blob: 5204cf5ffcf14268fb211bd32258177c62675457 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Owen Andersond13db2c2010-07-21 22:09:45 +0000106INITIALIZE_PASS(ScalarEvolution, "scalar-evolution",
107 "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohman3bf63762010-06-18 19:54:20 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohman3bf63762010-06-18 19:54:20 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohman3bf63762010-06-18 19:54:20 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohman3bf63762010-06-18 19:54:20 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000251 OS << "(";
252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253 OS << **I;
Oscar Fuentesee56c422010-08-02 06:00:15 +0000254 if (llvm::next(I) != E)
Dan Gohmana5145c82010-04-16 15:03:25 +0000255 OS << OpStr;
256 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257 OS << ")";
258}
259
Dan Gohmanecb403a2009-05-07 14:00:19 +0000260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000261 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
262 if (!(*I)->dominates(BB, DT))
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000263 return false;
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000264 return true;
265}
266
Dan Gohman6e70e312009-09-27 15:26:03 +0000267bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000268 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
269 if (!(*I)->properlyDominates(BB, DT))
Dan Gohman6e70e312009-09-27 15:26:03 +0000270 return false;
Dan Gohman6e70e312009-09-27 15:26:03 +0000271 return true;
272}
273
Dan Gohman2f199f92010-08-16 16:21:27 +0000274bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const {
275 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
276 if (!(*I)->isLoopInvariant(L))
277 return false;
278 return true;
279}
280
281// hasComputableLoopEvolution - N-ary expressions have computable loop
282// evolutions iff they have at least one operand that varies with the loop,
283// but that all varying operands are computable.
284bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const {
285 bool HasVarying = false;
286 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
287 const SCEV *S = *I;
288 if (!S->isLoopInvariant(L)) {
289 if (S->hasComputableLoopEvolution(L))
290 HasVarying = true;
291 else
292 return false;
293 }
294 }
295 return HasVarying;
296}
297
298bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
299 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
300 const SCEV *S = *I;
301 if (O == S || S->hasOperand(O))
302 return true;
303 }
304 return false;
305}
306
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000307bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
308 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
309}
310
Dan Gohman6e70e312009-09-27 15:26:03 +0000311bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
312 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
313}
314
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000315void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000316 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000317}
318
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000319const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000320 // In most cases the types of LHS and RHS will be the same, but in some
321 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
322 // depend on the type for correctness, but handling types carefully can
323 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
324 // a pointer type than the RHS, so use the RHS' type here.
325 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000326}
327
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000328bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000329 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000330 if (!QueryLoop)
331 return false;
332
333 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000334 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000335 return false;
336
Dan Gohman71c41442010-08-13 20:11:39 +0000337 // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
338 if (L->contains(QueryLoop))
339 return true;
340
Dan Gohmane890eea2009-06-26 22:17:21 +0000341 // This recurrence is variant w.r.t. QueryLoop if any of its operands
342 // are variant.
Dan Gohman7e1fee72010-08-29 14:52:02 +0000343 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
344 if (!(*I)->isLoopInvariant(QueryLoop))
Dan Gohmane890eea2009-06-26 22:17:21 +0000345 return false;
346
347 // Otherwise it's loop-invariant.
348 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000349}
350
Dan Gohman39125d82010-02-13 00:19:39 +0000351bool
352SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
353 return DT->dominates(L->getHeader(), BB) &&
354 SCEVNAryExpr::dominates(BB, DT);
355}
356
357bool
358SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
359 // This uses a "dominates" query instead of "properly dominates" query because
360 // the instruction which produces the addrec's value is a PHI, and a PHI
361 // effectively properly dominates its entire containing block.
362 return DT->dominates(L->getHeader(), BB) &&
363 SCEVNAryExpr::properlyDominates(BB, DT);
364}
365
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000366void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000367 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000368 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000369 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000370 OS << "}<";
371 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
372 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000373}
Chris Lattner53e677a2004-04-02 20:23:17 +0000374
Dan Gohmanab37f502010-08-02 23:49:30 +0000375void SCEVUnknown::deleted() {
376 // Clear this SCEVUnknown from ValuesAtScopes.
377 SE->ValuesAtScopes.erase(this);
378
379 // Remove this SCEVUnknown from the uniquing map.
380 SE->UniqueSCEVs.RemoveNode(this);
381
382 // Release the value.
383 setValPtr(0);
384}
385
386void SCEVUnknown::allUsesReplacedWith(Value *New) {
387 // Clear this SCEVUnknown from ValuesAtScopes.
388 SE->ValuesAtScopes.erase(this);
389
390 // Remove this SCEVUnknown from the uniquing map.
391 SE->UniqueSCEVs.RemoveNode(this);
392
393 // Update this SCEVUnknown to point to the new value. This is needed
394 // because there may still be outstanding SCEVs which still point to
395 // this SCEVUnknown.
396 setValPtr(New);
397}
398
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000399bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
400 // All non-instruction values are loop invariant. All instructions are loop
401 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000402 // Instructions are never considered invariant in the function body
403 // (null loop) because they are defined within the "loop".
Dan Gohmanab37f502010-08-02 23:49:30 +0000404 if (Instruction *I = dyn_cast<Instruction>(getValue()))
Dan Gohman92329c72009-12-18 01:24:09 +0000405 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000406 return true;
407}
Chris Lattner53e677a2004-04-02 20:23:17 +0000408
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000409bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
410 if (Instruction *I = dyn_cast<Instruction>(getValue()))
411 return DT->dominates(I->getParent(), BB);
412 return true;
413}
414
Dan Gohman6e70e312009-09-27 15:26:03 +0000415bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
416 if (Instruction *I = dyn_cast<Instruction>(getValue()))
417 return DT->properlyDominates(I->getParent(), BB);
418 return true;
419}
420
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000421const Type *SCEVUnknown::getType() const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000422 return getValue()->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000423}
Chris Lattner53e677a2004-04-02 20:23:17 +0000424
Dan Gohman0f5efe52010-01-28 02:15:55 +0000425bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000426 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000427 if (VCE->getOpcode() == Instruction::PtrToInt)
428 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000429 if (CE->getOpcode() == Instruction::GetElementPtr &&
430 CE->getOperand(0)->isNullValue() &&
431 CE->getNumOperands() == 2)
432 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
433 if (CI->isOne()) {
434 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
435 ->getElementType();
436 return true;
437 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000438
439 return false;
440}
441
442bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000443 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000444 if (VCE->getOpcode() == Instruction::PtrToInt)
445 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000446 if (CE->getOpcode() == Instruction::GetElementPtr &&
447 CE->getOperand(0)->isNullValue()) {
448 const Type *Ty =
449 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
450 if (const StructType *STy = dyn_cast<StructType>(Ty))
451 if (!STy->isPacked() &&
452 CE->getNumOperands() == 3 &&
453 CE->getOperand(1)->isNullValue()) {
454 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
455 if (CI->isOne() &&
456 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000457 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000458 AllocTy = STy->getElementType(1);
459 return true;
460 }
461 }
462 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000463
464 return false;
465}
466
Dan Gohman4f8eea82010-02-01 18:27:38 +0000467bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000468 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000469 if (VCE->getOpcode() == Instruction::PtrToInt)
470 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
471 if (CE->getOpcode() == Instruction::GetElementPtr &&
472 CE->getNumOperands() == 3 &&
473 CE->getOperand(0)->isNullValue() &&
474 CE->getOperand(1)->isNullValue()) {
475 const Type *Ty =
476 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
477 // Ignore vector types here so that ScalarEvolutionExpander doesn't
478 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000479 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000480 CTy = Ty;
481 FieldNo = CE->getOperand(2);
482 return true;
483 }
484 }
485
486 return false;
487}
488
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000489void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000490 const Type *AllocTy;
491 if (isSizeOf(AllocTy)) {
492 OS << "sizeof(" << *AllocTy << ")";
493 return;
494 }
495 if (isAlignOf(AllocTy)) {
496 OS << "alignof(" << *AllocTy << ")";
497 return;
498 }
499
Dan Gohman4f8eea82010-02-01 18:27:38 +0000500 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000501 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000502 if (isOffsetOf(CTy, FieldNo)) {
503 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000504 WriteAsOperand(OS, FieldNo, false);
505 OS << ")";
506 return;
507 }
508
509 // Otherwise just print it normally.
Dan Gohmanab37f502010-08-02 23:49:30 +0000510 WriteAsOperand(OS, getValue(), false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000511}
512
Chris Lattner8d741b82004-06-20 06:23:15 +0000513//===----------------------------------------------------------------------===//
514// SCEV Utilities
515//===----------------------------------------------------------------------===//
516
517namespace {
518 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
519 /// than the complexity of the RHS. This comparator is used to canonicalize
520 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000521 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000522 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000523 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000524 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000525
Dan Gohman67ef74e2010-08-27 15:26:01 +0000526 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000527 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000528 return compare(LHS, RHS) < 0;
529 }
530
531 // Return negative, zero, or positive, if LHS is less than, equal to, or
532 // greater than RHS, respectively. A three-way result allows recursive
533 // comparisons to be more efficient.
534 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000535 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
536 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000537 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000538
Dan Gohman72861302009-05-07 14:39:04 +0000539 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000540 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
541 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000542 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000543
Dan Gohman3bf63762010-06-18 19:54:20 +0000544 // Aside from the getSCEVType() ordering, the particular ordering
545 // isn't very important except that it's beneficial to be consistent,
546 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000547 switch (LType) {
548 case scUnknown: {
549 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000550 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000551
552 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
553 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000554 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000555
556 // Order pointer values after integer values. This helps SCEVExpander
557 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000558 bool LIsPointer = LV->getType()->isPointerTy(),
559 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000560 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000561 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000562
563 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000564 unsigned LID = LV->getValueID(),
565 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000566 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000567 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000568
569 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000570 if (const Argument *LA = dyn_cast<Argument>(LV)) {
571 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000572 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
573 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000574 }
575
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 // For instructions, compare their loop depth, and their operand
577 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000578 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
579 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000580
581 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000582 const BasicBlock *LParent = LInst->getParent(),
583 *RParent = RInst->getParent();
584 if (LParent != RParent) {
585 unsigned LDepth = LI->getLoopDepth(LParent),
586 RDepth = LI->getLoopDepth(RParent);
587 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000588 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000589 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000590
591 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000592 unsigned LNumOps = LInst->getNumOperands(),
593 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000594 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000595 }
596
Dan Gohman67ef74e2010-08-27 15:26:01 +0000597 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000598 }
599
Dan Gohman67ef74e2010-08-27 15:26:01 +0000600 case scConstant: {
601 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000602 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000603
604 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000605 const APInt &LA = LC->getValue()->getValue();
606 const APInt &RA = RC->getValue()->getValue();
607 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000608 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000609 return (int)LBitWidth - (int)RBitWidth;
610 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000611 }
612
Dan Gohman67ef74e2010-08-27 15:26:01 +0000613 case scAddRecExpr: {
614 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000615 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000616
617 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000618 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
619 if (LLoop != RLoop) {
620 unsigned LDepth = LLoop->getLoopDepth(),
621 RDepth = RLoop->getLoopDepth();
622 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000623 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000624 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000625
626 // Addrec complexity grows with operand count.
627 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
628 if (LNumOps != RNumOps)
629 return (int)LNumOps - (int)RNumOps;
630
631 // Lexicographically compare.
632 for (unsigned i = 0; i != LNumOps; ++i) {
633 long X = compare(LA->getOperand(i), RA->getOperand(i));
634 if (X != 0)
635 return X;
636 }
637
638 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000639 }
640
Dan Gohman67ef74e2010-08-27 15:26:01 +0000641 case scAddExpr:
642 case scMulExpr:
643 case scSMaxExpr:
644 case scUMaxExpr: {
645 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000646 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000647
648 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000649 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
650 for (unsigned i = 0; i != LNumOps; ++i) {
651 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000652 return 1;
653 long X = compare(LC->getOperand(i), RC->getOperand(i));
654 if (X != 0)
655 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000656 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000657 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000658 }
659
Dan Gohman67ef74e2010-08-27 15:26:01 +0000660 case scUDivExpr: {
661 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000662 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000663
664 // Lexicographically compare udiv expressions.
665 long X = compare(LC->getLHS(), RC->getLHS());
666 if (X != 0)
667 return X;
668 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000669 }
670
Dan Gohman67ef74e2010-08-27 15:26:01 +0000671 case scTruncate:
672 case scZeroExtend:
673 case scSignExtend: {
674 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000675 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000676
677 // Compare cast expressions by operand.
678 return compare(LC->getOperand(), RC->getOperand());
679 }
680
681 default:
682 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000683 }
684
685 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000686 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000687 }
688 };
689}
690
691/// GroupByComplexity - Given a list of SCEV objects, order them by their
692/// complexity, and group objects of the same complexity together by value.
693/// When this routine is finished, we know that any duplicates in the vector are
694/// consecutive and that complexity is monotonically increasing.
695///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000696/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000697/// results from this routine. In other words, we don't want the results of
698/// this to depend on where the addresses of various SCEV objects happened to
699/// land in memory.
700///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000701static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000702 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000703 if (Ops.size() < 2) return; // Noop
704 if (Ops.size() == 2) {
705 // This is the common case, which also happens to be trivially simple.
706 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000707 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
708 if (SCEVComplexityCompare(LI)(RHS, LHS))
709 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000710 return;
711 }
712
Dan Gohman3bf63762010-06-18 19:54:20 +0000713 // Do the rough sort by complexity.
714 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
715
716 // Now that we are sorted by complexity, group elements of the same
717 // complexity. Note that this is, at worst, N^2, but the vector is likely to
718 // be extremely short in practice. Note that we take this approach because we
719 // do not want to depend on the addresses of the objects we are grouping.
720 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
721 const SCEV *S = Ops[i];
722 unsigned Complexity = S->getSCEVType();
723
724 // If there are any objects of the same complexity and same value as this
725 // one, group them.
726 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
727 if (Ops[j] == S) { // Found a duplicate.
728 // Move it to immediately after i'th element.
729 std::swap(Ops[i+1], Ops[j]);
730 ++i; // no need to rescan it.
731 if (i == e-2) return; // Done!
732 }
733 }
734 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000735}
736
Chris Lattner53e677a2004-04-02 20:23:17 +0000737
Chris Lattner53e677a2004-04-02 20:23:17 +0000738
739//===----------------------------------------------------------------------===//
740// Simple SCEV method implementations
741//===----------------------------------------------------------------------===//
742
Eli Friedmanb42a6262008-08-04 23:49:06 +0000743/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000744/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000745static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000746 ScalarEvolution &SE,
747 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000748 // Handle the simplest case efficiently.
749 if (K == 1)
750 return SE.getTruncateOrZeroExtend(It, ResultTy);
751
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000752 // We are using the following formula for BC(It, K):
753 //
754 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
755 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000756 // Suppose, W is the bitwidth of the return value. We must be prepared for
757 // overflow. Hence, we must assure that the result of our computation is
758 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
759 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000760 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000761 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000762 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000763 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
764 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000765 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000766 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000767 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000768 // This formula is trivially equivalent to the previous formula. However,
769 // this formula can be implemented much more efficiently. The trick is that
770 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
771 // arithmetic. To do exact division in modular arithmetic, all we have
772 // to do is multiply by the inverse. Therefore, this step can be done at
773 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000774 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000775 // The next issue is how to safely do the division by 2^T. The way this
776 // is done is by doing the multiplication step at a width of at least W + T
777 // bits. This way, the bottom W+T bits of the product are accurate. Then,
778 // when we perform the division by 2^T (which is equivalent to a right shift
779 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
780 // truncated out after the division by 2^T.
781 //
782 // In comparison to just directly using the first formula, this technique
783 // is much more efficient; using the first formula requires W * K bits,
784 // but this formula less than W + K bits. Also, the first formula requires
785 // a division step, whereas this formula only requires multiplies and shifts.
786 //
787 // It doesn't matter whether the subtraction step is done in the calculation
788 // width or the input iteration count's width; if the subtraction overflows,
789 // the result must be zero anyway. We prefer here to do it in the width of
790 // the induction variable because it helps a lot for certain cases; CodeGen
791 // isn't smart enough to ignore the overflow, which leads to much less
792 // efficient code if the width of the subtraction is wider than the native
793 // register width.
794 //
795 // (It's possible to not widen at all by pulling out factors of 2 before
796 // the multiplication; for example, K=2 can be calculated as
797 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
798 // extra arithmetic, so it's not an obvious win, and it gets
799 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000800
Eli Friedmanb42a6262008-08-04 23:49:06 +0000801 // Protection from insane SCEVs; this bound is conservative,
802 // but it probably doesn't matter.
803 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000804 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000805
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000806 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000807
Eli Friedmanb42a6262008-08-04 23:49:06 +0000808 // Calculate K! / 2^T and T; we divide out the factors of two before
809 // multiplying for calculating K! / 2^T to avoid overflow.
810 // Other overflow doesn't matter because we only care about the bottom
811 // W bits of the result.
812 APInt OddFactorial(W, 1);
813 unsigned T = 1;
814 for (unsigned i = 3; i <= K; ++i) {
815 APInt Mult(W, i);
816 unsigned TwoFactors = Mult.countTrailingZeros();
817 T += TwoFactors;
818 Mult = Mult.lshr(TwoFactors);
819 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000820 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000821
Eli Friedmanb42a6262008-08-04 23:49:06 +0000822 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000823 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000824
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000825 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000826 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
827
828 // Calculate the multiplicative inverse of K! / 2^T;
829 // this multiplication factor will perform the exact division by
830 // K! / 2^T.
831 APInt Mod = APInt::getSignedMinValue(W+1);
832 APInt MultiplyFactor = OddFactorial.zext(W+1);
833 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
834 MultiplyFactor = MultiplyFactor.trunc(W);
835
836 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000837 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
838 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000839 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000840 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000841 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000842 Dividend = SE.getMulExpr(Dividend,
843 SE.getTruncateOrZeroExtend(S, CalculationTy));
844 }
845
846 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000847 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000848
849 // Truncate the result, and divide by K! / 2^T.
850
851 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
852 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000853}
854
Chris Lattner53e677a2004-04-02 20:23:17 +0000855/// evaluateAtIteration - Return the value of this chain of recurrences at
856/// the specified iteration number. We can evaluate this recurrence by
857/// multiplying each element in the chain by the binomial coefficient
858/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
859///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000860/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000861///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000862/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000863///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000864const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000865 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000866 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000867 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000868 // The computation is correct in the face of overflow provided that the
869 // multiplication is performed _after_ the evaluation of the binomial
870 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000871 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000872 if (isa<SCEVCouldNotCompute>(Coeff))
873 return Coeff;
874
875 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000876 }
877 return Result;
878}
879
Chris Lattner53e677a2004-04-02 20:23:17 +0000880//===----------------------------------------------------------------------===//
881// SCEV Expression folder implementations
882//===----------------------------------------------------------------------===//
883
Dan Gohman0bba49c2009-07-07 17:06:11 +0000884const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000885 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000886 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000887 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000888 assert(isSCEVable(Ty) &&
889 "This is not a conversion to a SCEVable type!");
890 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000891
Dan Gohmanc050fd92009-07-13 20:50:19 +0000892 FoldingSetNodeID ID;
893 ID.AddInteger(scTruncate);
894 ID.AddPointer(Op);
895 ID.AddPointer(Ty);
896 void *IP = 0;
897 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
898
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000899 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000900 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000901 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000902 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
903 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000904
Dan Gohman20900ca2009-04-22 16:20:48 +0000905 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000906 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000907 return getTruncateExpr(ST->getOperand(), Ty);
908
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000909 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000910 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000911 return getTruncateOrSignExtend(SS->getOperand(), Ty);
912
913 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000914 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000915 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
916
Dan Gohman6864db62009-06-18 16:24:47 +0000917 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000918 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000919 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000920 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000921 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
922 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000923 }
924
Dan Gohmanf53462d2010-07-15 20:02:11 +0000925 // As a special case, fold trunc(undef) to undef. We don't want to
926 // know too much about SCEVUnknowns, but this special case is handy
927 // and harmless.
