 01:03:05 +00009542 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Chris Lattner6c266db2003-10-07 22:54:13 +00009543 // See if we can optimize any arguments passed through the varargs area of
9544 // the call.
9545 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen1f530a52008-04-23 18:34:37 +00009546 E = CS.arg_end(); I != E; ++I, ++ix) {
9547 CastInst *CI = dyn_cast<CastInst>(*I);
9548 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
9549 *I = CI->getOperand(0);
9550 Changed = true;
Chris Lattner6c266db2003-10-07 22:54:13 +00009551 }
Dale Johannesen1f530a52008-04-23 18:34:37 +00009552 }
Chris Lattner6c266db2003-10-07 22:54:13 +00009553 }
Misha Brukmanfd939082005-04-21 23:48:37 +00009554
Duncan Sandsf0c33542007-12-19 21:13:37 +00009555 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sandsece2c042007-12-16 15:51:49 +00009556 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sandsf0c33542007-12-19 21:13:37 +00009557 CS.setDoesNotThrow();
Duncan Sandsece2c042007-12-16 15:51:49 +00009558 Changed = true;
9559 }
9560
Chris Lattner6c266db2003-10-07 22:54:13 +00009561 return Changed ? CS.getInstruction() : 0;
Chris Lattnera44d8a22003-10-07 22:32:43 +00009562}
9563
Chris Lattner9fe38862003-06-19 17:00:31 +00009564// transformConstExprCastCall - If the callee is a constexpr cast of a function,
9565// attempt to move the cast to the arguments of the call/invoke.
9566//
9567bool InstCombiner::transformConstExprCastCall(CallSite CS) {
9568 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
9569 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
Reid Spencer3da59db2006-11-27 01:05:10 +00009570 if (CE->getOpcode() != Instruction::BitCast ||
9571 !isa<Function>(CE->getOperand(0)))
Chris Lattner9fe38862003-06-19 17:00:31 +00009572 return false;
Reid Spencer8863f182004-07-18 00:38:32 +00009573 Function *Callee = cast<Function>(CE->getOperand(0));
Chris Lattner9fe38862003-06-19 17:00:31 +00009574 Instruction *Caller = CS.getInstruction();
Devang Patel05988662008-09-25 21:00:45 +00009575 const AttrListPtr &CallerPAL = CS.getAttributes();
Chris Lattner9fe38862003-06-19 17:00:31 +00009576
9577 // Okay, this is a cast from a function to a different type. Unless doing so
9578 // would cause a type conversion of one of our arguments, change this call to
9579 // be a direct call with arguments casted to the appropriate types.
9580 //
9581 const FunctionType *FT = Callee->getFunctionType();
9582 const Type *OldRetTy = Caller->getType();
Duncan Sandsf413cdf2008-06-01 07:38:42 +00009583 const Type *NewRetTy = FT->getReturnType();
Chris Lattner9fe38862003-06-19 17:00:31 +00009584
Duncan Sandsf413cdf2008-06-01 07:38:42 +00009585 if (isa<StructType>(NewRetTy))
Devang Patel75e6f022008-03-11 18:04:06 +00009586 return false; // TODO: Handle multiple return values.
9587
Chris Lattnerf78616b2004-01-14 06:06:08 +00009588 // Check to see if we are changing the return type...
Duncan Sandsf413cdf2008-06-01 07:38:42 +00009589 if (OldRetTy != NewRetTy) {
Bill Wendlinga6c31122008-05-14 22:45:20 +00009590 if (Callee->isDeclaration() &&
Duncan Sandsf413cdf2008-06-01 07:38:42 +00009591 // Conversion is ok if changing from one pointer type to another or from
9592 // a pointer to an integer of the same size.
9593 !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
Duncan Sands34b176a2008-06-17 15:55:30 +00009594 (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
Chris Lattnerec479922007-01-06 02:09:32 +00009595 return false; // Cannot transform this return value.
Chris Lattnerf78616b2004-01-14 06:06:08 +00009596
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00009597 if (!Caller->use_empty() &&
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00009598 // void -> non-void is handled specially
Duncan Sandsf413cdf2008-06-01 07:38:42 +00009599 NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00009600 return false; // Cannot transform this return value.
9601
Chris Lattner58d74912008-03-12 17:45:29 +00009602 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Devang Patel19c87462008-09-26 22:53:05 +00009603 Attributes RAttrs = CallerPAL.getRetAttributes();
Devang Patel05988662008-09-25 21:00:45 +00009604 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
Duncan Sands6c3470e2008-01-07 17:16:06 +00009605 return false; // Attribute not compatible with transformed value.
9606 }
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009607
Chris Lattnerf78616b2004-01-14 06:06:08 +00009608 // If the callsite is an invoke instruction, and the return value is used by
9609 // a PHI node in a successor, we cannot change the return type of the call
9610 // because there is no place to put the cast instruction (without breaking
9611 // the critical edge). Bail out in this case.
9612 if (!Caller->use_empty())
9613 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
9614 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
9615 UI != E; ++UI)
9616 if (PHINode *PN = dyn_cast<PHINode>(*UI))
9617 if (PN->getParent() == II->getNormalDest() ||
Chris Lattneraeb2a1d2004-02-08 21:44:31 +00009618 PN->getParent() == II->getUnwindDest())
Chris Lattnerf78616b2004-01-14 06:06:08 +00009619 return false;
9620 }
Chris Lattner9fe38862003-06-19 17:00:31 +00009621
9622 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
9623 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
Misha Brukmanfd939082005-04-21 23:48:37 +00009624
Chris Lattner9fe38862003-06-19 17:00:31 +00009625 CallSite::arg_iterator AI = CS.arg_begin();
9626 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
9627 const Type *ParamTy = FT->getParamType(i);
Andrew Lenharthb8e604c2006-06-28 01:01:52 +00009628 const Type *ActTy = (*AI)->getType();
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00009629
9630 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009631 return false; // Cannot transform this parameter value.
9632
Devang Patel19c87462008-09-26 22:53:05 +00009633 if (CallerPAL.getParamAttributes(i + 1)
9634 & Attribute::typeIncompatible(ParamTy))
Chris Lattner58d74912008-03-12 17:45:29 +00009635 return false; // Attribute not compatible with transformed value.
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00009636
Duncan Sandsf413cdf2008-06-01 07:38:42 +00009637 // Converting from one pointer type to another or between a pointer and an
9638 // integer of the same size is safe even if we do not have a body.
Chris Lattnerec479922007-01-06 02:09:32 +00009639 bool isConvertible = ActTy == ParamTy ||
Duncan Sandsf413cdf2008-06-01 07:38:42 +00009640 ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
9641 (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
Reid Spencer5cbf9852007-01-30 20:08:39 +00009642 if (Callee->isDeclaration() && !isConvertible) return false;
Chris Lattner9fe38862003-06-19 17:00:31 +00009643 }
9644
9645 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
Reid Spencer5cbf9852007-01-30 20:08:39 +00009646 Callee->isDeclaration())
Chris Lattner58d74912008-03-12 17:45:29 +00009647 return false; // Do not delete arguments unless we have a function body.
Chris Lattner9fe38862003-06-19 17:00:31 +00009648
Chris Lattner58d74912008-03-12 17:45:29 +00009649 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
9650 !CallerPAL.isEmpty())
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009651 // In this case we have more arguments than the new function type, but we
Duncan Sandse1e520f2008-01-13 08:02:44 +00009652 // won't be dropping them. Check that these extra arguments have attributes
9653 // that are compatible with being a vararg call argument.
Chris Lattner58d74912008-03-12 17:45:29 +00009654 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
9655 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sandse1e520f2008-01-13 08:02:44 +00009656 break;
Devang Pateleaf42ab2008-09-23 23:03:40 +00009657 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Devang Patel05988662008-09-25 21:00:45 +00009658 if (PAttrs & Attribute::VarArgsIncompatible)
Duncan Sandse1e520f2008-01-13 08:02:44 +00009659 return false;
9660 }
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009661
Chris Lattner9fe38862003-06-19 17:00:31 +00009662 // Okay, we decided that this is a safe thing to do: go ahead and start
9663 // inserting cast instructions as necessary...
9664 std::vector<Value*> Args;
9665 Args.reserve(NumActualArgs);
Devang Patel05988662008-09-25 21:00:45 +00009666 SmallVector<AttributeWithIndex, 8> attrVec;
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009667 attrVec.reserve(NumCommonArgs);
9668
9669 // Get any return attributes.
Devang Patel19c87462008-09-26 22:53:05 +00009670 Attributes RAttrs = CallerPAL.getRetAttributes();
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009671
9672 // If the return value is not being used, the type may not be compatible
9673 // with the existing attributes. Wipe out any problematic attributes.
Devang Patel05988662008-09-25 21:00:45 +00009674 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009675
9676 // Add the new return attributes.
9677 if (RAttrs)
Devang Patel05988662008-09-25 21:00:45 +00009678 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
Chris Lattner9fe38862003-06-19 17:00:31 +00009679
9680 AI = CS.arg_begin();
9681 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9682 const Type *ParamTy = FT->getParamType(i);
9683 if ((*AI)->getType() == ParamTy) {
9684 Args.push_back(*AI);
9685 } else {
Reid Spencer8a903db2006-12-18 08:47:13 +00009686 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
Reid Spencerc5b206b2006-12-31 05:48:39 +00009687 false, ParamTy, false);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00009688 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Reid Spencer3da59db2006-11-27 01:05:10 +00009689 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
Chris Lattner9fe38862003-06-19 17:00:31 +00009690 }
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009691
9692 // Add any parameter attributes.
Devang Patel19c87462008-09-26 22:53:05 +00009693 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Patel05988662008-09-25 21:00:45 +00009694 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Chris Lattner9fe38862003-06-19 17:00:31 +00009695 }
9696
9697 // If the function takes more arguments than the call was taking, add them
9698 // now...
9699 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9700 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9701
9702 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00009703 if (FT->getNumParams() < NumActualArgs) {
Chris Lattner9fe38862003-06-19 17:00:31 +00009704 if (!FT->isVarArg()) {
Bill Wendlinge8156192006-12-07 01:30:32 +00009705 cerr << "WARNING: While resolving call to function '"
9706 << Callee->getName() << "' arguments were dropped!\n";
Chris Lattner9fe38862003-06-19 17:00:31 +00009707 } else {
9708 // Add all of the arguments in their promoted form to the arg list...
9709 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9710 const Type *PTy = getPromotedType((*AI)->getType());
9711 if (PTy != (*AI)->getType()) {
9712 // Must promote to pass through va_arg area!
Reid Spencerc5b206b2006-12-31 05:48:39 +00009713 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9714 PTy, false);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00009715 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Chris Lattner9fe38862003-06-19 17:00:31 +00009716 InsertNewInstBefore(Cast, *Caller);
9717 Args.push_back(Cast);
9718 } else {
9719 Args.push_back(*AI);
9720 }
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009721
Duncan Sandse1e520f2008-01-13 08:02:44 +00009722 // Add any parameter attributes.
Devang Patel19c87462008-09-26 22:53:05 +00009723 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Patel05988662008-09-25 21:00:45 +00009724 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Duncan Sandse1e520f2008-01-13 08:02:44 +00009725 }
Chris Lattner9fe38862003-06-19 17:00:31 +00009726 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00009727 }
Chris Lattner9fe38862003-06-19 17:00:31 +00009728
Devang Patel19c87462008-09-26 22:53:05 +00009729 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
9730 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
9731
Duncan Sandsf413cdf2008-06-01 07:38:42 +00009732 if (NewRetTy == Type::VoidTy)
Chris Lattner6934a042007-02-11 01:23:03 +00009733 Caller->setName(""); // Void type should not have a name.
Chris Lattner9fe38862003-06-19 17:00:31 +00009734
Devang Patel05988662008-09-25 21:00:45 +00009735 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009736
Chris Lattner9fe38862003-06-19 17:00:31 +00009737 Instruction *NC;
9738 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greif051a9502008-04-06 20:25:17 +00009739 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb1dbcd82008-05-15 10:04:30 +00009740 Args.begin(), Args.end(),
9741 Caller->getName(), Caller);
Reid Spencered3fa852007-07-30 19:53:57 +00009742 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Devang Patel05988662008-09-25 21:00:45 +00009743 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
Chris Lattner9fe38862003-06-19 17:00:31 +00009744 } else {
Gabor Greif051a9502008-04-06 20:25:17 +00009745 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9746 Caller->getName(), Caller);
Duncan Sandsdc024672007-11-27 13:23:08 +00009747 CallInst *CI = cast<CallInst>(Caller);
9748 if (CI->isTailCall())
Chris Lattnera9e92112005-05-06 06:48:21 +00009749 cast<CallInst>(NC)->setTailCall();
Duncan Sandsdc024672007-11-27 13:23:08 +00009750 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Devang Patel05988662008-09-25 21:00:45 +00009751 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
Chris Lattner9fe38862003-06-19 17:00:31 +00009752 }
9753
Chris Lattner6934a042007-02-11 01:23:03 +00009754 // Insert a cast of the return type as necessary.
Chris Lattner9fe38862003-06-19 17:00:31 +00009755 Value *NV = NC;
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00009756 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Chris Lattner9fe38862003-06-19 17:00:31 +00009757 if (NV->getType() != Type::VoidTy) {
Reid Spencerc5b206b2006-12-31 05:48:39 +00009758 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00009759 OldRetTy, false);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00009760 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Chris Lattnerbb609042003-10-30 00:46:41 +00009761
9762 // If this is an invoke instruction, we should insert it after the first
9763 // non-phi, instruction in the normal successor block.
9764 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Dan Gohman02dea8b2008-05-23 21:05:58 +00009765 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
Chris Lattnerbb609042003-10-30 00:46:41 +00009766 InsertNewInstBefore(NC, *I);
9767 } else {
9768 // Otherwise, it's a call, just insert cast right after the call instr
9769 InsertNewInstBefore(NC, *Caller);
9770 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +00009771 AddUsersToWorkList(*Caller);
Chris Lattner9fe38862003-06-19 17:00:31 +00009772 } else {
Chris Lattnerc30bda72004-10-17 21:22:38 +00009773 NV = UndefValue::get(Caller->getType());
Chris Lattner9fe38862003-06-19 17:00:31 +00009774 }
9775 }
9776
9777 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9778 Caller->replaceAllUsesWith(NV);
Chris Lattnerf22a5c62007-03-02 19:59:19 +00009779 Caller->eraseFromParent();
Chris Lattnerdbab3862007-03-02 21:28:56 +00009780 RemoveFromWorkList(Caller);
Chris Lattner9fe38862003-06-19 17:00:31 +00009781 return true;
9782}
9783
Duncan Sandscdb6d922007-09-17 10:26:40 +00009784// transformCallThroughTrampoline - Turn a call to a function created by the
9785// init_trampoline intrinsic into a direct call to the underlying function.
9786//
9787Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9788 Value *Callee = CS.getCalledValue();
9789 const PointerType *PTy = cast<PointerType>(Callee->getType());
9790 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Devang Patel05988662008-09-25 21:00:45 +00009791 const AttrListPtr &Attrs = CS.getAttributes();
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009792
9793 // If the call already has the 'nest' attribute somewhere then give up -
9794 // otherwise 'nest' would occur twice after splicing in the chain.
Devang Patel05988662008-09-25 21:00:45 +00009795 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009796 return 0;
Duncan Sandscdb6d922007-09-17 10:26:40 +00009797
9798 IntrinsicInst *Tramp =
9799 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9800
Anton Korobeynikov0b12ecf2008-05-07 22:54:15 +00009801 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sandscdb6d922007-09-17 10:26:40 +00009802 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9803 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9804
Devang Patel05988662008-09-25 21:00:45 +00009805 const AttrListPtr &NestAttrs = NestF->getAttributes();
Chris Lattner58d74912008-03-12 17:45:29 +00009806 if (!NestAttrs.isEmpty()) {
Duncan Sandscdb6d922007-09-17 10:26:40 +00009807 unsigned NestIdx = 1;
9808 const Type *NestTy = 0;
Devang Patel05988662008-09-25 21:00:45 +00009809 Attributes NestAttr = Attribute::None;
Duncan Sandscdb6d922007-09-17 10:26:40 +00009810
9811 // Look for a parameter marked with the 'nest' attribute.
9812 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9813 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Devang Patel05988662008-09-25 21:00:45 +00009814 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
Duncan Sandscdb6d922007-09-17 10:26:40 +00009815 // Record the parameter type and any other attributes.
9816 NestTy = *I;
Devang Patel19c87462008-09-26 22:53:05 +00009817 NestAttr = NestAttrs.getParamAttributes(NestIdx);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009818 break;
9819 }
9820
9821 if (NestTy) {
9822 Instruction *Caller = CS.getInstruction();
9823 std::vector<Value*> NewArgs;
9824 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9825
Devang Patel05988662008-09-25 21:00:45 +00009826 SmallVector<AttributeWithIndex, 8> NewAttrs;
Chris Lattner58d74912008-03-12 17:45:29 +00009827 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009828
Duncan Sandscdb6d922007-09-17 10:26:40 +00009829 // Insert the nest argument into the call argument list, which may
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009830 // mean appending it. Likewise for attributes.
9831
Devang Patel19c87462008-09-26 22:53:05 +00009832 // Add any result attributes.
9833 if (Attributes Attr = Attrs.getRetAttributes())
Devang Patel05988662008-09-25 21:00:45 +00009834 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009835
Duncan Sandscdb6d922007-09-17 10:26:40 +00009836 {
9837 unsigned Idx = 1;
9838 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9839 do {
9840 if (Idx == NestIdx) {
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009841 // Add the chain argument and attributes.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009842 Value *NestVal = Tramp->getOperand(3);
9843 if (NestVal->getType() != NestTy)
9844 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9845 NewArgs.push_back(NestVal);
Devang Patel05988662008-09-25 21:00:45 +00009846 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
Duncan Sandscdb6d922007-09-17 10:26:40 +00009847 }
9848
9849 if (I == E)
9850 break;
9851
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009852 // Add the original argument and attributes.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009853 NewArgs.push_back(*I);
Devang Patel19c87462008-09-26 22:53:05 +00009854 if (Attributes Attr = Attrs.getParamAttributes(Idx))
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009855 NewAttrs.push_back
Devang Patel05988662008-09-25 21:00:45 +00009856 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sandscdb6d922007-09-17 10:26:40 +00009857
9858 ++Idx, ++I;
9859 } while (1);
9860 }
9861
Devang Patel19c87462008-09-26 22:53:05 +00009862 // Add any function attributes.
9863 if (Attributes Attr = Attrs.getFnAttributes())
9864 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
9865
Duncan Sandscdb6d922007-09-17 10:26:40 +00009866 // The trampoline may have been bitcast to a bogus type (FTy).
