blob: 30e88e976f2f9fae2d8ec123bfb23fd29276c8e5 [file] [log] [blame]
Chris Lattner4d1e46e2002-05-07 18:07:59 +00001//===-- Local.cpp - Functions to perform local transformations ------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4d1e46e2002-05-07 18:07:59 +00009//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
Chris Lattner81ebc302004-01-12 18:35:03 +000016#include "llvm/Constants.h"
Chris Lattner6cc8a932009-06-16 17:23:12 +000017#include "llvm/GlobalAlias.h"
Devang Patelc79e1182009-03-06 00:19:37 +000018#include "llvm/GlobalVariable.h"
Chris Lattnerc5f52e62005-09-26 05:27:10 +000019#include "llvm/DerivedTypes.h"
Chris Lattner7822c2a2004-01-12 19:56:36 +000020#include "llvm/Instructions.h"
Chris Lattnercf110352004-06-11 06:16:23 +000021#include "llvm/Intrinsics.h"
Chris Lattner741c0ae2007-12-29 00:59:12 +000022#include "llvm/IntrinsicInst.h"
Chris Lattner19f2dc42009-12-29 09:12:29 +000023#include "llvm/ADT/DenseMap.h"
Dan Gohmanafc36a92009-05-02 18:29:22 +000024#include "llvm/ADT/SmallPtrSet.h"
Cameron Zwarich80f6a502011-01-08 17:01:52 +000025#include "llvm/Analysis/Dominators.h"
Chris Lattnercbbc6b72005-10-27 16:34:00 +000026#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner40d8c282009-11-10 22:26:15 +000027#include "llvm/Analysis/InstructionSimplify.h"
Andreas Neustifterad809812009-09-16 09:26:52 +000028#include "llvm/Analysis/ProfileInfo.h"
Chris Lattner687140c2010-12-25 20:37:57 +000029#include "llvm/Analysis/ValueTracking.h"
Chris Lattner9fa038d2007-01-30 23:13:49 +000030#include "llvm/Target/TargetData.h"
Chris Lattnerdce94d92009-11-10 05:59:26 +000031#include "llvm/Support/CFG.h"
32#include "llvm/Support/Debug.h"
Chris Lattnerc5f52e62005-09-26 05:27:10 +000033#include "llvm/Support/GetElementPtrTypeIterator.h"
34#include "llvm/Support/MathExtras.h"
Chris Lattner19f2dc42009-12-29 09:12:29 +000035#include "llvm/Support/ValueHandle.h"
Chris Lattnerdce94d92009-11-10 05:59:26 +000036#include "llvm/Support/raw_ostream.h"
Chris Lattnerabbc2dd2003-12-19 05:56:28 +000037using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000038
Chris Lattner4d1e46e2002-05-07 18:07:59 +000039//===----------------------------------------------------------------------===//
Chris Lattner3481f242008-11-27 22:57:53 +000040// Local constant propagation.
Chris Lattner4d1e46e2002-05-07 18:07:59 +000041//
42
Chris Lattner4d1e46e2002-05-07 18:07:59 +000043// ConstantFoldTerminator - If a terminator instruction is predicated on a
44// constant value, convert it into an unconditional branch to the constant
45// destination.
46//
Chris Lattnerabbc2dd2003-12-19 05:56:28 +000047bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
Chris Lattner76ae3442002-05-21 20:04:50 +000048 TerminatorInst *T = BB->getTerminator();
Misha Brukmanfd939082005-04-21 23:48:37 +000049
Chris Lattner4d1e46e2002-05-07 18:07:59 +000050 // Branch - See if we are conditional jumping on constant
51 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
52 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
Gabor Greifc1bb13f2009-01-30 18:21:13 +000053 BasicBlock *Dest1 = BI->getSuccessor(0);
54 BasicBlock *Dest2 = BI->getSuccessor(1);
Chris Lattner4d1e46e2002-05-07 18:07:59 +000055
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +000056 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
Chris Lattner4d1e46e2002-05-07 18:07:59 +000057 // Are we branching on constant?
58 // YES. Change to unconditional branch...
Reid Spencer579dca12007-01-12 04:24:46 +000059 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
60 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
Chris Lattner4d1e46e2002-05-07 18:07:59 +000061
Misha Brukmanfd939082005-04-21 23:48:37 +000062 //cerr << "Function: " << T->getParent()->getParent()
63 // << "\nRemoving branch from " << T->getParent()
Chris Lattner4d1e46e2002-05-07 18:07:59 +000064 // << "\n\nTo: " << OldDest << endl;
65
66 // Let the basic block know that we are letting go of it. Based on this,
67 // it will adjust it's PHI nodes.