928 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
929 if (isa<UndefValue>(U->getValue()))
930 return getSCEV(UndefValue::get(Ty));
931
Dan Gohman420ab912010-06-25 18:47:08 +0000932 // The cast wasn't folded; create an explicit cast node. We can reuse
933 // the existing insert position since if we get here, we won't have
934 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000935 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
936 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000937 UniqueSCEVs.InsertNode(S, IP);
938 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000939}
940
Dan Gohman0bba49c2009-07-07 17:06:11 +0000941const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000942 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000943 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000944 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000945 assert(isSCEVable(Ty) &&
946 "This is not a conversion to a SCEVable type!");
947 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000948
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000949 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000950 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
951 return getConstant(
952 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
953 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000954
Dan Gohman20900ca2009-04-22 16:20:48 +0000955 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000956 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000957 return getZeroExtendExpr(SZ->getOperand(), Ty);
958
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000959 // Before doing any expensive analysis, check to see if we've already
960 // computed a SCEV for this Op and Ty.
961 FoldingSetNodeID ID;
962 ID.AddInteger(scZeroExtend);
963 ID.AddPointer(Op);
964 ID.AddPointer(Ty);
965 void *IP = 0;
966 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
967
Dan Gohman01ecca22009-04-27 20:16:15 +0000968 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000969 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000970 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000971 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000972 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000973 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000974 const SCEV *Start = AR->getStart();
975 const SCEV *Step = AR->getStepRecurrence(*this);
976 unsigned BitWidth = getTypeSizeInBits(AR->getType());
977 const Loop *L = AR->getLoop();
978
Dan Gohmaneb490a72009-07-25 01:22:26 +0000979 // If we have special knowledge that this addrec won't overflow,
980 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000981 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000982 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
983 getZeroExtendExpr(Step, Ty),
984 L);
985
Dan Gohman01ecca22009-04-27 20:16:15 +0000986 // Check whether the backedge-taken count is SCEVCouldNotCompute.
987 // Note that this serves two purposes: It filters out loops that are
988 // simply not analyzable, and it covers the case where this code is
989 // being called from within backedge-taken count analysis, such that
990 // attempting to ask for the backedge-taken count would likely result
991 // in infinite recursion. In the later case, the analysis code will
992 // cope with a conservative value, and it will take care to purge
993 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000994 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000995 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000996 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000997 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000998
999 // Check whether the backedge-taken count can be losslessly casted to
1000 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001001 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001002 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001003 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001004 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1005 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001006 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001007 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001008 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001009 const SCEV *Add = getAddExpr(Start, ZMul);
1010 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001011 getAddExpr(getZeroExtendExpr(Start, WideTy),
1012 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1013 getZeroExtendExpr(Step, WideTy)));
1014 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001015 // Return the expression with the addrec on the outside.
1016 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1017 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001018 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001019
1020 // Similar to above, only this time treat the step value as signed.
1021 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +00001022 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001023 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +00001024 OperandExtendedAdd =
1025 getAddExpr(getZeroExtendExpr(Start, WideTy),
1026 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1027 getSignExtendExpr(Step, WideTy)));
1028 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001029 // Return the expression with the addrec on the outside.
1030 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1031 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001032 L);
1033 }
1034
1035 // If the backedge is guarded by a comparison with the pre-inc value
1036 // the addrec is safe. Also, if the entry is guarded by a comparison
1037 // with the start value and the backedge is guarded by a comparison
1038 // with the post-inc value, the addrec is safe.
1039 if (isKnownPositive(Step)) {
1040 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1041 getUnsignedRange(Step).getUnsignedMax());
1042 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001043 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001044 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1045 AR->getPostIncExpr(*this), N)))
1046 // Return the expression with the addrec on the outside.
1047 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1048 getZeroExtendExpr(Step, Ty),
1049 L);
1050 } else if (isKnownNegative(Step)) {
1051 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1052 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001053 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1054 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001055 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1056 AR->getPostIncExpr(*this), N)))
1057 // Return the expression with the addrec on the outside.
1058 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1059 getSignExtendExpr(Step, Ty),
1060 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001061 }
1062 }
1063 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001064
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001065 // The cast wasn't folded; create an explicit cast node.
1066 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001067 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001068 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1069 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001070 UniqueSCEVs.InsertNode(S, IP);
1071 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001072}
1073
Dan Gohman0bba49c2009-07-07 17:06:11 +00001074const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001075 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001076 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001077 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001078 assert(isSCEVable(Ty) &&
1079 "This is not a conversion to a SCEVable type!");
1080 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001081
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001082 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001083 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1084 return getConstant(
1085 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1086 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001087
Dan Gohman20900ca2009-04-22 16:20:48 +00001088 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001089 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001090 return getSignExtendExpr(SS->getOperand(), Ty);
1091
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001092 // Before doing any expensive analysis, check to see if we've already
1093 // computed a SCEV for this Op and Ty.
1094 FoldingSetNodeID ID;
1095 ID.AddInteger(scSignExtend);
1096 ID.AddPointer(Op);
1097 ID.AddPointer(Ty);
1098 void *IP = 0;
1099 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1100
Dan Gohman01ecca22009-04-27 20:16:15 +00001101 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001102 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001103 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001104 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001105 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001106 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001107 const SCEV *Start = AR->getStart();
1108 const SCEV *Step = AR->getStepRecurrence(*this);
1109 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1110 const Loop *L = AR->getLoop();
1111
Dan Gohmaneb490a72009-07-25 01:22:26 +00001112 // If we have special knowledge that this addrec won't overflow,
1113 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001114 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001115 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1116 getSignExtendExpr(Step, Ty),
1117 L);
1118
Dan Gohman01ecca22009-04-27 20:16:15 +00001119 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1120 // Note that this serves two purposes: It filters out loops that are
1121 // simply not analyzable, and it covers the case where this code is
1122 // being called from within backedge-taken count analysis, such that
1123 // attempting to ask for the backedge-taken count would likely result
1124 // in infinite recursion. In the later case, the analysis code will
1125 // cope with a conservative value, and it will take care to purge
1126 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001127 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001128 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001129 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001130 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001131
1132 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001133 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001134 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001135 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001136 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001137 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1138 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001139 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001140 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001141 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001142 const SCEV *Add = getAddExpr(Start, SMul);
1143 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001144 getAddExpr(getSignExtendExpr(Start, WideTy),
1145 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1146 getSignExtendExpr(Step, WideTy)));
1147 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001148 // Return the expression with the addrec on the outside.
1149 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1150 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001151 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001152
1153 // Similar to above, only this time treat the step value as unsigned.
1154 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001155 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001156 Add = getAddExpr(Start, UMul);
1157 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001158 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001159 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1160 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001161 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001162 // Return the expression with the addrec on the outside.
1163 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1164 getZeroExtendExpr(Step, Ty),
1165 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001166 }
1167
1168 // If the backedge is guarded by a comparison with the pre-inc value
1169 // the addrec is safe. Also, if the entry is guarded by a comparison
1170 // with the start value and the backedge is guarded by a comparison
1171 // with the post-inc value, the addrec is safe.
1172 if (isKnownPositive(Step)) {
1173 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1174 getSignedRange(Step).getSignedMax());
1175 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001176 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001177 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1178 AR->getPostIncExpr(*this), N)))
1179 // Return the expression with the addrec on the outside.
1180 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1181 getSignExtendExpr(Step, Ty),
1182 L);
1183 } else if (isKnownNegative(Step)) {
1184 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1185 getSignedRange(Step).getSignedMin());
1186 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001187 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001188 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1189 AR->getPostIncExpr(*this), N)))
1190 // Return the expression with the addrec on the outside.
1191 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1192 getSignExtendExpr(Step, Ty),
1193 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001194 }
1195 }
1196 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001197
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001198 // The cast wasn't folded; create an explicit cast node.
1199 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001200 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001201 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1202 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001203 UniqueSCEVs.InsertNode(S, IP);
1204 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001205}
1206
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001207/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1208/// unspecified bits out to the given type.
1209///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001210const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001211 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001212 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1213 "This is not an extending conversion!");
1214 assert(isSCEVable(Ty) &&
1215 "This is not a conversion to a SCEVable type!");
1216 Ty = getEffectiveSCEVType(Ty);
1217
1218 // Sign-extend negative constants.
1219 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1220 if (SC->getValue()->getValue().isNegative())
1221 return getSignExtendExpr(Op, Ty);
1222
1223 // Peel off a truncate cast.
1224 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001225 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001226 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1227 return getAnyExtendExpr(NewOp, Ty);
1228 return getTruncateOrNoop(NewOp, Ty);
1229 }
1230
1231 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001232 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001233 if (!isa<SCEVZeroExtendExpr>(ZExt))
1234 return ZExt;
1235
1236 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001237 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001238 if (!isa<SCEVSignExtendExpr>(SExt))
1239 return SExt;
1240
Dan Gohmana10756e2010-01-21 02:09:26 +00001241 // Force the cast to be folded into the operands of an addrec.
1242 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1243 SmallVector<const SCEV *, 4> Ops;
1244 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1245 I != E; ++I)
1246 Ops.push_back(getAnyExtendExpr(*I, Ty));
1247 return getAddRecExpr(Ops, AR->getLoop());
1248 }
1249
Dan Gohmanf53462d2010-07-15 20:02:11 +00001250 // As a special case, fold anyext(undef) to undef. We don't want to
1251 // know too much about SCEVUnknowns, but this special case is handy
1252 // and harmless.
1253 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1254 if (isa<UndefValue>(U->getValue()))
1255 return getSCEV(UndefValue::get(Ty));
1256
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001257 // If the expression is obviously signed, use the sext cast value.
1258 if (isa<SCEVSMaxExpr>(Op))
1259 return SExt;
1260
1261 // Absent any other information, use the zext cast value.
1262 return ZExt;
1263}
1264
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001265/// CollectAddOperandsWithScales - Process the given Ops list, which is
1266/// a list of operands to be added under the given scale, update the given
1267/// map. This is a helper function for getAddRecExpr. As an example of
1268/// what it does, given a sequence of operands that would form an add
1269/// expression like this:
1270///
1271/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1272///
1273/// where A and B are constants, update the map with these values:
1274///
1275/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1276///
1277/// and add 13 + A*B*29 to AccumulatedConstant.
1278/// This will allow getAddRecExpr to produce this:
1279///
1280/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1281///
1282/// This form often exposes folding opportunities that are hidden in
1283/// the original operand list.
1284///
1285/// Return true iff it appears that any interesting folding opportunities
1286/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1287/// the common case where no interesting opportunities are present, and
1288/// is also used as a check to avoid infinite recursion.
1289///
1290static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001291CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1292 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001293 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001294 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001295 const APInt &Scale,
1296 ScalarEvolution &SE) {
1297 bool Interesting = false;
1298
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001299 // Iterate over the add operands. They are sorted, with constants first.
1300 unsigned i = 0;
1301 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1302 ++i;
1303 // Pull a buried constant out to the outside.
1304 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1305 Interesting = true;
1306 AccumulatedConstant += Scale * C->getValue()->getValue();
1307 }
1308
1309 // Next comes everything else. We're especially interested in multiplies
1310 // here, but they're in the middle, so just visit the rest with one loop.
1311 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001312 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1313 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1314 APInt NewScale =
1315 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1316 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1317 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001318 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001319 Interesting |=
1320 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001321 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001322 NewScale, SE);
1323 } else {
1324 // A multiplication of a constant with some other value. Update
1325 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001326 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1327 const SCEV *Key = SE.getMulExpr(MulOps);
1328 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001329 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001330 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001331 NewOps.push_back(Pair.first->first);
1332 } else {
1333 Pair.first->second += NewScale;
1334 // The map already had an entry for this value, which may indicate
1335 // a folding opportunity.
1336 Interesting = true;
1337 }
1338 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001339 } else {
1340 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001341 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001342 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001343 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001344 NewOps.push_back(Pair.first->first);
1345 } else {
1346 Pair.first->second += Scale;
1347 // The map already had an entry for this value, which may indicate
1348 // a folding opportunity.
1349 Interesting = true;
1350 }
1351 }
1352 }
1353
1354 return Interesting;
1355}
1356
1357namespace {
1358 struct APIntCompare {
1359 bool operator()(const APInt &LHS, const APInt &RHS) const {
1360 return LHS.ult(RHS);
1361 }
1362 };
1363}
1364
Dan Gohman6c0866c2009-05-24 23:45:28 +00001365/// getAddExpr - Get a canonical add expression, or something simpler if
1366/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001367const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1368 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001369 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001370 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001371#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001372 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001373 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001374 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001375 "SCEVAddExpr operand types don't match!");
1376#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001377
Dan Gohmana10756e2010-01-21 02:09:26 +00001378 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1379 if (!HasNUW && HasNSW) {
1380 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001381 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1382 E = Ops.end(); I != E; ++I)
1383 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001384 All = false;
1385 break;
1386 }
1387 if (All) HasNUW = true;
1388 }
1389
Chris Lattner53e677a2004-04-02 20:23:17 +00001390 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001391 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001392
1393 // If there are any constants, fold them together.
1394 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001395 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001396 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001397 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001398 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001399 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001400 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1401 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001402 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001403 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001404 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001405 }
1406
1407 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001408 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001409 Ops.erase(Ops.begin());
1410 --Idx;
1411 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001412
Dan Gohmanbca091d2010-04-12 23:08:18 +00001413 if (Ops.size() == 1) return Ops[0];
1414 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001415
Dan Gohman68ff7762010-08-27 21:39:59 +00001416 // Okay, check to see if the same value occurs in the operand list more than
1417 // once. If so, merge them together into an multiply expression. Since we
1418 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001419 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001420 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001421 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001422 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001423 // Scan ahead to count how many equal operands there are.
1424 unsigned Count = 2;
1425 while (i+Count != e && Ops[i+Count] == Ops[i])
1426 ++Count;
1427 // Merge the values into a multiply.
1428 const SCEV *Scale = getConstant(Ty, Count);
1429 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1430 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001431 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001432 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001433 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001434 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001435 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001436 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001437 if (FoundMatch)
1438 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001439
Dan Gohman728c7f32009-05-08 21:03:19 +00001440 // Check for truncates. If all the operands are truncated from the same
1441 // type, see if factoring out the truncate would permit the result to be
1442 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1443 // if the contents of the resulting outer trunc fold to something simple.
1444 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1445 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1446 const Type *DstType = Trunc->getType();
1447 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001448 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001449 bool Ok = true;
1450 // Check all the operands to see if they can be represented in the
1451 // source type of the truncate.
1452 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1453 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1454 if (T->getOperand()->getType() != SrcType) {
1455 Ok = false;
1456 break;
1457 }
1458 LargeOps.push_back(T->getOperand());
1459 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001460 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001461 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001462 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001463 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1464 if (const SCEVTruncateExpr *T =
1465 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1466 if (T->getOperand()->getType() != SrcType) {
1467 Ok = false;
1468 break;
1469 }
1470 LargeMulOps.push_back(T->getOperand());
1471 } else if (const SCEVConstant *C =
1472 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001473 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001474 } else {
1475 Ok = false;
1476 break;
1477 }
1478 }
1479 if (Ok)
1480 LargeOps.push_back(getMulExpr(LargeMulOps));
1481 } else {
1482 Ok = false;
1483 break;
1484 }
1485 }
1486 if (Ok) {
1487 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001488 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001489 // If it folds to something simple, use it. Otherwise, don't.
1490 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1491 return getTruncateExpr(Fold, DstType);
1492 }
1493 }
1494
1495 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001496 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1497 ++Idx;
1498
1499 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001500 if (Idx < Ops.size()) {
1501 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001502 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 // If we have an add, expand the add operands onto the end of the operands
1504 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001505 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001506 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001507 DeletedAdd = true;
1508 }
1509
1510 // If we deleted at least one add, we added operands to the end of the list,
1511 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001512 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001513 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001514 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001515 }
1516
1517 // Skip over the add expression until we get to a multiply.
1518 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1519 ++Idx;
1520
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001521 // Check to see if there are any folding opportunities present with
1522 // operands multiplied by constant values.
1523 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1524 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001525 DenseMap<const SCEV *, APInt> M;
1526 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001527 APInt AccumulatedConstant(BitWidth, 0);
1528 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001529 Ops.data(), Ops.size(),
1530 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001531 // Some interesting folding opportunity is present, so its worthwhile to
1532 // re-generate the operands list. Group the operands by constant scale,
1533 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001534 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001535 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001536 E = NewOps.end(); I != E; ++I)
1537 MulOpLists[M.find(*I)->second].push_back(*I);
1538 // Re-generate the operands list.
1539 Ops.clear();
1540 if (AccumulatedConstant != 0)
1541 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001542 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1543 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001544 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001545 Ops.push_back(getMulExpr(getConstant(I->first),
1546 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001547 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001548 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001549 if (Ops.size() == 1)
1550 return Ops[0];
1551 return getAddExpr(Ops);
1552 }
1553 }
1554
Chris Lattner53e677a2004-04-02 20:23:17 +00001555 // If we are adding something to a multiply expression, make sure the
1556 // something is not already an operand of the multiply. If so, merge it into
1557 // the multiply.
1558 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001559 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001560 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001561 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001562 if (isa<SCEVConstant>(MulOpSCEV))
1563 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001564 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001565 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001566 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001567 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001568 if (Mul->getNumOperands() != 2) {
1569 // If the multiply has more than two operands, we must get the
1570 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001571 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1572 Mul->op_begin()+MulOp);
1573 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001574 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001575 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001576 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001577 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001578 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001579 if (Ops.size() == 2) return OuterMul;
1580 if (AddOp < Idx) {
1581 Ops.erase(Ops.begin()+AddOp);
1582 Ops.erase(Ops.begin()+Idx-1);
1583 } else {
1584 Ops.erase(Ops.begin()+Idx);
1585 Ops.erase(Ops.begin()+AddOp-1);
1586 }
1587 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001588 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001589 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001590
Chris Lattner53e677a2004-04-02 20:23:17 +00001591 // Check this multiply against other multiplies being added together.
Dan Gohman727356f2010-08-12 15:00:23 +00001592 bool AnyFold = false;
Chris Lattner53e677a2004-04-02 20:23:17 +00001593 for (unsigned OtherMulIdx = Idx+1;
1594 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1595 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001596 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001597 // If MulOp occurs in OtherMul, we can fold the two multiplies
1598 // together.
1599 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1600 OMulOp != e; ++OMulOp)
1601 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1602 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001603 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001604 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001605 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001606 Mul->op_begin()+MulOp);
1607 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001608 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001609 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001610 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001611 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001612 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001613 OtherMul->op_begin()+OMulOp);
1614 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001615 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001616 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001617 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1618 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001619 if (Ops.size() == 2) return OuterMul;
Dan Gohman727356f2010-08-12 15:00:23 +00001620 Ops[Idx] = OuterMul;
1621 Ops.erase(Ops.begin()+OtherMulIdx);
1622 OtherMulIdx = Idx;
1623 AnyFold = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001624 }
1625 }
Dan Gohman727356f2010-08-12 15:00:23 +00001626 if (AnyFold)
1627 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001628 }
1629 }
1630
1631 // If there are any add recurrences in the operands list, see if any other
1632 // added values are loop invariant. If so, we can fold them into the
1633 // recurrence.
