blob: 52f0499f39b0e2f35ecf27e864059699b9879b6d [file] [log] [blame]
Chris Lattner4d1e46e2002-05-07 18:07:59 +00001//===-- Local.cpp - Functions to perform local transformations ------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4d1e46e2002-05-07 18:07:59 +00009//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
Chris Lattner81ebc302004-01-12 18:35:03 +000016#include "llvm/Constants.h"
Chris Lattner6cc8a932009-06-16 17:23:12 +000017#include "llvm/GlobalAlias.h"
Devang Patelc79e1182009-03-06 00:19:37 +000018#include "llvm/GlobalVariable.h"
Chris Lattnerc5f52e62005-09-26 05:27:10 +000019#include "llvm/DerivedTypes.h"
Chris Lattner7822c2a2004-01-12 19:56:36 +000020#include "llvm/Instructions.h"
Chris Lattnercf110352004-06-11 06:16:23 +000021#include "llvm/Intrinsics.h"
Chris Lattner741c0ae2007-12-29 00:59:12 +000022#include "llvm/IntrinsicInst.h"
Chris Lattner19f2dc42009-12-29 09:12:29 +000023#include "llvm/ADT/DenseMap.h"
Dan Gohmanafc36a92009-05-02 18:29:22 +000024#include "llvm/ADT/SmallPtrSet.h"
Chris Lattnercbbc6b72005-10-27 16:34:00 +000025#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner40d8c282009-11-10 22:26:15 +000026#include "llvm/Analysis/InstructionSimplify.h"
Andreas Neustifterad809812009-09-16 09:26:52 +000027#include "llvm/Analysis/ProfileInfo.h"
Chris Lattner9fa038d2007-01-30 23:13:49 +000028#include "llvm/Target/TargetData.h"
Chris Lattnerdce94d92009-11-10 05:59:26 +000029#include "llvm/Support/CFG.h"
30#include "llvm/Support/Debug.h"
Chris Lattnerc5f52e62005-09-26 05:27:10 +000031#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/MathExtras.h"
Chris Lattner19f2dc42009-12-29 09:12:29 +000033#include "llvm/Support/ValueHandle.h"
Chris Lattnerdce94d92009-11-10 05:59:26 +000034#include "llvm/Support/raw_ostream.h"
Chris Lattnerabbc2dd2003-12-19 05:56:28 +000035using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000036
Chris Lattner4d1e46e2002-05-07 18:07:59 +000037//===----------------------------------------------------------------------===//
Chris Lattner3481f242008-11-27 22:57:53 +000038// Local constant propagation.
Chris Lattner4d1e46e2002-05-07 18:07:59 +000039//
40
Chris Lattner4d1e46e2002-05-07 18:07:59 +000041// ConstantFoldTerminator - If a terminator instruction is predicated on a
42// constant value, convert it into an unconditional branch to the constant
43// destination.
44//
Chris Lattnerabbc2dd2003-12-19 05:56:28 +000045bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
Chris Lattner76ae3442002-05-21 20:04:50 +000046 TerminatorInst *T = BB->getTerminator();
Misha Brukmanfd939082005-04-21 23:48:37 +000047
Chris Lattner4d1e46e2002-05-07 18:07:59 +000048 // Branch - See if we are conditional jumping on constant
49 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
50 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
Gabor Greifc1bb13f2009-01-30 18:21:13 +000051 BasicBlock *Dest1 = BI->getSuccessor(0);
52 BasicBlock *Dest2 = BI->getSuccessor(1);
Chris Lattner4d1e46e2002-05-07 18:07:59 +000053
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +000054 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
Chris Lattner4d1e46e2002-05-07 18:07:59 +000055 // Are we branching on constant?
56 // YES. Change to unconditional branch...
