blob: 665138748151b069953cedf3540b5a7a4e29f28b [file] [log] [blame]
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001//===- InstCombineMulDivRem.cpp -------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11// srem, urem, frem.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
16#include "llvm/IntrinsicInst.h"
Duncan Sands82fdab32010-12-21 14:00:22 +000017#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd12c27c2010-01-05 06:09:35 +000018#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
Chris Lattnerd12c27c2010-01-05 06:09:35 +000022/// MultiplyOverflows - True if the multiply can not be expressed in an int
23/// this size.
24static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
25 uint32_t W = C1->getBitWidth();
26 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
27 if (sign) {
Jay Foad40f8f622010-12-07 08:25:19 +000028 LHSExt = LHSExt.sext(W * 2);
29 RHSExt = RHSExt.sext(W * 2);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000030 } else {
Jay Foad40f8f622010-12-07 08:25:19 +000031 LHSExt = LHSExt.zext(W * 2);
32 RHSExt = RHSExt.zext(W * 2);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000033 }
34
35 APInt MulExt = LHSExt * RHSExt;
36
37 if (!sign)
38 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
39
40 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
41 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
42 return MulExt.slt(Min) || MulExt.sgt(Max);
43}
44
45Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Duncan Sands096aa792010-11-13 15:10:37 +000046 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000047 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
48
Duncan Sands82fdab32010-12-21 14:00:22 +000049 if (Value *V = SimplifyMulInst(Op0, Op1, TD))
50 return ReplaceInstUsesWith(I, V);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000051
Duncan Sands37bf92b2010-12-22 13:36:08 +000052 if (Value *V = SimplifyUsingDistributiveLaws(I))
53 return ReplaceInstUsesWith(I, V);
54
Chris Lattner7a6aa1a2011-02-10 05:36:31 +000055 if (match(Op1, m_AllOnes())) // X * -1 == 0 - X
56 return BinaryOperator::CreateNeg(Op0, I.getName());
57
58 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
59
60 // ((X << C1)*C2) == (X * (C2 << C1))
61 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
62 if (SI->getOpcode() == Instruction::Shl)
63 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
64 return BinaryOperator::CreateMul(SI->getOperand(0),
65 ConstantExpr::getShl(CI, ShOp));
66
67 const APInt &Val = CI->getValue();
68 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
69 Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
70 BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
71 if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
72 if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
73 return Shl;
Chris Lattnerd12c27c2010-01-05 06:09:35 +000074 }
75
Chris Lattner7a6aa1a2011-02-10 05:36:31 +000076 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
77 { Value *X; ConstantInt *C1;
78 if (Op0->hasOneUse() &&
79 match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
80 Value *Add = Builder->CreateMul(X, CI, "tmp");
81 return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
Chris Lattnerd12c27c2010-01-05 06:09:35 +000082 }
Chris Lattner7a6aa1a2011-02-10 05:36:31 +000083 }
84 }
85
86 // Simplify mul instructions with a constant RHS.
87 if (isa<Constant>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +000088 // Try to fold constant mul into select arguments.
89 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
90 if (Instruction *R = FoldOpIntoSelect(I, SI))
91 return R;
92
93 if (isa<PHINode>(Op0))
94 if (Instruction *NV = FoldOpIntoPhi(I))
95 return NV;
96 }
97
98 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
99 if (Value *Op1v = dyn_castNegVal(Op1))
100 return BinaryOperator::CreateMul(Op0v, Op1v);
101
102 // (X / Y) * Y = X - (X % Y)
103 // (X / Y) * -Y = (X % Y) - X
104 {
105 Value *Op1C = Op1;
106 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
107 if (!BO ||
108 (BO->getOpcode() != Instruction::UDiv &&
109 BO->getOpcode() != Instruction::SDiv)) {
110 Op1C = Op0;
111 BO = dyn_cast<BinaryOperator>(Op1);
112 }
113 Value *Neg = dyn_castNegVal(Op1C);
114 if (BO && BO->hasOneUse() &&
115 (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
116 (BO->getOpcode() == Instruction::UDiv ||
117 BO->getOpcode() == Instruction::SDiv)) {
118 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
119
Chris Lattner35bda892011-02-06 21:44:57 +0000120 // If the division is exact, X % Y is zero, so we end up with X or -X.
