blob: 2ab1681c47cb5c520fb6bfbd013b9d788227cea2 [file] [log] [blame]
Misha Brukman13fd15c2004-01-15 00:14:41 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Chris Lattner261efe92003-11-25 01:02:51 +00003<html>
4<head>
Owen Anderson5e8c50e2009-06-16 17:40:28 +00005 <meta http-equiv="Content-type" content="text/html;charset=UTF-8">
Chris Lattner261efe92003-11-25 01:02:51 +00006 <title>LLVM Programmer's Manual</title>
Misha Brukman13fd15c2004-01-15 00:14:41 +00007 <link rel="stylesheet" href="llvm.css" type="text/css">
Chris Lattner261efe92003-11-25 01:02:51 +00008</head>
Misha Brukman13fd15c2004-01-15 00:14:41 +00009<body>
10
NAKAMURA Takumi05d02652011-04-18 23:59:50 +000011<h1>
Misha Brukman13fd15c2004-01-15 00:14:41 +000012 LLVM Programmer's Manual
NAKAMURA Takumi05d02652011-04-18 23:59:50 +000013</h1>
Misha Brukman13fd15c2004-01-15 00:14:41 +000014
Chris Lattner9355b472002-09-06 02:50:58 +000015<ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +000016 <li><a href="#introduction">Introduction</a></li>
Chris Lattner9355b472002-09-06 02:50:58 +000017 <li><a href="#general">General Information</a>
Chris Lattner261efe92003-11-25 01:02:51 +000018 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000019 <li><a href="#stl">The C++ Standard Template Library</a></li>
20<!--
21 <li>The <tt>-time-passes</tt> option</li>
22 <li>How to use the LLVM Makefile system</li>
23 <li>How to write a regression test</li>
Chris Lattner61db4652004-12-08 19:05:44 +000024
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000025-->
Chris Lattner84b7f8d2003-08-01 22:20:59 +000026 </ul>
Chris Lattner261efe92003-11-25 01:02:51 +000027 </li>
28 <li><a href="#apis">Important and useful LLVM APIs</a>
29 <ul>
30 <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
31and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +000032 <li><a href="#string_apis">Passing strings (the <tt>StringRef</tt>
Benjamin Kramere15192b2009-08-05 15:42:44 +000033and <tt>Twine</tt> classes)</a>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +000034 <ul>
35 <li><a href="#StringRef">The <tt>StringRef</tt> class</a> </li>
36 <li><a href="#Twine">The <tt>Twine</tt> class</a> </li>
37 </ul>
Benjamin Kramere15192b2009-08-05 15:42:44 +000038 </li>
Misha Brukman2c122ce2005-11-01 21:12:49 +000039 <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
Chris Lattner261efe92003-11-25 01:02:51 +000040option</a>
41 <ul>
42 <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
43and the <tt>-debug-only</tt> option</a> </li>
44 </ul>
45 </li>
Chris Lattner0be6fdf2006-12-19 21:46:21 +000046 <li><a href="#Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000047option</a></li>
48<!--
49 <li>The <tt>InstVisitor</tt> template
50 <li>The general graph API
51-->
Chris Lattnerf623a082005-10-17 01:36:23 +000052 <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000053 </ul>
54 </li>
Chris Lattner098129a2007-02-03 03:04:03 +000055 <li><a href="#datastructure">Picking the Right Data Structure for a Task</a>
56 <ul>
Chris Lattner74c4ca12007-02-03 07:59:07 +000057 <li><a href="#ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
58 <ul>
Chris Lattner8ae42612011-04-05 23:18:20 +000059 <li><a href="#dss_arrayref">llvm/ADT/ArrayRef.h</a></li>
Chris Lattner74c4ca12007-02-03 07:59:07 +000060 <li><a href="#dss_fixedarrays">Fixed Size Arrays</a></li>
61 <li><a href="#dss_heaparrays">Heap Allocated Arrays</a></li>
Chris Lattner9d69d4a2011-07-18 01:40:02 +000062 <li><a href="#dss_tinyptrvector">"llvm/ADT/TinyPtrVector.h"</a></li>
Chris Lattner74c4ca12007-02-03 07:59:07 +000063 <li><a href="#dss_smallvector">"llvm/ADT/SmallVector.h"</a></li>
64 <li><a href="#dss_vector">&lt;vector&gt;</a></li>
65 <li><a href="#dss_deque">&lt;deque&gt;</a></li>
66 <li><a href="#dss_list">&lt;list&gt;</a></li>
Gabor Greif3899e492009-02-27 11:37:41 +000067 <li><a href="#dss_ilist">llvm/ADT/ilist.h</a></li>
Argyrios Kyrtzidis81df0892011-06-15 19:56:01 +000068 <li><a href="#dss_packedvector">llvm/ADT/PackedVector.h</a></li>
Chris Lattnerc5722432007-02-03 19:49:31 +000069 <li><a href="#dss_other">Other Sequential Container Options</a></li>
Chris Lattner098129a2007-02-03 03:04:03 +000070 </ul></li>
Chris Lattner7314a202011-07-22 20:46:49 +000071 <li><a href="#ds_string">String-like containers</a>
Chris Lattner66827462011-07-22 21:36:29 +000072 <ul>
73 <li><a href="#dss_stringref">llvm/ADT/StringRef.h</a></li>
74 <li><a href="#dss_twine">llvm/ADT/Twine.h</a></li>
75 <li><a href="#dss_smallstring">llvm/ADT/SmallString.h</a></li>
76 <li><a href="#dss_stdstring">std::string</a></li>
77 </ul></li>
Chris Lattner74c4ca12007-02-03 07:59:07 +000078 <li><a href="#ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
79 <ul>
80 <li><a href="#dss_sortedvectorset">A sorted 'vector'</a></li>
81 <li><a href="#dss_smallset">"llvm/ADT/SmallSet.h"</a></li>
82 <li><a href="#dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a></li>
Chris Lattnerc28476f2007-09-30 00:58:59 +000083 <li><a href="#dss_denseset">"llvm/ADT/DenseSet.h"</a></li>
Chris Lattner74c4ca12007-02-03 07:59:07 +000084 <li><a href="#dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a></li>
85 <li><a href="#dss_set">&lt;set&gt;</a></li>
86 <li><a href="#dss_setvector">"llvm/ADT/SetVector.h"</a></li>
Chris Lattnerc5722432007-02-03 19:49:31 +000087 <li><a href="#dss_uniquevector">"llvm/ADT/UniqueVector.h"</a></li>
88 <li><a href="#dss_otherset">Other Set-Like ContainerOptions</a></li>
Chris Lattner74c4ca12007-02-03 07:59:07 +000089 </ul></li>
Chris Lattnerf3692522007-02-03 19:51:56 +000090 <li><a href="#ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
91 <ul>
92 <li><a href="#dss_sortedvectormap">A sorted 'vector'</a></li>
Chris Lattner796f9fa2007-02-08 19:14:21 +000093 <li><a href="#dss_stringmap">"llvm/ADT/StringMap.h"</a></li>
Chris Lattnerf3692522007-02-03 19:51:56 +000094 <li><a href="#dss_indexedmap">"llvm/ADT/IndexedMap.h"</a></li>
95 <li><a href="#dss_densemap">"llvm/ADT/DenseMap.h"</a></li>
Jeffrey Yasskin71a5c222009-10-22 22:11:22 +000096 <li><a href="#dss_valuemap">"llvm/ADT/ValueMap.h"</a></li>
Jakob Stoklund Olesenaca0da62010-12-14 00:55:51 +000097 <li><a href="#dss_intervalmap">"llvm/ADT/IntervalMap.h"</a></li>
Chris Lattnerf3692522007-02-03 19:51:56 +000098 <li><a href="#dss_map">&lt;map&gt;</a></li>
Jakob Stoklund Olesen4359e5e2011-04-05 20:56:08 +000099 <li><a href="#dss_inteqclasses">"llvm/ADT/IntEqClasses.h"</a></li>
Chris Lattnerf3692522007-02-03 19:51:56 +0000100 <li><a href="#dss_othermap">Other Map-Like Container Options</a></li>
101 </ul></li>
Daniel Berlin1939ace2007-09-24 17:52:25 +0000102 <li><a href="#ds_bit">BitVector-like containers</a>
103 <ul>
104 <li><a href="#dss_bitvector">A dense bitvector</a></li>
Dan Gohman5f7775c2010-01-05 18:24:00 +0000105 <li><a href="#dss_smallbitvector">A "small" dense bitvector</a></li>
Daniel Berlin1939ace2007-09-24 17:52:25 +0000106 <li><a href="#dss_sparsebitvector">A sparse bitvector</a></li>
107 </ul></li>
Chris Lattner74c4ca12007-02-03 07:59:07 +0000108 </ul>
Chris Lattner098129a2007-02-03 03:04:03 +0000109 </li>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000110 <li><a href="#common">Helpful Hints for Common Operations</a>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000111 <ul>
Chris Lattner261efe92003-11-25 01:02:51 +0000112 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
113 <ul>
114 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
115in a <tt>Function</tt></a> </li>
116 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
117in a <tt>BasicBlock</tt></a> </li>
118 <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
119in a <tt>Function</tt></a> </li>
120 <li><a href="#iterate_convert">Turning an iterator into a
121class pointer</a> </li>
122 <li><a href="#iterate_complex">Finding call sites: a more
123complex example</a> </li>
124 <li><a href="#calls_and_invokes">Treating calls and invokes
125the same way</a> </li>
126 <li><a href="#iterate_chains">Iterating over def-use &amp;
127use-def chains</a> </li>
Chris Lattner2e438ca2008-01-03 16:56:04 +0000128 <li><a href="#iterate_preds">Iterating over predecessors &amp;
129successors of blocks</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000130 </ul>
131 </li>
132 <li><a href="#simplechanges">Making simple changes</a>
133 <ul>
134 <li><a href="#schanges_creating">Creating and inserting new
135 <tt>Instruction</tt>s</a> </li>
136 <li><a href="#schanges_deleting">Deleting <tt>Instruction</tt>s</a> </li>
137 <li><a href="#schanges_replacing">Replacing an <tt>Instruction</tt>
138with another <tt>Value</tt></a> </li>
Tanya Lattnerb011c662007-06-20 18:33:15 +0000139 <li><a href="#schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a> </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000140 </ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000141 </li>
Jeffrey Yasskin714257f2009-04-30 22:33:41 +0000142 <li><a href="#create_types">How to Create Types</a></li>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000143<!--
144 <li>Working with the Control Flow Graph
145 <ul>
146 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
147 <li>
148 <li>
149 </ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000150-->
Chris Lattner261efe92003-11-25 01:02:51 +0000151 </ul>
152 </li>
Chris Lattnerd9d6e102005-04-23 16:10:52 +0000153
Owen Anderson8bc1b3b2009-06-16 01:17:16 +0000154 <li><a href="#threading">Threads and LLVM</a>
155 <ul>
Owen Anderson1ad70e32009-06-16 18:04:19 +0000156 <li><a href="#startmultithreaded">Entering and Exiting Multithreaded Mode
157 </a></li>
Owen Anderson8bc1b3b2009-06-16 01:17:16 +0000158 <li><a href="#shutdown">Ending execution with <tt>llvm_shutdown()</tt></a></li>
159 <li><a href="#managedstatic">Lazy initialization with <tt>ManagedStatic</tt></a></li>
Owen Andersone0c951a2009-08-19 17:58:52 +0000160 <li><a href="#llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a></li>
Jeffrey Yasskin01eba392010-01-29 19:10:38 +0000161 <li><a href="#jitthreading">Threads and the JIT</a></li>
Owen Anderson8bc1b3b2009-06-16 01:17:16 +0000162 </ul>
163 </li>
164
Chris Lattnerd9d6e102005-04-23 16:10:52 +0000165 <li><a href="#advanced">Advanced Topics</a>
166 <ul>
Chris Lattnerf1b200b2005-04-23 17:27:36 +0000167
Chris Lattner1afcace2011-07-09 17:41:24 +0000168 <li><a href="#SymbolTable">The <tt>ValueSymbolTable</tt> class</a></li>
Gabor Greife98fc272008-06-16 21:06:12 +0000169 <li><a href="#UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a></li>
Chris Lattnerd9d6e102005-04-23 16:10:52 +0000170 </ul></li>
171
Joel Stanley9b96c442002-09-06 21:55:13 +0000172 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
Chris Lattner9355b472002-09-06 02:50:58 +0000173 <ul>
Reid Spencer303c4b42007-01-12 17:26:25 +0000174 <li><a href="#Type">The <tt>Type</tt> class</a> </li>
Chris Lattner2b78d962007-02-03 20:02:25 +0000175 <li><a href="#Module">The <tt>Module</tt> class</a></li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000176 <li><a href="#Value">The <tt>Value</tt> class</a>
Chris Lattner2b78d962007-02-03 20:02:25 +0000177 <ul>
178 <li><a href="#User">The <tt>User</tt> class</a>
Chris Lattner9355b472002-09-06 02:50:58 +0000179 <ul>
Chris Lattner2b78d962007-02-03 20:02:25 +0000180 <li><a href="#Instruction">The <tt>Instruction</tt> class</a></li>
181 <li><a href="#Constant">The <tt>Constant</tt> class</a>
182 <ul>
183 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
Chris Lattner261efe92003-11-25 01:02:51 +0000184 <ul>
Chris Lattner2b78d962007-02-03 20:02:25 +0000185 <li><a href="#Function">The <tt>Function</tt> class</a></li>
186 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
187 </ul>
188 </li>
189 </ul>
190 </li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000191 </ul>
Chris Lattner2b78d962007-02-03 20:02:25 +0000192 </li>
193 <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a></li>
194 <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
195 </ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000196 </li>
197 </ul>
Chris Lattner261efe92003-11-25 01:02:51 +0000198 </li>
Chris Lattner9355b472002-09-06 02:50:58 +0000199</ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000200
Chris Lattner69bf8a92004-05-23 21:06:58 +0000201<div class="doc_author">
202 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
Chris Lattner94c43592004-05-26 16:52:55 +0000203 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>,
Gabor Greife98fc272008-06-16 21:06:12 +0000204 <a href="mailto:ggreif@gmail.com">Gabor Greif</a>,
Owen Anderson8bc1b3b2009-06-16 01:17:16 +0000205 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a>,
206 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a> and
207 <a href="mailto:owen@apple.com">Owen Anderson</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000208</div>
209
Chris Lattner9355b472002-09-06 02:50:58 +0000210<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000211<h2>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000212 <a name="introduction">Introduction </a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000213</h2>
Chris Lattner9355b472002-09-06 02:50:58 +0000214<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000215
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000216<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000217
218<p>This document is meant to highlight some of the important classes and
Chris Lattner261efe92003-11-25 01:02:51 +0000219interfaces available in the LLVM source-base. This manual is not
220intended to explain what LLVM is, how it works, and what LLVM code looks
221like. It assumes that you know the basics of LLVM and are interested
222in writing transformations or otherwise analyzing or manipulating the
Misha Brukman13fd15c2004-01-15 00:14:41 +0000223code.</p>
224
225<p>This document should get you oriented so that you can find your
Chris Lattner261efe92003-11-25 01:02:51 +0000226way in the continuously growing source code that makes up the LLVM
227infrastructure. Note that this manual is not intended to serve as a
228replacement for reading the source code, so if you think there should be
229a method in one of these classes to do something, but it's not listed,
230check the source. Links to the <a href="/doxygen/">doxygen</a> sources
231are provided to make this as easy as possible.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000232
233<p>The first section of this document describes general information that is
234useful to know when working in the LLVM infrastructure, and the second describes
235the Core LLVM classes. In the future this manual will be extended with
236information describing how to use extension libraries, such as dominator
237information, CFG traversal routines, and useful utilities like the <tt><a
238href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
239
240</div>
241
Chris Lattner9355b472002-09-06 02:50:58 +0000242<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000243<h2>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000244 <a name="general">General Information</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000245</h2>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000246<!-- *********************************************************************** -->
247
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000248<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000249
250<p>This section contains general information that is useful if you are working
251in the LLVM source-base, but that isn't specific to any particular API.</p>
252
Misha Brukman13fd15c2004-01-15 00:14:41 +0000253<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000254<h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000255 <a name="stl">The C++ Standard Template Library</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000256</h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000257
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000258<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000259
260<p>LLVM makes heavy use of the C++ Standard Template Library (STL),
Chris Lattner261efe92003-11-25 01:02:51 +0000261perhaps much more than you are used to, or have seen before. Because of
262this, you might want to do a little background reading in the
263techniques used and capabilities of the library. There are many good
264pages that discuss the STL, and several books on the subject that you
Misha Brukman13fd15c2004-01-15 00:14:41 +0000265can get, so it will not be discussed in this document.</p>
266
267<p>Here are some useful links:</p>
268
269<ol>
270
Nick Lewyckyea1fe2c2010-10-09 21:12:29 +0000271<li><a href="http://www.dinkumware.com/manuals/#Standard C++ Library">Dinkumware
272C++ Library reference</a> - an excellent reference for the STL and other parts
273of the standard C++ library.</li>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000274
275<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
Gabor Greif0cbcabe2009-03-12 09:47:03 +0000276O'Reilly book in the making. It has a decent Standard Library
277Reference that rivals Dinkumware's, and is unfortunately no longer free since the
278book has been published.</li>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000279
280<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
281Questions</a></li>
282
283<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
284Contains a useful <a
285href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
286STL</a>.</li>
287
288<li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
289Page</a></li>
290
Tanya Lattner79445ba2004-12-08 18:34:56 +0000291<li><a href="http://64.78.49.204/">
Reid Spencer096603a2004-05-26 08:41:35 +0000292Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
293the book).</a></li>
294
Misha Brukman13fd15c2004-01-15 00:14:41 +0000295</ol>
296
297<p>You are also encouraged to take a look at the <a
298href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
299to write maintainable code more than where to put your curly braces.</p>
300
301</div>
302
303<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000304<h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000305 <a name="stl">Other useful references</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000306</h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000307
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000308<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000309
Misha Brukman13fd15c2004-01-15 00:14:41 +0000310<ol>
Misha Brukmana0f71e42004-06-18 18:39:00 +0000311<li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
312static and shared libraries across platforms</a></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000313</ol>
314
315</div>
316
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000317</div>
318
Chris Lattner9355b472002-09-06 02:50:58 +0000319<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000320<h2>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000321 <a name="apis">Important and useful LLVM APIs</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000322</h2>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000323<!-- *********************************************************************** -->
324
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000325<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000326
327<p>Here we highlight some LLVM APIs that are generally useful and good to
328know about when writing transformations.</p>
329
Misha Brukman13fd15c2004-01-15 00:14:41 +0000330<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000331<h3>
Misha Brukman2c122ce2005-11-01 21:12:49 +0000332 <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
333 <tt>dyn_cast&lt;&gt;</tt> templates</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000334</h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000335
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000336<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000337
338<p>The LLVM source-base makes extensive use of a custom form of RTTI.