68 assert(BI->getParent() && "Terminator not inserted in block!");
69 OldDest->removePredecessor(BI->getParent());
70
Jay Foad8f9ffbd2011-01-07 20:25:56 +000071 // Replace the conditional branch with an unconditional one.
72 BranchInst::Create(Destination, BI);
73 BI->eraseFromParent();
Chris Lattner4d1e46e2002-05-07 18:07:59 +000074 return true;
Chris Lattner0a4c6782009-11-01 03:40:38 +000075 }
76
77 if (Dest2 == Dest1) { // Conditional branch to same location?
Misha Brukmanfd939082005-04-21 23:48:37 +000078 // This branch matches something like this:
Chris Lattner4d1e46e2002-05-07 18:07:59 +000079 // br bool %cond, label %Dest, label %Dest
80 // and changes it into: br label %Dest
81
82 // Let the basic block know that we are letting go of one copy of it.
83 assert(BI->getParent() && "Terminator not inserted in block!");
84 Dest1->removePredecessor(BI->getParent());
85
Jay Foad8f9ffbd2011-01-07 20:25:56 +000086 // Replace the conditional branch with an unconditional one.
87 BranchInst::Create(Dest1, BI);
88 BI->eraseFromParent();
Chris Lattner4d1e46e2002-05-07 18:07:59 +000089 return true;
90 }
Chris Lattner0a4c6782009-11-01 03:40:38 +000091 return false;
92 }
93
94 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
Chris Lattner10b1f5a2003-08-17 20:21:14 +000095 // If we are switching on a constant, we can convert the switch into a
96 // single branch instruction!
97 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
98 BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest
Chris Lattner7d6c24c2003-08-23 23:18:19 +000099 BasicBlock *DefaultDest = TheOnlyDest;
100 assert(TheOnlyDest == SI->getDefaultDest() &&
101 "Default destination is not successor #0?");
Chris Lattner694e37f2003-08-17 19:41:53 +0000102
Chris Lattner0a4c6782009-11-01 03:40:38 +0000103 // Figure out which case it goes to.
Chris Lattner10b1f5a2003-08-17 20:21:14 +0000104 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
105 // Found case matching a constant operand?
106 if (SI->getSuccessorValue(i) == CI) {
107 TheOnlyDest = SI->getSuccessor(i);
108 break;
109 }
Chris Lattner694e37f2003-08-17 19:41:53 +0000110
Chris Lattner7d6c24c2003-08-23 23:18:19 +0000111 // Check to see if this branch is going to the same place as the default
112 // dest. If so, eliminate it as an explicit compare.
113 if (SI->getSuccessor(i) == DefaultDest) {
Chris Lattner0a4c6782009-11-01 03:40:38 +0000114 // Remove this entry.
Chris Lattner7d6c24c2003-08-23 23:18:19 +0000115 DefaultDest->removePredecessor(SI->getParent());
116 SI->removeCase(i);
117 --i; --e; // Don't skip an entry...
118 continue;
119 }
120
Chris Lattner10b1f5a2003-08-17 20:21:14 +0000121 // Otherwise, check to see if the switch only branches to one destination.
122 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
123 // destinations.
124 if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
Chris Lattner694e37f2003-08-17 19:41:53 +0000125 }
126
Chris Lattner10b1f5a2003-08-17 20:21:14 +0000127 if (CI && !TheOnlyDest) {
128 // Branching on a constant, but not any of the cases, go to the default
129 // successor.
130 TheOnlyDest = SI->getDefaultDest();
131 }
132
133 // If we found a single destination that we can fold the switch into, do so
134 // now.
135 if (TheOnlyDest) {
Chris Lattner0a4c6782009-11-01 03:40:38 +0000136 // Insert the new branch.
Gabor Greif051a9502008-04-06 20:25:17 +0000137 BranchInst::Create(TheOnlyDest, SI);
Chris Lattner10b1f5a2003-08-17 20:21:14 +0000138 BasicBlock *BB = SI->getParent();
139
140 // Remove entries from PHI nodes which we no longer branch to...
141 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
142 // Found case matching a constant operand?
143 BasicBlock *Succ = SI->getSuccessor(i);
144 if (Succ == TheOnlyDest)
145 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
146 else
147 Succ->removePredecessor(BB);
148 }
149
Chris Lattner0a4c6782009-11-01 03:40:38 +0000150 // Delete the old switch.
