blob: 1541987fdddde4a3f3857281ea9f88d39ab119fa [file] [log] [blame]
Misha Brukman13fd15c2004-01-15 00:14:41 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Chris Lattner261efe92003-11-25 01:02:51 +00003<html>
4<head>
5 <title>LLVM Programmer's Manual</title>
Misha Brukman13fd15c2004-01-15 00:14:41 +00006 <link rel="stylesheet" href="llvm.css" type="text/css">
Chris Lattner261efe92003-11-25 01:02:51 +00007</head>
Misha Brukman13fd15c2004-01-15 00:14:41 +00008<body>
9
10<div class="doc_title">
11 LLVM Programmer's Manual
12</div>
13
Chris Lattner9355b472002-09-06 02:50:58 +000014<ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +000015 <li><a href="#introduction">Introduction</a></li>
Chris Lattner9355b472002-09-06 02:50:58 +000016 <li><a href="#general">General Information</a>
Chris Lattner261efe92003-11-25 01:02:51 +000017 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000018 <li><a href="#stl">The C++ Standard Template Library</a></li>
19<!--
20 <li>The <tt>-time-passes</tt> option</li>
21 <li>How to use the LLVM Makefile system</li>
22 <li>How to write a regression test</li>
Chris Lattner61db4652004-12-08 19:05:44 +000023
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000024-->
Chris Lattner84b7f8d2003-08-01 22:20:59 +000025 </ul>
Chris Lattner261efe92003-11-25 01:02:51 +000026 </li>
27 <li><a href="#apis">Important and useful LLVM APIs</a>
28 <ul>
29 <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
30and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
Misha Brukman2c122ce2005-11-01 21:12:49 +000031 <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
Chris Lattner261efe92003-11-25 01:02:51 +000032option</a>
33 <ul>
34 <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
35and the <tt>-debug-only</tt> option</a> </li>
36 </ul>
37 </li>
38 <li><a href="#Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000039option</a></li>
40<!--
41 <li>The <tt>InstVisitor</tt> template
42 <li>The general graph API
43-->
Chris Lattnerf623a082005-10-17 01:36:23 +000044 <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000045 </ul>
46 </li>
Chris Lattnerae7f7592002-09-06 18:31:18 +000047 <li><a href="#common">Helpful Hints for Common Operations</a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000048 <ul>
Chris Lattner261efe92003-11-25 01:02:51 +000049 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
50 <ul>
51 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
52in a <tt>Function</tt></a> </li>
53 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
54in a <tt>BasicBlock</tt></a> </li>
55 <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
56in a <tt>Function</tt></a> </li>
57 <li><a href="#iterate_convert">Turning an iterator into a
58class pointer</a> </li>
59 <li><a href="#iterate_complex">Finding call sites: a more
60complex example</a> </li>
61 <li><a href="#calls_and_invokes">Treating calls and invokes
62the same way</a> </li>
63 <li><a href="#iterate_chains">Iterating over def-use &amp;
64use-def chains</a> </li>
65 </ul>
66 </li>
67 <li><a href="#simplechanges">Making simple changes</a>
68 <ul>
69 <li><a href="#schanges_creating">Creating and inserting new
70 <tt>Instruction</tt>s</a> </li>
71 <li><a href="#schanges_deleting">Deleting <tt>Instruction</tt>s</a> </li>
72 <li><a href="#schanges_replacing">Replacing an <tt>Instruction</tt>
73with another <tt>Value</tt></a> </li>
74 </ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000075 </li>
Chris Lattnerae7f7592002-09-06 18:31:18 +000076<!--
77 <li>Working with the Control Flow Graph
78 <ul>
79 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
80 <li>
81 <li>
82 </ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000083-->
Chris Lattner261efe92003-11-25 01:02:51 +000084 </ul>
85 </li>
Chris Lattnerd9d6e102005-04-23 16:10:52 +000086
87 <li><a href="#advanced">Advanced Topics</a>
88 <ul>
Chris Lattnerf1b200b2005-04-23 17:27:36 +000089 <li><a href="#TypeResolve">LLVM Type Resolution</a>
90 <ul>
91 <li><a href="#BuildRecType">Basic Recursive Type Construction</a></li>
92 <li><a href="#refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a></li>
93 <li><a href="#PATypeHolder">The PATypeHolder Class</a></li>
94 <li><a href="#AbstractTypeUser">The AbstractTypeUser Class</a></li>
95 </ul></li>
96
Chris Lattnerd9d6e102005-04-23 16:10:52 +000097 <li><a href="#SymbolTable">The <tt>SymbolTable</tt> class </a></li>
98 </ul></li>
99
Joel Stanley9b96c442002-09-06 21:55:13 +0000100 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
Chris Lattner9355b472002-09-06 02:50:58 +0000101 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000102 <li><a href="#Value">The <tt>Value</tt> class</a>
Chris Lattner9355b472002-09-06 02:50:58 +0000103 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000104 <li><a href="#User">The <tt>User</tt> class</a>
Chris Lattner261efe92003-11-25 01:02:51 +0000105 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000106 <li><a href="#Instruction">The <tt>Instruction</tt> class</a>
107 <ul>
108 <li><a href="#GetElementPtrInst">The <tt>GetElementPtrInst</tt> class</a></li>
109 </ul>
110 </li>
111 <li><a href="#Module">The <tt>Module</tt> class</a></li>
112 <li><a href="#Constant">The <tt>Constant</tt> class</a>
113 <ul>
114 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
115 <ul>
116 <li><a href="#BasicBlock">The <tt>BasicBlock</tt>class</a></li>
117 <li><a href="#Function">The <tt>Function</tt> class</a></li>
118 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
119 </ul>
120 </li>
121 </ul>
122 </li>
Reid Spencer8b2da7a2004-07-18 13:10:31 +0000123 </ul>
124 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000125 <li><a href="#Type">The <tt>Type</tt> class</a> </li>
Reid Spencer096603a2004-05-26 08:41:35 +0000126 <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000127 </ul>
128 </li>
129 </ul>
Chris Lattner261efe92003-11-25 01:02:51 +0000130 </li>
Chris Lattner9355b472002-09-06 02:50:58 +0000131</ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000132
Chris Lattner69bf8a92004-05-23 21:06:58 +0000133<div class="doc_author">
134 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
Chris Lattner94c43592004-05-26 16:52:55 +0000135 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>,
136 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a>, and
137 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000138</div>
139
Chris Lattner9355b472002-09-06 02:50:58 +0000140<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000141<div class="doc_section">
142 <a name="introduction">Introduction </a>
143</div>
Chris Lattner9355b472002-09-06 02:50:58 +0000144<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000145
146<div class="doc_text">
147
148<p>This document is meant to highlight some of the important classes and
Chris Lattner261efe92003-11-25 01:02:51 +0000149interfaces available in the LLVM source-base. This manual is not
150intended to explain what LLVM is, how it works, and what LLVM code looks
151like. It assumes that you know the basics of LLVM and are interested
152in writing transformations or otherwise analyzing or manipulating the
Misha Brukman13fd15c2004-01-15 00:14:41 +0000153code.</p>
154
155<p>This document should get you oriented so that you can find your
Chris Lattner261efe92003-11-25 01:02:51 +0000156way in the continuously growing source code that makes up the LLVM
157infrastructure. Note that this manual is not intended to serve as a
158replacement for reading the source code, so if you think there should be
159a method in one of these classes to do something, but it's not listed,
160check the source. Links to the <a href="/doxygen/">doxygen</a> sources
161are provided to make this as easy as possible.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000162
163<p>The first section of this document describes general information that is
164useful to know when working in the LLVM infrastructure, and the second describes
165the Core LLVM classes. In the future this manual will be extended with
166information describing how to use extension libraries, such as dominator
167information, CFG traversal routines, and useful utilities like the <tt><a
168href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
169
170</div>
171
Chris Lattner9355b472002-09-06 02:50:58 +0000172<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000173<div class="doc_section">
174 <a name="general">General Information</a>
175</div>
176<!-- *********************************************************************** -->
177
178<div class="doc_text">
179
180<p>This section contains general information that is useful if you are working
181in the LLVM source-base, but that isn't specific to any particular API.</p>
182
183</div>
184
185<!-- ======================================================================= -->
186<div class="doc_subsection">
187 <a name="stl">The C++ Standard Template Library</a>
188</div>
189
190<div class="doc_text">
191
192<p>LLVM makes heavy use of the C++ Standard Template Library (STL),
Chris Lattner261efe92003-11-25 01:02:51 +0000193perhaps much more than you are used to, or have seen before. Because of
194this, you might want to do a little background reading in the
195techniques used and capabilities of the library. There are many good
196pages that discuss the STL, and several books on the subject that you
Misha Brukman13fd15c2004-01-15 00:14:41 +0000197can get, so it will not be discussed in this document.</p>
198
199<p>Here are some useful links:</p>
200
201<ol>
202
203<li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++ Library
204reference</a> - an excellent reference for the STL and other parts of the
205standard C++ library.</li>
206
207<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
Tanya Lattner09cf73c2004-06-22 04:24:55 +0000208O'Reilly book in the making. It has a decent
209Standard Library
210Reference that rivals Dinkumware's, and is unfortunately no longer free since the book has been
Misha Brukman13fd15c2004-01-15 00:14:41 +0000211published.</li>
212
213<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
214Questions</a></li>
215
216<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
217Contains a useful <a
218href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
219STL</a>.</li>
220
221<li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
222Page</a></li>
223
Tanya Lattner79445ba2004-12-08 18:34:56 +0000224<li><a href="http://64.78.49.204/">
Reid Spencer096603a2004-05-26 08:41:35 +0000225Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
226the book).</a></li>
227
Misha Brukman13fd15c2004-01-15 00:14:41 +0000228</ol>
229
230<p>You are also encouraged to take a look at the <a
231href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
232to write maintainable code more than where to put your curly braces.</p>
233
234</div>
235
236<!-- ======================================================================= -->
237<div class="doc_subsection">
238 <a name="stl">Other useful references</a>
239</div>
240
241<div class="doc_text">
242
Misha Brukman13fd15c2004-01-15 00:14:41 +0000243<ol>
244<li><a href="http://www.psc.edu/%7Esemke/cvs_branches.html">CVS
Chris Lattner261efe92003-11-25 01:02:51 +0000245Branch and Tag Primer</a></li>
Misha Brukmana0f71e42004-06-18 18:39:00 +0000246<li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
247static and shared libraries across platforms</a></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000248</ol>
249
250</div>
251
Chris Lattner9355b472002-09-06 02:50:58 +0000252<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000253<div class="doc_section">
254 <a name="apis">Important and useful LLVM APIs</a>
255</div>
256<!-- *********************************************************************** -->
257
258<div class="doc_text">
259
260<p>Here we highlight some LLVM APIs that are generally useful and good to
261know about when writing transformations.</p>
262
263</div>
264
265<!-- ======================================================================= -->
266<div class="doc_subsection">
Misha Brukman2c122ce2005-11-01 21:12:49 +0000267 <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
268 <tt>dyn_cast&lt;&gt;</tt> templates</a>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000269</div>
270
271<div class="doc_text">
272
273<p>The LLVM source-base makes extensive use of a custom form of RTTI.