Chris Lattner261efe92003-11-25 01:02:51 +0000339These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
340operator, but they don't have some drawbacks (primarily stemming from
341the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
342have a v-table). Because they are used so often, you must know what they
343do and how they work. All of these templates are defined in the <a
Chris Lattner695b78b2005-04-26 22:56:16 +0000344 href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000345file (note that you very rarely have to include this file directly).</p>
346
347<dl>
348 <dt><tt>isa&lt;&gt;</tt>: </dt>
349
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000350 <dd><p>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
Misha Brukman13fd15c2004-01-15 00:14:41 +0000351 "<tt>instanceof</tt>" operator. It returns true or false depending on whether
352 a reference or pointer points to an instance of the specified class. This can
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000353 be very useful for constraint checking of various sorts (example below).</p>
354 </dd>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000355
356 <dt><tt>cast&lt;&gt;</tt>: </dt>
357
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000358 <dd><p>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
Chris Lattner28e6ff52008-06-20 05:03:17 +0000359 converts a pointer or reference from a base class to a derived class, causing
Misha Brukman13fd15c2004-01-15 00:14:41 +0000360 an assertion failure if it is not really an instance of the right type. This
361 should be used in cases where you have some information that makes you believe
362 that something is of the right type. An example of the <tt>isa&lt;&gt;</tt>
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000363 and <tt>cast&lt;&gt;</tt> template is:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000364
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000365<div class="doc_code">
366<pre>
367static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
368 if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
369 return true;
Chris Lattner69bf8a92004-05-23 21:06:58 +0000370
Bill Wendling82e2eea2006-10-11 18:00:22 +0000371 // <i>Otherwise, it must be an instruction...</i>
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000372 return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
373}
374</pre>
375</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000376
377 <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
378 by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
379 operator.</p>
380
381 </dd>
382
383 <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
384
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000385 <dd><p>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation.
386 It checks to see if the operand is of the specified type, and if so, returns a
Misha Brukman13fd15c2004-01-15 00:14:41 +0000387 pointer to it (this operator does not work with references). If the operand is
388 not of the correct type, a null pointer is returned. Thus, this works very
Misha Brukman2c122ce2005-11-01 21:12:49 +0000389 much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
390 used in the same circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt>
391 operator is used in an <tt>if</tt> statement or some other flow control
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000392 statement like this:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000393
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000394<div class="doc_code">
395<pre>
396if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
Bill Wendling82e2eea2006-10-11 18:00:22 +0000397 // <i>...</i>
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000398}
399</pre>
400</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000401
Misha Brukman2c122ce2005-11-01 21:12:49 +0000402 <p>This form of the <tt>if</tt> statement effectively combines together a call
403 to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
404 statement, which is very convenient.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000405
Misha Brukman2c122ce2005-11-01 21:12:49 +0000406 <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
407 <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
408 abused. In particular, you should not use big chained <tt>if/then/else</tt>
409 blocks to check for lots of different variants of classes. If you find
410 yourself wanting to do this, it is much cleaner and more efficient to use the
411 <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000412
Misha Brukman2c122ce2005-11-01 21:12:49 +0000413 </dd>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000414
Misha Brukman2c122ce2005-11-01 21:12:49 +0000415 <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
416
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000417 <dd><p>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
Misha Brukman2c122ce2005-11-01 21:12:49 +0000418 <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
419 argument (which it then propagates). This can sometimes be useful, allowing
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000420 you to combine several null checks into one.</p></dd>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000421
Misha Brukman2c122ce2005-11-01 21:12:49 +0000422 <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000423
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000424 <dd><p>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
Misha Brukman2c122ce2005-11-01 21:12:49 +0000425 <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
426 as an argument (which it then propagates). This can sometimes be useful,
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000427 allowing you to combine several null checks into one.</p></dd>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000428
Misha Brukman2c122ce2005-11-01 21:12:49 +0000429</dl>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000430
431<p>These five templates can be used with any classes, whether they have a
432v-table or not. To add support for these templates, you simply need to add
433<tt>classof</tt> static methods to the class you are interested casting
434to. Describing this is currently outside the scope of this document, but there
435are lots of examples in the LLVM source base.</p>
436
437</div>
438
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000439
440<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000441<h3>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000442 <a name="string_apis">Passing strings (the <tt>StringRef</tt>
443and <tt>Twine</tt> classes)</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000444</h3>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000445
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000446<div>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000447
448<p>Although LLVM generally does not do much string manipulation, we do have
Chris Lattner81187ae2009-07-25 07:16:59 +0000449several important APIs which take strings. Two important examples are the
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000450Value class -- which has names for instructions, functions, etc. -- and the
451StringMap class which is used extensively in LLVM and Clang.</p>
452
453<p>These are generic classes, and they need to be able to accept strings which
454may have embedded null characters. Therefore, they cannot simply take
Chris Lattner81187ae2009-07-25 07:16:59 +0000455a <tt>const char *</tt>, and taking a <tt>const std::string&amp;</tt> requires
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000456clients to perform a heap allocation which is usually unnecessary. Instead,
Benjamin Kramer38e59892010-07-14 22:38:02 +0000457many LLVM APIs use a <tt>StringRef</tt> or a <tt>const Twine&amp;</tt> for
458passing strings efficiently.</p>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000459
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000460<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000461<h4>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000462 <a name="StringRef">The <tt>StringRef</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000463</h4>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000464
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000465<div>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000466
467<p>The <tt>StringRef</tt> data type represents a reference to a constant string
468(a character array and a length) and supports the common operations available
469on <tt>std:string</tt>, but does not require heap allocation.</p>
470
Chris Lattner81187ae2009-07-25 07:16:59 +0000471<p>It can be implicitly constructed using a C style null-terminated string,
472an <tt>std::string</tt>, or explicitly with a character pointer and length.
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000473For example, the <tt>StringRef</tt> find function is declared as:</p>
Chris Lattner81187ae2009-07-25 07:16:59 +0000474
Benjamin Kramer38e59892010-07-14 22:38:02 +0000475<pre class="doc_code">
476 iterator find(StringRef Key);
477</pre>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000478
479<p>and clients can call it using any one of:</p>
480
Benjamin Kramer38e59892010-07-14 22:38:02 +0000481<pre class="doc_code">
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000482 Map.find("foo"); <i>// Lookup "foo"</i>
483 Map.find(std::string("bar")); <i>// Lookup "bar"</i>
484 Map.find(StringRef("\0baz", 4)); <i>// Lookup "\0baz"</i>
485</pre>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000486
487<p>Similarly, APIs which need to return a string may return a <tt>StringRef</tt>
488instance, which can be used directly or converted to an <tt>std::string</tt>
489using the <tt>str</tt> member function. See
490"<tt><a href="/doxygen/classllvm_1_1StringRef_8h-source.html">llvm/ADT/StringRef.h</a></tt>"
491for more information.</p>
492
493<p>You should rarely use the <tt>StringRef</tt> class directly, because it contains
494pointers to external memory it is not generally safe to store an instance of the
Benjamin Kramer38e59892010-07-14 22:38:02 +0000495class (unless you know that the external storage will not be freed). StringRef is
496small and pervasive enough in LLVM that it should always be passed by value.</p>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000497
498</div>
499
500<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000501<h4>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000502 <a name="Twine">The <tt>Twine</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000503</h4>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000504
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000505<div>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000506
507<p>The <tt>Twine</tt> class is an efficient way for APIs to accept concatenated
508strings. For example, a common LLVM paradigm is to name one instruction based on
509the name of another instruction with a suffix, for example:</p>
510
511<div class="doc_code">
512<pre>
513 New = CmpInst::Create(<i>...</i>, SO->getName() + ".cmp");
514</pre>
515</div>
516
517<p>The <tt>Twine</tt> class is effectively a
518lightweight <a href="http://en.wikipedia.org/wiki/Rope_(computer_science)">rope</a>
519which points to temporary (stack allocated) objects. Twines can be implicitly
520constructed as the result of the plus operator applied to strings (i.e., a C
521strings, an <tt>std::string</tt>, or a <tt>StringRef</tt>). The twine delays the
Dan Gohmancf0c9bc2010-02-25 23:51:27 +0000522actual concatenation of strings until it is actually required, at which point
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000523it can be efficiently rendered directly into a character array. This avoids
524unnecessary heap allocation involved in constructing the temporary results of
525string concatenation. See
526"<tt><a href="/doxygen/classllvm_1_1Twine_8h-source.html">llvm/ADT/Twine.h</a></tt>"
Benjamin Kramere15192b2009-08-05 15:42:44 +0000527for more information.</p>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000528
529<p>As with a <tt>StringRef</tt>, <tt>Twine</tt> objects point to external memory
530and should almost never be stored or mentioned directly. They are intended
531solely for use when defining a function which should be able to efficiently
532accept concatenated strings.</p>
533
534</div>
535
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000536</div>
Daniel Dunbar6e0d1cb2009-07-25 04:41:11 +0000537
Misha Brukman13fd15c2004-01-15 00:14:41 +0000538<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000539<h3>
Misha Brukman2c122ce2005-11-01 21:12:49 +0000540 <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000541</h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000542
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000543<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000544
545<p>Often when working on your pass you will put a bunch of debugging printouts
546and other code into your pass. After you get it working, you want to remove
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000547it, but you may need it again in the future (to work out new bugs that you run
Misha Brukman13fd15c2004-01-15 00:14:41 +0000548across).</p>
549
550<p> Naturally, because of this, you don't want to delete the debug printouts,
551but you don't want them to always be noisy. A standard compromise is to comment
552them out, allowing you to enable them if you need them in the future.</p>
553
Chris Lattner695b78b2005-04-26 22:56:16 +0000554<p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
Misha Brukman13fd15c2004-01-15 00:14:41 +0000555file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
556this problem. Basically, you can put arbitrary code into the argument of the
557<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
558tool) is run with the '<tt>-debug</tt>' command line argument:</p>
559
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000560<div class="doc_code">
561<pre>
Daniel Dunbar06388ae2009-07-25 01:55:32 +0000562DEBUG(errs() &lt;&lt; "I am here!\n");
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000563</pre>
564</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000565
566<p>Then you can run your pass like this:</p>
567
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000568<div class="doc_code">
569<pre>
570$ opt &lt; a.bc &gt; /dev/null -mypass
Bill Wendling82e2eea2006-10-11 18:00:22 +0000571<i>&lt;no output&gt;</i>
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000572$ opt &lt; a.bc &gt; /dev/null -mypass -debug
573I am here!
574</pre>
575</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000576
577<p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
578to not have to create "yet another" command line option for the debug output for
579your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
580so they do not cause a performance impact at all (for the same reason, they
581should also not contain side-effects!).</p>
582
583<p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
584enable or disable it directly in gdb. Just use "<tt>set DebugFlag=0</tt>" or
585"<tt>set DebugFlag=1</tt>" from the gdb if the program is running. If the
586program hasn't been started yet, you can always just run it with
587<tt>-debug</tt>.</p>
588
Misha Brukman13fd15c2004-01-15 00:14:41 +0000589<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000590<h4>
Chris Lattnerc9151082005-04-26 22:57:07 +0000591 <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
Misha Brukman13fd15c2004-01-15 00:14:41 +0000592 the <tt>-debug-only</tt> option</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000593</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000594
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000595<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000596
597<p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
598just turns on <b>too much</b> information (such as when working on the code
599generator). If you want to enable debug information with more fine-grained
600control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
601option as follows:</p>
602
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000603<div class="doc_code">
604<pre>
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000605#undef DEBUG_TYPE
Daniel Dunbar06388ae2009-07-25 01:55:32 +0000606DEBUG(errs() &lt;&lt; "No debug type\n");
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000607#define DEBUG_TYPE "foo"
Daniel Dunbar06388ae2009-07-25 01:55:32 +0000608DEBUG(errs() &lt;&lt; "'foo' debug type\n");
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000609#undef DEBUG_TYPE
610#define DEBUG_TYPE "bar"
Daniel Dunbar06388ae2009-07-25 01:55:32 +0000611DEBUG(errs() &lt;&lt; "'bar' debug type\n"));
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000612#undef DEBUG_TYPE
613#define DEBUG_TYPE ""
Daniel Dunbar06388ae2009-07-25 01:55:32 +0000614DEBUG(errs() &lt;&lt; "No debug type (2)\n");
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000615</pre>
616</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000617
618<p>Then you can run your pass like this:</p>
619
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000620<div class="doc_code">
621<pre>
622$ opt &lt; a.bc &gt; /dev/null -mypass
Bill Wendling82e2eea2006-10-11 18:00:22 +0000623<i>&lt;no output&gt;</i>
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000624$ opt &lt; a.bc &gt; /dev/null -mypass -debug
625No debug type
626'foo' debug type
627'bar' debug type
628No debug type (2)
629$ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
630'foo' debug type
631$ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
632'bar' debug type
633</pre>
634</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000635
636<p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
637a file, to specify the debug type for the entire module (if you do this before
Chris Lattner695b78b2005-04-26 22:56:16 +0000638you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
Misha Brukman13fd15c2004-01-15 00:14:41 +0000639<tt>#undef</tt>'s). Also, you should use names more meaningful than "foo" and
640"bar", because there is no system in place to ensure that names do not
641conflict. If two different modules use the same string, they will all be turned
642on when the name is specified. This allows, for example, all debug information
643for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
Chris Lattner261efe92003-11-25 01:02:51 +0000644even if the source lives in multiple files.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000645
Daniel Dunbarc3c92392009-08-07 23:48:59 +0000646<p>The <tt>DEBUG_WITH_TYPE</tt> macro is also available for situations where you
647would like to set <tt>DEBUG_TYPE</tt>, but only for one specific <tt>DEBUG</tt>
648statement. It takes an additional first parameter, which is the type to use. For
Benjamin Kramer8040cd32009-10-12 14:46:08 +0000649example, the preceding example could be written as:</p>
Daniel Dunbarc3c92392009-08-07 23:48:59 +0000650
651
652<div class="doc_code">
653<pre>
654DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type\n");
655DEBUG_WITH_TYPE("foo", errs() &lt;&lt; "'foo' debug type\n");
656DEBUG_WITH_TYPE("bar", errs() &lt;&lt; "'bar' debug type\n"));
657DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type (2)\n");
658</pre>
659</div>
660
Misha Brukman13fd15c2004-01-15 00:14:41 +0000661</div>
662
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000663</div>
664
Misha Brukman13fd15c2004-01-15 00:14:41 +0000665<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000666<h3>
Chris Lattner0be6fdf2006-12-19 21:46:21 +0000667 <a name="Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000668 option</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000669</h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000670
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000671<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000672
673<p>The "<tt><a
Chris Lattner695b78b2005-04-26 22:56:16 +0000674href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
Chris Lattner0be6fdf2006-12-19 21:46:21 +0000675provides a class named <tt>Statistic</tt> that is used as a unified way to
Misha Brukman13fd15c2004-01-15 00:14:41 +0000676keep track of what the LLVM compiler is doing and how effective various
677optimizations are. It is useful to see what optimizations are contributing to
678making a particular program run faster.</p>