Reid Spencer579dca12007-01-12 04:24:46 +000057 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
58 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
Chris Lattner4d1e46e2002-05-07 18:07:59 +000059
Misha Brukmanfd939082005-04-21 23:48:37 +000060 //cerr << "Function: " << T->getParent()->getParent()
61 // << "\nRemoving branch from " << T->getParent()
Chris Lattner4d1e46e2002-05-07 18:07:59 +000062 // << "\n\nTo: " << OldDest << endl;
63
64 // Let the basic block know that we are letting go of it. Based on this,
65 // it will adjust it's PHI nodes.
66 assert(BI->getParent() && "Terminator not inserted in block!");
67 OldDest->removePredecessor(BI->getParent());
68
69 // Set the unconditional destination, and change the insn to be an
70 // unconditional branch.
71 BI->setUnconditionalDest(Destination);
Chris Lattner4d1e46e2002-05-07 18:07:59 +000072 return true;
Chris Lattner0a4c6782009-11-01 03:40:38 +000073 }
74
75 if (Dest2 == Dest1) { // Conditional branch to same location?
Misha Brukmanfd939082005-04-21 23:48:37 +000076 // This branch matches something like this:
Chris Lattner4d1e46e2002-05-07 18:07:59 +000077 // br bool %cond, label %Dest, label %Dest
78 // and changes it into: br label %Dest
79
80 // Let the basic block know that we are letting go of one copy of it.
81 assert(BI->getParent() && "Terminator not inserted in block!");
82 Dest1->removePredecessor(BI->getParent());
83
84 // Change a conditional branch to unconditional.
85 BI->setUnconditionalDest(Dest1);
86 return true;
87 }
Chris Lattner0a4c6782009-11-01 03:40:38 +000088 return false;
89 }
90
91 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
Chris Lattner10b1f5a2003-08-17 20:21:14 +000092 // If we are switching on a constant, we can convert the switch into a
93 // single branch instruction!
94 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
95 BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest
Chris Lattner7d6c24c2003-08-23 23:18:19 +000096 BasicBlock *DefaultDest = TheOnlyDest;
97 assert(TheOnlyDest == SI->getDefaultDest() &&
98 "Default destination is not successor #0?");
Chris Lattner694e37f2003-08-17 19:41:53 +000099
Chris Lattner0a4c6782009-11-01 03:40:38 +0000100 // Figure out which case it goes to.
Chris Lattner10b1f5a2003-08-17 20:21:14 +0000101 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
102 // Found case matching a constant operand?
103 if (SI->getSuccessorValue(i) == CI) {
104 TheOnlyDest = SI->getSuccessor(i);
105 break;
106 }
Chris Lattner694e37f2003-08-17 19:41:53 +0000107
Chris Lattner7d6c24c2003-08-23 23:18:19 +0000108 // Check to see if this branch is going to the same place as the default
109 // dest. If so, eliminate it as an explicit compare.
110 if (SI->getSuccessor(i) == DefaultDest) {
Chris Lattner0a4c6782009-11-01 03:40:38 +0000111 // Remove this entry.
Chris Lattner7d6c24c2003-08-23 23:18:19 +0000112 DefaultDest->removePredecessor(SI->getParent());
113 SI->removeCase(i);
114 --i; --e; // Don't skip an entry...
115 continue;
116 }
117
Chris Lattner10b1f5a2003-08-17 20:21:14 +0000118 // Otherwise, check to see if the switch only branches to one destination.
119 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
120 // destinations.
121 if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
Chris Lattner694e37f2003-08-17 19:41:53 +0000122 }
123
Chris Lattner10b1f5a2003-08-17 20:21:14 +0000124 if (CI && !TheOnlyDest) {
125 // Branching on a constant, but not any of the cases, go to the default
126 // successor.
127 TheOnlyDest = SI->getDefaultDest();
128 }
129
130 // If we found a single destination that we can fold the switch into, do so
131 // now.
132 if (TheOnlyDest) {
Chris Lattner0a4c6782009-11-01 03:40:38 +0000133 // Insert the new branch.