1634 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1635 ++Idx;
1636
1637 // Scan over all recurrences, trying to fold loop invariants into them.
1638 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1639 // Scan all of the other operands to this add and add them to the vector if
1640 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001641 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001642 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001643 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001644 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001645 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001646 LIOps.push_back(Ops[i]);
1647 Ops.erase(Ops.begin()+i);
1648 --i; --e;
1649 }
1650
1651 // If we found some loop invariants, fold them into the recurrence.
1652 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001653 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001654 LIOps.push_back(AddRec->getStart());
1655
Dan Gohman0bba49c2009-07-07 17:06:11 +00001656 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001657 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001658 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001659
Dan Gohmanb9f96512010-06-30 07:16:37 +00001660 // Build the new addrec. Propagate the NUW and NSW flags if both the
1661 // outer add and the inner addrec are guaranteed to have no overflow.
1662 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1663 HasNUW && AddRec->hasNoUnsignedWrap(),
1664 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001665
Chris Lattner53e677a2004-04-02 20:23:17 +00001666 // If all of the other operands were loop invariant, we are done.
1667 if (Ops.size() == 1) return NewRec;
1668
1669 // Otherwise, add the folded AddRec by the non-liv parts.
1670 for (unsigned i = 0;; ++i)
1671 if (Ops[i] == AddRec) {
1672 Ops[i] = NewRec;
1673 break;
1674 }
Dan Gohman246b2562007-10-22 18:31:58 +00001675 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001676 }
1677
1678 // Okay, if there weren't any loop invariants to be folded, check to see if
1679 // there are multiple AddRec's with the same loop induction variable being
1680 // added together. If so, we can fold them.
1681 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001682 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1683 ++OtherIdx)
1684 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1685 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1686 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1687 AddRec->op_end());
1688 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1689 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001690 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001691 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001692 if (OtherAddRec->getLoop() == AddRecLoop) {
1693 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1694 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001695 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001696 AddRecOps.append(OtherAddRec->op_begin()+i,
1697 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001698 break;
1699 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001700 AddRecOps[i] = getAddExpr(AddRecOps[i],
1701 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001702 }
1703 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001704 }
Dan Gohman32527152010-08-27 20:45:56 +00001705 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1706 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001707 }
1708
1709 // Otherwise couldn't fold anything into this recurrence. Move onto the
1710 // next one.
1711 }
1712
1713 // Okay, it looks like we really DO need an add expr. Check to see if we
1714 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001715 FoldingSetNodeID ID;
1716 ID.AddInteger(scAddExpr);
1717 ID.AddInteger(Ops.size());
1718 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1719 ID.AddPointer(Ops[i]);
1720 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001721 SCEVAddExpr *S =
1722 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1723 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001724 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1725 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001726 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1727 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001728 UniqueSCEVs.InsertNode(S, IP);
1729 }
Dan Gohman3645b012009-10-09 00:10:36 +00001730 if (HasNUW) S->setHasNoUnsignedWrap(true);
1731 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001732 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001733}
1734
Dan Gohman6c0866c2009-05-24 23:45:28 +00001735/// getMulExpr - Get a canonical multiply expression, or something simpler if
1736/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001737const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1738 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001739 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001740 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001741#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001742 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001743 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001744 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001745 "SCEVMulExpr operand types don't match!");
1746#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001747
Dan Gohmana10756e2010-01-21 02:09:26 +00001748 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1749 if (!HasNUW && HasNSW) {
1750 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001751 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1752 E = Ops.end(); I != E; ++I)
1753 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001754 All = false;
1755 break;
1756 }
1757 if (All) HasNUW = true;
1758 }
1759
Chris Lattner53e677a2004-04-02 20:23:17 +00001760 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001761 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001762
1763 // If there are any constants, fold them together.
1764 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001765 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001766
1767 // C1*(C2+V) -> C1*C2 + C1*V
1768 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001769 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001770 if (Add->getNumOperands() == 2 &&
1771 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001772 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1773 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001774
Chris Lattner53e677a2004-04-02 20:23:17 +00001775 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001776 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001777 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001778 ConstantInt *Fold = ConstantInt::get(getContext(),
1779 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001780 RHSC->getValue()->getValue());
1781 Ops[0] = getConstant(Fold);
1782 Ops.erase(Ops.begin()+1); // Erase the folded element
1783 if (Ops.size() == 1) return Ops[0];
1784 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001785 }
1786
1787 // If we are left with a constant one being multiplied, strip it off.
1788 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1789 Ops.erase(Ops.begin());
1790 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001791 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001792 // If we have a multiply of zero, it will always be zero.
1793 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001794 } else if (Ops[0]->isAllOnesValue()) {
1795 // If we have a mul by -1 of an add, try distributing the -1 among the
1796 // add operands.
1797 if (Ops.size() == 2)
1798 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1799 SmallVector<const SCEV *, 4> NewOps;
1800 bool AnyFolded = false;
1801 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1802 I != E; ++I) {
1803 const SCEV *Mul = getMulExpr(Ops[0], *I);
1804 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1805 NewOps.push_back(Mul);
1806 }
1807 if (AnyFolded)
1808 return getAddExpr(NewOps);
1809 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001810 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001811
1812 if (Ops.size() == 1)
1813 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001814 }
1815
1816 // Skip over the add expression until we get to a multiply.
1817 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1818 ++Idx;
1819
Chris Lattner53e677a2004-04-02 20:23:17 +00001820 // If there are mul operands inline them all into this expression.
1821 if (Idx < Ops.size()) {
1822 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001823 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001824 // If we have an mul, expand the mul operands onto the end of the operands
1825 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001826 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001827 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001828 DeletedMul = true;
1829 }
1830
1831 // If we deleted at least one mul, we added operands to the end of the list,
1832 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001833 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001834 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001835 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001836 }
1837
1838 // If there are any add recurrences in the operands list, see if any other
1839 // added values are loop invariant. If so, we can fold them into the
1840 // recurrence.
1841 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1842 ++Idx;
1843
1844 // Scan over all recurrences, trying to fold loop invariants into them.
1845 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1846 // Scan all of the other operands to this mul and add them to the vector if
1847 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001848 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001849 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001850 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001851 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman0f32ae32010-08-29 14:55:19 +00001852 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001853 LIOps.push_back(Ops[i]);
1854 Ops.erase(Ops.begin()+i);
1855 --i; --e;
1856 }
1857
1858 // If we found some loop invariants, fold them into the recurrence.
1859 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001860 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001861 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001862 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001863 const SCEV *Scale = getMulExpr(LIOps);
1864 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1865 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001866
Dan Gohmanb9f96512010-06-30 07:16:37 +00001867 // Build the new addrec. Propagate the NUW and NSW flags if both the
1868 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001869 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001870 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001871 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001872
1873 // If all of the other operands were loop invariant, we are done.
1874 if (Ops.size() == 1) return NewRec;
1875
1876 // Otherwise, multiply the folded AddRec by the non-liv parts.
1877 for (unsigned i = 0;; ++i)
1878 if (Ops[i] == AddRec) {
1879 Ops[i] = NewRec;
1880 break;
1881 }
Dan Gohman246b2562007-10-22 18:31:58 +00001882 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001883 }
1884
1885 // Okay, if there weren't any loop invariants to be folded, check to see if
1886 // there are multiple AddRec's with the same loop induction variable being
1887 // multiplied together. If so, we can fold them.
1888 for (unsigned OtherIdx = Idx+1;
Dan Gohmand578a402010-08-29 15:16:58 +00001889 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1890 ++OtherIdx)
1891 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1892 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1893 // {A*C,+,F*D + G*B + B*D}<L>
1894 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1895 ++OtherIdx)
1896 if (const SCEVAddRecExpr *OtherAddRec =
1897 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1898 if (OtherAddRec->getLoop() == AddRecLoop) {
1899 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1900 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1901 const SCEV *B = F->getStepRecurrence(*this);
1902 const SCEV *D = G->getStepRecurrence(*this);
1903 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1904 getMulExpr(G, B),
1905 getMulExpr(B, D));
1906 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1907 F->getLoop());
1908 if (Ops.size() == 2) return NewAddRec;
1909 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1910 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1911 }
1912 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001913 }
1914
1915 // Otherwise couldn't fold anything into this recurrence. Move onto the
1916 // next one.
1917 }
1918
1919 // Okay, it looks like we really DO need an mul expr. Check to see if we
1920 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001921 FoldingSetNodeID ID;
1922 ID.AddInteger(scMulExpr);
1923 ID.AddInteger(Ops.size());
1924 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1925 ID.AddPointer(Ops[i]);
1926 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001927 SCEVMulExpr *S =
1928 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1929 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001930 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1931 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001932 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1933 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001934 UniqueSCEVs.InsertNode(S, IP);
1935 }
Dan Gohman3645b012009-10-09 00:10:36 +00001936 if (HasNUW) S->setHasNoUnsignedWrap(true);
1937 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001938 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001939}
1940
Andreas Bolka8a11c982009-08-07 22:55:26 +00001941/// getUDivExpr - Get a canonical unsigned division expression, or something
1942/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001943const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1944 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001945 assert(getEffectiveSCEVType(LHS->getType()) ==
1946 getEffectiveSCEVType(RHS->getType()) &&
1947 "SCEVUDivExpr operand types don't match!");
1948
Dan Gohman622ed672009-05-04 22:02:23 +00001949 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001950 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001951 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001952 // If the denominator is zero, the result of the udiv is undefined. Don't
1953 // try to analyze it, because the resolution chosen here may differ from
1954 // the resolution chosen in other parts of the compiler.
1955 if (!RHSC->getValue()->isZero()) {
1956 // Determine if the division can be folded into the operands of
1957 // its operands.
1958 // TODO: Generalize this to non-constants by using known-bits information.
1959 const Type *Ty = LHS->getType();
1960 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001961 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001962 // For non-power-of-two values, effectively round the value up to the
1963 // nearest power of two.
1964 if (!RHSC->getValue()->getValue().isPowerOf2())
1965 ++MaxShiftAmt;
1966 const IntegerType *ExtTy =
1967 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1968 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1969 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1970 if (const SCEVConstant *Step =
1971 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1972 if (!Step->getValue()->getValue()
1973 .urem(RHSC->getValue()->getValue()) &&
1974 getZeroExtendExpr(AR, ExtTy) ==
1975 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1976 getZeroExtendExpr(Step, ExtTy),
1977 AR->getLoop())) {
1978 SmallVector<const SCEV *, 4> Operands;
1979 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1980 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1981 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001982 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001983 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1984 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1985 SmallVector<const SCEV *, 4> Operands;
1986 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1987 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1988 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1989 // Find an operand that's safely divisible.
1990 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1991 const SCEV *Op = M->getOperand(i);
1992 const SCEV *Div = getUDivExpr(Op, RHSC);
1993 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1994 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1995 M->op_end());
1996 Operands[i] = Div;
1997 return getMulExpr(Operands);
1998 }
1999 }
Dan Gohman185cf032009-05-08 20:18:49 +00002000 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002001 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2002 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
2003 SmallVector<const SCEV *, 4> Operands;
2004 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2005 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2006 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2007 Operands.clear();
2008 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2009 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2010 if (isa<SCEVUDivExpr>(Op) ||
2011 getMulExpr(Op, RHS) != A->getOperand(i))
2012 break;
2013 Operands.push_back(Op);
2014 }
2015 if (Operands.size() == A->getNumOperands())
2016 return getAddExpr(Operands);
2017 }
2018 }
Dan Gohman185cf032009-05-08 20:18:49 +00002019
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002020 // Fold if both operands are constant.
2021 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2022 Constant *LHSCV = LHSC->getValue();
2023 Constant *RHSCV = RHSC->getValue();
2024 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2025 RHSCV)));
2026 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002027 }
2028 }
2029
Dan Gohman1c343752009-06-27 21:21:31 +00002030 FoldingSetNodeID ID;
2031 ID.AddInteger(scUDivExpr);
2032 ID.AddPointer(LHS);
2033 ID.AddPointer(RHS);
2034 void *IP = 0;
2035 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002036 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2037 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002038 UniqueSCEVs.InsertNode(S, IP);
2039 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002040}
2041
2042
Dan Gohman6c0866c2009-05-24 23:45:28 +00002043/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2044/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002045const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00002046 const SCEV *Step, const Loop *L,
2047 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002048 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002049 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002050 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002051 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002052 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00002053 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002054 }
2055
2056 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00002057 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002058}
2059
Dan Gohman6c0866c2009-05-24 23:45:28 +00002060/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2061/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002062const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002063ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00002064 const Loop *L,
2065 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002066 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002067#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002068 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002069 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002070 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002071 "SCEVAddRecExpr operand types don't match!");
2072#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002073
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002074 if (Operands.back()->isZero()) {
2075 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00002076 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002077 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002078
Dan Gohmanbc028532010-02-19 18:49:22 +00002079 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2080 // use that information to infer NUW and NSW flags. However, computing a
2081 // BE count requires calling getAddRecExpr, so we may not yet have a
2082 // meaningful BE count at this point (and if we don't, we'd be stuck
2083 // with a SCEVCouldNotCompute as the cached BE count).
2084
Dan Gohmana10756e2010-01-21 02:09:26 +00002085 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2086 if (!HasNUW && HasNSW) {
2087 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002088 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2089 E = Operands.end(); I != E; ++I)
2090 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002091 All = false;
2092 break;
2093 }
2094 if (All) HasNUW = true;
2095 }
2096
Dan Gohmand9cc7492008-08-08 18:33:12 +00002097 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002098 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002099 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002100 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002101 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002102 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002103 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002104 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002105 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002106 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002107 // AddRecs require their operands be loop-invariant with respect to their
2108 // loops. Don't perform this transformation if it would break this
2109 // requirement.
2110 bool AllInvariant = true;
2111 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2112 if (!Operands[i]->isLoopInvariant(L)) {
2113 AllInvariant = false;
2114 break;
2115 }
2116 if (AllInvariant) {
2117 NestedOperands[0] = getAddRecExpr(Operands, L);
2118 AllInvariant = true;
2119 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2120 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2121 AllInvariant = false;
2122 break;
2123 }
2124 if (AllInvariant)
2125 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002126 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002127 }
2128 // Reset Operands to its original state.
2129 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002130 }
2131 }
2132
Dan Gohman67847532010-01-19 22:27:22 +00002133 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2134 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002135 FoldingSetNodeID ID;
2136 ID.AddInteger(scAddRecExpr);
2137 ID.AddInteger(Operands.size());
2138 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2139 ID.AddPointer(Operands[i]);
2140 ID.AddPointer(L);
2141 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002142 SCEVAddRecExpr *S =
2143 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2144 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002145 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2146 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002147 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2148 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002149 UniqueSCEVs.InsertNode(S, IP);
2150 }
Dan Gohman3645b012009-10-09 00:10:36 +00002151 if (HasNUW) S->setHasNoUnsignedWrap(true);
2152 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002153 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002154}
2155
Dan Gohman9311ef62009-06-24 14:49:00 +00002156const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2157 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002158 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002159 Ops.push_back(LHS);
2160 Ops.push_back(RHS);
2161 return getSMaxExpr(Ops);
2162}
2163
Dan Gohman0bba49c2009-07-07 17:06:11 +00002164const SCEV *
2165ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002166 assert(!Ops.empty() && "Cannot get empty smax!");
2167 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002168#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002169 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002170 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002171 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002172 "SCEVSMaxExpr operand types don't match!");
2173#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002174
2175 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002176 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002177
2178 // If there are any constants, fold them together.
2179 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002180 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002181 ++Idx;
2182 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002183 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002184 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002185 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002186 APIntOps::smax(LHSC->getValue()->getValue(),
2187 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002188 Ops[0] = getConstant(Fold);
2189 Ops.erase(Ops.begin()+1); // Erase the folded element
2190 if (Ops.size() == 1) return Ops[0];
2191 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002192 }
2193
Dan Gohmane5aceed2009-06-24 14:46:22 +00002194 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002195 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2196 Ops.erase(Ops.begin());
2197 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002198 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2199 // If we have an smax with a constant maximum-int, it will always be
2200 // maximum-int.
2201 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002202 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002203
Dan Gohman3ab13122010-04-13 16:49:23 +00002204 if (Ops.size() == 1) return Ops[0];
2205 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002206
2207 // Find the first SMax
2208 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2209 ++Idx;
2210
2211 // Check to see if one of the operands is an SMax. If so, expand its operands
2212 // onto our operand list, and recurse to simplify.
2213 if (Idx < Ops.size()) {
2214 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002215 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002216 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002217 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002218 DeletedSMax = true;
2219 }
2220
2221 if (DeletedSMax)
2222 return getSMaxExpr(Ops);
2223 }
2224
2225 // Okay, check to see if the same value occurs in the operand list twice. If
2226 // so, delete one. Since we sorted the list, these values are required to
2227 // be adjacent.
2228 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002229 // X smax Y smax Y --> X smax Y
2230 // X smax Y --> X, if X is always greater than Y
2231 if (Ops[i] == Ops[i+1] ||
2232 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2233 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2234 --i; --e;
2235 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002236 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2237 --i; --e;
2238 }
2239
2240 if (Ops.size() == 1) return Ops[0];
2241
2242 assert(!Ops.empty() && "Reduced smax down to nothing!");
2243
Nick Lewycky3e630762008-02-20 06:48:22 +00002244 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002245 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002246 FoldingSetNodeID ID;
2247 ID.AddInteger(scSMaxExpr);
2248 ID.AddInteger(Ops.size());
2249 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2250 ID.AddPointer(Ops[i]);
2251 void *IP = 0;
2252 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002253 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2254 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002255 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2256 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002257 UniqueSCEVs.InsertNode(S, IP);
2258 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002259}
2260
Dan Gohman9311ef62009-06-24 14:49:00 +00002261const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2262 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002263 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002264 Ops.push_back(LHS);
2265 Ops.push_back(RHS);
2266 return getUMaxExpr(Ops);
2267}
2268
Dan Gohman0bba49c2009-07-07 17:06:11 +00002269const SCEV *
2270ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002271 assert(!Ops.empty() && "Cannot get empty umax!");
2272 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002273#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002274 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002275 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002276 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002277 "SCEVUMaxExpr operand types don't match!");
2278#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002279
2280 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002281 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002282
2283 // If there are any constants, fold them together.
2284 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002285 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002286 ++Idx;
2287 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002288 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002289 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002290 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002291 APIntOps::umax(LHSC->getValue()->getValue(),
2292 RHSC->getValue()->getValue()));
2293 Ops[0] = getConstant(Fold);
2294 Ops.erase(Ops.begin()+1); // Erase the folded element
2295 if (Ops.size() == 1) return Ops[0];
2296 LHSC = cast<SCEVConstant>(Ops[0]);
2297 }
2298
Dan Gohmane5aceed2009-06-24 14:46:22 +00002299 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002300 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2301 Ops.erase(Ops.begin());
2302 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002303 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2304 // If we have an umax with a constant maximum-int, it will always be
2305 // maximum-int.
2306 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002307 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002308
Dan Gohman3ab13122010-04-13 16:49:23 +00002309 if (Ops.size() == 1) return Ops[0];
2310 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002311
2312 // Find the first UMax
2313 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2314 ++Idx;
2315
2316 // Check to see if one of the operands is a UMax. If so, expand its operands
2317 // onto our operand list, and recurse to simplify.
2318 if (Idx < Ops.size()) {
2319 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002320 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002321 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002322 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002323 DeletedUMax = true;
2324 }
2325
2326 if (DeletedUMax)
2327 return getUMaxExpr(Ops);
2328 }
2329
2330 // Okay, check to see if the same value occurs in the operand list twice. If
2331 // so, delete one. Since we sorted the list, these values are required to
2332 // be adjacent.