121 if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000122 if (SDiv->isExact()) {
123 if (Op1BO == Op1C)
124 return ReplaceInstUsesWith(I, Op0BO);
125 return BinaryOperator::CreateNeg(Op0BO);
126 }
127
128 Value *Rem;
129 if (BO->getOpcode() == Instruction::UDiv)
130 Rem = Builder->CreateURem(Op0BO, Op1BO);
131 else
132 Rem = Builder->CreateSRem(Op0BO, Op1BO);
133 Rem->takeName(BO);
134
135 if (Op1BO == Op1C)
136 return BinaryOperator::CreateSub(Op0BO, Rem);
137 return BinaryOperator::CreateSub(Rem, Op0BO);
138 }
139 }
140
141 /// i1 mul -> i1 and.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000142 if (I.getType()->isIntegerTy(1))
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000143 return BinaryOperator::CreateAnd(Op0, Op1);
144
145 // X*(1 << Y) --> X << Y
146 // (1 << Y)*X --> X << Y
147 {
148 Value *Y;
149 if (match(Op0, m_Shl(m_One(), m_Value(Y))))
150 return BinaryOperator::CreateShl(Op1, Y);
151 if (match(Op1, m_Shl(m_One(), m_Value(Y))))
152 return BinaryOperator::CreateShl(Op0, Y);
153 }
154
155 // If one of the operands of the multiply is a cast from a boolean value, then
156 // we know the bool is either zero or one, so this is a 'masking' multiply.
157 // X * Y (where Y is 0 or 1) -> X & (0-Y)
Duncan Sands1df98592010-02-16 11:11:14 +0000158 if (!I.getType()->isVectorTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000159 // -2 is "-1 << 1" so it is all bits set except the low one.
160 APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
161
162 Value *BoolCast = 0, *OtherOp = 0;
163 if (MaskedValueIsZero(Op0, Negative2))
164 BoolCast = Op0, OtherOp = Op1;
165 else if (MaskedValueIsZero(Op1, Negative2))
166 BoolCast = Op1, OtherOp = Op0;
167
168 if (BoolCast) {
169 Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
170 BoolCast, "tmp");
171 return BinaryOperator::CreateAnd(V, OtherOp);
172 }
173 }
174
175 return Changed ? &I : 0;
176}
177
178Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
Duncan Sands096aa792010-11-13 15:10:37 +0000179 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000180 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
181
182 // Simplify mul instructions with a constant RHS...
183 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
184 if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
185 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
186 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
187 if (Op1F->isExactlyValue(1.0))
Dan Gohmana9445e12010-03-02 01:11:08 +0000188 return ReplaceInstUsesWith(I, Op0); // Eliminate 'fmul double %X, 1.0'
Duncan Sands1df98592010-02-16 11:11:14 +0000189 } else if (Op1C->getType()->isVectorTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000190 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
191 // As above, vector X*splat(1.0) -> X in all defined cases.
192 if (Constant *Splat = Op1V->getSplatValue()) {
193 if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
194 if (F->isExactlyValue(1.0))
195 return ReplaceInstUsesWith(I, Op0);
196 }
197 }
198 }
199
200 // Try to fold constant mul into select arguments.
201 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
202 if (Instruction *R = FoldOpIntoSelect(I, SI))
203 return R;
204
205 if (isa<PHINode>(Op0))
206 if (Instruction *NV = FoldOpIntoPhi(I))
207 return NV;
208 }
209
210 if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
211 if (Value *Op1v = dyn_castFNegVal(Op1))
212 return BinaryOperator::CreateFMul(Op0v, Op1v);
213
214 return Changed ? &I : 0;
215}
216
217/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
218/// instruction.
219bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
220 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
221
222 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
223 int NonNullOperand = -1;
224 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
225 if (ST->isNullValue())
226 NonNullOperand = 2;
227 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
228 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
229 if (ST->isNullValue())
230 NonNullOperand = 1;
231
232 if (NonNullOperand == -1)
233 return false;
234
235 Value *SelectCond = SI->getOperand(0);
236
237 // Change the div/rem to use 'Y' instead of the select.