9867 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009868 // with the chain parameter inserted.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009869
Duncan Sandscdb6d922007-09-17 10:26:40 +00009870 std::vector<const Type*> NewTypes;
Duncan Sandscdb6d922007-09-17 10:26:40 +00009871 NewTypes.reserve(FTy->getNumParams()+1);
9872
Duncan Sandscdb6d922007-09-17 10:26:40 +00009873 // Insert the chain's type into the list of parameter types, which may
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009874 // mean appending it.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009875 {
9876 unsigned Idx = 1;
9877 FunctionType::param_iterator I = FTy->param_begin(),
9878 E = FTy->param_end();
9879
9880 do {
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009881 if (Idx == NestIdx)
9882 // Add the chain's type.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009883 NewTypes.push_back(NestTy);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009884
9885 if (I == E)
9886 break;
9887
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009888 // Add the original type.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009889 NewTypes.push_back(*I);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009890
9891 ++Idx, ++I;
9892 } while (1);
9893 }
9894
9895 // Replace the trampoline call with a direct call. Let the generic
9896 // code sort out any function type mismatches.
9897 FunctionType *NewFTy =
Duncan Sandsdc024672007-11-27 13:23:08 +00009898 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lamb43ad6b32007-12-17 01:12:55 +00009899 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9900 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Devang Patel05988662008-09-25 21:00:45 +00009901 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sandscdb6d922007-09-17 10:26:40 +00009902
9903 Instruction *NewCaller;
9904 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greif051a9502008-04-06 20:25:17 +00009905 NewCaller = InvokeInst::Create(NewCallee,
9906 II->getNormalDest(), II->getUnwindDest(),
9907 NewArgs.begin(), NewArgs.end(),
9908 Caller->getName(), Caller);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009909 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Devang Patel05988662008-09-25 21:00:45 +00009910 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009911 } else {
Gabor Greif051a9502008-04-06 20:25:17 +00009912 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9913 Caller->getName(), Caller);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009914 if (cast<CallInst>(Caller)->isTailCall())
9915 cast<CallInst>(NewCaller)->setTailCall();
9916 cast<CallInst>(NewCaller)->
9917 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Devang Patel05988662008-09-25 21:00:45 +00009918 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009919 }
9920 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9921 Caller->replaceAllUsesWith(NewCaller);
9922 Caller->eraseFromParent();
9923 RemoveFromWorkList(Caller);
9924 return 0;
9925 }
9926 }
9927
9928 // Replace the trampoline call with a direct call. Since there is no 'nest'
9929 // parameter, there is no need to adjust the argument list. Let the generic
9930 // code sort out any function type mismatches.
9931 Constant *NewCallee =
9932 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9933 CS.setCalledFunction(NewCallee);
9934 return CS.getInstruction();
9935}
9936
Chris Lattner7da52b22006-11-01 04:51:18 +00009937/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9938/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9939/// and a single binop.
9940Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9941 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
Chris Lattner38b3dcc2008-12-01 03:42:51 +00009942 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
Chris Lattner7da52b22006-11-01 04:51:18 +00009943 unsigned Opc = FirstInst->getOpcode();
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009944 Value *LHSVal = FirstInst->getOperand(0);
9945 Value *RHSVal = FirstInst->getOperand(1);
9946
9947 const Type *LHSType = LHSVal->getType();
9948 const Type *RHSType = RHSVal->getType();
Chris Lattner7da52b22006-11-01 04:51:18 +00009949
9950 // Scan to see if all operands are the same opcode, all have one use, and all
9951 // kill their operands (i.e. the operands have one use).
Chris Lattner05f18922008-12-01 02:34:36 +00009952 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
Chris Lattner7da52b22006-11-01 04:51:18 +00009953 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
Chris Lattnera90a24c2006-11-01 04:55:47 +00009954 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
Reid Spencere4d87aa2006-12-23 06:05:41 +00009955 // Verify type of the LHS matches so we don't fold cmp's of different
Chris Lattner9c080502006-11-01 07:43:41 +00009956 // types or GEP's with different index types.
9957 I->getOperand(0)->getType() != LHSType ||
9958 I->getOperand(1)->getType() != RHSType)
Chris Lattner7da52b22006-11-01 04:51:18 +00009959 return 0;
Reid Spencere4d87aa2006-12-23 06:05:41 +00009960
9961 // If they are CmpInst instructions, check their predicates
9962 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9963 if (cast<CmpInst>(I)->getPredicate() !=
9964 cast<CmpInst>(FirstInst)->getPredicate())
9965 return 0;
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009966
9967 // Keep track of which operand needs a phi node.
9968 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9969 if (I->getOperand(1) != RHSVal) RHSVal = 0;
Chris Lattner7da52b22006-11-01 04:51:18 +00009970 }
9971
Chris Lattner38b3dcc2008-12-01 03:42:51 +00009972 // Otherwise, this is safe to transform!
Chris Lattner53738a42006-11-08 19:42:28 +00009973
Chris Lattner7da52b22006-11-01 04:51:18 +00009974 Value *InLHS = FirstInst->getOperand(0);
Chris Lattner7da52b22006-11-01 04:51:18 +00009975 Value *InRHS = FirstInst->getOperand(1);
Chris Lattner53738a42006-11-08 19:42:28 +00009976 PHINode *NewLHS = 0, *NewRHS = 0;
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009977 if (LHSVal == 0) {
Gabor Greifb1dbcd82008-05-15 10:04:30 +00009978 NewLHS = PHINode::Create(LHSType,
9979 FirstInst->getOperand(0)->getName() + ".pn");
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009980 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9981 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
Chris Lattner9c080502006-11-01 07:43:41 +00009982 InsertNewInstBefore(NewLHS, PN);
9983 LHSVal = NewLHS;
9984 }
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009985
9986 if (RHSVal == 0) {
Gabor Greifb1dbcd82008-05-15 10:04:30 +00009987 NewRHS = PHINode::Create(RHSType,
9988 FirstInst->getOperand(1)->getName() + ".pn");
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009989 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9990 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
Chris Lattner9c080502006-11-01 07:43:41 +00009991 InsertNewInstBefore(NewRHS, PN);
9992 RHSVal = NewRHS;
9993 }
9994
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009995 // Add all operands to the new PHIs.
Chris Lattner05f18922008-12-01 02:34:36 +00009996 if (NewLHS || NewRHS) {
9997 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9998 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
9999 if (NewLHS) {
10000 Value *NewInLHS = InInst->getOperand(0);
10001 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
10002 }
10003 if (NewRHS) {
10004 Value *NewInRHS = InInst->getOperand(1);
10005 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
10006 }
Chris Lattnerf6fd94d2006-11-08 19:29:23 +000010007 }
10008 }
10009
Chris Lattner7da52b22006-11-01 04:51:18 +000010010 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greif7cbd8a32008-05-16 19:29:10 +000010011 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Chris Lattner38b3dcc2008-12-01 03:42:51 +000010012 CmpInst *CIOp = cast<CmpInst>(FirstInst);
10013 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
10014 RHSVal);
Chris Lattner7da52b22006-11-01 04:51:18 +000010015}
10016
Chris Lattner05f18922008-12-01 02:34:36 +000010017Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
10018 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
10019
10020 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
10021 FirstInst->op_end());
10022
10023 // Scan to see if all operands are the same opcode, all have one use, and all
10024 // kill their operands (i.e. the operands have one use).
10025 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
10026 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
10027 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
10028 GEP->getNumOperands() != FirstInst->getNumOperands())
10029 return 0;
10030
10031 // Compare the operand lists.
10032 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
10033 if (FirstInst->getOperand(op) == GEP->getOperand(op))
10034 continue;
10035
10036 // Don't merge two GEPs when two operands differ (introducing phi nodes)
10037 // if one of the PHIs has a constant for the index. The index may be
10038 // substantially cheaper to compute for the constants, so making it a
10039 // variable index could pessimize the path. This also handles the case
10040 // for struct indices, which must always be constant.
10041 if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
10042 isa<ConstantInt>(GEP->getOperand(op)))
10043 return 0;
10044
10045 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
10046 return 0;
10047 FixedOperands[op] = 0; // Needs a PHI.
10048 }
10049 }
10050
10051 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
10052 // that is variable.
10053 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
10054
10055 bool HasAnyPHIs = false;
10056 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
10057 if (FixedOperands[i]) continue; // operand doesn't need a phi.
10058 Value *FirstOp = FirstInst->getOperand(i);
10059 PHINode *NewPN = PHINode::Create(FirstOp->getType(),
10060 FirstOp->getName()+".pn");
10061 InsertNewInstBefore(NewPN, PN);
10062
10063 NewPN->reserveOperandSpace(e);
10064 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
10065 OperandPhis[i] = NewPN;
10066 FixedOperands[i] = NewPN;
10067 HasAnyPHIs = true;
10068 }
10069
10070
10071 // Add all operands to the new PHIs.
10072 if (HasAnyPHIs) {
10073 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10074 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
10075 BasicBlock *InBB = PN.getIncomingBlock(i);
10076
10077 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
10078 if (PHINode *OpPhi = OperandPhis[op])
10079 OpPhi->addIncoming(InGEP->getOperand(op), InBB);
10080 }
10081 }
10082
10083 Value *Base = FixedOperands[0];
10084 return GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
10085 FixedOperands.end());
10086}
10087
10088
Chris Lattner76c73142006-11-01 07:13:54 +000010089/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
10090/// of the block that defines it. This means that it must be obvious the value
10091/// of the load is not changed from the point of the load to the end of the
10092/// block it is in.
Chris Lattnerfd905ca2007-02-01 22:30:07 +000010093///
10094/// Finally, it is safe, but not profitable, to sink a load targetting a
10095/// non-address-taken alloca. Doing so will cause us to not promote the alloca
10096/// to a register.
Chris Lattner76c73142006-11-01 07:13:54 +000010097static bool isSafeToSinkLoad(LoadInst *L) {
10098 BasicBlock::iterator BBI = L, E = L->getParent()->end();
10099
10100 for (++BBI; BBI != E; ++BBI)
10101 if (BBI->mayWriteToMemory())
10102 return false;
Chris Lattnerfd905ca2007-02-01 22:30:07 +000010103
10104 // Check for non-address taken alloca. If not address-taken already, it isn't
10105 // profitable to do this xform.
10106 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
10107 bool isAddressTaken = false;
10108 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
10109 UI != E; ++UI) {
10110 if (isa<LoadInst>(UI)) continue;
10111 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
10112 // If storing TO the alloca, then the address isn't taken.
10113 if (SI->getOperand(1) == AI) continue;
10114 }
10115 isAddressTaken = true;
10116 break;
10117 }
10118
10119 if (!isAddressTaken)
10120 return false;
10121 }
10122
Chris Lattner76c73142006-11-01 07:13:54 +000010123 return true;
10124}
10125
Chris Lattner9fe38862003-06-19 17:00:31 +000010126
Chris Lattnerbac32862004-11-14 19:13:23 +000010127// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
10128// operator and they all are only used by the PHI, PHI together their
10129// inputs, and do the operation once, to the result of the PHI.
10130Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
10131 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
10132
10133 // Scan the instruction, looking for input operations that can be folded away.
10134 // If all input operands to the phi are the same instruction (e.g. a cast from
10135 // the same type or "+42") we can pull the operation through the PHI, reducing
10136 // code size and simplifying code.
10137 Constant *ConstantOp = 0;
10138 const Type *CastSrcTy = 0;
Chris Lattner76c73142006-11-01 07:13:54 +000010139 bool isVolatile = false;
Chris Lattnerbac32862004-11-14 19:13:23 +000010140 if (isa<CastInst>(FirstInst)) {
10141 CastSrcTy = FirstInst->getOperand(0)->getType();
Reid Spencer832254e2007-02-02 02:16:23 +000010142 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +000010143 // Can fold binop, compare or shift here if the RHS is a constant,
10144 // otherwise call FoldPHIArgBinOpIntoPHI.
Chris Lattnerbac32862004-11-14 19:13:23 +000010145 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
Chris Lattner7da52b22006-11-01 04:51:18 +000010146 if (ConstantOp == 0)
10147 return FoldPHIArgBinOpIntoPHI(PN);
Chris Lattner76c73142006-11-01 07:13:54 +000010148 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
10149 isVolatile = LI->isVolatile();
10150 // We can't sink the load if the loaded value could be modified between the
10151 // load and the PHI.
10152 if (LI->getParent() != PN.getIncomingBlock(0) ||
10153 !isSafeToSinkLoad(LI))
10154 return 0;
Chris Lattner71042962008-07-08 17:18:32 +000010155
10156 // If the PHI is of volatile loads and the load block has multiple
10157 // successors, sinking it would remove a load of the volatile value from
10158 // the path through the other successor.
10159 if (isVolatile &&
10160 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10161 return 0;
10162
Chris Lattner9c080502006-11-01 07:43:41 +000010163 } else if (isa<GetElementPtrInst>(FirstInst)) {
Chris Lattner05f18922008-12-01 02:34:36 +000010164 return FoldPHIArgGEPIntoPHI(PN);
Chris Lattnerbac32862004-11-14 19:13:23 +000010165 } else {
10166 return 0; // Cannot fold this operation.
10167 }
10168
10169 // Check to see if all arguments are the same operation.
10170 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10171 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
10172 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
Reid Spencere4d87aa2006-12-23 06:05:41 +000010173 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
Chris Lattnerbac32862004-11-14 19:13:23 +000010174 return 0;
10175 if (CastSrcTy) {
10176 if (I->getOperand(0)->getType() != CastSrcTy)
10177 return 0; // Cast operation must match.
Chris Lattner76c73142006-11-01 07:13:54 +000010178 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +000010179 // We can't sink the load if the loaded value could be modified between
10180 // the load and the PHI.
Chris Lattner76c73142006-11-01 07:13:54 +000010181 if (LI->isVolatile() != isVolatile ||
10182 LI->getParent() != PN.getIncomingBlock(i) ||
10183 !isSafeToSinkLoad(LI))
10184 return 0;
Chris Lattner40700fe2008-04-29 17:28:22 +000010185
Chris Lattner71042962008-07-08 17:18:32 +000010186 // If the PHI is of volatile loads and the load block has multiple
10187 // successors, sinking it would remove a load of the volatile value from
10188 // the path through the other successor.
Chris Lattner40700fe2008-04-29 17:28:22 +000010189 if (isVolatile &&
10190 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10191 return 0;
10192
10193
Chris Lattnerbac32862004-11-14 19:13:23 +000010194 } else if (I->getOperand(1) != ConstantOp) {
10195 return 0;
10196 }
10197 }
10198
10199 // Okay, they are all the same operation. Create a new PHI node of the
10200 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greif051a9502008-04-06 20:25:17 +000010201 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
10202 PN.getName()+".in");
Chris Lattner55517062005-01-29 00:39:08 +000010203 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
Chris Lattnerb5893442004-11-14 19:29:34 +000010204
10205 Value *InVal = FirstInst->getOperand(0);
10206 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
Chris Lattnerbac32862004-11-14 19:13:23 +000010207
10208 // Add all operands to the new PHI.
Chris Lattnerb5893442004-11-14 19:29:34 +000010209 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10210 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
10211 if (NewInVal != InVal)
10212 InVal = 0;
10213 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
10214 }
10215
10216 Value *PhiVal;
10217 if (InVal) {
10218 // The new PHI unions all of the same values together. This is really
10219 // common, so we handle it intelligently here for compile-time speed.
10220 PhiVal = InVal;
10221 delete NewPN;
10222 } else {
10223 InsertNewInstBefore(NewPN, PN);
10224 PhiVal = NewPN;
10225 }
Misha Brukmanfd939082005-04-21 23:48:37 +000010226
Chris Lattnerbac32862004-11-14 19:13:23 +000010227 // Insert and return the new operation.
Reid Spencer3da59db2006-11-27 01:05:10 +000010228 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greif7cbd8a32008-05-16 19:29:10 +000010229 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattner54545ac2008-04-29 17:13:43 +000010230 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greif7cbd8a32008-05-16 19:29:10 +000010231 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattner54545ac2008-04-29 17:13:43 +000010232 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greif7cbd8a32008-05-16 19:29:10 +000010233 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Reid Spencere4d87aa2006-12-23 06:05:41 +000010234 PhiVal, ConstantOp);
Chris Lattner54545ac2008-04-29 17:13:43 +000010235 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
10236
10237 // If this was a volatile load that we are merging, make sure to loop through
10238 // and mark all the input loads as non-volatile. If we don't do this, we will
10239 // insert a new volatile load and the old ones will not be deletable.
10240 if (isVolatile)
10241 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
10242 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
10243
10244 return new LoadInst(PhiVal, "", isVolatile);
Chris Lattnerbac32862004-11-14 19:13:23 +000010245}
Chris Lattnera1be5662002-05-02 17:06:02 +000010246
Chris Lattnera3fd1c52005-01-17 05:10:15 +000010247/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
10248/// that is dead.
Chris Lattner0e5444b2007-03-26 20:40:50 +000010249static bool DeadPHICycle(PHINode *PN,
10250 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
Chris Lattnera3fd1c52005-01-17 05:10:15 +000010251 if (PN->use_empty()) return true;
10252 if (!PN->hasOneUse()) return false;
10253
10254 // Remember this node, and if we find the cycle, return.
Chris Lattner0e5444b2007-03-26 20:40:50 +000010255 if (!PotentiallyDeadPHIs.insert(PN))
Chris Lattnera3fd1c52005-01-17 05:10:15 +000010256 return true;
Chris Lattner92103de2007-08-28 04:23:55 +000010257
10258 // Don't scan crazily complex things.
10259 if (PotentiallyDeadPHIs.size() == 16)
10260 return false;
Chris Lattnera3fd1c52005-01-17 05:10:15 +000010261
10262 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
10263 return DeadPHICycle(PU, PotentiallyDeadPHIs);
Misha Brukmanfd939082005-04-21 23:48:37 +000010264
Chris Lattnera3fd1c52005-01-17 05:10:15 +000010265 return false;
10266}
10267
Chris Lattnercf5008a2007-11-06 21:52:06 +000010268/// PHIsEqualValue - Return true if this phi node is always equal to
10269/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
10270/// z = some value; x = phi (y, z); y = phi (x, z)
10271static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
10272 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
10273 // See if we already saw this PHI node.
10274 if (!ValueEqualPHIs.insert(PN))
10275 return true;
10276
10277 // Don't scan crazily complex things.
10278 if (ValueEqualPHIs.size() == 16)
10279 return false;
10280
10281 // Scan the operands to see if they are either phi nodes or are equal to
10282 // the value.