Gabor Greif051a9502008-04-06 20:25:17 +0000134 BranchInst::Create(TheOnlyDest, SI);
Chris Lattner10b1f5a2003-08-17 20:21:14 +0000135 BasicBlock *BB = SI->getParent();
136
137 // Remove entries from PHI nodes which we no longer branch to...
138 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
139 // Found case matching a constant operand?
140 BasicBlock *Succ = SI->getSuccessor(i);
141 if (Succ == TheOnlyDest)
142 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
143 else
144 Succ->removePredecessor(BB);
145 }
146
Chris Lattner0a4c6782009-11-01 03:40:38 +0000147 // Delete the old switch.
Chris Lattner10b1f5a2003-08-17 20:21:14 +0000148 BB->getInstList().erase(SI);
149 return true;
Chris Lattner0a4c6782009-11-01 03:40:38 +0000150 }
151
152 if (SI->getNumSuccessors() == 2) {
Chris Lattner10b1f5a2003-08-17 20:21:14 +0000153 // Otherwise, we can fold this switch into a conditional branch
154 // instruction if it has only one non-default destination.
Owen Anderson333c4002009-07-09 23:48:35 +0000155 Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
156 SI->getSuccessorValue(1), "cond");
Chris Lattner0a4c6782009-11-01 03:40:38 +0000157 // Insert the new branch.
Gabor Greif051a9502008-04-06 20:25:17 +0000158 BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
Chris Lattner10b1f5a2003-08-17 20:21:14 +0000159
Chris Lattner0a4c6782009-11-01 03:40:38 +0000160 // Delete the old switch.
Dan Gohman1adec832008-06-21 22:08:46 +0000161 SI->eraseFromParent();
Chris Lattner10b1f5a2003-08-17 20:21:14 +0000162 return true;
163 }
Chris Lattner0a4c6782009-11-01 03:40:38 +0000164 return false;
Chris Lattner4d1e46e2002-05-07 18:07:59 +0000165 }
Chris Lattner0a4c6782009-11-01 03:40:38 +0000166
167 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
168 // indirectbr blockaddress(@F, @BB) -> br label @BB
169 if (BlockAddress *BA =
170 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
171 BasicBlock *TheOnlyDest = BA->getBasicBlock();
172 // Insert the new branch.
173 BranchInst::Create(TheOnlyDest, IBI);
174
175 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
176 if (IBI->getDestination(i) == TheOnlyDest)
177 TheOnlyDest = 0;
178 else
179 IBI->getDestination(i)->removePredecessor(IBI->getParent());
180 }
181 IBI->eraseFromParent();
182
183 // If we didn't find our destination in the IBI successor list, then we
184 // have undefined behavior. Replace the unconditional branch with an
185 // 'unreachable' instruction.
186 if (TheOnlyDest) {
187 BB->getTerminator()->eraseFromParent();
188 new UnreachableInst(BB->getContext(), BB);
189 }
190
191 return true;
192 }
193 }
194
Chris Lattner4d1e46e2002-05-07 18:07:59 +0000195 return false;
196}
197
Chris Lattner4d1e46e2002-05-07 18:07:59 +0000198
199//===----------------------------------------------------------------------===//
Chris Lattner40d8c282009-11-10 22:26:15 +0000200// Local dead code elimination.
Chris Lattner4d1e46e2002-05-07 18:07:59 +0000201//
202
Chris Lattner3481f242008-11-27 22:57:53 +0000203/// isInstructionTriviallyDead - Return true if the result produced by the
204/// instruction is not used, and the instruction has no side effects.
205///
Chris Lattnerabbc2dd2003-12-19 05:56:28 +0000206bool llvm::isInstructionTriviallyDead(Instruction *I) {
Chris Lattnerec710c52005-05-06 05:27:34 +0000207 if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
Jeff Cohen00b168892005-07-27 06:12:32 +0000208
Dale Johannesen127a7932009-03-03 23:30:00 +0000209 // We don't want debug info removed by anything this general.
