blob: d5ce86aca0c858b2d3ae9f104cfe52aa5c44b42f [file] [log] [blame]
Chris Lattner8383a7b2008-04-20 20:35:01 +00001//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattner177480b2008-04-20 21:13:06 +000010// This file implements the Jump Threading pass.
Chris Lattner8383a7b2008-04-20 20:35:01 +000011//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
Chris Lattner177480b2008-04-20 21:13:06 +000016#include "llvm/IntrinsicInst.h"
Owen Anderson1ff50b32009-07-03 00:54:20 +000017#include "llvm/LLVMContext.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000018#include "llvm/Pass.h"
Chris Lattner9819ef72009-11-09 23:00:14 +000019#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnercc4d3b22009-11-11 02:08:33 +000020#include "llvm/Analysis/LazyValueInfo.h"
Chris Lattner2cc67512008-04-21 02:57:57 +000021#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chris Lattnerbd3401f2008-04-20 22:39:42 +000022#include "llvm/Transforms/Utils/Local.h"
Chris Lattner433a0db2009-10-10 09:05:58 +000023#include "llvm/Transforms/Utils/SSAUpdater.h"
Chris Lattneref0c6742008-12-01 04:48:07 +000024#include "llvm/Target/TargetData.h"
Mike Stumpfe095f32009-05-04 18:40:41 +000025#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallSet.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000030#include "llvm/Support/CommandLine.h"
Chris Lattner177480b2008-04-20 21:13:06 +000031#include "llvm/Support/Debug.h"
Daniel Dunbar93b67e42009-07-26 07:49:05 +000032#include "llvm/Support/raw_ostream.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000033using namespace llvm;
34
Chris Lattnerbd3401f2008-04-20 22:39:42 +000035STATISTIC(NumThreads, "Number of jumps threaded");
36STATISTIC(NumFolds, "Number of terminators folded");
Chris Lattner78c552e2009-10-11 07:24:57 +000037STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
Chris Lattner8383a7b2008-04-20 20:35:01 +000038
Chris Lattner177480b2008-04-20 21:13:06 +000039static cl::opt<unsigned>
40Threshold("jump-threading-threshold",
41 cl::desc("Max block size to duplicate for jump threading"),
42 cl::init(6), cl::Hidden);
43
Chris Lattnercc4d3b22009-11-11 02:08:33 +000044// Turn on use of LazyValueInfo.
45static cl::opt<bool>
46EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
47
48
49
Chris Lattner8383a7b2008-04-20 20:35:01 +000050namespace {
Chris Lattner94019f82008-05-09 04:43:13 +000051 /// This pass performs 'jump threading', which looks at blocks that have
52 /// multiple predecessors and multiple successors. If one or more of the
53 /// predecessors of the block can be proven to always jump to one of the
54 /// successors, we forward the edge from the predecessor to the successor by
55 /// duplicating the contents of this block.
56 ///
57 /// An example of when this can occur is code like this:
58 ///
59 /// if () { ...
60 /// X = 4;
61 /// }
62 /// if (X < 3) {
63 ///
64 /// In this case, the unconditional branch at the end of the first if can be
65 /// revectored to the false side of the second if.
66 ///
Chris Lattner3e8b6632009-09-02 06:11:42 +000067 class JumpThreading : public FunctionPass {
Chris Lattneref0c6742008-12-01 04:48:07 +000068 TargetData *TD;
Chris Lattnercc4d3b22009-11-11 02:08:33 +000069 LazyValueInfo *LVI;
Mike Stumpfe095f32009-05-04 18:40:41 +000070#ifdef NDEBUG
71 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
72#else
73 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
74#endif
Chris Lattner8383a7b2008-04-20 20:35:01 +000075 public:
76 static char ID; // Pass identification
Dan Gohmanae73dc12008-09-04 17:05:41 +000077 JumpThreading() : FunctionPass(&ID) {}
Chris Lattner8383a7b2008-04-20 20:35:01 +000078
79 bool runOnFunction(Function &F);
Mike Stumpfe095f32009-05-04 18:40:41 +000080
Chris Lattnercc4d3b22009-11-11 02:08:33 +000081 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
82 if (EnableLVI)
83 AU.addRequired<LazyValueInfo>();
84 }
85
86 void FindLoopHeaders(Function &F);
Chris Lattnerc7bcbf62008-11-27 07:20:04 +000087 bool ProcessBlock(BasicBlock *BB);
Chris Lattner5729d382009-11-07 08:05:03 +000088 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
89 BasicBlock *SuccBB);
Chris Lattner78c552e2009-10-11 07:24:57 +000090 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
91 BasicBlock *PredBB);
Chris Lattner5729d382009-11-07 08:05:03 +000092
93 typedef SmallVectorImpl<std::pair<ConstantInt*,
94 BasicBlock*> > PredValueInfo;
95
96 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
97 PredValueInfo &Result);
Chris Lattner1c96b412009-11-12 01:37:43 +000098 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
Chris Lattner5729d382009-11-07 08:05:03 +000099
100
Chris Lattner421fa9e2008-12-03 07:48:08 +0000101 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000102 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner6bf77502008-04-22 07:05:46 +0000103
Chris Lattnerd38c14e2008-04-22 06:36:15 +0000104 bool ProcessJumpOnPHI(PHINode *PN);
Chris Lattner69e067f2008-11-27 05:07:53 +0000105
106 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
Chris Lattner8383a7b2008-04-20 20:35:01 +0000107 };
Chris Lattner8383a7b2008-04-20 20:35:01 +0000108}
109
Dan Gohman844731a2008-05-13 00:00:25 +0000110char JumpThreading::ID = 0;
111static RegisterPass<JumpThreading>
112X("jump-threading", "Jump Threading");
113
Chris Lattner8383a7b2008-04-20 20:35:01 +0000114// Public interface to the Jump Threading pass
115FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
116
117/// runOnFunction - Top level algorithm.
118///
119bool JumpThreading::runOnFunction(Function &F) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000120 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
Dan Gohman02a436c2009-07-24 18:13:53 +0000121 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000122 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000123
Mike Stumpfe095f32009-05-04 18:40:41 +0000124 FindLoopHeaders(F);
125
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000126 bool AnotherIteration = true, EverChanged = false;
127 while (AnotherIteration) {
128 AnotherIteration = false;
129 bool Changed = false;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000130 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
131 BasicBlock *BB = I;
Chris Lattnerf3183f62009-11-10 21:40:01 +0000132 // Thread all of the branches we can over this block.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000133 while (ProcessBlock(BB))
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000134 Changed = true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000135
136 ++I;
137
138 // If the block is trivially dead, zap it. This eliminates the successor
139 // edges which simplifies the CFG.
140 if (pred_begin(BB) == pred_end(BB) &&
Chris Lattner20fa76e2008-12-08 22:44:07 +0000141 BB != &BB->getParent()->getEntryBlock()) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000142 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000143 << "' with terminator: " << *BB->getTerminator() << '\n');
Mike Stumpfe095f32009-05-04 18:40:41 +0000144 LoopHeaders.erase(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000145 DeleteDeadBlock(BB);
146 Changed = true;
Chris Lattnerf3183f62009-11-10 21:40:01 +0000147 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
148 // Can't thread an unconditional jump, but if the block is "almost
149 // empty", we can replace uses of it with uses of the successor and make
150 // this dead.