2333 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002334 // X umax Y umax Y --> X umax Y
2335 // X umax Y --> X, if X is always greater than Y
2336 if (Ops[i] == Ops[i+1] ||
2337 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2338 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2339 --i; --e;
2340 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002341 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2342 --i; --e;
2343 }
2344
2345 if (Ops.size() == 1) return Ops[0];
2346
2347 assert(!Ops.empty() && "Reduced umax down to nothing!");
2348
2349 // Okay, it looks like we really DO need a umax expr. Check to see if we
2350 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002351 FoldingSetNodeID ID;
2352 ID.AddInteger(scUMaxExpr);
2353 ID.AddInteger(Ops.size());
2354 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2355 ID.AddPointer(Ops[i]);
2356 void *IP = 0;
2357 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002358 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2359 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002360 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2361 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002362 UniqueSCEVs.InsertNode(S, IP);
2363 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002364}
2365
Dan Gohman9311ef62009-06-24 14:49:00 +00002366const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2367 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002368 // ~smax(~x, ~y) == smin(x, y).
2369 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2370}
2371
Dan Gohman9311ef62009-06-24 14:49:00 +00002372const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2373 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002374 // ~umax(~x, ~y) == umin(x, y)
2375 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2376}
2377
Dan Gohman4f8eea82010-02-01 18:27:38 +00002378const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002379 // If we have TargetData, we can bypass creating a target-independent
2380 // constant expression and then folding it back into a ConstantInt.
2381 // This is just a compile-time optimization.
2382 if (TD)
2383 return getConstant(TD->getIntPtrType(getContext()),
2384 TD->getTypeAllocSize(AllocTy));
2385
Dan Gohman4f8eea82010-02-01 18:27:38 +00002386 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002388 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2389 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002390 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2391 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2392}
2393
2394const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2395 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2396 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002397 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2398 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002399 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2400 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2401}
2402
2403const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2404 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002405 // If we have TargetData, we can bypass creating a target-independent
2406 // constant expression and then folding it back into a ConstantInt.
2407 // This is just a compile-time optimization.
2408 if (TD)
2409 return getConstant(TD->getIntPtrType(getContext()),
2410 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2411
Dan Gohman0f5efe52010-01-28 02:15:55 +00002412 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2413 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002414 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2415 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002416 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002417 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002418}
2419
Dan Gohman4f8eea82010-02-01 18:27:38 +00002420const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2421 Constant *FieldNo) {
2422 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002423 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002424 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2425 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002426 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002427 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002428}
2429
Dan Gohman0bba49c2009-07-07 17:06:11 +00002430const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002431 // Don't attempt to do anything other than create a SCEVUnknown object
2432 // here. createSCEV only calls getUnknown after checking for all other
2433 // interesting possibilities, and any other code that calls getUnknown
2434 // is doing so in order to hide a value from SCEV canonicalization.
2435
Dan Gohman1c343752009-06-27 21:21:31 +00002436 FoldingSetNodeID ID;
2437 ID.AddInteger(scUnknown);
2438 ID.AddPointer(V);
2439 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002440 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2441 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2442 "Stale SCEVUnknown in uniquing map!");
2443 return S;
2444 }
2445 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2446 FirstUnknown);
2447 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002448 UniqueSCEVs.InsertNode(S, IP);
2449 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002450}
2451
Chris Lattner53e677a2004-04-02 20:23:17 +00002452//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002453// Basic SCEV Analysis and PHI Idiom Recognition Code
2454//
2455
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002456/// isSCEVable - Test if values of the given type are analyzable within
2457/// the SCEV framework. This primarily includes integer types, and it
2458/// can optionally include pointer types if the ScalarEvolution class
2459/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002460bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002461 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002462 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002463}
2464
2465/// getTypeSizeInBits - Return the size in bits of the specified type,
2466/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002467uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002468 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2469
2470 // If we have a TargetData, use it!
2471 if (TD)
2472 return TD->getTypeSizeInBits(Ty);
2473
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002474 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002475 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002476 return Ty->getPrimitiveSizeInBits();
2477
2478 // The only other support type is pointer. Without TargetData, conservatively
2479 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002480 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002481 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002482}
2483
2484/// getEffectiveSCEVType - Return a type with the same bitwidth as
2485/// the given type and which represents how SCEV will treat the given
2486/// type, for which isSCEVable must return true. For pointer types,
2487/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002488const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002489 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2490
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002491 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002492 return Ty;
2493
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002494 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002495 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002496 if (TD) return TD->getIntPtrType(getContext());
2497
2498 // Without TargetData, conservatively assume pointers are 64-bit.
2499 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002500}
Chris Lattner53e677a2004-04-02 20:23:17 +00002501
Dan Gohman0bba49c2009-07-07 17:06:11 +00002502const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002503 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002504}
2505
Chris Lattner53e677a2004-04-02 20:23:17 +00002506/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2507/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002508const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002509 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002510
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002511 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2512 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002513 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002514
2515 // The process of creating a SCEV for V may have caused other SCEVs
2516 // to have been created, so it's necessary to insert the new entry
2517 // from scratch, rather than trying to remember the insert position
2518 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002519 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002520 return S;
2521}
2522
Dan Gohman2d1be872009-04-16 03:18:22 +00002523/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2524///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002525const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002526 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002527 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002528 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002529
2530 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002531 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002532 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002533 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002534}
2535
2536/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002537const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002538 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002539 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002540 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002541
2542 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002543 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002544 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002545 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002546 return getMinusSCEV(AllOnes, V);
2547}
2548
2549/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2550///
Dan Gohman9311ef62009-06-24 14:49:00 +00002551const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2552 const SCEV *RHS) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002553 // Fast path: X - X --> 0.
2554 if (LHS == RHS)
2555 return getConstant(LHS->getType(), 0);
2556
Dan Gohman2d1be872009-04-16 03:18:22 +00002557 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002558 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002559}
2560
2561/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2562/// input value to the specified type. If the type must be extended, it is zero
2563/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002564const SCEV *
2565ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002566 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002567 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002568 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2569 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002570 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002571 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002572 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002573 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002574 return getTruncateExpr(V, Ty);
2575 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002576}
2577
2578/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2579/// input value to the specified type. If the type must be extended, it is sign
2580/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002581const SCEV *
2582ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002583 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002584 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002585 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2586 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002587 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002588 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002589 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002590 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002591 return getTruncateExpr(V, Ty);
2592 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002593}
2594
Dan Gohman467c4302009-05-13 03:46:30 +00002595/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2596/// input value to the specified type. If the type must be extended, it is zero
2597/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002598const SCEV *
2599ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002600 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002601 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2602 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002603 "Cannot noop or zero extend with non-integer arguments!");
2604 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2605 "getNoopOrZeroExtend cannot truncate!");
2606 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2607 return V; // No conversion
2608 return getZeroExtendExpr(V, Ty);
2609}
2610
2611/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2612/// input value to the specified type. If the type must be extended, it is sign
2613/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002614const SCEV *
2615ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002616 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002617 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2618 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002619 "Cannot noop or sign extend with non-integer arguments!");
2620 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2621 "getNoopOrSignExtend cannot truncate!");
2622 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2623 return V; // No conversion
2624 return getSignExtendExpr(V, Ty);
2625}
2626
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002627/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2628/// the input value to the specified type. If the type must be extended,
2629/// it is extended with unspecified bits. The conversion must not be
2630/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002631const SCEV *
2632ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002633 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002634 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2635 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002636 "Cannot noop or any extend with non-integer arguments!");
2637 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2638 "getNoopOrAnyExtend cannot truncate!");
2639 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2640 return V; // No conversion
2641 return getAnyExtendExpr(V, Ty);
2642}
2643
Dan Gohman467c4302009-05-13 03:46:30 +00002644/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2645/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002646const SCEV *
2647ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002648 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002649 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2650 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002651 "Cannot truncate or noop with non-integer arguments!");
2652 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2653 "getTruncateOrNoop cannot extend!");
2654 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2655 return V; // No conversion
2656 return getTruncateExpr(V, Ty);
2657}
2658
Dan Gohmana334aa72009-06-22 00:31:57 +00002659/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2660/// the types using zero-extension, and then perform a umax operation
2661/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002662const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2663 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002664 const SCEV *PromotedLHS = LHS;
2665 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002666
2667 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2668 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2669 else
2670 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2671
2672 return getUMaxExpr(PromotedLHS, PromotedRHS);
2673}
2674
Dan Gohmanc9759e82009-06-22 15:03:27 +00002675/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2676/// the types using zero-extension, and then perform a umin operation
2677/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002678const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2679 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002680 const SCEV *PromotedLHS = LHS;
2681 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002682
2683 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2684 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2685 else
2686 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2687
2688 return getUMinExpr(PromotedLHS, PromotedRHS);
2689}
2690
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002691/// PushDefUseChildren - Push users of the given Instruction
2692/// onto the given Worklist.
2693static void
2694PushDefUseChildren(Instruction *I,
2695 SmallVectorImpl<Instruction *> &Worklist) {
2696 // Push the def-use children onto the Worklist stack.
2697 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2698 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002699 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002700}
2701
2702/// ForgetSymbolicValue - This looks up computed SCEV values for all
2703/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002704/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002705/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002706void
Dan Gohman85669632010-02-25 06:57:05 +00002707ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002708 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002709 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002710
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002711 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002712 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002713 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002714 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002715 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002716
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002717 ValueExprMapType::iterator It =
2718 ValueExprMap.find(static_cast<Value *>(I));
2719 if (It != ValueExprMap.end()) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002720 // Short-circuit the def-use traversal if the symbolic name
2721 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002722 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002723 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002724
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002725 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002726 // structure, it's a PHI that's in the progress of being computed
2727 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2728 // additional loop trip count information isn't going to change anything.
2729 // In the second case, createNodeForPHI will perform the necessary
2730 // updates on its own when it gets to that point. In the third, we do
2731 // want to forget the SCEVUnknown.
2732 if (!isa<PHINode>(I) ||
2733 !isa<SCEVUnknown>(It->second) ||
2734 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002735 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002736 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002737 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002738 }
2739
2740 PushDefUseChildren(I, Worklist);
2741 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002742}
Chris Lattner53e677a2004-04-02 20:23:17 +00002743
2744/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2745/// a loop header, making it a potential recurrence, or it doesn't.
2746///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002747const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002748 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2749 if (L->getHeader() == PN->getParent()) {
2750 // The loop may have multiple entrances or multiple exits; we can analyze
2751 // this phi as an addrec if it has a unique entry value and a unique
2752 // backedge value.
2753 Value *BEValueV = 0, *StartValueV = 0;
2754 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2755 Value *V = PN->getIncomingValue(i);
2756 if (L->contains(PN->getIncomingBlock(i))) {
2757 if (!BEValueV) {
2758 BEValueV = V;
2759 } else if (BEValueV != V) {
2760 BEValueV = 0;
2761 break;
2762 }
2763 } else if (!StartValueV) {
2764 StartValueV = V;
2765 } else if (StartValueV != V) {
2766 StartValueV = 0;
2767 break;
2768 }
2769 }
2770 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002771 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002772 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002773 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002774 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002775 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002776
2777 // Using this symbolic name for the PHI, analyze the value coming around
2778 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002779 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002780
2781 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2782 // has a special value for the first iteration of the loop.
2783
2784 // If the value coming around the backedge is an add with the symbolic
2785 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002786 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002787 // If there is a single occurrence of the symbolic value, replace it
2788 // with a recurrence.
2789 unsigned FoundIndex = Add->getNumOperands();
2790 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2791 if (Add->getOperand(i) == SymbolicName)
2792 if (FoundIndex == e) {
2793 FoundIndex = i;
2794 break;
2795 }
2796
2797 if (FoundIndex != Add->getNumOperands()) {
2798 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002799 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002800 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2801 if (i != FoundIndex)
2802 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002803 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002804
2805 // This is not a valid addrec if the step amount is varying each
2806 // loop iteration, but is not itself an addrec in this loop.
2807 if (Accum->isLoopInvariant(L) ||
2808 (isa<SCEVAddRecExpr>(Accum) &&
2809 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002810 bool HasNUW = false;
2811 bool HasNSW = false;
2812
2813 // If the increment doesn't overflow, then neither the addrec nor
2814 // the post-increment will overflow.
2815 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2816 if (OBO->hasNoUnsignedWrap())
2817 HasNUW = true;
2818 if (OBO->hasNoSignedWrap())
2819 HasNSW = true;
2820 }
2821
Dan Gohman27dead42010-04-12 07:49:36 +00002822 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002823 const SCEV *PHISCEV =
2824 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002825
Dan Gohmana10756e2010-01-21 02:09:26 +00002826 // Since the no-wrap flags are on the increment, they apply to the
2827 // post-incremented value as well.
2828 if (Accum->isLoopInvariant(L))
2829 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2830 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002831
2832 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002833 // to be symbolic. We now need to go back and purge all of the
2834 // entries for the scalars that use the symbolic expression.
2835 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002836 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002837 return PHISCEV;
2838 }
2839 }
Dan Gohman622ed672009-05-04 22:02:23 +00002840 } else if (const SCEVAddRecExpr *AddRec =
2841 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002842 // Otherwise, this could be a loop like this:
2843 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2844 // In this case, j = {1,+,1} and BEValue is j.
2845 // Because the other in-value of i (0) fits the evolution of BEValue
2846 // i really is an addrec evolution.
2847 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002848 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002849
2850 // If StartVal = j.start - j.stride, we can use StartVal as the
2851 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002852 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002853 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002854 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002855 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002856
2857 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002858 // to be symbolic. We now need to go back and purge all of the
2859 // entries for the scalars that use the symbolic expression.
2860 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002861 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002862 return PHISCEV;
2863 }
2864 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002865 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002866 }
Dan Gohman27dead42010-04-12 07:49:36 +00002867 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002868
Dan Gohman85669632010-02-25 06:57:05 +00002869 // If the PHI has a single incoming value, follow that value, unless the
2870 // PHI's incoming blocks are in a different loop, in which case doing so
2871 // risks breaking LCSSA form. Instcombine would normally zap these, but
2872 // it doesn't have DominatorTree information, so it may miss cases.
2873 if (Value *V = PN->hasConstantValue(DT)) {
2874 bool AllSameLoop = true;
2875 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2876 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2877 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2878 AllSameLoop = false;
2879 break;
2880 }
2881 if (AllSameLoop)
2882 return getSCEV(V);
2883 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002884
Chris Lattner53e677a2004-04-02 20:23:17 +00002885 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002886 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002887}
2888
Dan Gohman26466c02009-05-08 20:26:55 +00002889/// createNodeForGEP - Expand GEP instructions into add and multiply
2890/// operations. This allows them to be analyzed by regular SCEV code.
2891///
Dan Gohmand281ed22009-12-18 02:09:29 +00002892const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002893
Dan Gohmanb9f96512010-06-30 07:16:37 +00002894 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2895 // Add expression, because the Instruction may be guarded by control flow
2896 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002897 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002898
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002899 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002900 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002901 // Don't attempt to analyze GEPs over unsized objects.
2902 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2903 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002904 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002905 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002906 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002907 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002908 I != E; ++I) {
2909 Value *Index = *I;
2910 // Compute the (potentially symbolic) offset in bytes for this index.
2911 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2912 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002913 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002914 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2915
Dan Gohmanb9f96512010-06-30 07:16:37 +00002916 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002917 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002918 } else {
2919 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002920 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2921 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002922 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002923 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2924
Dan Gohmanb9f96512010-06-30 07:16:37 +00002925 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002926 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002927
2928 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002929 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002930 }
2931 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002932
2933 // Get the SCEV for the GEP base.
2934 const SCEV *BaseS = getSCEV(Base);
2935
Dan Gohmanb9f96512010-06-30 07:16:37 +00002936 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002937 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002938}
2939
Nick Lewycky83bb0052007-11-22 07:59:40 +00002940/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2941/// guaranteed to end in (at every loop iteration). It is, at the same time,
2942/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2943/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002944uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002945ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002946 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002947 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002948
Dan Gohman622ed672009-05-04 22:02:23 +00002949 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002950 return std::min(GetMinTrailingZeros(T->getOperand()),
2951 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002952
Dan Gohman622ed672009-05-04 22:02:23 +00002953 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002954 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2955 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2956 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002957 }
2958
Dan Gohman622ed672009-05-04 22:02:23 +00002959 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002960 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2961 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2962 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002963 }
2964
Dan Gohman622ed672009-05-04 22:02:23 +00002965 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002966 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002967 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002968 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002969 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002970 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002971 }
2972
Dan Gohman622ed672009-05-04 22:02:23 +00002973 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002974 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002975 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2976 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002977 for (unsigned i = 1, e = M->getNumOperands();
2978 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002979 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002980 BitWidth);
2981 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002982 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002983
Dan Gohman622ed672009-05-04 22:02:23 +00002984 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002985 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002986 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002987 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002988 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002989 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002990 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002991
Dan Gohman622ed672009-05-04 22:02:23 +00002992 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002993 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002994 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002995 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002996 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002997 return MinOpRes;
2998 }
2999
Dan Gohman622ed672009-05-04 22:02:23 +00003000 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003001 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003002 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003003 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003004 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003005 return MinOpRes;
3006 }
3007
Dan Gohman2c364ad2009-06-19 23:29:04 +00003008 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3009 // For a SCEVUnknown, ask ValueTracking.
3010 unsigned BitWidth = getTypeSizeInBits(U->getType());
3011 APInt Mask = APInt::getAllOnesValue(BitWidth);
3012 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3013 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3014 return Zeros.countTrailingOnes();
3015 }
3016
3017 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003018 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003019}
Chris Lattner53e677a2004-04-02 20:23:17 +00003020
Dan Gohman85b05a22009-07-13 21:35:55 +00003021/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3022///
3023ConstantRange
3024ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003025
3026 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00003027 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003028
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003029 unsigned BitWidth = getTypeSizeInBits(S->getType());
3030 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3031
3032 // If the value has known zeros, the maximum unsigned value will have those
3033 // known zeros as well.
3034 uint32_t TZ = GetMinTrailingZeros(S);
3035 if (TZ != 0)
3036 ConservativeResult =
3037 ConstantRange(APInt::getMinValue(BitWidth),
3038 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3039
Dan Gohman85b05a22009-07-13 21:35:55 +00003040 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3041 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3042 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3043 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003044 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003045 }
3046
3047 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3048 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3049 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3050 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003051 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003052 }
3053
3054 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3055 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3056 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3057 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003058 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003059 }
3060
3061 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3062 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3063 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3064 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003065 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003066 }
3067
3068 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3069 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3070 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003071 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003072 }
3073
3074 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3075 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003076 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003077 }
3078
3079 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3080 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003081 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003082 }
3083
3084 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3085 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003086 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003087 }
3088
Dan Gohman85b05a22009-07-13 21:35:55 +00003089 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003090 // If there's no unsigned wrap, the value will never be less than its
3091 // initial value.
3092 if (AddRec->hasNoUnsignedWrap())
3093 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003094 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003095 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003096 ConservativeResult.intersectWith(
3097 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003098
3099 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003100 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003101 const Type *Ty = AddRec->getType();
3102 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003103 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3104 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003105 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3106
3107 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003108 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003109
3110 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003111 ConstantRange StepRange = getSignedRange(Step);
3112 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3113 ConstantRange EndRange =
3114 StartRange.add(MaxBECountRange.multiply(StepRange));
3115
3116 // Check for overflow. This must be done with ConstantRange arithmetic
3117 // because we could be called from within the ScalarEvolution overflow
3118 // checking code.