210 if (isa<DbgInfoIntrinsic>(I)) return false;
Chris Lattnerec710c52005-05-06 05:27:34 +0000211
Duncan Sandsa3da9222009-11-11 15:34:13 +0000212 // Likewise for memory use markers.
213 if (isa<MemoryUseIntrinsic>(I)) return false;
214
Duncan Sands7af1c782009-05-06 06:49:50 +0000215 if (!I->mayHaveSideEffects()) return true;
216
217 // Special case intrinsics that "may have side effects" but can be deleted
218 // when dead.
Chris Lattner741c0ae2007-12-29 00:59:12 +0000219 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
220 // Safe to delete llvm.stacksave if dead.
221 if (II->getIntrinsicID() == Intrinsic::stacksave)
222 return true;
Chris Lattnerec710c52005-05-06 05:27:34 +0000223 return false;
Chris Lattner4d1e46e2002-05-07 18:07:59 +0000224}
225
Chris Lattner3481f242008-11-27 22:57:53 +0000226/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
227/// trivially dead instruction, delete it. If that makes any of its operands
Dan Gohman90fe0bd2010-01-05 15:45:31 +0000228/// trivially dead, delete them too, recursively. Return true if any
229/// instructions were deleted.
230bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
Chris Lattner3481f242008-11-27 22:57:53 +0000231 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattner76057302008-11-28 01:20:46 +0000232 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
Dan Gohman90fe0bd2010-01-05 15:45:31 +0000233 return false;
Chris Lattner3481f242008-11-27 22:57:53 +0000234
Chris Lattner76057302008-11-28 01:20:46 +0000235 SmallVector<Instruction*, 16> DeadInsts;
236 DeadInsts.push_back(I);
Chris Lattner3481f242008-11-27 22:57:53 +0000237
Dan Gohman321a8132010-01-05 16:27:25 +0000238 do {
Dan Gohmane9d87f42009-05-06 17:22:41 +0000239 I = DeadInsts.pop_back_val();
Chris Lattner28721772008-11-28 00:58:15 +0000240
Chris Lattner76057302008-11-28 01:20:46 +0000241 // Null out all of the instruction's operands to see if any operand becomes
242 // dead as we go.
243 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
244 Value *OpV = I->getOperand(i);
245 I->setOperand(i, 0);
246
247 if (!OpV->use_empty()) continue;
248
249 // If the operand is an instruction that became dead as we nulled out the
250 // operand, and if it is 'trivially' dead, delete it in a future loop
251 // iteration.
252 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
253 if (isInstructionTriviallyDead(OpI))
254 DeadInsts.push_back(OpI);
255 }
256
257 I->eraseFromParent();
Dan Gohman321a8132010-01-05 16:27:25 +0000258 } while (!DeadInsts.empty());
Dan Gohman90fe0bd2010-01-05 15:45:31 +0000259
260 return true;
Chris Lattner4d1e46e2002-05-07 18:07:59 +0000261}
Chris Lattnerb29714a2008-11-27 07:43:12 +0000262
Dan Gohmanafc36a92009-05-02 18:29:22 +0000263/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
264/// dead PHI node, due to being a def-use chain of single-use nodes that
265/// either forms a cycle or is terminated by a trivially dead instruction,
266/// delete it. If that makes any of its operands trivially dead, delete them
Dan Gohman90fe0bd2010-01-05 15:45:31 +0000267/// too, recursively. Return true if the PHI node is actually deleted.
268bool
Dan Gohman35738ac2009-05-04 22:30:44 +0000269llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
Dan Gohmanafc36a92009-05-02 18:29:22 +0000270 // We can remove a PHI if it is on a cycle in the def-use graph
271 // where each node in the cycle has degree one, i.e. only one use,
272 // and is an instruction with no side effects.