151 if (BI->isUnconditional() &&
152 BB != &BB->getParent()->getEntryBlock()) {
153 BasicBlock::iterator BBI = BB->getFirstNonPHI();
154 // Ignore dbg intrinsics.
155 while (isa<DbgInfoIntrinsic>(BBI))
156 ++BBI;
157 // If the terminator is the only non-phi instruction, try to nuke it.
158 if (BBI->isTerminator()) {
Chris Lattner6f84a5f2009-11-10 21:45:09 +0000159 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
160 // block, we have to make sure it isn't in the LoopHeaders set. We
161 // reinsert afterward in the rare case when the block isn't deleted.
162 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
Chris Lattnerf3183f62009-11-10 21:40:01 +0000163
164 if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
165 Changed = true;
Chris Lattner6f84a5f2009-11-10 21:45:09 +0000166 else if (ErasedFromLoopHeaders)
Chris Lattnerf3183f62009-11-10 21:40:01 +0000167 LoopHeaders.insert(BB);
168 }
169 }
Chris Lattner421fa9e2008-12-03 07:48:08 +0000170 }
171 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000172 AnotherIteration = Changed;
173 EverChanged |= Changed;
174 }
Mike Stumpfe095f32009-05-04 18:40:41 +0000175
176 LoopHeaders.clear();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000177 return EverChanged;
Chris Lattner8383a7b2008-04-20 20:35:01 +0000178}
Chris Lattner177480b2008-04-20 21:13:06 +0000179
Chris Lattner78c552e2009-10-11 07:24:57 +0000180/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
181/// thread across it.
182static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
183 /// Ignore PHI nodes, these will be flattened when duplication happens.
184 BasicBlock::const_iterator I = BB->getFirstNonPHI();
185
Chris Lattnerb14b88a2009-11-11 00:21:58 +0000186 // FIXME: THREADING will delete values that are just used to compute the
187 // branch, so they shouldn't count against the duplication cost.
188
189
Chris Lattner78c552e2009-10-11 07:24:57 +0000190 // Sum up the cost of each instruction until we get to the terminator. Don't
191 // include the terminator because the copy won't include it.
192 unsigned Size = 0;
193 for (; !isa<TerminatorInst>(I); ++I) {
194 // Debugger intrinsics don't incur code size.
195 if (isa<DbgInfoIntrinsic>(I)) continue;
196
197 // If this is a pointer->pointer bitcast, it is free.
198 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
199 continue;
200
201 // All other instructions count for at least one unit.
202 ++Size;
203
204 // Calls are more expensive. If they are non-intrinsic calls, we model them
205 // as having cost of 4. If they are a non-vector intrinsic, we model them
206 // as having cost of 2 total, and if they are a vector intrinsic, we model
207 // them as having cost 1.
208 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
209 if (!isa<IntrinsicInst>(CI))
210 Size += 3;
211 else if (!isa<VectorType>(CI->getType()))
212 Size += 1;
213 }
214 }
215
216 // Threading through a switch statement is particularly profitable. If this
217 // block ends in a switch, decrease its cost to make it more likely to happen.
218 if (isa<SwitchInst>(I))
219 Size = Size > 6 ? Size-6 : 0;
220
221 return Size;
222}
223
Mike Stumpfe095f32009-05-04 18:40:41 +0000224/// FindLoopHeaders - We do not want jump threading to turn proper loop
225/// structures into irreducible loops. Doing this breaks up the loop nesting
226/// hierarchy and pessimizes later transformations. To prevent this from
227/// happening, we first have to find the loop headers. Here we approximate this
228/// by finding targets of backedges in the CFG.
229///
230/// Note that there definitely are cases when we want to allow threading of
231/// edges across a loop header. For example, threading a jump from outside the
232/// loop (the preheader) to an exit block of the loop is definitely profitable.
233/// It is also almost always profitable to thread backedges from within the loop
234/// to exit blocks, and is often profitable to thread backedges to other blocks
235/// within the loop (forming a nested loop). This simple analysis is not rich
236/// enough to track all of these properties and keep it up-to-date as the CFG
237/// mutates, so we don't allow any of these transformations.
238///
239void JumpThreading::FindLoopHeaders(Function &F) {
240 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
241 FindFunctionBackedges(F, Edges);
242
243 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
244 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
245}
246
Chris Lattner5729d382009-11-07 08:05:03 +0000247/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
248/// if we can infer that the value is a known ConstantInt in any of our
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000249/// predecessors. If so, return the known list of value and pred BB in the
Chris Lattner5729d382009-11-07 08:05:03 +0000250/// result vector. If a value is known to be undef, it is returned as null.
251///
Chris Lattner5729d382009-11-07 08:05:03 +0000252/// This returns true if there were any known values.
253///
Chris Lattner5729d382009-11-07 08:05:03 +0000254bool JumpThreading::
255ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
Chris Lattner5729d382009-11-07 08:05:03 +0000256 // If V is a constantint, then it is known in all predecessors.
257 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
258 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000259
260 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
261 Result.push_back(std::make_pair(CI, *PI));
Chris Lattner5729d382009-11-07 08:05:03 +0000262 return true;
263 }
264
265 // If V is a non-instruction value, or an instruction in a different block,
266 // then it can't be derived from a PHI.
267 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000268 if (I == 0 || I->getParent() != BB) {
269
270 // Okay, if this is a live-in value, see if it has a known value at the end
271 // of any of our predecessors.
272 //
273 // FIXME: This should be an edge property, not a block end property.
274 /// TODO: Per PR2563, we could infer value range information about a
275 /// predecessor based on its terminator.
276 //
277 if (LVI) {
Chris Lattnerf496e792009-11-12 04:57:13 +0000278 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
279 // "I" is a non-local compare-with-a-constant instruction. This would be
280 // able to handle value inequalities better, for example if the compare is
281 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
282 // Perhaps getConstantOnEdge should be smart enough to do this?
283
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000284 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
285 // If the value is known by LazyValueInfo to be a constant in a
286 // predecessor, use that information to try to thread this block.
Chris Lattner38392bb2009-11-12 01:29:10 +0000287 Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000288 if (PredCst == 0 ||
289 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
290 continue;
291
292 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
293 }
294
295 return !Result.empty();
296 }
297
Chris Lattner5729d382009-11-07 08:05:03 +0000298 return false;
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000299 }
Chris Lattner5729d382009-11-07 08:05:03 +0000300
301 /// If I is a PHI node, then we know the incoming values for any constants.
302 if (PHINode *PN = dyn_cast<PHINode>(I)) {
303 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
304 Value *InVal = PN->getIncomingValue(i);
305 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
306 ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
307 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
308 }
309 }
310 return !Result.empty();
311 }
312
313 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
314
315 // Handle some boolean conditions.