10283 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
10284 Value *Op = PN->getIncomingValue(i);
10285 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
10286 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
10287 return false;
10288 } else if (Op != NonPhiInVal)
10289 return false;
10290 }
10291
10292 return true;
10293}
10294
10295
Chris Lattner473945d2002-05-06 18:06:38 +000010296// PHINode simplification
10297//
Chris Lattner7e708292002-06-25 16:13:24 +000010298Instruction *InstCombiner::visitPHINode(PHINode &PN) {
Owen Andersonb64ab872006-07-10 22:15:25 +000010299 // If LCSSA is around, don't mess with Phi nodes
Chris Lattnerf964f322007-03-04 04:27:24 +000010300 if (MustPreserveLCSSA) return 0;
Owen Andersond1b78a12006-07-10 19:03:49 +000010301
Owen Anderson7e057142006-07-10 22:03:18 +000010302 if (Value *V = PN.hasConstantValue())
10303 return ReplaceInstUsesWith(PN, V);
10304
Owen Anderson7e057142006-07-10 22:03:18 +000010305 // If all PHI operands are the same operation, pull them through the PHI,
10306 // reducing code size.
10307 if (isa<Instruction>(PN.getIncomingValue(0)) &&
Chris Lattner05f18922008-12-01 02:34:36 +000010308 isa<Instruction>(PN.getIncomingValue(1)) &&
10309 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
10310 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
10311 // FIXME: The hasOneUse check will fail for PHIs that use the value more
10312 // than themselves more than once.
Owen Anderson7e057142006-07-10 22:03:18 +000010313 PN.getIncomingValue(0)->hasOneUse())
10314 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
10315 return Result;
10316
10317 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
10318 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
10319 // PHI)... break the cycle.
Chris Lattnerff9f13a2007-01-15 07:30:06 +000010320 if (PN.hasOneUse()) {
10321 Instruction *PHIUser = cast<Instruction>(PN.use_back());
10322 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
Chris Lattner0e5444b2007-03-26 20:40:50 +000010323 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
Owen Anderson7e057142006-07-10 22:03:18 +000010324 PotentiallyDeadPHIs.insert(&PN);
10325 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
10326 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10327 }
Chris Lattnerff9f13a2007-01-15 07:30:06 +000010328
10329 // If this phi has a single use, and if that use just computes a value for
10330 // the next iteration of a loop, delete the phi. This occurs with unused
10331 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
10332 // common case here is good because the only other things that catch this
10333 // are induction variable analysis (sometimes) and ADCE, which is only run
10334 // late.
10335 if (PHIUser->hasOneUse() &&
10336 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
10337 PHIUser->use_back() == &PN) {
10338 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10339 }
10340 }
Owen Anderson7e057142006-07-10 22:03:18 +000010341
Chris Lattnercf5008a2007-11-06 21:52:06 +000010342 // We sometimes end up with phi cycles that non-obviously end up being the
10343 // same value, for example:
10344 // z = some value; x = phi (y, z); y = phi (x, z)
10345 // where the phi nodes don't necessarily need to be in the same block. Do a
10346 // quick check to see if the PHI node only contains a single non-phi value, if
10347 // so, scan to see if the phi cycle is actually equal to that value.
10348 {
10349 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
10350 // Scan for the first non-phi operand.
10351 while (InValNo != NumOperandVals &&
10352 isa<PHINode>(PN.getIncomingValue(InValNo)))
10353 ++InValNo;
10354
10355 if (InValNo != NumOperandVals) {
10356 Value *NonPhiInVal = PN.getOperand(InValNo);
10357
10358 // Scan the rest of the operands to see if there are any conflicts, if so
10359 // there is no need to recursively scan other phis.
10360 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
10361 Value *OpVal = PN.getIncomingValue(InValNo);
10362 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
10363 break;
10364 }
10365
10366 // If we scanned over all operands, then we have one unique value plus
10367 // phi values. Scan PHI nodes to see if they all merge in each other or
10368 // the value.
10369 if (InValNo == NumOperandVals) {
10370 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
10371 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
10372 return ReplaceInstUsesWith(PN, NonPhiInVal);
10373 }
10374 }
10375 }
Chris Lattner60921c92003-12-19 05:58:40 +000010376 return 0;
Chris Lattner473945d2002-05-06 18:06:38 +000010377}
10378
Reid Spencer17212df2006-12-12 09:18:51 +000010379static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
10380 Instruction *InsertPoint,
10381 InstCombiner *IC) {
Reid Spencerabaa8ca2007-01-08 16:32:00 +000010382 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
10383 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
Reid Spencer17212df2006-12-12 09:18:51 +000010384 // We must cast correctly to the pointer type. Ensure that we
10385 // sign extend the integer value if it is smaller as this is
10386 // used for address computation.
10387 Instruction::CastOps opcode =
10388 (VTySize < PtrSize ? Instruction::SExt :
10389 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
10390 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
Chris Lattner28977af2004-04-05 01:30:19 +000010391}
10392
Chris Lattnera1be5662002-05-02 17:06:02 +000010393
Chris Lattner7e708292002-06-25 16:13:24 +000010394Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattner620ce142004-05-07 22:09:22 +000010395 Value *PtrOp = GEP.getOperand(0);
Chris Lattner9bc14642007-04-28 00:57:34 +000010396 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
Chris Lattner7e708292002-06-25 16:13:24 +000010397 // If so, eliminate the noop.
Chris Lattnerc6bd1952004-02-22 05:25:17 +000010398 if (GEP.getNumOperands() == 1)
Chris Lattner620ce142004-05-07 22:09:22 +000010399 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattnerc6bd1952004-02-22 05:25:17 +000010400
Chris Lattnere87597f2004-10-16 18:11:37 +000010401 if (isa<UndefValue>(GEP.getOperand(0)))
10402 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
10403
Chris Lattnerc6bd1952004-02-22 05:25:17 +000010404 bool HasZeroPointerIndex = false;
10405 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
10406 HasZeroPointerIndex = C->isNullValue();
10407
10408 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
Chris Lattner620ce142004-05-07 22:09:22 +000010409 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattnera1be5662002-05-02 17:06:02 +000010410
Chris Lattner28977af2004-04-05 01:30:19 +000010411 // Eliminate unneeded casts for indices.
10412 bool MadeChange = false;
Chris Lattnerdb9654e2007-03-25 20:43:09 +000010413
Chris Lattnercb69a4e2004-04-07 18:38:20 +000010414 gep_type_iterator GTI = gep_type_begin(GEP);
Gabor Greif177dd3f2008-06-12 21:37:33 +000010415 for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
10416 i != e; ++i, ++GTI) {
Chris Lattnercb69a4e2004-04-07 18:38:20 +000010417 if (isa<SequentialType>(*GTI)) {
Gabor Greif177dd3f2008-06-12 21:37:33 +000010418 if (CastInst *CI = dyn_cast<CastInst>(*i)) {
Chris Lattner76b7a062007-01-15 07:02:54 +000010419 if (CI->getOpcode() == Instruction::ZExt ||
10420 CI->getOpcode() == Instruction::SExt) {
10421 const Type *SrcTy = CI->getOperand(0)->getType();
10422 // We can eliminate a cast from i32 to i64 iff the target
10423 // is a 32-bit pointer target.
10424 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
10425 MadeChange = true;
Gabor Greif177dd3f2008-06-12 21:37:33 +000010426 *i = CI->getOperand(0);
Chris Lattner28977af2004-04-05 01:30:19 +000010427 }
10428 }
10429 }
Chris Lattnercb69a4e2004-04-07 18:38:20 +000010430 // If we are using a wider index than needed for this platform, shrink it
Dan Gohman4f833d42008-09-11 23:06:38 +000010431 // to what we need. If narrower, sign-extend it to what we need.
10432 // If the incoming value needs a cast instruction,
Chris Lattnercb69a4e2004-04-07 18:38:20 +000010433 // insert it. This explicit cast can make subsequent optimizations more
10434 // obvious.
Gabor Greif177dd3f2008-06-12 21:37:33 +000010435 Value *Op = *i;
Anton Korobeynikov07e6e562008-02-20 11:26:25 +000010436 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Chris Lattner4f1134e2004-04-17 18:16:10 +000010437 if (Constant *C = dyn_cast<Constant>(Op)) {
Gabor Greif177dd3f2008-06-12 21:37:33 +000010438 *i = ConstantExpr::getTrunc(C, TD->getIntPtrType());
Chris Lattner4f1134e2004-04-17 18:16:10 +000010439 MadeChange = true;
10440 } else {
Reid Spencer17212df2006-12-12 09:18:51 +000010441 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
10442 GEP);
Gabor Greif177dd3f2008-06-12 21:37:33 +000010443 *i = Op;
Chris Lattnercb69a4e2004-04-07 18:38:20 +000010444 MadeChange = true;
10445 }
Dan Gohman4f833d42008-09-11 23:06:38 +000010446 } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
10447 if (Constant *C = dyn_cast<Constant>(Op)) {
10448 *i = ConstantExpr::getSExt(C, TD->getIntPtrType());
10449 MadeChange = true;
10450 } else {
10451 Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
10452 GEP);
10453 *i = Op;
10454 MadeChange = true;
10455 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +000010456 }
Chris Lattner28977af2004-04-05 01:30:19 +000010457 }
Chris Lattnerdb9654e2007-03-25 20:43:09 +000010458 }
Chris Lattner28977af2004-04-05 01:30:19 +000010459 if (MadeChange) return &GEP;
10460
Chris Lattnerdb9654e2007-03-25 20:43:09 +000010461 // If this GEP instruction doesn't move the pointer, and if the input operand
10462 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
10463 // real input to the dest type.
Chris Lattner6a94de22007-10-12 05:30:59 +000010464 if (GEP.hasAllZeroIndices()) {
10465 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
10466 // If the bitcast is of an allocation, and the allocation will be
10467 // converted to match the type of the cast, don't touch this.
10468 if (isa<AllocationInst>(BCI->getOperand(0))) {
10469 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattnera79dd432007-10-12 18:05:47 +000010470 if (Instruction *I = visitBitCast(*BCI)) {
10471 if (I != BCI) {
10472 I->takeName(BCI);
10473 BCI->getParent()->getInstList().insert(BCI, I);
10474 ReplaceInstUsesWith(*BCI, I);
10475 }
Chris Lattner6a94de22007-10-12 05:30:59 +000010476 return &GEP;
Chris Lattnera79dd432007-10-12 18:05:47 +000010477 }
Chris Lattner6a94de22007-10-12 05:30:59 +000010478 }
10479 return new BitCastInst(BCI->getOperand(0), GEP.getType());
10480 }
10481 }
10482
Chris Lattner90ac28c2002-08-02 19:29:35 +000010483 // Combine Indices - If the source pointer to this getelementptr instruction
10484 // is a getelementptr instruction, combine the indices of the two
10485 // getelementptr instructions into a single instruction.
10486 //
Chris Lattner72588fc2007-02-15 22:48:32 +000010487 SmallVector<Value*, 8> SrcGEPOperands;
Chris Lattner574da9b2005-01-13 20:14:25 +000010488 if (User *Src = dyn_castGetElementPtr(PtrOp))
Chris Lattner72588fc2007-02-15 22:48:32 +000010489 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
Chris Lattnerebd985c2004-03-25 22:59:29 +000010490
10491 if (!SrcGEPOperands.empty()) {
Chris Lattner620ce142004-05-07 22:09:22 +000010492 // Note that if our source is a gep chain itself that we wait for that
10493 // chain to be resolved before we perform this transformation. This
10494 // avoids us creating a TON of code in some cases.
10495 //
10496 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
10497 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
10498 return 0; // Wait until our source is folded to completion.
10499
Chris Lattner72588fc2007-02-15 22:48:32 +000010500 SmallVector<Value*, 8> Indices;
Chris Lattner620ce142004-05-07 22:09:22 +000010501
10502 // Find out whether the last index in the source GEP is a sequential idx.
10503 bool EndsWithSequential = false;
10504 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
10505 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
Chris Lattnerbe97b4e2004-05-08 22:41:42 +000010506 EndsWithSequential = !isa<StructType>(*I);
Misha Brukmanfd939082005-04-21 23:48:37 +000010507
Chris Lattner90ac28c2002-08-02 19:29:35 +000010508 // Can we combine the two pointer arithmetics offsets?
Chris Lattner620ce142004-05-07 22:09:22 +000010509 if (EndsWithSequential) {
Chris Lattnerdecd0812003-03-05 22:33:14 +000010510 // Replace: gep (gep %P, long B), long A, ...
10511 // With: T = long A+B; gep %P, T, ...
10512 //
Chris Lattner620ce142004-05-07 22:09:22 +000010513 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
Chris Lattner28977af2004-04-05 01:30:19 +000010514 if (SO1 == Constant::getNullValue(SO1->getType())) {
10515 Sum = GO1;
10516 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
10517 Sum = SO1;
10518 } else {
10519 // If they aren't the same type, convert both to an integer of the
10520 // target's pointer size.
10521 if (SO1->getType() != GO1->getType()) {
10522 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
Reid Spencer17212df2006-12-12 09:18:51 +000010523 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
Chris Lattner28977af2004-04-05 01:30:19 +000010524 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
Reid Spencer17212df2006-12-12 09:18:51 +000010525 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
Chris Lattner28977af2004-04-05 01:30:19 +000010526 } else {
Duncan Sands514ab342007-11-01 20:53:16 +000010527 unsigned PS = TD->getPointerSizeInBits();
10528 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Chris Lattner28977af2004-04-05 01:30:19 +000010529 // Convert GO1 to SO1's type.
Reid Spencer17212df2006-12-12 09:18:51 +000010530 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
Chris Lattner28977af2004-04-05 01:30:19 +000010531
Duncan Sands514ab342007-11-01 20:53:16 +000010532 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Chris Lattner28977af2004-04-05 01:30:19 +000010533 // Convert SO1 to GO1's type.
Reid Spencer17212df2006-12-12 09:18:51 +000010534 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
Chris Lattner28977af2004-04-05 01:30:19 +000010535 } else {
10536 const Type *PT = TD->getIntPtrType();
Reid Spencer17212df2006-12-12 09:18:51 +000010537 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
10538 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
Chris Lattner28977af2004-04-05 01:30:19 +000010539 }
10540 }
10541 }
Chris Lattner620ce142004-05-07 22:09:22 +000010542 if (isa<Constant>(SO1) && isa<Constant>(GO1))
10543 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
10544 else {
Gabor Greif7cbd8a32008-05-16 19:29:10 +000010545 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Chris Lattner48595f12004-06-10 02:07:29 +000010546 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
Chris Lattner620ce142004-05-07 22:09:22 +000010547 }
Chris Lattner28977af2004-04-05 01:30:19 +000010548 }
Chris Lattner620ce142004-05-07 22:09:22 +000010549
10550 // Recycle the GEP we already have if possible.
10551 if (SrcGEPOperands.size() == 2) {
10552 GEP.setOperand(0, SrcGEPOperands[0]);
10553 GEP.setOperand(1, Sum);
10554 return &GEP;
10555 } else {
10556 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10557 SrcGEPOperands.end()-1);
10558 Indices.push_back(Sum);
10559 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
10560 }
Misha Brukmanfd939082005-04-21 23:48:37 +000010561 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner28977af2004-04-05 01:30:19 +000010562 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Misha Brukmanfd939082005-04-21 23:48:37 +000010563 SrcGEPOperands.size() != 1) {
Chris Lattner90ac28c2002-08-02 19:29:35 +000010564 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattnerebd985c2004-03-25 22:59:29 +000010565 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10566 SrcGEPOperands.end());
Chris Lattner90ac28c2002-08-02 19:29:35 +000010567 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
10568 }
10569
10570 if (!Indices.empty())
Gabor Greif051a9502008-04-06 20:25:17 +000010571 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
10572 Indices.end(), GEP.getName());
Chris Lattner9b761232002-08-17 22:21:59 +000010573
Chris Lattner620ce142004-05-07 22:09:22 +000010574 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
Chris Lattner9b761232002-08-17 22:21:59 +000010575 // GEP of global variable. If all of the indices for this GEP are
10576 // constants, we can promote this to a constexpr instead of an instruction.
10577
10578 // Scan for nonconstants...
Chris Lattner55eb1c42007-01-31 04:40:53 +000010579 SmallVector<Constant*, 8> Indices;
Chris Lattner9b761232002-08-17 22:21:59 +000010580 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
10581 for (; I != E && isa<Constant>(*I); ++I)
10582 Indices.push_back(cast<Constant>(*I));
10583
10584 if (I == E) { // If they are all constants...
Chris Lattner55eb1c42007-01-31 04:40:53 +000010585 Constant *CE = ConstantExpr::getGetElementPtr(GV,
10586 &Indices[0],Indices.size());
Chris Lattner9b761232002-08-17 22:21:59 +000010587
10588 // Replace all uses of the GEP with the new constexpr...
10589 return ReplaceInstUsesWith(GEP, CE);
10590 }
Reid Spencer3da59db2006-11-27 01:05:10 +000010591 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
Chris Lattnereed48272005-09-13 00:40:14 +000010592 if (!isa<PointerType>(X->getType())) {
10593 // Not interesting. Source pointer must be a cast from pointer.
10594 } else if (HasZeroPointerIndex) {
Wojciech Matyjewiczed223252007-12-12 15:21:32 +000010595 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
10596 // into : GEP [10 x i8]* X, i32 0, ...
Chris Lattnereed48272005-09-13 00:40:14 +000010597 //
10598 // This occurs when the program declares an array extern like "int X[];"
10599 //
10600 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
10601 const PointerType *XTy = cast<PointerType>(X->getType());
10602 if (const ArrayType *XATy =
10603 dyn_cast<ArrayType>(XTy->getElementType()))
10604 if (const ArrayType *CATy =
10605 dyn_cast<ArrayType>(CPTy->getElementType()))
10606 if (CATy->getElementType() == XATy->getElementType()) {
10607 // At this point, we know that the cast source type is a pointer
10608 // to an array of the same type as the destination pointer
10609 // array. Because the array type is never stepped over (there
10610 // is a leading zero) we can fold the cast into this GEP.