679
680<p>Often you may run your pass on some big program, and you're interested to see
681how many times it makes a certain transformation. Although you can do this with
682hand inspection, or some ad-hoc method, this is a real pain and not very useful
Chris Lattner0be6fdf2006-12-19 21:46:21 +0000683for big programs. Using the <tt>Statistic</tt> class makes it very easy to
Misha Brukman13fd15c2004-01-15 00:14:41 +0000684keep track of this information, and the calculated information is presented in a
685uniform manner with the rest of the passes being executed.</p>
686
687<p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
688it are as follows:</p>
689
690<ol>
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000691 <li><p>Define your statistic like this:</p>
692
693<div class="doc_code">
694<pre>
Chris Lattner0be6fdf2006-12-19 21:46:21 +0000695#define <a href="#DEBUG_TYPE">DEBUG_TYPE</a> "mypassname" <i>// This goes before any #includes.</i>
696STATISTIC(NumXForms, "The # of times I did stuff");
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000697</pre>
698</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000699
Chris Lattner0be6fdf2006-12-19 21:46:21 +0000700 <p>The <tt>STATISTIC</tt> macro defines a static variable, whose name is
701 specified by the first argument. The pass name is taken from the DEBUG_TYPE
702 macro, and the description is taken from the second argument. The variable
Reid Spencer06565dc2007-01-12 17:11:23 +0000703 defined ("NumXForms" in this case) acts like an unsigned integer.</p></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000704
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000705 <li><p>Whenever you make a transformation, bump the counter:</p>
706
707<div class="doc_code">
708<pre>
Bill Wendling82e2eea2006-10-11 18:00:22 +0000709++NumXForms; // <i>I did stuff!</i>
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000710</pre>
711</div>
712
Chris Lattner261efe92003-11-25 01:02:51 +0000713 </li>
714 </ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000715
716 <p>That's all you have to do. To get '<tt>opt</tt>' to print out the
717 statistics gathered, use the '<tt>-stats</tt>' option:</p>
718
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000719<div class="doc_code">
720<pre>
721$ opt -stats -mypassname &lt; program.bc &gt; /dev/null
Bill Wendling82e2eea2006-10-11 18:00:22 +0000722<i>... statistics output ...</i>
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000723</pre>
724</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000725
Reid Spencer6b6c73e2007-02-09 16:00:28 +0000726 <p> When running <tt>opt</tt> on a C file from the SPEC benchmark
Chris Lattner261efe92003-11-25 01:02:51 +0000727suite, it gives a report that looks like this:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000728
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000729<div class="doc_code">
730<pre>
Gabor Greif04367bf2007-07-06 22:07:22 +0000731 7646 bitcodewriter - Number of normal instructions
732 725 bitcodewriter - Number of oversized instructions
733 129996 bitcodewriter - Number of bitcode bytes written
Bill Wendling3cd5ca62006-10-11 06:30:10 +0000734 2817 raise - Number of insts DCEd or constprop'd
735 3213 raise - Number of cast-of-self removed
736 5046 raise - Number of expression trees converted
737 75 raise - Number of other getelementptr's formed
738 138 raise - Number of load/store peepholes
739 42 deadtypeelim - Number of unused typenames removed from symtab
740 392 funcresolve - Number of varargs functions resolved
741 27 globaldce - Number of global variables removed
742 2 adce - Number of basic blocks removed
743 134 cee - Number of branches revectored
744 49 cee - Number of setcc instruction eliminated
745 532 gcse - Number of loads removed
746 2919 gcse - Number of instructions removed
747 86 indvars - Number of canonical indvars added
748 87 indvars - Number of aux indvars removed
749 25 instcombine - Number of dead inst eliminate
750 434 instcombine - Number of insts combined
751 248 licm - Number of load insts hoisted
752 1298 licm - Number of insts hoisted to a loop pre-header
753 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
754 75 mem2reg - Number of alloca's promoted
755 1444 cfgsimplify - Number of blocks simplified
756</pre>
757</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000758
759<p>Obviously, with so many optimizations, having a unified framework for this
760stuff is very nice. Making your pass fit well into the framework makes it more
761maintainable and useful.</p>
762
763</div>
764
Chris Lattnerf623a082005-10-17 01:36:23 +0000765<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000766<h3>
Chris Lattnerf623a082005-10-17 01:36:23 +0000767 <a name="ViewGraph">Viewing graphs while debugging code</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000768</h3>
Chris Lattnerf623a082005-10-17 01:36:23 +0000769
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000770<div>
Chris Lattnerf623a082005-10-17 01:36:23 +0000771
772<p>Several of the important data structures in LLVM are graphs: for example
773CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
774LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
775<a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
776DAGs</a>. In many cases, while debugging various parts of the compiler, it is
777nice to instantly visualize these graphs.</p>
778
779<p>LLVM provides several callbacks that are available in a debug build to do
780exactly that. If you call the <tt>Function::viewCFG()</tt> method, for example,
781the current LLVM tool will pop up a window containing the CFG for the function
782where each basic block is a node in the graph, and each node contains the
783instructions in the block. Similarly, there also exists
784<tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
785<tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
786and the <tt>SelectionDAG::viewGraph()</tt> methods. Within GDB, for example,
Jim Laskey543a0ee2006-10-02 12:28:07 +0000787you can usually use something like <tt>call DAG.viewGraph()</tt> to pop
Chris Lattnerf623a082005-10-17 01:36:23 +0000788up a window. Alternatively, you can sprinkle calls to these functions in your
789code in places you want to debug.</p>
790
791<p>Getting this to work requires a small amount of configuration. On Unix
792systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
793toolkit, and make sure 'dot' and 'gv' are in your path. If you are running on
794Mac OS/X, download and install the Mac OS/X <a
795href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
Reid Spencer128a7a72007-02-03 21:06:43 +0000796<tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or wherever you install
Chris Lattnerf623a082005-10-17 01:36:23 +0000797it) to your path. Once in your system and path are set up, rerun the LLVM
798configure script and rebuild LLVM to enable this functionality.</p>
799
Jim Laskey543a0ee2006-10-02 12:28:07 +0000800<p><tt>SelectionDAG</tt> has been extended to make it easier to locate
801<i>interesting</i> nodes in large complex graphs. From gdb, if you
802<tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
Reid Spencer128a7a72007-02-03 21:06:43 +0000803next <tt>call DAG.viewGraph()</tt> would highlight the node in the
Jim Laskey543a0ee2006-10-02 12:28:07 +0000804specified color (choices of colors can be found at <a
Chris Lattner302da1e2007-02-03 03:05:57 +0000805href="http://www.graphviz.org/doc/info/colors.html">colors</a>.) More
Jim Laskey543a0ee2006-10-02 12:28:07 +0000806complex node attributes can be provided with <tt>call
807DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
808found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
809Attributes</a>.) If you want to restart and clear all the current graph
810attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
811
Chris Lattner83f94672011-06-13 15:59:35 +0000812<p>Note that graph visualization features are compiled out of Release builds
813to reduce file size. This means that you need a Debug+Asserts or
814Release+Asserts build to use these features.</p>
815
Chris Lattnerf623a082005-10-17 01:36:23 +0000816</div>
817
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000818</div>
819
Chris Lattner098129a2007-02-03 03:04:03 +0000820<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000821<h2>
Chris Lattner098129a2007-02-03 03:04:03 +0000822 <a name="datastructure">Picking the Right Data Structure for a Task</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000823</h2>
Chris Lattner098129a2007-02-03 03:04:03 +0000824<!-- *********************************************************************** -->
825
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000826<div>
Chris Lattner098129a2007-02-03 03:04:03 +0000827
Reid Spencer128a7a72007-02-03 21:06:43 +0000828<p>LLVM has a plethora of data structures in the <tt>llvm/ADT/</tt> directory,
829 and we commonly use STL data structures. This section describes the trade-offs
Chris Lattner098129a2007-02-03 03:04:03 +0000830 you should consider when you pick one.</p>
831
832<p>
833The first step is a choose your own adventure: do you want a sequential
834container, a set-like container, or a map-like container? The most important
835thing when choosing a container is the algorithmic properties of how you plan to
836access the container. Based on that, you should use:</p>
837
838<ul>
Reid Spencer128a7a72007-02-03 21:06:43 +0000839<li>a <a href="#ds_map">map-like</a> container if you need efficient look-up
Chris Lattner098129a2007-02-03 03:04:03 +0000840 of an value based on another value. Map-like containers also support
841 efficient queries for containment (whether a key is in the map). Map-like
842 containers generally do not support efficient reverse mapping (values to
843 keys). If you need that, use two maps. Some map-like containers also
844 support efficient iteration through the keys in sorted order. Map-like
845 containers are the most expensive sort, only use them if you need one of
846 these capabilities.</li>
847
848<li>a <a href="#ds_set">set-like</a> container if you need to put a bunch of
849 stuff into a container that automatically eliminates duplicates. Some
850 set-like containers support efficient iteration through the elements in
851 sorted order. Set-like containers are more expensive than sequential
852 containers.
853</li>
854
855<li>a <a href="#ds_sequential">sequential</a> container provides
856 the most efficient way to add elements and keeps track of the order they are
857 added to the collection. They permit duplicates and support efficient
Reid Spencer128a7a72007-02-03 21:06:43 +0000858 iteration, but do not support efficient look-up based on a key.
Chris Lattner098129a2007-02-03 03:04:03 +0000859</li>
860
Chris Lattnerdced9fb2009-07-25 07:22:20 +0000861<li>a <a href="#ds_string">string</a> container is a specialized sequential
862 container or reference structure that is used for character or byte
863 arrays.</li>
864
Daniel Berlin1939ace2007-09-24 17:52:25 +0000865<li>a <a href="#ds_bit">bit</a> container provides an efficient way to store and
866 perform set operations on sets of numeric id's, while automatically
867 eliminating duplicates. Bit containers require a maximum of 1 bit for each
868 identifier you want to store.
869</li>
Chris Lattner098129a2007-02-03 03:04:03 +0000870</ul>
871
872<p>
Reid Spencer128a7a72007-02-03 21:06:43 +0000873Once the proper category of container is determined, you can fine tune the
Chris Lattner098129a2007-02-03 03:04:03 +0000874memory use, constant factors, and cache behaviors of access by intelligently
Reid Spencer128a7a72007-02-03 21:06:43 +0000875picking a member of the category. Note that constant factors and cache behavior
Chris Lattner098129a2007-02-03 03:04:03 +0000876can be a big deal. If you have a vector that usually only contains a few
877elements (but could contain many), for example, it's much better to use
878<a href="#dss_smallvector">SmallVector</a> than <a href="#dss_vector">vector</a>
879. Doing so avoids (relatively) expensive malloc/free calls, which dwarf the
880cost of adding the elements to the container. </p>
881
Chris Lattner098129a2007-02-03 03:04:03 +0000882<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000883<h3>
Chris Lattner098129a2007-02-03 03:04:03 +0000884 <a name="ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000885</h3>
Chris Lattner098129a2007-02-03 03:04:03 +0000886
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000887<div>
Chris Lattner098129a2007-02-03 03:04:03 +0000888There are a variety of sequential containers available for you, based on your
889needs. Pick the first in this section that will do what you want.
Chris Lattner3b4f4172011-07-22 21:34:12 +0000890
Chris Lattner098129a2007-02-03 03:04:03 +0000891<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000892<h4>
Chris Lattner8ae42612011-04-05 23:18:20 +0000893 <a name="dss_arrayref">llvm/ADT/ArrayRef.h</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000894</h4>
Chris Lattner8ae42612011-04-05 23:18:20 +0000895
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000896<div>
Chris Lattner8ae42612011-04-05 23:18:20 +0000897<p>The llvm::ArrayRef class is the preferred class to use in an interface that
898 accepts a sequential list of elements in memory and just reads from them. By
899 taking an ArrayRef, the API can be passed a fixed size array, an std::vector,
900 an llvm::SmallVector and anything else that is contiguous in memory.
901</p>
902</div>
903
904
905
906<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000907<h4>
Chris Lattner098129a2007-02-03 03:04:03 +0000908 <a name="dss_fixedarrays">Fixed Size Arrays</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000909</h4>
Chris Lattner098129a2007-02-03 03:04:03 +0000910
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000911<div>
Chris Lattner098129a2007-02-03 03:04:03 +0000912<p>Fixed size arrays are very simple and very fast. They are good if you know
913exactly how many elements you have, or you have a (low) upper bound on how many
914you have.</p>
915</div>
916
917<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000918<h4>
Chris Lattner098129a2007-02-03 03:04:03 +0000919 <a name="dss_heaparrays">Heap Allocated Arrays</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000920</h4>
Chris Lattner098129a2007-02-03 03:04:03 +0000921
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000922<div>
Chris Lattner098129a2007-02-03 03:04:03 +0000923<p>Heap allocated arrays (new[] + delete[]) are also simple. They are good if
924the number of elements is variable, if you know how many elements you will need
925before the array is allocated, and if the array is usually large (if not,
926consider a <a href="#dss_smallvector">SmallVector</a>). The cost of a heap
927allocated array is the cost of the new/delete (aka malloc/free). Also note that
928if you are allocating an array of a type with a constructor, the constructor and
Reid Spencer128a7a72007-02-03 21:06:43 +0000929destructors will be run for every element in the array (re-sizable vectors only
Chris Lattner098129a2007-02-03 03:04:03 +0000930construct those elements actually used).</p>
931</div>
932
933<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000934<h4>
Chris Lattner9d69d4a2011-07-18 01:40:02 +0000935 <a name="dss_tinyptrvector">"llvm/ADT/TinyPtrVector.h"</a>
936</h4>
937
938
939<div>
940<p><tt>TinyPtrVector&lt;Type&gt;</tt> is a highly specialized collection class
941that is optimized to avoid allocation in the case when a vector has zero or one
942elements. It has two major restrictions: 1) it can only hold values of pointer
943type, and 2) it cannot hold a null pointer.</p>
944
945<p>Since this container is highly specialized, it is rarely used.</p>
946
947</div>
948
Chris Lattner9d69d4a2011-07-18 01:40:02 +0000949<!-- _______________________________________________________________________ -->
950<h4>
Chris Lattner098129a2007-02-03 03:04:03 +0000951 <a name="dss_smallvector">"llvm/ADT/SmallVector.h"</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000952</h4>
Chris Lattner098129a2007-02-03 03:04:03 +0000953
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000954<div>
Chris Lattner098129a2007-02-03 03:04:03 +0000955<p><tt>SmallVector&lt;Type, N&gt;</tt> is a simple class that looks and smells
956just like <tt>vector&lt;Type&gt;</tt>:
957it supports efficient iteration, lays out elements in memory order (so you can
958do pointer arithmetic between elements), supports efficient push_back/pop_back
959operations, supports efficient random access to its elements, etc.</p>
960
961<p>The advantage of SmallVector is that it allocates space for
962some number of elements (N) <b>in the object itself</b>. Because of this, if
963the SmallVector is dynamically smaller than N, no malloc is performed. This can
964be a big win in cases where the malloc/free call is far more expensive than the
965code that fiddles around with the elements.</p>
966
967<p>This is good for vectors that are "usually small" (e.g. the number of
968predecessors/successors of a block is usually less than 8). On the other hand,
969this makes the size of the SmallVector itself large, so you don't want to
970allocate lots of them (doing so will waste a lot of space). As such,
971SmallVectors are most useful when on the stack.</p>
972
973<p>SmallVector also provides a nice portable and efficient replacement for
974<tt>alloca</tt>.</p>
975
976</div>
977
978<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000979<h4>
Chris Lattner098129a2007-02-03 03:04:03 +0000980 <a name="dss_vector">&lt;vector&gt;</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000981</h4>
Chris Lattner098129a2007-02-03 03:04:03 +0000982
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000983<div>
Chris Lattner098129a2007-02-03 03:04:03 +0000984<p>
985std::vector is well loved and respected. It is useful when SmallVector isn't:
986when the size of the vector is often large (thus the small optimization will
987rarely be a benefit) or if you will be allocating many instances of the vector
988itself (which would waste space for elements that aren't in the container).
989vector is also useful when interfacing with code that expects vectors :).
990</p>
Chris Lattner32d84762007-02-05 06:30:51 +0000991
992<p>One worthwhile note about std::vector: avoid code like this:</p>
993
994<div class="doc_code">
995<pre>
996for ( ... ) {
Chris Lattner9bb3dbb2007-03-28 18:27:57 +0000997 std::vector&lt;foo&gt; V;
Jim Grosbach087f0502011-10-28 20:52:20 +0000998 // make use of V.
Chris Lattner32d84762007-02-05 06:30:51 +0000999}
1000</pre>
1001</div>
1002
1003<p>Instead, write this as:</p>
1004
1005<div class="doc_code">
1006<pre>
Chris Lattner9bb3dbb2007-03-28 18:27:57 +00001007std::vector&lt;foo&gt; V;
Chris Lattner32d84762007-02-05 06:30:51 +00001008for ( ... ) {
Jim Grosbach087f0502011-10-28 20:52:20 +00001009 // make use of V.
Chris Lattner32d84762007-02-05 06:30:51 +00001010 V.clear();
1011}
1012</pre>
1013</div>
1014
1015<p>Doing so will save (at least) one heap allocation and free per iteration of
1016the loop.</p>
1017
Chris Lattner098129a2007-02-03 03:04:03 +00001018</div>
1019
1020<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001021<h4>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001022 <a name="dss_deque">&lt;deque&gt;</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001023</h4>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001024
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001025<div>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001026<p>std::deque is, in some senses, a generalized version of std::vector. Like
1027std::vector, it provides constant time random access and other similar
1028properties, but it also provides efficient access to the front of the list. It
1029does not guarantee continuity of elements within memory.</p>
1030
1031<p>In exchange for this extra flexibility, std::deque has significantly higher
1032constant factor costs than std::vector. If possible, use std::vector or
1033something cheaper.</p>
1034</div>
1035
1036<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001037<h4>
Chris Lattner098129a2007-02-03 03:04:03 +00001038 <a name="dss_list">&lt;list&gt;</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001039</h4>
Chris Lattner098129a2007-02-03 03:04:03 +00001040
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001041<div>
Chris Lattner098129a2007-02-03 03:04:03 +00001042<p>std::list is an extremely inefficient class that is rarely useful.