Chris Lattner261efe92003-11-25 01:02:51 +0000274These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
275operator, but they don't have some drawbacks (primarily stemming from
276the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
277have a v-table). Because they are used so often, you must know what they
278do and how they work. All of these templates are defined in the <a
Chris Lattner695b78b2005-04-26 22:56:16 +0000279 href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000280file (note that you very rarely have to include this file directly).</p>
281
282<dl>
283 <dt><tt>isa&lt;&gt;</tt>: </dt>
284
285 <dd>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
286 "<tt>instanceof</tt>" operator. It returns true or false depending on whether
287 a reference or pointer points to an instance of the specified class. This can
288 be very useful for constraint checking of various sorts (example below).</dd>
289
290 <dt><tt>cast&lt;&gt;</tt>: </dt>
291
292 <dd>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
293 converts a pointer or reference from a base class to a derived cast, causing
294 an assertion failure if it is not really an instance of the right type. This
295 should be used in cases where you have some information that makes you believe
296 that something is of the right type. An example of the <tt>isa&lt;&gt;</tt>
297 and <tt>cast&lt;&gt;</tt> template is:
298
Chris Lattner69bf8a92004-05-23 21:06:58 +0000299 <pre>
300 static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
301 if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
302 return true;
303
Chris Lattner53f72b32005-04-22 04:49:59 +0000304 <i>// Otherwise, it must be an instruction...</i>
305 return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
306 }
Chris Lattner69bf8a92004-05-23 21:06:58 +0000307 </pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000308
309 <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
310 by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
311 operator.</p>
312
313 </dd>
314
315 <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
316
317 <dd>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation. It
318 checks to see if the operand is of the specified type, and if so, returns a
319 pointer to it (this operator does not work with references). If the operand is
320 not of the correct type, a null pointer is returned. Thus, this works very
Misha Brukman2c122ce2005-11-01 21:12:49 +0000321 much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
322 used in the same circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt>
323 operator is used in an <tt>if</tt> statement or some other flow control
324 statement like this:
Misha Brukman13fd15c2004-01-15 00:14:41 +0000325
Misha Brukman2c122ce2005-11-01 21:12:49 +0000326 <pre>
Chris Lattner69bf8a92004-05-23 21:06:58 +0000327 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
328 ...
329 }
Misha Brukman2c122ce2005-11-01 21:12:49 +0000330 </pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000331
Misha Brukman2c122ce2005-11-01 21:12:49 +0000332 <p>This form of the <tt>if</tt> statement effectively combines together a call
333 to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
334 statement, which is very convenient.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000335
Misha Brukman2c122ce2005-11-01 21:12:49 +0000336 <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
337 <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
338 abused. In particular, you should not use big chained <tt>if/then/else</tt>
339 blocks to check for lots of different variants of classes. If you find
340 yourself wanting to do this, it is much cleaner and more efficient to use the
341 <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000342
Misha Brukman2c122ce2005-11-01 21:12:49 +0000343 </dd>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000344
Misha Brukman2c122ce2005-11-01 21:12:49 +0000345 <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
346
347 <dd>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
348 <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
349 argument (which it then propagates). This can sometimes be useful, allowing
350 you to combine several null checks into one.</dd>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000351
Misha Brukman2c122ce2005-11-01 21:12:49 +0000352 <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000353
Misha Brukman2c122ce2005-11-01 21:12:49 +0000354 <dd>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
355 <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
356 as an argument (which it then propagates). This can sometimes be useful,
357 allowing you to combine several null checks into one.</dd>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000358
Misha Brukman2c122ce2005-11-01 21:12:49 +0000359</dl>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000360
361<p>These five templates can be used with any classes, whether they have a
362v-table or not. To add support for these templates, you simply need to add
363<tt>classof</tt> static methods to the class you are interested casting
364to. Describing this is currently outside the scope of this document, but there
365are lots of examples in the LLVM source base.</p>
366
367</div>
368
369<!-- ======================================================================= -->
370<div class="doc_subsection">
Misha Brukman2c122ce2005-11-01 21:12:49 +0000371 <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000372</div>
373
374<div class="doc_text">
375
376<p>Often when working on your pass you will put a bunch of debugging printouts
377and other code into your pass. After you get it working, you want to remove
378it... but you may need it again in the future (to work out new bugs that you run
379across).</p>
380
381<p> Naturally, because of this, you don't want to delete the debug printouts,
382but you don't want them to always be noisy. A standard compromise is to comment
383them out, allowing you to enable them if you need them in the future.</p>
384
Chris Lattner695b78b2005-04-26 22:56:16 +0000385<p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
Misha Brukman13fd15c2004-01-15 00:14:41 +0000386file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
387this problem. Basically, you can put arbitrary code into the argument of the
388<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
389tool) is run with the '<tt>-debug</tt>' command line argument:</p>
390
Chris Lattner261efe92003-11-25 01:02:51 +0000391 <pre> ... <br> DEBUG(std::cerr &lt;&lt; "I am here!\n");<br> ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000392
393<p>Then you can run your pass like this:</p>
394
Chris Lattner261efe92003-11-25 01:02:51 +0000395 <pre> $ opt &lt; a.bc &gt; /dev/null -mypass<br> &lt;no output&gt;<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br> I am here!<br> $<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000396
397<p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
398to not have to create "yet another" command line option for the debug output for
399your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
400so they do not cause a performance impact at all (for the same reason, they
401should also not contain side-effects!).</p>
402
403<p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
404enable or disable it directly in gdb. Just use "<tt>set DebugFlag=0</tt>" or
405"<tt>set DebugFlag=1</tt>" from the gdb if the program is running. If the
406program hasn't been started yet, you can always just run it with
407<tt>-debug</tt>.</p>
408
409</div>
410
411<!-- _______________________________________________________________________ -->
412<div class="doc_subsubsection">
Chris Lattnerc9151082005-04-26 22:57:07 +0000413 <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
Misha Brukman13fd15c2004-01-15 00:14:41 +0000414 the <tt>-debug-only</tt> option</a>
415</div>
416
417<div class="doc_text">
418
419<p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
420just turns on <b>too much</b> information (such as when working on the code
421generator). If you want to enable debug information with more fine-grained
422control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
423option as follows:</p>
424
Chris Lattner261efe92003-11-25 01:02:51 +0000425 <pre> ...<br> DEBUG(std::cerr &lt;&lt; "No debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE "foo"<br> DEBUG(std::cerr &lt;&lt; "'foo' debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE "bar"<br> DEBUG(std::cerr &lt;&lt; "'bar' debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE ""<br> DEBUG(std::cerr &lt;&lt; "No debug type (2)\n");<br> ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000426
427<p>Then you can run your pass like this:</p>
428
Chris Lattner261efe92003-11-25 01:02:51 +0000429 <pre> $ opt &lt; a.bc &gt; /dev/null -mypass<br> &lt;no output&gt;<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br> No debug type<br> 'foo' debug type<br> 'bar' debug type<br> No debug type (2)<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo<br> 'foo' debug type<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar<br> 'bar' debug type<br> $<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000430
431<p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
432a file, to specify the debug type for the entire module (if you do this before
Chris Lattner695b78b2005-04-26 22:56:16 +0000433you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
Misha Brukman13fd15c2004-01-15 00:14:41 +0000434<tt>#undef</tt>'s). Also, you should use names more meaningful than "foo" and
435"bar", because there is no system in place to ensure that names do not
436conflict. If two different modules use the same string, they will all be turned
437on when the name is specified. This allows, for example, all debug information
438for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
Chris Lattner261efe92003-11-25 01:02:51 +0000439even if the source lives in multiple files.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000440
441</div>
442
443<!-- ======================================================================= -->
444<div class="doc_subsection">
445 <a name="Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
446 option</a>
447</div>
448
449<div class="doc_text">
450
451<p>The "<tt><a
Chris Lattner695b78b2005-04-26 22:56:16 +0000452href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
Misha Brukman13fd15c2004-01-15 00:14:41 +0000453provides a template named <tt>Statistic</tt> that is used as a unified way to
454keep track of what the LLVM compiler is doing and how effective various
455optimizations are. It is useful to see what optimizations are contributing to
456making a particular program run faster.</p>
457
458<p>Often you may run your pass on some big program, and you're interested to see
459how many times it makes a certain transformation. Although you can do this with
460hand inspection, or some ad-hoc method, this is a real pain and not very useful
461for big programs. Using the <tt>Statistic</tt> template makes it very easy to
462keep track of this information, and the calculated information is presented in a
463uniform manner with the rest of the passes being executed.</p>
464
465<p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
466it are as follows:</p>
467
468<ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000469 <li>Define your statistic like this:
Chris Lattner261efe92003-11-25 01:02:51 +0000470 <pre>static Statistic&lt;&gt; NumXForms("mypassname", "The # of times I did stuff");<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000471
472 <p>The <tt>Statistic</tt> template can emulate just about any data-type,
473 but if you do not specify a template argument, it defaults to acting like
474 an unsigned int counter (this is usually what you want).</p></li>
475
Chris Lattner261efe92003-11-25 01:02:51 +0000476 <li>Whenever you make a transformation, bump the counter:
Chris Lattner261efe92003-11-25 01:02:51 +0000477 <pre> ++NumXForms; // I did stuff<br></pre>
Chris Lattner261efe92003-11-25 01:02:51 +0000478 </li>
479 </ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000480
481 <p>That's all you have to do. To get '<tt>opt</tt>' to print out the
482 statistics gathered, use the '<tt>-stats</tt>' option:</p>
483
Chris Lattner261efe92003-11-25 01:02:51 +0000484 <pre> $ opt -stats -mypassname &lt; program.bc &gt; /dev/null<br> ... statistic output ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000485
Chris Lattner261efe92003-11-25 01:02:51 +0000486 <p> When running <tt>gccas</tt> on a C file from the SPEC benchmark
487suite, it gives a report that looks like this:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000488
Chris Lattner261efe92003-11-25 01:02:51 +0000489 <pre> 7646 bytecodewriter - Number of normal instructions<br> 725 bytecodewriter - Number of oversized instructions<br> 129996 bytecodewriter - Number of bytecode bytes written<br> 2817 raise - Number of insts DCEd or constprop'd<br> 3213 raise - Number of cast-of-self removed<br> 5046 raise - Number of expression trees converted<br> 75 raise - Number of other getelementptr's formed<br> 138 raise - Number of load/store peepholes<br> 42 deadtypeelim - Number of unused typenames removed from symtab<br> 392 funcresolve - Number of varargs functions resolved<br> 27 globaldce - Number of global variables removed<br> 2 adce - Number of basic blocks removed<br> 134 cee - Number of branches revectored<br> 49 cee - Number of setcc instruction eliminated<br> 532 gcse - Number of loads removed<br> 2919 gcse - Number of instructions removed<br> 86 indvars - Number of canonical indvars added<br> 87 indvars - Number of aux indvars removed<br> 25 instcombine - Number of dead inst eliminate<br> 434 instcombine - Number of insts combined<br> 248 licm - Number of load insts hoisted<br> 1298 licm - Number of insts hoisted to a loop pre-header<br> 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)<br> 75 mem2reg - Number of alloca's promoted<br> 1444 cfgsimplify - Number of blocks simplified<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000490
491<p>Obviously, with so many optimizations, having a unified framework for this
492stuff is very nice. Making your pass fit well into the framework makes it more
493maintainable and useful.</p>
494
495</div>
496
Chris Lattnerf623a082005-10-17 01:36:23 +0000497<!-- ======================================================================= -->
498<div class="doc_subsection">
499 <a name="ViewGraph">Viewing graphs while debugging code</a>
500</div>
501
502<div class="doc_text">
503
504<p>Several of the important data structures in LLVM are graphs: for example
505CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
506LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
507<a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
508DAGs</a>. In many cases, while debugging various parts of the compiler, it is
509nice to instantly visualize these graphs.</p>
510
511<p>LLVM provides several callbacks that are available in a debug build to do
512exactly that. If you call the <tt>Function::viewCFG()</tt> method, for example,
513the current LLVM tool will pop up a window containing the CFG for the function
514where each basic block is a node in the graph, and each node contains the
515instructions in the block. Similarly, there also exists
516<tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
517<tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
518and the <tt>SelectionDAG::viewGraph()</tt> methods. Within GDB, for example,
519you can usually use something like "<tt>call DAG.viewGraph()</tt>" to pop
520up a window. Alternatively, you can sprinkle calls to these functions in your
521code in places you want to debug.</p>
522
523<p>Getting this to work requires a small amount of configuration. On Unix
524systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
525toolkit, and make sure 'dot' and 'gv' are in your path. If you are running on
526Mac OS/X, download and install the Mac OS/X <a
527href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
528<tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or whereever you install
529it) to your path. Once in your system and path are set up, rerun the LLVM
530configure script and rebuild LLVM to enable this functionality.</p>
531
532</div>
533
534
Misha Brukman13fd15c2004-01-15 00:14:41 +0000535<!-- *********************************************************************** -->
536<div class="doc_section">
537 <a name="common">Helpful Hints for Common Operations</a>
538</div>
539<!-- *********************************************************************** -->
540
541<div class="doc_text">
542
543<p>This section describes how to perform some very simple transformations of
544LLVM code. This is meant to give examples of common idioms used, showing the
545practical side of LLVM transformations. <p> Because this is a "how-to" section,
546you should also read about the main classes that you will be working with. The
547<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
548and descriptions of the main classes that you should know about.</p>
549
550</div>
551
552<!-- NOTE: this section should be heavy on example code -->
553<!-- ======================================================================= -->
554<div class="doc_subsection">
555 <a name="inspection">Basic Inspection and Traversal Routines</a>
556</div>
557
558<div class="doc_text">
559
560<p>The LLVM compiler infrastructure have many different data structures that may
561be traversed. Following the example of the C++ standard template library, the
562techniques used to traverse these various data structures are all basically the
563same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
564method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
565function returns an iterator pointing to one past the last valid element of the
566sequence, and there is some <tt>XXXiterator</tt> data type that is common
567between the two operations.</p>
568
569<p>Because the pattern for iteration is common across many different aspects of
570the program representation, the standard template library algorithms may be used
571on them, and it is easier to remember how to iterate. First we show a few common
572examples of the data structures that need to be traversed. Other data
573structures are traversed in very similar ways.</p>
574
575</div>
576
577<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000578<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000579 <a name="iterate_function">Iterating over the </a><a
580 href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
581 href="#Function"><tt>Function</tt></a>
582</div>
583
584<div class="doc_text">
585
586<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
587transform in some way; in particular, you'd like to manipulate its
588<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over all of
589the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
590an example that prints the name of a <tt>BasicBlock</tt> and the number of
591<tt>Instruction</tt>s it contains:</p>
592
Chris Lattner261efe92003-11-25 01:02:51 +0000593 <pre> // func is a pointer to a Function instance<br> for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i) {<br><br> // print out the name of the basic block if it has one, and then the<br> // number of instructions that it contains<br><br> cerr &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has " <br> &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";<br> }<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000594
595<p>Note that i can be used as if it were a pointer for the purposes of
Joel Stanley9b96c442002-09-06 21:55:13 +0000596invoking member functions of the <tt>Instruction</tt> class. This is
597because the indirection operator is overloaded for the iterator
Chris Lattner7496ec52003-08-05 22:54:23 +0000598classes. In the above code, the expression <tt>i-&gt;size()</tt> is
Misha Brukman13fd15c2004-01-15 00:14:41 +0000599exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
600
601</div>
602
603<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000604<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000605 <a name="iterate_basicblock">Iterating over the </a><a
606 href="#Instruction"><tt>Instruction</tt></a>s in a <a
607 href="#BasicBlock"><tt>BasicBlock</tt></a>
608</div>
609
610<div class="doc_text">
611
612<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
613easy to iterate over the individual instructions that make up
614<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
615a <tt>BasicBlock</tt>:</p>
616
Chris Lattner55c04612005-03-06 06:00:13 +0000617<pre>
618 // blk is a pointer to a BasicBlock instance
619 for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
620 // the next statement works since operator&lt;&lt;(ostream&amp;,...)