3119 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3120 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3121 ConstantRange ExtMaxBECountRange =
3122 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3123 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3124 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3125 ExtEndRange)
3126 return ConservativeResult;
3127
Dan Gohman85b05a22009-07-13 21:35:55 +00003128 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3129 EndRange.getUnsignedMin());
3130 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3131 EndRange.getUnsignedMax());
3132 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003133 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003134 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00003135 }
3136 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003137
3138 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003139 }
3140
3141 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3142 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003143 APInt Mask = APInt::getAllOnesValue(BitWidth);
3144 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3145 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003146 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003147 return ConservativeResult;
3148 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003149 }
3150
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003151 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003152}
3153
Dan Gohman85b05a22009-07-13 21:35:55 +00003154/// getSignedRange - Determine the signed range for a particular SCEV.
3155///
3156ConstantRange
3157ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003158
Dan Gohman85b05a22009-07-13 21:35:55 +00003159 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3160 return ConstantRange(C->getValue()->getValue());
3161
Dan Gohman52fddd32010-01-26 04:40:18 +00003162 unsigned BitWidth = getTypeSizeInBits(S->getType());
3163 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3164
3165 // If the value has known zeros, the maximum signed value will have those
3166 // known zeros as well.
3167 uint32_t TZ = GetMinTrailingZeros(S);
3168 if (TZ != 0)
3169 ConservativeResult =
3170 ConstantRange(APInt::getSignedMinValue(BitWidth),
3171 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3172
Dan Gohman85b05a22009-07-13 21:35:55 +00003173 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3174 ConstantRange X = getSignedRange(Add->getOperand(0));
3175 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3176 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003177 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003178 }
3179
Dan Gohman85b05a22009-07-13 21:35:55 +00003180 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3181 ConstantRange X = getSignedRange(Mul->getOperand(0));
3182 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3183 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003184 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003185 }
3186
Dan Gohman85b05a22009-07-13 21:35:55 +00003187 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3188 ConstantRange X = getSignedRange(SMax->getOperand(0));
3189 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3190 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003191 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003192 }
Dan Gohman62849c02009-06-24 01:05:09 +00003193
Dan Gohman85b05a22009-07-13 21:35:55 +00003194 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3195 ConstantRange X = getSignedRange(UMax->getOperand(0));
3196 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3197 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003198 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003199 }
Dan Gohman62849c02009-06-24 01:05:09 +00003200
Dan Gohman85b05a22009-07-13 21:35:55 +00003201 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3202 ConstantRange X = getSignedRange(UDiv->getLHS());
3203 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003204 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003205 }
Dan Gohman62849c02009-06-24 01:05:09 +00003206
Dan Gohman85b05a22009-07-13 21:35:55 +00003207 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3208 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003209 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003210 }
3211
3212 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3213 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003214 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003215 }
3216
3217 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3218 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003219 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003220 }
3221
Dan Gohman85b05a22009-07-13 21:35:55 +00003222 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003223 // If there's no signed wrap, and all the operands have the same sign or
3224 // zero, the value won't ever change sign.
3225 if (AddRec->hasNoSignedWrap()) {
3226 bool AllNonNeg = true;
3227 bool AllNonPos = true;
3228 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3229 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3230 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3231 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003232 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003233 ConservativeResult = ConservativeResult.intersectWith(
3234 ConstantRange(APInt(BitWidth, 0),
3235 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003236 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003237 ConservativeResult = ConservativeResult.intersectWith(
3238 ConstantRange(APInt::getSignedMinValue(BitWidth),
3239 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003240 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003241
3242 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003243 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003244 const Type *Ty = AddRec->getType();
3245 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003246 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3247 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003248 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3249
3250 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003251 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003252
3253 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003254 ConstantRange StepRange = getSignedRange(Step);
3255 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3256 ConstantRange EndRange =
3257 StartRange.add(MaxBECountRange.multiply(StepRange));
3258
3259 // Check for overflow. This must be done with ConstantRange arithmetic
3260 // because we could be called from within the ScalarEvolution overflow
3261 // checking code.
3262 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3263 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3264 ConstantRange ExtMaxBECountRange =
3265 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3266 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3267 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3268 ExtEndRange)
3269 return ConservativeResult;
3270
Dan Gohman85b05a22009-07-13 21:35:55 +00003271 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3272 EndRange.getSignedMin());
3273 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3274 EndRange.getSignedMax());
3275 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003276 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003277 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003278 }
Dan Gohman62849c02009-06-24 01:05:09 +00003279 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003280
3281 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003282 }
3283
Dan Gohman2c364ad2009-06-19 23:29:04 +00003284 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3285 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003286 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003287 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003288 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3289 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003290 return ConservativeResult;
3291 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003292 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003293 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003294 }
3295
Dan Gohman52fddd32010-01-26 04:40:18 +00003296 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003297}
3298
Chris Lattner53e677a2004-04-02 20:23:17 +00003299/// createSCEV - We know that there is no SCEV for the specified value.
3300/// Analyze the expression.
3301///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003302const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003303 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003304 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003305
Dan Gohman6c459a22008-06-22 19:56:46 +00003306 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003307 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003308 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003309
3310 // Don't attempt to analyze instructions in blocks that aren't
3311 // reachable. Such instructions don't matter, and they aren't required
3312 // to obey basic rules for definitions dominating uses which this
3313 // analysis depends on.
3314 if (!DT->isReachableFromEntry(I->getParent()))
3315 return getUnknown(V);
3316 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003317 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003318 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3319 return getConstant(CI);
3320 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003321 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003322 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3323 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003324 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003325 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003326
Dan Gohmanca178902009-07-17 20:47:02 +00003327 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003328 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003329 case Instruction::Add: {
3330 // The simple thing to do would be to just call getSCEV on both operands
3331 // and call getAddExpr with the result. However if we're looking at a
3332 // bunch of things all added together, this can be quite inefficient,
3333 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3334 // Instead, gather up all the operands and make a single getAddExpr call.
3335 // LLVM IR canonical form means we need only traverse the left operands.
3336 SmallVector<const SCEV *, 4> AddOps;
3337 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohmanb8fc62b2010-08-29 15:10:06 +00003338 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3339 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3340 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3341 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003342 U = cast<Operator>(Op);
Dan Gohmanb8fc62b2010-08-29 15:10:06 +00003343 const SCEV *Op1 = getSCEV(U->getOperand(1));
3344 if (Opcode == Instruction::Sub)
3345 AddOps.push_back(getNegativeSCEV(Op1));
3346 else
3347 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003348 }
3349 AddOps.push_back(getSCEV(U->getOperand(0)));
3350 return getAddExpr(AddOps);
3351 }
3352 case Instruction::Mul: {
3353 // See the Add code above.
3354 SmallVector<const SCEV *, 4> MulOps;
3355 MulOps.push_back(getSCEV(U->getOperand(1)));
3356 for (Value *Op = U->getOperand(0);
3357 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3358 Op = U->getOperand(0)) {
3359 U = cast<Operator>(Op);
3360 MulOps.push_back(getSCEV(U->getOperand(1)));
3361 }
3362 MulOps.push_back(getSCEV(U->getOperand(0)));
3363 return getMulExpr(MulOps);
3364 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003365 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003366 return getUDivExpr(getSCEV(U->getOperand(0)),
3367 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003368 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003369 return getMinusSCEV(getSCEV(U->getOperand(0)),
3370 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003371 case Instruction::And:
3372 // For an expression like x&255 that merely masks off the high bits,
3373 // use zext(trunc(x)) as the SCEV expression.
3374 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003375 if (CI->isNullValue())
3376 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003377 if (CI->isAllOnesValue())
3378 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003379 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003380
3381 // Instcombine's ShrinkDemandedConstant may strip bits out of
3382 // constants, obscuring what would otherwise be a low-bits mask.
3383 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3384 // knew about to reconstruct a low-bits mask value.
3385 unsigned LZ = A.countLeadingZeros();
3386 unsigned BitWidth = A.getBitWidth();
3387 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3388 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3389 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3390
3391 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3392
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003393 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003394 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003395 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003396 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003397 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003398 }
3399 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003400
Dan Gohman6c459a22008-06-22 19:56:46 +00003401 case Instruction::Or:
3402 // If the RHS of the Or is a constant, we may have something like:
3403 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3404 // optimizations will transparently handle this case.
3405 //
3406 // In order for this transformation to be safe, the LHS must be of the
3407 // form X*(2^n) and the Or constant must be less than 2^n.
3408 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003409 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003410 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003411 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003412 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3413 // Build a plain add SCEV.
3414 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3415 // If the LHS of the add was an addrec and it has no-wrap flags,
3416 // transfer the no-wrap flags, since an or won't introduce a wrap.
3417 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3418 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3419 if (OldAR->hasNoUnsignedWrap())
3420 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3421 if (OldAR->hasNoSignedWrap())
3422 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3423 }
3424 return S;
3425 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003426 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003427 break;
3428 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003429 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003430 // If the RHS of the xor is a signbit, then this is just an add.
3431 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003432 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003433 return getAddExpr(getSCEV(U->getOperand(0)),
3434 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003435
3436 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003437 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003438 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003439
3440 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3441 // This is a variant of the check for xor with -1, and it handles
3442 // the case where instcombine has trimmed non-demanded bits out
3443 // of an xor with -1.
3444 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3445 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3446 if (BO->getOpcode() == Instruction::And &&
3447 LCI->getValue() == CI->getValue())
3448 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003449 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003450 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003451 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003452 const Type *Z0Ty = Z0->getType();
3453 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3454
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003455 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003456 // mask off the high bits. Complement the operand and
3457 // re-apply the zext.
3458 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3459 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3460
3461 // If C is a single bit, it may be in the sign-bit position
3462 // before the zero-extend. In this case, represent the xor
3463 // using an add, which is equivalent, and re-apply the zext.
3464 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3465 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3466 Trunc.isSignBit())
3467 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3468 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003469 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003470 }
3471 break;
3472
3473 case Instruction::Shl:
3474 // Turn shift left of a constant amount into a multiply.
3475 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003476 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003477
3478 // If the shift count is not less than the bitwidth, the result of
3479 // the shift is undefined. Don't try to analyze it, because the
3480 // resolution chosen here may differ from the resolution chosen in
3481 // other parts of the compiler.
3482 if (SA->getValue().uge(BitWidth))
3483 break;
3484
Owen Andersoneed707b2009-07-24 23:12:02 +00003485 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003486 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003487 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003488 }
3489 break;
3490
Nick Lewycky01eaf802008-07-07 06:15:49 +00003491 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003492 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003493 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003494 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003495
3496 // If the shift count is not less than the bitwidth, the result of
3497 // the shift is undefined. Don't try to analyze it, because the
3498 // resolution chosen here may differ from the resolution chosen in
3499 // other parts of the compiler.
3500 if (SA->getValue().uge(BitWidth))
3501 break;
3502
Owen Andersoneed707b2009-07-24 23:12:02 +00003503 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003504 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003505 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003506 }
3507 break;
3508
Dan Gohman4ee29af2009-04-21 02:26:00 +00003509 case Instruction::AShr:
3510 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3511 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003512 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003513 if (L->getOpcode() == Instruction::Shl &&
3514 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003515 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3516
3517 // If the shift count is not less than the bitwidth, the result of
3518 // the shift is undefined. Don't try to analyze it, because the
3519 // resolution chosen here may differ from the resolution chosen in
3520 // other parts of the compiler.
3521 if (CI->getValue().uge(BitWidth))
3522 break;
3523
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003524 uint64_t Amt = BitWidth - CI->getZExtValue();
3525 if (Amt == BitWidth)
3526 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003527 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003528 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003529 IntegerType::get(getContext(),
3530 Amt)),
3531 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003532 }
3533 break;
3534
Dan Gohman6c459a22008-06-22 19:56:46 +00003535 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003536 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003537
3538 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003539 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003540
3541 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003542 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003543
3544 case Instruction::BitCast:
3545 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003546 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003547 return getSCEV(U->getOperand(0));
3548 break;
3549
Dan Gohman4f8eea82010-02-01 18:27:38 +00003550 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3551 // lead to pointer expressions which cannot safely be expanded to GEPs,
3552 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3553 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003554
Dan Gohman26466c02009-05-08 20:26:55 +00003555 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003556 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003557
Dan Gohman6c459a22008-06-22 19:56:46 +00003558 case Instruction::PHI:
3559 return createNodeForPHI(cast<PHINode>(U));
3560
3561 case Instruction::Select:
3562 // This could be a smax or umax that was lowered earlier.
3563 // Try to recover it.
3564 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3565 Value *LHS = ICI->getOperand(0);
3566 Value *RHS = ICI->getOperand(1);
3567 switch (ICI->getPredicate()) {
3568 case ICmpInst::ICMP_SLT:
3569 case ICmpInst::ICMP_SLE:
3570 std::swap(LHS, RHS);
3571 // fall through
3572 case ICmpInst::ICMP_SGT:
3573 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003574 // a >s b ? a+x : b+x -> smax(a, b)+x
3575 // a >s b ? b+x : a+x -> smin(a, b)+x
3576 if (LHS->getType() == U->getType()) {
3577 const SCEV *LS = getSCEV(LHS);
3578 const SCEV *RS = getSCEV(RHS);
3579 const SCEV *LA = getSCEV(U->getOperand(1));
3580 const SCEV *RA = getSCEV(U->getOperand(2));
3581 const SCEV *LDiff = getMinusSCEV(LA, LS);
3582 const SCEV *RDiff = getMinusSCEV(RA, RS);
3583 if (LDiff == RDiff)
3584 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3585 LDiff = getMinusSCEV(LA, RS);
3586 RDiff = getMinusSCEV(RA, LS);
3587 if (LDiff == RDiff)
3588 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3589 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003590 break;
3591 case ICmpInst::ICMP_ULT:
3592 case ICmpInst::ICMP_ULE:
3593 std::swap(LHS, RHS);
3594 // fall through
3595 case ICmpInst::ICMP_UGT:
3596 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003597 // a >u b ? a+x : b+x -> umax(a, b)+x
3598 // a >u b ? b+x : a+x -> umin(a, b)+x
3599 if (LHS->getType() == U->getType()) {
3600 const SCEV *LS = getSCEV(LHS);
3601 const SCEV *RS = getSCEV(RHS);
3602 const SCEV *LA = getSCEV(U->getOperand(1));
3603 const SCEV *RA = getSCEV(U->getOperand(2));
3604 const SCEV *LDiff = getMinusSCEV(LA, LS);
3605 const SCEV *RDiff = getMinusSCEV(RA, RS);
3606 if (LDiff == RDiff)
3607 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3608 LDiff = getMinusSCEV(LA, RS);
3609 RDiff = getMinusSCEV(RA, LS);
3610 if (LDiff == RDiff)
3611 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3612 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003613 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003614 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003615 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3616 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003617 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003618 cast<ConstantInt>(RHS)->isZero()) {
3619 const SCEV *One = getConstant(LHS->getType(), 1);
3620 const SCEV *LS = getSCEV(LHS);
3621 const SCEV *LA = getSCEV(U->getOperand(1));
3622 const SCEV *RA = getSCEV(U->getOperand(2));
3623 const SCEV *LDiff = getMinusSCEV(LA, LS);
3624 const SCEV *RDiff = getMinusSCEV(RA, One);
3625 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003626 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003627 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003628 break;
3629 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003630 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3631 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003632 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003633 cast<ConstantInt>(RHS)->isZero()) {
3634 const SCEV *One = getConstant(LHS->getType(), 1);
3635 const SCEV *LS = getSCEV(LHS);
3636 const SCEV *LA = getSCEV(U->getOperand(1));
3637 const SCEV *RA = getSCEV(U->getOperand(2));
3638 const SCEV *LDiff = getMinusSCEV(LA, One);
3639 const SCEV *RDiff = getMinusSCEV(RA, LS);
3640 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003641 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003642 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003643 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003644 default:
3645 break;
3646 }
3647 }
3648
3649 default: // We cannot analyze this expression.
3650 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003651 }
3652
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003653 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003654}
3655
3656
3657
3658//===----------------------------------------------------------------------===//
3659// Iteration Count Computation Code
3660//
3661
Dan Gohman46bdfb02009-02-24 18:55:53 +00003662/// getBackedgeTakenCount - If the specified loop has a predictable
3663/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3664/// object. The backedge-taken count is the number of times the loop header
3665/// will be branched to from within the loop. This is one less than the
3666/// trip count of the loop, since it doesn't count the first iteration,
3667/// when the header is branched to from outside the loop.
3668///
3669/// Note that it is not valid to call this method on a loop without a
3670/// loop-invariant backedge-taken count (see
3671/// hasLoopInvariantBackedgeTakenCount).
3672///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003673const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003674 return getBackedgeTakenInfo(L).Exact;
3675}
3676
3677/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3678/// return the least SCEV value that is known never to be less than the
3679/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003680const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003681 return getBackedgeTakenInfo(L).Max;
3682}
3683
Dan Gohman59ae6b92009-07-08 19:23:34 +00003684/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3685/// onto the given Worklist.
3686static void
3687PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3688 BasicBlock *Header = L->getHeader();
3689
3690 // Push all Loop-header PHIs onto the Worklist stack.
3691 for (BasicBlock::iterator I = Header->begin();
3692 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3693 Worklist.push_back(PN);
3694}
3695
Dan Gohmana1af7572009-04-30 20:47:05 +00003696const ScalarEvolution::BackedgeTakenInfo &
3697ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003698 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003699 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003700 // update the value. The temporary CouldNotCompute value tells SCEV
3701 // code elsewhere that it shouldn't attempt to request a new
3702 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003703 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003704 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3705 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003706 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3707 if (BECount.Exact != getCouldNotCompute()) {
3708 assert(BECount.Exact->isLoopInvariant(L) &&
3709 BECount.Max->isLoopInvariant(L) &&
3710 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003711 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003712
Dan Gohman01ecca22009-04-27 20:16:15 +00003713 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003714 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003715 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003716 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003717 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003718 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003719 if (isa<PHINode>(L->getHeader()->begin()))
3720 // Only count loops that have phi nodes as not being computable.
3721 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003722 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003723
3724 // Now that we know more about the trip count for this loop, forget any
3725 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003726 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003727 // information. This is similar to the code in forgetLoop, except that
3728 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003729 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003730 SmallVector<Instruction *, 16> Worklist;
3731 PushLoopPHIs(L, Worklist);
3732
3733 SmallPtrSet<Instruction *, 8> Visited;
3734 while (!Worklist.empty()) {
3735 Instruction *I = Worklist.pop_back_val();
3736 if (!Visited.insert(I)) continue;
3737
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003738 ValueExprMapType::iterator It =
3739 ValueExprMap.find(static_cast<Value *>(I));
3740 if (It != ValueExprMap.end()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003741 // SCEVUnknown for a PHI either means that it has an unrecognized
3742 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003743 // by createNodeForPHI. In the former case, additional loop trip
3744 // count information isn't going to change anything. In the later
3745 // case, createNodeForPHI will perform the necessary updates on its
3746 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003747 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3748 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003749 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003750 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003751 if (PHINode *PN = dyn_cast<PHINode>(I))
3752 ConstantEvolutionLoopExitValue.erase(PN);
3753 }
3754
3755 PushDefUseChildren(I, Worklist);
3756 }
3757 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003758 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003759 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003760}
3761
Dan Gohman4c7279a2009-10-31 15:04:55 +00003762/// forgetLoop - This method should be called by the client when it has
3763/// changed a loop in a way that may effect ScalarEvolution's ability to
3764/// compute a trip count, or if the loop is deleted.