273 if (!PN->hasOneUse())
Dan Gohman90fe0bd2010-01-05 15:45:31 +0000274 return false;
Dan Gohmanafc36a92009-05-02 18:29:22 +0000275
Dan Gohman90fe0bd2010-01-05 15:45:31 +0000276 bool Changed = false;
Dan Gohmanafc36a92009-05-02 18:29:22 +0000277 SmallPtrSet<PHINode *, 4> PHIs;
278 PHIs.insert(PN);
279 for (Instruction *J = cast<Instruction>(*PN->use_begin());
Duncan Sands7af1c782009-05-06 06:49:50 +0000280 J->hasOneUse() && !J->mayHaveSideEffects();
Dan Gohmanafc36a92009-05-02 18:29:22 +0000281 J = cast<Instruction>(*J->use_begin()))
282 // If we find a PHI more than once, we're on a cycle that
283 // won't prove fruitful.
284 if (PHINode *JP = dyn_cast<PHINode>(J))
285 if (!PHIs.insert(cast<PHINode>(JP))) {
286 // Break the cycle and delete the PHI and its operands.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000287 JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
Dan Gohmanba25f092010-01-05 17:50:58 +0000288 (void)RecursivelyDeleteTriviallyDeadInstructions(JP);
289 Changed = true;
Dan Gohmanafc36a92009-05-02 18:29:22 +0000290 break;
291 }
Dan Gohman90fe0bd2010-01-05 15:45:31 +0000292 return Changed;
Dan Gohmanafc36a92009-05-02 18:29:22 +0000293}
Chris Lattner3481f242008-11-27 22:57:53 +0000294
Chris Lattnere234a302010-01-12 19:40:54 +0000295/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
296/// simplify any instructions in it and recursively delete dead instructions.
297///
298/// This returns true if it changed the code, note that it can delete
299/// instructions in other blocks as well in this block.
300bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
301 bool MadeChange = false;
302 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
303 Instruction *Inst = BI++;
304
305 if (Value *V = SimplifyInstruction(Inst, TD)) {
306 WeakVH BIHandle(BI);
307 ReplaceAndSimplifyAllUses(Inst, V, TD);
308 MadeChange = true;
Chris Lattner35a939b2010-07-15 06:06:04 +0000309 if (BIHandle != BI)
Chris Lattnere234a302010-01-12 19:40:54 +0000310 BI = BB->begin();
311 continue;
312 }
313
314 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
315 }
316 return MadeChange;
317}
318
Chris Lattnerb29714a2008-11-27 07:43:12 +0000319//===----------------------------------------------------------------------===//
Chris Lattner40d8c282009-11-10 22:26:15 +0000320// Control Flow Graph Restructuring.
Chris Lattnerb29714a2008-11-27 07:43:12 +0000321//
322
Chris Lattner40d8c282009-11-10 22:26:15 +0000323
324/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
325/// method is called when we're about to delete Pred as a predecessor of BB. If
326/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
327///
328/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
329/// nodes that collapse into identity values. For example, if we have:
330/// x = phi(1, 0, 0, 0)
331/// y = and x, z
332///
333/// .. and delete the predecessor corresponding to the '1', this will attempt to
334/// recursively fold the and to 0.
335void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
336 TargetData *TD) {
337 // This only adjusts blocks with PHI nodes.
338 if (!isa<PHINode>(BB->begin()))
339 return;
340
341 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
342 // them down. This will leave us with single entry phi nodes and other phis
343 // that can be removed.
344 BB->removePredecessor(Pred, true);
345
346 WeakVH PhiIt = &BB->front();
347 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
348 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
349
350 Value *PNV = PN->hasConstantValue();
351 if (PNV == 0) continue;
352
353 // If we're able to simplify the phi to a single value, substitute the new
354 // value into all of its uses.
355 assert(PNV != PN && "hasConstantValue broken");
356
Chris Lattner35a939b2010-07-15 06:06:04 +0000357 Value *OldPhiIt = PhiIt;
Chris Lattner40d8c282009-11-10 22:26:15 +0000358 ReplaceAndSimplifyAllUses(PN, PNV, TD);
359
360 // If recursive simplification ended up deleting the next PHI node we would
361 // iterate to, then our iterator is invalid, restart scanning from the top
362 // of the block.