238 I.setOperand(1, SI->getOperand(NonNullOperand));
239
240 // Okay, we know we replace the operand of the div/rem with 'Y' with no
241 // problem. However, the select, or the condition of the select may have
242 // multiple uses. Based on our knowledge that the operand must be non-zero,
243 // propagate the known value for the select into other uses of it, and
244 // propagate a known value of the condition into its other users.
245
246 // If the select and condition only have a single use, don't bother with this,
247 // early exit.
248 if (SI->use_empty() && SelectCond->hasOneUse())
249 return true;
250
251 // Scan the current block backward, looking for other uses of SI.
252 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
253
254 while (BBI != BBFront) {
255 --BBI;
256 // If we found a call to a function, we can't assume it will return, so
257 // information from below it cannot be propagated above it.
258 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
259 break;
260
261 // Replace uses of the select or its condition with the known values.
262 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
263 I != E; ++I) {
264 if (*I == SI) {
265 *I = SI->getOperand(NonNullOperand);
266 Worklist.Add(BBI);
267 } else if (*I == SelectCond) {
268 *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
269 ConstantInt::getFalse(BBI->getContext());
270 Worklist.Add(BBI);
271 }
272 }
273
274 // If we past the instruction, quit looking for it.
275 if (&*BBI == SI)
276 SI = 0;
277 if (&*BBI == SelectCond)
278 SelectCond = 0;
279
280 // If we ran out of things to eliminate, break out of the loop.
281 if (SelectCond == 0 && SI == 0)
282 break;
283
284 }
285 return true;
286}
287
288
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000289/// This function implements the transforms common to both integer division
290/// instructions (udiv and sdiv). It is called by the visitors to those integer
291/// division instructions.
292/// @brief Common integer divide transforms
293Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
294 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
295
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000296 // Handle cases involving: [su]div X, (select Cond, Y, Z)
297 // This does not apply for fdiv.
298 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
299 return &I;
300
301 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000302 // (X / C1) / C2 -> X / (C1*C2)
303 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
304 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
305 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
306 if (MultiplyOverflows(RHS, LHSRHS,
307 I.getOpcode()==Instruction::SDiv))
308 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000309 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
310 ConstantExpr::getMul(RHS, LHSRHS));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000311 }
312
313 if (!RHS->isZero()) { // avoid X udiv 0
314 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
315 if (Instruction *R = FoldOpIntoSelect(I, SI))
316 return R;
317 if (isa<PHINode>(Op0))
318 if (Instruction *NV = FoldOpIntoPhi(I))
319 return NV;
320 }
321 }
322
Duncan Sands593faa52011-01-28 16:51:11 +0000323 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
324 Value *X = 0, *Z = 0;
325 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
326 bool isSigned = I.getOpcode() == Instruction::SDiv;
327 if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
328 (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
329 return BinaryOperator::Create(I.getOpcode(), X, Op1);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000330 }
331
332 return 0;
333}
334
335Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
336 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
337
Duncan Sands593faa52011-01-28 16:51:11 +0000338 if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
339 return ReplaceInstUsesWith(I, V);
340
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000341 // Handle the integer div common cases
342 if (Instruction *Common = commonIDivTransforms(I))
343 return Common;
344
345 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
Owen Anderson5b396202010-01-17 06:49:03 +0000346 // X udiv 2^C -> X >> C
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000347 // Check to see if this is an unsigned division with an exact power of 2,
348 // if so, convert to a right shift.