1043It performs a heap allocation for every element inserted into it, thus having an
1044extremely high constant factor, particularly for small data types. std::list
1045also only supports bidirectional iteration, not random access iteration.</p>
1046
1047<p>In exchange for this high cost, std::list supports efficient access to both
1048ends of the list (like std::deque, but unlike std::vector or SmallVector). In
1049addition, the iterator invalidation characteristics of std::list are stronger
1050than that of a vector class: inserting or removing an element into the list does
1051not invalidate iterator or pointers to other elements in the list.</p>
1052</div>
1053
1054<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001055<h4>
Gabor Greif3899e492009-02-27 11:37:41 +00001056 <a name="dss_ilist">llvm/ADT/ilist.h</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001057</h4>
Chris Lattner098129a2007-02-03 03:04:03 +00001058
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001059<div>
Chris Lattner098129a2007-02-03 03:04:03 +00001060<p><tt>ilist&lt;T&gt;</tt> implements an 'intrusive' doubly-linked list. It is
1061intrusive, because it requires the element to store and provide access to the
1062prev/next pointers for the list.</p>
1063
Gabor Greif2946d1c2009-02-27 12:02:19 +00001064<p><tt>ilist</tt> has the same drawbacks as <tt>std::list</tt>, and additionally
1065requires an <tt>ilist_traits</tt> implementation for the element type, but it
1066provides some novel characteristics. In particular, it can efficiently store
1067polymorphic objects, the traits class is informed when an element is inserted or
Gabor Greif0cbcabe2009-03-12 09:47:03 +00001068removed from the list, and <tt>ilist</tt>s are guaranteed to support a
1069constant-time splice operation.</p>
Chris Lattner098129a2007-02-03 03:04:03 +00001070
Gabor Greif0cbcabe2009-03-12 09:47:03 +00001071<p>These properties are exactly what we want for things like
1072<tt>Instruction</tt>s and basic blocks, which is why these are implemented with
1073<tt>ilist</tt>s.</p>
Gabor Greif3899e492009-02-27 11:37:41 +00001074
1075Related classes of interest are explained in the following subsections:
1076 <ul>
Gabor Greif01862502009-02-27 13:28:07 +00001077 <li><a href="#dss_ilist_traits">ilist_traits</a></li>
Gabor Greif2946d1c2009-02-27 12:02:19 +00001078 <li><a href="#dss_iplist">iplist</a></li>
Gabor Greif3899e492009-02-27 11:37:41 +00001079 <li><a href="#dss_ilist_node">llvm/ADT/ilist_node.h</a></li>
Gabor Greif6a65f422009-03-12 10:30:31 +00001080 <li><a href="#dss_ilist_sentinel">Sentinels</a></li>
Gabor Greif3899e492009-02-27 11:37:41 +00001081 </ul>
1082</div>
1083
1084<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001085<h4>
Argyrios Kyrtzidis81df0892011-06-15 19:56:01 +00001086 <a name="dss_packedvector">llvm/ADT/PackedVector.h</a>
1087</h4>
1088
1089<div>
1090<p>
1091Useful for storing a vector of values using only a few number of bits for each
1092value. Apart from the standard operations of a vector-like container, it can
1093also perform an 'or' set operation.
1094</p>
1095
1096<p>For example:</p>
1097
1098<div class="doc_code">
1099<pre>
1100enum State {
1101 None = 0x0,
1102 FirstCondition = 0x1,
1103 SecondCondition = 0x2,
1104 Both = 0x3
1105};
1106
1107State get() {
1108 PackedVector&lt;State, 2&gt; Vec1;
1109 Vec1.push_back(FirstCondition);
1110
1111 PackedVector&lt;State, 2&gt; Vec2;
1112 Vec2.push_back(SecondCondition);
1113
1114 Vec1 |= Vec2;
1115 return Vec1[0]; // returns 'Both'.
1116}
1117</pre>
1118</div>
1119
1120</div>
1121
1122<!-- _______________________________________________________________________ -->
1123<h4>
Gabor Greif01862502009-02-27 13:28:07 +00001124 <a name="dss_ilist_traits">ilist_traits</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001125</h4>
Gabor Greif01862502009-02-27 13:28:07 +00001126
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001127<div>
Gabor Greif01862502009-02-27 13:28:07 +00001128<p><tt>ilist_traits&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s customization
1129mechanism. <tt>iplist&lt;T&gt;</tt> (and consequently <tt>ilist&lt;T&gt;</tt>)
1130publicly derive from this traits class.</p>
1131</div>
1132
1133<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001134<h4>
Gabor Greif2946d1c2009-02-27 12:02:19 +00001135 <a name="dss_iplist">iplist</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001136</h4>
Gabor Greif2946d1c2009-02-27 12:02:19 +00001137
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001138<div>
Gabor Greif2946d1c2009-02-27 12:02:19 +00001139<p><tt>iplist&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s base and as such
Gabor Greif0cbcabe2009-03-12 09:47:03 +00001140supports a slightly narrower interface. Notably, inserters from
1141<tt>T&amp;</tt> are absent.</p>
Gabor Greif01862502009-02-27 13:28:07 +00001142
1143<p><tt>ilist_traits&lt;T&gt;</tt> is a public base of this class and can be
1144used for a wide variety of customizations.</p>
Gabor Greif2946d1c2009-02-27 12:02:19 +00001145</div>
1146
1147<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001148<h4>
Gabor Greif3899e492009-02-27 11:37:41 +00001149 <a name="dss_ilist_node">llvm/ADT/ilist_node.h</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001150</h4>
Gabor Greif3899e492009-02-27 11:37:41 +00001151
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001152<div>
Gabor Greif3899e492009-02-27 11:37:41 +00001153<p><tt>ilist_node&lt;T&gt;</tt> implements a the forward and backward links
1154that are expected by the <tt>ilist&lt;T&gt;</tt> (and analogous containers)
1155in the default manner.</p>
1156
1157<p><tt>ilist_node&lt;T&gt;</tt>s are meant to be embedded in the node type
Gabor Greif0cbcabe2009-03-12 09:47:03 +00001158<tt>T</tt>, usually <tt>T</tt> publicly derives from
1159<tt>ilist_node&lt;T&gt;</tt>.</p>
Chris Lattner098129a2007-02-03 03:04:03 +00001160</div>
1161
1162<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001163<h4>
Gabor Greif6a65f422009-03-12 10:30:31 +00001164 <a name="dss_ilist_sentinel">Sentinels</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001165</h4>
Gabor Greif6a65f422009-03-12 10:30:31 +00001166
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001167<div>
Dan Gohmancf0c9bc2010-02-25 23:51:27 +00001168<p><tt>ilist</tt>s have another specialty that must be considered. To be a good
Gabor Greif6a65f422009-03-12 10:30:31 +00001169citizen in the C++ ecosystem, it needs to support the standard container
1170operations, such as <tt>begin</tt> and <tt>end</tt> iterators, etc. Also, the
1171<tt>operator--</tt> must work correctly on the <tt>end</tt> iterator in the
1172case of non-empty <tt>ilist</tt>s.</p>
1173
1174<p>The only sensible solution to this problem is to allocate a so-called
1175<i>sentinel</i> along with the intrusive list, which serves as the <tt>end</tt>
1176iterator, providing the back-link to the last element. However conforming to the
1177C++ convention it is illegal to <tt>operator++</tt> beyond the sentinel and it
1178also must not be dereferenced.</p>
1179
1180<p>These constraints allow for some implementation freedom to the <tt>ilist</tt>
1181how to allocate and store the sentinel. The corresponding policy is dictated
1182by <tt>ilist_traits&lt;T&gt;</tt>. By default a <tt>T</tt> gets heap-allocated
1183whenever the need for a sentinel arises.</p>
1184
1185<p>While the default policy is sufficient in most cases, it may break down when
1186<tt>T</tt> does not provide a default constructor. Also, in the case of many
1187instances of <tt>ilist</tt>s, the memory overhead of the associated sentinels
1188is wasted. To alleviate the situation with numerous and voluminous
1189<tt>T</tt>-sentinels, sometimes a trick is employed, leading to <i>ghostly
1190sentinels</i>.</p>
1191
1192<p>Ghostly sentinels are obtained by specially-crafted <tt>ilist_traits&lt;T&gt;</tt>
1193which superpose the sentinel with the <tt>ilist</tt> instance in memory. Pointer
1194arithmetic is used to obtain the sentinel, which is relative to the
1195<tt>ilist</tt>'s <tt>this</tt> pointer. The <tt>ilist</tt> is augmented by an
1196extra pointer, which serves as the back-link of the sentinel. This is the only
1197field in the ghostly sentinel which can be legally accessed.</p>
1198</div>
1199
1200<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001201<h4>
Chris Lattnerc5722432007-02-03 19:49:31 +00001202 <a name="dss_other">Other Sequential Container options</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001203</h4>
Chris Lattner098129a2007-02-03 03:04:03 +00001204
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001205<div>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001206<p>Other STL containers are available, such as std::string.</p>
Chris Lattner098129a2007-02-03 03:04:03 +00001207
1208<p>There are also various STL adapter classes such as std::queue,
1209std::priority_queue, std::stack, etc. These provide simplified access to an
1210underlying container but don't affect the cost of the container itself.</p>
1211
1212</div>
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001213</div>
Chris Lattner098129a2007-02-03 03:04:03 +00001214
1215<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001216<h3>
Chris Lattner7314a202011-07-22 20:46:49 +00001217 <a name="ds_string">String-like containers</a>
1218</h3>
1219
1220<div>
1221
1222<p>
Chris Lattner3b4f4172011-07-22 21:34:12 +00001223There are a variety of ways to pass around and use strings in C and C++, and
1224LLVM adds a few new options to choose from. Pick the first option on this list
1225that will do what you need, they are ordered according to their relative cost.
1226</p>
1227<p>
1228Note that is is generally preferred to <em>not</em> pass strings around as
1229"<tt>const char*</tt>"'s. These have a number of problems, including the fact
1230that they cannot represent embedded nul ("\0") characters, and do not have a
1231length available efficiently. The general replacement for '<tt>const
1232char*</tt>' is StringRef.
1233</p>
1234
1235<p>For more information on choosing string containers for APIs, please see
1236<a href="#string_apis">Passing strings</a>.</p>
1237
1238
1239<!-- _______________________________________________________________________ -->
1240<h4>
1241 <a name="dss_stringref">llvm/ADT/StringRef.h</a>
1242</h4>
1243
1244<div>
1245<p>
1246The StringRef class is a simple value class that contains a pointer to a
1247character and a length, and is quite related to the <a
1248href="#dss_arrayref">ArrayRef</a> class (but specialized for arrays of
1249characters). Because StringRef carries a length with it, it safely handles
1250strings with embedded nul characters in it, getting the length does not require
1251a strlen call, and it even has very convenient APIs for slicing and dicing the
1252character range that it represents.
1253</p>
1254
1255<p>
1256StringRef is ideal for passing simple strings around that are known to be live,
1257either because they are C string literals, std::string, a C array, or a
1258SmallVector. Each of these cases has an efficient implicit conversion to
1259StringRef, which doesn't result in a dynamic strlen being executed.
1260</p>
1261
1262<p>StringRef has a few major limitations which make more powerful string
1263containers useful:</p>
1264
1265<ol>
1266<li>You cannot directly convert a StringRef to a 'const char*' because there is
1267no way to add a trailing nul (unlike the .c_str() method on various stronger
1268classes).</li>
1269
1270
1271<li>StringRef doesn't own or keep alive the underlying string bytes.
1272As such it can easily lead to dangling pointers, and is not suitable for
1273embedding in datastructures in most cases (instead, use an std::string or
1274something like that).</li>
1275
1276<li>For the same reason, StringRef cannot be used as the return value of a
1277method if the method "computes" the result string. Instead, use
1278std::string.</li>
1279
Chris Lattnerec8f1ea2011-07-23 17:18:57 +00001280<li>StringRef's do not allow you to mutate the pointed-to string bytes and it
1281doesn't allow you to insert or remove bytes from the range. For editing
1282operations like this, it interoperates with the <a
1283href="#dss_twine">Twine</a> class.</li>
Chris Lattner3b4f4172011-07-22 21:34:12 +00001284</ol>
1285
1286<p>Because of its strengths and limitations, it is very common for a function to
1287take a StringRef and for a method on an object to return a StringRef that
1288points into some string that it owns.</p>
1289
1290</div>
1291
1292<!-- _______________________________________________________________________ -->
1293<h4>
1294 <a name="dss_twine">llvm/ADT/Twine.h</a>
1295</h4>
1296
1297<div>
1298 <p>
1299 The Twine class is used as an intermediary datatype for APIs that want to take
1300 a string that can be constructed inline with a series of concatenations.
1301 Twine works by forming recursive instances of the Twine datatype (a simple
1302 value object) on the stack as temporary objects, linking them together into a
1303 tree which is then linearized when the Twine is consumed. Twine is only safe
1304 to use as the argument to a function, and should always be a const reference,
1305 e.g.:
1306 </p>
1307
1308 <pre>
1309 void foo(const Twine &amp;T);
1310 ...
1311 StringRef X = ...
1312 unsigned i = ...
1313 foo(X + "." + Twine(i));
1314 </pre>
1315
1316 <p>This example forms a string like "blarg.42" by concatenating the values
1317 together, and does not form intermediate strings containing "blarg" or
1318 "blarg.".
1319 </p>
1320
1321 <p>Because Twine is constructed with temporary objects on the stack, and
1322 because these instances are destroyed at the end of the current statement,
1323 it is an inherently dangerous API. For example, this simple variant contains
1324 undefined behavior and will probably crash:</p>
1325
1326 <pre>
1327 void foo(const Twine &amp;T);
1328 ...
1329 StringRef X = ...
1330 unsigned i = ...
1331 const Twine &amp;Tmp = X + "." + Twine(i);
1332 foo(Tmp);
1333 </pre>
1334
1335 <p>... because the temporaries are destroyed before the call. That said,
1336 Twine's are much more efficient than intermediate std::string temporaries, and
1337 they work really well with StringRef. Just be aware of their limitations.</p>
1338
1339</div>
1340
1341
1342<!-- _______________________________________________________________________ -->
1343<h4>
1344 <a name="dss_smallstring">llvm/ADT/SmallString.h</a>
1345</h4>
1346
1347<div>
1348
1349<p>SmallString is a subclass of <a href="#dss_smallvector">SmallVector</a> that
1350adds some convenience APIs like += that takes StringRef's. SmallString avoids
1351allocating memory in the case when the preallocated space is enough to hold its
1352data, and it calls back to general heap allocation when required. Since it owns
1353its data, it is very safe to use and supports full mutation of the string.</p>
1354
1355<p>Like SmallVector's, the big downside to SmallString is their sizeof. While
1356they are optimized for small strings, they themselves are not particularly
1357small. This means that they work great for temporary scratch buffers on the
1358stack, but should not generally be put into the heap: it is very rare to
1359see a SmallString as the member of a frequently-allocated heap data structure
1360or returned by-value.
Chris Lattner7314a202011-07-22 20:46:49 +00001361</p>
1362
1363</div>
Chris Lattner3b4f4172011-07-22 21:34:12 +00001364
1365<!-- _______________________________________________________________________ -->
1366<h4>
1367 <a name="dss_stdstring">std::string</a>
1368</h4>
1369
1370<div>
1371
1372 <p>The standard C++ std::string class is a very general class that (like
1373 SmallString) owns its underlying data. sizeof(std::string) is very reasonable
1374 so it can be embedded into heap data structures and returned by-value.
1375 On the other hand, std::string is highly inefficient for inline editing (e.g.
1376 concatenating a bunch of stuff together) and because it is provided by the
1377 standard library, its performance characteristics depend a lot of the host
1378 standard library (e.g. libc++ and MSVC provide a highly optimized string
1379 class, GCC contains a really slow implementation).
1380 </p>
1381
1382 <p>The major disadvantage of std::string is that almost every operation that
1383 makes them larger can allocate memory, which is slow. As such, it is better
1384 to use SmallVector or Twine as a scratch buffer, but then use std::string to
1385 persist the result.</p>
1386
1387
1388</div>
1389
1390<!-- end of strings -->
1391</div>
1392
Chris Lattner7314a202011-07-22 20:46:49 +00001393
1394<!-- ======================================================================= -->
1395<h3>
Chris Lattner098129a2007-02-03 03:04:03 +00001396 <a name="ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001397</h3>
Chris Lattner098129a2007-02-03 03:04:03 +00001398
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001399<div>
Chris Lattner098129a2007-02-03 03:04:03 +00001400
Chris Lattner74c4ca12007-02-03 07:59:07 +00001401<p>Set-like containers are useful when you need to canonicalize multiple values
1402into a single representation. There are several different choices for how to do
1403this, providing various trade-offs.</p>
1404
Chris Lattner74c4ca12007-02-03 07:59:07 +00001405<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001406<h4>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001407 <a name="dss_sortedvectorset">A sorted 'vector'</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001408</h4>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001409
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001410<div>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001411
Chris Lattner3b23a8c2007-02-03 08:10:45 +00001412<p>If you intend to insert a lot of elements, then do a lot of queries, a
1413great approach is to use a vector (or other sequential container) with
Chris Lattner74c4ca12007-02-03 07:59:07 +00001414std::sort+std::unique to remove duplicates. This approach works really well if
Chris Lattner3b23a8c2007-02-03 08:10:45 +00001415your usage pattern has these two distinct phases (insert then query), and can be
1416coupled with a good choice of <a href="#ds_sequential">sequential container</a>.