316 if (I->getType()->getPrimitiveSizeInBits() == 1) {
317 // X | true -> true
318 // X & false -> false
319 if (I->getOpcode() == Instruction::Or ||
320 I->getOpcode() == Instruction::And) {
321 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
322 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
323
324 if (LHSVals.empty() && RHSVals.empty())
325 return false;
326
327 ConstantInt *InterestingVal;
328 if (I->getOpcode() == Instruction::Or)
329 InterestingVal = ConstantInt::getTrue(I->getContext());
330 else
331 InterestingVal = ConstantInt::getFalse(I->getContext());
332
333 // Scan for the sentinel.
334 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
335 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
336 Result.push_back(LHSVals[i]);
337 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
338 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
339 Result.push_back(RHSVals[i]);
340 return !Result.empty();
341 }
342
Chris Lattner055d0462009-11-10 22:39:16 +0000343 // Handle the NOT form of XOR.
344 if (I->getOpcode() == Instruction::Xor &&
345 isa<ConstantInt>(I->getOperand(1)) &&
346 cast<ConstantInt>(I->getOperand(1))->isOne()) {
347 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
348 if (Result.empty())
349 return false;
350
351 // Invert the known values.
352 for (unsigned i = 0, e = Result.size(); i != e; ++i)
353 Result[i].first =
354 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
355 return true;
356 }
Chris Lattner5729d382009-11-07 08:05:03 +0000357 }
358
359 // Handle compare with phi operand, where the PHI is defined in this block.
360 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
361 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
362 if (PN && PN->getParent() == BB) {
363 // We can do this simplification if any comparisons fold to true or false.
364 // See if any do.
365 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
366 BasicBlock *PredBB = PN->getIncomingBlock(i);
367 Value *LHS = PN->getIncomingValue(i);
368 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
369
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000370 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
Chris Lattner66c04c42009-11-12 05:24:05 +0000371 if (Res == 0) {
372 if (!LVI || !isa<Constant>(RHS))
373 continue;
374
375 LazyValueInfo::Tristate
376 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
377 cast<Constant>(RHS), PredBB, BB);
378 if (ResT == LazyValueInfo::Unknown)
379 continue;
380 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
381 }
Chris Lattner5729d382009-11-07 08:05:03 +0000382
383 if (isa<UndefValue>(Res))
384 Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
385 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
386 Result.push_back(std::make_pair(CI, PredBB));
387 }
388
389 return !Result.empty();
390 }
391
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000392
393 // If comparing a live-in value against a constant, see if we know the
394 // live-in value on any predecessors.
395 if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
Chris Lattner0e0ff292009-11-12 04:37:50 +0000396 Cmp->getType()->isInteger() && // Not vector compare.
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000397 (!isa<Instruction>(Cmp->getOperand(0)) ||
398 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
399 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
400
401 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
402 // If the value is known by LazyValueInfo to be a constant in a
403 // predecessor, use that information to try to thread this block.
Chris Lattner0e0ff292009-11-12 04:37:50 +0000404 LazyValueInfo::Tristate
405 Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
406 RHSCst, *PI, BB);
407 if (Res == LazyValueInfo::Unknown)
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000408 continue;
Chris Lattner0e0ff292009-11-12 04:37:50 +0000409
410 Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
411 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000412 }
413
414 return !Result.empty();
415 }
Chris Lattner5729d382009-11-07 08:05:03 +0000416 }
417 return false;
418}
419
420
Chris Lattner6bf77502008-04-22 07:05:46 +0000421
Chris Lattnere33583b2009-10-11 04:18:15 +0000422/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
423/// in an undefined jump, decide which block is best to revector to.
424///
425/// Since we can pick an arbitrary destination, we pick the successor with the
426/// fewest predecessors. This should reduce the in-degree of the others.
427///
428static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
429 TerminatorInst *BBTerm = BB->getTerminator();
430 unsigned MinSucc = 0;
431 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
432 // Compute the successor with the minimum number of predecessors.
433 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
434 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
435 TestBB = BBTerm->getSuccessor(i);
436 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
437 if (NumPreds < MinNumPreds)
438 MinSucc = i;
439 }
440
441 return MinSucc;
442}
443
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000444/// ProcessBlock - If there are any predecessors whose control can be threaded
Chris Lattner177480b2008-04-20 21:13:06 +0000445/// through to a successor, transform them now.
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000446bool JumpThreading::ProcessBlock(BasicBlock *BB) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000447 // If this block has a single predecessor, and if that pred has a single
448 // successor, merge the blocks. This encourages recursive jump threading
449 // because now the condition in this block can be threaded through
450 // predecessors of our predecessor block.
Chris Lattner5729d382009-11-07 08:05:03 +0000451 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
Chris Lattnerf5102a02008-11-28 19:54:49 +0000452 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
453 SinglePred != BB) {
Mike Stumpfe095f32009-05-04 18:40:41 +0000454 // If SinglePred was a loop header, BB becomes one.
455 if (LoopHeaders.erase(SinglePred))
456 LoopHeaders.insert(BB);
457
Chris Lattner3d86d242008-11-27 19:25:19 +0000458 // Remember if SinglePred was the entry block of the function. If so, we
459 // will need to move BB back to the entry position.
460 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
Chris Lattner69e067f2008-11-27 05:07:53 +0000461 MergeBasicBlockIntoOnlyPred(BB);
Chris Lattner3d86d242008-11-27 19:25:19 +0000462
463 if (isEntry && BB != &BB->getParent()->getEntryBlock())
464 BB->moveBefore(&BB->getParent()->getEntryBlock());
Chris Lattner69e067f2008-11-27 05:07:53 +0000465 return true;
466 }
Chris Lattner5729d382009-11-07 08:05:03 +0000467 }
468
469 // Look to see if the terminator is a branch of switch, if not we can't thread
470 // it.
Chris Lattner177480b2008-04-20 21:13:06 +0000471 Value *Condition;
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000472 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
473 // Can't thread an unconditional jump.
474 if (BI->isUnconditional()) return false;
Chris Lattner177480b2008-04-20 21:13:06 +0000475 Condition = BI->getCondition();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000476 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
Chris Lattner177480b2008-04-20 21:13:06 +0000477 Condition = SI->getCondition();
478 else
479 return false; // Must be an invoke.
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000480
481 // If the terminator of this block is branching on a constant, simplify the
Chris Lattner037c7812008-04-21 18:25:01 +0000482 // terminator to an unconditional branch. This can occur due to threading in
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000483 // other blocks.
484 if (isa<ConstantInt>(Condition)) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000485 DEBUG(errs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000486 << "' folding terminator: " << *BB->getTerminator() << '\n');
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000487 ++NumFolds;
488 ConstantFoldTerminator(BB);
489 return true;
490 }
491
Chris Lattner421fa9e2008-12-03 07:48:08 +0000492 // If the terminator is branching on an undef, we can pick any of the
Chris Lattnere33583b2009-10-11 04:18:15 +0000493 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000494 if (isa<UndefValue>(Condition)) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000495 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000496
497 // Fold the branch/switch.