Chris Lattner35a939b2010-07-15 06:06:04 +0000363 if (PhiIt != OldPhiIt) PhiIt = &BB->front();
Chris Lattner40d8c282009-11-10 22:26:15 +0000364 }
365}
366
367
Chris Lattnerb29714a2008-11-27 07:43:12 +0000368/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
369/// predecessor is known to have one successor (DestBB!). Eliminate the edge
370/// between them, moving the instructions in the predecessor into DestBB and
371/// deleting the predecessor block.
372///
Andreas Neustifterad809812009-09-16 09:26:52 +0000373void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
Chris Lattnerb29714a2008-11-27 07:43:12 +0000374 // If BB has single-entry PHI nodes, fold them.
375 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
376 Value *NewVal = PN->getIncomingValue(0);
377 // Replace self referencing PHI with undef, it must be dead.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000378 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
Chris Lattnerb29714a2008-11-27 07:43:12 +0000379 PN->replaceAllUsesWith(NewVal);
380 PN->eraseFromParent();
381 }
382
383 BasicBlock *PredBB = DestBB->getSinglePredecessor();
384 assert(PredBB && "Block doesn't have a single predecessor!");
385
386 // Splice all the instructions from PredBB to DestBB.
387 PredBB->getTerminator()->eraseFromParent();
388 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
Chris Lattner37914c82010-02-15 20:47:49 +0000389
390 // Zap anything that took the address of DestBB. Not doing this will give the
391 // address an invalid value.
392 if (DestBB->hasAddressTaken()) {
393 BlockAddress *BA = BlockAddress::get(DestBB);
394 Constant *Replacement =
395 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
396 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
397 BA->getType()));
398 BA->destroyConstant();
399 }
Chris Lattnerb29714a2008-11-27 07:43:12 +0000400
401 // Anything that branched to PredBB now branches to DestBB.
402 PredBB->replaceAllUsesWith(DestBB);
403
Andreas Neustifterad809812009-09-16 09:26:52 +0000404 if (P) {
405 ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
406 if (PI) {
407 PI->replaceAllUses(PredBB, DestBB);
408 PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
409 }
410 }
Chris Lattnerb29714a2008-11-27 07:43:12 +0000411 // Nuke BB.
412 PredBB->eraseFromParent();
413}
Devang Patel4afc90d2009-02-10 07:00:59 +0000414
Chris Lattnerdce94d92009-11-10 05:59:26 +0000415/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
416/// almost-empty BB ending in an unconditional branch to Succ, into succ.
417///
418/// Assumption: Succ is the single successor for BB.
419///
420static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
421 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
422
David Greenefae77062010-01-05 01:26:57 +0000423 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
Chris Lattnerdce94d92009-11-10 05:59:26 +0000424 << Succ->getName() << "\n");
425 // Shortcut, if there is only a single predecessor it must be BB and merging
426 // is always safe
427 if (Succ->getSinglePredecessor()) return true;
428
429 // Make a list of the predecessors of BB
430 typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
431 BlockSet BBPreds(pred_begin(BB), pred_end(BB));
432
433 // Use that list to make another list of common predecessors of BB and Succ
434 BlockSet CommonPreds;
435 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
Gabor Greiff1b28742010-07-12 10:49:54 +0000436 PI != PE; ++PI) {
437 BasicBlock *P = *PI;
438 if (BBPreds.count(P))
439 CommonPreds.insert(P);
440 }
Chris Lattnerdce94d92009-11-10 05:59:26 +0000441
442 // Shortcut, if there are no common predecessors, merging is always safe
443 if (CommonPreds.empty())
444 return true;
445
446 // Look at all the phi nodes in Succ, to see if they present a conflict when
447 // merging these blocks
448 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
449 PHINode *PN = cast<PHINode>(I);
450
451 // If the incoming value from BB is again a PHINode in
452 // BB which has the same incoming value for *PI as PN does, we can
453 // merge the phi nodes and then the blocks can still be merged
454 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
455 if (BBPN && BBPN->getParent() == BB) {
456 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
457 PI != PE; PI++) {
458 if (BBPN->getIncomingValueForBlock(*PI)
459 != PN->getIncomingValueForBlock(*PI)) {
David Greenefae77062010-01-05 01:26:57 +0000460 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
Chris Lattnerdce94d92009-11-10 05:59:26 +0000461 << Succ->getName() << " is conflicting with "
462 << BBPN->getName() << " with regard to common predecessor "
463 << (*PI)->getName() << "\n");
464 return false;
465 }
466 }
467 } else {
468 Value* Val = PN->getIncomingValueForBlock(BB);
469 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
470 PI != PE; PI++) {
471 // See if the incoming value for the common predecessor is equal to the
472 // one for BB, in which case this phi node will not prevent the merging
473 // of the block.