1417</p>
1418
1419<p>
1420This combination provides the several nice properties: the result data is
1421contiguous in memory (good for cache locality), has few allocations, is easy to
1422address (iterators in the final vector are just indices or pointers), and can be
1423efficiently queried with a standard binary or radix search.</p>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001424
1425</div>
1426
1427<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001428<h4>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001429 <a name="dss_smallset">"llvm/ADT/SmallSet.h"</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001430</h4>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001431
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001432<div>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001433
Reid Spencer128a7a72007-02-03 21:06:43 +00001434<p>If you have a set-like data structure that is usually small and whose elements
Chris Lattner4ddfac12007-02-03 07:59:51 +00001435are reasonably small, a <tt>SmallSet&lt;Type, N&gt;</tt> is a good choice. This set
Chris Lattner74c4ca12007-02-03 07:59:07 +00001436has space for N elements in place (thus, if the set is dynamically smaller than
Chris Lattner14868db2007-02-03 08:20:15 +00001437N, no malloc traffic is required) and accesses them with a simple linear search.
1438When the set grows beyond 'N' elements, it allocates a more expensive representation that
Chris Lattner74c4ca12007-02-03 07:59:07 +00001439guarantees efficient access (for most types, it falls back to std::set, but for
Chris Lattner14868db2007-02-03 08:20:15 +00001440pointers it uses something far better, <a
Chris Lattner74c4ca12007-02-03 07:59:07 +00001441href="#dss_smallptrset">SmallPtrSet</a>).</p>
1442
1443<p>The magic of this class is that it handles small sets extremely efficiently,
1444but gracefully handles extremely large sets without loss of efficiency. The
1445drawback is that the interface is quite small: it supports insertion, queries
1446and erasing, but does not support iteration.</p>
1447
1448</div>
1449
1450<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001451<h4>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001452 <a name="dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001453</h4>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001454
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001455<div>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001456
Gabor Greif4de73682010-03-26 19:30:47 +00001457<p>SmallPtrSet has all the advantages of <tt>SmallSet</tt> (and a <tt>SmallSet</tt> of pointers is
1458transparently implemented with a <tt>SmallPtrSet</tt>), but also supports iterators. If
Chris Lattner14868db2007-02-03 08:20:15 +00001459more than 'N' insertions are performed, a single quadratically
Chris Lattner74c4ca12007-02-03 07:59:07 +00001460probed hash table is allocated and grows as needed, providing extremely
1461efficient access (constant time insertion/deleting/queries with low constant
1462factors) and is very stingy with malloc traffic.</p>
1463
Gabor Greif4de73682010-03-26 19:30:47 +00001464<p>Note that, unlike <tt>std::set</tt>, the iterators of <tt>SmallPtrSet</tt> are invalidated
Chris Lattner74c4ca12007-02-03 07:59:07 +00001465whenever an insertion occurs. Also, the values visited by the iterators are not
1466visited in sorted order.</p>
1467
1468</div>
1469
1470<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001471<h4>
Chris Lattnerc28476f2007-09-30 00:58:59 +00001472 <a name="dss_denseset">"llvm/ADT/DenseSet.h"</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001473</h4>
Chris Lattnerc28476f2007-09-30 00:58:59 +00001474
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001475<div>
Chris Lattnerc28476f2007-09-30 00:58:59 +00001476
1477<p>
1478DenseSet is a simple quadratically probed hash table. It excels at supporting
1479small values: it uses a single allocation to hold all of the pairs that
1480are currently inserted in the set. DenseSet is a great way to unique small
1481values that are not simple pointers (use <a
1482href="#dss_smallptrset">SmallPtrSet</a> for pointers). Note that DenseSet has
1483the same requirements for the value type that <a
1484href="#dss_densemap">DenseMap</a> has.
1485</p>
1486
1487</div>
1488
1489<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001490<h4>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001491 <a name="dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001492</h4>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001493
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001494<div>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001495
Chris Lattner098129a2007-02-03 03:04:03 +00001496<p>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001497FoldingSet is an aggregate class that is really good at uniquing
1498expensive-to-create or polymorphic objects. It is a combination of a chained
1499hash table with intrusive links (uniqued objects are required to inherit from
Chris Lattner14868db2007-02-03 08:20:15 +00001500FoldingSetNode) that uses <a href="#dss_smallvector">SmallVector</a> as part of
1501its ID process.</p>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001502
Chris Lattner14868db2007-02-03 08:20:15 +00001503<p>Consider a case where you want to implement a "getOrCreateFoo" method for
Chris Lattner74c4ca12007-02-03 07:59:07 +00001504a complex object (for example, a node in the code generator). The client has a
1505description of *what* it wants to generate (it knows the opcode and all the
1506operands), but we don't want to 'new' a node, then try inserting it into a set
Chris Lattner14868db2007-02-03 08:20:15 +00001507only to find out it already exists, at which point we would have to delete it
1508and return the node that already exists.
Chris Lattner098129a2007-02-03 03:04:03 +00001509</p>
1510
Chris Lattner74c4ca12007-02-03 07:59:07 +00001511<p>To support this style of client, FoldingSet perform a query with a
1512FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
1513element that we want to query for. The query either returns the element
1514matching the ID or it returns an opaque ID that indicates where insertion should
Chris Lattner14868db2007-02-03 08:20:15 +00001515take place. Construction of the ID usually does not require heap traffic.</p>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001516
1517<p>Because FoldingSet uses intrusive links, it can support polymorphic objects
1518in the set (for example, you can have SDNode instances mixed with LoadSDNodes).
1519Because the elements are individually allocated, pointers to the elements are
1520stable: inserting or removing elements does not invalidate any pointers to other
1521elements.
1522</p>
1523
1524</div>
1525
1526<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001527<h4>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001528 <a name="dss_set">&lt;set&gt;</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001529</h4>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001530
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001531<div>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001532
Chris Lattnerc5722432007-02-03 19:49:31 +00001533<p><tt>std::set</tt> is a reasonable all-around set class, which is decent at
1534many things but great at nothing. std::set allocates memory for each element
Chris Lattner74c4ca12007-02-03 07:59:07 +00001535inserted (thus it is very malloc intensive) and typically stores three pointers
Chris Lattner14868db2007-02-03 08:20:15 +00001536per element in the set (thus adding a large amount of per-element space
1537overhead). It offers guaranteed log(n) performance, which is not particularly
Chris Lattnerc5722432007-02-03 19:49:31 +00001538fast from a complexity standpoint (particularly if the elements of the set are
1539expensive to compare, like strings), and has extremely high constant factors for
1540lookup, insertion and removal.</p>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001541
Chris Lattner14868db2007-02-03 08:20:15 +00001542<p>The advantages of std::set are that its iterators are stable (deleting or
Chris Lattner74c4ca12007-02-03 07:59:07 +00001543inserting an element from the set does not affect iterators or pointers to other
1544elements) and that iteration over the set is guaranteed to be in sorted order.
1545If the elements in the set are large, then the relative overhead of the pointers
1546and malloc traffic is not a big deal, but if the elements of the set are small,
1547std::set is almost never a good choice.</p>
1548
1549</div>
1550
1551<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001552<h4>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001553 <a name="dss_setvector">"llvm/ADT/SetVector.h"</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001554</h4>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001555
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001556<div>
Chris Lattneredca3c52007-02-04 00:00:26 +00001557<p>LLVM's SetVector&lt;Type&gt; is an adapter class that combines your choice of
1558a set-like container along with a <a href="#ds_sequential">Sequential
1559Container</a>. The important property
Chris Lattner74c4ca12007-02-03 07:59:07 +00001560that this provides is efficient insertion with uniquing (duplicate elements are
1561ignored) with iteration support. It implements this by inserting elements into
1562both a set-like container and the sequential container, using the set-like
1563container for uniquing and the sequential container for iteration.
1564</p>
1565
1566<p>The difference between SetVector and other sets is that the order of
1567iteration is guaranteed to match the order of insertion into the SetVector.
1568This property is really important for things like sets of pointers. Because
1569pointer values are non-deterministic (e.g. vary across runs of the program on
Chris Lattneredca3c52007-02-04 00:00:26 +00001570different machines), iterating over the pointers in the set will
Chris Lattner74c4ca12007-02-03 07:59:07 +00001571not be in a well-defined order.</p>
1572
1573<p>
1574The drawback of SetVector is that it requires twice as much space as a normal
1575set and has the sum of constant factors from the set-like container and the
1576sequential container that it uses. Use it *only* if you need to iterate over
1577the elements in a deterministic order. SetVector is also expensive to delete
Chris Lattneredca3c52007-02-04 00:00:26 +00001578elements out of (linear time), unless you use it's "pop_back" method, which is
1579faster.
Chris Lattner74c4ca12007-02-03 07:59:07 +00001580</p>
1581
Bill Wendling34781732011-10-11 06:33:56 +00001582<p><tt>SetVector</tt> is an adapter class that defaults to
1583 using <tt>std::vector</tt> and a size 16 <tt>SmallSet</tt> for the underlying
1584 containers, so it is quite expensive. However,
1585 <tt>"llvm/ADT/SetVector.h"</tt> also provides a <tt>SmallSetVector</tt>
1586 class, which defaults to using a <tt>SmallVector</tt> and <tt>SmallSet</tt>
1587 of a specified size. If you use this, and if your sets are dynamically
1588 smaller than <tt>N</tt>, you will save a lot of heap traffic.</p>
Chris Lattneredca3c52007-02-04 00:00:26 +00001589
Chris Lattner74c4ca12007-02-03 07:59:07 +00001590</div>
1591
1592<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001593<h4>
Chris Lattnerc5722432007-02-03 19:49:31 +00001594 <a name="dss_uniquevector">"llvm/ADT/UniqueVector.h"</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001595</h4>
Chris Lattnerc5722432007-02-03 19:49:31 +00001596
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001597<div>
Chris Lattnerc5722432007-02-03 19:49:31 +00001598
1599<p>
1600UniqueVector is similar to <a href="#dss_setvector">SetVector</a>, but it
1601retains a unique ID for each element inserted into the set. It internally
1602contains a map and a vector, and it assigns a unique ID for each value inserted
1603into the set.</p>
1604
1605<p>UniqueVector is very expensive: its cost is the sum of the cost of
1606maintaining both the map and vector, it has high complexity, high constant
1607factors, and produces a lot of malloc traffic. It should be avoided.</p>
1608
1609</div>
1610
1611
1612<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001613<h4>
Chris Lattnerc5722432007-02-03 19:49:31 +00001614 <a name="dss_otherset">Other Set-Like Container Options</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001615</h4>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001616
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001617<div>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001618
1619<p>
1620The STL provides several other options, such as std::multiset and the various
Chris Lattnerf1a30822009-03-09 05:20:45 +00001621"hash_set" like containers (whether from C++ TR1 or from the SGI library). We
1622never use hash_set and unordered_set because they are generally very expensive
1623(each insertion requires a malloc) and very non-portable.
1624</p>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001625
1626<p>std::multiset is useful if you're not interested in elimination of
Chris Lattner14868db2007-02-03 08:20:15 +00001627duplicates, but has all the drawbacks of std::set. A sorted vector (where you
1628don't delete duplicate entries) or some other approach is almost always
1629better.</p>
Chris Lattner74c4ca12007-02-03 07:59:07 +00001630
Chris Lattner098129a2007-02-03 03:04:03 +00001631</div>
1632
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001633</div>
1634
Chris Lattner098129a2007-02-03 03:04:03 +00001635<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001636<h3>
Chris Lattner098129a2007-02-03 03:04:03 +00001637 <a name="ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001638</h3>
Chris Lattner098129a2007-02-03 03:04:03 +00001639
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001640<div>
Chris Lattnerc5722432007-02-03 19:49:31 +00001641Map-like containers are useful when you want to associate data to a key. As
1642usual, there are a lot of different ways to do this. :)
Chris Lattnerc5722432007-02-03 19:49:31 +00001643
1644<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001645<h4>
Chris Lattnerc5722432007-02-03 19:49:31 +00001646 <a name="dss_sortedvectormap">A sorted 'vector'</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001647</h4>
Chris Lattnerc5722432007-02-03 19:49:31 +00001648
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001649<div>
Chris Lattnerc5722432007-02-03 19:49:31 +00001650
1651<p>
1652If your usage pattern follows a strict insert-then-query approach, you can
1653trivially use the same approach as <a href="#dss_sortedvectorset">sorted vectors
1654for set-like containers</a>. The only difference is that your query function
1655(which uses std::lower_bound to get efficient log(n) lookup) should only compare
1656the key, not both the key and value. This yields the same advantages as sorted
1657vectors for sets.
1658</p>
1659</div>
1660
1661<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001662<h4>
Chris Lattner796f9fa2007-02-08 19:14:21 +00001663 <a name="dss_stringmap">"llvm/ADT/StringMap.h"</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001664</h4>
Chris Lattnerc5722432007-02-03 19:49:31 +00001665
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001666<div>
Chris Lattnerc5722432007-02-03 19:49:31 +00001667
1668<p>
1669Strings are commonly used as keys in maps, and they are difficult to support
1670efficiently: they are variable length, inefficient to hash and compare when
Chris Lattner796f9fa2007-02-08 19:14:21 +00001671long, expensive to copy, etc. StringMap is a specialized container designed to
1672cope with these issues. It supports mapping an arbitrary range of bytes to an
1673arbitrary other object.</p>
Chris Lattnerc5722432007-02-03 19:49:31 +00001674
Chris Lattner796f9fa2007-02-08 19:14:21 +00001675<p>The StringMap implementation uses a quadratically-probed hash table, where
Chris Lattnerc5722432007-02-03 19:49:31 +00001676the buckets store a pointer to the heap allocated entries (and some other
1677stuff). The entries in the map must be heap allocated because the strings are
1678variable length. The string data (key) and the element object (value) are
1679stored in the same allocation with the string data immediately after the element
1680object. This container guarantees the "<tt>(char*)(&amp;Value+1)</tt>" points
1681to the key string for a value.</p>
1682
Chris Lattner796f9fa2007-02-08 19:14:21 +00001683<p>The StringMap is very fast for several reasons: quadratic probing is very
Chris Lattnerc5722432007-02-03 19:49:31 +00001684cache efficient for lookups, the hash value of strings in buckets is not
Nick Lewycky2a80aca2010-08-01 23:18:45 +00001685recomputed when looking up an element, StringMap rarely has to touch the
Chris Lattnerc5722432007-02-03 19:49:31 +00001686memory for unrelated objects when looking up a value (even when hash collisions
1687happen), hash table growth does not recompute the hash values for strings
1688already in the table, and each pair in the map is store in a single allocation
1689(the string data is stored in the same allocation as the Value of a pair).</p>
1690
Chris Lattner796f9fa2007-02-08 19:14:21 +00001691<p>StringMap also provides query methods that take byte ranges, so it only ever
Chris Lattnerc5722432007-02-03 19:49:31 +00001692copies a string if a value is inserted into the table.</p>
1693</div>
1694
1695<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001696<h4>
Chris Lattnerc5722432007-02-03 19:49:31 +00001697 <a name="dss_indexedmap">"llvm/ADT/IndexedMap.h"</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001698</h4>
Chris Lattnerc5722432007-02-03 19:49:31 +00001699
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001700<div>
Chris Lattnerc5722432007-02-03 19:49:31 +00001701<p>
1702IndexedMap is a specialized container for mapping small dense integers (or
1703values that can be mapped to small dense integers) to some other type. It is
1704internally implemented as a vector with a mapping function that maps the keys to
1705the dense integer range.
1706</p>
1707
1708<p>
1709This is useful for cases like virtual registers in the LLVM code generator: they
1710have a dense mapping that is offset by a compile-time constant (the first
1711virtual register ID).</p>
1712
1713</div>
1714
1715<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001716<h4>
Chris Lattnerc5722432007-02-03 19:49:31 +00001717 <a name="dss_densemap">"llvm/ADT/DenseMap.h"</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001718</h4>
Chris Lattnerc5722432007-02-03 19:49:31 +00001719
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001720<div>
Chris Lattnerc5722432007-02-03 19:49:31 +00001721
1722<p>
1723DenseMap is a simple quadratically probed hash table. It excels at supporting
1724small keys and values: it uses a single allocation to hold all of the pairs that
1725are currently inserted in the map. DenseMap is a great way to map pointers to
1726pointers, or map other small types to each other.