621 // is overloaded for Instruction&amp;
622 std::cerr &lt;&lt; *i &lt;&lt; "\n";
623</pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000624
625<p>However, this isn't really the best way to print out the contents of a
626<tt>BasicBlock</tt>! Since the ostream operators are overloaded for virtually
627anything you'll care about, you could have just invoked the print routine on the
Chris Lattner55c04612005-03-06 06:00:13 +0000628basic block itself: <tt>std::cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000629
630</div>
631
632<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000633<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000634 <a name="iterate_institer">Iterating over the </a><a
635 href="#Instruction"><tt>Instruction</tt></a>s in a <a
636 href="#Function"><tt>Function</tt></a>
637</div>
638
639<div class="doc_text">
640
641<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
642<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
643<tt>InstIterator</tt> should be used instead. You'll need to include <a
644href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
645and then instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000646small example that shows how to dump all instructions in a function to the standard error stream:<p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000647
Chris Lattner69bf8a92004-05-23 21:06:58 +0000648 <pre>#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"<br>...<br>// Suppose F is a ptr to a function<br>for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)<br> cerr &lt;&lt; *i &lt;&lt; "\n";<br></pre>
Joel Stanleye7be6502002-09-09 15:50:33 +0000649Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
650worklist with its initial contents. For example, if you wanted to
Chris Lattner261efe92003-11-25 01:02:51 +0000651initialize a worklist to contain all instructions in a <tt>Function</tt>
652F, all you would need to do is something like:
653 <pre>std::set&lt;Instruction*&gt; worklist;<br>worklist.insert(inst_begin(F), inst_end(F));<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000654
655<p>The STL set <tt>worklist</tt> would now contain all instructions in the
656<tt>Function</tt> pointed to by F.</p>
657
658</div>
659
660<!-- _______________________________________________________________________ -->
661<div class="doc_subsubsection">
662 <a name="iterate_convert">Turning an iterator into a class pointer (and
663 vice-versa)</a>
664</div>
665
666<div class="doc_text">
667
668<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
Joel Stanley9b96c442002-09-06 21:55:13 +0000669instance when all you've got at hand is an iterator. Well, extracting
Chris Lattner69bf8a92004-05-23 21:06:58 +0000670a reference or a pointer from an iterator is very straight-forward.
Chris Lattner261efe92003-11-25 01:02:51 +0000671Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000672is a <tt>BasicBlock::const_iterator</tt>:</p>
673
Chris Lattner261efe92003-11-25 01:02:51 +0000674 <pre> Instruction&amp; inst = *i; // grab reference to instruction reference<br> Instruction* pinst = &amp;*i; // grab pointer to instruction reference<br> const Instruction&amp; inst = *j;<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000675
676<p>However, the iterators you'll be working with in the LLVM framework are
677special: they will automatically convert to a ptr-to-instance type whenever they
678need to. Instead of dereferencing the iterator and then taking the address of
679the result, you can simply assign the iterator to the proper pointer type and
680you get the dereference and address-of operation as a result of the assignment
681(behind the scenes, this is a result of overloading casting mechanisms). Thus
682the last line of the last example,</p>
683
Chris Lattner261efe92003-11-25 01:02:51 +0000684 <pre>Instruction* pinst = &amp;*i;</pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000685
686<p>is semantically equivalent to</p>
687
Chris Lattner261efe92003-11-25 01:02:51 +0000688 <pre>Instruction* pinst = i;</pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000689
Chris Lattner69bf8a92004-05-23 21:06:58 +0000690<p>It's also possible to turn a class pointer into the corresponding iterator,
691and this is a constant time operation (very efficient). The following code
692snippet illustrates use of the conversion constructors provided by LLVM
693iterators. By using these, you can explicitly grab the iterator of something
694without actually obtaining it via iteration over some structure:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000695
Chris Lattner261efe92003-11-25 01:02:51 +0000696 <pre>void printNextInstruction(Instruction* inst) {<br> BasicBlock::iterator it(inst);<br> ++it; // after this line, it refers to the instruction after *inst.<br> if (it != inst-&gt;getParent()-&gt;end()) cerr &lt;&lt; *it &lt;&lt; "\n";<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000697
Misha Brukman13fd15c2004-01-15 00:14:41 +0000698</div>
699
700<!--_______________________________________________________________________-->
701<div class="doc_subsubsection">
702 <a name="iterate_complex">Finding call sites: a slightly more complex
703 example</a>
704</div>
705
706<div class="doc_text">
707
708<p>Say that you're writing a FunctionPass and would like to count all the
709locations in the entire module (that is, across every <tt>Function</tt>) where a
710certain function (i.e., some <tt>Function</tt>*) is already in scope. As you'll
711learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000712much more straight-forward manner, but this example will allow us to explore how
Misha Brukman13fd15c2004-01-15 00:14:41 +0000713you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudocode, this
714is what we want to do:</p>
715
Chris Lattner261efe92003-11-25 01:02:51 +0000716 <pre>initialize callCounter to zero<br>for each Function f in the Module<br> for each BasicBlock b in f<br> for each Instruction i in b<br> if (i is a CallInst and calls the given function)<br> increment callCounter<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000717
718<p>And the actual code is (remember, since we're writing a
719<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
720override the <tt>runOnFunction</tt> method...):</p>
721
Chris Lattner261efe92003-11-25 01:02:51 +0000722 <pre>Function* targetFunc = ...;<br><br>class OurFunctionPass : public FunctionPass {<br> public:<br> OurFunctionPass(): callCounter(0) { }<br><br> virtual runOnFunction(Function&amp; F) {<br> for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {<br> for (BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {<br> if (<a
723 href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
724 href="#CallInst">CallInst</a>&gt;(&amp;*i)) {<br> // we know we've encountered a call instruction, so we<br> // need to determine if it's a call to the<br> // function pointed to by m_func or not.<br> <br> if (callInst-&gt;getCalledFunction() == targetFunc)<br> ++callCounter;<br> }<br> }<br> }<br> <br> private:<br> unsigned callCounter;<br>};<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000725
726</div>
727
Brian Gaekef1972c62003-11-07 19:25:45 +0000728<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000729<div class="doc_subsubsection">
730 <a name="calls_and_invokes">Treating calls and invokes the same way</a>
731</div>
732
733<div class="doc_text">
734
735<p>You may have noticed that the previous example was a bit oversimplified in
736that it did not deal with call sites generated by 'invoke' instructions. In
737this, and in other situations, you may find that you want to treat
738<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
739most-specific common base class is <tt>Instruction</tt>, which includes lots of
740less closely-related things. For these cases, LLVM provides a handy wrapper
741class called <a
Misha Brukman384047f2004-06-03 23:29:12 +0000742href="http://llvm.cs.uiuc.edu/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
Chris Lattner69bf8a92004-05-23 21:06:58 +0000743It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
744methods that provide functionality common to <tt>CallInst</tt>s and
Misha Brukman13fd15c2004-01-15 00:14:41 +0000745<tt>InvokeInst</tt>s.</p>
746
Chris Lattner69bf8a92004-05-23 21:06:58 +0000747<p>This class has "value semantics": it should be passed by value, not by
748reference and it should not be dynamically allocated or deallocated using
749<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
750assignable and constructable, with costs equivalents to that of a bare pointer.