10611 GEP.setOperand(0, X);
10612 return &GEP;
10613 }
10614 } else if (GEP.getNumOperands() == 2) {
10615 // Transform things like:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +000010616 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
10617 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Chris Lattnereed48272005-09-13 00:40:14 +000010618 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
10619 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
10620 if (isa<ArrayType>(SrcElTy) &&
Duncan Sands514ab342007-11-01 20:53:16 +000010621 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
10622 TD->getABITypeSize(ResElTy)) {
David Greeneb8f74792007-09-04 15:46:09 +000010623 Value *Idx[2];
10624 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10625 Idx[1] = GEP.getOperand(1);
Chris Lattnereed48272005-09-13 00:40:14 +000010626 Value *V = InsertNewInstBefore(
Gabor Greif051a9502008-04-06 20:25:17 +000010627 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Reid Spencer3da59db2006-11-27 01:05:10 +000010628 // V and GEP are both pointer types --> BitCast
10629 return new BitCastInst(V, GEP.getType());
Chris Lattnerc6bd1952004-02-22 05:25:17 +000010630 }
Chris Lattner7835cdd2005-09-13 18:36:04 +000010631
10632 // Transform things like:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +000010633 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Chris Lattner7835cdd2005-09-13 18:36:04 +000010634 // (where tmp = 8*tmp2) into:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +000010635 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Chris Lattner7835cdd2005-09-13 18:36:04 +000010636
Wojciech Matyjewiczed223252007-12-12 15:21:32 +000010637 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Chris Lattner7835cdd2005-09-13 18:36:04 +000010638 uint64_t ArrayEltSize =
Duncan Sands514ab342007-11-01 20:53:16 +000010639 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Chris Lattner7835cdd2005-09-13 18:36:04 +000010640
10641 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
10642 // allow either a mul, shift, or constant here.
10643 Value *NewIdx = 0;
10644 ConstantInt *Scale = 0;
10645 if (ArrayEltSize == 1) {
10646 NewIdx = GEP.getOperand(1);
10647 Scale = ConstantInt::get(NewIdx->getType(), 1);
10648 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
Chris Lattner6e2f8432005-09-14 17:32:56 +000010649 NewIdx = ConstantInt::get(CI->getType(), 1);
Chris Lattner7835cdd2005-09-13 18:36:04 +000010650 Scale = CI;
10651 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
10652 if (Inst->getOpcode() == Instruction::Shl &&
10653 isa<ConstantInt>(Inst->getOperand(1))) {
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +000010654 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
10655 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
10656 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
Chris Lattner7835cdd2005-09-13 18:36:04 +000010657 NewIdx = Inst->getOperand(0);
10658 } else if (Inst->getOpcode() == Instruction::Mul &&
10659 isa<ConstantInt>(Inst->getOperand(1))) {
10660 Scale = cast<ConstantInt>(Inst->getOperand(1));
10661 NewIdx = Inst->getOperand(0);
10662 }
10663 }
Wojciech Matyjewiczed223252007-12-12 15:21:32 +000010664
Chris Lattner7835cdd2005-09-13 18:36:04 +000010665 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewiczed223252007-12-12 15:21:32 +000010666 // out, perform the transformation. Note, we don't know whether Scale is
10667 // signed or not. We'll use unsigned version of division/modulo
10668 // operation after making sure Scale doesn't have the sign bit set.
10669 if (Scale && Scale->getSExtValue() >= 0LL &&
10670 Scale->getZExtValue() % ArrayEltSize == 0) {
10671 Scale = ConstantInt::get(Scale->getType(),
10672 Scale->getZExtValue() / ArrayEltSize);
Reid Spencerb83eb642006-10-20 07:07:24 +000010673 if (Scale->getZExtValue() != 1) {
Reid Spencer17212df2006-12-12 09:18:51 +000010674 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewiczed223252007-12-12 15:21:32 +000010675 false /*ZExt*/);
Gabor Greif7cbd8a32008-05-16 19:29:10 +000010676 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Chris Lattner7835cdd2005-09-13 18:36:04 +000010677 NewIdx = InsertNewInstBefore(Sc, GEP);
10678 }
10679
10680 // Insert the new GEP instruction.
David Greeneb8f74792007-09-04 15:46:09 +000010681 Value *Idx[2];
10682 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10683 Idx[1] = NewIdx;
Reid Spencer3da59db2006-11-27 01:05:10 +000010684 Instruction *NewGEP =
Gabor Greif051a9502008-04-06 20:25:17 +000010685 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Reid Spencer3da59db2006-11-27 01:05:10 +000010686 NewGEP = InsertNewInstBefore(NewGEP, GEP);
10687 // The NewGEP must be pointer typed, so must the old one -> BitCast
10688 return new BitCastInst(NewGEP, GEP.getType());
Chris Lattner7835cdd2005-09-13 18:36:04 +000010689 }
10690 }
Chris Lattnerc6bd1952004-02-22 05:25:17 +000010691 }
Chris Lattner8a2a3112001-12-14 16:52:21 +000010692 }
10693
Chris Lattner8a2a3112001-12-14 16:52:21 +000010694 return 0;
10695}
10696
Chris Lattner0864acf2002-11-04 16:18:53 +000010697Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
10698 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov07e6e562008-02-20 11:26:25 +000010699 if (AI.isArrayAllocation()) { // Check C != 1
Reid Spencerb83eb642006-10-20 07:07:24 +000010700 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
10701 const Type *NewTy =
10702 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
Chris Lattner0006bd72002-11-09 00:49:43 +000010703 AllocationInst *New = 0;
Chris Lattner0864acf2002-11-04 16:18:53 +000010704
10705 // Create and insert the replacement instruction...
10706 if (isa<MallocInst>(AI))
Nate Begeman14b05292005-11-05 09:21:28 +000010707 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattner0006bd72002-11-09 00:49:43 +000010708 else {
10709 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
Nate Begeman14b05292005-11-05 09:21:28 +000010710 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattner0006bd72002-11-09 00:49:43 +000010711 }
Chris Lattner7c881df2004-03-19 06:08:10 +000010712
10713 InsertNewInstBefore(New, AI);
Misha Brukmanfd939082005-04-21 23:48:37 +000010714
Chris Lattner0864acf2002-11-04 16:18:53 +000010715 // Scan to the end of the allocation instructions, to skip over a block of
10716 // allocas if possible...
10717 //
10718 BasicBlock::iterator It = New;
10719 while (isa<AllocationInst>(*It)) ++It;
10720
10721 // Now that I is pointing to the first non-allocation-inst in the block,
10722 // insert our getelementptr instruction...
10723 //
Reid Spencerc5b206b2006-12-31 05:48:39 +000010724 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greeneb8f74792007-09-04 15:46:09 +000010725 Value *Idx[2];
10726 Idx[0] = NullIdx;
10727 Idx[1] = NullIdx;
Gabor Greif051a9502008-04-06 20:25:17 +000010728 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
10729 New->getName()+".sub", It);
Chris Lattner0864acf2002-11-04 16:18:53 +000010730
10731 // Now make everything use the getelementptr instead of the original
10732 // allocation.
Chris Lattner7c881df2004-03-19 06:08:10 +000010733 return ReplaceInstUsesWith(AI, V);
Chris Lattnere87597f2004-10-16 18:11:37 +000010734 } else if (isa<UndefValue>(AI.getArraySize())) {
10735 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
Chris Lattner0864acf2002-11-04 16:18:53 +000010736 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +000010737 }
Chris Lattner7c881df2004-03-19 06:08:10 +000010738
10739 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
10740 // Note that we only do this for alloca's, because malloc should allocate and
10741 // return a unique pointer, even for a zero byte allocation.
Misha Brukmanfd939082005-04-21 23:48:37 +000010742 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sands514ab342007-11-01 20:53:16 +000010743 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Chris Lattner7c881df2004-03-19 06:08:10 +000010744 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10745
Chris Lattner0864acf2002-11-04 16:18:53 +000010746 return 0;
10747}
10748
Chris Lattner67b1e1b2003-12-07 01:24:23 +000010749Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
10750 Value *Op = FI.getOperand(0);
10751
Chris Lattner17be6352004-10-18 02:59:09 +000010752 // free undef -> unreachable.
10753 if (isa<UndefValue>(Op)) {
10754 // Insert a new store to null because we cannot modify the CFG here.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +000010755 new StoreInst(ConstantInt::getTrue(),
Christopher Lamb43ad6b32007-12-17 01:12:55 +000010756 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Chris Lattner17be6352004-10-18 02:59:09 +000010757 return EraseInstFromFunction(FI);
10758 }
Chris Lattner6fe55412007-04-14 00:20:02 +000010759
Chris Lattner6160e852004-02-28 04:57:37 +000010760 // If we have 'free null' delete the instruction. This can happen in stl code
10761 // when lots of inlining happens.
Chris Lattner17be6352004-10-18 02:59:09 +000010762 if (isa<ConstantPointerNull>(Op))
Chris Lattner7bcc0e72004-02-28 05:22:00 +000010763 return EraseInstFromFunction(FI);
Chris Lattner6fe55412007-04-14 00:20:02 +000010764
10765 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10766 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10767 FI.setOperand(0, CI->getOperand(0));
10768 return &FI;
10769 }
10770
10771 // Change free (gep X, 0,0,0,0) into free(X)
10772 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10773 if (GEPI->hasAllZeroIndices()) {
10774 AddToWorkList(GEPI);
10775 FI.setOperand(0, GEPI->getOperand(0));
10776 return &FI;
10777 }
10778 }
10779
10780 // Change free(malloc) into nothing, if the malloc has a single use.
10781 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10782 if (MI->hasOneUse()) {
10783 EraseInstFromFunction(FI);
10784 return EraseInstFromFunction(*MI);
10785 }
Chris Lattner6160e852004-02-28 04:57:37 +000010786
Chris Lattner67b1e1b2003-12-07 01:24:23 +000010787 return 0;
10788}
10789
10790
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010791/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patel99db6ad2007-10-18 19:52:32 +000010792static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling587c01d2008-02-26 10:53:30 +000010793 const TargetData *TD) {
Chris Lattnerb89e0712004-07-13 01:49:43 +000010794 User *CI = cast<User>(LI.getOperand(0));
Chris Lattnerf9527852005-01-31 04:50:46 +000010795 Value *CastOp = CI->getOperand(0);
Chris Lattnerb89e0712004-07-13 01:49:43 +000010796
Devang Patel99db6ad2007-10-18 19:52:32 +000010797 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10798 // Instead of loading constant c string, use corresponding integer value
10799 // directly if string length is small enough.
Evan Cheng0ff39b32008-06-30 07:31:25 +000010800 std::string Str;
10801 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
Devang Patel99db6ad2007-10-18 19:52:32 +000010802 unsigned len = Str.length();
10803 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10804 unsigned numBits = Ty->getPrimitiveSizeInBits();
10805 // Replace LI with immediate integer store.
10806 if ((numBits >> 3) == len + 1) {
Bill Wendling587c01d2008-02-26 10:53:30 +000010807 APInt StrVal(numBits, 0);
10808 APInt SingleChar(numBits, 0);
10809 if (TD->isLittleEndian()) {
10810 for (signed i = len-1; i >= 0; i--) {
10811 SingleChar = (uint64_t) Str[i];
10812 StrVal = (StrVal << 8) | SingleChar;
10813 }
10814 } else {
10815 for (unsigned i = 0; i < len; i++) {
10816 SingleChar = (uint64_t) Str[i];
10817 StrVal = (StrVal << 8) | SingleChar;
10818 }
10819 // Append NULL at the end.
10820 SingleChar = 0;
10821 StrVal = (StrVal << 8) | SingleChar;
10822 }
10823 Value *NL = ConstantInt::get(StrVal);
10824 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patel99db6ad2007-10-18 19:52:32 +000010825 }
10826 }
10827 }
10828
Chris Lattnerb89e0712004-07-13 01:49:43 +000010829 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
Chris Lattnerf9527852005-01-31 04:50:46 +000010830 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
Chris Lattnerb89e0712004-07-13 01:49:43 +000010831 const Type *SrcPTy = SrcTy->getElementType();
Chris Lattnerf9527852005-01-31 04:50:46 +000010832
Reid Spencer42230162007-01-22 05:51:25 +000010833 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
Reid Spencer9d6565a2007-02-15 02:26:10 +000010834 isa<VectorType>(DestPTy)) {
Chris Lattnerf9527852005-01-31 04:50:46 +000010835 // If the source is an array, the code below will not succeed. Check to
10836 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10837 // constants.
10838 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10839 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10840 if (ASrcTy->getNumElements() != 0) {
Chris Lattner55eb1c42007-01-31 04:40:53 +000010841 Value *Idxs[2];
10842 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10843 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
Chris Lattnerf9527852005-01-31 04:50:46 +000010844 SrcTy = cast<PointerType>(CastOp->getType());
10845 SrcPTy = SrcTy->getElementType();
10846 }
10847
Reid Spencer42230162007-01-22 05:51:25 +000010848 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
Reid Spencer9d6565a2007-02-15 02:26:10 +000010849 isa<VectorType>(SrcPTy)) &&
Chris Lattnerb1515fe2005-03-29 06:37:47 +000010850 // Do not allow turning this into a load of an integer, which is then
10851 // casted to a pointer, this pessimizes pointer analysis a lot.
10852 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
Reid Spencer42230162007-01-22 05:51:25 +000010853 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10854 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
Misha Brukmanfd939082005-04-21 23:48:37 +000010855
Chris Lattnerf9527852005-01-31 04:50:46 +000010856 // Okay, we are casting from one integer or pointer type to another of
10857 // the same size. Instead of casting the pointer before the load, cast
10858 // the result of the loaded value.
10859 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10860 CI->getName(),
10861 LI.isVolatile()),LI);
10862 // Now cast the result of the load.
Reid Spencerd977d862006-12-12 23:36:14 +000010863 return new BitCastInst(NewLoad, LI.getType());
Chris Lattnerf9527852005-01-31 04:50:46 +000010864 }
Chris Lattnerb89e0712004-07-13 01:49:43 +000010865 }
10866 }
10867 return 0;
10868}
10869
Chris Lattnerc10aced2004-09-19 18:43:46 +000010870/// isSafeToLoadUnconditionally - Return true if we know that executing a load
Chris Lattner8a375202004-09-19 19:18:10 +000010871/// from this value cannot trap. If it is not obviously safe to load from the
10872/// specified pointer, we do a quick local scan of the basic block containing
10873/// ScanFrom, to determine if the address is already accessed.
10874static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands892c7e42007-09-19 10:10:31 +000010875 // If it is an alloca it is always safe to load from.
10876 if (isa<AllocaInst>(V)) return true;
10877
Duncan Sands46318cd2007-09-19 10:25:38 +000010878 // If it is a global variable it is mostly safe to load from.
Duncan Sands892c7e42007-09-19 10:10:31 +000010879 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sands46318cd2007-09-19 10:25:38 +000010880 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands892c7e42007-09-19 10:10:31 +000010881 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Chris Lattner8a375202004-09-19 19:18:10 +000010882
10883 // Otherwise, be a little bit agressive by scanning the local block where we
10884 // want to check to see if the pointer is already being loaded or stored
Alkis Evlogimenos7b6ec602004-09-20 06:42:58 +000010885 // from/to. If so, the previous load or store would have already trapped,
10886 // so there is no harm doing an extra load (also, CSE will later eliminate
10887 // the load entirely).
Chris Lattner8a375202004-09-19 19:18:10 +000010888 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10889
Alkis Evlogimenos7b6ec602004-09-20 06:42:58 +000010890 while (BBI != E) {
Chris Lattner8a375202004-09-19 19:18:10 +000010891 --BBI;
10892
Chris Lattner2de3fec2008-06-20 05:12:56 +000010893 // If we see a free or a call (which might do a free) the pointer could be
10894 // marked invalid.
10895 if (isa<FreeInst>(BBI) || isa<CallInst>(BBI))
10896 return false;
10897
Chris Lattner8a375202004-09-19 19:18:10 +000010898 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10899 if (LI->getOperand(0) == V) return true;
Chris Lattner2de3fec2008-06-20 05:12:56 +000010900 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Chris Lattner8a375202004-09-19 19:18:10 +000010901 if (SI->getOperand(1) == V) return true;
Chris Lattner2de3fec2008-06-20 05:12:56 +000010902 }
Misha Brukmanfd939082005-04-21 23:48:37 +000010903
Alkis Evlogimenos7b6ec602004-09-20 06:42:58 +000010904 }
Chris Lattner8a375202004-09-19 19:18:10 +000010905 return false;
Chris Lattnerc10aced2004-09-19 18:43:46 +000010906}
10907
Chris Lattner833b8a42003-06-26 05:06:25 +000010908Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10909 Value *Op = LI.getOperand(0);
Chris Lattner5f16a132004-01-12 04:13:56 +000010910
Dan Gohman9941f742007-07-20 16:34:21 +000010911 // Attempt to improve the alignment.
Dan Gohmaneee962e2008-04-10 18:43:06 +000010912 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10913 if (KnownAlign >
10914 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10915 LI.getAlignment()))
Dan Gohman9941f742007-07-20 16:34:21 +000010916 LI.setAlignment(KnownAlign);
10917
Chris Lattner37366c12005-05-01 04:24:53 +000010918 // load (cast X) --> cast (load X) iff safe
Reid Spencer3ed469c2006-11-02 20:25:50 +000010919 if (isa<CastInst>(Op))
Devang Patel99db6ad2007-10-18 19:52:32 +000010920 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Chris Lattner37366c12005-05-01 04:24:53 +000010921 return Res;
10922
10923 // None of the following transforms are legal for volatile loads.
10924 if (LI.isVolatile()) return 0;
Chris Lattner62f254d2005-09-12 22:00:15 +000010925
Dan Gohman2276a7b2008-10-15 23:19:35 +000010926 // Do really simple store-to-load forwarding and load CSE, to catch cases
10927 // where there are several consequtive memory accesses to the same location,
10928 // separated by a few arithmetic operations.
10929 BasicBlock::iterator BBI = &LI;
Chris Lattner4aebaee2008-11-27 08:56:30 +000010930 if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
10931 return ReplaceInstUsesWith(LI, AvailableVal);
Chris Lattner37366c12005-05-01 04:24:53 +000010932
Christopher Lambb15147e2007-12-29 07:56:53 +000010933 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10934 const Value *GEPI0 = GEPI->getOperand(0);
10935 // TODO: Consider a target hook for valid address spaces for this xform.
10936 if (isa<ConstantPointerNull>(GEPI0) &&
10937 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Chris Lattner37366c12005-05-01 04:24:53 +000010938 // Insert a new store to null instruction before the load to indicate
10939 // that this code is not reachable. We do this instead of inserting
10940 // an unreachable instruction directly because we cannot modify the
10941 // CFG.
10942 new StoreInst(UndefValue::get(LI.getType()),
10943 Constant::getNullValue(Op->getType()), &LI);
10944 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10945 }
Christopher Lambb15147e2007-12-29 07:56:53 +000010946 }
Chris Lattner37366c12005-05-01 04:24:53 +000010947
Chris Lattnere87597f2004-10-16 18:11:37 +000010948 if (Constant *C = dyn_cast<Constant>(Op)) {
Chris Lattner37366c12005-05-01 04:24:53 +000010949 // load null/undef -> undef
Christopher Lambb15147e2007-12-29 07:56:53 +000010950 // TODO: Consider a target hook for valid address spaces for this xform.
10951 if (isa<UndefValue>(C) || (C->isNullValue() &&
10952 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Chris Lattner17be6352004-10-18 02:59:09 +000010953 // Insert a new store to null instruction before the load to indicate that
10954 // this code is not reachable. We do this instead of inserting an
10955 // unreachable instruction directly because we cannot modify the CFG.