Chris Lattnere33583b2009-10-11 04:18:15 +0000498 TerminatorInst *BBTerm = BB->getTerminator();
Chris Lattner421fa9e2008-12-03 07:48:08 +0000499 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000500 if (i == BestSucc) continue;
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000501 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000502 }
503
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000504 DEBUG(errs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000505 << "' folding undef terminator: " << *BBTerm << '\n');
Chris Lattnere33583b2009-10-11 04:18:15 +0000506 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000507 BBTerm->eraseFromParent();
508 return true;
509 }
510
511 Instruction *CondInst = dyn_cast<Instruction>(Condition);
512
513 // If the condition is an instruction defined in another block, see if a
514 // predecessor has the same condition:
515 // br COND, BBX, BBY
516 // BBX:
517 // br COND, BBZ, BBW
Chris Lattner0e0ff292009-11-12 04:37:50 +0000518 if (!LVI &&
519 !Condition->hasOneUse() && // Multiple uses.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000520 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
521 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
522 if (isa<BranchInst>(BB->getTerminator())) {
523 for (; PI != E; ++PI)
524 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
525 if (PBI->isConditional() && PBI->getCondition() == Condition &&
526 ProcessBranchOnDuplicateCond(*PI, BB))
527 return true;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000528 } else {
529 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
530 for (; PI != E; ++PI)
531 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
532 if (PSI->getCondition() == Condition &&
533 ProcessSwitchOnDuplicateCond(*PI, BB))
534 return true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000535 }
536 }
537
Chris Lattner421fa9e2008-12-03 07:48:08 +0000538 // All the rest of our checks depend on the condition being an instruction.
Chris Lattner87e9f592009-11-12 01:41:34 +0000539 if (CondInst == 0) {
540 // FIXME: Unify this with code below.
541 if (LVI && ProcessThreadableEdges(Condition, BB))
542 return true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000543 return false;
Chris Lattner87e9f592009-11-12 01:41:34 +0000544 }
545
Chris Lattner421fa9e2008-12-03 07:48:08 +0000546
Chris Lattner177480b2008-04-20 21:13:06 +0000547 // See if this is a phi node in the current block.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000548 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
549 if (PN->getParent() == BB)
550 return ProcessJumpOnPHI(PN);
Chris Lattner177480b2008-04-20 21:13:06 +0000551
Nick Lewycky9683f182009-06-19 04:56:29 +0000552 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
Chris Lattner0e0ff292009-11-12 04:37:50 +0000553 if (!LVI &&
554 (!isa<PHINode>(CondCmp->getOperand(0)) ||
555 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
Chris Lattner5729d382009-11-07 08:05:03 +0000556 // If we have a comparison, loop over the predecessors to see if there is
557 // a condition with a lexically identical value.
558 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
559 for (; PI != E; ++PI)
560 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
561 if (PBI->isConditional() && *PI != BB) {
562 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
563 if (CI->getOperand(0) == CondCmp->getOperand(0) &&
564 CI->getOperand(1) == CondCmp->getOperand(1) &&
565 CI->getPredicate() == CondCmp->getPredicate()) {
566 // TODO: Could handle things like (x != 4) --> (x == 17)
567 if (ProcessBranchOnDuplicateCond(*PI, BB))
568 return true;
569 }
Chris Lattner79c740f2009-06-19 16:27:56 +0000570 }
571 }
Chris Lattner5729d382009-11-07 08:05:03 +0000572 }
Nick Lewycky9683f182009-06-19 04:56:29 +0000573 }
Chris Lattner69e067f2008-11-27 05:07:53 +0000574
575 // Check for some cases that are worth simplifying. Right now we want to look
576 // for loads that are used by a switch or by the condition for the branch. If
577 // we see one, check to see if it's partially redundant. If so, insert a PHI
578 // which can then be used to thread the values.
579 //
580 // This is particularly important because reg2mem inserts loads and stores all
581 // over the place, and this blocks jump threading if we don't zap them.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000582 Value *SimplifyValue = CondInst;
Chris Lattner69e067f2008-11-27 05:07:53 +0000583 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
584 if (isa<Constant>(CondCmp->getOperand(1)))
585 SimplifyValue = CondCmp->getOperand(0);
586
587 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
588 if (SimplifyPartiallyRedundantLoad(LI))
589 return true;
590
Chris Lattner5729d382009-11-07 08:05:03 +0000591
592 // Handle a variety of cases where we are branching on something derived from
593 // a PHI node in the current block. If we can prove that any predecessors
594 // compute a predictable value based on a PHI node, thread those predecessors.
595 //
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000596 if (ProcessThreadableEdges(CondInst, BB))
597 return true;
Chris Lattner5729d382009-11-07 08:05:03 +0000598
599
Chris Lattner69e067f2008-11-27 05:07:53 +0000600 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
601 // "(X == 4)" thread through this block.
Chris Lattnera5ddb592008-04-22 21:40:39 +0000602
Chris Lattnerd38c14e2008-04-22 06:36:15 +0000603 return false;
604}
605
Chris Lattner421fa9e2008-12-03 07:48:08 +0000606/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
607/// block that jump on exactly the same condition. This means that we almost
608/// always know the direction of the edge in the DESTBB:
609/// PREDBB:
610/// br COND, DESTBB, BBY
611/// DESTBB:
612/// br COND, BBZ, BBW
613///
614/// If DESTBB has multiple predecessors, we can't just constant fold the branch
615/// in DESTBB, we have to thread over it.
616bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
617 BasicBlock *BB) {
618 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
619
620 // If both successors of PredBB go to DESTBB, we don't know anything. We can
621 // fold the branch to an unconditional one, which allows other recursive
622 // simplifications.
623 bool BranchDir;
624 if (PredBI->getSuccessor(1) != BB)
625 BranchDir = true;
626 else if (PredBI->getSuccessor(0) != BB)
627 BranchDir = false;
628 else {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000629 DEBUG(errs() << " In block '" << PredBB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000630 << "' folding terminator: " << *PredBB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000631 ++NumFolds;
632 ConstantFoldTerminator(PredBB);
633 return true;
634 }
635
636 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
637
638 // If the dest block has one predecessor, just fix the branch condition to a
639 // constant and fold it.
640 if (BB->getSinglePredecessor()) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000641 DEBUG(errs() << " In block '" << BB->getName()
642 << "' folding condition to '" << BranchDir << "': "
Chris Lattner78c552e2009-10-11 07:24:57 +0000643 << *BB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000644 ++NumFolds;
Chris Lattner5a06cf62009-10-11 18:39:58 +0000645 Value *OldCond = DestBI->getCondition();
Owen Anderson1d0be152009-08-13 21:58:54 +0000646 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
647 BranchDir));
Chris Lattner421fa9e2008-12-03 07:48:08 +0000648 ConstantFoldTerminator(BB);
Chris Lattner5a06cf62009-10-11 18:39:58 +0000649 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000650 return true;
651 }
Chris Lattnerbdbf1a12009-10-11 04:33:43 +0000652
Chris Lattner421fa9e2008-12-03 07:48:08 +0000653
654 // Next, figure out which successor we are threading to.