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000349 if (C->getValue().isPowerOf2()) { // 0 not included in isPowerOf2
350 BinaryOperator *LShr =
351 BinaryOperator::CreateLShr(Op0,
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000352 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000353 if (I.isExact()) LShr->setIsExact();
354 return LShr;
355 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000356
357 // X udiv C, where C >= signbit
358 if (C->getValue().isNegative()) {
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000359 Value *IC = Builder->CreateICmpULT(Op0, C);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000360 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
361 ConstantInt::get(I.getType(), 1));
362 }
363 }
364
365 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000366 { const APInt *CI; Value *N;
367 if (match(Op1, m_Shl(m_Power2(CI), m_Value(N)))) {
368 if (*CI != 1)
369 N = Builder->CreateAdd(N, ConstantInt::get(I.getType(), CI->logBase2()),
370 "tmp");
371 if (I.isExact())
372 return BinaryOperator::CreateExactLShr(Op0, N);
373 return BinaryOperator::CreateLShr(Op0, N);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000374 }
375 }
376
377 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
378 // where C1&C2 are powers of two.
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000379 { Value *Cond; const APInt *C1, *C2;
380 if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
381 // Construct the "on true" case of the select
382 Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
383 I.isExact());
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000384
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000385 // Construct the "on false" case of the select
386 Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
387 I.isExact());
388
389 // construct the select instruction and return it.
390 return SelectInst::Create(Cond, TSI, FSI);
391 }
392 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000393 return 0;
394}
395
396Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
397 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
398
Duncan Sands593faa52011-01-28 16:51:11 +0000399 if (Value *V = SimplifySDivInst(Op0, Op1, TD))
400 return ReplaceInstUsesWith(I, V);
401
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000402 // Handle the integer div common cases
403 if (Instruction *Common = commonIDivTransforms(I))
404 return Common;
405
406 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
407 // sdiv X, -1 == -X
408 if (RHS->isAllOnesValue())
409 return BinaryOperator::CreateNeg(Op0);
410
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000411 // sdiv X, C --> ashr exact X, log2(C)
412 if (I.isExact() && RHS->getValue().isNonNegative() &&
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000413 RHS->getValue().isPowerOf2()) {
414 Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
415 RHS->getValue().exactLogBase2());
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000416 return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000417 }
418
419 // -X/C --> X/-C provided the negation doesn't overflow.
420 if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000421 if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000422 return BinaryOperator::CreateSDiv(Sub->getOperand(1),
423 ConstantExpr::getNeg(RHS));
424 }
425
426 // If the sign bits of both operands are zero (i.e. we can prove they are
427 // unsigned inputs), turn this into a udiv.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000428 if (I.getType()->isIntegerTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000429 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
430 if (MaskedValueIsZero(Op0, Mask)) {
431 if (MaskedValueIsZero(Op1, Mask)) {
432 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
433 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
434 }
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000435
436 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000437 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
438 // Safe because the only negative value (1 << Y) can take on is
439 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
440 // the sign bit set.
441 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
442 }
443 }
444 }
445
446 return 0;
447}
448
Frits van Bommel31726c12011-01-29 17:50:27 +0000449Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
450 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
451
452 if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
453 return ReplaceInstUsesWith(I, V);
454
Benjamin Kramer54673962011-03-30 15:42:35 +0000455 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
456 const APFloat &Op1F = Op1C->getValueAPF();
457
458 // If the divisor has an exact multiplicative inverse we can turn the fdiv
459 // into a cheaper fmul.
460 APFloat Reciprocal(Op1F.getSemantics());
461 if (Op1F.getExactInverse(&Reciprocal)) {
462 ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal);
463 return BinaryOperator::CreateFMul(Op0, RFP);
464 }
465 }
466
Frits van Bommel31726c12011-01-29 17:50:27 +0000467 return 0;
468}
469
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000470/// This function implements the transforms on rem instructions that work
471/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
472/// is used by the visitors to those instructions.
473/// @brief Transforms common to all three rem instructions
474Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
475 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
476
477 if (isa<UndefValue>(Op0)) { // undef % X -> 0
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000478 if (I.getType()->isFPOrFPVectorTy())
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000479 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
480 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
481 }
482 if (isa<UndefValue>(Op1))
483 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
484
485 // Handle cases involving: rem X, (select Cond, Y, Z)
486 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
487 return &I;
488
489 return 0;
490}
491
492/// This function implements the transforms common to both integer remainder
493/// instructions (urem and srem). It is called by the visitors to those integer
494/// remainder instructions.