1727</p>
1728
1729<p>
1730There are several aspects of DenseMap that you should be aware of, however. The
1731iterators in a densemap are invalidated whenever an insertion occurs, unlike
1732map. Also, because DenseMap allocates space for a large number of key/value
Chris Lattnera4a264d2007-02-03 20:17:53 +00001733pairs (it starts with 64 by default), it will waste a lot of space if your keys
1734or values are large. Finally, you must implement a partial specialization of
Chris Lattner76c1b972007-09-17 18:34:04 +00001735DenseMapInfo for the key that you want, if it isn't already supported. This
Chris Lattnerc5722432007-02-03 19:49:31 +00001736is required to tell DenseMap about two special marker values (which can never be
Chris Lattnera4a264d2007-02-03 20:17:53 +00001737inserted into the map) that it needs internally.</p>
Chris Lattnerc5722432007-02-03 19:49:31 +00001738
1739</div>
1740
1741<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001742<h4>
Jeffrey Yasskin71a5c222009-10-22 22:11:22 +00001743 <a name="dss_valuemap">"llvm/ADT/ValueMap.h"</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001744</h4>
Jeffrey Yasskin71a5c222009-10-22 22:11:22 +00001745
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001746<div>
Jeffrey Yasskin71a5c222009-10-22 22:11:22 +00001747
1748<p>
1749ValueMap is a wrapper around a <a href="#dss_densemap">DenseMap</a> mapping
1750Value*s (or subclasses) to another type. When a Value is deleted or RAUW'ed,
1751ValueMap will update itself so the new version of the key is mapped to the same
1752value, just as if the key were a WeakVH. You can configure exactly how this
1753happens, and what else happens on these two events, by passing
1754a <code>Config</code> parameter to the ValueMap template.</p>
1755
1756</div>
1757
1758<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001759<h4>
Jakob Stoklund Olesenaca0da62010-12-14 00:55:51 +00001760 <a name="dss_intervalmap">"llvm/ADT/IntervalMap.h"</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001761</h4>
Jakob Stoklund Olesenaca0da62010-12-14 00:55:51 +00001762
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001763<div>
Jakob Stoklund Olesenaca0da62010-12-14 00:55:51 +00001764
1765<p> IntervalMap is a compact map for small keys and values. It maps key
1766intervals instead of single keys, and it will automatically coalesce adjacent
1767intervals. When then map only contains a few intervals, they are stored in the
1768map object itself to avoid allocations.</p>
1769
1770<p> The IntervalMap iterators are quite big, so they should not be passed around
1771as STL iterators. The heavyweight iterators allow a smaller data structure.</p>
1772
1773</div>
1774
1775<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001776<h4>
Chris Lattnerc5722432007-02-03 19:49:31 +00001777 <a name="dss_map">&lt;map&gt;</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001778</h4>
Chris Lattnerc5722432007-02-03 19:49:31 +00001779
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001780<div>
Chris Lattnerc5722432007-02-03 19:49:31 +00001781
1782<p>
1783std::map has similar characteristics to <a href="#dss_set">std::set</a>: it uses
1784a single allocation per pair inserted into the map, it offers log(n) lookup with
1785an extremely large constant factor, imposes a space penalty of 3 pointers per
1786pair in the map, etc.</p>
1787
1788<p>std::map is most useful when your keys or values are very large, if you need
1789to iterate over the collection in sorted order, or if you need stable iterators
1790into the map (i.e. they don't get invalidated if an insertion or deletion of
1791another element takes place).</p>
1792
1793</div>
1794
1795<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001796<h4>
Jakob Stoklund Olesen4359e5e2011-04-05 20:56:08 +00001797 <a name="dss_inteqclasses">"llvm/ADT/IntEqClasses.h"</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001798</h4>
Jakob Stoklund Olesen4359e5e2011-04-05 20:56:08 +00001799
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001800<div>
Jakob Stoklund Olesen4359e5e2011-04-05 20:56:08 +00001801
1802<p>IntEqClasses provides a compact representation of equivalence classes of
1803small integers. Initially, each integer in the range 0..n-1 has its own
1804equivalence class. Classes can be joined by passing two class representatives to
1805the join(a, b) method. Two integers are in the same class when findLeader()
1806returns the same representative.</p>
1807
1808<p>Once all equivalence classes are formed, the map can be compressed so each
1809integer 0..n-1 maps to an equivalence class number in the range 0..m-1, where m
1810is the total number of equivalence classes. The map must be uncompressed before
1811it can be edited again.</p>
1812
1813</div>
1814
1815<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001816<h4>
Chris Lattnerc5722432007-02-03 19:49:31 +00001817 <a name="dss_othermap">Other Map-Like Container Options</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001818</h4>
Chris Lattnerc5722432007-02-03 19:49:31 +00001819
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001820<div>
Chris Lattnerc5722432007-02-03 19:49:31 +00001821
1822<p>
1823The STL provides several other options, such as std::multimap and the various
Chris Lattnerf1a30822009-03-09 05:20:45 +00001824"hash_map" like containers (whether from C++ TR1 or from the SGI library). We
1825never use hash_set and unordered_set because they are generally very expensive
1826(each insertion requires a malloc) and very non-portable.</p>
Chris Lattnerc5722432007-02-03 19:49:31 +00001827
1828<p>std::multimap is useful if you want to map a key to multiple values, but has
1829all the drawbacks of std::map. A sorted vector or some other approach is almost
1830always better.</p>
1831
Chris Lattner098129a2007-02-03 03:04:03 +00001832</div>
1833
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001834</div>
1835
Daniel Berlin1939ace2007-09-24 17:52:25 +00001836<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001837<h3>
Daniel Berlin1939ace2007-09-24 17:52:25 +00001838 <a name="ds_bit">Bit storage containers (BitVector, SparseBitVector)</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001839</h3>
Daniel Berlin1939ace2007-09-24 17:52:25 +00001840
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001841<div>
Chris Lattner7086ce72007-09-25 22:37:50 +00001842<p>Unlike the other containers, there are only two bit storage containers, and
1843choosing when to use each is relatively straightforward.</p>
1844
1845<p>One additional option is
1846<tt>std::vector&lt;bool&gt;</tt>: we discourage its use for two reasons 1) the
1847implementation in many common compilers (e.g. commonly available versions of
1848GCC) is extremely inefficient and 2) the C++ standards committee is likely to
1849deprecate this container and/or change it significantly somehow. In any case,
1850please don't use it.</p>
Daniel Berlin1939ace2007-09-24 17:52:25 +00001851
1852<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001853<h4>
Daniel Berlin1939ace2007-09-24 17:52:25 +00001854 <a name="dss_bitvector">BitVector</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001855</h4>
Daniel Berlin1939ace2007-09-24 17:52:25 +00001856
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001857<div>
Dan Gohman5f7775c2010-01-05 18:24:00 +00001858<p> The BitVector container provides a dynamic size set of bits for manipulation.
Daniel Berlin1939ace2007-09-24 17:52:25 +00001859It supports individual bit setting/testing, as well as set operations. The set
1860operations take time O(size of bitvector), but operations are performed one word
1861at a time, instead of one bit at a time. This makes the BitVector very fast for
1862set operations compared to other containers. Use the BitVector when you expect
1863the number of set bits to be high (IE a dense set).
1864</p>
1865</div>
1866
1867<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001868<h4>
Dan Gohman5f7775c2010-01-05 18:24:00 +00001869 <a name="dss_smallbitvector">SmallBitVector</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001870</h4>
Dan Gohman5f7775c2010-01-05 18:24:00 +00001871
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001872<div>
Dan Gohman5f7775c2010-01-05 18:24:00 +00001873<p> The SmallBitVector container provides the same interface as BitVector, but
1874it is optimized for the case where only a small number of bits, less than
187525 or so, are needed. It also transparently supports larger bit counts, but
1876slightly less efficiently than a plain BitVector, so SmallBitVector should
1877only be used when larger counts are rare.
1878</p>
1879
1880<p>
1881At this time, SmallBitVector does not support set operations (and, or, xor),
1882and its operator[] does not provide an assignable lvalue.
1883</p>
1884</div>
1885
1886<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001887<h4>
Daniel Berlin1939ace2007-09-24 17:52:25 +00001888 <a name="dss_sparsebitvector">SparseBitVector</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001889</h4>
Daniel Berlin1939ace2007-09-24 17:52:25 +00001890
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001891<div>
Daniel Berlin1939ace2007-09-24 17:52:25 +00001892<p> The SparseBitVector container is much like BitVector, with one major
1893difference: Only the bits that are set, are stored. This makes the
1894SparseBitVector much more space efficient than BitVector when the set is sparse,
1895as well as making set operations O(number of set bits) instead of O(size of
1896universe). The downside to the SparseBitVector is that setting and testing of random bits is O(N), and on large SparseBitVectors, this can be slower than BitVector. In our implementation, setting or testing bits in sorted order
1897(either forwards or reverse) is O(1) worst case. Testing and setting bits within 128 bits (depends on size) of the current bit is also O(1). As a general statement, testing/setting bits in a SparseBitVector is O(distance away from last set bit).
1898</p>
1899</div>
Chris Lattnerf623a082005-10-17 01:36:23 +00001900
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001901</div>
1902
1903</div>
1904
Misha Brukman13fd15c2004-01-15 00:14:41 +00001905<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001906<h2>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001907 <a name="common">Helpful Hints for Common Operations</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001908</h2>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001909<!-- *********************************************************************** -->
1910
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001911<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001912
1913<p>This section describes how to perform some very simple transformations of
1914LLVM code. This is meant to give examples of common idioms used, showing the
1915practical side of LLVM transformations. <p> Because this is a "how-to" section,
1916you should also read about the main classes that you will be working with. The
1917<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
1918and descriptions of the main classes that you should know about.</p>
1919
Misha Brukman13fd15c2004-01-15 00:14:41 +00001920<!-- NOTE: this section should be heavy on example code -->
1921<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001922<h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001923 <a name="inspection">Basic Inspection and Traversal Routines</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001924</h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001925
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001926<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001927
1928<p>The LLVM compiler infrastructure have many different data structures that may
1929be traversed. Following the example of the C++ standard template library, the
1930techniques used to traverse these various data structures are all basically the
1931same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
1932method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
1933function returns an iterator pointing to one past the last valid element of the
1934sequence, and there is some <tt>XXXiterator</tt> data type that is common
1935between the two operations.</p>
1936
1937<p>Because the pattern for iteration is common across many different aspects of
1938the program representation, the standard template library algorithms may be used
1939on them, and it is easier to remember how to iterate. First we show a few common
1940examples of the data structures that need to be traversed. Other data
1941structures are traversed in very similar ways.</p>
1942
Misha Brukman13fd15c2004-01-15 00:14:41 +00001943<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001944<h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001945 <a name="iterate_function">Iterating over the </a><a
1946 href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
1947 href="#Function"><tt>Function</tt></a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001948</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001949
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001950<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001951
1952<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
1953transform in some way; in particular, you'd like to manipulate its
1954<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over all of
1955the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
1956an example that prints the name of a <tt>BasicBlock</tt> and the number of
1957<tt>Instruction</tt>s it contains:</p>
1958
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001959<div class="doc_code">
1960<pre>
Bill Wendling82e2eea2006-10-11 18:00:22 +00001961// <i>func is a pointer to a Function instance</i>
1962for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i)
1963 // <i>Print out the name of the basic block if it has one, and then the</i>
1964 // <i>number of instructions that it contains</i>
Chris Lattner3fee6ed2009-09-08 05:15:50 +00001965 errs() &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
Bill Wendling832171c2006-12-07 20:04:42 +00001966 &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001967</pre>
1968</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001969
1970<p>Note that i can be used as if it were a pointer for the purposes of
Joel Stanley9b96c442002-09-06 21:55:13 +00001971invoking member functions of the <tt>Instruction</tt> class. This is
1972because the indirection operator is overloaded for the iterator
Chris Lattner7496ec52003-08-05 22:54:23 +00001973classes. In the above code, the expression <tt>i-&gt;size()</tt> is
Misha Brukman13fd15c2004-01-15 00:14:41 +00001974exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
1975
1976</div>
1977
1978<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001979<h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001980 <a name="iterate_basicblock">Iterating over the </a><a
1981 href="#Instruction"><tt>Instruction</tt></a>s in a <a
1982 href="#BasicBlock"><tt>BasicBlock</tt></a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001983</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001984
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001985<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001986
1987<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
1988easy to iterate over the individual instructions that make up
1989<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
1990a <tt>BasicBlock</tt>:</p>
1991
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001992<div class="doc_code">
Chris Lattner55c04612005-03-06 06:00:13 +00001993<pre>
Bill Wendling82e2eea2006-10-11 18:00:22 +00001994// <i>blk is a pointer to a BasicBlock instance</i>
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001995for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
Bill Wendling82e2eea2006-10-11 18:00:22 +00001996 // <i>The next statement works since operator&lt;&lt;(ostream&amp;,...)</i>
1997 // <i>is overloaded for Instruction&amp;</i>
Chris Lattner3fee6ed2009-09-08 05:15:50 +00001998 errs() &lt;&lt; *i &lt;&lt; "\n";
Chris Lattner55c04612005-03-06 06:00:13 +00001999</pre>
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002000</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002001
2002<p>However, this isn't really the best way to print out the contents of a
2003<tt>BasicBlock</tt>! Since the ostream operators are overloaded for virtually
2004anything you'll care about, you could have just invoked the print routine on the
Chris Lattner3fee6ed2009-09-08 05:15:50 +00002005basic block itself: <tt>errs() &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002006
2007</div>
2008
2009<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002010<h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002011 <a name="iterate_institer">Iterating over the </a><a
2012 href="#Instruction"><tt>Instruction</tt></a>s in a <a
2013 href="#Function"><tt>Function</tt></a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002014</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002015
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002016<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002017
2018<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
2019<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
2020<tt>InstIterator</tt> should be used instead. You'll need to include <a
2021href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
2022and then instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
Chris Lattner69bf8a92004-05-23 21:06:58 +00002023small example that shows how to dump all instructions in a function to the standard error stream:<p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002024
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002025<div class="doc_code">
2026<pre>
2027#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
2028
Reid Spencer128a7a72007-02-03 21:06:43 +00002029// <i>F is a pointer to a Function instance</i>
Chris Lattnerda021aa2008-06-04 18:20:42 +00002030for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Chris Lattner3fee6ed2009-09-08 05:15:50 +00002031 errs() &lt;&lt; *I &lt;&lt; "\n";
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002032</pre>
2033</div>
2034
2035<p>Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
Reid Spencer128a7a72007-02-03 21:06:43 +00002036work list with its initial contents. For example, if you wanted to
2037initialize a work list to contain all instructions in a <tt>Function</tt>
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002038F, all you would need to do is something like:</p>
2039
2040<div class="doc_code">
2041<pre>
2042std::set&lt;Instruction*&gt; worklist;
Chris Lattnerda021aa2008-06-04 18:20:42 +00002043// or better yet, SmallPtrSet&lt;Instruction*, 64&gt; worklist;
2044
2045for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2046 worklist.insert(&amp;*I);
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002047</pre>
2048</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002049
2050<p>The STL set <tt>worklist</tt> would now contain all instructions in the
2051<tt>Function</tt> pointed to by F.</p>
2052
2053</div>
2054
2055<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002056<h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002057 <a name="iterate_convert">Turning an iterator into a class pointer (and
2058 vice-versa)</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002059</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002060
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002061<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002062
2063<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
Joel Stanley9b96c442002-09-06 21:55:13 +00002064instance when all you've got at hand is an iterator. Well, extracting
Chris Lattner69bf8a92004-05-23 21:06:58 +00002065a reference or a pointer from an iterator is very straight-forward.