655 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
656
Chris Lattner5729d382009-11-07 08:05:03 +0000657 SmallVector<BasicBlock*, 2> Preds;
658 Preds.push_back(PredBB);
659
Mike Stumpfe095f32009-05-04 18:40:41 +0000660 // Ok, try to thread it!
Chris Lattner5729d382009-11-07 08:05:03 +0000661 return ThreadEdge(BB, Preds, SuccBB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000662}
663
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000664/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
665/// block that switch on exactly the same condition. This means that we almost
666/// always know the direction of the edge in the DESTBB:
667/// PREDBB:
668/// switch COND [... DESTBB, BBY ... ]
669/// DESTBB:
670/// switch COND [... BBZ, BBW ]
671///
672/// Optimizing switches like this is very important, because simplifycfg builds
673/// switches out of repeated 'if' conditions.
674bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
675 BasicBlock *DestBB) {
Chris Lattner2c7ed112009-01-19 21:20:34 +0000676 // Can't thread edge to self.
677 if (PredBB == DestBB)
678 return false;
679
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000680 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
681 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
682
683 // There are a variety of optimizations that we can potentially do on these
684 // blocks: we order them from most to least preferable.
685
686 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
687 // directly to their destination. This does not introduce *any* code size
Dale Johannesen6b233392009-03-17 00:38:24 +0000688 // growth. Skip debug info first.
689 BasicBlock::iterator BBI = DestBB->begin();
690 while (isa<DbgInfoIntrinsic>(BBI))
691 BBI++;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000692
693 // FIXME: Thread if it just contains a PHI.
Dale Johannesen6b233392009-03-17 00:38:24 +0000694 if (isa<SwitchInst>(BBI)) {
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000695 bool MadeChange = false;
696 // Ignore the default edge for now.
697 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
698 ConstantInt *DestVal = DestSI->getCaseValue(i);
699 BasicBlock *DestSucc = DestSI->getSuccessor(i);
700
701 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
702 // PredSI has an explicit case for it. If so, forward. If it is covered
703 // by the default case, we can't update PredSI.
704 unsigned PredCase = PredSI->findCaseValue(DestVal);
705 if (PredCase == 0) continue;
706
707 // If PredSI doesn't go to DestBB on this value, then it won't reach the
708 // case on this condition.
709 if (PredSI->getSuccessor(PredCase) != DestBB &&
710 DestSI->getSuccessor(i) != DestBB)
711 continue;
712
713 // Otherwise, we're safe to make the change. Make sure that the edge from
714 // DestSI to DestSucc is not critical and has no PHI nodes.
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000715 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
716 DEBUG(errs() << "THROUGH: " << *DestSI);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000717
718 // If the destination has PHI nodes, just split the edge for updating
719 // simplicity.
720 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
721 SplitCriticalEdge(DestSI, i, this);
722 DestSucc = DestSI->getSuccessor(i);
723 }
724 FoldSingleEntryPHINodes(DestSucc);
725 PredSI->setSuccessor(PredCase, DestSucc);
726 MadeChange = true;
727 }
728
729 if (MadeChange)
730 return true;
731 }
732
733 return false;
734}
735
736
Chris Lattner69e067f2008-11-27 05:07:53 +0000737/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
738/// load instruction, eliminate it by replacing it with a PHI node. This is an
739/// important optimization that encourages jump threading, and needs to be run
740/// interlaced with other jump threading tasks.
741bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
742 // Don't hack volatile loads.
743 if (LI->isVolatile()) return false;
744
745 // If the load is defined in a block with exactly one predecessor, it can't be
746 // partially redundant.
747 BasicBlock *LoadBB = LI->getParent();
748 if (LoadBB->getSinglePredecessor())
749 return false;
750
751 Value *LoadedPtr = LI->getOperand(0);
752
753 // If the loaded operand is defined in the LoadBB, it can't be available.
754 // FIXME: Could do PHI translation, that would be fun :)
755 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
756 if (PtrOp->getParent() == LoadBB)
757 return false;
758
759 // Scan a few instructions up from the load, to see if it is obviously live at
760 // the entry to its block.
761 BasicBlock::iterator BBIt = LI;
762
Chris Lattner52c95852008-11-27 08:10:05 +0000763 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
764 BBIt, 6)) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000765 // If the value if the load is locally available within the block, just use
766 // it. This frequently occurs for reg2mem'd allocas.
767 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
Chris Lattner2a99b482009-01-09 06:08:12 +0000768
769 // If the returned value is the load itself, replace with an undef. This can
770 // only happen in dead loops.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000771 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
Chris Lattner69e067f2008-11-27 05:07:53 +0000772 LI->replaceAllUsesWith(AvailableVal);
773 LI->eraseFromParent();
774 return true;
775 }
776
777 // Otherwise, if we scanned the whole block and got to the top of the block,
778 // we know the block is locally transparent to the load. If not, something
779 // might clobber its value.
780 if (BBIt != LoadBB->begin())
781 return false;
782
783
784 SmallPtrSet<BasicBlock*, 8> PredsScanned;
785 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
786 AvailablePredsTy AvailablePreds;
787 BasicBlock *OneUnavailablePred = 0;
788
789 // If we got here, the loaded value is transparent through to the start of the
790 // block. Check to see if it is available in any of the predecessor blocks.
791 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
792 PI != PE; ++PI) {
793 BasicBlock *PredBB = *PI;
794
795 // If we already scanned this predecessor, skip it.
796 if (!PredsScanned.insert(PredBB))
797 continue;
798
799 // Scan the predecessor to see if the value is available in the pred.
800 BBIt = PredBB->end();
Chris Lattner52c95852008-11-27 08:10:05 +0000801 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
Chris Lattner69e067f2008-11-27 05:07:53 +0000802 if (!PredAvailable) {
803 OneUnavailablePred = PredBB;
804 continue;
805 }
806
807 // If so, this load is partially redundant. Remember this info so that we
808 // can create a PHI node.
809 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
810 }
811
812 // If the loaded value isn't available in any predecessor, it isn't partially
813 // redundant.
814 if (AvailablePreds.empty()) return false;
815
816 // Okay, the loaded value is available in at least one (and maybe all!)
817 // predecessors. If the value is unavailable in more than one unique
818 // predecessor, we want to insert a merge block for those common predecessors.
819 // This ensures that we only have to insert one reload, thus not increasing
820 // code size.
821 BasicBlock *UnavailablePred = 0;
822
823 // If there is exactly one predecessor where the value is unavailable, the
824 // already computed 'OneUnavailablePred' block is it. If it ends in an
825 // unconditional branch, we know that it isn't a critical edge.
826 if (PredsScanned.size() == AvailablePreds.size()+1 &&
827 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
828 UnavailablePred = OneUnavailablePred;
829 } else if (PredsScanned.size() != AvailablePreds.size()) {
830 // Otherwise, we had multiple unavailable predecessors or we had a critical
831 // edge from the one.
