blob: 559788b4a904ee4ef82616fb26d72cf93a715627 [file] [log] [blame]
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001//===- InstCombineMulDivRem.cpp -------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11// srem, urem, frem.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
16#include "llvm/IntrinsicInst.h"
Duncan Sands82fdab32010-12-21 14:00:22 +000017#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd12c27c2010-01-05 06:09:35 +000018#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22/// SubOne - Subtract one from a ConstantInt.
23static Constant *SubOne(ConstantInt *C) {
24 return ConstantInt::get(C->getContext(), C->getValue()-1);
25}
26
27/// MultiplyOverflows - True if the multiply can not be expressed in an int
28/// this size.
29static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
30 uint32_t W = C1->getBitWidth();
31 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
32 if (sign) {
Jay Foad40f8f622010-12-07 08:25:19 +000033 LHSExt = LHSExt.sext(W * 2);
34 RHSExt = RHSExt.sext(W * 2);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000035 } else {
Jay Foad40f8f622010-12-07 08:25:19 +000036 LHSExt = LHSExt.zext(W * 2);
37 RHSExt = RHSExt.zext(W * 2);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000038 }
39
40 APInt MulExt = LHSExt * RHSExt;
41
42 if (!sign)
43 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
44
45 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
46 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
47 return MulExt.slt(Min) || MulExt.sgt(Max);
48}
49
50Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Duncan Sands096aa792010-11-13 15:10:37 +000051 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000052 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
53
Duncan Sands82fdab32010-12-21 14:00:22 +000054 if (Value *V = SimplifyMulInst(Op0, Op1, TD))
55 return ReplaceInstUsesWith(I, V);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000056
Duncan Sands37bf92b2010-12-22 13:36:08 +000057 if (Value *V = SimplifyUsingDistributiveLaws(I))
58 return ReplaceInstUsesWith(I, V);
59
Chris Lattnerd12c27c2010-01-05 06:09:35 +000060 // Simplify mul instructions with a constant RHS.
61 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
62 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1C)) {
63
64 // ((X << C1)*C2) == (X * (C2 << C1))
65 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
66 if (SI->getOpcode() == Instruction::Shl)
67 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
68 return BinaryOperator::CreateMul(SI->getOperand(0),
69 ConstantExpr::getShl(CI, ShOp));
70
Chris Lattnerd12c27c2010-01-05 06:09:35 +000071 if (CI->isAllOnesValue()) // X * -1 == 0 - X
72 return BinaryOperator::CreateNeg(Op0, I.getName());
73
74 const APInt& Val = cast<ConstantInt>(CI)->getValue();
75 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
76 return BinaryOperator::CreateShl(Op0,
77 ConstantInt::get(Op0->getType(), Val.logBase2()));
78 }
Duncan Sands1df98592010-02-16 11:11:14 +000079 } else if (Op1C->getType()->isVectorTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +000080 if (Op1C->isNullValue())
81 return ReplaceInstUsesWith(I, Op1C);
82
83 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
84 if (Op1V->isAllOnesValue()) // X * -1 == 0 - X
85 return BinaryOperator::CreateNeg(Op0, I.getName());
86
87 // As above, vector X*splat(1.0) -> X in all defined cases.
88 if (Constant *Splat = Op1V->getSplatValue()) {
89 if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat))
90 if (CI->equalsInt(1))
91 return ReplaceInstUsesWith(I, Op0);
92 }
93 }
94 }
95
96 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
97 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
98 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1C)) {
99 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
100 Value *Add = Builder->CreateMul(Op0I->getOperand(0), Op1C, "tmp");
101 Value *C1C2 = Builder->CreateMul(Op1C, Op0I->getOperand(1));
102 return BinaryOperator::CreateAdd(Add, C1C2);
103
104 }
105
106 // Try to fold constant mul into select arguments.