751If you look at its definition, it has only a single pointer member.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000752
753</div>
754
Chris Lattner1a3105b2002-09-09 05:49:39 +0000755<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000756<div class="doc_subsubsection">
757 <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
758</div>
759
760<div class="doc_text">
761
762<p>Frequently, we might have an instance of the <a
Misha Brukman384047f2004-06-03 23:29:12 +0000763href="/doxygen/structllvm_1_1Value.html">Value Class</a> and we want to
764determine which <tt>User</tt>s use the <tt>Value</tt>. The list of all
765<tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
766For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
767particular function <tt>foo</tt>. Finding all of the instructions that
768<i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
769of <tt>F</tt>:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000770
Chris Lattner261efe92003-11-25 01:02:51 +0000771 <pre>Function* F = ...;<br><br>for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i) {<br> if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {<br> cerr &lt;&lt; "F is used in instruction:\n";<br> cerr &lt;&lt; *Inst &lt;&lt; "\n";<br> }<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000772
773<p>Alternately, it's common to have an instance of the <a
Misha Brukman384047f2004-06-03 23:29:12 +0000774href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
Misha Brukman13fd15c2004-01-15 00:14:41 +0000775<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used by a
776<tt>User</tt> is known as a <i>use-def</i> chain. Instances of class
777<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
778all of the values that a particular instruction uses (that is, the operands of
779the particular <tt>Instruction</tt>):</p>
780
Chris Lattner261efe92003-11-25 01:02:51 +0000781 <pre>Instruction* pi = ...;<br><br>for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {<br> Value* v = *i;<br> ...<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000782
Chris Lattner1a3105b2002-09-09 05:49:39 +0000783<!--
784 def-use chains ("finding all users of"): Value::use_begin/use_end
785 use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
Misha Brukman13fd15c2004-01-15 00:14:41 +0000786-->
787
788</div>
789
790<!-- ======================================================================= -->
791<div class="doc_subsection">
792 <a name="simplechanges">Making simple changes</a>
793</div>
794
795<div class="doc_text">
796
797<p>There are some primitive transformation operations present in the LLVM
Joel Stanley753eb712002-09-11 22:32:24 +0000798infrastructure that are worth knowing about. When performing
Chris Lattner261efe92003-11-25 01:02:51 +0000799transformations, it's fairly common to manipulate the contents of basic
800blocks. This section describes some of the common methods for doing so
Misha Brukman13fd15c2004-01-15 00:14:41 +0000801and gives example code.</p>
802
803</div>
804
Chris Lattner261efe92003-11-25 01:02:51 +0000805<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000806<div class="doc_subsubsection">
807 <a name="schanges_creating">Creating and inserting new
808 <tt>Instruction</tt>s</a>
809</div>
810
811<div class="doc_text">
812
813<p><i>Instantiating Instructions</i></p>
814
Chris Lattner69bf8a92004-05-23 21:06:58 +0000815<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
Misha Brukman13fd15c2004-01-15 00:14:41 +0000816constructor for the kind of instruction to instantiate and provide the necessary
817parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
818(const-ptr-to) <tt>Type</tt>. Thus:</p>
819
820<pre>AllocaInst* ai = new AllocaInst(Type::IntTy);</pre>
821
822<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
823one integer in the current stack frame, at runtime. Each <tt>Instruction</tt>
824subclass is likely to have varying default parameters which change the semantics
825of the instruction, so refer to the <a
Misha Brukman31ca1de2004-06-03 23:35:54 +0000826href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
Misha Brukman13fd15c2004-01-15 00:14:41 +0000827Instruction</a> that you're interested in instantiating.</p>
828
829<p><i>Naming values</i></p>
830
831<p>It is very useful to name the values of instructions when you're able to, as
832this facilitates the debugging of your transformations. If you end up looking
833at generated LLVM machine code, you definitely want to have logical names
834associated with the results of instructions! By supplying a value for the
835<tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
836associate a logical name with the result of the instruction's execution at
837runtime. For example, say that I'm writing a transformation that dynamically
838allocates space for an integer on the stack, and that integer is going to be
839used as some kind of index by some other code. To accomplish this, I place an
840<tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
841<tt>Function</tt>, and I'm intending to use it within the same
842<tt>Function</tt>. I might do:</p>
843
844 <pre>AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");</pre>
845
846<p>where <tt>indexLoc</tt> is now the logical name of the instruction's
847execution value, which is a pointer to an integer on the runtime stack.</p>
848
849<p><i>Inserting instructions</i></p>
850
851<p>There are essentially two ways to insert an <tt>Instruction</tt>
852into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
853
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000854<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000855 <li>Insertion into an explicit instruction list
856
857 <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
858 <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
859 before <tt>*pi</tt>, we do the following: </p>
860
Alkis Evlogimenos9a5dc4f2004-05-27 00:57:51 +0000861 <pre> BasicBlock *pb = ...;<br> Instruction *pi = ...;<br> Instruction *newInst = new Instruction(...);<br> pb-&gt;getInstList().insert(pi, newInst); // inserts newInst before pi in pb<br></pre>
862
863 <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
864 the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
865 classes provide constructors which take a pointer to a
866 <tt>BasicBlock</tt> to be appended to. For example code that
867 looked like: </p>
868
869 <pre> BasicBlock *pb = ...;<br> Instruction *newInst = new Instruction(...);<br> pb-&gt;getInstList().push_back(newInst); // appends newInst to pb<br></pre>
870
871 <p>becomes: </p>
872
873 <pre> BasicBlock *pb = ...;<br> Instruction *newInst = new Instruction(..., pb);<br></pre>
874
875 <p>which is much cleaner, especially if you are creating
876 long instruction streams.</p></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000877
878 <li>Insertion into an implicit instruction list
879
880 <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
881 are implicitly associated with an existing instruction list: the instruction
882 list of the enclosing basic block. Thus, we could have accomplished the same
883 thing as the above code without being given a <tt>BasicBlock</tt> by doing:
884 </p>
885
886 <pre> Instruction *pi = ...;<br> Instruction *newInst = new Instruction(...);<br> pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);<br></pre>
887
888 <p>In fact, this sequence of steps occurs so frequently that the
889 <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
890 constructors which take (as a default parameter) a pointer to an
891 <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
892 precede. That is, <tt>Instruction</tt> constructors are capable of
893 inserting the newly-created instance into the <tt>BasicBlock</tt> of a
894 provided instruction, immediately before that instruction. Using an
895 <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
896 parameter, the above code becomes:</p>
897
898 <pre>Instruction* pi = ...;<br>Instruction* newInst = new Instruction(..., pi);<br></pre>
899
900 <p>which is much cleaner, especially if you're creating a lot of
901instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
902</ul>
903
904</div>
905
906<!--_______________________________________________________________________-->
907<div class="doc_subsubsection">
908 <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
909</div>
910
911<div class="doc_text">
912
913<p>Deleting an instruction from an existing sequence of instructions that form a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000914<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
Misha Brukman13fd15c2004-01-15 00:14:41 +0000915you must have a pointer to the instruction that you wish to delete. Second, you
916need to obtain the pointer to that instruction's basic block. You use the
917pointer to the basic block to get its list of instructions and then use the
918erase function to remove your instruction. For example:</p>
919
Chris Lattner261efe92003-11-25 01:02:51 +0000920 <pre> <a href="#Instruction">Instruction</a> *I = .. ;<br> <a
921 href="#BasicBlock">BasicBlock</a> *BB = I-&gt;getParent();<br> BB-&gt;getInstList().erase(I);<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000922
923</div>
924
925<!--_______________________________________________________________________-->
926<div class="doc_subsubsection">
927 <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
928 <tt>Value</tt></a>
929</div>
930
931<div class="doc_text">
932
933<p><i>Replacing individual instructions</i></p>
934
935<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
Chris Lattner261efe92003-11-25 01:02:51 +0000936permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000937and <tt>ReplaceInstWithInst</tt>.</p>
938
Chris Lattner261efe92003-11-25 01:02:51 +0000939<h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000940
Chris Lattner261efe92003-11-25 01:02:51 +0000941<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000942 <li><tt>ReplaceInstWithValue</tt>
943
944 <p>This function replaces all uses (within a basic block) of a given
945 instruction with a value, and then removes the original instruction. The
946 following example illustrates the replacement of the result of a particular
Chris Lattner58360822005-01-17 00:12:04 +0000947 <tt>AllocaInst</tt> that allocates memory for a single integer with a null
Misha Brukman13fd15c2004-01-15 00:14:41 +0000948 pointer to an integer.</p>
949
950 <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br> Constant::getNullValue(PointerType::get(Type::IntTy)));<br></pre></li>
951
952 <li><tt>ReplaceInstWithInst</tt>
953
954 <p>This function replaces a particular instruction with another
955 instruction. The following example illustrates the replacement of one
956 <tt>AllocaInst</tt> with another.</p>
957
958 <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br> new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt"));<br></pre></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000959</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000960
961<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
962
963<p>You can use <tt>Value::replaceAllUsesWith</tt> and
964<tt>User::replaceUsesOfWith</tt> to change more than one use at a time. See the
Misha Brukman384047f2004-06-03 23:29:12 +0000965doxygen documentation for the <a href="/doxygen/structllvm_1_1Value.html">Value Class</a>
966and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
Misha Brukman13fd15c2004-01-15 00:14:41 +0000967information.</p>
968
969<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
970include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
971ReplaceInstWithValue, ReplaceInstWithInst -->
972
973</div>
974
Chris Lattner9355b472002-09-06 02:50:58 +0000975<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000976<div class="doc_section">
Chris Lattnerd9d6e102005-04-23 16:10:52 +0000977 <a name="advanced">Advanced Topics</a>
978</div>
979<!-- *********************************************************************** -->
980
981<div class="doc_text">
Chris Lattnerf1b200b2005-04-23 17:27:36 +0000982<p>
983This section describes some of the advanced or obscure API's that most clients
984do not need to be aware of. These API's tend manage the inner workings of the
985LLVM system, and only need to be accessed in unusual circumstances.
986</p>
987</div>
Chris Lattnerd9d6e102005-04-23 16:10:52 +0000988
Chris Lattnerf1b200b2005-04-23 17:27:36 +0000989<!-- ======================================================================= -->
990<div class="doc_subsection">
991 <a name="TypeResolve">LLVM Type Resolution</a>
992</div>
Chris Lattnerd9d6e102005-04-23 16:10:52 +0000993
Chris Lattnerf1b200b2005-04-23 17:27:36 +0000994<div class="doc_text">
995
996<p>
997The LLVM type system has a very simple goal: allow clients to compare types for
998structural equality with a simple pointer comparison (aka a shallow compare).
999This goal makes clients much simpler and faster, and is used throughout the LLVM
1000system.
1001</p>
1002
1003<p>
1004Unfortunately achieving this goal is not a simple matter. In particular,
1005recursive types and late resolution of opaque types makes the situation very
1006difficult to handle. Fortunately, for the most part, our implementation makes
1007most clients able to be completely unaware of the nasty internal details. The
1008primary case where clients are exposed to the inner workings of it are when
1009building a recursive type. In addition to this case, the LLVM bytecode reader,
1010assembly parser, and linker also have to be aware of the inner workings of this
1011system.
1012</p>
1013
Chris Lattner0f876db2005-04-25 15:47:57 +00001014<p>
1015For our purposes below, we need three concepts. First, an "Opaque Type" is
1016exactly as defined in the <a href="LangRef.html#t_opaque">language
1017reference</a>. Second an "Abstract Type" is any type which includes an
1018opaque type as part of its type graph (for example "<tt>{ opaque, int }</tt>").
1019Third, a concrete type is a type that is not an abstract type (e.g. "<tt>[ int,
1020float }</tt>").
1021</p>
1022
Chris Lattnerf1b200b2005-04-23 17:27:36 +00001023</div>
1024
1025<!-- ______________________________________________________________________ -->
1026<div class="doc_subsubsection">
1027 <a name="BuildRecType">Basic Recursive Type Construction</a>
1028</div>
1029
1030<div class="doc_text">
1031
1032<p>
1033Because the most common question is "how do I build a recursive type with LLVM",
1034we answer it now and explain it as we go. Here we include enough to cause this
1035to be emitted to an output .ll file:
1036</p>
1037
1038<pre>
1039 %mylist = type { %mylist*, int }
1040</pre>
1041
1042<p>
1043To build this, use the following LLVM APIs:
1044</p>
1045
1046<pre>
1047 //<i> Create the initial outer struct.</i>
1048 <a href="#PATypeHolder">PATypeHolder</a> StructTy = OpaqueType::get();
1049 std::vector&lt;const Type*&gt; Elts;
1050 Elts.push_back(PointerType::get(StructTy));
1051 Elts.push_back(Type::IntTy);
1052 StructType *NewSTy = StructType::get(Elts);
1053
1054 //<i> At this point, NewSTy = "{ opaque*, int }". Tell VMCore that</i>
1055 //<i> the struct and the opaque type are actually the same.</i>
1056 cast&lt;OpaqueType&gt;(StructTy.get())-&gt;<a href="#refineAbstractTypeTo">refineAbstractTypeTo</a>(NewSTy);
1057
1058 // <i>NewSTy is potentially invalidated, but StructTy (a <a href="#PATypeHolder">PATypeHolder</a>) is</i>
1059 // <i>kept up-to-date.</i>
1060 NewSTy = cast&lt;StructType&gt;(StructTy.get());
1061
1062 // <i>Add a name for the type to the module symbol table (optional).</i>
1063 MyModule-&gt;addTypeName("mylist", NewSTy);
1064</pre>
1065
1066<p>
1067This code shows the basic approach used to build recursive types: build a
1068non-recursive type using 'opaque', then use type unification to close the cycle.
1069The type unification step is performed by the <tt><a
1070ref="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
1071described next. After that, we describe the <a
1072href="#PATypeHolder">PATypeHolder class</a>.
1073</p>
1074
1075</div>
1076
1077<!-- ______________________________________________________________________ -->
1078<div class="doc_subsubsection">
1079 <a name="refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a>
1080</div>
1081
1082<div class="doc_text">
1083<p>
1084The <tt>refineAbstractTypeTo</tt> method starts the type unification process.
1085While this method is actually a member of the DerivedType class, it is most
1086often used on OpaqueType instances. Type unification is actually a recursive
1087process. After unification, types can become structurally isomorphic to
1088existing types, and all duplicates are deleted (to preserve pointer equality).