832 SmallVector<BasicBlock*, 8> PredsToSplit;
833 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
834
835 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
836 AvailablePredSet.insert(AvailablePreds[i].first);
837
838 // Add all the unavailable predecessors to the PredsToSplit list.
839 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
840 PI != PE; ++PI)
841 if (!AvailablePredSet.count(*PI))
842 PredsToSplit.push_back(*PI);
843
844 // Split them out to their own block.
845 UnavailablePred =
846 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
847 "thread-split", this);
848 }
849
850 // If the value isn't available in all predecessors, then there will be
851 // exactly one where it isn't available. Insert a load on that edge and add
852 // it to the AvailablePreds list.
853 if (UnavailablePred) {
854 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
855 "Can't handle critical edge here!");
856 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
857 UnavailablePred->getTerminator());
858 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
859 }
860
861 // Now we know that each predecessor of this block has a value in
862 // AvailablePreds, sort them for efficient access as we're walking the preds.
Chris Lattnera3522002008-12-01 06:52:57 +0000863 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
Chris Lattner69e067f2008-11-27 05:07:53 +0000864
865 // Create a PHI node at the start of the block for the PRE'd load value.
866 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
867 PN->takeName(LI);
868
869 // Insert new entries into the PHI for each predecessor. A single block may
870 // have multiple entries here.
871 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
872 ++PI) {
873 AvailablePredsTy::iterator I =
874 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
875 std::make_pair(*PI, (Value*)0));
876
877 assert(I != AvailablePreds.end() && I->first == *PI &&
878 "Didn't find entry for predecessor!");
879
880 PN->addIncoming(I->second, I->first);
881 }
882
883 //cerr << "PRE: " << *LI << *PN << "\n";
884
885 LI->replaceAllUsesWith(PN);
886 LI->eraseFromParent();
887
888 return true;
889}
890
Chris Lattner5729d382009-11-07 08:05:03 +0000891/// FindMostPopularDest - The specified list contains multiple possible
892/// threadable destinations. Pick the one that occurs the most frequently in
893/// the list.
894static BasicBlock *
895FindMostPopularDest(BasicBlock *BB,
896 const SmallVectorImpl<std::pair<BasicBlock*,
897 BasicBlock*> > &PredToDestList) {
898 assert(!PredToDestList.empty());
899
900 // Determine popularity. If there are multiple possible destinations, we
901 // explicitly choose to ignore 'undef' destinations. We prefer to thread
902 // blocks with known and real destinations to threading undef. We'll handle
903 // them later if interesting.
904 DenseMap<BasicBlock*, unsigned> DestPopularity;
905 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
906 if (PredToDestList[i].second)
907 DestPopularity[PredToDestList[i].second]++;
908
909 // Find the most popular dest.
910 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
911 BasicBlock *MostPopularDest = DPI->first;
912 unsigned Popularity = DPI->second;
913 SmallVector<BasicBlock*, 4> SamePopularity;
914
915 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
916 // If the popularity of this entry isn't higher than the popularity we've
917 // seen so far, ignore it.
918 if (DPI->second < Popularity)
919 ; // ignore.
920 else if (DPI->second == Popularity) {
921 // If it is the same as what we've seen so far, keep track of it.
922 SamePopularity.push_back(DPI->first);
923 } else {
924 // If it is more popular, remember it.
925 SamePopularity.clear();
926 MostPopularDest = DPI->first;
927 Popularity = DPI->second;
928 }
929 }
930
931 // Okay, now we know the most popular destination. If there is more than
932 // destination, we need to determine one. This is arbitrary, but we need
933 // to make a deterministic decision. Pick the first one that appears in the
934 // successor list.
935 if (!SamePopularity.empty()) {
936 SamePopularity.push_back(MostPopularDest);
937 TerminatorInst *TI = BB->getTerminator();
938 for (unsigned i = 0; ; ++i) {
939 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
940
941 if (std::find(SamePopularity.begin(), SamePopularity.end(),
942 TI->getSuccessor(i)) == SamePopularity.end())
943 continue;
944
945 MostPopularDest = TI->getSuccessor(i);
946 break;
947 }
948 }
949
950 // Okay, we have finally picked the most popular destination.
951 return MostPopularDest;
952}
953
Chris Lattner1c96b412009-11-12 01:37:43 +0000954bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
Chris Lattner5729d382009-11-07 08:05:03 +0000955 // If threading this would thread across a loop header, don't even try to
956 // thread the edge.
957 if (LoopHeaders.count(BB))
958 return false;
959
Chris Lattner5729d382009-11-07 08:05:03 +0000960 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
Chris Lattner1c96b412009-11-12 01:37:43 +0000961 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
Chris Lattner5729d382009-11-07 08:05:03 +0000962 return false;
963 assert(!PredValues.empty() &&
964 "ComputeValueKnownInPredecessors returned true with no values");
965
966 DEBUG(errs() << "IN BB: " << *BB;
967 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
968 errs() << " BB '" << BB->getName() << "': FOUND condition = ";
969 if (PredValues[i].first)
970 errs() << *PredValues[i].first;
971 else
972 errs() << "UNDEF";
973 errs() << " for pred '" << PredValues[i].second->getName()
974 << "'.\n";
975 });
976
977 // Decide what we want to thread through. Convert our list of known values to
978 // a list of known destinations for each pred. This also discards duplicate
979 // predecessors and keeps track of the undefined inputs (which are represented
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000980 // as a null dest in the PredToDestList).
Chris Lattner5729d382009-11-07 08:05:03 +0000981 SmallPtrSet<BasicBlock*, 16> SeenPreds;
982 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
983
984 BasicBlock *OnlyDest = 0;
985 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
986
987 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
988 BasicBlock *Pred = PredValues[i].second;
989 if (!SeenPreds.insert(Pred))
990 continue; // Duplicate predecessor entry.
991
992 // If the predecessor ends with an indirect goto, we can't change its
993 // destination.
994 if (isa<IndirectBrInst>(Pred->getTerminator()))
995 continue;
996
997 ConstantInt *Val = PredValues[i].first;
998
999 BasicBlock *DestBB;
1000 if (Val == 0) // Undef.
1001 DestBB = 0;
1002 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1003 DestBB = BI->getSuccessor(Val->isZero());
1004 else {
1005 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1006 DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1007 }
1008
1009 // If we have exactly one destination, remember it for efficiency below.
1010 if (i == 0)
1011 OnlyDest = DestBB;
1012 else if (OnlyDest != DestBB)
1013 OnlyDest = MultipleDestSentinel;
1014
1015 PredToDestList.push_back(std::make_pair(Pred, DestBB));
1016 }
1017
1018 // If all edges were unthreadable, we fail.
1019 if (PredToDestList.empty())
1020 return false;
1021
1022 // Determine which is the most common successor. If we have many inputs and
1023 // this block is a switch, we want to start by threading the batch that goes
1024 // to the most popular destination first. If we only know about one
1025 // threadable destination (the common case) we can avoid this.