3765void ScalarEvolution::forgetLoop(const Loop *L) {
3766 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003767 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003768
Dan Gohman4c7279a2009-10-31 15:04:55 +00003769 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003770 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003771 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003772
Dan Gohman59ae6b92009-07-08 19:23:34 +00003773 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003774 while (!Worklist.empty()) {
3775 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003776 if (!Visited.insert(I)) continue;
3777
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003778 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3779 if (It != ValueExprMap.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003780 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003781 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003782 if (PHINode *PN = dyn_cast<PHINode>(I))
3783 ConstantEvolutionLoopExitValue.erase(PN);
3784 }
3785
3786 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003787 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003788}
3789
Eric Christophere6cbfa62010-07-29 01:25:38 +00003790/// forgetValue - This method should be called by the client when it has
3791/// changed a value in a way that may effect its value, or which may
3792/// disconnect it from a def-use chain linking it to a loop.
3793void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003794 Instruction *I = dyn_cast<Instruction>(V);
3795 if (!I) return;
3796
3797 // Drop information about expressions based on loop-header PHIs.
3798 SmallVector<Instruction *, 16> Worklist;
3799 Worklist.push_back(I);
3800
3801 SmallPtrSet<Instruction *, 8> Visited;
3802 while (!Worklist.empty()) {
3803 I = Worklist.pop_back_val();
3804 if (!Visited.insert(I)) continue;
3805
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003806 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3807 if (It != ValueExprMap.end()) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003808 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003809 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003810 if (PHINode *PN = dyn_cast<PHINode>(I))
3811 ConstantEvolutionLoopExitValue.erase(PN);
3812 }
3813
3814 PushDefUseChildren(I, Worklist);
3815 }
3816}
3817
Dan Gohman46bdfb02009-02-24 18:55:53 +00003818/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3819/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003820ScalarEvolution::BackedgeTakenInfo
3821ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003822 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003823 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003824
Dan Gohmana334aa72009-06-22 00:31:57 +00003825 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003826 const SCEV *BECount = getCouldNotCompute();
3827 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003828 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003829 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3830 BackedgeTakenInfo NewBTI =
3831 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003832
Dan Gohman1c343752009-06-27 21:21:31 +00003833 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003834 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003835 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003836 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003837 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003838 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003839 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003840 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003841 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003842 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003843 }
Dan Gohman1c343752009-06-27 21:21:31 +00003844 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003845 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003846 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003847 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003848 }
3849
3850 return BackedgeTakenInfo(BECount, MaxBECount);
3851}
3852
3853/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3854/// of the specified loop will execute if it exits via the specified block.
3855ScalarEvolution::BackedgeTakenInfo
3856ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3857 BasicBlock *ExitingBlock) {
3858
3859 // Okay, we've chosen an exiting block. See what condition causes us to
3860 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003861 //
3862 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003863 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003864 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003865 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003866
Chris Lattner8b0e3602007-01-07 02:24:26 +00003867 // At this point, we know we have a conditional branch that determines whether
3868 // the loop is exited. However, we don't know if the branch is executed each
3869 // time through the loop. If not, then the execution count of the branch will
3870 // not be equal to the trip count of the loop.
3871 //
3872 // Currently we check for this by checking to see if the Exit branch goes to
3873 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003874 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003875 // loop header. This is common for un-rotated loops.
3876 //
3877 // If both of those tests fail, walk up the unique predecessor chain to the
3878 // header, stopping if there is an edge that doesn't exit the loop. If the
3879 // header is reached, the execution count of the branch will be equal to the
3880 // trip count of the loop.
3881 //
3882 // More extensive analysis could be done to handle more cases here.
3883 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003884 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003885 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003886 ExitBr->getParent() != L->getHeader()) {
3887 // The simple checks failed, try climbing the unique predecessor chain
3888 // up to the header.
3889 bool Ok = false;
3890 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3891 BasicBlock *Pred = BB->getUniquePredecessor();
3892 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003893 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003894 TerminatorInst *PredTerm = Pred->getTerminator();
3895 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3896 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3897 if (PredSucc == BB)
3898 continue;
3899 // If the predecessor has a successor that isn't BB and isn't
3900 // outside the loop, assume the worst.
3901 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003902 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003903 }
3904 if (Pred == L->getHeader()) {
3905 Ok = true;
3906 break;
3907 }
3908 BB = Pred;
3909 }
3910 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003911 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003912 }
3913
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003914 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003915 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3916 ExitBr->getSuccessor(0),
3917 ExitBr->getSuccessor(1));
3918}
3919
3920/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3921/// backedge of the specified loop will execute if its exit condition
3922/// were a conditional branch of ExitCond, TBB, and FBB.
3923ScalarEvolution::BackedgeTakenInfo
3924ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3925 Value *ExitCond,
3926 BasicBlock *TBB,
3927 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003928 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003929 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3930 if (BO->getOpcode() == Instruction::And) {
3931 // Recurse on the operands of the and.
3932 BackedgeTakenInfo BTI0 =
3933 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3934 BackedgeTakenInfo BTI1 =
3935 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003936 const SCEV *BECount = getCouldNotCompute();
3937 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003938 if (L->contains(TBB)) {
3939 // Both conditions must be true for the loop to continue executing.
3940 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003941 if (BTI0.Exact == getCouldNotCompute() ||
3942 BTI1.Exact == getCouldNotCompute())
3943 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003944 else
3945 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003946 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003947 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003948 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003949 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003950 else
3951 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003952 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003953 // Both conditions must be true at the same time for the loop to exit.
3954 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003955 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003956 if (BTI0.Max == BTI1.Max)
3957 MaxBECount = BTI0.Max;
3958 if (BTI0.Exact == BTI1.Exact)
3959 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003960 }
3961
3962 return BackedgeTakenInfo(BECount, MaxBECount);
3963 }
3964 if (BO->getOpcode() == Instruction::Or) {
3965 // Recurse on the operands of the or.
3966 BackedgeTakenInfo BTI0 =
3967 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3968 BackedgeTakenInfo BTI1 =
3969 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003970 const SCEV *BECount = getCouldNotCompute();
3971 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003972 if (L->contains(FBB)) {
3973 // Both conditions must be false for the loop to continue executing.
3974 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003975 if (BTI0.Exact == getCouldNotCompute() ||
3976 BTI1.Exact == getCouldNotCompute())
3977 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003978 else
3979 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003980 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003981 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003982 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003983 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003984 else
3985 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003986 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003987 // Both conditions must be false at the same time for the loop to exit.
3988 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003989 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003990 if (BTI0.Max == BTI1.Max)
3991 MaxBECount = BTI0.Max;
3992 if (BTI0.Exact == BTI1.Exact)
3993 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003994 }
3995
3996 return BackedgeTakenInfo(BECount, MaxBECount);
3997 }
3998 }
3999
4000 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004001 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004002 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4003 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004004
Dan Gohman00cb5b72010-02-19 18:12:07 +00004005 // Check for a constant condition. These are normally stripped out by
4006 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4007 // preserve the CFG and is temporarily leaving constant conditions
4008 // in place.
4009 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4010 if (L->contains(FBB) == !CI->getZExtValue())
4011 // The backedge is always taken.
4012 return getCouldNotCompute();
4013 else
4014 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004015 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004016 }
4017
Eli Friedman361e54d2009-05-09 12:32:42 +00004018 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00004019 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4020}
4021
4022/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4023/// backedge of the specified loop will execute if its exit condition
4024/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4025ScalarEvolution::BackedgeTakenInfo
4026ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4027 ICmpInst *ExitCond,
4028 BasicBlock *TBB,
4029 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004030
Reid Spencere4d87aa2006-12-23 06:05:41 +00004031 // If the condition was exit on true, convert the condition to exit on false
4032 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004033 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004034 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004035 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004036 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004037
4038 // Handle common loops like: for (X = "string"; *X; ++X)
4039 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4040 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004041 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004042 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004043 if (ItCnt.hasAnyInfo())
4044 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004045 }
4046
Dan Gohman0bba49c2009-07-07 17:06:11 +00004047 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4048 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004049
4050 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004051 LHS = getSCEVAtScope(LHS, L);
4052 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004053
Dan Gohman64a845e2009-06-24 04:48:43 +00004054 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004055 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004056 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
4057 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004058 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004059 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004060 }
4061
Dan Gohman03557dc2010-05-03 16:35:17 +00004062 // Simplify the operands before analyzing them.
4063 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4064
Chris Lattner53e677a2004-04-02 20:23:17 +00004065 // If we have a comparison of a chrec against a constant, try to use value
4066 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004067 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4068 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004069 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004070 // Form the constant range.
4071 ConstantRange CompRange(
4072 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004073
Dan Gohman0bba49c2009-07-07 17:06:11 +00004074 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004075 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004076 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004077
Chris Lattner53e677a2004-04-02 20:23:17 +00004078 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004079 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004080 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004081 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4082 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004083 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004084 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004085 case ICmpInst::ICMP_EQ: { // while (X == Y)
4086 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004087 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4088 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004089 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004090 }
4091 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004092 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4093 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004094 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004095 }
4096 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004097 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4098 getNotSCEV(RHS), L, true);
4099 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004100 break;
4101 }
4102 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004103 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4104 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004105 break;
4106 }
4107 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004108 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4109 getNotSCEV(RHS), L, false);
4110 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004111 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004112 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004113 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004114#if 0
David Greene25e0e872009-12-23 22:18:14 +00004115 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004116 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004117 dbgs() << "[unsigned] ";
4118 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004119 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004120 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004121#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004122 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004123 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004124 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004125 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004126}
4127
Chris Lattner673e02b2004-10-12 01:49:27 +00004128static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004129EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4130 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004131 const SCEV *InVal = SE.getConstant(C);
4132 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004133 assert(isa<SCEVConstant>(Val) &&
4134 "Evaluation of SCEV at constant didn't fold correctly?");
4135 return cast<SCEVConstant>(Val)->getValue();
4136}
4137
4138/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4139/// and a GEP expression (missing the pointer index) indexing into it, return
4140/// the addressed element of the initializer or null if the index expression is
4141/// invalid.
4142static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004143GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004144 const std::vector<ConstantInt*> &Indices) {
4145 Constant *Init = GV->getInitializer();
4146 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004147 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004148 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4149 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4150 Init = cast<Constant>(CS->getOperand(Idx));
4151 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4152 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4153 Init = cast<Constant>(CA->getOperand(Idx));
4154 } else if (isa<ConstantAggregateZero>(Init)) {
4155 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4156 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004157 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004158 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4159 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004160 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004161 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004162 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004163 }
4164 return 0;
4165 } else {
4166 return 0; // Unknown initializer type
4167 }
4168 }
4169 return Init;
4170}
4171
Dan Gohman46bdfb02009-02-24 18:55:53 +00004172/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4173/// 'icmp op load X, cst', try to see if we can compute the backedge
4174/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004175ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004176ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4177 LoadInst *LI,
4178 Constant *RHS,
4179 const Loop *L,
4180 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004181 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004182
4183 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004184 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004185 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004186 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004187
4188 // Make sure that it is really a constant global we are gepping, with an
4189 // initializer, and make sure the first IDX is really 0.
4190 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004191 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004192 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4193 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004194 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004195
4196 // Okay, we allow one non-constant index into the GEP instruction.
4197 Value *VarIdx = 0;
4198 std::vector<ConstantInt*> Indexes;
4199 unsigned VarIdxNum = 0;
4200 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4201 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4202 Indexes.push_back(CI);
4203 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004204 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004205 VarIdx = GEP->getOperand(i);
4206 VarIdxNum = i-2;
4207 Indexes.push_back(0);
4208 }
4209
4210 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4211 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004212 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004213 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004214
4215 // We can only recognize very limited forms of loop index expressions, in
4216 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004217 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004218 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4219 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4220 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004221 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004222
4223 unsigned MaxSteps = MaxBruteForceIterations;
4224 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004225 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004226 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004227 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004228
4229 // Form the GEP offset.
4230 Indexes[VarIdxNum] = Val;
4231
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004232 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004233 if (Result == 0) break; // Cannot compute!
4234
4235 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004236 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004237 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004238 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004239#if 0
David Greene25e0e872009-12-23 22:18:14 +00004240 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004241 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4242 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004243#endif
4244 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004245 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004246 }
4247 }
Dan Gohman1c343752009-06-27 21:21:31 +00004248 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004249}
4250
4251
Chris Lattner3221ad02004-04-17 22:58:41 +00004252/// CanConstantFold - Return true if we can constant fold an instruction of the
4253/// specified type, assuming that all operands were constants.
4254static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004255 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004256 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4257 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004258
Chris Lattner3221ad02004-04-17 22:58:41 +00004259 if (const CallInst *CI = dyn_cast<CallInst>(I))
4260 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004261 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004262 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004263}
4264
Chris Lattner3221ad02004-04-17 22:58:41 +00004265/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4266/// in the loop that V is derived from. We allow arbitrary operations along the
4267/// way, but the operands of an operation must either be constants or a value
4268/// derived from a constant PHI. If this expression does not fit with these
4269/// constraints, return null.
4270static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4271 // If this is not an instruction, or if this is an instruction outside of the
4272 // loop, it can't be derived from a loop PHI.
4273 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004274 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004275
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004276 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004277 if (L->getHeader() == I->getParent())
4278 return PN;
4279 else
4280 // We don't currently keep track of the control flow needed to evaluate
4281 // PHIs, so we cannot handle PHIs inside of loops.
4282 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004283 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004284
4285 // If we won't be able to constant fold this expression even if the operands
4286 // are constants, return early.
4287 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004288
Chris Lattner3221ad02004-04-17 22:58:41 +00004289 // Otherwise, we can evaluate this instruction if all of its operands are
4290 // constant or derived from a PHI node themselves.
4291 PHINode *PHI = 0;
4292 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004293 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004294 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4295 if (P == 0) return 0; // Not evolving from PHI
4296 if (PHI == 0)
4297 PHI = P;
4298 else if (PHI != P)
4299 return 0; // Evolving from multiple different PHIs.
4300 }
4301
4302 // This is a expression evolving from a constant PHI!
4303 return PHI;
4304}
4305
4306/// EvaluateExpression - Given an expression that passes the
4307/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4308/// in the loop has the value PHIVal. If we can't fold this expression for some
4309/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004310static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4311 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004312 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004313 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004314 Instruction *I = cast<Instruction>(V);
4315
Dan Gohman9d4588f2010-06-22 13:15:46 +00004316 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004317
4318 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004319 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004320 if (Operands[i] == 0) return 0;
4321 }
4322
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004323 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004324 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004325 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004326 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004327 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004328}
4329
4330/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4331/// in the header of its containing loop, we know the loop executes a
4332/// constant number of times, and the PHI node is just a recurrence
4333/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004334Constant *
4335ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004336 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004337 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004338 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004339 ConstantEvolutionLoopExitValue.find(PN);
4340 if (I != ConstantEvolutionLoopExitValue.end())
4341 return I->second;
4342
Dan Gohmane0567812010-04-08 23:03:40 +00004343 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004344 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4345
4346 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4347
4348 // Since the loop is canonicalized, the PHI node must have two entries. One
4349 // entry must be a constant (coming in from outside of the loop), and the
4350 // second must be derived from the same PHI.
4351 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4352 Constant *StartCST =
4353 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4354 if (StartCST == 0)
4355 return RetVal = 0; // Must be a constant.
4356
4357 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004358 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4359 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004360 return RetVal = 0; // Not derived from same PHI.
4361
4362 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004363 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004364 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004365
Dan Gohman46bdfb02009-02-24 18:55:53 +00004366 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004367 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004368 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4369 if (IterationNum == NumIterations)
4370 return RetVal = PHIVal; // Got exit value!
4371
4372 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004373 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004374 if (NextPHI == PHIVal)
4375 return RetVal = NextPHI; // Stopped evolving!
4376 if (NextPHI == 0)
4377 return 0; // Couldn't evaluate!
4378 PHIVal = NextPHI;
4379 }
4380}
4381
Dan Gohman07ad19b2009-07-27 16:09:48 +00004382/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004383/// constant number of times (the condition evolves only from constants),
4384/// try to evaluate a few iterations of the loop until we get the exit
4385/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004386/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004387const SCEV *
4388ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4389 Value *Cond,
4390 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004391 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004392 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004393
Dan Gohmanb92654d2010-06-19 14:17:24 +00004394 // If the loop is canonicalized, the PHI will have exactly two entries.
4395 // That's the only form we support here.
4396 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4397
4398 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004399 // second must be derived from the same PHI.
4400 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4401 Constant *StartCST =
4402 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004403 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004404
4405 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004406 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4407 !isa<Constant>(BEValue))
4408 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004409
4410 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4411 // the loop symbolically to determine when the condition gets a value of
4412 // "ExitWhen".
4413 unsigned IterationNum = 0;
4414 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4415 for (Constant *PHIVal = StartCST;
4416 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004417 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004418 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004419
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004420 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004421 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004422
Reid Spencere8019bb2007-03-01 07:25:48 +00004423 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004424 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004425 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004426 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004427
Chris Lattner3221ad02004-04-17 22:58:41 +00004428 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004429 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004430 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004431 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004432 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004433 }
4434
4435 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004436 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004437}
4438
Dan Gohmane7125f42009-09-03 15:00:26 +00004439/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004440/// at the specified scope in the program. The L value specifies a loop
4441/// nest to evaluate the expression at, where null is the top-level or a
4442/// specified loop is immediately inside of the loop.
4443///
4444/// This method can be used to compute the exit value for a variable defined
4445/// in a loop by querying what the value will hold in the parent loop.
4446///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004447/// In the case that a relevant loop exit value cannot be computed, the
4448/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004449const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004450 // Check to see if we've folded this expression at this loop before.
4451 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4452 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4453 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4454 if (!Pair.second)
4455 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004456
Dan Gohman42214892009-08-31 21:15:23 +00004457 // Otherwise compute it.
4458 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004459 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004460 return C;
4461}
4462
4463const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004464 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004465
Nick Lewycky3e630762008-02-20 06:48:22 +00004466 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004467 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004468 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004469 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004470 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004471 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4472 if (PHINode *PN = dyn_cast<PHINode>(I))
4473 if (PN->getParent() == LI->getHeader()) {
4474 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004475 // to see if the loop that contains it has a known backedge-taken
4476 // count. If so, we may be able to force computation of the exit
4477 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004478 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004479 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004480 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004481 // Okay, we know how many times the containing loop executes. If
4482 // this is a constant evolving PHI node, get the final value at
4483 // the specified iteration number.
4484 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004485 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004486 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004487 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004488 }
4489 }
4490
Reid Spencer09906f32006-12-04 21:33:23 +00004491 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004492 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004493 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004494 // result. This is particularly useful for computing loop exit values.
4495 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004496 SmallVector<Constant *, 4> Operands;
4497 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004498 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4499 Value *Op = I->getOperand(i);
4500 if (Constant *C = dyn_cast<Constant>(Op)) {
4501 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004502 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004503 }
Dan Gohman11046452010-06-29 23:43:06 +00004504
4505 // If any of the operands is non-constant and if they are
4506 // non-integer and non-pointer, don't even try to analyze them
4507 // with scev techniques.
4508 if (!isSCEVable(Op->getType()))
4509 return V;
4510
4511 const SCEV *OrigV = getSCEV(Op);
4512 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4513 MadeImprovement |= OrigV != OpV;
4514
4515 Constant *C = 0;
4516 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4517 C = SC->getValue();
4518 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4519 C = dyn_cast<Constant>(SU->getValue());
4520 if (!C) return V;
4521 if (C->getType() != Op->getType())
4522 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4523 Op->getType(),
4524 false),
4525 C, Op->getType());
4526 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004527 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004528
Dan Gohman11046452010-06-29 23:43:06 +00004529 // Check to see if getSCEVAtScope actually made an improvement.