Chris Lattner10b1f5a2003-08-17 20:21:14 +0000151 BB->getInstList().erase(SI);
152 return true;
Chris Lattner0a4c6782009-11-01 03:40:38 +0000153 }
154
155 if (SI->getNumSuccessors() == 2) {
Chris Lattner10b1f5a2003-08-17 20:21:14 +0000156 // Otherwise, we can fold this switch into a conditional branch
157 // instruction if it has only one non-default destination.
Owen Anderson333c4002009-07-09 23:48:35 +0000158 Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
159 SI->getSuccessorValue(1), "cond");
Chris Lattner0a4c6782009-11-01 03:40:38 +0000160 // Insert the new branch.
Gabor Greif051a9502008-04-06 20:25:17 +0000161 BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
Chris Lattner10b1f5a2003-08-17 20:21:14 +0000162
Chris Lattner0a4c6782009-11-01 03:40:38 +0000163 // Delete the old switch.
Dan Gohman1adec832008-06-21 22:08:46 +0000164 SI->eraseFromParent();
Chris Lattner10b1f5a2003-08-17 20:21:14 +0000165 return true;
166 }
Chris Lattner0a4c6782009-11-01 03:40:38 +0000167 return false;
Chris Lattner4d1e46e2002-05-07 18:07:59 +0000168 }
Chris Lattner0a4c6782009-11-01 03:40:38 +0000169
170 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
171 // indirectbr blockaddress(@F, @BB) -> br label @BB
172 if (BlockAddress *BA =
173 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
174 BasicBlock *TheOnlyDest = BA->getBasicBlock();
175 // Insert the new branch.
176 BranchInst::Create(TheOnlyDest, IBI);
177
178 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
179 if (IBI->getDestination(i) == TheOnlyDest)
180 TheOnlyDest = 0;
181 else
182 IBI->getDestination(i)->removePredecessor(IBI->getParent());
183 }
184 IBI->eraseFromParent();
185
186 // If we didn't find our destination in the IBI successor list, then we
187 // have undefined behavior. Replace the unconditional branch with an
188 // 'unreachable' instruction.
189 if (TheOnlyDest) {
190 BB->getTerminator()->eraseFromParent();
191 new UnreachableInst(BB->getContext(), BB);
192 }
193
194 return true;
195 }
196 }
197
Chris Lattner4d1e46e2002-05-07 18:07:59 +0000198 return false;
199}
200
Chris Lattner4d1e46e2002-05-07 18:07:59 +0000201
202//===----------------------------------------------------------------------===//
Chris Lattner40d8c282009-11-10 22:26:15 +0000203// Local dead code elimination.
Chris Lattner4d1e46e2002-05-07 18:07:59 +0000204//
205
Chris Lattner3481f242008-11-27 22:57:53 +0000206/// isInstructionTriviallyDead - Return true if the result produced by the
207/// instruction is not used, and the instruction has no side effects.
208///
Chris Lattnerabbc2dd2003-12-19 05:56:28 +0000209bool llvm::isInstructionTriviallyDead(Instruction *I) {
Chris Lattnerec710c52005-05-06 05:27:34 +0000210 if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
Jeff Cohen00b168892005-07-27 06:12:32 +0000211
Dale Johannesen127a7932009-03-03 23:30:00 +0000212 // We don't want debug info removed by anything this general.
213 if (isa<DbgInfoIntrinsic>(I)) return false;
Chris Lattnerec710c52005-05-06 05:27:34 +0000214
Duncan Sands7af1c782009-05-06 06:49:50 +0000215 if (!I->mayHaveSideEffects()) return true;
216
217 // Special case intrinsics that "may have side effects" but can be deleted
218 // when dead.
Chris Lattner741c0ae2007-12-29 00:59:12 +0000219 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
220 // Safe to delete llvm.stacksave if dead.
221 if (II->getIntrinsicID() == Intrinsic::stacksave)
222 return true;
Chris Lattnerec710c52005-05-06 05:27:34 +0000223 return false;
Chris Lattner4d1e46e2002-05-07 18:07:59 +0000224}
225
Chris Lattner3481f242008-11-27 22:57:53 +0000226/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
227/// trivially dead instruction, delete it. If that makes any of its operands
Dan Gohman90fe0bd2010-01-05 15:45:31 +0000228/// trivially dead, delete them too, recursively. Return true if any
229/// instructions were deleted.
230bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
Chris Lattner3481f242008-11-27 22:57:53 +0000231 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattner76057302008-11-28 01:20:46 +0000232 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
Dan Gohman90fe0bd2010-01-05 15:45:31 +0000233 return false;
Chris Lattner3481f242008-11-27 22:57:53 +0000234
Chris Lattner76057302008-11-28 01:20:46 +0000235 SmallVector<Instruction*, 16> DeadInsts;
236 DeadInsts.push_back(I);
Chris Lattner3481f242008-11-27 22:57:53 +0000237
Dan Gohman321a8132010-01-05 16:27:25 +0000238 do {
Dan Gohmane9d87f42009-05-06 17:22:41 +0000239 I = DeadInsts.pop_back_val();
Chris Lattner28721772008-11-28 00:58:15 +0000240
Chris Lattner76057302008-11-28 01:20:46 +0000241 // Null out all of the instruction's operands to see if any operand becomes
242 // dead as we go.
243 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
244 Value *OpV = I->getOperand(i);
245 I->setOperand(i, 0);
246
247 if (!OpV->use_empty()) continue;
248
249 // If the operand is an instruction that became dead as we nulled out the
250 // operand, and if it is 'trivially' dead, delete it in a future loop
251 // iteration.
252 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
253 if (isInstructionTriviallyDead(OpI))
254 DeadInsts.push_back(OpI);
255 }
256
257 I->eraseFromParent();
Dan Gohman321a8132010-01-05 16:27:25 +0000258 } while (!DeadInsts.empty());
Dan Gohman90fe0bd2010-01-05 15:45:31 +0000259
260 return true;
Chris Lattner4d1e46e2002-05-07 18:07:59 +0000261}
Chris Lattnerb29714a2008-11-27 07:43:12 +0000262
Dan Gohmanafc36a92009-05-02 18:29:22 +0000263/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
264/// dead PHI node, due to being a def-use chain of single-use nodes that
265/// either forms a cycle or is terminated by a trivially dead instruction,
266/// delete it. If that makes any of its operands trivially dead, delete them
Dan Gohman90fe0bd2010-01-05 15:45:31 +0000267/// too, recursively. Return true if the PHI node is actually deleted.
268bool
Dan Gohman35738ac2009-05-04 22:30:44 +0000269llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
Dan Gohmanafc36a92009-05-02 18:29:22 +0000270 // We can remove a PHI if it is on a cycle in the def-use graph
271 // where each node in the cycle has degree one, i.e. only one use,
272 // and is an instruction with no side effects.
273 if (!PN->hasOneUse())
Dan Gohman90fe0bd2010-01-05 15:45:31 +0000274 return false;
Dan Gohmanafc36a92009-05-02 18:29:22 +0000275
Dan Gohman90fe0bd2010-01-05 15:45:31 +0000276 bool Changed = false;
Dan Gohmanafc36a92009-05-02 18:29:22 +0000277 SmallPtrSet<PHINode *, 4> PHIs;
278 PHIs.insert(PN);
279 for (Instruction *J = cast<Instruction>(*PN->use_begin());
Duncan Sands7af1c782009-05-06 06:49:50 +0000280 J->hasOneUse() && !J->mayHaveSideEffects();
Dan Gohmanafc36a92009-05-02 18:29:22 +0000281 J = cast<Instruction>(*J->use_begin()))
282 // If we find a PHI more than once, we're on a cycle that
283 // won't prove fruitful.
284 if (PHINode *JP = dyn_cast<PHINode>(J))
285 if (!PHIs.insert(cast<PHINode>(JP))) {
286 // Break the cycle and delete the PHI and its operands.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000287 JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
Dan Gohmanba25f092010-01-05 17:50:58 +0000288 (void)RecursivelyDeleteTriviallyDeadInstructions(JP);
289 Changed = true;
Dan Gohmanafc36a92009-05-02 18:29:22 +0000290 break;
291 }
Dan Gohman90fe0bd2010-01-05 15:45:31 +0000292 return Changed;
Dan Gohmanafc36a92009-05-02 18:29:22 +0000293}
Chris Lattner3481f242008-11-27 22:57:53 +0000294
Chris Lattnere234a302010-01-12 19:40:54 +0000295/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
296/// simplify any instructions in it and recursively delete dead instructions.
297///
298/// This returns true if it changed the code, note that it can delete
299/// instructions in other blocks as well in this block.
300bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
301 bool MadeChange = false;
302 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
303 Instruction *Inst = BI++;
304
305 if (Value *V = SimplifyInstruction(Inst, TD)) {
306 WeakVH BIHandle(BI);
307 ReplaceAndSimplifyAllUses(Inst, V, TD);
308 MadeChange = true;
Chris Lattner35a939b2010-07-15 06:06:04 +0000309 if (BIHandle != BI)
Chris Lattnere234a302010-01-12 19:40:54 +0000310 BI = BB->begin();
311 continue;
312 }
313
314 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
315 }
316 return MadeChange;
317}
318
Chris Lattnerb29714a2008-11-27 07:43:12 +0000319//===----------------------------------------------------------------------===//
Chris Lattner40d8c282009-11-10 22:26:15 +0000320// Control Flow Graph Restructuring.
Chris Lattnerb29714a2008-11-27 07:43:12 +0000321//
322
Chris Lattner40d8c282009-11-10 22:26:15 +0000323
324/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
325/// method is called when we're about to delete Pred as a predecessor of BB. If
326/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
327///
328/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
329/// nodes that collapse into identity values. For example, if we have:
330/// x = phi(1, 0, 0, 0)
331/// y = and x, z
332///
333/// .. and delete the predecessor corresponding to the '1', this will attempt to
334/// recursively fold the and to 0.
335void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
336 TargetData *TD) {
337 // This only adjusts blocks with PHI nodes.
338 if (!isa<PHINode>(BB->begin()))
339 return;
340
341 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
342 // them down. This will leave us with single entry phi nodes and other phis
343 // that can be removed.
344 BB->removePredecessor(Pred, true);
345
346 WeakVH PhiIt = &BB->front();
347 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
348 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
Duncan Sands6ac33862010-11-17 04:12:05 +0000349
350 Value *PNV = SimplifyInstruction(PN, TD);
Chris Lattner40d8c282009-11-10 22:26:15 +0000351 if (PNV == 0) continue;
Duncan Sands6ac33862010-11-17 04:12:05 +0000352
Chris Lattner40d8c282009-11-10 22:26:15 +0000353 // If we're able to simplify the phi to a single value, substitute the new
354 // value into all of its uses.
Duncan Sands6ac33862010-11-17 04:12:05 +0000355 assert(PNV != PN && "SimplifyInstruction broken!");
Chris Lattner40d8c282009-11-10 22:26:15 +0000356
Chris Lattner35a939b2010-07-15 06:06:04 +0000357 Value *OldPhiIt = PhiIt;
Chris Lattner40d8c282009-11-10 22:26:15 +0000358 ReplaceAndSimplifyAllUses(PN, PNV, TD);
359
360 // If recursive simplification ended up deleting the next PHI node we would
361 // iterate to, then our iterator is invalid, restart scanning from the top
362 // of the block.
Chris Lattner35a939b2010-07-15 06:06:04 +0000363 if (PhiIt != OldPhiIt) PhiIt = &BB->front();
Chris Lattner40d8c282009-11-10 22:26:15 +0000364 }
365}
366
367
Chris Lattnerb29714a2008-11-27 07:43:12 +0000368/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
369/// predecessor is known to have one successor (DestBB!). Eliminate the edge
370/// between them, moving the instructions in the predecessor into DestBB and
371/// deleting the predecessor block.
372///
Andreas Neustifterad809812009-09-16 09:26:52 +0000373void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
Chris Lattnerb29714a2008-11-27 07:43:12 +0000374 // If BB has single-entry PHI nodes, fold them.
375 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
376 Value *NewVal = PN->getIncomingValue(0);
377 // Replace self referencing PHI with undef, it must be dead.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000378 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
Chris Lattnerb29714a2008-11-27 07:43:12 +0000379 PN->replaceAllUsesWith(NewVal);
380 PN->eraseFromParent();
381 }
382
383 BasicBlock *PredBB = DestBB->getSinglePredecessor();
384 assert(PredBB && "Block doesn't have a single predecessor!");
385
386 // Splice all the instructions from PredBB to DestBB.
387 PredBB->getTerminator()->eraseFromParent();
388 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
Chris Lattner37914c82010-02-15 20:47:49 +0000389
390 // Zap anything that took the address of DestBB. Not doing this will give the
391 // address an invalid value.
392 if (DestBB->hasAddressTaken()) {
393 BlockAddress *BA = BlockAddress::get(DestBB);
394 Constant *Replacement =
395 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
396 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
397 BA->getType()));
398 BA->destroyConstant();
399 }
Chris Lattnerb29714a2008-11-27 07:43:12 +0000400
401 // Anything that branched to PredBB now branches to DestBB.