Chris Lattner37366c12005-05-01 04:24:53 +000010956 new StoreInst(UndefValue::get(LI.getType()),
10957 Constant::getNullValue(Op->getType()), &LI);
Chris Lattnere87597f2004-10-16 18:11:37 +000010958 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
Chris Lattner17be6352004-10-18 02:59:09 +000010959 }
Chris Lattner833b8a42003-06-26 05:06:25 +000010960
Chris Lattnere87597f2004-10-16 18:11:37 +000010961 // Instcombine load (constant global) into the value loaded.
10962 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
Reid Spencer5cbf9852007-01-30 20:08:39 +000010963 if (GV->isConstant() && !GV->isDeclaration())
Chris Lattnere87597f2004-10-16 18:11:37 +000010964 return ReplaceInstUsesWith(LI, GV->getInitializer());
Misha Brukmanfd939082005-04-21 23:48:37 +000010965
Chris Lattnere87597f2004-10-16 18:11:37 +000010966 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov07e6e562008-02-20 11:26:25 +000010967 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Chris Lattnere87597f2004-10-16 18:11:37 +000010968 if (CE->getOpcode() == Instruction::GetElementPtr) {
10969 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
Reid Spencer5cbf9852007-01-30 20:08:39 +000010970 if (GV->isConstant() && !GV->isDeclaration())
Chris Lattner363f2a22005-09-26 05:28:06 +000010971 if (Constant *V =
10972 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
Chris Lattnere87597f2004-10-16 18:11:37 +000010973 return ReplaceInstUsesWith(LI, V);
Chris Lattner37366c12005-05-01 04:24:53 +000010974 if (CE->getOperand(0)->isNullValue()) {
10975 // Insert a new store to null instruction before the load to indicate
10976 // that this code is not reachable. We do this instead of inserting
10977 // an unreachable instruction directly because we cannot modify the
10978 // CFG.
10979 new StoreInst(UndefValue::get(LI.getType()),
10980 Constant::getNullValue(Op->getType()), &LI);
10981 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10982 }
10983
Reid Spencer3da59db2006-11-27 01:05:10 +000010984 } else if (CE->isCast()) {
Devang Patel99db6ad2007-10-18 19:52:32 +000010985 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Chris Lattnere87597f2004-10-16 18:11:37 +000010986 return Res;
10987 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +000010988 }
Chris Lattnere87597f2004-10-16 18:11:37 +000010989 }
Chris Lattner8d2e8882007-08-11 18:48:48 +000010990
10991 // If this load comes from anywhere in a constant global, and if the global
10992 // is all undef or zero, we know what it loads.
Duncan Sands5d0392c2008-10-01 15:25:41 +000010993 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
Chris Lattner8d2e8882007-08-11 18:48:48 +000010994 if (GV->isConstant() && GV->hasInitializer()) {
10995 if (GV->getInitializer()->isNullValue())
10996 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10997 else if (isa<UndefValue>(GV->getInitializer()))
10998 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10999 }
11000 }
Chris Lattnerf499eac2004-04-08 20:39:49 +000011001
Chris Lattner37366c12005-05-01 04:24:53 +000011002 if (Op->hasOneUse()) {
Chris Lattnerc10aced2004-09-19 18:43:46 +000011003 // Change select and PHI nodes to select values instead of addresses: this
11004 // helps alias analysis out a lot, allows many others simplifications, and
11005 // exposes redundancy in the code.
11006 //
11007 // Note that we cannot do the transformation unless we know that the
11008 // introduced loads cannot trap! Something like this is valid as long as
11009 // the condition is always false: load (select bool %C, int* null, int* %G),
11010 // but it would not be valid if we transformed it to load from null
11011 // unconditionally.
11012 //
11013 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
11014 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
Chris Lattner8a375202004-09-19 19:18:10 +000011015 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
11016 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
Chris Lattnerc10aced2004-09-19 18:43:46 +000011017 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
Chris Lattner79f0c8e2004-09-20 10:15:10 +000011018 SI->getOperand(1)->getName()+".val"), LI);
Chris Lattnerc10aced2004-09-19 18:43:46 +000011019 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
Chris Lattner79f0c8e2004-09-20 10:15:10 +000011020 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greif051a9502008-04-06 20:25:17 +000011021 return SelectInst::Create(SI->getCondition(), V1, V2);
Chris Lattnerc10aced2004-09-19 18:43:46 +000011022 }
11023
Chris Lattner684fe212004-09-23 15:46:00 +000011024 // load (select (cond, null, P)) -> load P
11025 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
11026 if (C->isNullValue()) {
11027 LI.setOperand(0, SI->getOperand(2));
11028 return &LI;
11029 }
11030
11031 // load (select (cond, P, null)) -> load P
11032 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
11033 if (C->isNullValue()) {
11034 LI.setOperand(0, SI->getOperand(1));
11035 return &LI;
11036 }
Chris Lattnerc10aced2004-09-19 18:43:46 +000011037 }
11038 }
Chris Lattner833b8a42003-06-26 05:06:25 +000011039 return 0;
11040}
11041
Reid Spencer55af2b52007-01-19 21:20:31 +000011042/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000011043/// when possible.
11044static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
11045 User *CI = cast<User>(SI.getOperand(1));
11046 Value *CastOp = CI->getOperand(0);
11047
11048 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
11049 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
11050 const Type *SrcPTy = SrcTy->getElementType();
11051
Reid Spencer42230162007-01-22 05:51:25 +000011052 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000011053 // If the source is an array, the code below will not succeed. Check to
11054 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
11055 // constants.
11056 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
11057 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
11058 if (ASrcTy->getNumElements() != 0) {
Chris Lattner55eb1c42007-01-31 04:40:53 +000011059 Value* Idxs[2];
11060 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
11061 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000011062 SrcTy = cast<PointerType>(CastOp->getType());
11063 SrcPTy = SrcTy->getElementType();
11064 }
11065
Reid Spencer67f827c2007-01-20 23:35:48 +000011066 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
11067 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
11068 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000011069
11070 // Okay, we are casting from one integer or pointer type to another of
Reid Spencer75153962007-01-18 18:54:33 +000011071 // the same size. Instead of casting the pointer before
11072 // the store, cast the value to be stored.
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000011073 Value *NewCast;
Reid Spencerd977d862006-12-12 23:36:14 +000011074 Value *SIOp0 = SI.getOperand(0);
Reid Spencer75153962007-01-18 18:54:33 +000011075 Instruction::CastOps opcode = Instruction::BitCast;
11076 const Type* CastSrcTy = SIOp0->getType();
11077 const Type* CastDstTy = SrcPTy;
11078 if (isa<PointerType>(CastDstTy)) {
11079 if (CastSrcTy->isInteger())
Reid Spencerd977d862006-12-12 23:36:14 +000011080 opcode = Instruction::IntToPtr;
Reid Spencer67f827c2007-01-20 23:35:48 +000011081 } else if (isa<IntegerType>(CastDstTy)) {
Reid Spencerc55b2432006-12-13 18:21:21 +000011082 if (isa<PointerType>(SIOp0->getType()))
Reid Spencerd977d862006-12-12 23:36:14 +000011083 opcode = Instruction::PtrToInt;
11084 }
11085 if (Constant *C = dyn_cast<Constant>(SIOp0))
Reid Spencer75153962007-01-18 18:54:33 +000011086 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000011087 else
Reid Spencer3da59db2006-11-27 01:05:10 +000011088 NewCast = IC.InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +000011089 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Reid Spencer75153962007-01-18 18:54:33 +000011090 SI);
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000011091 return new StoreInst(NewCast, CastOp);
11092 }
11093 }
11094 }
11095 return 0;
11096}
11097
Chris Lattner4aebaee2008-11-27 08:56:30 +000011098/// equivalentAddressValues - Test if A and B will obviously have the same
11099/// value. This includes recognizing that %t0 and %t1 will have the same
11100/// value in code like this:
11101/// %t0 = getelementptr @a, 0, 3
11102/// store i32 0, i32* %t0
11103/// %t1 = getelementptr @a, 0, 3
11104/// %t2 = load i32* %t1
11105///
11106static bool equivalentAddressValues(Value *A, Value *B) {
11107 // Test if the values are trivially equivalent.
11108 if (A == B) return true;
11109
11110 // Test if the values come form identical arithmetic instructions.
11111 if (isa<BinaryOperator>(A) ||
11112 isa<CastInst>(A) ||
11113 isa<PHINode>(A) ||
11114 isa<GetElementPtrInst>(A))
11115 if (Instruction *BI = dyn_cast<Instruction>(B))
11116 if (cast<Instruction>(A)->isIdenticalTo(BI))
11117 return true;
11118
11119 // Otherwise they may not be equivalent.
11120 return false;
11121}
11122
Chris Lattner2f503e62005-01-31 05:36:43 +000011123Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
11124 Value *Val = SI.getOperand(0);
11125 Value *Ptr = SI.getOperand(1);
11126
11127 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
Chris Lattner9ca96412006-02-08 03:25:32 +000011128 EraseInstFromFunction(SI);
Chris Lattner2f503e62005-01-31 05:36:43 +000011129 ++NumCombined;
11130 return 0;
11131 }
Chris Lattner836692d2007-01-15 06:51:56 +000011132
11133 // If the RHS is an alloca with a single use, zapify the store, making the
11134 // alloca dead.
Chris Lattnercea1fdd2008-04-29 04:58:38 +000011135 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Chris Lattner836692d2007-01-15 06:51:56 +000011136 if (isa<AllocaInst>(Ptr)) {
11137 EraseInstFromFunction(SI);
11138 ++NumCombined;
11139 return 0;
11140 }
11141
11142 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
11143 if (isa<AllocaInst>(GEP->getOperand(0)) &&
11144 GEP->getOperand(0)->hasOneUse()) {
11145 EraseInstFromFunction(SI);
11146 ++NumCombined;
11147 return 0;
11148 }
11149 }
Chris Lattner2f503e62005-01-31 05:36:43 +000011150
Dan Gohman9941f742007-07-20 16:34:21 +000011151 // Attempt to improve the alignment.
Dan Gohmaneee962e2008-04-10 18:43:06 +000011152 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
11153 if (KnownAlign >
11154 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
11155 SI.getAlignment()))
Dan Gohman9941f742007-07-20 16:34:21 +000011156 SI.setAlignment(KnownAlign);
11157
Chris Lattner9ca96412006-02-08 03:25:32 +000011158 // Do really simple DSE, to catch cases where there are several consequtive
11159 // stores to the same location, separated by a few arithmetic operations. This
11160 // situation often occurs with bitfield accesses.
11161 BasicBlock::iterator BBI = &SI;
11162 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
11163 --ScanInsts) {
11164 --BBI;
11165
11166 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
11167 // Prev store isn't volatile, and stores to the same location?
Chris Lattner4aebaee2008-11-27 08:56:30 +000011168 if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
11169 SI.getOperand(1))) {
Chris Lattner9ca96412006-02-08 03:25:32 +000011170 ++NumDeadStore;
11171 ++BBI;
11172 EraseInstFromFunction(*PrevSI);
11173 continue;
11174 }
11175 break;
11176 }
11177
Chris Lattnerb4db97f2006-05-26 19:19:20 +000011178 // If this is a load, we have to stop. However, if the loaded value is from
11179 // the pointer we're loading and is producing the pointer we're storing,
11180 // then *this* store is dead (X = load P; store X -> P).
11181 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Dan Gohman2276a7b2008-10-15 23:19:35 +000011182 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
11183 !SI.isVolatile()) {
Chris Lattnerb4db97f2006-05-26 19:19:20 +000011184 EraseInstFromFunction(SI);
11185 ++NumCombined;
11186 return 0;
11187 }
11188 // Otherwise, this is a load from some other location. Stores before it
11189 // may not be dead.
11190 break;
11191 }
11192
Chris Lattner9ca96412006-02-08 03:25:32 +000011193 // Don't skip over loads or things that can modify memory.
Chris Lattner0ef546e2008-05-08 17:20:30 +000011194 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Chris Lattner9ca96412006-02-08 03:25:32 +000011195 break;
11196 }
11197
11198
11199 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
Chris Lattner2f503e62005-01-31 05:36:43 +000011200
11201 // store X, null -> turns into 'unreachable' in SimplifyCFG
11202 if (isa<ConstantPointerNull>(Ptr)) {
11203 if (!isa<UndefValue>(Val)) {
11204 SI.setOperand(0, UndefValue::get(Val->getType()));
11205 if (Instruction *U = dyn_cast<Instruction>(Val))
Chris Lattnerdbab3862007-03-02 21:28:56 +000011206 AddToWorkList(U); // Dropped a use.
Chris Lattner2f503e62005-01-31 05:36:43 +000011207 ++NumCombined;
11208 }
11209 return 0; // Do not modify these!
11210 }
11211
11212 // store undef, Ptr -> noop
11213 if (isa<UndefValue>(Val)) {
Chris Lattner9ca96412006-02-08 03:25:32 +000011214 EraseInstFromFunction(SI);
Chris Lattner2f503e62005-01-31 05:36:43 +000011215 ++NumCombined;
11216 return 0;
11217 }
11218
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000011219 // If the pointer destination is a cast, see if we can fold the cast into the
11220 // source instead.
Reid Spencer3ed469c2006-11-02 20:25:50 +000011221 if (isa<CastInst>(Ptr))
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000011222 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11223 return Res;
11224 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
Reid Spencer3da59db2006-11-27 01:05:10 +000011225 if (CE->isCast())
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000011226 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11227 return Res;
11228
Chris Lattner408902b2005-09-12 23:23:25 +000011229
11230 // If this store is the last instruction in the basic block, and if the block
11231 // ends with an unconditional branch, try to move it to the successor block.
Chris Lattner9ca96412006-02-08 03:25:32 +000011232 BBI = &SI; ++BBI;
Chris Lattner408902b2005-09-12 23:23:25 +000011233 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
Chris Lattner3284d1f2007-04-15 00:07:55 +000011234 if (BI->isUnconditional())
11235 if (SimplifyStoreAtEndOfBlock(SI))
11236 return 0; // xform done!
Chris Lattner408902b2005-09-12 23:23:25 +000011237
Chris Lattner2f503e62005-01-31 05:36:43 +000011238 return 0;
11239}
11240
Chris Lattner3284d1f2007-04-15 00:07:55 +000011241/// SimplifyStoreAtEndOfBlock - Turn things like:
11242/// if () { *P = v1; } else { *P = v2 }
11243/// into a phi node with a store in the successor.
11244///
Chris Lattner31755a02007-04-15 01:02:18 +000011245/// Simplify things like:
11246/// *P = v1; if () { *P = v2; }
11247/// into a phi node with a store in the successor.
11248///
Chris Lattner3284d1f2007-04-15 00:07:55 +000011249bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
11250 BasicBlock *StoreBB = SI.getParent();
11251
11252 // Check to see if the successor block has exactly two incoming edges. If
11253 // so, see if the other predecessor contains a store to the same location.
11254 // if so, insert a PHI node (if needed) and move the stores down.
Chris Lattner31755a02007-04-15 01:02:18 +000011255 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
Chris Lattner3284d1f2007-04-15 00:07:55 +000011256
11257 // Determine whether Dest has exactly two predecessors and, if so, compute
11258 // the other predecessor.
Chris Lattner31755a02007-04-15 01:02:18 +000011259 pred_iterator PI = pred_begin(DestBB);
11260 BasicBlock *OtherBB = 0;
Chris Lattner3284d1f2007-04-15 00:07:55 +000011261 if (*PI != StoreBB)
Chris Lattner31755a02007-04-15 01:02:18 +000011262 OtherBB = *PI;
Chris Lattner3284d1f2007-04-15 00:07:55 +000011263 ++PI;
Chris Lattner31755a02007-04-15 01:02:18 +000011264 if (PI == pred_end(DestBB))
Chris Lattner3284d1f2007-04-15 00:07:55 +000011265 return false;
11266
11267 if (*PI != StoreBB) {
Chris Lattner31755a02007-04-15 01:02:18 +000011268 if (OtherBB)
Chris Lattner3284d1f2007-04-15 00:07:55 +000011269 return false;
Chris Lattner31755a02007-04-15 01:02:18 +000011270 OtherBB = *PI;
Chris Lattner3284d1f2007-04-15 00:07:55 +000011271 }
Chris Lattner31755a02007-04-15 01:02:18 +000011272 if (++PI != pred_end(DestBB))
Chris Lattner3284d1f2007-04-15 00:07:55 +000011273 return false;
Eli Friedman66fe80a2008-06-13 21:17:49 +000011274
11275 // Bail out if all the relevant blocks aren't distinct (this can happen,
11276 // for example, if SI is in an infinite loop)
11277 if (StoreBB == DestBB || OtherBB == DestBB)
11278 return false;
11279
Chris Lattner31755a02007-04-15 01:02:18 +000011280 // Verify that the other block ends in a branch and is not otherwise empty.
11281 BasicBlock::iterator BBI = OtherBB->getTerminator();
Chris Lattner3284d1f2007-04-15 00:07:55 +000011282 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
Chris Lattner31755a02007-04-15 01:02:18 +000011283 if (!OtherBr || BBI == OtherBB->begin())
Chris Lattner3284d1f2007-04-15 00:07:55 +000011284 return false;
11285
Chris Lattner31755a02007-04-15 01:02:18 +000011286 // If the other block ends in an unconditional branch, check for the 'if then
11287 // else' case. there is an instruction before the branch.
11288 StoreInst *OtherStore = 0;
11289 if (OtherBr->isUnconditional()) {
11290 // If this isn't a store, or isn't a store to the same location, bail out.
11291 --BBI;
11292 OtherStore = dyn_cast<StoreInst>(BBI);
11293 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
11294 return false;
11295 } else {
Chris Lattnerd717c182007-05-05 22:32:24 +000011296 // Otherwise, the other block ended with a conditional branch. If one of the
Chris Lattner31755a02007-04-15 01:02:18 +000011297 // destinations is StoreBB, then we have the if/then case.
11298 if (OtherBr->getSuccessor(0) != StoreBB &&
11299 OtherBr->getSuccessor(1) != StoreBB)
11300 return false;
11301
11302 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
Chris Lattnerd717c182007-05-05 22:32:24 +000011303 // if/then triangle. See if there is a store to the same ptr as SI that
11304 // lives in OtherBB.
Chris Lattner31755a02007-04-15 01:02:18 +000011305 for (;; --BBI) {
11306 // Check to see if we find the matching store.
11307 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
11308 if (OtherStore->getOperand(1) != SI.getOperand(1))
11309 return false;
11310 break;
11311 }
Eli Friedman6903a242008-06-13 22:02:12 +000011312 // If we find something that may be using or overwriting the stored
11313 // value, or if we run out of instructions, we can't do the xform.