Chris Lattner261efe92003-11-25 01:02:51 +00002066Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002067is a <tt>BasicBlock::const_iterator</tt>:</p>
2068
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002069<div class="doc_code">
2070<pre>
Bill Wendling82e2eea2006-10-11 18:00:22 +00002071Instruction&amp; inst = *i; // <i>Grab reference to instruction reference</i>
2072Instruction* pinst = &amp;*i; // <i>Grab pointer to instruction reference</i>
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002073const Instruction&amp; inst = *j;
2074</pre>
2075</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002076
2077<p>However, the iterators you'll be working with in the LLVM framework are
2078special: they will automatically convert to a ptr-to-instance type whenever they
2079need to. Instead of dereferencing the iterator and then taking the address of
2080the result, you can simply assign the iterator to the proper pointer type and
2081you get the dereference and address-of operation as a result of the assignment
2082(behind the scenes, this is a result of overloading casting mechanisms). Thus
2083the last line of the last example,</p>
2084
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002085<div class="doc_code">
2086<pre>
Chris Lattner2e438ca2008-01-03 16:56:04 +00002087Instruction *pinst = &amp;*i;
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002088</pre>
2089</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002090
2091<p>is semantically equivalent to</p>
2092
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002093<div class="doc_code">
2094<pre>
Chris Lattner2e438ca2008-01-03 16:56:04 +00002095Instruction *pinst = i;
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002096</pre>
2097</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002098
Chris Lattner69bf8a92004-05-23 21:06:58 +00002099<p>It's also possible to turn a class pointer into the corresponding iterator,
2100and this is a constant time operation (very efficient). The following code
2101snippet illustrates use of the conversion constructors provided by LLVM
2102iterators. By using these, you can explicitly grab the iterator of something
2103without actually obtaining it via iteration over some structure:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002104
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002105<div class="doc_code">
2106<pre>
2107void printNextInstruction(Instruction* inst) {
2108 BasicBlock::iterator it(inst);
Bill Wendling82e2eea2006-10-11 18:00:22 +00002109 ++it; // <i>After this line, it refers to the instruction after *inst</i>
Chris Lattner3fee6ed2009-09-08 05:15:50 +00002110 if (it != inst-&gt;getParent()-&gt;end()) errs() &lt;&lt; *it &lt;&lt; "\n";
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002111}
2112</pre>
2113</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002114
Dan Gohman525bf8e2010-03-26 19:39:05 +00002115<p>Unfortunately, these implicit conversions come at a cost; they prevent
2116these iterators from conforming to standard iterator conventions, and thus
Dan Gohman0d91c112010-03-26 19:51:14 +00002117from being usable with standard algorithms and containers. For example, they
2118prevent the following code, where <tt>B</tt> is a <tt>BasicBlock</tt>,
Dan Gohman525bf8e2010-03-26 19:39:05 +00002119from compiling:</p>
2120
2121<div class="doc_code">
2122<pre>
2123 llvm::SmallVector&lt;llvm::Instruction *, 16&gt;(B-&gt;begin(), B-&gt;end());
2124</pre>
2125</div>
2126
2127<p>Because of this, these implicit conversions may be removed some day,
Dan Gohman0d91c112010-03-26 19:51:14 +00002128and <tt>operator*</tt> changed to return a pointer instead of a reference.</p>
Dan Gohman525bf8e2010-03-26 19:39:05 +00002129
Misha Brukman13fd15c2004-01-15 00:14:41 +00002130</div>
2131
2132<!--_______________________________________________________________________-->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002133<h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002134 <a name="iterate_complex">Finding call sites: a slightly more complex
2135 example</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002136</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002137
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002138<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002139
2140<p>Say that you're writing a FunctionPass and would like to count all the
2141locations in the entire module (that is, across every <tt>Function</tt>) where a
2142certain function (i.e., some <tt>Function</tt>*) is already in scope. As you'll
2143learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
Chris Lattner69bf8a92004-05-23 21:06:58 +00002144much more straight-forward manner, but this example will allow us to explore how
Reid Spencer128a7a72007-02-03 21:06:43 +00002145you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudo-code, this
Misha Brukman13fd15c2004-01-15 00:14:41 +00002146is what we want to do:</p>
2147
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002148<div class="doc_code">
2149<pre>
2150initialize callCounter to zero
2151for each Function f in the Module
2152 for each BasicBlock b in f
2153 for each Instruction i in b
2154 if (i is a CallInst and calls the given function)
2155 increment callCounter
2156</pre>
2157</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002158
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002159<p>And the actual code is (remember, because we're writing a
Misha Brukman13fd15c2004-01-15 00:14:41 +00002160<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002161override the <tt>runOnFunction</tt> method):</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002162
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002163<div class="doc_code">
2164<pre>
2165Function* targetFunc = ...;
2166
2167class OurFunctionPass : public FunctionPass {
2168 public:
2169 OurFunctionPass(): callCounter(0) { }
2170
2171 virtual runOnFunction(Function&amp; F) {
2172 for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
Eric Christopher203e71d2008-11-08 08:20:49 +00002173 for (BasicBlock::iterator i = b-&gt;begin(), ie = b-&gt;end(); i != ie; ++i) {
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002174 if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
2175 href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
Bill Wendling82e2eea2006-10-11 18:00:22 +00002176 // <i>We know we've encountered a call instruction, so we</i>
2177 // <i>need to determine if it's a call to the</i>
Chris Lattner2e438ca2008-01-03 16:56:04 +00002178 // <i>function pointed to by m_func or not.</i>
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002179 if (callInst-&gt;getCalledFunction() == targetFunc)
2180 ++callCounter;
2181 }
2182 }
2183 }
Bill Wendling82e2eea2006-10-11 18:00:22 +00002184 }
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002185
2186 private:
Chris Lattner2e438ca2008-01-03 16:56:04 +00002187 unsigned callCounter;
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002188};
2189</pre>
2190</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002191
2192</div>
2193
Brian Gaekef1972c62003-11-07 19:25:45 +00002194<!--_______________________________________________________________________-->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002195<h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002196 <a name="calls_and_invokes">Treating calls and invokes the same way</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002197</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002198
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002199<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002200
2201<p>You may have noticed that the previous example was a bit oversimplified in
2202that it did not deal with call sites generated by 'invoke' instructions. In
2203this, and in other situations, you may find that you want to treat
2204<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
2205most-specific common base class is <tt>Instruction</tt>, which includes lots of
2206less closely-related things. For these cases, LLVM provides a handy wrapper
2207class called <a
Reid Spencer05fe4b02006-03-14 05:39:39 +00002208href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
Chris Lattner69bf8a92004-05-23 21:06:58 +00002209It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
2210methods that provide functionality common to <tt>CallInst</tt>s and
Misha Brukman13fd15c2004-01-15 00:14:41 +00002211<tt>InvokeInst</tt>s.</p>
2212
Chris Lattner69bf8a92004-05-23 21:06:58 +00002213<p>This class has "value semantics": it should be passed by value, not by
2214reference and it should not be dynamically allocated or deallocated using
2215<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
2216assignable and constructable, with costs equivalents to that of a bare pointer.
2217If you look at its definition, it has only a single pointer member.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002218
2219</div>
2220
Chris Lattner1a3105b2002-09-09 05:49:39 +00002221<!--_______________________________________________________________________-->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002222<h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002223 <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002224</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002225
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002226<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002227
2228<p>Frequently, we might have an instance of the <a
Chris Lattner00815172007-01-04 22:01:45 +00002229href="/doxygen/classllvm_1_1Value.html">Value Class</a> and we want to
Misha Brukman384047f2004-06-03 23:29:12 +00002230determine which <tt>User</tt>s use the <tt>Value</tt>. The list of all
2231<tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
2232For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
2233particular function <tt>foo</tt>. Finding all of the instructions that
2234<i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
2235of <tt>F</tt>:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002236
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002237<div class="doc_code">
2238<pre>
Chris Lattner2e438ca2008-01-03 16:56:04 +00002239Function *F = ...;
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002240
Bill Wendling82e2eea2006-10-11 18:00:22 +00002241for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i)
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002242 if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
Chris Lattner3fee6ed2009-09-08 05:15:50 +00002243 errs() &lt;&lt; "F is used in instruction:\n";
2244 errs() &lt;&lt; *Inst &lt;&lt; "\n";
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002245 }
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002246</pre>
Gabor Greif394fdfb2010-03-26 19:35:48 +00002247</div>
2248
Gabor Greifce94319532010-03-26 19:40:38 +00002249<p>Note that dereferencing a <tt>Value::use_iterator</tt> is not a very cheap
Gabor Greif4de73682010-03-26 19:30:47 +00002250operation. Instead of performing <tt>*i</tt> above several times, consider
Gabor Greifce94319532010-03-26 19:40:38 +00002251doing it only once in the loop body and reusing its result.</p>
Gabor Greif4de73682010-03-26 19:30:47 +00002252
Gabor Greif6091ff32010-03-26 19:04:42 +00002253<p>Alternatively, it's common to have an instance of the <a
Misha Brukman384047f2004-06-03 23:29:12 +00002254href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
Misha Brukman13fd15c2004-01-15 00:14:41 +00002255<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used by a
2256<tt>User</tt> is known as a <i>use-def</i> chain. Instances of class
2257<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
2258all of the values that a particular instruction uses (that is, the operands of
2259the particular <tt>Instruction</tt>):</p>
2260
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002261<div class="doc_code">
2262<pre>
Chris Lattner2e438ca2008-01-03 16:56:04 +00002263Instruction *pi = ...;
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002264
2265for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
Chris Lattner2e438ca2008-01-03 16:56:04 +00002266 Value *v = *i;
Bill Wendling82e2eea2006-10-11 18:00:22 +00002267 // <i>...</i>
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002268}
2269</pre>
2270</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002271
Gabor Greif4de73682010-03-26 19:30:47 +00002272<p>Declaring objects as <tt>const</tt> is an important tool of enforcing
Gabor Greifce94319532010-03-26 19:40:38 +00002273mutation free algorithms (such as analyses, etc.). For this purpose above
Gabor Greif4de73682010-03-26 19:30:47 +00002274iterators come in constant flavors as <tt>Value::const_use_iterator</tt>
2275and <tt>Value::const_op_iterator</tt>. They automatically arise when
2276calling <tt>use/op_begin()</tt> on <tt>const Value*</tt>s or
2277<tt>const User*</tt>s respectively. Upon dereferencing, they return
Gabor Greifce94319532010-03-26 19:40:38 +00002278<tt>const Use*</tt>s. Otherwise the above patterns remain unchanged.</p>
2279
Misha Brukman13fd15c2004-01-15 00:14:41 +00002280</div>
2281
Chris Lattner2e438ca2008-01-03 16:56:04 +00002282<!--_______________________________________________________________________-->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002283<h4>
Chris Lattner2e438ca2008-01-03 16:56:04 +00002284 <a name="iterate_preds">Iterating over predecessors &amp;
2285successors of blocks</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002286</h4>
Chris Lattner2e438ca2008-01-03 16:56:04 +00002287
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002288<div>
Chris Lattner2e438ca2008-01-03 16:56:04 +00002289
2290<p>Iterating over the predecessors and successors of a block is quite easy
2291with the routines defined in <tt>"llvm/Support/CFG.h"</tt>. Just use code like
2292this to iterate over all predecessors of BB:</p>
2293
2294<div class="doc_code">
2295<pre>
2296#include "llvm/Support/CFG.h"
2297BasicBlock *BB = ...;
2298
2299for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2300 BasicBlock *Pred = *PI;
2301 // <i>...</i>
2302}
2303</pre>
2304</div>
2305
2306<p>Similarly, to iterate over successors use
2307succ_iterator/succ_begin/succ_end.</p>
2308
2309</div>
2310
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002311</div>
Chris Lattner2e438ca2008-01-03 16:56:04 +00002312
Misha Brukman13fd15c2004-01-15 00:14:41 +00002313<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002314<h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002315 <a name="simplechanges">Making simple changes</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002316</h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002317
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002318<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002319
2320<p>There are some primitive transformation operations present in the LLVM
Joel Stanley753eb712002-09-11 22:32:24 +00002321infrastructure that are worth knowing about. When performing
Chris Lattner261efe92003-11-25 01:02:51 +00002322transformations, it's fairly common to manipulate the contents of basic
2323blocks. This section describes some of the common methods for doing so
Misha Brukman13fd15c2004-01-15 00:14:41 +00002324and gives example code.</p>
2325
Chris Lattner261efe92003-11-25 01:02:51 +00002326<!--_______________________________________________________________________-->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002327<h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002328 <a name="schanges_creating">Creating and inserting new
2329 <tt>Instruction</tt>s</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002330</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002331
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002332<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002333
2334<p><i>Instantiating Instructions</i></p>
2335
Chris Lattner69bf8a92004-05-23 21:06:58 +00002336<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
Misha Brukman13fd15c2004-01-15 00:14:41 +00002337constructor for the kind of instruction to instantiate and provide the necessary
2338parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
2339(const-ptr-to) <tt>Type</tt>. Thus:</p>
2340
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002341<div class="doc_code">
2342<pre>
Nick Lewycky10d64b92007-12-03 01:52:52 +00002343AllocaInst* ai = new AllocaInst(Type::Int32Ty);
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002344</pre>
2345</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002346
2347<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
Reid Spencer128a7a72007-02-03 21:06:43 +00002348one integer in the current stack frame, at run time. Each <tt>Instruction</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002349subclass is likely to have varying default parameters which change the semantics
2350of the instruction, so refer to the <a
Misha Brukman31ca1de2004-06-03 23:35:54 +00002351href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
Misha Brukman13fd15c2004-01-15 00:14:41 +00002352Instruction</a> that you're interested in instantiating.</p>
2353
2354<p><i>Naming values</i></p>
2355
2356<p>It is very useful to name the values of instructions when you're able to, as
2357this facilitates the debugging of your transformations. If you end up looking
2358at generated LLVM machine code, you definitely want to have logical names
2359associated with the results of instructions! By supplying a value for the
2360<tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
2361associate a logical name with the result of the instruction's execution at
Reid Spencer128a7a72007-02-03 21:06:43 +00002362run time. For example, say that I'm writing a transformation that dynamically
Misha Brukman13fd15c2004-01-15 00:14:41 +00002363allocates space for an integer on the stack, and that integer is going to be
2364used as some kind of index by some other code. To accomplish this, I place an
2365<tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
2366<tt>Function</tt>, and I'm intending to use it within the same
2367<tt>Function</tt>. I might do:</p>
2368
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002369<div class="doc_code">
2370<pre>
Nick Lewycky10d64b92007-12-03 01:52:52 +00002371AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002372</pre>
2373</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002374
2375<p>where <tt>indexLoc</tt> is now the logical name of the instruction's
Reid Spencer128a7a72007-02-03 21:06:43 +00002376execution value, which is a pointer to an integer on the run time stack.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002377
2378<p><i>Inserting instructions</i></p>
2379
2380<p>There are essentially two ways to insert an <tt>Instruction</tt>
2381into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
2382
Joel Stanley9dd1ad62002-09-18 03:17:23 +00002383<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002384 <li>Insertion into an explicit instruction list
2385
2386 <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
2387 <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
2388 before <tt>*pi</tt>, we do the following: </p>
2389
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002390<div class="doc_code">
2391<pre>
2392BasicBlock *pb = ...;
2393Instruction *pi = ...;
2394Instruction *newInst = new Instruction(...);
2395
Bill Wendling82e2eea2006-10-11 18:00:22 +00002396pb-&gt;getInstList().insert(pi, newInst); // <i>Inserts newInst before pi in pb</i>
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002397</pre>
2398</div>
Alkis Evlogimenos9a5dc4f2004-05-27 00:57:51 +00002399
2400 <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
2401 the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
2402 classes provide constructors which take a pointer to a
2403 <tt>BasicBlock</tt> to be appended to. For example code that
2404 looked like: </p>
2405
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002406<div class="doc_code">
2407<pre>
2408BasicBlock *pb = ...;
2409Instruction *newInst = new Instruction(...);
2410
Bill Wendling82e2eea2006-10-11 18:00:22 +00002411pb-&gt;getInstList().push_back(newInst); // <i>Appends newInst to pb</i>
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002412</pre>
2413</div>
Alkis Evlogimenos9a5dc4f2004-05-27 00:57:51 +00002414
2415 <p>becomes: </p>
2416
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002417<div class="doc_code">
2418<pre>
2419BasicBlock *pb = ...;
2420Instruction *newInst = new Instruction(..., pb);
2421</pre>
2422</div>
Alkis Evlogimenos9a5dc4f2004-05-27 00:57:51 +00002423
2424 <p>which is much cleaner, especially if you are creating
2425 long instruction streams.</p></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002426
2427 <li>Insertion into an implicit instruction list
2428
2429 <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
2430 are implicitly associated with an existing instruction list: the instruction
2431 list of the enclosing basic block. Thus, we could have accomplished the same
2432 thing as the above code without being given a <tt>BasicBlock</tt> by doing:
2433 </p>
2434
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002435<div class="doc_code">
2436<pre>
2437Instruction *pi = ...;
2438Instruction *newInst = new Instruction(...);
2439
2440pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
2441</pre>
2442</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002443
2444 <p>In fact, this sequence of steps occurs so frequently that the
2445 <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
2446 constructors which take (as a default parameter) a pointer to an
2447 <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
2448 precede. That is, <tt>Instruction</tt> constructors are capable of
2449 inserting the newly-created instance into the <tt>BasicBlock</tt> of a
2450 provided instruction, immediately before that instruction. Using an
2451 <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
2452 parameter, the above code becomes:</p>
2453
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002454<div class="doc_code">
2455<pre>
2456Instruction* pi = ...;
2457Instruction* newInst = new Instruction(..., pi);
2458</pre>
2459</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002460
2461 <p>which is much cleaner, especially if you're creating a lot of
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002462 instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002463</ul>
2464
2465</div>
2466
2467<!--_______________________________________________________________________-->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002468<h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002469 <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002470</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002471
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002472<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002473
2474<p>Deleting an instruction from an existing sequence of instructions that form a
Chris Lattner49e0ccf2011-03-24 16:13:31 +00002475<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward: just
2476call the instruction's eraseFromParent() method. For example:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002477
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002478<div class="doc_code">
2479<pre>
2480<a href="#Instruction">Instruction</a> *I = .. ;
Chris Lattner9f8ec252008-02-15 22:57:17 +00002481I-&gt;eraseFromParent();
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002482</pre>
2483</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002484
Chris Lattner49e0ccf2011-03-24 16:13:31 +00002485<p>This unlinks the instruction from its containing basic block and deletes
2486it. If you'd just like to unlink the instruction from its containing basic
2487block but not delete it, you can use the <tt>removeFromParent()</tt> method.</p>
2488
Misha Brukman13fd15c2004-01-15 00:14:41 +00002489</div>
2490
2491<!--_______________________________________________________________________-->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002492<h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002493 <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
2494 <tt>Value</tt></a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002495</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002496
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002497<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002498
2499<p><i>Replacing individual instructions</i></p>
2500
2501<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
Chris Lattner261efe92003-11-25 01:02:51 +00002502permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002503and <tt>ReplaceInstWithInst</tt>.</p>
2504
NAKAMURA Takumi06c6d9a2011-04-18 01:17:51 +00002505<h5><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h5>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002506
Chris Lattner261efe92003-11-25 01:02:51 +00002507<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002508 <li><tt>ReplaceInstWithValue</tt>
2509
Nick Lewyckyb6d1f392008-09-15 06:31:52 +00002510 <p>This function replaces all uses of a given instruction with a value,
2511 and then removes the original instruction. The following example
2512 illustrates the replacement of the result of a particular
Chris Lattner58360822005-01-17 00:12:04 +00002513 <tt>AllocaInst</tt> that allocates memory for a single integer with a null
Misha Brukman13fd15c2004-01-15 00:14:41 +00002514 pointer to an integer.</p>
2515
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002516<div class="doc_code">
2517<pre>
2518AllocaInst* instToReplace = ...;
2519BasicBlock::iterator ii(instToReplace);
2520
2521ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
Daniel Dunbar58c2ac02008-10-03 22:17:25 +00002522 Constant::getNullValue(PointerType::getUnqual(Type::Int32Ty)));
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002523</pre></div></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002524
2525 <li><tt>ReplaceInstWithInst</tt>
2526
2527 <p>This function replaces a particular instruction with another
Nick Lewyckyb6d1f392008-09-15 06:31:52 +00002528 instruction, inserting the new instruction into the basic block at the
2529 location where the old instruction was, and replacing any uses of the old
2530 instruction with the new instruction. The following example illustrates
2531 the replacement of one <tt>AllocaInst</tt> with another.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002532
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002533<div class="doc_code">
2534<pre>
2535AllocaInst* instToReplace = ...;
2536BasicBlock::iterator ii(instToReplace);
2537
2538ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
Nick Lewycky10d64b92007-12-03 01:52:52 +00002539 new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));
Bill Wendling3cd5ca62006-10-11 06:30:10 +00002540</pre></div></li>
Chris Lattner261efe92003-11-25 01:02:51 +00002541</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002542
2543<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
2544
2545<p>You can use <tt>Value::replaceAllUsesWith</tt> and
2546<tt>User::replaceUsesOfWith</tt> to change more than one use at a time. See the
Chris Lattner00815172007-01-04 22:01:45 +00002547doxygen documentation for the <a href="/doxygen/classllvm_1_1Value.html">Value Class</a>
Misha Brukman384047f2004-06-03 23:29:12 +00002548and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
Misha Brukman13fd15c2004-01-15 00:14:41 +00002549information.</p>
2550
2551<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
2552include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
2553ReplaceInstWithValue, ReplaceInstWithInst -->
2554
2555</div>
2556
Tanya Lattnerb011c662007-06-20 18:33:15 +00002557<!--_______________________________________________________________________-->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002558<h4>
Tanya Lattnerb011c662007-06-20 18:33:15 +00002559 <a name="schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002560</h4>
Tanya Lattnerb011c662007-06-20 18:33:15 +00002561
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002562<div>
Tanya Lattnerb011c662007-06-20 18:33:15 +00002563
Tanya Lattnerc5dfcdb2007-06-20 20:46:37 +00002564<p>Deleting a global variable from a module is just as easy as deleting an
2565Instruction. First, you must have a pointer to the global variable that you wish
2566 to delete. You use this pointer to erase it from its parent, the module.