402 PredBB->replaceAllUsesWith(DestBB);
403
Andreas Neustifterad809812009-09-16 09:26:52 +0000404 if (P) {
Cameron Zwarich80f6a502011-01-08 17:01:52 +0000405 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
406 if (DT) {
407 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
408 DT->changeImmediateDominator(DestBB, PredBBIDom);
409 DT->eraseNode(PredBB);
410 }
Andreas Neustifterad809812009-09-16 09:26:52 +0000411 ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
412 if (PI) {
413 PI->replaceAllUses(PredBB, DestBB);
414 PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
415 }
416 }
Chris Lattnerb29714a2008-11-27 07:43:12 +0000417 // Nuke BB.
418 PredBB->eraseFromParent();
419}
Devang Patel4afc90d2009-02-10 07:00:59 +0000420
Chris Lattnerdce94d92009-11-10 05:59:26 +0000421/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
422/// almost-empty BB ending in an unconditional branch to Succ, into succ.
423///
424/// Assumption: Succ is the single successor for BB.
425///
426static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
427 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
428
David Greenefae77062010-01-05 01:26:57 +0000429 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
Chris Lattnerdce94d92009-11-10 05:59:26 +0000430 << Succ->getName() << "\n");
431 // Shortcut, if there is only a single predecessor it must be BB and merging
432 // is always safe
433 if (Succ->getSinglePredecessor()) return true;
434
435 // Make a list of the predecessors of BB
436 typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
437 BlockSet BBPreds(pred_begin(BB), pred_end(BB));
438
439 // Use that list to make another list of common predecessors of BB and Succ
440 BlockSet CommonPreds;
441 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
Gabor Greiff1b28742010-07-12 10:49:54 +0000442 PI != PE; ++PI) {
443 BasicBlock *P = *PI;
444 if (BBPreds.count(P))
445 CommonPreds.insert(P);
446 }
Chris Lattnerdce94d92009-11-10 05:59:26 +0000447
448 // Shortcut, if there are no common predecessors, merging is always safe
449 if (CommonPreds.empty())
450 return true;
451
452 // Look at all the phi nodes in Succ, to see if they present a conflict when
453 // merging these blocks
454 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
455 PHINode *PN = cast<PHINode>(I);
456
457 // If the incoming value from BB is again a PHINode in
458 // BB which has the same incoming value for *PI as PN does, we can
459 // merge the phi nodes and then the blocks can still be merged
460 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
461 if (BBPN && BBPN->getParent() == BB) {
462 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
463 PI != PE; PI++) {
464 if (BBPN->getIncomingValueForBlock(*PI)
465 != PN->getIncomingValueForBlock(*PI)) {
David Greenefae77062010-01-05 01:26:57 +0000466 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
Chris Lattnerdce94d92009-11-10 05:59:26 +0000467 << Succ->getName() << " is conflicting with "
468 << BBPN->getName() << " with regard to common predecessor "
469 << (*PI)->getName() << "\n");
470 return false;
471 }
472 }
473 } else {
474 Value* Val = PN->getIncomingValueForBlock(BB);
475 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
476 PI != PE; PI++) {
477 // See if the incoming value for the common predecessor is equal to the
478 // one for BB, in which case this phi node will not prevent the merging
479 // of the block.
480 if (Val != PN->getIncomingValueForBlock(*PI)) {
David Greenefae77062010-01-05 01:26:57 +0000481 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
Chris Lattnerdce94d92009-11-10 05:59:26 +0000482 << Succ->getName() << " is conflicting with regard to common "
483 << "predecessor " << (*PI)->getName() << "\n");
484 return false;
485 }
486 }
487 }
488 }
489
490 return true;
491}
492
493/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
494/// unconditional branch, and contains no instructions other than PHI nodes,
495/// potential debug intrinsics and the branch. If possible, eliminate BB by
496/// rewriting all the predecessors to branch to the successor block and return
497/// true. If we can't transform, return false.
498bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
Dan Gohmane2c6d132010-08-14 00:29:42 +0000499 assert(BB != &BB->getParent()->getEntryBlock() &&
500 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
501
Chris Lattnerdce94d92009-11-10 05:59:26 +0000502 // We can't eliminate infinite loops.
503 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
504 if (BB == Succ) return false;
505
506 // Check to see if merging these blocks would cause conflicts for any of the
507 // phi nodes in BB or Succ. If not, we can safely merge.