1026 BasicBlock *MostPopularDest = OnlyDest;
1027
1028 if (MostPopularDest == MultipleDestSentinel)
1029 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1030
1031 // Now that we know what the most popular destination is, factor all
1032 // predecessors that will jump to it into a single predecessor.
1033 SmallVector<BasicBlock*, 16> PredsToFactor;
1034 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1035 if (PredToDestList[i].second == MostPopularDest) {
1036 BasicBlock *Pred = PredToDestList[i].first;
1037
1038 // This predecessor may be a switch or something else that has multiple
1039 // edges to the block. Factor each of these edges by listing them
1040 // according to # occurrences in PredsToFactor.
1041 TerminatorInst *PredTI = Pred->getTerminator();
1042 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1043 if (PredTI->getSuccessor(i) == BB)
1044 PredsToFactor.push_back(Pred);
1045 }
1046
1047 // If the threadable edges are branching on an undefined value, we get to pick
1048 // the destination that these predecessors should get to.
1049 if (MostPopularDest == 0)
1050 MostPopularDest = BB->getTerminator()->
1051 getSuccessor(GetBestDestForJumpOnUndef(BB));
1052
1053 // Ok, try to thread it!
1054 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1055}
Chris Lattner69e067f2008-11-27 05:07:53 +00001056
Chris Lattnere33583b2009-10-11 04:18:15 +00001057/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
Chris Lattnerd38c14e2008-04-22 06:36:15 +00001058/// the current block. See if there are any simplifications we can do based on
1059/// inputs to the phi node.
1060///
1061bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
Chris Lattner6b65f472009-10-11 04:40:21 +00001062 BasicBlock *BB = PN->getParent();
1063
Chris Lattner5729d382009-11-07 08:05:03 +00001064 // If any of the predecessor blocks end in an unconditional branch, we can
1065 // *duplicate* the jump into that block in order to further encourage jump
1066 // threading and to eliminate cases where we have branch on a phi of an icmp
1067 // (branch on icmp is much better).
Chris Lattner78c552e2009-10-11 07:24:57 +00001068
1069 // We don't want to do this tranformation for switches, because we don't
1070 // really want to duplicate a switch.
1071 if (isa<SwitchInst>(BB->getTerminator()))
1072 return false;
1073
1074 // Look for unconditional branch predecessors.
1075 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1076 BasicBlock *PredBB = PN->getIncomingBlock(i);
1077 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1078 if (PredBr->isUnconditional() &&
1079 // Try to duplicate BB into PredBB.
1080 DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1081 return true;
1082 }
1083
Chris Lattner6b65f472009-10-11 04:40:21 +00001084 return false;
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001085}
1086
Chris Lattnera5ddb592008-04-22 21:40:39 +00001087
Chris Lattner78c552e2009-10-11 07:24:57 +00001088/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1089/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1090/// NewPred using the entries from OldPred (suitably mapped).
1091static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1092 BasicBlock *OldPred,
1093 BasicBlock *NewPred,
1094 DenseMap<Instruction*, Value*> &ValueMap) {
1095 for (BasicBlock::iterator PNI = PHIBB->begin();
1096 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1097 // Ok, we have a PHI node. Figure out what the incoming value was for the
1098 // DestBlock.
1099 Value *IV = PN->getIncomingValueForBlock(OldPred);
1100
1101 // Remap the value if necessary.
1102 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1103 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1104 if (I != ValueMap.end())
1105 IV = I->second;
1106 }
1107
1108 PN->addIncoming(IV, NewPred);
1109 }
1110}
Chris Lattner6bf77502008-04-22 07:05:46 +00001111
Chris Lattner5729d382009-11-07 08:05:03 +00001112/// ThreadEdge - We have decided that it is safe and profitable to factor the
1113/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1114/// across BB. Transform the IR to reflect this change.
1115bool JumpThreading::ThreadEdge(BasicBlock *BB,
1116 const SmallVectorImpl<BasicBlock*> &PredBBs,
Chris Lattnerbdbf1a12009-10-11 04:33:43 +00001117 BasicBlock *SuccBB) {
Mike Stumpfe095f32009-05-04 18:40:41 +00001118 // If threading to the same block as we come from, we would infinite loop.
1119 if (SuccBB == BB) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001120 DEBUG(errs() << " Not threading across BB '" << BB->getName()
1121 << "' - would thread to self!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001122 return false;
1123 }
1124
1125 // If threading this would thread across a loop header, don't thread the edge.
1126 // See the comments above FindLoopHeaders for justifications and caveats.
1127 if (LoopHeaders.count(BB)) {
Chris Lattner5729d382009-11-07 08:05:03 +00001128 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001129 << "' to dest BB '" << SuccBB->getName()
1130 << "' - it might create an irreducible loop!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001131 return false;
1132 }
1133
Chris Lattner78c552e2009-10-11 07:24:57 +00001134 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1135 if (JumpThreadCost > Threshold) {
1136 DEBUG(errs() << " Not threading BB '" << BB->getName()
1137 << "' - Cost is too high: " << JumpThreadCost << "\n");
1138 return false;
1139 }
1140
Chris Lattner5729d382009-11-07 08:05:03 +00001141 // And finally, do it! Start by factoring the predecessors is needed.
1142 BasicBlock *PredBB;
1143 if (PredBBs.size() == 1)
1144 PredBB = PredBBs[0];
1145 else {
1146 DEBUG(errs() << " Factoring out " << PredBBs.size()
1147 << " common predecessors.\n");
1148 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1149 ".thr_comm", this);
1150 }
1151
Mike Stumpfe095f32009-05-04 18:40:41 +00001152 // And finally, do it!
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001153 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '"
Daniel Dunbar460f6562009-07-26 09:48:23 +00001154 << SuccBB->getName() << "' with cost: " << JumpThreadCost
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001155 << ", across block:\n "
1156 << *BB << "\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001157
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001158 // We are going to have to map operands from the original BB block to the new
1159 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1160 // account for entry from PredBB.
1161 DenseMap<Instruction*, Value*> ValueMapping;
1162
Owen Anderson1d0be152009-08-13 21:58:54 +00001163 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1164 BB->getName()+".thread",
1165 BB->getParent(), BB);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001166 NewBB->moveAfter(PredBB);
1167
1168 BasicBlock::iterator BI = BB->begin();
1169 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1170 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1171
1172 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1173 // mapping and using it to remap operands in the cloned instructions.
1174 for (; !isa<TerminatorInst>(BI); ++BI) {
Nick Lewycky67760642009-09-27 07:38:41 +00001175 Instruction *New = BI->clone();
Daniel Dunbar460f6562009-07-26 09:48:23 +00001176 New->setName(BI->getName());
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001177 NewBB->getInstList().push_back(New);
1178 ValueMapping[BI] = New;
1179
1180 // Remap operands to patch up intra-block references.
1181 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
Dan Gohmanf530c922009-07-02 00:17:47 +00001182 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1183 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1184 if (I != ValueMapping.end())
1185 New->setOperand(i, I->second);
1186 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001187 }
1188
1189 // We didn't copy the terminator from BB over to NewBB, because there is now
1190 // an unconditional jump to SuccBB. Insert the unconditional jump.