107 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
108 if (Instruction *R = FoldOpIntoSelect(I, SI))
109 return R;
110
111 if (isa<PHINode>(Op0))
112 if (Instruction *NV = FoldOpIntoPhi(I))
113 return NV;
114 }
115
116 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
117 if (Value *Op1v = dyn_castNegVal(Op1))
118 return BinaryOperator::CreateMul(Op0v, Op1v);
119
120 // (X / Y) * Y = X - (X % Y)
121 // (X / Y) * -Y = (X % Y) - X
122 {
123 Value *Op1C = Op1;
124 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
125 if (!BO ||
126 (BO->getOpcode() != Instruction::UDiv &&
127 BO->getOpcode() != Instruction::SDiv)) {
128 Op1C = Op0;
129 BO = dyn_cast<BinaryOperator>(Op1);
130 }
131 Value *Neg = dyn_castNegVal(Op1C);
132 if (BO && BO->hasOneUse() &&
133 (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
134 (BO->getOpcode() == Instruction::UDiv ||
135 BO->getOpcode() == Instruction::SDiv)) {
136 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
137
Chris Lattner35bda892011-02-06 21:44:57 +0000138 // If the division is exact, X % Y is zero, so we end up with X or -X.
139 if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000140 if (SDiv->isExact()) {
141 if (Op1BO == Op1C)
142 return ReplaceInstUsesWith(I, Op0BO);
143 return BinaryOperator::CreateNeg(Op0BO);
144 }
145
146 Value *Rem;
147 if (BO->getOpcode() == Instruction::UDiv)
148 Rem = Builder->CreateURem(Op0BO, Op1BO);
149 else
150 Rem = Builder->CreateSRem(Op0BO, Op1BO);
151 Rem->takeName(BO);
152
153 if (Op1BO == Op1C)
154 return BinaryOperator::CreateSub(Op0BO, Rem);
155 return BinaryOperator::CreateSub(Rem, Op0BO);
156 }
157 }
158
159 /// i1 mul -> i1 and.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000160 if (I.getType()->isIntegerTy(1))
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000161 return BinaryOperator::CreateAnd(Op0, Op1);
162
163 // X*(1 << Y) --> X << Y
164 // (1 << Y)*X --> X << Y
165 {
166 Value *Y;
167 if (match(Op0, m_Shl(m_One(), m_Value(Y))))
168 return BinaryOperator::CreateShl(Op1, Y);
169 if (match(Op1, m_Shl(m_One(), m_Value(Y))))
170 return BinaryOperator::CreateShl(Op0, Y);
171 }
172
173 // If one of the operands of the multiply is a cast from a boolean value, then
174 // we know the bool is either zero or one, so this is a 'masking' multiply.
175 // X * Y (where Y is 0 or 1) -> X & (0-Y)
Duncan Sands1df98592010-02-16 11:11:14 +0000176 if (!I.getType()->isVectorTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000177 // -2 is "-1 << 1" so it is all bits set except the low one.
178 APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
179
180 Value *BoolCast = 0, *OtherOp = 0;
181 if (MaskedValueIsZero(Op0, Negative2))
182 BoolCast = Op0, OtherOp = Op1;
183 else if (MaskedValueIsZero(Op1, Negative2))
184 BoolCast = Op1, OtherOp = Op0;
185
186 if (BoolCast) {
187 Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
188 BoolCast, "tmp");
189 return BinaryOperator::CreateAnd(V, OtherOp);
190 }
191 }
192
193 return Changed ? &I : 0;
194}
195
196Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
Duncan Sands096aa792010-11-13 15:10:37 +0000197 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000198 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
199
200 // Simplify mul instructions with a constant RHS...
201 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
202 if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
203 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
204 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
205 if (Op1F->isExactlyValue(1.0))
Dan Gohmana9445e12010-03-02 01:11:08 +0000206 return ReplaceInstUsesWith(I, Op0); // Eliminate 'fmul double %X, 1.0'
Duncan Sands1df98592010-02-16 11:11:14 +0000207 } else if (Op1C->getType()->isVectorTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000208 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
209 // As above, vector X*splat(1.0) -> X in all defined cases.
210 if (Constant *Splat = Op1V->getSplatValue()) {
211 if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
212 if (F->isExactlyValue(1.0))
213 return ReplaceInstUsesWith(I, Op0);
214 }
215 }
216 }
217
218 // Try to fold constant mul into select arguments.
219 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
220 if (Instruction *R = FoldOpIntoSelect(I, SI))
221 return R;
222
223 if (isa<PHINode>(Op0))
224 if (Instruction *NV = FoldOpIntoPhi(I))
225 return NV;
226 }
227
228 if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
229 if (Value *Op1v = dyn_castFNegVal(Op1))
230 return BinaryOperator::CreateFMul(Op0v, Op1v);
231
232 return Changed ? &I : 0;
233}
234
235/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
236/// instruction.
237bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
238 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
239
240 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
241 int NonNullOperand = -1;
242 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
243 if (ST->isNullValue())
244 NonNullOperand = 2;
245 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
246 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
247 if (ST->isNullValue())
248 NonNullOperand = 1;
249
250 if (NonNullOperand == -1)
251 return false;
252
253 Value *SelectCond = SI->getOperand(0);
254
255 // Change the div/rem to use 'Y' instead of the select.
256 I.setOperand(1, SI->getOperand(NonNullOperand));
257
258 // Okay, we know we replace the operand of the div/rem with 'Y' with no
259 // problem. However, the select, or the condition of the select may have
260 // multiple uses. Based on our knowledge that the operand must be non-zero,
261 // propagate the known value for the select into other uses of it, and
262 // propagate a known value of the condition into its other users.
263
264 // If the select and condition only have a single use, don't bother with this,
265 // early exit.
266 if (SI->use_empty() && SelectCond->hasOneUse())
267 return true;
268
269 // Scan the current block backward, looking for other uses of SI.
270 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
271
272 while (BBI != BBFront) {
273 --BBI;
274 // If we found a call to a function, we can't assume it will return, so
275 // information from below it cannot be propagated above it.
276 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
277 break;
278
279 // Replace uses of the select or its condition with the known values.
280 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
281 I != E; ++I) {
282 if (*I == SI) {
283 *I = SI->getOperand(NonNullOperand);
284 Worklist.Add(BBI);
285 } else if (*I == SelectCond) {
286 *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
287 ConstantInt::getFalse(BBI->getContext());
288 Worklist.Add(BBI);
289 }
290 }
291
292 // If we past the instruction, quit looking for it.
293 if (&*BBI == SI)
294 SI = 0;
295 if (&*BBI == SelectCond)
296 SelectCond = 0;
297
298 // If we ran out of things to eliminate, break out of the loop.
299 if (SelectCond == 0 && SI == 0)
300 break;
301
302 }
303 return true;
304}
305
306
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000307/// This function implements the transforms common to both integer division
308/// instructions (udiv and sdiv). It is called by the visitors to those integer
309/// division instructions.
310/// @brief Common integer divide transforms
311Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
312 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
313
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000314 // Handle cases involving: [su]div X, (select Cond, Y, Z)
315 // This does not apply for fdiv.
316 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
317 return &I;
318
319 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000320 // (X / C1) / C2 -> X / (C1*C2)
321 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
322 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
323 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
324 if (MultiplyOverflows(RHS, LHSRHS,
325 I.getOpcode()==Instruction::SDiv))
326 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
327 else
328 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
329 ConstantExpr::getMul(RHS, LHSRHS));
330 }
331
332 if (!RHS->isZero()) { // avoid X udiv 0
333 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
334 if (Instruction *R = FoldOpIntoSelect(I, SI))
335 return R;
336 if (isa<PHINode>(Op0))
337 if (Instruction *NV = FoldOpIntoPhi(I))
338 return NV;
339 }
340 }
341
Duncan Sands593faa52011-01-28 16:51:11 +0000342 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
343 Value *X = 0, *Z = 0;
344 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
345 bool isSigned = I.getOpcode() == Instruction::SDiv;
346 if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
347 (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
348 return BinaryOperator::Create(I.getOpcode(), X, Op1);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000349 }
350
351 return 0;
352}
353
354Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
355 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
356
Duncan Sands593faa52011-01-28 16:51:11 +0000357 if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
358 return ReplaceInstUsesWith(I, V);
359
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000360 // Handle the integer div common cases
361 if (Instruction *Common = commonIDivTransforms(I))
362 return Common;
363
364 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
Owen Anderson5b396202010-01-17 06:49:03 +0000365 // X udiv 2^C -> X >> C
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000366 // Check to see if this is an unsigned division with an exact power of 2,
367 // if so, convert to a right shift.