1089</p>
1090
1091<p>
1092In the example above, the OpaqueType object is definitely deleted.
1093Additionally, if there is an "{ \2*, int}" type already created in the system,
1094the pointer and struct type created are <b>also</b> deleted. Obviously whenever
1095a type is deleted, any "Type*" pointers in the program are invalidated. As
1096such, it is safest to avoid having <i>any</i> "Type*" pointers to abstract types
1097live across a call to <tt>refineAbstractTypeTo</tt> (note that non-abstract
1098types can never move or be deleted). To deal with this, the <a
1099href="#PATypeHolder">PATypeHolder</a> class is used to maintain a stable
1100reference to a possibly refined type, and the <a
1101href="#AbstractTypeUser">AbstractTypeUser</a> class is used to update more
1102complex datastructures.
1103</p>
1104
1105</div>
1106
1107<!-- ______________________________________________________________________ -->
1108<div class="doc_subsubsection">
1109 <a name="PATypeHolder">The PATypeHolder Class</a>
1110</div>
1111
1112<div class="doc_text">
1113<p>
1114PATypeHolder is a form of a "smart pointer" for Type objects. When VMCore
1115happily goes about nuking types that become isomorphic to existing types, it
1116automatically updates all PATypeHolder objects to point to the new type. In the
1117example above, this allows the code to maintain a pointer to the resultant
1118resolved recursive type, even though the Type*'s are potentially invalidated.
1119</p>
1120
1121<p>
1122PATypeHolder is an extremely light-weight object that uses a lazy union-find
1123implementation to update pointers. For example the pointer from a Value to its
1124Type is maintained by PATypeHolder objects.
1125</p>
1126
1127</div>
1128
1129<!-- ______________________________________________________________________ -->
1130<div class="doc_subsubsection">
1131 <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
1132</div>
1133
1134<div class="doc_text">
1135
1136<p>
1137Some data structures need more to perform more complex updates when types get
1138resolved. The <a href="#SymbolTable">SymbolTable</a> class, for example, needs
1139move and potentially merge type planes in its representation when a pointer
1140changes.</p>
1141
1142<p>
1143To support this, a class can derive from the AbstractTypeUser class. This class
1144allows it to get callbacks when certain types are resolved. To register to get
1145callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
Chris Lattner0f876db2005-04-25 15:47:57 +00001146methods can be called on a type. Note that these methods only work for <i>
1147abstract</i> types. Concrete types (those that do not include an opaque objects
Chris Lattnerf1b200b2005-04-23 17:27:36 +00001148somewhere) can never be refined.
1149</p>
Chris Lattnerd9d6e102005-04-23 16:10:52 +00001150</div>
1151
1152
1153<!-- ======================================================================= -->
1154<div class="doc_subsection">
1155 <a name="SymbolTable">The <tt>SymbolTable</tt> class</a>
1156</div>
Chris Lattnerf1b200b2005-04-23 17:27:36 +00001157
Chris Lattnerd9d6e102005-04-23 16:10:52 +00001158<div class="doc_text">
1159<p>This class provides a symbol table that the <a
1160href="#Function"><tt>Function</tt></a> and <a href="#Module">
1161<tt>Module</tt></a> classes use for naming definitions. The symbol table can
1162provide a name for any <a href="#Value"><tt>Value</tt></a> or <a
1163href="#Type"><tt>Type</tt></a>. <tt>SymbolTable</tt> is an abstract data
1164type. It hides the data it contains and provides access to it through a
1165controlled interface.</p>
1166
1167<p>Note that the symbol table class is should not be directly accessed by most
1168clients. It should only be used when iteration over the symbol table names
1169themselves are required, which is very special purpose. Note that not all LLVM
1170<a href="#Value">Value</a>s have names, and those without names (i.e. they have
1171an empty name) do not exist in the symbol table.
1172</p>
1173
1174<p>To use the <tt>SymbolTable</tt> well, you need to understand the
1175structure of the information it holds. The class contains two
1176<tt>std::map</tt> objects. The first, <tt>pmap</tt>, is a map of
1177<tt>Type*</tt> to maps of name (<tt>std::string</tt>) to <tt>Value*</tt>.
1178The second, <tt>tmap</tt>, is a map of names to <tt>Type*</tt>. Thus, Values
1179are stored in two-dimensions and accessed by <tt>Type</tt> and name. Types,
1180however, are stored in a single dimension and accessed only by name.</p>
1181
1182<p>The interface of this class provides three basic types of operations:
1183<ol>
1184 <li><em>Accessors</em>. Accessors provide read-only access to information
1185 such as finding a value for a name with the
1186 <a href="#SymbolTable_lookup">lookup</a> method.</li>
1187 <li><em>Mutators</em>. Mutators allow the user to add information to the
1188 <tt>SymbolTable</tt> with methods like
1189 <a href="#SymbolTable_insert"><tt>insert</tt></a>.</li>
1190 <li><em>Iterators</em>. Iterators allow the user to traverse the content
1191 of the symbol table in well defined ways, such as the method
1192 <a href="#SymbolTable_type_begin"><tt>type_begin</tt></a>.</li>
1193</ol>
1194
1195<h3>Accessors</h3>
1196<dl>
1197 <dt><tt>Value* lookup(const Type* Ty, const std::string&amp; name) const</tt>:
1198 </dt>
1199 <dd>The <tt>lookup</tt> method searches the type plane given by the
1200 <tt>Ty</tt> parameter for a <tt>Value</tt> with the provided <tt>name</tt>.
1201 If a suitable <tt>Value</tt> is not found, null is returned.</dd>
1202
1203 <dt><tt>Type* lookupType( const std::string&amp; name) const</tt>:</dt>
1204 <dd>The <tt>lookupType</tt> method searches through the types for a
1205 <tt>Type</tt> with the provided <tt>name</tt>. If a suitable <tt>Type</tt>
1206 is not found, null is returned.</dd>
1207
1208 <dt><tt>bool hasTypes() const</tt>:</dt>
1209 <dd>This function returns true if an entry has been made into the type
1210 map.</dd>
1211
1212 <dt><tt>bool isEmpty() const</tt>:</dt>
1213 <dd>This function returns true if both the value and types maps are
1214 empty</dd>
1215</dl>
1216
1217<h3>Mutators</h3>
1218<dl>
1219 <dt><tt>void insert(Value *Val)</tt>:</dt>
1220 <dd>This method adds the provided value to the symbol table. The Value must
1221 have both a name and a type which are extracted and used to place the value
1222 in the correct type plane under the value's name.</dd>
1223
1224 <dt><tt>void insert(const std::string&amp; Name, Value *Val)</tt>:</dt>
1225 <dd> Inserts a constant or type into the symbol table with the specified
1226 name. There can be a many to one mapping between names and constants
1227 or types.</dd>
1228
1229 <dt><tt>void insert(const std::string&amp; Name, Type *Typ)</tt>:</dt>
1230 <dd> Inserts a type into the symbol table with the specified name. There
1231 can be a many-to-one mapping between names and types. This method
1232 allows a type with an existing entry in the symbol table to get
1233 a new name.</dd>
1234
1235 <dt><tt>void remove(Value* Val)</tt>:</dt>
1236 <dd> This method removes a named value from the symbol table. The
1237 type and name of the Value are extracted from \p N and used to
1238 lookup the Value in the correct type plane. If the Value is
1239 not in the symbol table, this method silently ignores the
1240 request.</dd>
1241
1242 <dt><tt>void remove(Type* Typ)</tt>:</dt>
1243 <dd> This method removes a named type from the symbol table. The
1244 name of the type is extracted from \P T and used to look up
1245 the Type in the type map. If the Type is not in the symbol
1246 table, this method silently ignores the request.</dd>
1247
1248 <dt><tt>Value* remove(const std::string&amp; Name, Value *Val)</tt>:</dt>
1249 <dd> Remove a constant or type with the specified name from the
1250 symbol table.</dd>
1251
1252 <dt><tt>Type* remove(const std::string&amp; Name, Type* T)</tt>:</dt>
1253 <dd> Remove a type with the specified name from the symbol table.
1254 Returns the removed Type.</dd>
1255
1256 <dt><tt>Value *value_remove(const value_iterator&amp; It)</tt>:</dt>
1257 <dd> Removes a specific value from the symbol table.
1258 Returns the removed value.</dd>
1259
1260 <dt><tt>bool strip()</tt>:</dt>
1261 <dd> This method will strip the symbol table of its names leaving
1262 the type and values. </dd>
1263
1264 <dt><tt>void clear()</tt>:</dt>
1265 <dd>Empty the symbol table completely.</dd>
1266</dl>
1267
1268<h3>Iteration</h3>
1269<p>The following functions describe three types of iterators you can obtain
1270the beginning or end of the sequence for both const and non-const. It is
1271important to keep track of the different kinds of iterators. There are
1272three idioms worth pointing out:</p>
1273<table>
1274 <tr><th>Units</th><th>Iterator</th><th>Idiom</th></tr>
1275 <tr>
1276 <td align="left">Planes Of name/Value maps</td><td>PI</td>
1277 <td align="left"><pre><tt>
1278for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
1279 PE = ST.plane_end(); PI != PE; ++PI ) {
1280 PI-&gt;first // This is the Type* of the plane
1281 PI-&gt;second // This is the SymbolTable::ValueMap of name/Value pairs
1282 </tt></pre></td>
1283 </tr>
1284 <tr>
1285 <td align="left">All name/Type Pairs</td><td>TI</td>
1286 <td align="left"><pre><tt>
1287for (SymbolTable::type_const_iterator TI = ST.type_begin(),
1288 TE = ST.type_end(); TI != TE; ++TI )
1289 TI-&gt;first // This is the name of the type
1290 TI-&gt;second // This is the Type* value associated with the name
1291 </tt></pre></td>
1292 </tr>
1293 <tr>
1294 <td align="left">name/Value pairs in a plane</td><td>VI</td>
1295 <td align="left"><pre><tt>
1296for (SymbolTable::value_const_iterator VI = ST.value_begin(SomeType),
1297 VE = ST.value_end(SomeType); VI != VE; ++VI )
1298 VI-&gt;first // This is the name of the Value
1299 VI-&gt;second // This is the Value* value associated with the name
1300 </tt></pre></td>
1301 </tr>
1302</table>
1303
1304<p>Using the recommended iterator names and idioms will help you avoid
1305making mistakes. Of particular note, make sure that whenever you use
1306value_begin(SomeType) that you always compare the resulting iterator
1307with value_end(SomeType) not value_end(SomeOtherType) or else you
1308will loop infinitely.</p>
1309
1310<dl>
1311
1312 <dt><tt>plane_iterator plane_begin()</tt>:</dt>
1313 <dd>Get an iterator that starts at the beginning of the type planes.
1314 The iterator will iterate over the Type/ValueMap pairs in the
1315 type planes. </dd>
1316
1317 <dt><tt>plane_const_iterator plane_begin() const</tt>:</dt>
1318 <dd>Get a const_iterator that starts at the beginning of the type
1319 planes. The iterator will iterate over the Type/ValueMap pairs
1320 in the type planes. </dd>
1321
1322 <dt><tt>plane_iterator plane_end()</tt>:</dt>
1323 <dd>Get an iterator at the end of the type planes. This serves as
1324 the marker for end of iteration over the type planes.</dd>
1325
1326 <dt><tt>plane_const_iterator plane_end() const</tt>:</dt>
1327 <dd>Get a const_iterator at the end of the type planes. This serves as
1328 the marker for end of iteration over the type planes.</dd>
1329
1330 <dt><tt>value_iterator value_begin(const Type *Typ)</tt>:</dt>
1331 <dd>Get an iterator that starts at the beginning of a type plane.
1332 The iterator will iterate over the name/value pairs in the type plane.
1333 Note: The type plane must already exist before using this.</dd>
1334
1335 <dt><tt>value_const_iterator value_begin(const Type *Typ) const</tt>:</dt>
1336 <dd>Get a const_iterator that starts at the beginning of a type plane.
1337 The iterator will iterate over the name/value pairs in the type plane.
1338 Note: The type plane must already exist before using this.</dd>
1339
1340 <dt><tt>value_iterator value_end(const Type *Typ)</tt>:</dt>
1341 <dd>Get an iterator to the end of a type plane. This serves as the marker
1342 for end of iteration of the type plane.