474 if (Val != PN->getIncomingValueForBlock(*PI)) {
David Greenefae77062010-01-05 01:26:57 +0000475 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
Chris Lattnerdce94d92009-11-10 05:59:26 +0000476 << Succ->getName() << " is conflicting with regard to common "
477 << "predecessor " << (*PI)->getName() << "\n");
478 return false;
479 }
480 }
481 }
482 }
483
484 return true;
485}
486
487/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
488/// unconditional branch, and contains no instructions other than PHI nodes,
489/// potential debug intrinsics and the branch. If possible, eliminate BB by
490/// rewriting all the predecessors to branch to the successor block and return
491/// true. If we can't transform, return false.
492bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
Dan Gohmane2c6d132010-08-14 00:29:42 +0000493 assert(BB != &BB->getParent()->getEntryBlock() &&
494 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
495
Chris Lattnerdce94d92009-11-10 05:59:26 +0000496 // We can't eliminate infinite loops.
497 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
498 if (BB == Succ) return false;
499
500 // Check to see if merging these blocks would cause conflicts for any of the
501 // phi nodes in BB or Succ. If not, we can safely merge.
502 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
503
504 // Check for cases where Succ has multiple predecessors and a PHI node in BB
505 // has uses which will not disappear when the PHI nodes are merged. It is
506 // possible to handle such cases, but difficult: it requires checking whether
507 // BB dominates Succ, which is non-trivial to calculate in the case where
508 // Succ has multiple predecessors. Also, it requires checking whether
509 // constructing the necessary self-referential PHI node doesn't intoduce any
510 // conflicts; this isn't too difficult, but the previous code for doing this
511 // was incorrect.
512 //
513 // Note that if this check finds a live use, BB dominates Succ, so BB is
514 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
515 // folding the branch isn't profitable in that case anyway.
516 if (!Succ->getSinglePredecessor()) {
517 BasicBlock::iterator BBI = BB->begin();
518 while (isa<PHINode>(*BBI)) {
519 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
520 UI != E; ++UI) {
521 if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
522 if (PN->getIncomingBlock(UI) != BB)
523 return false;
524 } else {
525 return false;
526 }
527 }
528 ++BBI;
529 }
530 }
531
David Greenefae77062010-01-05 01:26:57 +0000532 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
Chris Lattnerdce94d92009-11-10 05:59:26 +0000533
534 if (isa<PHINode>(Succ->begin())) {
535 // If there is more than one pred of succ, and there are PHI nodes in
536 // the successor, then we need to add incoming edges for the PHI nodes
537 //
538 const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
539
540 // Loop over all of the PHI nodes in the successor of BB.
541 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
542 PHINode *PN = cast<PHINode>(I);
543 Value *OldVal = PN->removeIncomingValue(BB, false);
544 assert(OldVal && "No entry in PHI for Pred BB!");
545
546 // If this incoming value is one of the PHI nodes in BB, the new entries
547 // in the PHI node are the entries from the old PHI.