368 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
369 return BinaryOperator::CreateLShr(Op0,
370 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
371
372 // X udiv C, where C >= signbit
373 if (C->getValue().isNegative()) {
374 Value *IC = Builder->CreateICmpULT( Op0, C);
375 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
376 ConstantInt::get(I.getType(), 1));
377 }
378 }
379
380 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
381 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
382 if (RHSI->getOpcode() == Instruction::Shl &&
383 isa<ConstantInt>(RHSI->getOperand(0))) {
384 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
385 if (C1.isPowerOf2()) {
386 Value *N = RHSI->getOperand(1);
387 const Type *NTy = N->getType();
388 if (uint32_t C2 = C1.logBase2())
389 N = Builder->CreateAdd(N, ConstantInt::get(NTy, C2), "tmp");
390 return BinaryOperator::CreateLShr(Op0, N);
391 }
392 }
393 }
394
395 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
396 // where C1&C2 are powers of two.
397 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
398 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
399 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
400 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
401 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
402 // Compute the shift amounts
403 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
404 // Construct the "on true" case of the select
405 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
406 Value *TSI = Builder->CreateLShr(Op0, TC, SI->getName()+".t");
407
408 // Construct the "on false" case of the select
409 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
410 Value *FSI = Builder->CreateLShr(Op0, FC, SI->getName()+".f");
411
412 // construct the select instruction and return it.
413 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
414 }
415 }
416 return 0;
417}
418
419Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
420 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
421
Duncan Sands593faa52011-01-28 16:51:11 +0000422 if (Value *V = SimplifySDivInst(Op0, Op1, TD))
423 return ReplaceInstUsesWith(I, V);
424
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000425 // Handle the integer div common cases
426 if (Instruction *Common = commonIDivTransforms(I))
427 return Common;
428
429 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
430 // sdiv X, -1 == -X
431 if (RHS->isAllOnesValue())
432 return BinaryOperator::CreateNeg(Op0);
433
434 // sdiv X, C --> ashr X, log2(C)
435 if (cast<SDivOperator>(&I)->isExact() &&
436 RHS->getValue().isNonNegative() &&
437 RHS->getValue().isPowerOf2()) {
438 Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
439 RHS->getValue().exactLogBase2());
440 return BinaryOperator::CreateAShr(Op0, ShAmt, I.getName());
441 }
442
443 // -X/C --> X/-C provided the negation doesn't overflow.
444 if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
445 if (isa<Constant>(Sub->getOperand(0)) &&
446 cast<Constant>(Sub->getOperand(0))->isNullValue() &&
447 Sub->hasNoSignedWrap())
448 return BinaryOperator::CreateSDiv(Sub->getOperand(1),
449 ConstantExpr::getNeg(RHS));
450 }
451
452 // If the sign bits of both operands are zero (i.e. we can prove they are
453 // unsigned inputs), turn this into a udiv.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000454 if (I.getType()->isIntegerTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000455 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
456 if (MaskedValueIsZero(Op0, Mask)) {
457 if (MaskedValueIsZero(Op1, Mask)) {
458 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
459 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
460 }
461 ConstantInt *ShiftedInt;
462 if (match(Op1, m_Shl(m_ConstantInt(ShiftedInt), m_Value())) &&
463 ShiftedInt->getValue().isPowerOf2()) {
464 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
465 // Safe because the only negative value (1 << Y) can take on is
466 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
467 // the sign bit set.
468 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
469 }
470 }
471 }
472
473 return 0;
474}
475
Frits van Bommel31726c12011-01-29 17:50:27 +0000476Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
477 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
478
479 if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
480 return ReplaceInstUsesWith(I, V);
481
482 return 0;
483}
484
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000485/// This function implements the transforms on rem instructions that work
486/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
487/// is used by the visitors to those instructions.
488/// @brief Transforms common to all three rem instructions
489Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
490 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
491
492 if (isa<UndefValue>(Op0)) { // undef % X -> 0
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000493 if (I.getType()->isFPOrFPVectorTy())
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000494 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
495 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
496 }
497 if (isa<UndefValue>(Op1))
498 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
499
500 // Handle cases involving: rem X, (select Cond, Y, Z)
501 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
502 return &I;
503
504 return 0;
505}
506
507/// This function implements the transforms common to both integer remainder
508/// instructions (urem and srem). It is called by the visitors to those integer
509/// remainder instructions.
510/// @brief Common integer remainder transforms
511Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
512 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
513
514 if (Instruction *common = commonRemTransforms(I))
515 return common;
516
Benjamin Kramer1951a5b2010-11-17 19:11:46 +0000517 // X % X == 0
518 if (Op0 == Op1)
519 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
520
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000521 // 0 % X == 0 for integer, we don't need to preserve faults!