4530 if (MadeImprovement) {
4531 Constant *C = 0;
4532 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4533 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4534 Operands[0], Operands[1], TD);
4535 else
4536 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4537 &Operands[0], Operands.size(), TD);
4538 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004539 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004540 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004541 }
4542 }
4543
4544 // This is some other type of SCEVUnknown, just return it.
4545 return V;
4546 }
4547
Dan Gohman622ed672009-05-04 22:02:23 +00004548 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004549 // Avoid performing the look-up in the common case where the specified
4550 // expression has no loop-variant portions.
4551 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004552 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004553 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004554 // Okay, at least one of these operands is loop variant but might be
4555 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004556 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4557 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004558 NewOps.push_back(OpAtScope);
4559
4560 for (++i; i != e; ++i) {
4561 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004562 NewOps.push_back(OpAtScope);
4563 }
4564 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004565 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004566 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004567 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004568 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004569 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004570 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004571 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004572 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004573 }
4574 }
4575 // If we got here, all operands are loop invariant.
4576 return Comm;
4577 }
4578
Dan Gohman622ed672009-05-04 22:02:23 +00004579 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004580 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4581 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004582 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4583 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004584 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004585 }
4586
4587 // If this is a loop recurrence for a loop that does not contain L, then we
4588 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004589 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004590 // First, attempt to evaluate each operand.
4591 // Avoid performing the look-up in the common case where the specified
4592 // expression has no loop-variant portions.
4593 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4594 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4595 if (OpAtScope == AddRec->getOperand(i))
4596 continue;
4597
4598 // Okay, at least one of these operands is loop variant but might be
4599 // foldable. Build a new instance of the folded commutative expression.
4600 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4601 AddRec->op_begin()+i);
4602 NewOps.push_back(OpAtScope);
4603 for (++i; i != e; ++i)
4604 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4605
4606 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4607 break;
4608 }
4609
4610 // If the scope is outside the addrec's loop, evaluate it by using the
4611 // loop exit value of the addrec.
4612 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004613 // To evaluate this recurrence, we need to know how many times the AddRec
4614 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004615 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004616 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004617
Eli Friedmanb42a6262008-08-04 23:49:06 +00004618 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004619 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004620 }
Dan Gohman11046452010-06-29 23:43:06 +00004621
Dan Gohmand594e6f2009-05-24 23:25:42 +00004622 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004623 }
4624
Dan Gohman622ed672009-05-04 22:02:23 +00004625 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004626 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004627 if (Op == Cast->getOperand())
4628 return Cast; // must be loop invariant
4629 return getZeroExtendExpr(Op, Cast->getType());
4630 }
4631
Dan Gohman622ed672009-05-04 22:02:23 +00004632 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004633 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004634 if (Op == Cast->getOperand())
4635 return Cast; // must be loop invariant
4636 return getSignExtendExpr(Op, Cast->getType());
4637 }
4638
Dan Gohman622ed672009-05-04 22:02:23 +00004639 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004640 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004641 if (Op == Cast->getOperand())
4642 return Cast; // must be loop invariant
4643 return getTruncateExpr(Op, Cast->getType());
4644 }
4645
Torok Edwinc23197a2009-07-14 16:55:14 +00004646 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004647 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004648}
4649
Dan Gohman66a7e852009-05-08 20:38:54 +00004650/// getSCEVAtScope - This is a convenience function which does
4651/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004652const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004653 return getSCEVAtScope(getSCEV(V), L);
4654}
4655
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004656/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4657/// following equation:
4658///
4659/// A * X = B (mod N)
4660///
4661/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4662/// A and B isn't important.
4663///
4664/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004665static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004666 ScalarEvolution &SE) {
4667 uint32_t BW = A.getBitWidth();
4668 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4669 assert(A != 0 && "A must be non-zero.");
4670
4671 // 1. D = gcd(A, N)
4672 //
4673 // The gcd of A and N may have only one prime factor: 2. The number of
4674 // trailing zeros in A is its multiplicity
4675 uint32_t Mult2 = A.countTrailingZeros();
4676 // D = 2^Mult2
4677
4678 // 2. Check if B is divisible by D.
4679 //
4680 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4681 // is not less than multiplicity of this prime factor for D.
4682 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004683 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004684
4685 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4686 // modulo (N / D).
4687 //
4688 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4689 // bit width during computations.
4690 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4691 APInt Mod(BW + 1, 0);
4692 Mod.set(BW - Mult2); // Mod = N / D
4693 APInt I = AD.multiplicativeInverse(Mod);
4694
4695 // 4. Compute the minimum unsigned root of the equation:
4696 // I * (B / D) mod (N / D)
4697 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4698
4699 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4700 // bits.
4701 return SE.getConstant(Result.trunc(BW));
4702}
Chris Lattner53e677a2004-04-02 20:23:17 +00004703
4704/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4705/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4706/// might be the same) or two SCEVCouldNotCompute objects.
4707///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004708static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004709SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004710 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004711 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4712 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4713 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004714
Chris Lattner53e677a2004-04-02 20:23:17 +00004715 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004716 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004717 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004718 return std::make_pair(CNC, CNC);
4719 }
4720
Reid Spencere8019bb2007-03-01 07:25:48 +00004721 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004722 const APInt &L = LC->getValue()->getValue();
4723 const APInt &M = MC->getValue()->getValue();
4724 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004725 APInt Two(BitWidth, 2);
4726 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004727
Dan Gohman64a845e2009-06-24 04:48:43 +00004728 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004729 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004730 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004731 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4732 // The B coefficient is M-N/2
4733 APInt B(M);
4734 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004735
Reid Spencere8019bb2007-03-01 07:25:48 +00004736 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004737 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004738
Reid Spencere8019bb2007-03-01 07:25:48 +00004739 // Compute the B^2-4ac term.
4740 APInt SqrtTerm(B);
4741 SqrtTerm *= B;
4742 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004743
Reid Spencere8019bb2007-03-01 07:25:48 +00004744 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4745 // integer value or else APInt::sqrt() will assert.
4746 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004747
Dan Gohman64a845e2009-06-24 04:48:43 +00004748 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004749 // The divisions must be performed as signed divisions.
4750 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004751 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004752 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004753 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004754 return std::make_pair(CNC, CNC);
4755 }
4756
Owen Andersone922c022009-07-22 00:24:57 +00004757 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004758
4759 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004760 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004761 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004762 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004763
Dan Gohman64a845e2009-06-24 04:48:43 +00004764 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004765 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004766 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004767}
4768
4769/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004770/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004771ScalarEvolution::BackedgeTakenInfo
4772ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004773 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004774 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004775 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004776 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004777 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004778 }
4779
Dan Gohman35738ac2009-05-04 22:30:44 +00004780 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004781 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004782 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004783
4784 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004785 // If this is an affine expression, the execution count of this branch is
4786 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004787 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004788 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004789 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004790 // equivalent to:
4791 //
4792 // Step*N = -Start (mod 2^BW)
4793 //
4794 // where BW is the common bit width of Start and Step.
4795
Chris Lattner53e677a2004-04-02 20:23:17 +00004796 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004797 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4798 L->getParentLoop());
4799 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4800 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004801
Dan Gohman622ed672009-05-04 22:02:23 +00004802 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004803 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004804
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004805 // First, handle unitary steps.
4806 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004807 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004808 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4809 return Start; // N = Start (as unsigned)
4810
4811 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004812 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004813 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004814 -StartC->getValue()->getValue(),
4815 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004816 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004817 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004818 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4819 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004820 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004821 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004822 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4823 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004824 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004825#if 0
David Greene25e0e872009-12-23 22:18:14 +00004826 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004827 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004828#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004829 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004830 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004831 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004832 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004833 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004834 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004835
Chris Lattner53e677a2004-04-02 20:23:17 +00004836 // We can only use this value if the chrec ends up with an exact zero
4837 // value at this index. When solving for "X*X != 5", for example, we
4838 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004839 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004840 if (Val->isZero())
4841 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004842 }
4843 }
4844 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004845
Dan Gohman1c343752009-06-27 21:21:31 +00004846 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004847}
4848
4849/// HowFarToNonZero - Return the number of times a backedge checking the
4850/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004851/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004852ScalarEvolution::BackedgeTakenInfo
4853ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004854 // Loops that look like: while (X == 0) are very strange indeed. We don't
4855 // handle them yet except for the trivial case. This could be expanded in the
4856 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004857
Chris Lattner53e677a2004-04-02 20:23:17 +00004858 // If the value is a constant, check to see if it is known to be non-zero
4859 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004860 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004861 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004862 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004863 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004864 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004865
Chris Lattner53e677a2004-04-02 20:23:17 +00004866 // We could implement others, but I really doubt anyone writes loops like
4867 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004868 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004869}
4870
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004871/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4872/// (which may not be an immediate predecessor) which has exactly one
4873/// successor from which BB is reachable, or null if no such block is
4874/// found.
4875///
Dan Gohman005752b2010-04-15 16:19:08 +00004876std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004877ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004878 // If the block has a unique predecessor, then there is no path from the
4879 // predecessor to the block that does not go through the direct edge
4880 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004881 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004882 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004883
4884 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004885 // If the header has a unique predecessor outside the loop, it must be
4886 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004887 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004888 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004889
Dan Gohman005752b2010-04-15 16:19:08 +00004890 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004891}
4892
Dan Gohman763bad12009-06-20 00:35:32 +00004893/// HasSameValue - SCEV structural equivalence is usually sufficient for
4894/// testing whether two expressions are equal, however for the purposes of
4895/// looking for a condition guarding a loop, it can be useful to be a little
4896/// more general, since a front-end may have replicated the controlling
4897/// expression.
4898///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004899static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004900 // Quick check to see if they are the same SCEV.
4901 if (A == B) return true;
4902
4903 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4904 // two different instructions with the same value. Check for this case.
4905 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4906 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4907 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4908 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004909 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004910 return true;
4911
4912 // Otherwise assume they may have a different value.
4913 return false;
4914}
4915
Dan Gohmane9796502010-04-24 01:28:42 +00004916/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4917/// predicate Pred. Return true iff any changes were made.
4918///
4919bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4920 const SCEV *&LHS, const SCEV *&RHS) {
4921 bool Changed = false;
4922
4923 // Canonicalize a constant to the right side.
4924 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4925 // Check for both operands constant.
4926 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4927 if (ConstantExpr::getICmp(Pred,
4928 LHSC->getValue(),
4929 RHSC->getValue())->isNullValue())
4930 goto trivially_false;
4931 else
4932 goto trivially_true;
4933 }
4934 // Otherwise swap the operands to put the constant on the right.
4935 std::swap(LHS, RHS);
4936 Pred = ICmpInst::getSwappedPredicate(Pred);
4937 Changed = true;
4938 }
4939
4940 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004941 // addrec's loop, put the addrec on the left. Also make a dominance check,
4942 // as both operands could be addrecs loop-invariant in each other's loop.
4943 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4944 const Loop *L = AR->getLoop();
4945 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004946 std::swap(LHS, RHS);
4947 Pred = ICmpInst::getSwappedPredicate(Pred);
4948 Changed = true;
4949 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004950 }
Dan Gohmane9796502010-04-24 01:28:42 +00004951
4952 // If there's a constant operand, canonicalize comparisons with boundary
4953 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4954 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4955 const APInt &RA = RC->getValue()->getValue();
4956 switch (Pred) {
4957 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4958 case ICmpInst::ICMP_EQ:
4959 case ICmpInst::ICMP_NE:
4960 break;
4961 case ICmpInst::ICMP_UGE:
4962 if ((RA - 1).isMinValue()) {
4963 Pred = ICmpInst::ICMP_NE;
4964 RHS = getConstant(RA - 1);
4965 Changed = true;
4966 break;
4967 }
4968 if (RA.isMaxValue()) {
4969 Pred = ICmpInst::ICMP_EQ;
4970 Changed = true;
4971 break;
4972 }
4973 if (RA.isMinValue()) goto trivially_true;
4974
4975 Pred = ICmpInst::ICMP_UGT;
4976 RHS = getConstant(RA - 1);
4977 Changed = true;
4978 break;
4979 case ICmpInst::ICMP_ULE:
4980 if ((RA + 1).isMaxValue()) {
4981 Pred = ICmpInst::ICMP_NE;
4982 RHS = getConstant(RA + 1);
4983 Changed = true;
4984 break;
4985 }
4986 if (RA.isMinValue()) {
4987 Pred = ICmpInst::ICMP_EQ;
4988 Changed = true;
4989 break;
4990 }
4991 if (RA.isMaxValue()) goto trivially_true;
4992
4993 Pred = ICmpInst::ICMP_ULT;
4994 RHS = getConstant(RA + 1);
4995 Changed = true;
4996 break;
4997 case ICmpInst::ICMP_SGE:
4998 if ((RA - 1).isMinSignedValue()) {
4999 Pred = ICmpInst::ICMP_NE;
5000 RHS = getConstant(RA - 1);
5001 Changed = true;
5002 break;
5003 }
5004 if (RA.isMaxSignedValue()) {
5005 Pred = ICmpInst::ICMP_EQ;
5006 Changed = true;
5007 break;
5008 }
5009 if (RA.isMinSignedValue()) goto trivially_true;
5010
5011 Pred = ICmpInst::ICMP_SGT;
5012 RHS = getConstant(RA - 1);
5013 Changed = true;
5014 break;
5015 case ICmpInst::ICMP_SLE:
5016 if ((RA + 1).isMaxSignedValue()) {
5017 Pred = ICmpInst::ICMP_NE;
5018 RHS = getConstant(RA + 1);
5019 Changed = true;
5020 break;
5021 }
5022 if (RA.isMinSignedValue()) {
5023 Pred = ICmpInst::ICMP_EQ;
5024 Changed = true;
5025 break;
5026 }
5027 if (RA.isMaxSignedValue()) goto trivially_true;
5028
5029 Pred = ICmpInst::ICMP_SLT;
5030 RHS = getConstant(RA + 1);
5031 Changed = true;
5032 break;
5033 case ICmpInst::ICMP_UGT:
5034 if (RA.isMinValue()) {
5035 Pred = ICmpInst::ICMP_NE;
5036 Changed = true;
5037 break;
5038 }
5039 if ((RA + 1).isMaxValue()) {
5040 Pred = ICmpInst::ICMP_EQ;
5041 RHS = getConstant(RA + 1);
5042 Changed = true;
5043 break;
5044 }
5045 if (RA.isMaxValue()) goto trivially_false;
5046 break;
5047 case ICmpInst::ICMP_ULT:
5048 if (RA.isMaxValue()) {
5049 Pred = ICmpInst::ICMP_NE;
5050 Changed = true;
5051 break;
5052 }
5053 if ((RA - 1).isMinValue()) {
5054 Pred = ICmpInst::ICMP_EQ;
5055 RHS = getConstant(RA - 1);
5056 Changed = true;
5057 break;
5058 }
5059 if (RA.isMinValue()) goto trivially_false;
5060 break;
5061 case ICmpInst::ICMP_SGT:
5062 if (RA.isMinSignedValue()) {
5063 Pred = ICmpInst::ICMP_NE;
5064 Changed = true;
5065 break;
5066 }
5067 if ((RA + 1).isMaxSignedValue()) {
5068 Pred = ICmpInst::ICMP_EQ;
5069 RHS = getConstant(RA + 1);
5070 Changed = true;
5071 break;
5072 }
5073 if (RA.isMaxSignedValue()) goto trivially_false;
5074 break;
5075 case ICmpInst::ICMP_SLT:
5076 if (RA.isMaxSignedValue()) {
5077 Pred = ICmpInst::ICMP_NE;
5078 Changed = true;
5079 break;
5080 }
5081 if ((RA - 1).isMinSignedValue()) {
5082 Pred = ICmpInst::ICMP_EQ;
5083 RHS = getConstant(RA - 1);
5084 Changed = true;
5085 break;
5086 }
5087 if (RA.isMinSignedValue()) goto trivially_false;
5088 break;
5089 }
5090 }
5091
5092 // Check for obvious equality.
5093 if (HasSameValue(LHS, RHS)) {
5094 if (ICmpInst::isTrueWhenEqual(Pred))
5095 goto trivially_true;
5096 if (ICmpInst::isFalseWhenEqual(Pred))
5097 goto trivially_false;
5098 }
5099
Dan Gohman03557dc2010-05-03 16:35:17 +00005100 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5101 // adding or subtracting 1 from one of the operands.
5102 switch (Pred) {
5103 case ICmpInst::ICMP_SLE:
5104 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5105 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5106 /*HasNUW=*/false, /*HasNSW=*/true);
5107 Pred = ICmpInst::ICMP_SLT;
5108 Changed = true;
5109 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005110 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005111 /*HasNUW=*/false, /*HasNSW=*/true);
5112 Pred = ICmpInst::ICMP_SLT;
5113 Changed = true;
5114 }
5115 break;
5116 case ICmpInst::ICMP_SGE:
5117 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005118 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005119 /*HasNUW=*/false, /*HasNSW=*/true);
5120 Pred = ICmpInst::ICMP_SGT;
5121 Changed = true;
5122 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5123 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5124 /*HasNUW=*/false, /*HasNSW=*/true);
5125 Pred = ICmpInst::ICMP_SGT;
5126 Changed = true;
5127 }
5128 break;
5129 case ICmpInst::ICMP_ULE:
5130 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005131 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005132 /*HasNUW=*/true, /*HasNSW=*/false);
5133 Pred = ICmpInst::ICMP_ULT;
5134 Changed = true;
5135 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005136 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005137 /*HasNUW=*/true, /*HasNSW=*/false);
5138 Pred = ICmpInst::ICMP_ULT;
5139 Changed = true;
5140 }
5141 break;
5142 case ICmpInst::ICMP_UGE:
5143 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005144 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005145 /*HasNUW=*/true, /*HasNSW=*/false);
5146 Pred = ICmpInst::ICMP_UGT;
5147 Changed = true;
5148 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005149 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005150 /*HasNUW=*/true, /*HasNSW=*/false);
5151 Pred = ICmpInst::ICMP_UGT;
5152 Changed = true;
5153 }
5154 break;
5155 default:
5156 break;
5157 }
5158
Dan Gohmane9796502010-04-24 01:28:42 +00005159 // TODO: More simplifications are possible here.
5160
5161 return Changed;
5162
5163trivially_true:
5164 // Return 0 == 0.
5165 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5166 Pred = ICmpInst::ICMP_EQ;
5167 return true;
5168
5169trivially_false:
5170 // Return 0 != 0.
5171 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5172 Pred = ICmpInst::ICMP_NE;
5173 return true;
5174}
5175
Dan Gohman85b05a22009-07-13 21:35:55 +00005176bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5177 return getSignedRange(S).getSignedMax().isNegative();
5178}
5179
5180bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5181 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5182}
5183
5184bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5185 return !getSignedRange(S).getSignedMin().isNegative();
5186}
5187
5188bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5189 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5190}
5191
5192bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5193 return isKnownNegative(S) || isKnownPositive(S);
5194}
5195
5196bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5197 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005198 // Canonicalize the inputs first.
5199 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5200
Dan Gohman53c66ea2010-04-11 22:16:48 +00005201 // If LHS or RHS is an addrec, check to see if the condition is true in
5202 // every iteration of the loop.
5203 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5204 if (isLoopEntryGuardedByCond(
5205 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5206 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005207 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005208 return true;
5209 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5210 if (isLoopEntryGuardedByCond(
5211 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5212 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005213 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005214 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005215
Dan Gohman53c66ea2010-04-11 22:16:48 +00005216 // Otherwise see what can be done with known constant ranges.