508 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
509
510 // Check for cases where Succ has multiple predecessors and a PHI node in BB
511 // has uses which will not disappear when the PHI nodes are merged. It is
512 // possible to handle such cases, but difficult: it requires checking whether
513 // BB dominates Succ, which is non-trivial to calculate in the case where
514 // Succ has multiple predecessors. Also, it requires checking whether
515 // constructing the necessary self-referential PHI node doesn't intoduce any
516 // conflicts; this isn't too difficult, but the previous code for doing this
517 // was incorrect.
518 //
519 // Note that if this check finds a live use, BB dominates Succ, so BB is
520 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
521 // folding the branch isn't profitable in that case anyway.
522 if (!Succ->getSinglePredecessor()) {
523 BasicBlock::iterator BBI = BB->begin();
524 while (isa<PHINode>(*BBI)) {
525 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
526 UI != E; ++UI) {
527 if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
528 if (PN->getIncomingBlock(UI) != BB)
529 return false;
530 } else {
531 return false;
532 }
533 }
534 ++BBI;
535 }
536 }
537
David Greenefae77062010-01-05 01:26:57 +0000538 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
Chris Lattnerdce94d92009-11-10 05:59:26 +0000539
540 if (isa<PHINode>(Succ->begin())) {
541 // If there is more than one pred of succ, and there are PHI nodes in
542 // the successor, then we need to add incoming edges for the PHI nodes
543 //
544 const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
545
546 // Loop over all of the PHI nodes in the successor of BB.
547 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
548 PHINode *PN = cast<PHINode>(I);
549 Value *OldVal = PN->removeIncomingValue(BB, false);
550 assert(OldVal && "No entry in PHI for Pred BB!");
551
552 // If this incoming value is one of the PHI nodes in BB, the new entries
553 // in the PHI node are the entries from the old PHI.
554 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
555 PHINode *OldValPN = cast<PHINode>(OldVal);
556 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
557 // Note that, since we are merging phi nodes and BB and Succ might
558 // have common predecessors, we could end up with a phi node with
559 // identical incoming branches. This will be cleaned up later (and
560 // will trigger asserts if we try to clean it up now, without also
561 // simplifying the corresponding conditional branch).
562 PN->addIncoming(OldValPN->getIncomingValue(i),
563 OldValPN->getIncomingBlock(i));
564 } else {
565 // Add an incoming value for each of the new incoming values.
566 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
567 PN->addIncoming(OldVal, BBPreds[i]);
568 }
569 }
570 }
571
572 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
573 if (Succ->getSinglePredecessor()) {
574 // BB is the only predecessor of Succ, so Succ will end up with exactly
575 // the same predecessors BB had.
576 Succ->getInstList().splice(Succ->begin(),
577 BB->getInstList(), BB->begin());
578 } else {
579 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
580 assert(PN->use_empty() && "There shouldn't be any uses here!");
581 PN->eraseFromParent();
582 }
583 }
584
585 // Everything that jumped to BB now goes to Succ.
586 BB->replaceAllUsesWith(Succ);
587 if (!Succ->hasName()) Succ->takeName(BB);
588 BB->eraseFromParent(); // Delete the old basic block.
589 return true;
590}
591
Jim Grosbach43a82412009-12-02 17:06:45 +0000592/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
593/// nodes in this block. This doesn't try to be clever about PHI nodes
594/// which differ only in the order of the incoming values, but instcombine
595/// orders them so it usually won't matter.
596///
597bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
598 bool Changed = false;
599
600 // This implementation doesn't currently consider undef operands
601 // specially. Theroetically, two phis which are identical except for
602 // one having an undef where the other doesn't could be collapsed.
603
604 // Map from PHI hash values to PHI nodes. If multiple PHIs have
605 // the same hash value, the element is the first PHI in the
606 // linked list in CollisionMap.
607 DenseMap<uintptr_t, PHINode *> HashMap;
608
609 // Maintain linked lists of PHI nodes with common hash values.
610 DenseMap<PHINode *, PHINode *> CollisionMap;
611
612 // Examine each PHI.
613 for (BasicBlock::iterator I = BB->begin();
614 PHINode *PN = dyn_cast<PHINode>(I++); ) {
615 // Compute a hash value on the operands. Instcombine will likely have sorted
616 // them, which helps expose duplicates, but we have to check all the
617 // operands to be safe in case instcombine hasn't run.
618 uintptr_t Hash = 0;
619 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
620 // This hash algorithm is quite weak as hash functions go, but it seems
621 // to do a good enough job for this particular purpose, and is very quick.