1343 Note: The type plane must already exist before using this.</dd>
1344
1345 <dt><tt>value_const_iterator value_end(const Type *Typ) const</tt>:</dt>
1346 <dd>Get a const_iterator to the end of a type plane. This serves as the
1347 marker for end of iteration of the type plane.
1348 Note: the type plane must already exist before using this.</dd>
1349
1350 <dt><tt>type_iterator type_begin()</tt>:</dt>
1351 <dd>Get an iterator to the start of the name/Type map.</dd>
1352
1353 <dt><tt>type_const_iterator type_begin() cons</tt>:</dt>
1354 <dd> Get a const_iterator to the start of the name/Type map.</dd>
1355
1356 <dt><tt>type_iterator type_end()</tt>:</dt>
1357 <dd>Get an iterator to the end of the name/Type map. This serves as the
1358 marker for end of iteration of the types.</dd>
1359
1360 <dt><tt>type_const_iterator type_end() const</tt>:</dt>
1361 <dd>Get a const-iterator to the end of the name/Type map. This serves
1362 as the marker for end of iteration of the types.</dd>
1363
1364 <dt><tt>plane_const_iterator find(const Type* Typ ) const</tt>:</dt>
1365 <dd>This method returns a plane_const_iterator for iteration over
1366 the type planes starting at a specific plane, given by \p Ty.</dd>
1367
1368 <dt><tt>plane_iterator find( const Type* Typ </tt>:</dt>
1369 <dd>This method returns a plane_iterator for iteration over the
1370 type planes starting at a specific plane, given by \p Ty.</dd>
1371
1372</dl>
1373</div>
1374
1375
1376
1377<!-- *********************************************************************** -->
1378<div class="doc_section">
Misha Brukman13fd15c2004-01-15 00:14:41 +00001379 <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
1380</div>
1381<!-- *********************************************************************** -->
1382
1383<div class="doc_text">
1384
1385<p>The Core LLVM classes are the primary means of representing the program
Chris Lattner261efe92003-11-25 01:02:51 +00001386being inspected or transformed. The core LLVM classes are defined in
1387header files in the <tt>include/llvm/</tt> directory, and implemented in
Misha Brukman13fd15c2004-01-15 00:14:41 +00001388the <tt>lib/VMCore</tt> directory.</p>
1389
1390</div>
1391
1392<!-- ======================================================================= -->
1393<div class="doc_subsection">
1394 <a name="Value">The <tt>Value</tt> class</a>
1395</div>
1396
1397<div>
1398
1399<p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
1400<br>
Misha Brukman384047f2004-06-03 23:29:12 +00001401doxygen info: <a href="/doxygen/structllvm_1_1Value.html">Value Class</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001402
1403<p>The <tt>Value</tt> class is the most important class in the LLVM Source
1404base. It represents a typed value that may be used (among other things) as an
1405operand to an instruction. There are many different types of <tt>Value</tt>s,
1406such as <a href="#Constant"><tt>Constant</tt></a>s,<a
1407href="#Argument"><tt>Argument</tt></a>s. Even <a
1408href="#Instruction"><tt>Instruction</tt></a>s and <a
1409href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
1410
1411<p>A particular <tt>Value</tt> may be used many times in the LLVM representation
1412for a program. For example, an incoming argument to a function (represented
1413with an instance of the <a href="#Argument">Argument</a> class) is "used" by
1414every instruction in the function that references the argument. To keep track
1415of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
1416href="#User"><tt>User</tt></a>s that is using it (the <a
1417href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
1418graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
1419def-use information in the program, and is accessible through the <tt>use_</tt>*
1420methods, shown below.</p>
1421
1422<p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
1423and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
1424method. In addition, all LLVM values can be named. The "name" of the
1425<tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
1426
Chris Lattner261efe92003-11-25 01:02:51 +00001427 <pre> %<b>foo</b> = add int 1, 2<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001428
1429<p><a name="#nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
1430that the name of any value may be missing (an empty string), so names should
1431<b>ONLY</b> be used for debugging (making the source code easier to read,
1432debugging printouts), they should not be used to keep track of values or map
1433between them. For this purpose, use a <tt>std::map</tt> of pointers to the
1434<tt>Value</tt> itself instead.</p>
1435
1436<p>One important aspect of LLVM is that there is no distinction between an SSA
1437variable and the operation that produces it. Because of this, any reference to
1438the value produced by an instruction (or the value available as an incoming
Chris Lattnerd5fc4fc2004-03-18 14:58:55 +00001439argument, for example) is represented as a direct pointer to the instance of
1440the class that
Misha Brukman13fd15c2004-01-15 00:14:41 +00001441represents this value. Although this may take some getting used to, it
1442simplifies the representation and makes it easier to manipulate.</p>
1443
1444</div>
1445
1446<!-- _______________________________________________________________________ -->
1447<div class="doc_subsubsection">
1448 <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
1449</div>
1450
1451<div class="doc_text">
1452
Chris Lattner261efe92003-11-25 01:02:51 +00001453<ul>
1454 <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
1455use-list<br>
1456 <tt>Value::use_const_iterator</tt> - Typedef for const_iterator over
1457the use-list<br>
1458 <tt>unsigned use_size()</tt> - Returns the number of users of the
1459value.<br>
Chris Lattner9355b472002-09-06 02:50:58 +00001460 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
Chris Lattner261efe92003-11-25 01:02:51 +00001461 <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
1462the use-list.<br>
1463 <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
1464use-list.<br>
1465 <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
1466element in the list.
1467 <p> These methods are the interface to access the def-use
1468information in LLVM. As with all other iterators in LLVM, the naming
1469conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001470 </li>
1471 <li><tt><a href="#Type">Type</a> *getType() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001472 <p>This method returns the Type of the Value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001473 </li>
1474 <li><tt>bool hasName() const</tt><br>
Chris Lattner9355b472002-09-06 02:50:58 +00001475 <tt>std::string getName() const</tt><br>
Chris Lattner261efe92003-11-25 01:02:51 +00001476 <tt>void setName(const std::string &amp;Name)</tt>
1477 <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
1478be aware of the <a href="#nameWarning">precaution above</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001479 </li>
1480 <li><tt>void replaceAllUsesWith(Value *V)</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001481
1482 <p>This method traverses the use list of a <tt>Value</tt> changing all <a
1483 href="#User"><tt>User</tt>s</a> of the current value to refer to
1484 "<tt>V</tt>" instead. For example, if you detect that an instruction always
1485 produces a constant value (for example through constant folding), you can
1486 replace all uses of the instruction with the constant like this:</p>
1487
Chris Lattner261efe92003-11-25 01:02:51 +00001488 <pre> Inst-&gt;replaceAllUsesWith(ConstVal);<br></pre>
Chris Lattner261efe92003-11-25 01:02:51 +00001489</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001490
1491</div>
1492
1493<!-- ======================================================================= -->
1494<div class="doc_subsection">
1495 <a name="User">The <tt>User</tt> class</a>
1496</div>
1497
1498<div class="doc_text">
1499
1500<p>
1501<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
Misha Brukman384047f2004-06-03 23:29:12 +00001502doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001503Superclass: <a href="#Value"><tt>Value</tt></a></p>
1504
1505<p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
1506refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
1507that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
1508referring to. The <tt>User</tt> class itself is a subclass of
1509<tt>Value</tt>.</p>
1510
1511<p>The operands of a <tt>User</tt> point directly to the LLVM <a
1512href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
1513Single Assignment (SSA) form, there can only be one definition referred to,
1514allowing this direct connection. This connection provides the use-def
1515information in LLVM.</p>
1516
1517</div>
1518
1519<!-- _______________________________________________________________________ -->
1520<div class="doc_subsubsection">
1521 <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
1522</div>
1523
1524<div class="doc_text">
1525
1526<p>The <tt>User</tt> class exposes the operand list in two ways: through
1527an index access interface and through an iterator based interface.</p>
1528
Chris Lattner261efe92003-11-25 01:02:51 +00001529<ul>
Chris Lattner261efe92003-11-25 01:02:51 +00001530 <li><tt>Value *getOperand(unsigned i)</tt><br>
1531 <tt>unsigned getNumOperands()</tt>
1532 <p> These two methods expose the operands of the <tt>User</tt> in a
Misha Brukman13fd15c2004-01-15 00:14:41 +00001533convenient form for direct access.</p></li>
1534
Chris Lattner261efe92003-11-25 01:02:51 +00001535 <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
1536list<br>
Chris Lattner58360822005-01-17 00:12:04 +00001537 <tt>op_iterator op_begin()</tt> - Get an iterator to the start of
1538the operand list.<br>
1539 <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
Chris Lattner261efe92003-11-25 01:02:51 +00001540operand list.
1541 <p> Together, these methods make up the iterator based interface to
Misha Brukman13fd15c2004-01-15 00:14:41 +00001542the operands of a <tt>User</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001543</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001544
1545</div>
1546
1547<!-- ======================================================================= -->
1548<div class="doc_subsection">
1549 <a name="Instruction">The <tt>Instruction</tt> class</a>
1550</div>
1551
1552<div class="doc_text">
1553
1554<p><tt>#include "</tt><tt><a
1555href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
Misha Brukman31ca1de2004-06-03 23:35:54 +00001556doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001557Superclasses: <a href="#User"><tt>User</tt></a>, <a
1558href="#Value"><tt>Value</tt></a></p>
1559
1560<p>The <tt>Instruction</tt> class is the common base class for all LLVM
1561instructions. It provides only a few methods, but is a very commonly used
1562class. The primary data tracked by the <tt>Instruction</tt> class itself is the
1563opcode (instruction type) and the parent <a
1564href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
1565into. To represent a specific type of instruction, one of many subclasses of
1566<tt>Instruction</tt> are used.</p>
1567
1568<p> Because the <tt>Instruction</tt> class subclasses the <a
1569href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
1570way as for other <a href="#User"><tt>User</tt></a>s (with the
1571<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
1572<tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
1573the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
1574file contains some meta-data about the various different types of instructions
1575in LLVM. It describes the enum values that are used as opcodes (for example
1576<tt>Instruction::Add</tt> and <tt>Instruction::SetLE</tt>), as well as the
1577concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
1578example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
1579href="#SetCondInst">SetCondInst</a></tt>). Unfortunately, the use of macros in
1580this file confuses doxygen, so these enum values don't show up correctly in the
Misha Brukman31ca1de2004-06-03 23:35:54 +00001581<a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001582
1583</div>
1584
1585<!-- _______________________________________________________________________ -->
1586<div class="doc_subsubsection">
1587 <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
1588 class</a>
1589</div>
1590
1591<div class="doc_text">
1592
Chris Lattner261efe92003-11-25 01:02:51 +00001593<ul>
1594 <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001595 <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
1596this <tt>Instruction</tt> is embedded into.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001597 <li><tt>bool mayWriteToMemory()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001598 <p>Returns true if the instruction writes to memory, i.e. it is a
1599 <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001600 <li><tt>unsigned getOpcode()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001601 <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001602 <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001603 <p>Returns another instance of the specified instruction, identical
Chris Lattner261efe92003-11-25 01:02:51 +00001604in all ways to the original except that the instruction has no parent
1605(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
Misha Brukman13fd15c2004-01-15 00:14:41 +00001606and it has no name</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001607</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001608
1609</div>
1610
1611<!-- ======================================================================= -->
1612<div class="doc_subsection">
1613 <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
1614</div>
1615
1616<div class="doc_text">
1617
Misha Brukman384047f2004-06-03 23:29:12 +00001618<p><tt>#include "<a
1619href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
1620doxygen info: <a href="/doxygen/structllvm_1_1BasicBlock.html">BasicBlock
1621Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001622Superclass: <a href="#Value"><tt>Value</tt></a></p>
1623
1624<p>This class represents a single entry multiple exit section of the code,
1625commonly known as a basic block by the compiler community. The
1626<tt>BasicBlock</tt> class maintains a list of <a
1627href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
1628Matching the language definition, the last element of this list of instructions
1629is always a terminator instruction (a subclass of the <a
1630href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
1631
1632<p>In addition to tracking the list of instructions that make up the block, the
1633<tt>BasicBlock</tt> class also keeps track of the <a
1634href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
1635
1636<p>Note that <tt>BasicBlock</tt>s themselves are <a
1637href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
1638like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
1639<tt>label</tt>.</p>
1640
1641</div>
1642
1643<!-- _______________________________________________________________________ -->
1644<div class="doc_subsubsection">
1645 <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
1646 class</a>
1647</div>
1648
1649<div class="doc_text">
1650
Chris Lattner261efe92003-11-25 01:02:51 +00001651<ul>
Misha Brukmanb0e7e452004-10-29 04:33:19 +00001652
1653<li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
Chris Lattner261efe92003-11-25 01:02:51 +00001654 href="#Function">Function</a> *Parent = 0)</tt>
Misha Brukmanb0e7e452004-10-29 04:33:19 +00001655
1656<p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
1657insertion into a function. The constructor optionally takes a name for the new
1658block, and a <a href="#Function"><tt>Function</tt></a> to insert it into. If
1659the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
1660automatically inserted at the end of the specified <a
1661href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
1662manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
1663
1664<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
1665<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
1666<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
Chris Lattner77d69242005-03-15 05:19:20 +00001667<tt>size()</tt>, <tt>empty()</tt>
Misha Brukmanb0e7e452004-10-29 04:33:19 +00001668STL-style functions for accessing the instruction list.