5217 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5218}
5219
5220bool
5221ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5222 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005223 if (HasSameValue(LHS, RHS))
5224 return ICmpInst::isTrueWhenEqual(Pred);
5225
Dan Gohman53c66ea2010-04-11 22:16:48 +00005226 // This code is split out from isKnownPredicate because it is called from
5227 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005228 switch (Pred) {
5229 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005230 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005231 break;
5232 case ICmpInst::ICMP_SGT:
5233 Pred = ICmpInst::ICMP_SLT;
5234 std::swap(LHS, RHS);
5235 case ICmpInst::ICMP_SLT: {
5236 ConstantRange LHSRange = getSignedRange(LHS);
5237 ConstantRange RHSRange = getSignedRange(RHS);
5238 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5239 return true;
5240 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5241 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005242 break;
5243 }
5244 case ICmpInst::ICMP_SGE:
5245 Pred = ICmpInst::ICMP_SLE;
5246 std::swap(LHS, RHS);
5247 case ICmpInst::ICMP_SLE: {
5248 ConstantRange LHSRange = getSignedRange(LHS);
5249 ConstantRange RHSRange = getSignedRange(RHS);
5250 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5251 return true;
5252 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5253 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005254 break;
5255 }
5256 case ICmpInst::ICMP_UGT:
5257 Pred = ICmpInst::ICMP_ULT;
5258 std::swap(LHS, RHS);
5259 case ICmpInst::ICMP_ULT: {
5260 ConstantRange LHSRange = getUnsignedRange(LHS);
5261 ConstantRange RHSRange = getUnsignedRange(RHS);
5262 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5263 return true;
5264 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5265 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005266 break;
5267 }
5268 case ICmpInst::ICMP_UGE:
5269 Pred = ICmpInst::ICMP_ULE;
5270 std::swap(LHS, RHS);
5271 case ICmpInst::ICMP_ULE: {
5272 ConstantRange LHSRange = getUnsignedRange(LHS);
5273 ConstantRange RHSRange = getUnsignedRange(RHS);
5274 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5275 return true;
5276 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5277 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005278 break;
5279 }
5280 case ICmpInst::ICMP_NE: {
5281 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5282 return true;
5283 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5284 return true;
5285
5286 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5287 if (isKnownNonZero(Diff))
5288 return true;
5289 break;
5290 }
5291 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005292 // The check at the top of the function catches the case where
5293 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005294 break;
5295 }
5296 return false;
5297}
5298
5299/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5300/// protected by a conditional between LHS and RHS. This is used to
5301/// to eliminate casts.
5302bool
5303ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5304 ICmpInst::Predicate Pred,
5305 const SCEV *LHS, const SCEV *RHS) {
5306 // Interpret a null as meaning no loop, where there is obviously no guard
5307 // (interprocedural conditions notwithstanding).
5308 if (!L) return true;
5309
5310 BasicBlock *Latch = L->getLoopLatch();
5311 if (!Latch)
5312 return false;
5313
5314 BranchInst *LoopContinuePredicate =
5315 dyn_cast<BranchInst>(Latch->getTerminator());
5316 if (!LoopContinuePredicate ||
5317 LoopContinuePredicate->isUnconditional())
5318 return false;
5319
Dan Gohmanaf08a362010-08-10 23:46:30 +00005320 return isImpliedCond(Pred, LHS, RHS,
5321 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005322 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005323}
5324
Dan Gohman3948d0b2010-04-11 19:27:13 +00005325/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005326/// by a conditional between LHS and RHS. This is used to help avoid max
5327/// expressions in loop trip counts, and to eliminate casts.
5328bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005329ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5330 ICmpInst::Predicate Pred,
5331 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005332 // Interpret a null as meaning no loop, where there is obviously no guard
5333 // (interprocedural conditions notwithstanding).
5334 if (!L) return false;
5335
Dan Gohman859b4822009-05-18 15:36:09 +00005336 // Starting at the loop predecessor, climb up the predecessor chain, as long
5337 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005338 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005339 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005340 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005341 Pair.first;
5342 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005343
5344 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005345 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005346 if (!LoopEntryPredicate ||
5347 LoopEntryPredicate->isUnconditional())
5348 continue;
5349
Dan Gohmanaf08a362010-08-10 23:46:30 +00005350 if (isImpliedCond(Pred, LHS, RHS,
5351 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005352 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005353 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005354 }
5355
Dan Gohman38372182008-08-12 20:17:31 +00005356 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005357}
5358
Dan Gohman0f4b2852009-07-21 23:03:19 +00005359/// isImpliedCond - Test whether the condition described by Pred, LHS,
5360/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005361bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005362 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005363 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005364 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005365 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005366 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005367 if (BO->getOpcode() == Instruction::And) {
5368 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005369 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5370 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005371 } else if (BO->getOpcode() == Instruction::Or) {
5372 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005373 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5374 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005375 }
5376 }
5377
Dan Gohmanaf08a362010-08-10 23:46:30 +00005378 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005379 if (!ICI) return false;
5380
Dan Gohman85b05a22009-07-13 21:35:55 +00005381 // Bail if the ICmp's operands' types are wider than the needed type
5382 // before attempting to call getSCEV on them. This avoids infinite
5383 // recursion, since the analysis of widening casts can require loop
5384 // exit condition information for overflow checking, which would
5385 // lead back here.
5386 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005387 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005388 return false;
5389
Dan Gohman0f4b2852009-07-21 23:03:19 +00005390 // Now that we found a conditional branch that dominates the loop, check to
5391 // see if it is the comparison we are looking for.
5392 ICmpInst::Predicate FoundPred;
5393 if (Inverse)
5394 FoundPred = ICI->getInversePredicate();
5395 else
5396 FoundPred = ICI->getPredicate();
5397
5398 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5399 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005400
5401 // Balance the types. The case where FoundLHS' type is wider than
5402 // LHS' type is checked for above.
5403 if (getTypeSizeInBits(LHS->getType()) >
5404 getTypeSizeInBits(FoundLHS->getType())) {
5405 if (CmpInst::isSigned(Pred)) {
5406 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5407 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5408 } else {
5409 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5410 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5411 }
5412 }
5413
Dan Gohman0f4b2852009-07-21 23:03:19 +00005414 // Canonicalize the query to match the way instcombine will have
5415 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005416 if (SimplifyICmpOperands(Pred, LHS, RHS))
5417 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005418 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005419 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5420 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005421 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005422
5423 // Check to see if we can make the LHS or RHS match.
5424 if (LHS == FoundRHS || RHS == FoundLHS) {
5425 if (isa<SCEVConstant>(RHS)) {
5426 std::swap(FoundLHS, FoundRHS);
5427 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5428 } else {
5429 std::swap(LHS, RHS);
5430 Pred = ICmpInst::getSwappedPredicate(Pred);
5431 }
5432 }
5433
5434 // Check whether the found predicate is the same as the desired predicate.
5435 if (FoundPred == Pred)
5436 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5437
5438 // Check whether swapping the found predicate makes it the same as the
5439 // desired predicate.
5440 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5441 if (isa<SCEVConstant>(RHS))
5442 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5443 else
5444 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5445 RHS, LHS, FoundLHS, FoundRHS);
5446 }
5447
5448 // Check whether the actual condition is beyond sufficient.
5449 if (FoundPred == ICmpInst::ICMP_EQ)
5450 if (ICmpInst::isTrueWhenEqual(Pred))
5451 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5452 return true;
5453 if (Pred == ICmpInst::ICMP_NE)
5454 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5455 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5456 return true;
5457
5458 // Otherwise assume the worst.
5459 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005460}
5461
Dan Gohman0f4b2852009-07-21 23:03:19 +00005462/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005463/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005464/// and FoundRHS is true.
5465bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5466 const SCEV *LHS, const SCEV *RHS,
5467 const SCEV *FoundLHS,
5468 const SCEV *FoundRHS) {
5469 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5470 FoundLHS, FoundRHS) ||
5471 // ~x < ~y --> x > y
5472 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5473 getNotSCEV(FoundRHS),
5474 getNotSCEV(FoundLHS));
5475}
5476
5477/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005478/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005479/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005480bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005481ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5482 const SCEV *LHS, const SCEV *RHS,
5483 const SCEV *FoundLHS,
5484 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005485 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005486 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5487 case ICmpInst::ICMP_EQ:
5488 case ICmpInst::ICMP_NE:
5489 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5490 return true;
5491 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005492 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005493 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005494 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5495 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005496 return true;
5497 break;
5498 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005499 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005500 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5501 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005502 return true;
5503 break;
5504 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005505 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005506 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5507 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005508 return true;
5509 break;
5510 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005511 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005512 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5513 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005514 return true;
5515 break;
5516 }
5517
5518 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005519}
5520
Dan Gohman51f53b72009-06-21 23:46:38 +00005521/// getBECount - Subtract the end and start values and divide by the step,
5522/// rounding up, to get the number of times the backedge is executed. Return
5523/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005524const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005525 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005526 const SCEV *Step,
5527 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005528 assert(!isKnownNegative(Step) &&
5529 "This code doesn't handle negative strides yet!");
5530
Dan Gohman51f53b72009-06-21 23:46:38 +00005531 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005532 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005533 const SCEV *Diff = getMinusSCEV(End, Start);
5534 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005535
5536 // Add an adjustment to the difference between End and Start so that
5537 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005538 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005539
Dan Gohman1f96e672009-09-17 18:05:20 +00005540 if (!NoWrap) {
5541 // Check Add for unsigned overflow.
5542 // TODO: More sophisticated things could be done here.
5543 const Type *WideTy = IntegerType::get(getContext(),
5544 getTypeSizeInBits(Ty) + 1);
5545 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5546 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5547 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5548 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5549 return getCouldNotCompute();
5550 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005551
5552 return getUDivExpr(Add, Step);
5553}
5554
Chris Lattnerdb25de42005-08-15 23:33:51 +00005555/// HowManyLessThans - Return the number of times a backedge containing the
5556/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005557/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005558ScalarEvolution::BackedgeTakenInfo
5559ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5560 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005561 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005562 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005563
Dan Gohman35738ac2009-05-04 22:30:44 +00005564 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005565 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005566 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005567
Dan Gohman1f96e672009-09-17 18:05:20 +00005568 // Check to see if we have a flag which makes analysis easy.
5569 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5570 AddRec->hasNoUnsignedWrap();
5571
Chris Lattnerdb25de42005-08-15 23:33:51 +00005572 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005573 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005574 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005575
Dan Gohman52fddd32010-01-26 04:40:18 +00005576 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005577 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005578 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005579 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005580 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005581 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005582 // value and past the maximum value for its type in a single step.
5583 // Note that it's not sufficient to check NoWrap here, because even
5584 // though the value after a wrap is undefined, it's not undefined
5585 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005586 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005587 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005588 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005589 if (isSigned) {
5590 APInt Max = APInt::getSignedMaxValue(BitWidth);
5591 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5592 .slt(getSignedRange(RHS).getSignedMax()))
5593 return getCouldNotCompute();
5594 } else {
5595 APInt Max = APInt::getMaxValue(BitWidth);
5596 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5597 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5598 return getCouldNotCompute();
5599 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005600 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005601 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005602 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005603
Dan Gohmana1af7572009-04-30 20:47:05 +00005604 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5605 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5606 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005607 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005608
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005609 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005610 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005611
Dan Gohmana1af7572009-04-30 20:47:05 +00005612 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005613 const SCEV *MinStart = getConstant(isSigned ?
5614 getSignedRange(Start).getSignedMin() :
5615 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005616
Dan Gohmana1af7572009-04-30 20:47:05 +00005617 // If we know that the condition is true in order to enter the loop,
5618 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005619 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5620 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005621 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005622 if (!isLoopEntryGuardedByCond(L,
5623 isSigned ? ICmpInst::ICMP_SLT :
5624 ICmpInst::ICMP_ULT,
5625 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005626 End = isSigned ? getSMaxExpr(RHS, Start)
5627 : getUMaxExpr(RHS, Start);
5628
5629 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005630 const SCEV *MaxEnd = getConstant(isSigned ?
5631 getSignedRange(End).getSignedMax() :
5632 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005633
Dan Gohman52fddd32010-01-26 04:40:18 +00005634 // If MaxEnd is within a step of the maximum integer value in its type,
5635 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005636 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005637 // compute the correct value.
5638 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005639 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005640 MaxEnd = isSigned ?
5641 getSMinExpr(MaxEnd,
5642 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5643 StepMinusOne)) :
5644 getUMinExpr(MaxEnd,
5645 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5646 StepMinusOne));
5647
Dan Gohmana1af7572009-04-30 20:47:05 +00005648 // Finally, we subtract these two values and divide, rounding up, to get
5649 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005650 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005651
5652 // The maximum backedge count is similar, except using the minimum start
5653 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005654 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005655
5656 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005657 }
5658
Dan Gohman1c343752009-06-27 21:21:31 +00005659 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005660}
5661
Chris Lattner53e677a2004-04-02 20:23:17 +00005662/// getNumIterationsInRange - Return the number of iterations of this loop that
5663/// produce values in the specified constant range. Another way of looking at
5664/// this is that it returns the first iteration number where the value is not in
5665/// the condition, thus computing the exit count. If the iteration count can't
5666/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005667const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005668 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005669 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005670 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005671
5672 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005673 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005674 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005675 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005676 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005677 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005678 if (const SCEVAddRecExpr *ShiftedAddRec =
5679 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005680 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005681 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005682 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005683 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005684 }
5685
5686 // The only time we can solve this is when we have all constant indices.
5687 // Otherwise, we cannot determine the overflow conditions.
5688 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5689 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005690 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005691
5692
5693 // Okay at this point we know that all elements of the chrec are constants and
5694 // that the start element is zero.
5695
5696 // First check to see if the range contains zero. If not, the first
5697 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005698 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005699 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005700 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005701
Chris Lattner53e677a2004-04-02 20:23:17 +00005702 if (isAffine()) {
5703 // If this is an affine expression then we have this situation:
5704 // Solve {0,+,A} in Range === Ax in Range
5705
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005706 // We know that zero is in the range. If A is positive then we know that
5707 // the upper value of the range must be the first possible exit value.
5708 // If A is negative then the lower of the range is the last possible loop
5709 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005710 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005711 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5712 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005713
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005714 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005715 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005716 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005717
5718 // Evaluate at the exit value. If we really did fall out of the valid
5719 // range, then we computed our trip count, otherwise wrap around or other
5720 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005721 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005722 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005723 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005724
5725 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005726 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005727 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005728 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005729 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005730 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005731 } else if (isQuadratic()) {
5732 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5733 // quadratic equation to solve it. To do this, we must frame our problem in
5734 // terms of figuring out when zero is crossed, instead of when
5735 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005736 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005737 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005738 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005739
5740 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005741 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005742 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005743 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5744 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005745 if (R1) {
5746 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005747 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005748 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005749 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005750 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005751 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005752
Chris Lattner53e677a2004-04-02 20:23:17 +00005753 // Make sure the root is not off by one. The returned iteration should
5754 // not be in the range, but the previous one should be. When solving
5755 // for "X*X < 5", for example, we should not return a root of 2.
5756 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005757 R1->getValue(),
5758 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005759 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005760 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005761 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005762 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005763
Dan Gohman246b2562007-10-22 18:31:58 +00005764 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005765 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005766 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005767 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005768 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005769
Chris Lattner53e677a2004-04-02 20:23:17 +00005770 // If R1 was not in the range, then it is a good return value. Make
5771 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005772 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005773 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005774 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005775 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005776 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005777 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005778 }
5779 }
5780 }
5781
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005782 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005783}
5784
5785
5786
5787//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005788// SCEVCallbackVH Class Implementation
5789//===----------------------------------------------------------------------===//
5790
Dan Gohman1959b752009-05-19 19:22:47 +00005791void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005792 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005793 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5794 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005795 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005796 // this now dangles!
5797}
5798
Dan Gohman81f91212010-07-28 01:09:07 +00005799void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005800 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005801
Dan Gohman35738ac2009-05-04 22:30:44 +00005802 // Forget all the expressions associated with users of the old value,
5803 // so that future queries will recompute the expressions using the new
5804 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005805 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005806 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005807 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005808 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5809 UI != UE; ++UI)
5810 Worklist.push_back(*UI);
5811 while (!Worklist.empty()) {
5812 User *U = Worklist.pop_back_val();
5813 // Deleting the Old value will cause this to dangle. Postpone
5814 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005815 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005816 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005817 if (!Visited.insert(U))
5818 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005819 if (PHINode *PN = dyn_cast<PHINode>(U))
5820 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005821 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005822 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5823 UI != UE; ++UI)
5824 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005825 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005826 // Delete the Old value.
5827 if (PHINode *PN = dyn_cast<PHINode>(Old))
5828 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005829 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005830 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005831}
5832
Dan Gohman1959b752009-05-19 19:22:47 +00005833ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005834 : CallbackVH(V), SE(se) {}
5835
5836//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005837// ScalarEvolution Class Implementation
5838//===----------------------------------------------------------------------===//
5839
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005840ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005841 : FunctionPass(ID), FirstUnknown(0) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005842}
5843
Chris Lattner53e677a2004-04-02 20:23:17 +00005844bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005845 this->F = &F;
5846 LI = &getAnalysis<LoopInfo>();
5847 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005848 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005849 return false;
5850}
5851
5852void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005853 // Iterate through all the SCEVUnknown instances and call their
5854 // destructors, so that they release their references to their values.
5855 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5856 U->~SCEVUnknown();
5857 FirstUnknown = 0;
5858
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005859 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005860 BackedgeTakenCounts.clear();
5861 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005862 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005863 UniqueSCEVs.clear();
5864 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005865}
5866
5867void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5868 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005869 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005870 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005871}
5872
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005873bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005874 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005875}
5876
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005877static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005878 const Loop *L) {
5879 // Print all inner loops first
5880 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5881 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005882
Dan Gohman30733292010-01-09 18:17:45 +00005883 OS << "Loop ";
5884 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5885 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005886
Dan Gohman5d984912009-12-18 01:14:11 +00005887 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005888 L->getExitBlocks(ExitBlocks);
5889 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005890 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005891
Dan Gohman46bdfb02009-02-24 18:55:53 +00005892 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5893 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005894 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005895 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005896 }
5897
Dan Gohman30733292010-01-09 18:17:45 +00005898 OS << "\n"
5899 "Loop ";
5900 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5901 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005902
5903 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5904 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5905 } else {
5906 OS << "Unpredictable max backedge-taken count. ";
5907 }
5908
5909 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005910}
5911
Dan Gohman5d984912009-12-18 01:14:11 +00005912void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005913 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005914 // out SCEV values of all instructions that are interesting. Doing
5915 // this potentially causes it to create new SCEV objects though,
5916 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005917 // observable from outside the class though, so casting away the
5918 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005919 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005920
Dan Gohman30733292010-01-09 18:17:45 +00005921 OS << "Classifying expressions for: ";
5922 WriteAsOperand(OS, F, /*PrintType=*/false);
5923 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005924 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005925 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005926 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005927 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005928 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005929 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005930
Dan Gohman0c689c52009-06-19 17:49:54 +00005931 const Loop *L = LI->getLoopFor((*I).getParent());
5932
Dan Gohman0bba49c2009-07-07 17:06:11 +00005933 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005934 if (AtUse != SV) {
5935 OS << " --> ";
5936 AtUse->print(OS);
5937 }
5938
5939 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005940 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005941 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005942 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005943 OS << "<<Unknown>>";
5944 } else {
5945 OS << *ExitValue;
5946 }
5947 }
5948
Chris Lattner53e677a2004-04-02 20:23:17 +00005949 OS << "\n";
5950 }
5951
Dan Gohman30733292010-01-09 18:17:45 +00005952 OS << "Determining loop execution counts for: ";
5953 WriteAsOperand(OS, F, /*PrintType=*/false);
5954 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005955 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5956 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005957}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005958