11314 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
Chris Lattner31755a02007-04-15 01:02:18 +000011315 BBI == OtherBB->begin())
11316 return false;
11317 }
11318
11319 // In order to eliminate the store in OtherBr, we have to
Eli Friedman6903a242008-06-13 22:02:12 +000011320 // make sure nothing reads or overwrites the stored value in
11321 // StoreBB.
Chris Lattner31755a02007-04-15 01:02:18 +000011322 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
11323 // FIXME: This should really be AA driven.
Eli Friedman6903a242008-06-13 22:02:12 +000011324 if (I->mayReadFromMemory() || I->mayWriteToMemory())
Chris Lattner31755a02007-04-15 01:02:18 +000011325 return false;
11326 }
11327 }
Chris Lattner3284d1f2007-04-15 00:07:55 +000011328
Chris Lattner31755a02007-04-15 01:02:18 +000011329 // Insert a PHI node now if we need it.
Chris Lattner3284d1f2007-04-15 00:07:55 +000011330 Value *MergedVal = OtherStore->getOperand(0);
11331 if (MergedVal != SI.getOperand(0)) {
Gabor Greif051a9502008-04-06 20:25:17 +000011332 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Chris Lattner3284d1f2007-04-15 00:07:55 +000011333 PN->reserveOperandSpace(2);
11334 PN->addIncoming(SI.getOperand(0), SI.getParent());
Chris Lattner31755a02007-04-15 01:02:18 +000011335 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
11336 MergedVal = InsertNewInstBefore(PN, DestBB->front());
Chris Lattner3284d1f2007-04-15 00:07:55 +000011337 }
11338
11339 // Advance to a place where it is safe to insert the new store and
11340 // insert it.
Dan Gohman02dea8b2008-05-23 21:05:58 +000011341 BBI = DestBB->getFirstNonPHI();
Chris Lattner3284d1f2007-04-15 00:07:55 +000011342 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
11343 OtherStore->isVolatile()), *BBI);
11344
11345 // Nuke the old stores.
11346 EraseInstFromFunction(SI);
11347 EraseInstFromFunction(*OtherStore);
11348 ++NumCombined;
11349 return true;
11350}
11351
Chris Lattner2f503e62005-01-31 05:36:43 +000011352
Chris Lattnerc4d10eb2003-06-04 04:46:00 +000011353Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
11354 // Change br (not X), label True, label False to: br X, label False, True
Reid Spencer4b828e62005-06-18 17:37:34 +000011355 Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +000011356 BasicBlock *TrueDest;
11357 BasicBlock *FalseDest;
11358 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
11359 !isa<Constant>(X)) {
11360 // Swap Destinations and condition...
11361 BI.setCondition(X);
11362 BI.setSuccessor(0, FalseDest);
11363 BI.setSuccessor(1, TrueDest);
11364 return &BI;
11365 }
11366
Reid Spencere4d87aa2006-12-23 06:05:41 +000011367 // Cannonicalize fcmp_one -> fcmp_oeq
11368 FCmpInst::Predicate FPred; Value *Y;
11369 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
11370 TrueDest, FalseDest)))
11371 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
11372 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
11373 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
Reid Spencere4d87aa2006-12-23 06:05:41 +000011374 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
Chris Lattner6934a042007-02-11 01:23:03 +000011375 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
11376 NewSCC->takeName(I);
Reid Spencere4d87aa2006-12-23 06:05:41 +000011377 // Swap Destinations and condition...
11378 BI.setCondition(NewSCC);
11379 BI.setSuccessor(0, FalseDest);
11380 BI.setSuccessor(1, TrueDest);
Chris Lattnerdbab3862007-03-02 21:28:56 +000011381 RemoveFromWorkList(I);
Chris Lattner6934a042007-02-11 01:23:03 +000011382 I->eraseFromParent();
Chris Lattnerdbab3862007-03-02 21:28:56 +000011383 AddToWorkList(NewSCC);
Reid Spencere4d87aa2006-12-23 06:05:41 +000011384 return &BI;
11385 }
11386
11387 // Cannonicalize icmp_ne -> icmp_eq
11388 ICmpInst::Predicate IPred;
11389 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
11390 TrueDest, FalseDest)))
11391 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
11392 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
11393 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
11394 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
Reid Spencere4d87aa2006-12-23 06:05:41 +000011395 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
Chris Lattner6934a042007-02-11 01:23:03 +000011396 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
11397 NewSCC->takeName(I);
Chris Lattner40f5d702003-06-04 05:10:11 +000011398 // Swap Destinations and condition...
Chris Lattneracd1f0f2004-07-30 07:50:03 +000011399 BI.setCondition(NewSCC);
Chris Lattner40f5d702003-06-04 05:10:11 +000011400 BI.setSuccessor(0, FalseDest);
11401 BI.setSuccessor(1, TrueDest);
Chris Lattnerdbab3862007-03-02 21:28:56 +000011402 RemoveFromWorkList(I);
Chris Lattner6934a042007-02-11 01:23:03 +000011403 I->eraseFromParent();;
Chris Lattnerdbab3862007-03-02 21:28:56 +000011404 AddToWorkList(NewSCC);
Chris Lattner40f5d702003-06-04 05:10:11 +000011405 return &BI;
11406 }
Misha Brukmanfd939082005-04-21 23:48:37 +000011407
Chris Lattnerc4d10eb2003-06-04 04:46:00 +000011408 return 0;
11409}
Chris Lattner0864acf2002-11-04 16:18:53 +000011410
Chris Lattner46238a62004-07-03 00:26:11 +000011411Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
11412 Value *Cond = SI.getCondition();
11413 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
11414 if (I->getOpcode() == Instruction::Add)
11415 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
11416 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
11417 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
Chris Lattnere87597f2004-10-16 18:11:37 +000011418 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
Chris Lattner46238a62004-07-03 00:26:11 +000011419 AddRHS));
11420 SI.setOperand(0, I->getOperand(0));
Chris Lattnerdbab3862007-03-02 21:28:56 +000011421 AddToWorkList(I);
Chris Lattner46238a62004-07-03 00:26:11 +000011422 return &SI;
11423 }
11424 }
11425 return 0;
11426}
11427
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +000011428Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +000011429 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +000011430
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +000011431 if (!EV.hasIndices())
11432 return ReplaceInstUsesWith(EV, Agg);
11433
11434 if (Constant *C = dyn_cast<Constant>(Agg)) {
11435 if (isa<UndefValue>(C))
11436 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
11437
11438 if (isa<ConstantAggregateZero>(C))
11439 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
11440
11441 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
11442 // Extract the element indexed by the first index out of the constant
11443 Value *V = C->getOperand(*EV.idx_begin());
11444 if (EV.getNumIndices() > 1)
11445 // Extract the remaining indices out of the constant indexed by the
11446 // first index
11447 return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
11448 else
11449 return ReplaceInstUsesWith(EV, V);
11450 }
11451 return 0; // Can't handle other constants
11452 }
11453 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
11454 // We're extracting from an insertvalue instruction, compare the indices
11455 const unsigned *exti, *exte, *insi, *inse;
11456 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
11457 exte = EV.idx_end(), inse = IV->idx_end();
11458 exti != exte && insi != inse;
11459 ++exti, ++insi) {
11460 if (*insi != *exti)
11461 // The insert and extract both reference distinctly different elements.
11462 // This means the extract is not influenced by the insert, and we can
11463 // replace the aggregate operand of the extract with the aggregate
11464 // operand of the insert. i.e., replace
11465 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11466 // %E = extractvalue { i32, { i32 } } %I, 0
11467 // with
11468 // %E = extractvalue { i32, { i32 } } %A, 0
11469 return ExtractValueInst::Create(IV->getAggregateOperand(),
11470 EV.idx_begin(), EV.idx_end());
11471 }
11472 if (exti == exte && insi == inse)
11473 // Both iterators are at the end: Index lists are identical. Replace
11474 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11475 // %C = extractvalue { i32, { i32 } } %B, 1, 0
11476 // with "i32 42"
11477 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
11478 if (exti == exte) {
11479 // The extract list is a prefix of the insert list. i.e. replace
11480 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11481 // %E = extractvalue { i32, { i32 } } %I, 1
11482 // with
11483 // %X = extractvalue { i32, { i32 } } %A, 1
11484 // %E = insertvalue { i32 } %X, i32 42, 0
11485 // by switching the order of the insert and extract (though the
11486 // insertvalue should be left in, since it may have other uses).
11487 Value *NewEV = InsertNewInstBefore(
11488 ExtractValueInst::Create(IV->getAggregateOperand(),
11489 EV.idx_begin(), EV.idx_end()),
11490 EV);
11491 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
11492 insi, inse);
11493 }
11494 if (insi == inse)
11495 // The insert list is a prefix of the extract list
11496 // We can simply remove the common indices from the extract and make it
11497 // operate on the inserted value instead of the insertvalue result.
11498 // i.e., replace
11499 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11500 // %E = extractvalue { i32, { i32 } } %I, 1, 0
11501 // with
11502 // %E extractvalue { i32 } { i32 42 }, 0
11503 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
11504 exti, exte);
11505 }
11506 // Can't simplify extracts from other values. Note that nested extracts are
11507 // already simplified implicitely by the above (extract ( extract (insert) )
11508 // will be translated into extract ( insert ( extract ) ) first and then just
11509 // the value inserted, if appropriate).
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +000011510 return 0;
11511}
11512
Chris Lattner220b0cf2006-03-05 00:22:33 +000011513/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
11514/// is to leave as a vector operation.
11515static bool CheapToScalarize(Value *V, bool isConstant) {
11516 if (isa<ConstantAggregateZero>(V))
11517 return true;
Reid Spencer9d6565a2007-02-15 02:26:10 +000011518 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
Chris Lattner220b0cf2006-03-05 00:22:33 +000011519 if (isConstant) return true;
11520 // If all elts are the same, we can extract.
11521 Constant *Op0 = C->getOperand(0);
11522 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11523 if (C->getOperand(i) != Op0)
11524 return false;
11525 return true;
11526 }
11527 Instruction *I = dyn_cast<Instruction>(V);
11528 if (!I) return false;
11529
11530 // Insert element gets simplified to the inserted element or is deleted if
11531 // this is constant idx extract element and its a constant idx insertelt.
11532 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
11533 isa<ConstantInt>(I->getOperand(2)))
11534 return true;
11535 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
11536 return true;
11537 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
11538 if (BO->hasOneUse() &&
11539 (CheapToScalarize(BO->getOperand(0), isConstant) ||
11540 CheapToScalarize(BO->getOperand(1), isConstant)))
11541 return true;
Reid Spencere4d87aa2006-12-23 06:05:41 +000011542 if (CmpInst *CI = dyn_cast<CmpInst>(I))
11543 if (CI->hasOneUse() &&
11544 (CheapToScalarize(CI->getOperand(0), isConstant) ||
11545 CheapToScalarize(CI->getOperand(1), isConstant)))
11546 return true;
Chris Lattner220b0cf2006-03-05 00:22:33 +000011547
11548 return false;
11549}
11550
Chris Lattnerd2b7cec2007-02-14 05:52:17 +000011551/// Read and decode a shufflevector mask.
11552///
11553/// It turns undef elements into values that are larger than the number of
11554/// elements in the input.
Chris Lattner863bcff2006-05-25 23:48:38 +000011555static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
11556 unsigned NElts = SVI->getType()->getNumElements();
11557 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
11558 return std::vector<unsigned>(NElts, 0);
11559 if (isa<UndefValue>(SVI->getOperand(2)))
11560 return std::vector<unsigned>(NElts, 2*NElts);
11561
11562 std::vector<unsigned> Result;
Reid Spencer9d6565a2007-02-15 02:26:10 +000011563 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Gabor Greif177dd3f2008-06-12 21:37:33 +000011564 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
11565 if (isa<UndefValue>(*i))
Chris Lattner863bcff2006-05-25 23:48:38 +000011566 Result.push_back(NElts*2); // undef -> 8
11567 else
Gabor Greif177dd3f2008-06-12 21:37:33 +000011568 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
Chris Lattner863bcff2006-05-25 23:48:38 +000011569 return Result;
11570}
11571
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011572/// FindScalarElement - Given a vector and an element number, see if the scalar
11573/// value is already around as a register, for example if it were inserted then
11574/// extracted from the vector.
11575static Value *FindScalarElement(Value *V, unsigned EltNo) {
Reid Spencer9d6565a2007-02-15 02:26:10 +000011576 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
11577 const VectorType *PTy = cast<VectorType>(V->getType());
Chris Lattner389a6f52006-04-10 23:06:36 +000011578 unsigned Width = PTy->getNumElements();
11579 if (EltNo >= Width) // Out of range access.
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011580 return UndefValue::get(PTy->getElementType());
11581
11582 if (isa<UndefValue>(V))
11583 return UndefValue::get(PTy->getElementType());
11584 else if (isa<ConstantAggregateZero>(V))
11585 return Constant::getNullValue(PTy->getElementType());
Reid Spencer9d6565a2007-02-15 02:26:10 +000011586 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011587 return CP->getOperand(EltNo);
11588 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
11589 // If this is an insert to a variable element, we don't know what it is.
Reid Spencerb83eb642006-10-20 07:07:24 +000011590 if (!isa<ConstantInt>(III->getOperand(2)))
11591 return 0;
11592 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011593
11594 // If this is an insert to the element we are looking for, return the
11595 // inserted value.
Reid Spencerb83eb642006-10-20 07:07:24 +000011596 if (EltNo == IIElt)
11597 return III->getOperand(1);
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011598
11599 // Otherwise, the insertelement doesn't modify the value, recurse on its
11600 // vector input.
11601 return FindScalarElement(III->getOperand(0), EltNo);
Chris Lattner389a6f52006-04-10 23:06:36 +000011602 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
Mon P Wangaeb06d22008-11-10 04:46:22 +000011603 unsigned LHSWidth =
11604 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
Chris Lattner863bcff2006-05-25 23:48:38 +000011605 unsigned InEl = getShuffleMask(SVI)[EltNo];
Mon P Wangaeb06d22008-11-10 04:46:22 +000011606 if (InEl < LHSWidth)
Chris Lattner863bcff2006-05-25 23:48:38 +000011607 return FindScalarElement(SVI->getOperand(0), InEl);
Mon P Wangaeb06d22008-11-10 04:46:22 +000011608 else if (InEl < LHSWidth*2)
11609 return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
Chris Lattner863bcff2006-05-25 23:48:38 +000011610 else
11611 return UndefValue::get(PTy->getElementType());
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011612 }
11613
11614 // Otherwise, we don't know.
11615 return 0;
11616}
11617
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011618Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Dan Gohman07a96762007-07-16 14:29:03 +000011619 // If vector val is undef, replace extract with scalar undef.
Chris Lattner1f13c882006-03-31 18:25:14 +000011620 if (isa<UndefValue>(EI.getOperand(0)))
11621 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11622
Dan Gohman07a96762007-07-16 14:29:03 +000011623 // If vector val is constant 0, replace extract with scalar 0.
Chris Lattner1f13c882006-03-31 18:25:14 +000011624 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
11625 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
11626
Reid Spencer9d6565a2007-02-15 02:26:10 +000011627 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Matthijs Kooijmanb4d6a5a2008-06-11 09:00:12 +000011628 // If vector val is constant with all elements the same, replace EI with
11629 // that element. When the elements are not identical, we cannot replace yet
11630 // (we do that below, but only when the index is constant).
Chris Lattner220b0cf2006-03-05 00:22:33 +000011631 Constant *op0 = C->getOperand(0);
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011632 for (unsigned i = 1; i < C->getNumOperands(); ++i)
Chris Lattner220b0cf2006-03-05 00:22:33 +000011633 if (C->getOperand(i) != op0) {
11634 op0 = 0;
11635 break;
11636 }
11637 if (op0)
11638 return ReplaceInstUsesWith(EI, op0);
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011639 }
Chris Lattner220b0cf2006-03-05 00:22:33 +000011640
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011641 // If extracting a specified index from the vector, see if we can recursively
11642 // find a previously computed scalar that was inserted into the vector.
Reid Spencerb83eb642006-10-20 07:07:24 +000011643 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
Chris Lattner85464092007-04-09 01:37:55 +000011644 unsigned IndexVal = IdxC->getZExtValue();
11645 unsigned VectorWidth =
11646 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
11647
11648 // If this is extracting an invalid index, turn this into undef, to avoid
11649 // crashing the code below.
11650 if (IndexVal >= VectorWidth)
11651 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11652
Chris Lattner867b99f2006-10-05 06:55:50 +000011653 // This instruction only demands the single element from the input vector.
11654 // If the input vector has a single use, simplify it based on this use
11655 // property.
Chris Lattner85464092007-04-09 01:37:55 +000011656 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
Chris Lattner867b99f2006-10-05 06:55:50 +000011657 uint64_t UndefElts;
11658 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
Reid Spencerb83eb642006-10-20 07:07:24 +000011659 1 << IndexVal,
Chris Lattner867b99f2006-10-05 06:55:50 +000011660 UndefElts)) {
11661 EI.setOperand(0, V);
11662 return &EI;
11663 }
11664 }
11665
Reid Spencerb83eb642006-10-20 07:07:24 +000011666 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011667 return ReplaceInstUsesWith(EI, Elt);
Chris Lattnerb7300fa2007-04-14 23:02:14 +000011668
11669 // If the this extractelement is directly using a bitcast from a vector of
11670 // the same number of elements, see if we can find the source element from
11671 // it. In this case, we will end up needing to bitcast the scalars.
11672 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
11673 if (const VectorType *VT =
11674 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
11675 if (VT->getNumElements() == VectorWidth)
11676 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
11677 return new BitCastInst(Elt, EI.getType());
11678 }
Chris Lattner389a6f52006-04-10 23:06:36 +000011679 }
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011680
Chris Lattner73fa49d2006-05-25 22:53:38 +000011681 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011682 if (I->hasOneUse()) {
11683 // Push extractelement into predecessor operation if legal and
11684 // profitable to do so
11685 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
Chris Lattner220b0cf2006-03-05 00:22:33 +000011686 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
11687 if (CheapToScalarize(BO, isConstantElt)) {
11688 ExtractElementInst *newEI0 =
11689 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
11690 EI.getName()+".lhs");
11691 ExtractElementInst *newEI1 =
11692 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
11693 EI.getName()+".rhs");
11694 InsertNewInstBefore(newEI0, EI);
11695 InsertNewInstBefore(newEI1, EI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +000011696 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Chris Lattner220b0cf2006-03-05 00:22:33 +000011697 }
Reid Spencer3ed469c2006-11-02 20:25:50 +000011698 } else if (isa<LoadInst>(I)) {
Christopher Lamb43ad6b32007-12-17 01:12:55 +000011699 unsigned AS =
11700 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner6d0339d2008-01-13 22:23:22 +000011701 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
11702 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb1dbcd82008-05-15 10:04:30 +000011703 GetElementPtrInst *GEP =
11704 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011705 InsertNewInstBefore(GEP, EI);
11706 return new LoadInst(GEP);
Chris Lattner73fa49d2006-05-25 22:53:38 +000011707 }
11708 }
11709 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
11710 // Extracting the inserted element?