1669
1670<p>These methods and typedefs are forwarding functions that have the same
1671semantics as the standard library methods of the same names. These methods
1672expose the underlying instruction list of a basic block in a way that is easy to
1673manipulate. To get the full complement of container operations (including
1674operations to update the list), you must use the <tt>getInstList()</tt>
1675method.</p></li>
1676
1677<li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
1678
1679<p>This method is used to get access to the underlying container that actually
1680holds the Instructions. This method must be used when there isn't a forwarding
1681function in the <tt>BasicBlock</tt> class for the operation that you would like
1682to perform. Because there are no forwarding functions for "updating"
1683operations, you need to use this if you want to update the contents of a
1684<tt>BasicBlock</tt>.</p></li>
1685
1686<li><tt><a href="#Function">Function</a> *getParent()</tt>
1687
1688<p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
1689embedded into, or a null pointer if it is homeless.</p></li>
1690
1691<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
1692
1693<p> Returns a pointer to the terminator instruction that appears at the end of
1694the <tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
1695instruction in the block is not a terminator, then a null pointer is
1696returned.</p></li>
1697
Chris Lattner261efe92003-11-25 01:02:51 +00001698</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001699
1700</div>
1701
1702<!-- ======================================================================= -->
1703<div class="doc_subsection">
1704 <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
1705</div>
1706
1707<div class="doc_text">
1708
1709<p><tt>#include "<a
1710href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
Misha Brukman384047f2004-06-03 23:29:12 +00001711doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
1712Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001713Superclasses: <a href="#User"><tt>User</tt></a>, <a
1714href="#Value"><tt>Value</tt></a></p>
1715
1716<p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
1717href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
1718visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
1719Because they are visible at global scope, they are also subject to linking with
1720other globals defined in different translation units. To control the linking
1721process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
1722<tt>GlobalValue</tt>s know whether they have internal or external linkage, as
Reid Spencer8b2da7a2004-07-18 13:10:31 +00001723defined by the <tt>LinkageTypes</tt> enumeration.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001724
1725<p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
1726<tt>static</tt> in C), it is not visible to code outside the current translation
1727unit, and does not participate in linking. If it has external linkage, it is
1728visible to external code, and does participate in linking. In addition to
1729linkage information, <tt>GlobalValue</tt>s keep track of which <a
1730href="#Module"><tt>Module</tt></a> they are currently part of.</p>
1731
1732<p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
1733by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
1734global is always a pointer to its contents. It is important to remember this
1735when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
1736be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
1737subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
1738int]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
1739the address of the first element of this array and the value of the
1740<tt>GlobalVariable</tt> are the same, they have different types. The
1741<tt>GlobalVariable</tt>'s type is <tt>[24 x int]</tt>. The first element's type
1742is <tt>int.</tt> Because of this, accessing a global value requires you to
1743dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
1744can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
1745Language Reference Manual</a>.</p>
1746
1747</div>
1748
1749<!-- _______________________________________________________________________ -->
1750<div class="doc_subsubsection">
1751 <a name="m_GlobalValue">Important Public Members of the <tt>GlobalValue</tt>
1752 class</a>
1753</div>
1754
1755<div class="doc_text">
1756
Chris Lattner261efe92003-11-25 01:02:51 +00001757<ul>
1758 <li><tt>bool hasInternalLinkage() const</tt><br>
Chris Lattner9355b472002-09-06 02:50:58 +00001759 <tt>bool hasExternalLinkage() const</tt><br>
Chris Lattner261efe92003-11-25 01:02:51 +00001760 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
1761 <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
1762 <p> </p>
1763 </li>
1764 <li><tt><a href="#Module">Module</a> *getParent()</tt>
1765 <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
Misha Brukman13fd15c2004-01-15 00:14:41 +00001766GlobalValue is currently embedded into.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001767</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001768
1769</div>
1770
1771<!-- ======================================================================= -->
1772<div class="doc_subsection">
1773 <a name="Function">The <tt>Function</tt> class</a>
1774</div>
1775
1776<div class="doc_text">
1777
1778<p><tt>#include "<a
1779href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
Misha Brukman31ca1de2004-06-03 23:35:54 +00001780info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
1781Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
Misha Brukman13fd15c2004-01-15 00:14:41 +00001782href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
1783
1784<p>The <tt>Function</tt> class represents a single procedure in LLVM. It is
1785actually one of the more complex classes in the LLVM heirarchy because it must
1786keep track of a large amount of data. The <tt>Function</tt> class keeps track
1787of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal <a
1788href="#Argument"><tt>Argument</tt></a>s, and a <a
1789href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
1790
1791<p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
1792commonly used part of <tt>Function</tt> objects. The list imposes an implicit
1793ordering of the blocks in the function, which indicate how the code will be
1794layed out by the backend. Additionally, the first <a
1795href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
1796<tt>Function</tt>. It is not legal in LLVM to explicitly branch to this initial
1797block. There are no implicit exit nodes, and in fact there may be multiple exit
1798nodes from a single <tt>Function</tt>. If the <a
1799href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
1800the <tt>Function</tt> is actually a function declaration: the actual body of the
1801function hasn't been linked in yet.</p>
1802
1803<p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
1804<tt>Function</tt> class also keeps track of the list of formal <a
1805href="#Argument"><tt>Argument</tt></a>s that the function receives. This
1806container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
1807nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
1808the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
1809
1810<p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
1811LLVM feature that is only used when you have to look up a value by name. Aside
1812from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
1813internally to make sure that there are not conflicts between the names of <a
1814href="#Instruction"><tt>Instruction</tt></a>s, <a
1815href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
1816href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
1817
Reid Spencer8b2da7a2004-07-18 13:10:31 +00001818<p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
1819and therefore also a <a href="#Constant">Constant</a>. The value of the function
1820is its address (after linking) which is guaranteed to be constant.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001821</div>
1822
1823<!-- _______________________________________________________________________ -->
1824<div class="doc_subsubsection">
1825 <a name="m_Function">Important Public Members of the <tt>Function</tt>
1826 class</a>
1827</div>
1828
1829<div class="doc_text">
1830
Chris Lattner261efe92003-11-25 01:02:51 +00001831<ul>
1832 <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
Chris Lattnerac479e52004-08-04 05:10:48 +00001833 *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001834
1835 <p>Constructor used when you need to create new <tt>Function</tt>s to add
1836 the the program. The constructor must specify the type of the function to
Chris Lattnerac479e52004-08-04 05:10:48 +00001837 create and what type of linkage the function should have. The <a
1838 href="#FunctionType"><tt>FunctionType</tt></a> argument
Misha Brukman13fd15c2004-01-15 00:14:41 +00001839 specifies the formal arguments and return value for the function. The same
1840 <a href="#FunctionTypel"><tt>FunctionType</tt></a> value can be used to
1841 create multiple functions. The <tt>Parent</tt> argument specifies the Module
1842 in which the function is defined. If this argument is provided, the function
1843 will automatically be inserted into that module's list of
1844 functions.</p></li>
1845
Chris Lattner261efe92003-11-25 01:02:51 +00001846 <li><tt>bool isExternal()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001847
1848 <p>Return whether or not the <tt>Function</tt> has a body defined. If the
1849 function is "external", it does not have a body, and thus must be resolved
1850 by linking with a function defined in a different translation unit.</p></li>
1851
Chris Lattner261efe92003-11-25 01:02:51 +00001852 <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
Chris Lattner9355b472002-09-06 02:50:58 +00001853 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001854
Chris Lattner77d69242005-03-15 05:19:20 +00001855 <tt>begin()</tt>, <tt>end()</tt>
1856 <tt>size()</tt>, <tt>empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001857
1858 <p>These are forwarding methods that make it easy to access the contents of
1859 a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
1860 list.</p></li>
1861
Chris Lattner261efe92003-11-25 01:02:51 +00001862 <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001863
1864 <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This
1865 is necessary to use when you need to update the list or perform a complex
1866 action that doesn't have a forwarding method.</p></li>
1867
Chris Lattner89cc2652005-03-15 04:48:32 +00001868 <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
Chris Lattner261efe92003-11-25 01:02:51 +00001869iterator<br>
Chris Lattner89cc2652005-03-15 04:48:32 +00001870 <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001871
Chris Lattner77d69242005-03-15 05:19:20 +00001872 <tt>arg_begin()</tt>, <tt>arg_end()</tt>
Chris Lattner89cc2652005-03-15 04:48:32 +00001873 <tt>arg_size()</tt>, <tt>arg_empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001874
1875 <p>These are forwarding methods that make it easy to access the contents of
1876 a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
1877 list.</p></li>
1878
Chris Lattner261efe92003-11-25 01:02:51 +00001879 <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001880
1881 <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
1882 necessary to use when you need to update the list or perform a complex
1883 action that doesn't have a forwarding method.</p></li>
1884
Chris Lattner261efe92003-11-25 01:02:51 +00001885 <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001886
1887 <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
1888 function. Because the entry block for the function is always the first
1889 block, this returns the first block of the <tt>Function</tt>.</p></li>
1890
Chris Lattner261efe92003-11-25 01:02:51 +00001891 <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
1892 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001893
1894 <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
1895 <tt>Function</tt> and returns the return type of the function, or the <a
1896 href="#FunctionType"><tt>FunctionType</tt></a> of the actual
1897 function.</p></li>
1898
Chris Lattner261efe92003-11-25 01:02:51 +00001899 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001900
Chris Lattner261efe92003-11-25 01:02:51 +00001901 <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001902 for this <tt>Function</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001903</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001904
1905</div>
1906
1907<!-- ======================================================================= -->
1908<div class="doc_subsection">
1909 <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
1910</div>
1911
1912<div class="doc_text">
1913
1914<p><tt>#include "<a
1915href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
1916<br>
Tanya Lattnera3da7772004-06-22 08:02:25 +00001917doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
Misha Brukman13fd15c2004-01-15 00:14:41 +00001918Class</a><br> Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
1919href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
1920
1921<p>Global variables are represented with the (suprise suprise)
1922<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
1923subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
1924always referenced by their address (global values must live in memory, so their
1925"name" refers to their address). See <a
1926href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this. Global variables
1927may have an initial value (which must be a <a
1928href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, they
1929may be marked as "constant" themselves (indicating that their contents never
1930change at runtime).</p>
1931
1932</div>
1933
1934<!-- _______________________________________________________________________ -->
1935<div class="doc_subsubsection">
1936 <a name="m_GlobalVariable">Important Public Members of the
1937 <tt>GlobalVariable</tt> class</a>
1938</div>
1939
1940<div class="doc_text">
1941
Chris Lattner261efe92003-11-25 01:02:51 +00001942<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001943 <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
1944 isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
1945 *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
1946
1947 <p>Create a new global variable of the specified type. If
1948 <tt>isConstant</tt> is true then the global variable will be marked as
1949 unchanging for the program. The Linkage parameter specifies the type of
1950 linkage (internal, external, weak, linkonce, appending) for the variable. If
1951 the linkage is InternalLinkage, WeakLinkage, or LinkOnceLinkage,&nbsp; then
1952 the resultant global variable will have internal linkage. AppendingLinkage
1953 concatenates together all instances (in different translation units) of the
1954 variable into a single variable but is only applicable to arrays. &nbsp;See