548 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
549 PHINode *OldValPN = cast<PHINode>(OldVal);
550 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
551 // Note that, since we are merging phi nodes and BB and Succ might
552 // have common predecessors, we could end up with a phi node with
553 // identical incoming branches. This will be cleaned up later (and
554 // will trigger asserts if we try to clean it up now, without also
555 // simplifying the corresponding conditional branch).
556 PN->addIncoming(OldValPN->getIncomingValue(i),
557 OldValPN->getIncomingBlock(i));
558 } else {
559 // Add an incoming value for each of the new incoming values.
560 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
561 PN->addIncoming(OldVal, BBPreds[i]);
562 }
563 }
564 }
565
566 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
567 if (Succ->getSinglePredecessor()) {
568 // BB is the only predecessor of Succ, so Succ will end up with exactly
569 // the same predecessors BB had.
570 Succ->getInstList().splice(Succ->begin(),
571 BB->getInstList(), BB->begin());
572 } else {
573 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
574 assert(PN->use_empty() && "There shouldn't be any uses here!");
575 PN->eraseFromParent();
576 }
577 }
578
579 // Everything that jumped to BB now goes to Succ.
580 BB->replaceAllUsesWith(Succ);
581 if (!Succ->hasName()) Succ->takeName(BB);
582 BB->eraseFromParent(); // Delete the old basic block.
583 return true;
584}
585
Jim Grosbach43a82412009-12-02 17:06:45 +0000586/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
587/// nodes in this block. This doesn't try to be clever about PHI nodes
588/// which differ only in the order of the incoming values, but instcombine
589/// orders them so it usually won't matter.
590///
591bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
592 bool Changed = false;
593
594 // This implementation doesn't currently consider undef operands
595 // specially. Theroetically, two phis which are identical except for
596 // one having an undef where the other doesn't could be collapsed.
597
598 // Map from PHI hash values to PHI nodes. If multiple PHIs have
599 // the same hash value, the element is the first PHI in the
600 // linked list in CollisionMap.
601 DenseMap<uintptr_t, PHINode *> HashMap;
602
603 // Maintain linked lists of PHI nodes with common hash values.
604 DenseMap<PHINode *, PHINode *> CollisionMap;
605
606 // Examine each PHI.
607 for (BasicBlock::iterator I = BB->begin();
608 PHINode *PN = dyn_cast<PHINode>(I++); ) {
609 // Compute a hash value on the operands. Instcombine will likely have sorted
610 // them, which helps expose duplicates, but we have to check all the
611 // operands to be safe in case instcombine hasn't run.
612 uintptr_t Hash = 0;
613 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
614 // This hash algorithm is quite weak as hash functions go, but it seems
615 // to do a good enough job for this particular purpose, and is very quick.
616 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
617 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
618 }
619 // If we've never seen this hash value before, it's a unique PHI.
620 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
621 HashMap.insert(std::make_pair(Hash, PN));
622 if (Pair.second) continue;
623 // Otherwise it's either a duplicate or a hash collision.
624 for (PHINode *OtherPN = Pair.first->second; ; ) {
625 if (OtherPN->isIdenticalTo(PN)) {
626 // A duplicate. Replace this PHI with its duplicate.
627 PN->replaceAllUsesWith(OtherPN);
628 PN->eraseFromParent();
629 Changed = true;
630 break;
631 }
632 // A non-duplicate hash collision.
633 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
634 if (I == CollisionMap.end()) {
635 // Set this PHI to be the head of the linked list of colliding PHIs.
636 PHINode *Old = Pair.first->second;
637 Pair.first->second = PN;
638 CollisionMap[PN] = Old;
639 break;
640 }
641 // Procede to the next PHI in the list.
642 OtherPN = I->second;
643 }
644 }
645
646 return Changed;
647}