11711 if (IE->getOperand(2) == EI.getOperand(1))
11712 return ReplaceInstUsesWith(EI, IE->getOperand(1));
11713 // If the inserted and extracted elements are constants, they must not
11714 // be the same value, extract from the pre-inserted value instead.
11715 if (isa<Constant>(IE->getOperand(2)) &&
11716 isa<Constant>(EI.getOperand(1))) {
11717 AddUsesToWorkList(EI);
11718 EI.setOperand(0, IE->getOperand(0));
11719 return &EI;
11720 }
11721 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
11722 // If this is extracting an element from a shufflevector, figure out where
11723 // it came from and extract from the appropriate input element instead.
Reid Spencerb83eb642006-10-20 07:07:24 +000011724 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11725 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
Chris Lattner863bcff2006-05-25 23:48:38 +000011726 Value *Src;
Mon P Wangaeb06d22008-11-10 04:46:22 +000011727 unsigned LHSWidth =
11728 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
11729
11730 if (SrcIdx < LHSWidth)
Chris Lattner863bcff2006-05-25 23:48:38 +000011731 Src = SVI->getOperand(0);
Mon P Wangaeb06d22008-11-10 04:46:22 +000011732 else if (SrcIdx < LHSWidth*2) {
11733 SrcIdx -= LHSWidth;
Chris Lattner863bcff2006-05-25 23:48:38 +000011734 Src = SVI->getOperand(1);
11735 } else {
11736 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
Chris Lattnerdf084ff2006-03-30 22:02:40 +000011737 }
Chris Lattner867b99f2006-10-05 06:55:50 +000011738 return new ExtractElementInst(Src, SrcIdx);
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011739 }
11740 }
Chris Lattner73fa49d2006-05-25 22:53:38 +000011741 }
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011742 return 0;
11743}
11744
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011745/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
11746/// elements from either LHS or RHS, return the shuffle mask and true.
11747/// Otherwise, return false.
11748static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
11749 std::vector<Constant*> &Mask) {
11750 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
11751 "Invalid CollectSingleShuffleElements");
Reid Spencer9d6565a2007-02-15 02:26:10 +000011752 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011753
11754 if (isa<UndefValue>(V)) {
Reid Spencerc5b206b2006-12-31 05:48:39 +000011755 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011756 return true;
11757 } else if (V == LHS) {
11758 for (unsigned i = 0; i != NumElts; ++i)
Reid Spencerc5b206b2006-12-31 05:48:39 +000011759 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011760 return true;
11761 } else if (V == RHS) {
11762 for (unsigned i = 0; i != NumElts; ++i)
Reid Spencerc5b206b2006-12-31 05:48:39 +000011763 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011764 return true;
11765 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11766 // If this is an insert of an extract from some other vector, include it.
11767 Value *VecOp = IEI->getOperand(0);
11768 Value *ScalarOp = IEI->getOperand(1);
11769 Value *IdxOp = IEI->getOperand(2);
11770
Chris Lattnerd929f062006-04-27 21:14:21 +000011771 if (!isa<ConstantInt>(IdxOp))
11772 return false;
Reid Spencerb83eb642006-10-20 07:07:24 +000011773 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
Chris Lattnerd929f062006-04-27 21:14:21 +000011774
11775 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
11776 // Okay, we can handle this if the vector we are insertinting into is
11777 // transitively ok.
11778 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11779 // If so, update the mask to reflect the inserted undef.
Reid Spencerc5b206b2006-12-31 05:48:39 +000011780 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
Chris Lattnerd929f062006-04-27 21:14:21 +000011781 return true;
11782 }
11783 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
11784 if (isa<ConstantInt>(EI->getOperand(1)) &&
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011785 EI->getOperand(0)->getType() == V->getType()) {
11786 unsigned ExtractedIdx =
Reid Spencerb83eb642006-10-20 07:07:24 +000011787 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011788
11789 // This must be extracting from either LHS or RHS.
11790 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
11791 // Okay, we can handle this if the vector we are insertinting into is
11792 // transitively ok.
11793 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11794 // If so, update the mask to reflect the inserted value.
11795 if (EI->getOperand(0) == LHS) {
Mon P Wang4f5ca2c2008-08-20 02:23:25 +000011796 Mask[InsertedIdx % NumElts] =
Reid Spencerc5b206b2006-12-31 05:48:39 +000011797 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011798 } else {
11799 assert(EI->getOperand(0) == RHS);
Mon P Wang4f5ca2c2008-08-20 02:23:25 +000011800 Mask[InsertedIdx % NumElts] =
Reid Spencerc5b206b2006-12-31 05:48:39 +000011801 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011802
11803 }
11804 return true;
11805 }
11806 }
11807 }
11808 }
11809 }
11810 // TODO: Handle shufflevector here!
11811
11812 return false;
11813}
11814
11815/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
11816/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
11817/// that computes V and the LHS value of the shuffle.
Chris Lattnerefb47352006-04-15 01:39:45 +000011818static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011819 Value *&RHS) {
Reid Spencer9d6565a2007-02-15 02:26:10 +000011820 assert(isa<VectorType>(V->getType()) &&
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011821 (RHS == 0 || V->getType() == RHS->getType()) &&
Chris Lattnerefb47352006-04-15 01:39:45 +000011822 "Invalid shuffle!");
Reid Spencer9d6565a2007-02-15 02:26:10 +000011823 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
Chris Lattnerefb47352006-04-15 01:39:45 +000011824
11825 if (isa<UndefValue>(V)) {
Reid Spencerc5b206b2006-12-31 05:48:39 +000011826 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
Chris Lattnerefb47352006-04-15 01:39:45 +000011827 return V;
11828 } else if (isa<ConstantAggregateZero>(V)) {
Reid Spencerc5b206b2006-12-31 05:48:39 +000011829 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
Chris Lattnerefb47352006-04-15 01:39:45 +000011830 return V;
11831 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11832 // If this is an insert of an extract from some other vector, include it.
11833 Value *VecOp = IEI->getOperand(0);
11834 Value *ScalarOp = IEI->getOperand(1);
11835 Value *IdxOp = IEI->getOperand(2);
11836
11837 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11838 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11839 EI->getOperand(0)->getType() == V->getType()) {
11840 unsigned ExtractedIdx =
Reid Spencerb83eb642006-10-20 07:07:24 +000011841 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11842 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
Chris Lattnerefb47352006-04-15 01:39:45 +000011843
11844 // Either the extracted from or inserted into vector must be RHSVec,
11845 // otherwise we'd end up with a shuffle of three inputs.
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011846 if (EI->getOperand(0) == RHS || RHS == 0) {
11847 RHS = EI->getOperand(0);
11848 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Mon P Wang4f5ca2c2008-08-20 02:23:25 +000011849 Mask[InsertedIdx % NumElts] =
Reid Spencerc5b206b2006-12-31 05:48:39 +000011850 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
Chris Lattnerefb47352006-04-15 01:39:45 +000011851 return V;
11852 }
11853
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011854 if (VecOp == RHS) {
11855 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
Chris Lattnerefb47352006-04-15 01:39:45 +000011856 // Everything but the extracted element is replaced with the RHS.
11857 for (unsigned i = 0; i != NumElts; ++i) {
11858 if (i != InsertedIdx)
Reid Spencerc5b206b2006-12-31 05:48:39 +000011859 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
Chris Lattnerefb47352006-04-15 01:39:45 +000011860 }
11861 return V;
11862 }
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011863
11864 // If this insertelement is a chain that comes from exactly these two
11865 // vectors, return the vector and the effective shuffle.
11866 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11867 return EI->getOperand(0);
11868
Chris Lattnerefb47352006-04-15 01:39:45 +000011869 }
11870 }
11871 }
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011872 // TODO: Handle shufflevector here!
Chris Lattnerefb47352006-04-15 01:39:45 +000011873
11874 // Otherwise, can't do anything fancy. Return an identity vector.
11875 for (unsigned i = 0; i != NumElts; ++i)
Reid Spencerc5b206b2006-12-31 05:48:39 +000011876 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
Chris Lattnerefb47352006-04-15 01:39:45 +000011877 return V;
11878}
11879
11880Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11881 Value *VecOp = IE.getOperand(0);
11882 Value *ScalarOp = IE.getOperand(1);
11883 Value *IdxOp = IE.getOperand(2);
11884
Chris Lattner599ded12007-04-09 01:11:16 +000011885 // Inserting an undef or into an undefined place, remove this.
11886 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11887 ReplaceInstUsesWith(IE, VecOp);
11888
Chris Lattnerefb47352006-04-15 01:39:45 +000011889 // If the inserted element was extracted from some other vector, and if the
11890 // indexes are constant, try to turn this into a shufflevector operation.
11891 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11892 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11893 EI->getOperand(0)->getType() == IE.getType()) {
11894 unsigned NumVectorElts = IE.getType()->getNumElements();
Chris Lattnere34e9a22007-04-14 23:32:02 +000011895 unsigned ExtractedIdx =
11896 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
Reid Spencerb83eb642006-10-20 07:07:24 +000011897 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
Chris Lattnerefb47352006-04-15 01:39:45 +000011898
11899 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11900 return ReplaceInstUsesWith(IE, VecOp);
11901
11902 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11903 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11904
11905 // If we are extracting a value from a vector, then inserting it right
11906 // back into the same place, just use the input vector.
11907 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11908 return ReplaceInstUsesWith(IE, VecOp);
11909
11910 // We could theoretically do this for ANY input. However, doing so could
11911 // turn chains of insertelement instructions into a chain of shufflevector
11912 // instructions, and right now we do not merge shufflevectors. As such,
11913 // only do this in a situation where it is clear that there is benefit.
11914 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11915 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11916 // the values of VecOp, except then one read from EIOp0.
11917 // Build a new shuffle mask.
11918 std::vector<Constant*> Mask;
11919 if (isa<UndefValue>(VecOp))
Reid Spencerc5b206b2006-12-31 05:48:39 +000011920 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
Chris Lattnerefb47352006-04-15 01:39:45 +000011921 else {
11922 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
Reid Spencerc5b206b2006-12-31 05:48:39 +000011923 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
Chris Lattnerefb47352006-04-15 01:39:45 +000011924 NumVectorElts));
11925 }
Reid Spencerc5b206b2006-12-31 05:48:39 +000011926 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
Chris Lattnerefb47352006-04-15 01:39:45 +000011927 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
Reid Spencer9d6565a2007-02-15 02:26:10 +000011928 ConstantVector::get(Mask));
Chris Lattnerefb47352006-04-15 01:39:45 +000011929 }
11930
11931 // If this insertelement isn't used by some other insertelement, turn it
11932 // (and any insertelements it points to), into one big shuffle.
11933 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11934 std::vector<Constant*> Mask;
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011935 Value *RHS = 0;
11936 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11937 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11938 // We now have a shuffle of LHS, RHS, Mask.
Reid Spencer9d6565a2007-02-15 02:26:10 +000011939 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
Chris Lattnerefb47352006-04-15 01:39:45 +000011940 }
11941 }
11942 }
11943
11944 return 0;
11945}
11946
11947
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011948Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11949 Value *LHS = SVI.getOperand(0);
11950 Value *RHS = SVI.getOperand(1);
Chris Lattner863bcff2006-05-25 23:48:38 +000011951 std::vector<unsigned> Mask = getShuffleMask(&SVI);
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011952
11953 bool MadeChange = false;
Mon P Wangaeb06d22008-11-10 04:46:22 +000011954
Chris Lattner867b99f2006-10-05 06:55:50 +000011955 // Undefined shuffle mask -> undefined value.
Chris Lattner863bcff2006-05-25 23:48:38 +000011956 if (isa<UndefValue>(SVI.getOperand(2)))
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011957 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
Dan Gohman488fbfc2008-09-09 18:11:14 +000011958
11959 uint64_t UndefElts;
11960 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
Mon P Wangaeb06d22008-11-10 04:46:22 +000011961
11962 if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
11963 return 0;
11964
Dan Gohman488fbfc2008-09-09 18:11:14 +000011965 uint64_t AllOnesEltMask = ~0ULL >> (64-VWidth);
11966 if (VWidth <= 64 &&
Dan Gohman3139ff82008-09-11 22:47:57 +000011967 SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
11968 LHS = SVI.getOperand(0);
11969 RHS = SVI.getOperand(1);
Dan Gohman488fbfc2008-09-09 18:11:14 +000011970 MadeChange = true;
Dan Gohman3139ff82008-09-11 22:47:57 +000011971 }
Chris Lattnerefb47352006-04-15 01:39:45 +000011972
Chris Lattner863bcff2006-05-25 23:48:38 +000011973 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11974 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11975 if (LHS == RHS || isa<UndefValue>(LHS)) {
11976 if (isa<UndefValue>(LHS) && LHS == RHS) {
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011977 // shuffle(undef,undef,mask) -> undef.
11978 return ReplaceInstUsesWith(SVI, LHS);
11979 }
11980
Chris Lattner863bcff2006-05-25 23:48:38 +000011981 // Remap any references to RHS to use LHS.
11982 std::vector<Constant*> Elts;
11983 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
Chris Lattner7b2e27922006-05-26 00:29:06 +000011984 if (Mask[i] >= 2*e)
Reid Spencerc5b206b2006-12-31 05:48:39 +000011985 Elts.push_back(UndefValue::get(Type::Int32Ty));
Chris Lattner7b2e27922006-05-26 00:29:06 +000011986 else {
11987 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
Dan Gohman4ce96272008-08-06 18:17:32 +000011988 (Mask[i] < e && isa<UndefValue>(LHS))) {
Chris Lattner7b2e27922006-05-26 00:29:06 +000011989 Mask[i] = 2*e; // Turn into undef.
Dan Gohman4ce96272008-08-06 18:17:32 +000011990 Elts.push_back(UndefValue::get(Type::Int32Ty));
11991 } else {
Mon P Wang4f5ca2c2008-08-20 02:23:25 +000011992 Mask[i] = Mask[i] % e; // Force to LHS.
Dan Gohman4ce96272008-08-06 18:17:32 +000011993 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11994 }
Chris Lattner7b2e27922006-05-26 00:29:06 +000011995 }
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011996 }
Chris Lattner863bcff2006-05-25 23:48:38 +000011997 SVI.setOperand(0, SVI.getOperand(1));
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011998 SVI.setOperand(1, UndefValue::get(RHS->getType()));
Reid Spencer9d6565a2007-02-15 02:26:10 +000011999 SVI.setOperand(2, ConstantVector::get(Elts));
Chris Lattner7b2e27922006-05-26 00:29:06 +000012000 LHS = SVI.getOperand(0);
12001 RHS = SVI.getOperand(1);
Chris Lattnera844fc4c2006-04-10 22:45:52 +000012002 MadeChange = true;
12003 }
12004
Chris Lattner7b2e27922006-05-26 00:29:06 +000012005 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
Chris Lattner863bcff2006-05-25 23:48:38 +000012006 bool isLHSID = true, isRHSID = true;
Chris Lattner706126d2006-04-16 00:03:56 +000012007
Chris Lattner863bcff2006-05-25 23:48:38 +000012008 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
12009 if (Mask[i] >= e*2) continue; // Ignore undef values.
12010 // Is this an identity shuffle of the LHS value?
12011 isLHSID &= (Mask[i] == i);
12012
12013 // Is this an identity shuffle of the RHS value?
12014 isRHSID &= (Mask[i]-e == i);
Chris Lattner706126d2006-04-16 00:03:56 +000012015 }
Chris Lattnera844fc4c2006-04-10 22:45:52 +000012016
Chris Lattner863bcff2006-05-25 23:48:38 +000012017 // Eliminate identity shuffles.
12018 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
12019 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
Chris Lattnera844fc4c2006-04-10 22:45:52 +000012020
Chris Lattner7b2e27922006-05-26 00:29:06 +000012021 // If the LHS is a shufflevector itself, see if we can combine it with this
12022 // one without producing an unusual shuffle. Here we are really conservative:
12023 // we are absolutely afraid of producing a shuffle mask not in the input
12024 // program, because the code gen may not be smart enough to turn a merged
12025 // shuffle into two specific shuffles: it may produce worse code. As such,
12026 // we only merge two shuffles if the result is one of the two input shuffle
12027 // masks. In this case, merging the shuffles just removes one instruction,
12028 // which we know is safe. This is good for things like turning:
12029 // (splat(splat)) -> splat.
12030 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
12031 if (isa<UndefValue>(RHS)) {
12032 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
12033
12034 std::vector<unsigned> NewMask;
12035 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
12036 if (Mask[i] >= 2*e)
12037 NewMask.push_back(2*e);
12038 else
12039 NewMask.push_back(LHSMask[Mask[i]]);
12040
12041 // If the result mask is equal to the src shuffle or this shuffle mask, do
12042 // the replacement.
12043 if (NewMask == LHSMask || NewMask == Mask) {
12044 std::vector<Constant*> Elts;
12045 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
12046 if (NewMask[i] >= e*2) {
Reid Spencerc5b206b2006-12-31 05:48:39 +000012047 Elts.push_back(UndefValue::get(Type::Int32Ty));
Chris Lattner7b2e27922006-05-26 00:29:06 +000012048 } else {
Reid Spencerc5b206b2006-12-31 05:48:39 +000012049 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
Chris Lattner7b2e27922006-05-26 00:29:06 +000012050 }
12051 }
12052 return new ShuffleVectorInst(LHSSVI->getOperand(0),
12053 LHSSVI->getOperand(1),
Reid Spencer9d6565a2007-02-15 02:26:10 +000012054 ConstantVector::get(Elts));
Chris Lattner7b2e27922006-05-26 00:29:06 +000012055 }
12056 }
12057 }
Chris Lattnerc5eff442007-01-30 22:32:46 +000012058
Chris Lattnera844fc4c2006-04-10 22:45:52 +000012059 return MadeChange ? &SVI : 0;
12060}
12061
12062
Robert Bocchino1d7456d2006-01-13 22:48:06 +000012063
Chris Lattnerea1c4542004-12-08 23:43:58 +000012064
12065/// TryToSinkInstruction - Try to move the specified instruction from its
12066/// current block into the beginning of DestBlock, which can only happen if it's
12067/// safe to move the instruction past all of the instructions between it and the
12068/// end of its block.