1955 the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
1956 further details on linkage types. Optionally an initializer, a name, and the
1957 module to put the variable into may be specified for the global variable as
1958 well.</p></li>
1959
Chris Lattner261efe92003-11-25 01:02:51 +00001960 <li><tt>bool isConstant() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001961
1962 <p>Returns true if this is a global variable that is known not to
1963 be modified at runtime.</p></li>
1964
Chris Lattner261efe92003-11-25 01:02:51 +00001965 <li><tt>bool hasInitializer()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001966
1967 <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
1968
Chris Lattner261efe92003-11-25 01:02:51 +00001969 <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001970
1971 <p>Returns the intial value for a <tt>GlobalVariable</tt>. It is not legal
1972 to call this method if there is no initializer.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001973</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001974
1975</div>
1976
1977<!-- ======================================================================= -->
1978<div class="doc_subsection">
1979 <a name="Module">The <tt>Module</tt> class</a>
1980</div>
1981
1982<div class="doc_text">
1983
1984<p><tt>#include "<a
1985href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
Tanya Lattnera3da7772004-06-22 08:02:25 +00001986<a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001987
1988<p>The <tt>Module</tt> class represents the top level structure present in LLVM
1989programs. An LLVM module is effectively either a translation unit of the
1990original program or a combination of several translation units merged by the
1991linker. The <tt>Module</tt> class keeps track of a list of <a
1992href="#Function"><tt>Function</tt></a>s, a list of <a
1993href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
1994href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
1995helpful member functions that try to make common operations easy.</p>
1996
1997</div>
1998
1999<!-- _______________________________________________________________________ -->
2000<div class="doc_subsubsection">
2001 <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
2002</div>
2003
2004<div class="doc_text">
2005
Chris Lattner261efe92003-11-25 01:02:51 +00002006<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002007 <li><tt>Module::Module(std::string name = "")</tt></li>
Chris Lattner261efe92003-11-25 01:02:51 +00002008</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002009
2010<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
2011provide a name for it (probably based on the name of the translation unit).</p>
2012
Chris Lattner261efe92003-11-25 01:02:51 +00002013<ul>
2014 <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
Chris Lattner0377de42002-09-06 14:50:55 +00002015 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002016
Chris Lattner77d69242005-03-15 05:19:20 +00002017 <tt>begin()</tt>, <tt>end()</tt>
2018 <tt>size()</tt>, <tt>empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002019
2020 <p>These are forwarding methods that make it easy to access the contents of
2021 a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
2022 list.</p></li>
2023
Chris Lattner261efe92003-11-25 01:02:51 +00002024 <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002025
2026 <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
2027 necessary to use when you need to update the list or perform a complex
2028 action that doesn't have a forwarding method.</p>
2029
2030 <p><!-- Global Variable --></p></li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002031</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002032
2033<hr>
2034
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002035<ul>
Chris Lattner89cc2652005-03-15 04:48:32 +00002036 <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002037
Chris Lattner89cc2652005-03-15 04:48:32 +00002038 <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002039
Chris Lattner77d69242005-03-15 05:19:20 +00002040 <tt>global_begin()</tt>, <tt>global_end()</tt>
Chris Lattner89cc2652005-03-15 04:48:32 +00002041 <tt>global_size()</tt>, <tt>global_empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002042
2043 <p> These are forwarding methods that make it easy to access the contents of
2044 a <tt>Module</tt> object's <a
2045 href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
2046
2047 <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
2048
2049 <p>Returns the list of <a
2050 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s. This is necessary to
2051 use when you need to update the list or perform a complex action that
2052 doesn't have a forwarding method.</p>
2053
2054 <p><!-- Symbol table stuff --> </p></li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002055</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002056
2057<hr>
2058
2059<ul>
2060 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
2061
2062 <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
2063 for this <tt>Module</tt>.</p>
2064
2065 <p><!-- Convenience methods --></p></li>
2066</ul>
2067
2068<hr>
2069
2070<ul>
2071 <li><tt><a href="#Function">Function</a> *getFunction(const std::string
2072 &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
2073
2074 <p>Look up the specified function in the <tt>Module</tt> <a
2075 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
2076 <tt>null</tt>.</p></li>
2077
2078 <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
2079 std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
2080
2081 <p>Look up the specified function in the <tt>Module</tt> <a
2082 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
2083 external declaration for the function and return it.</p></li>
2084
2085 <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
2086
2087 <p>If there is at least one entry in the <a
2088 href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
2089 href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
2090 string.</p></li>
2091
2092 <li><tt>bool addTypeName(const std::string &amp;Name, const <a
2093 href="#Type">Type</a> *Ty)</tt>
2094
2095 <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
2096 mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
2097 name, true is returned and the <a
2098 href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
2099</ul>
2100
2101</div>
2102
2103<!-- ======================================================================= -->
2104<div class="doc_subsection">
2105 <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
2106</div>
2107
2108<div class="doc_text">
2109
2110<p>Constant represents a base class for different types of constants. It
2111is subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
2112ConstantArray etc for representing the various types of Constants.</p>
2113
2114</div>
2115
2116<!-- _______________________________________________________________________ -->
2117<div class="doc_subsubsection">
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002118 <a name="m_Constant">Important Public Methods</a>
2119</div>
2120<div class="doc_text">
Misha Brukman13fd15c2004-01-15 00:14:41 +00002121</div>
2122
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002123<!-- _______________________________________________________________________ -->
2124<div class="doc_subsubsection">Important Subclasses of Constant </div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002125<div class="doc_text">
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002126<ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002127 <li>ConstantSInt : This subclass of Constant represents a signed integer
2128 constant.
Chris Lattner261efe92003-11-25 01:02:51 +00002129 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002130 <li><tt>int64_t getValue() const</tt>: Returns the underlying value of
2131 this constant. </li>
Chris Lattner261efe92003-11-25 01:02:51 +00002132 </ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002133 </li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002134 <li>ConstantUInt : This class represents an unsigned integer.
2135 <ul>
2136 <li><tt>uint64_t getValue() const</tt>: Returns the underlying value of
2137 this constant. </li>
2138 </ul>
2139 </li>
2140 <li>ConstantFP : This class represents a floating point constant.
2141 <ul>
2142 <li><tt>double getValue() const</tt>: Returns the underlying value of
2143 this constant. </li>
2144 </ul>
2145 </li>
2146 <li>ConstantBool : This represents a boolean constant.
2147 <ul>
2148 <li><tt>bool getValue() const</tt>: Returns the underlying value of this
2149 constant. </li>
2150 </ul>
2151 </li>
2152 <li>ConstantArray : This represents a constant array.
2153 <ul>
2154 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
Chris Lattner58360822005-01-17 00:12:04 +00002155 a vector of component constants that makeup this array. </li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002156 </ul>
2157 </li>
2158 <li>ConstantStruct : This represents a constant struct.
2159 <ul>
2160 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
Chris Lattner58360822005-01-17 00:12:04 +00002161 a vector of component constants that makeup this array. </li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002162 </ul>
2163 </li>
2164 <li>GlobalValue : This represents either a global variable or a function. In
2165 either case, the value is a constant fixed address (after linking).
2166 </li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002167</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002168</div>
2169
2170<!-- ======================================================================= -->
2171<div class="doc_subsection">
2172 <a name="Type">The <tt>Type</tt> class and Derived Types</a>
2173</div>
2174
2175<div class="doc_text">
2176
2177<p>Type as noted earlier is also a subclass of a Value class. Any primitive
2178type (like int, short etc) in LLVM is an instance of Type Class. All other
2179types are instances of subclasses of type like FunctionType, ArrayType
2180etc. DerivedType is the interface for all such dervied types including
2181FunctionType, ArrayType, PointerType, StructType. Types can have names. They can
2182be recursive (StructType). There exists exactly one instance of any type
2183structure at a time. This allows using pointer equality of Type *s for comparing
2184types.</p>
2185
2186</div>
2187
2188<!-- _______________________________________________________________________ -->
2189<div class="doc_subsubsection">
2190 <a name="m_Value">Important Public Methods</a>
2191</div>
2192
2193<div class="doc_text">
2194
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002195<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002196
Misha Brukman13fd15c2004-01-15 00:14:41 +00002197 <li><tt>bool isSigned() const</tt>: Returns whether an integral numeric type
2198 is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is
2199 not true for Float and Double. </li>
2200
2201 <li><tt>bool isUnsigned() const</tt>: Returns whether a numeric type is
2202 unsigned. This is not quite the complement of isSigned... nonnumeric types
2203 return false as they do with isSigned. This returns true for UByteTy,
2204 UShortTy, UIntTy, and ULongTy. </li>
2205
Chris Lattner4573f1b2004-07-08 17:49:37 +00002206 <li><tt>bool isInteger() const</tt>: Equivalent to isSigned() || isUnsigned().</li>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002207
2208 <li><tt>bool isIntegral() const</tt>: Returns true if this is an integral
2209 type, which is either Bool type or one of the Integer types.</li>
2210
2211 <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two
2212 floating point types.</li>
2213
Misha Brukman13fd15c2004-01-15 00:14:41 +00002214 <li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if
2215 this type can be converted to 'Ty' without any reinterpretation of bits. For
Chris Lattner69bf8a92004-05-23 21:06:58 +00002216 example, uint to int or one pointer type to another.</li>
Reid Spencerc7d1d822004-11-01 09:16:30 +00002217</ul>
2218</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002219
Reid Spencerc7d1d822004-11-01 09:16:30 +00002220<!-- _______________________________________________________________________ -->
2221<div class="doc_subsubsection">
2222 <a name="m_Value">Important Derived Types</a>
2223</div>
2224<div class="doc_text">
2225<ul>
2226 <li>SequentialType : This is subclassed by ArrayType and PointerType
Chris Lattner261efe92003-11-25 01:02:51 +00002227 <ul>
Reid Spencerc7d1d822004-11-01 09:16:30 +00002228 <li><tt>const Type * getElementType() const</tt>: Returns the type of each
2229 of the elements in the sequential type. </li>
2230 </ul>
2231 </li>
2232 <li>ArrayType : This is a subclass of SequentialType and defines interface for
2233 array types.
2234 <ul>
2235 <li><tt>unsigned getNumElements() const</tt>: Returns the number of
2236 elements in the array. </li>
2237 </ul>
2238 </li>
2239 <li>PointerType : Subclass of SequentialType for pointer types. </li>
2240 <li>StructType : subclass of DerivedTypes for struct types </li>
2241 <li>FunctionType : subclass of DerivedTypes for function types.
2242 <ul>
2243 <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
2244 function</li>
2245 <li><tt> const Type * getReturnType() const</tt>: Returns the
2246 return type of the function.</li>
2247 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
2248 the type of the ith parameter.</li>
2249 <li><tt> const unsigned getNumParams() const</tt>: Returns the
2250 number of formal parameters.</li>
Chris Lattner261efe92003-11-25 01:02:51 +00002251 </ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002252 </li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002253</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002254</div>
2255
2256<!-- ======================================================================= -->
2257<div class="doc_subsection">
2258 <a name="Argument">The <tt>Argument</tt> class</a>
2259</div>
2260
2261<div class="doc_text">
2262
2263<p>This subclass of Value defines the interface for incoming formal
Chris Lattner58360822005-01-17 00:12:04 +00002264arguments to a function. A Function maintains a list of its formal
Misha Brukman13fd15c2004-01-15 00:14:41 +00002265arguments. An argument has a pointer to the parent Function.</p>
2266
2267</div>
2268
Chris Lattner9355b472002-09-06 02:50:58 +00002269<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +00002270<hr>
2271<address>
2272 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2273 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
2274 <a href="http://validator.w3.org/check/referer"><img
2275 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
2276
2277 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
2278 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
2279 <a href="http://llvm.cs.uiuc.edu">The LLVM Compiler Infrastructure</a><br>
2280 Last modified: $Date$
2281</address>
2282
Chris Lattner261efe92003-11-25 01:02:51 +00002283</body>
2284</html>