622 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
623 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
624 }
625 // If we've never seen this hash value before, it's a unique PHI.
626 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
627 HashMap.insert(std::make_pair(Hash, PN));
628 if (Pair.second) continue;
629 // Otherwise it's either a duplicate or a hash collision.
630 for (PHINode *OtherPN = Pair.first->second; ; ) {
631 if (OtherPN->isIdenticalTo(PN)) {
632 // A duplicate. Replace this PHI with its duplicate.
633 PN->replaceAllUsesWith(OtherPN);
634 PN->eraseFromParent();
635 Changed = true;
636 break;
637 }
638 // A non-duplicate hash collision.
639 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
640 if (I == CollisionMap.end()) {
641 // Set this PHI to be the head of the linked list of colliding PHIs.
642 PHINode *Old = Pair.first->second;
643 Pair.first->second = PN;
644 CollisionMap[PN] = Old;
645 break;
646 }
647 // Procede to the next PHI in the list.
648 OtherPN = I->second;
649 }
650 }
651
652 return Changed;
653}
Chris Lattner687140c2010-12-25 20:37:57 +0000654
655/// enforceKnownAlignment - If the specified pointer points to an object that
656/// we control, modify the object's alignment to PrefAlign. This isn't
657/// often possible though. If alignment is important, a more reliable approach
658/// is to simply align all global variables and allocation instructions to
659/// their preferred alignment from the beginning.
660///
Benjamin Kramer19282362010-12-30 22:34:44 +0000661static unsigned enforceKnownAlignment(Value *V, unsigned Align,
662 unsigned PrefAlign) {
Chris Lattner687140c2010-12-25 20:37:57 +0000663
664 User *U = dyn_cast<User>(V);
665 if (!U) return Align;
666
667 switch (Operator::getOpcode(U)) {
668 default: break;
669 case Instruction::BitCast:
670 return enforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
671 case Instruction::GetElementPtr: {
672 // If all indexes are zero, it is just the alignment of the base pointer.
673 bool AllZeroOperands = true;
674 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
675 if (!isa<Constant>(*i) ||
676 !cast<Constant>(*i)->isNullValue()) {
677 AllZeroOperands = false;
678 break;
679 }
680
681 if (AllZeroOperands) {
682 // Treat this like a bitcast.
683 return enforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
684 }
685 return Align;
686 }
687 case Instruction::Alloca: {
688 AllocaInst *AI = cast<AllocaInst>(V);
689 // If there is a requested alignment and if this is an alloca, round up.
690 if (AI->getAlignment() >= PrefAlign)
691 return AI->getAlignment();
692 AI->setAlignment(PrefAlign);
693 return PrefAlign;
694 }
695 }
696
697 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
698 // If there is a large requested alignment and we can, bump up the alignment
699 // of the global.
700 if (GV->isDeclaration()) return Align;
701
702 if (GV->getAlignment() >= PrefAlign)
703 return GV->getAlignment();
704 // We can only increase the alignment of the global if it has no alignment
705 // specified or if it is not assigned a section. If it is assigned a
706 // section, the global could be densely packed with other objects in the
707 // section, increasing the alignment could cause padding issues.
708 if (!GV->hasSection() || GV->getAlignment() == 0)
709 GV->setAlignment(PrefAlign);
710 return GV->getAlignment();
711 }
712
713 return Align;
714}
715
716/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
717/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
718/// and it is more than the alignment of the ultimate object, see if we can
719/// increase the alignment of the ultimate object, making this check succeed.
720unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
721 const TargetData *TD) {
722 assert(V->getType()->isPointerTy() &&
723 "getOrEnforceKnownAlignment expects a pointer!");
724 unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
725 APInt Mask = APInt::getAllOnesValue(BitWidth);
726 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Chris Lattnerae47be12010-12-25 20:52:04 +0000727 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
Chris Lattner687140c2010-12-25 20:37:57 +0000728 unsigned TrailZ = KnownZero.countTrailingOnes();
729
730 // Avoid trouble with rediculously large TrailZ values, such as
731 // those computed from a null pointer.
732 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
733
734 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
735
736 // LLVM doesn't support alignments larger than this currently.
737 Align = std::min(Align, +Value::MaximumAlignment);
738
739 if (PrefAlign > Align)
740 Align = enforceKnownAlignment(V, Align, PrefAlign);
741
742 // We don't need to make any adjustment.
743 return Align;
744}
745