1191 BranchInst::Create(SuccBB, NewBB);
1192
1193 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1194 // PHI nodes for NewBB now.
Chris Lattner78c552e2009-10-11 07:24:57 +00001195 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001196
Chris Lattner433a0db2009-10-10 09:05:58 +00001197 // If there were values defined in BB that are used outside the block, then we
1198 // now have to update all uses of the value to use either the original value,
1199 // the cloned value, or some PHI derived value. This can require arbitrary
1200 // PHI insertion, of which we are prepared to do, clean these up now.
1201 SSAUpdater SSAUpdate;
1202 SmallVector<Use*, 16> UsesToRename;
1203 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1204 // Scan all uses of this instruction to see if it is used outside of its
1205 // block, and if so, record them in UsesToRename.
1206 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1207 ++UI) {
1208 Instruction *User = cast<Instruction>(*UI);
1209 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1210 if (UserPN->getIncomingBlock(UI) == BB)
1211 continue;
1212 } else if (User->getParent() == BB)
1213 continue;
1214
1215 UsesToRename.push_back(&UI.getUse());
1216 }
1217
1218 // If there are no uses outside the block, we're done with this instruction.
1219 if (UsesToRename.empty())
1220 continue;
1221
1222 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1223
1224 // We found a use of I outside of BB. Rename all uses of I that are outside
1225 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1226 // with the two values we know.
1227 SSAUpdate.Initialize(I);
1228 SSAUpdate.AddAvailableValue(BB, I);
1229 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1230
1231 while (!UsesToRename.empty())
1232 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1233 DEBUG(errs() << "\n");
1234 }
1235
1236
Chris Lattneref0c6742008-12-01 04:48:07 +00001237 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001238 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1239 // us to simplify any PHI nodes in BB.
1240 TerminatorInst *PredTerm = PredBB->getTerminator();
1241 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1242 if (PredTerm->getSuccessor(i) == BB) {
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001243 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001244 PredTerm->setSuccessor(i, NewBB);
1245 }
Chris Lattneref0c6742008-12-01 04:48:07 +00001246
1247 // At this point, the IR is fully up to date and consistent. Do a quick scan
1248 // over the new instructions and zap any that are constants or dead. This
1249 // frequently happens because of phi translation.
1250 BI = NewBB->begin();
1251 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1252 Instruction *Inst = BI++;
Chris Lattnerfddcf472009-11-10 01:57:31 +00001253
Chris Lattnere3453782009-11-10 01:08:51 +00001254 if (Value *V = SimplifyInstruction(Inst, TD)) {
Chris Lattnerfddcf472009-11-10 01:57:31 +00001255 WeakVH BIHandle(BI);
1256 ReplaceAndSimplifyAllUses(Inst, V, TD);
1257 if (BIHandle == 0)
1258 BI = NewBB->begin();
Chris Lattneref0c6742008-12-01 04:48:07 +00001259 continue;
1260 }
1261
1262 RecursivelyDeleteTriviallyDeadInstructions(Inst);
1263 }
Mike Stumpfe095f32009-05-04 18:40:41 +00001264
1265 // Threaded an edge!
1266 ++NumThreads;
1267 return true;
Chris Lattner177480b2008-04-20 21:13:06 +00001268}
Chris Lattner78c552e2009-10-11 07:24:57 +00001269
1270/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1271/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1272/// If we can duplicate the contents of BB up into PredBB do so now, this
1273/// improves the odds that the branch will be on an analyzable instruction like
1274/// a compare.
1275bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1276 BasicBlock *PredBB) {
1277 // If BB is a loop header, then duplicating this block outside the loop would
1278 // cause us to transform this into an irreducible loop, don't do this.
1279 // See the comments above FindLoopHeaders for justifications and caveats.
1280 if (LoopHeaders.count(BB)) {
1281 DEBUG(errs() << " Not duplicating loop header '" << BB->getName()
1282 << "' into predecessor block '" << PredBB->getName()
1283 << "' - it might create an irreducible loop!\n");
1284 return false;
1285 }
1286
1287 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1288 if (DuplicationCost > Threshold) {
1289 DEBUG(errs() << " Not duplicating BB '" << BB->getName()
1290 << "' - Cost is too high: " << DuplicationCost << "\n");
1291 return false;
1292 }
1293
1294 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1295 // of PredBB.
1296 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '"
1297 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1298 << DuplicationCost << " block is:" << *BB << "\n");
1299
1300 // We are going to have to map operands from the original BB block into the
1301 // PredBB block. Evaluate PHI nodes in BB.
1302 DenseMap<Instruction*, Value*> ValueMapping;
1303
1304 BasicBlock::iterator BI = BB->begin();
1305 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1306 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1307
1308 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1309
1310 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1311 // mapping and using it to remap operands in the cloned instructions.
1312 for (; BI != BB->end(); ++BI) {
1313 Instruction *New = BI->clone();
1314 New->setName(BI->getName());
1315 PredBB->getInstList().insert(OldPredBranch, New);
1316 ValueMapping[BI] = New;
1317
1318 // Remap operands to patch up intra-block references.
1319 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1320 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1321 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1322 if (I != ValueMapping.end())
1323 New->setOperand(i, I->second);
1324 }
1325 }
1326
1327 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1328 // add entries to the PHI nodes for branch from PredBB now.
1329 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1330 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1331 ValueMapping);
1332 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1333 ValueMapping);
1334
1335 // If there were values defined in BB that are used outside the block, then we
1336 // now have to update all uses of the value to use either the original value,
1337 // the cloned value, or some PHI derived value. This can require arbitrary
1338 // PHI insertion, of which we are prepared to do, clean these up now.
1339 SSAUpdater SSAUpdate;
1340 SmallVector<Use*, 16> UsesToRename;
1341 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1342 // Scan all uses of this instruction to see if it is used outside of its
1343 // block, and if so, record them in UsesToRename.
1344 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1345 ++UI) {
1346 Instruction *User = cast<Instruction>(*UI);
1347 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1348 if (UserPN->getIncomingBlock(UI) == BB)
1349 continue;
1350 } else if (User->getParent() == BB)
1351 continue;
1352
1353 UsesToRename.push_back(&UI.getUse());
1354 }
1355
1356 // If there are no uses outside the block, we're done with this instruction.
1357 if (UsesToRename.empty())
1358 continue;
1359
1360 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1361
1362 // We found a use of I outside of BB. Rename all uses of I that are outside
1363 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1364 // with the two values we know.
1365 SSAUpdate.Initialize(I);
1366 SSAUpdate.AddAvailableValue(BB, I);
1367 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1368
1369 while (!UsesToRename.empty())
1370 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1371 DEBUG(errs() << "\n");
1372 }
1373
1374 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1375 // that we nuked.
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001376 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattner78c552e2009-10-11 07:24:57 +00001377
1378 // Remove the unconditional branch at the end of the PredBB block.
1379 OldPredBranch->eraseFromParent();
1380
1381 ++NumDupes;
1382 return true;
1383}
1384
1385