12069static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
12070 assert(I->hasOneUse() && "Invariants didn't hold!");
12071
Chris Lattner108e9022005-10-27 17:13:11 +000012072 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnerbfc538c2008-05-09 15:07:33 +000012073 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
12074 return false;
Misha Brukmanfd939082005-04-21 23:48:37 +000012075
Chris Lattnerea1c4542004-12-08 23:43:58 +000012076 // Do not sink alloca instructions out of the entry block.
Dan Gohmanecb7a772007-03-22 16:38:57 +000012077 if (isa<AllocaInst>(I) && I->getParent() ==
12078 &DestBlock->getParent()->getEntryBlock())
Chris Lattnerea1c4542004-12-08 23:43:58 +000012079 return false;
12080
Chris Lattner96a52a62004-12-09 07:14:34 +000012081 // We can only sink load instructions if there is nothing between the load and
12082 // the end of block that could change the value.
Chris Lattner2539e332008-05-08 17:37:37 +000012083 if (I->mayReadFromMemory()) {
12084 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Chris Lattner96a52a62004-12-09 07:14:34 +000012085 Scan != E; ++Scan)
12086 if (Scan->mayWriteToMemory())
12087 return false;
Chris Lattner96a52a62004-12-09 07:14:34 +000012088 }
Chris Lattnerea1c4542004-12-08 23:43:58 +000012089
Dan Gohman02dea8b2008-05-23 21:05:58 +000012090 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
Chris Lattnerea1c4542004-12-08 23:43:58 +000012091
Chris Lattner4bc5f802005-08-08 19:11:57 +000012092 I->moveBefore(InsertPos);
Chris Lattnerea1c4542004-12-08 23:43:58 +000012093 ++NumSunkInst;
12094 return true;
12095}
12096
Chris Lattnerf4f5a772006-05-10 19:00:36 +000012097
12098/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
12099/// all reachable code to the worklist.
12100///
12101/// This has a couple of tricks to make the code faster and more powerful. In
12102/// particular, we constant fold and DCE instructions as we go, to avoid adding
12103/// them to the worklist (this significantly speeds up instcombine on code where
12104/// many instructions are dead or constant). Additionally, if we find a branch
12105/// whose condition is a known constant, we only visit the reachable successors.
12106///
12107static void AddReachableCodeToWorklist(BasicBlock *BB,
Chris Lattner1f87a582007-02-15 19:41:52 +000012108 SmallPtrSet<BasicBlock*, 64> &Visited,
Chris Lattnerdbab3862007-03-02 21:28:56 +000012109 InstCombiner &IC,
Chris Lattner8c8c66a2006-05-11 17:11:52 +000012110 const TargetData *TD) {
Chris Lattner2806dff2008-08-15 04:03:01 +000012111 SmallVector<BasicBlock*, 256> Worklist;
Chris Lattner2c7718a2007-03-23 19:17:18 +000012112 Worklist.push_back(BB);
Chris Lattnerf4f5a772006-05-10 19:00:36 +000012113
Chris Lattner2c7718a2007-03-23 19:17:18 +000012114 while (!Worklist.empty()) {
12115 BB = Worklist.back();
12116 Worklist.pop_back();
12117
12118 // We have now visited this block! If we've already been here, ignore it.
12119 if (!Visited.insert(BB)) continue;
Devang Patel7fe1dec2008-11-19 18:56:50 +000012120
12121 DbgInfoIntrinsic *DBI_Prev = NULL;
Chris Lattner2c7718a2007-03-23 19:17:18 +000012122 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
12123 Instruction *Inst = BBI++;
Chris Lattnerf4f5a772006-05-10 19:00:36 +000012124
Chris Lattner2c7718a2007-03-23 19:17:18 +000012125 // DCE instruction if trivially dead.
12126 if (isInstructionTriviallyDead(Inst)) {
12127 ++NumDeadInst;
12128 DOUT << "IC: DCE: " << *Inst;
12129 Inst->eraseFromParent();
12130 continue;
12131 }
12132
12133 // ConstantProp instruction if trivially constant.
12134 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
12135 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
12136 Inst->replaceAllUsesWith(C);
12137 ++NumConstProp;
12138 Inst->eraseFromParent();
12139 continue;
12140 }
Chris Lattner3ccc6bc2007-07-20 22:06:41 +000012141
Devang Patel7fe1dec2008-11-19 18:56:50 +000012142 // If there are two consecutive llvm.dbg.stoppoint calls then
12143 // it is likely that the optimizer deleted code in between these
12144 // two intrinsics.
12145 DbgInfoIntrinsic *DBI_Next = dyn_cast<DbgInfoIntrinsic>(Inst);
12146 if (DBI_Next) {
12147 if (DBI_Prev
12148 && DBI_Prev->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint
12149 && DBI_Next->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint) {
12150 IC.RemoveFromWorkList(DBI_Prev);
12151 DBI_Prev->eraseFromParent();
12152 }
12153 DBI_Prev = DBI_Next;
12154 }
12155
Chris Lattner2c7718a2007-03-23 19:17:18 +000012156 IC.AddToWorkList(Inst);
Chris Lattnerf4f5a772006-05-10 19:00:36 +000012157 }
Chris Lattner2c7718a2007-03-23 19:17:18 +000012158
12159 // Recursively visit successors. If this is a branch or switch on a
12160 // constant, only visit the reachable successor.
12161 TerminatorInst *TI = BB->getTerminator();
12162 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
12163 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
12164 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewycky91436992008-03-09 08:50:23 +000012165 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewycky280a6e62008-04-25 16:53:59 +000012166 Worklist.push_back(ReachableBB);
Chris Lattner2c7718a2007-03-23 19:17:18 +000012167 continue;
12168 }
12169 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
12170 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
12171 // See if this is an explicit destination.
12172 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
12173 if (SI->getCaseValue(i) == Cond) {
Nick Lewycky91436992008-03-09 08:50:23 +000012174 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewycky280a6e62008-04-25 16:53:59 +000012175 Worklist.push_back(ReachableBB);
Chris Lattner2c7718a2007-03-23 19:17:18 +000012176 continue;
12177 }
12178
12179 // Otherwise it is the default destination.
12180 Worklist.push_back(SI->getSuccessor(0));
12181 continue;
12182 }
12183 }
12184
12185 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
12186 Worklist.push_back(TI->getSuccessor(i));
Chris Lattnerf4f5a772006-05-10 19:00:36 +000012187 }
Chris Lattnerf4f5a772006-05-10 19:00:36 +000012188}
12189
Chris Lattnerec9c3582007-03-03 02:04:50 +000012190bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
Chris Lattnerdd841ae2002-04-18 17:39:14 +000012191 bool Changed = false;
Chris Lattnerbc61e662003-11-02 05:57:39 +000012192 TD = &getAnalysis<TargetData>();
Chris Lattnerec9c3582007-03-03 02:04:50 +000012193
12194 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
12195 << F.getNameStr() << "\n");
Chris Lattner8a2a3112001-12-14 16:52:21 +000012196
Chris Lattnerb3d59702005-07-07 20:40:38 +000012197 {
Chris Lattnerf4f5a772006-05-10 19:00:36 +000012198 // Do a depth-first traversal of the function, populate the worklist with
12199 // the reachable instructions. Ignore blocks that are not reachable. Keep
12200 // track of which blocks we visit.
Chris Lattner1f87a582007-02-15 19:41:52 +000012201 SmallPtrSet<BasicBlock*, 64> Visited;
Chris Lattnerdbab3862007-03-02 21:28:56 +000012202 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
Jeff Cohen00b168892005-07-27 06:12:32 +000012203
Chris Lattnerb3d59702005-07-07 20:40:38 +000012204 // Do a quick scan over the function. If we find any blocks that are
12205 // unreachable, remove any instructions inside of them. This prevents
12206 // the instcombine code from having to deal with some bad special cases.
12207 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
12208 if (!Visited.count(BB)) {
12209 Instruction *Term = BB->getTerminator();
12210 while (Term != BB->begin()) { // Remove instrs bottom-up
12211 BasicBlock::iterator I = Term; --I;
Chris Lattner6ffe5512004-04-27 15:13:33 +000012212
Bill Wendlingb7427032006-11-26 09:46:52 +000012213 DOUT << "IC: DCE: " << *I;
Chris Lattnerb3d59702005-07-07 20:40:38 +000012214 ++NumDeadInst;
12215
12216 if (!I->use_empty())
12217 I->replaceAllUsesWith(UndefValue::get(I->getType()));
12218 I->eraseFromParent();
12219 }
12220 }
12221 }
Chris Lattner8a2a3112001-12-14 16:52:21 +000012222
Chris Lattnerdbab3862007-03-02 21:28:56 +000012223 while (!Worklist.empty()) {
12224 Instruction *I = RemoveOneFromWorkList();
12225 if (I == 0) continue; // skip null values.
Chris Lattner8a2a3112001-12-14 16:52:21 +000012226
Chris Lattner8c8c66a2006-05-11 17:11:52 +000012227 // Check to see if we can DCE the instruction.
Chris Lattner62b14df2002-09-02 04:59:56 +000012228 if (isInstructionTriviallyDead(I)) {
Chris Lattner8c8c66a2006-05-11 17:11:52 +000012229 // Add operands to the worklist.
Chris Lattner4bb7c022003-10-06 17:11:01 +000012230 if (I->getNumOperands() < 4)
Chris Lattner7bcc0e72004-02-28 05:22:00 +000012231 AddUsesToWorkList(*I);
Chris Lattner62b14df2002-09-02 04:59:56 +000012232 ++NumDeadInst;
Chris Lattner4bb7c022003-10-06 17:11:01 +000012233
Bill Wendlingb7427032006-11-26 09:46:52 +000012234 DOUT << "IC: DCE: " << *I;
Chris Lattnerad5fec12005-01-28 19:32:01 +000012235
12236 I->eraseFromParent();
Chris Lattnerdbab3862007-03-02 21:28:56 +000012237 RemoveFromWorkList(I);
Chris Lattner4bb7c022003-10-06 17:11:01 +000012238 continue;
12239 }
Chris Lattner62b14df2002-09-02 04:59:56 +000012240
Chris Lattner8c8c66a2006-05-11 17:11:52 +000012241 // Instruction isn't dead, see if we can constant propagate it.
Chris Lattner0a19ffa2007-01-30 23:16:15 +000012242 if (Constant *C = ConstantFoldInstruction(I, TD)) {
Bill Wendlingb7427032006-11-26 09:46:52 +000012243 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
Chris Lattnerad5fec12005-01-28 19:32:01 +000012244
Chris Lattner8c8c66a2006-05-11 17:11:52 +000012245 // Add operands to the worklist.
Chris Lattner7bcc0e72004-02-28 05:22:00 +000012246 AddUsesToWorkList(*I);
Chris Lattnerc736d562002-12-05 22:41:53 +000012247 ReplaceInstUsesWith(*I, C);
12248
Chris Lattner62b14df2002-09-02 04:59:56 +000012249 ++NumConstProp;
Chris Lattnerf4f5a772006-05-10 19:00:36 +000012250 I->eraseFromParent();
Chris Lattnerdbab3862007-03-02 21:28:56 +000012251 RemoveFromWorkList(I);
Chris Lattner4bb7c022003-10-06 17:11:01 +000012252 continue;
Chris Lattner62b14df2002-09-02 04:59:56 +000012253 }
Chris Lattner4bb7c022003-10-06 17:11:01 +000012254
Nick Lewycky3dfd7bf2008-05-25 20:56:15 +000012255 if (TD && I->getType()->getTypeID() == Type::VoidTyID) {
12256 // See if we can constant fold its operands.
12257 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
12258 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) {
12259 if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
12260 i->set(NewC);
12261 }
12262 }
12263 }
12264
Chris Lattnerea1c4542004-12-08 23:43:58 +000012265 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohmanfc74abf2008-07-23 00:34:11 +000012266 if (I->hasOneUse()) {
Chris Lattnerea1c4542004-12-08 23:43:58 +000012267 BasicBlock *BB = I->getParent();
12268 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
12269 if (UserParent != BB) {
12270 bool UserIsSuccessor = false;
12271 // See if the user is one of our successors.
12272 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
12273 if (*SI == UserParent) {
12274 UserIsSuccessor = true;
12275 break;
12276 }
12277
12278 // If the user is one of our immediate successors, and if that successor
12279 // only has us as a predecessors (we'd have to split the critical edge
12280 // otherwise), we can keep going.
12281 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
12282 next(pred_begin(UserParent)) == pred_end(UserParent))
12283 // Okay, the CFG is simple enough, try to sink this instruction.
12284 Changed |= TryToSinkInstruction(I, UserParent);
12285 }
12286 }
12287
Chris Lattner8a2a3112001-12-14 16:52:21 +000012288 // Now that we have an instruction, try combining it to simplify it...
Reid Spencera9b81012007-03-26 17:44:01 +000012289#ifndef NDEBUG
12290 std::string OrigI;
12291#endif
12292 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
Chris Lattner90ac28c2002-08-02 19:29:35 +000012293 if (Instruction *Result = visit(*I)) {
Chris Lattner3dec1f22002-05-10 15:38:35 +000012294 ++NumCombined;
Chris Lattnerdd841ae2002-04-18 17:39:14 +000012295 // Should we replace the old instruction with a new one?
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +000012296 if (Result != I) {
Bill Wendlingb7427032006-11-26 09:46:52 +000012297 DOUT << "IC: Old = " << *I
12298 << " New = " << *Result;
Chris Lattner0cea42a2004-03-13 23:54:27 +000012299
Chris Lattnerf523d062004-06-09 05:08:07 +000012300 // Everything uses the new instruction now.
12301 I->replaceAllUsesWith(Result);
12302
12303 // Push the new instruction and any users onto the worklist.
Chris Lattnerdbab3862007-03-02 21:28:56 +000012304 AddToWorkList(Result);
Chris Lattnerf523d062004-06-09 05:08:07 +000012305 AddUsersToWorkList(*Result);
Chris Lattner4bb7c022003-10-06 17:11:01 +000012306
Chris Lattner6934a042007-02-11 01:23:03 +000012307 // Move the name to the new instruction first.
12308 Result->takeName(I);
Chris Lattner4bb7c022003-10-06 17:11:01 +000012309
12310 // Insert the new instruction into the basic block...
12311 BasicBlock *InstParent = I->getParent();
Chris Lattnerbac32862004-11-14 19:13:23 +000012312 BasicBlock::iterator InsertPos = I;
12313
12314 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
12315 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
12316 ++InsertPos;
12317
12318 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattner4bb7c022003-10-06 17:11:01 +000012319
Chris Lattner00d51312004-05-01 23:27:23 +000012320 // Make sure that we reprocess all operands now that we reduced their
12321 // use counts.
Chris Lattnerdbab3862007-03-02 21:28:56 +000012322 AddUsesToWorkList(*I);
Chris Lattner216d4d82004-05-01 23:19:52 +000012323
Chris Lattnerf523d062004-06-09 05:08:07 +000012324 // Instructions can end up on the worklist more than once. Make sure
12325 // we do not process an instruction that has been deleted.
Chris Lattnerdbab3862007-03-02 21:28:56 +000012326 RemoveFromWorkList(I);
Chris Lattner4bb7c022003-10-06 17:11:01 +000012327
12328 // Erase the old instruction.
12329 InstParent->getInstList().erase(I);
Chris Lattner7e708292002-06-25 16:13:24 +000012330 } else {
Evan Chengc7baf682007-03-27 16:44:48 +000012331#ifndef NDEBUG
Reid Spencera9b81012007-03-26 17:44:01 +000012332 DOUT << "IC: Mod = " << OrigI
12333 << " New = " << *I;
Evan Chengc7baf682007-03-27 16:44:48 +000012334#endif
Chris Lattner0cea42a2004-03-13 23:54:27 +000012335
Chris Lattner90ac28c2002-08-02 19:29:35 +000012336 // If the instruction was modified, it's possible that it is now dead.
12337 // if so, remove it.
Chris Lattner00d51312004-05-01 23:27:23 +000012338 if (isInstructionTriviallyDead(I)) {
12339 // Make sure we process all operands now that we are reducing their
12340 // use counts.
Chris Lattnerec9c3582007-03-03 02:04:50 +000012341 AddUsesToWorkList(*I);
Misha Brukmanfd939082005-04-21 23:48:37 +000012342
Chris Lattner00d51312004-05-01 23:27:23 +000012343 // Instructions may end up in the worklist more than once. Erase all
Robert Bocchino1d7456d2006-01-13 22:48:06 +000012344 // occurrences of this instruction.
Chris Lattnerdbab3862007-03-02 21:28:56 +000012345 RemoveFromWorkList(I);
Chris Lattner2f503e62005-01-31 05:36:43 +000012346 I->eraseFromParent();
Chris Lattnerf523d062004-06-09 05:08:07 +000012347 } else {
Chris Lattnerec9c3582007-03-03 02:04:50 +000012348 AddToWorkList(I);
12349 AddUsersToWorkList(*I);
Chris Lattner90ac28c2002-08-02 19:29:35 +000012350 }
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +000012351 }
Chris Lattnerdd841ae2002-04-18 17:39:14 +000012352 Changed = true;
Chris Lattner8a2a3112001-12-14 16:52:21 +000012353 }
12354 }
12355
Chris Lattnerec9c3582007-03-03 02:04:50 +000012356 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnera9ff5eb2007-08-05 08:47:58 +000012357
12358 // Do an explicit clear, this shrinks the map if needed.
12359 WorklistMap.clear();
Chris Lattnerdd841ae2002-04-18 17:39:14 +000012360 return Changed;
Chris Lattnerbd0ef772002-02-26 21:46:54 +000012361}
12362
Chris Lattnerec9c3582007-03-03 02:04:50 +000012363
12364bool InstCombiner::runOnFunction(Function &F) {
Chris Lattnerf964f322007-03-04 04:27:24 +000012365 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
12366
Chris Lattnerec9c3582007-03-03 02:04:50 +000012367 bool EverMadeChange = false;
12368
12369 // Iterate while there is work to do.
12370 unsigned Iteration = 0;
Bill Wendlinga6c31122008-05-14 22:45:20 +000012371 while (DoOneIteration(F, Iteration++))
Chris Lattnerec9c3582007-03-03 02:04:50 +000012372 EverMadeChange = true;
12373 return EverMadeChange;
12374}
12375
Brian Gaeke96d4bf72004-07-27 17:43:21 +000012376FunctionPass *llvm::createInstructionCombiningPass() {
Chris Lattnerdd841ae2002-04-18 17:39:14 +000012377 return new InstCombiner();
Chris Lattnerbd0ef772002-02-26 21:46:54 +000012378}
Brian Gaeked0fde302003-11-11 22:41:34 +000012379
Chris Lattnerb8cd4d32008-08-11 22:06:05 +000012380