522 if (Constant *LHS = dyn_cast<Constant>(Op0))
523 if (LHS->isNullValue())
524 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
525
526 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
527 // X % 0 == undef, we don't need to preserve faults!
528 if (RHS->equalsInt(0))
529 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
530
531 if (RHS->equalsInt(1)) // X % 1 == 0
532 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
533
534 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
535 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
536 if (Instruction *R = FoldOpIntoSelect(I, SI))
537 return R;
538 } else if (isa<PHINode>(Op0I)) {
539 if (Instruction *NV = FoldOpIntoPhi(I))
540 return NV;
541 }
542
543 // See if we can fold away this rem instruction.
544 if (SimplifyDemandedInstructionBits(I))
545 return &I;
546 }
547 }
548
549 return 0;
550}
551
552Instruction *InstCombiner::visitURem(BinaryOperator &I) {
553 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
554
555 if (Instruction *common = commonIRemTransforms(I))
556 return common;
557
558 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
559 // X urem C^2 -> X and C
560 // Check to see if this is an unsigned remainder with an exact power of 2,
561 // if so, convert to a bitwise and.
562 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
563 if (C->getValue().isPowerOf2())
564 return BinaryOperator::CreateAnd(Op0, SubOne(C));
565 }
566
567 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
568 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
569 if (RHSI->getOpcode() == Instruction::Shl &&
570 isa<ConstantInt>(RHSI->getOperand(0))) {
571 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
572 Constant *N1 = Constant::getAllOnesValue(I.getType());
573 Value *Add = Builder->CreateAdd(RHSI, N1, "tmp");
574 return BinaryOperator::CreateAnd(Op0, Add);
575 }
576 }
577 }
578
579 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
580 // where C1&C2 are powers of two.
581 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
582 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
583 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
584 // STO == 0 and SFO == 0 handled above.
585 if ((STO->getValue().isPowerOf2()) &&
586 (SFO->getValue().isPowerOf2())) {
587 Value *TrueAnd = Builder->CreateAnd(Op0, SubOne(STO),
588 SI->getName()+".t");
589 Value *FalseAnd = Builder->CreateAnd(Op0, SubOne(SFO),
590 SI->getName()+".f");
591 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
592 }
593 }
594 }
595
596 return 0;
597}
598
599Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
600 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
601
602 // Handle the integer rem common cases
603 if (Instruction *Common = commonIRemTransforms(I))
604 return Common;
605
606 if (Value *RHSNeg = dyn_castNegVal(Op1))
607 if (!isa<Constant>(RHSNeg) ||
608 (isa<ConstantInt>(RHSNeg) &&
609 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
610 // X % -Y -> X % Y
611 Worklist.AddValue(I.getOperand(1));
612 I.setOperand(1, RHSNeg);
613 return &I;
614 }
615
616 // If the sign bits of both operands are zero (i.e. we can prove they are
617 // unsigned inputs), turn this into a urem.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000618 if (I.getType()->isIntegerTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000619 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
620 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
621 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
622 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
623 }
624 }
625
626 // If it's a constant vector, flip any negative values positive.
627 if (ConstantVector *RHSV = dyn_cast<ConstantVector>(Op1)) {
628 unsigned VWidth = RHSV->getNumOperands();
629
630 bool hasNegative = false;
631 for (unsigned i = 0; !hasNegative && i != VWidth; ++i)
632 if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i)))
633 if (RHS->getValue().isNegative())
634 hasNegative = true;
635
636 if (hasNegative) {
637 std::vector<Constant *> Elts(VWidth);
638 for (unsigned i = 0; i != VWidth; ++i) {
639 if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) {
640 if (RHS->getValue().isNegative())
641 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
642 else
643 Elts[i] = RHS;
644 }
645 }
646
647 Constant *NewRHSV = ConstantVector::get(Elts);
648 if (NewRHSV != RHSV) {
649 Worklist.AddValue(I.getOperand(1));
650 I.setOperand(1, NewRHSV);
651 return &I;
652 }
653 }
654 }
655
656 return 0;
657}
658
659Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
660 return commonRemTransforms(I);
661}
662