495/// @brief Common integer remainder transforms
496Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
497 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
498
499 if (Instruction *common = commonRemTransforms(I))
500 return common;
501
Benjamin Kramer1951a5b2010-11-17 19:11:46 +0000502 // X % X == 0
503 if (Op0 == Op1)
504 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
505
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000506 // 0 % X == 0 for integer, we don't need to preserve faults!
507 if (Constant *LHS = dyn_cast<Constant>(Op0))
508 if (LHS->isNullValue())
509 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
510
511 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
512 // X % 0 == undef, we don't need to preserve faults!
513 if (RHS->equalsInt(0))
514 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
515
516 if (RHS->equalsInt(1)) // X % 1 == 0
517 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
518
519 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
520 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
521 if (Instruction *R = FoldOpIntoSelect(I, SI))
522 return R;
523 } else if (isa<PHINode>(Op0I)) {
524 if (Instruction *NV = FoldOpIntoPhi(I))
525 return NV;
526 }
527
528 // See if we can fold away this rem instruction.
529 if (SimplifyDemandedInstructionBits(I))
530 return &I;
531 }
532 }
533
534 return 0;
535}
536
537Instruction *InstCombiner::visitURem(BinaryOperator &I) {
538 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
539
540 if (Instruction *common = commonIRemTransforms(I))
541 return common;
542
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000543 // X urem C^2 -> X and C-1
544 { const APInt *C;
545 if (match(Op1, m_Power2(C)))
546 return BinaryOperator::CreateAnd(Op0,
547 ConstantInt::get(I.getType(), *C-1));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000548 }
549
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000550 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
551 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
552 Constant *N1 = Constant::getAllOnesValue(I.getType());
553 Value *Add = Builder->CreateAdd(Op1, N1, "tmp");
554 return BinaryOperator::CreateAnd(Op0, Add);
555 }
556
557 // urem X, (select Cond, 2^C1, 2^C2) -->
558 // select Cond, (and X, C1-1), (and X, C2-1)
559 // when C1&C2 are powers of two.
560 { Value *Cond; const APInt *C1, *C2;
561 if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
562 Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t");
563 Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f");
564 return SelectInst::Create(Cond, TrueAnd, FalseAnd);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000565 }
566 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000567
568 return 0;
569}
570
571Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
572 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
573
574 // Handle the integer rem common cases
575 if (Instruction *Common = commonIRemTransforms(I))
576 return Common;
577
578 if (Value *RHSNeg = dyn_castNegVal(Op1))
579 if (!isa<Constant>(RHSNeg) ||
580 (isa<ConstantInt>(RHSNeg) &&
581 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
582 // X % -Y -> X % Y
583 Worklist.AddValue(I.getOperand(1));
584 I.setOperand(1, RHSNeg);
585 return &I;
586 }
587
588 // If the sign bits of both operands are zero (i.e. we can prove they are
589 // unsigned inputs), turn this into a urem.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000590 if (I.getType()->isIntegerTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000591 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
592 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
593 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
594 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
595 }
596 }
597
598 // If it's a constant vector, flip any negative values positive.
599 if (ConstantVector *RHSV = dyn_cast<ConstantVector>(Op1)) {
600 unsigned VWidth = RHSV->getNumOperands();
601
602 bool hasNegative = false;
603 for (unsigned i = 0; !hasNegative && i != VWidth; ++i)
604 if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i)))
605 if (RHS->getValue().isNegative())
606 hasNegative = true;
607
608 if (hasNegative) {
609 std::vector<Constant *> Elts(VWidth);
610 for (unsigned i = 0; i != VWidth; ++i) {
611 if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) {
612 if (RHS->getValue().isNegative())
613 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
614 else
615 Elts[i] = RHS;
616 }
617 }
618
619 Constant *NewRHSV = ConstantVector::get(Elts);
620 if (NewRHSV != RHSV) {
621 Worklist.AddValue(I.getOperand(1));
622 I.setOperand(1, NewRHSV);
623 return &I;
624 }
625 }
626 }
627
628 return 0;
629}
630
631Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
632 return commonRemTransforms(I);
633}
634