Tanya Lattnerb011c662007-06-20 18:33:15 +00002567 For example:</p>
2568
2569<div class="doc_code">
2570<pre>
2571<a href="#GlobalVariable">GlobalVariable</a> *GV = .. ;
Tanya Lattnerb011c662007-06-20 18:33:15 +00002572
Tanya Lattnerc5dfcdb2007-06-20 20:46:37 +00002573GV-&gt;eraseFromParent();
Tanya Lattnerb011c662007-06-20 18:33:15 +00002574</pre>
2575</div>
2576
2577</div>
2578
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002579</div>
2580
Jeffrey Yasskin714257f2009-04-30 22:33:41 +00002581<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002582<h3>
Jeffrey Yasskin714257f2009-04-30 22:33:41 +00002583 <a name="create_types">How to Create Types</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002584</h3>
Jeffrey Yasskin714257f2009-04-30 22:33:41 +00002585
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002586<div>
Jeffrey Yasskin714257f2009-04-30 22:33:41 +00002587
2588<p>In generating IR, you may need some complex types. If you know these types
Misha Brukman1af789f2009-05-01 20:40:51 +00002589statically, you can use <tt>TypeBuilder&lt;...&gt;::get()</tt>, defined
Jeffrey Yasskin714257f2009-04-30 22:33:41 +00002590in <tt>llvm/Support/TypeBuilder.h</tt>, to retrieve them. <tt>TypeBuilder</tt>
2591has two forms depending on whether you're building types for cross-compilation
Misha Brukman1af789f2009-05-01 20:40:51 +00002592or native library use. <tt>TypeBuilder&lt;T, true&gt;</tt> requires
Jeffrey Yasskin714257f2009-04-30 22:33:41 +00002593that <tt>T</tt> be independent of the host environment, meaning that it's built
2594out of types from
2595the <a href="/doxygen/namespacellvm_1_1types.html"><tt>llvm::types</tt></a>
2596namespace and pointers, functions, arrays, etc. built of
Misha Brukman1af789f2009-05-01 20:40:51 +00002597those. <tt>TypeBuilder&lt;T, false&gt;</tt> additionally allows native C types
Jeffrey Yasskin714257f2009-04-30 22:33:41 +00002598whose size may depend on the host compiler. For example,</p>
2599
2600<div class="doc_code">
2601<pre>
Misha Brukman1af789f2009-05-01 20:40:51 +00002602FunctionType *ft = TypeBuilder&lt;types::i&lt;8&gt;(types::i&lt;32&gt;*), true&gt;::get();
Jeffrey Yasskin714257f2009-04-30 22:33:41 +00002603</pre>
2604</div>
2605
2606<p>is easier to read and write than the equivalent</p>
2607
2608<div class="doc_code">
2609<pre>
Owen Anderson5e8c50e2009-06-16 17:40:28 +00002610std::vector&lt;const Type*&gt; params;
Jeffrey Yasskin714257f2009-04-30 22:33:41 +00002611params.push_back(PointerType::getUnqual(Type::Int32Ty));
2612FunctionType *ft = FunctionType::get(Type::Int8Ty, params, false);
2613</pre>
2614</div>
2615
2616<p>See the <a href="/doxygen/TypeBuilder_8h-source.html#l00001">class
2617comment</a> for more details.</p>
2618
2619</div>
2620
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002621</div>
2622
Chris Lattner9355b472002-09-06 02:50:58 +00002623<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002624<h2>
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002625 <a name="threading">Threads and LLVM</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002626</h2>
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002627<!-- *********************************************************************** -->
2628
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002629<div>
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002630<p>
2631This section describes the interaction of the LLVM APIs with multithreading,
2632both on the part of client applications, and in the JIT, in the hosted
2633application.
2634</p>
2635
2636<p>
2637Note that LLVM's support for multithreading is still relatively young. Up
2638through version 2.5, the execution of threaded hosted applications was
2639supported, but not threaded client access to the APIs. While this use case is
2640now supported, clients <em>must</em> adhere to the guidelines specified below to
2641ensure proper operation in multithreaded mode.
2642</p>
2643
2644<p>
2645Note that, on Unix-like platforms, LLVM requires the presence of GCC's atomic
2646intrinsics in order to support threaded operation. If you need a
2647multhreading-capable LLVM on a platform without a suitably modern system
2648compiler, consider compiling LLVM and LLVM-GCC in single-threaded mode, and
2649using the resultant compiler to build a copy of LLVM with multithreading
2650support.
2651</p>
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002652
2653<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002654<h3>
Owen Anderson1ad70e32009-06-16 18:04:19 +00002655 <a name="startmultithreaded">Entering and Exiting Multithreaded Mode</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002656</h3>
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002657
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002658<div>
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002659
2660<p>
2661In order to properly protect its internal data structures while avoiding
Owen Anderson1ad70e32009-06-16 18:04:19 +00002662excessive locking overhead in the single-threaded case, the LLVM must intialize
2663certain data structures necessary to provide guards around its internals. To do
2664so, the client program must invoke <tt>llvm_start_multithreaded()</tt> before
2665making any concurrent LLVM API calls. To subsequently tear down these
2666structures, use the <tt>llvm_stop_multithreaded()</tt> call. You can also use
2667the <tt>llvm_is_multithreaded()</tt> call to check the status of multithreaded
2668mode.
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002669</p>
2670
2671<p>
Owen Anderson1ad70e32009-06-16 18:04:19 +00002672Note that both of these calls must be made <em>in isolation</em>. That is to
2673say that no other LLVM API calls may be executing at any time during the
2674execution of <tt>llvm_start_multithreaded()</tt> or <tt>llvm_stop_multithreaded
2675</tt>. It's is the client's responsibility to enforce this isolation.
2676</p>
2677
2678<p>
2679The return value of <tt>llvm_start_multithreaded()</tt> indicates the success or
2680failure of the initialization. Failure typically indicates that your copy of
2681LLVM was built without multithreading support, typically because GCC atomic
2682intrinsics were not found in your system compiler. In this case, the LLVM API
2683will not be safe for concurrent calls. However, it <em>will</em> be safe for
Jeffrey Yasskin01eba392010-01-29 19:10:38 +00002684hosting threaded applications in the JIT, though <a href="#jitthreading">care
2685must be taken</a> to ensure that side exits and the like do not accidentally
2686result in concurrent LLVM API calls.
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002687</p>
2688</div>
2689
2690<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002691<h3>
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002692 <a name="shutdown">Ending Execution with <tt>llvm_shutdown()</tt></a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002693</h3>
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002694
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002695<div>
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002696<p>
2697When you are done using the LLVM APIs, you should call <tt>llvm_shutdown()</tt>
Owen Anderson1ad70e32009-06-16 18:04:19 +00002698to deallocate memory used for internal structures. This will also invoke
2699<tt>llvm_stop_multithreaded()</tt> if LLVM is operating in multithreaded mode.
2700As such, <tt>llvm_shutdown()</tt> requires the same isolation guarantees as
2701<tt>llvm_stop_multithreaded()</tt>.
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002702</p>
2703
2704<p>
2705Note that, if you use scope-based shutdown, you can use the
2706<tt>llvm_shutdown_obj</tt> class, which calls <tt>llvm_shutdown()</tt> in its
2707destructor.
2708</div>
2709
2710<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002711<h3>
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002712 <a name="managedstatic">Lazy Initialization with <tt>ManagedStatic</tt></a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002713</h3>
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002714
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002715<div>
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002716<p>
2717<tt>ManagedStatic</tt> is a utility class in LLVM used to implement static
2718initialization of static resources, such as the global type tables. Before the
2719invocation of <tt>llvm_shutdown()</tt>, it implements a simple lazy
2720initialization scheme. Once <tt>llvm_start_multithreaded()</tt> returns,
2721however, it uses double-checked locking to implement thread-safe lazy
2722initialization.
2723</p>
2724
2725<p>
2726Note that, because no other threads are allowed to issue LLVM API calls before
2727<tt>llvm_start_multithreaded()</tt> returns, it is possible to have
2728<tt>ManagedStatic</tt>s of <tt>llvm::sys::Mutex</tt>s.
2729</p>
Owen Anderson1ad70e32009-06-16 18:04:19 +00002730
2731<p>
2732The <tt>llvm_acquire_global_lock()</tt> and <tt>llvm_release_global_lock</tt>
2733APIs provide access to the global lock used to implement the double-checked
2734locking for lazy initialization. These should only be used internally to LLVM,
2735and only if you know what you're doing!
2736</p>
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002737</div>
2738
Owen Andersone0c951a2009-08-19 17:58:52 +00002739<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002740<h3>
Owen Andersone0c951a2009-08-19 17:58:52 +00002741 <a name="llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002742</h3>
Owen Andersone0c951a2009-08-19 17:58:52 +00002743
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002744<div>
Owen Andersone0c951a2009-08-19 17:58:52 +00002745<p>
2746<tt>LLVMContext</tt> is an opaque class in the LLVM API which clients can use
2747to operate multiple, isolated instances of LLVM concurrently within the same
2748address space. For instance, in a hypothetical compile-server, the compilation
2749of an individual translation unit is conceptually independent from all the
2750others, and it would be desirable to be able to compile incoming translation
2751units concurrently on independent server threads. Fortunately,
2752<tt>LLVMContext</tt> exists to enable just this kind of scenario!
2753</p>
2754
2755<p>
2756Conceptually, <tt>LLVMContext</tt> provides isolation. Every LLVM entity
2757(<tt>Module</tt>s, <tt>Value</tt>s, <tt>Type</tt>s, <tt>Constant</tt>s, etc.)
Chris Lattner38eee3c2009-08-20 03:10:14 +00002758in LLVM's in-memory IR belongs to an <tt>LLVMContext</tt>. Entities in
Owen Andersone0c951a2009-08-19 17:58:52 +00002759different contexts <em>cannot</em> interact with each other: <tt>Module</tt>s in
2760different contexts cannot be linked together, <tt>Function</tt>s cannot be added
2761to <tt>Module</tt>s in different contexts, etc. What this means is that is is
2762safe to compile on multiple threads simultaneously, as long as no two threads
2763operate on entities within the same context.
2764</p>
2765
2766<p>
2767In practice, very few places in the API require the explicit specification of a
2768<tt>LLVMContext</tt>, other than the <tt>Type</tt> creation/lookup APIs.
2769Because every <tt>Type</tt> carries a reference to its owning context, most
2770other entities can determine what context they belong to by looking at their
2771own <tt>Type</tt>. If you are adding new entities to LLVM IR, please try to
2772maintain this interface design.
2773</p>
2774
2775<p>
2776For clients that do <em>not</em> require the benefits of isolation, LLVM
2777provides a convenience API <tt>getGlobalContext()</tt>. This returns a global,
2778lazily initialized <tt>LLVMContext</tt> that may be used in situations where
2779isolation is not a concern.
2780</p>
2781</div>
2782
Jeffrey Yasskin01eba392010-01-29 19:10:38 +00002783<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002784<h3>
Jeffrey Yasskin01eba392010-01-29 19:10:38 +00002785 <a name="jitthreading">Threads and the JIT</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002786</h3>
Jeffrey Yasskin01eba392010-01-29 19:10:38 +00002787
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002788<div>
Jeffrey Yasskin01eba392010-01-29 19:10:38 +00002789<p>
2790LLVM's "eager" JIT compiler is safe to use in threaded programs. Multiple
2791threads can call <tt>ExecutionEngine::getPointerToFunction()</tt> or
2792<tt>ExecutionEngine::runFunction()</tt> concurrently, and multiple threads can
2793run code output by the JIT concurrently. The user must still ensure that only
2794one thread accesses IR in a given <tt>LLVMContext</tt> while another thread
2795might be modifying it. One way to do that is to always hold the JIT lock while
2796accessing IR outside the JIT (the JIT <em>modifies</em> the IR by adding
2797<tt>CallbackVH</tt>s). Another way is to only
2798call <tt>getPointerToFunction()</tt> from the <tt>LLVMContext</tt>'s thread.
2799</p>
2800
2801<p>When the JIT is configured to compile lazily (using
2802<tt>ExecutionEngine::DisableLazyCompilation(false)</tt>), there is currently a
2803<a href="http://llvm.org/bugs/show_bug.cgi?id=5184">race condition</a> in
2804updating call sites after a function is lazily-jitted. It's still possible to
2805use the lazy JIT in a threaded program if you ensure that only one thread at a
2806time can call any particular lazy stub and that the JIT lock guards any IR
2807access, but we suggest using only the eager JIT in threaded programs.
2808</p>
2809</div>
2810
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002811</div>
2812
Owen Anderson8bc1b3b2009-06-16 01:17:16 +00002813<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002814<h2>
Chris Lattnerd9d6e102005-04-23 16:10:52 +00002815 <a name="advanced">Advanced Topics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002816</h2>
Chris Lattnerd9d6e102005-04-23 16:10:52 +00002817<!-- *********************************************************************** -->
2818
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002819<div>
Chris Lattnerf1b200b2005-04-23 17:27:36 +00002820<p>
2821This section describes some of the advanced or obscure API's that most clients
2822do not need to be aware of. These API's tend manage the inner workings of the
2823LLVM system, and only need to be accessed in unusual circumstances.
2824</p>
Chris Lattnerd9d6e102005-04-23 16:10:52 +00002825
Chris Lattner1afcace2011-07-09 17:41:24 +00002826
Chris Lattnerf1b200b2005-04-23 17:27:36 +00002827<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002828<h3>
Chris Lattner1afcace2011-07-09 17:41:24 +00002829 <a name="SymbolTable">The <tt>ValueSymbolTable</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002830</h3>
Chris Lattnerf1b200b2005-04-23 17:27:36 +00002831
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002832<div>
Chris Lattner263a98e2007-02-16 04:37:31 +00002833<p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html">
2834ValueSymbolTable</a></tt> class provides a symbol table that the <a
Chris Lattnerd9d6e102005-04-23 16:10:52 +00002835href="#Function"><tt>Function</tt></a> and <a href="#Module">
Chris Lattner263a98e2007-02-16 04:37:31 +00002836<tt>Module</tt></a> classes use for naming value definitions. The symbol table
2837can provide a name for any <a href="#Value"><tt>Value</tt></a>.
Chris Lattner1afcace2011-07-09 17:41:24 +00002838</p>
Chris Lattnerd9d6e102005-04-23 16:10:52 +00002839
Reid Spencera6362242007-01-07 00:41:39 +00002840<p>Note that the <tt>SymbolTable</tt> class should not be directly accessed
2841by most clients. It should only be used when iteration over the symbol table
2842names themselves are required, which is very special purpose. Note that not
2843all LLVM
Gabor Greife98fc272008-06-16 21:06:12 +00002844<tt><a href="#Value">Value</a></tt>s have names, and those without names (i.e. they have
Chris Lattnerd9d6e102005-04-23 16:10:52 +00002845an empty name) do not exist in the symbol table.
2846</p>
2847
Chris Lattner1afcace2011-07-09 17:41:24 +00002848<p>Symbol tables support iteration over the values in the symbol
Chris Lattner263a98e2007-02-16 04:37:31 +00002849table with <tt>begin/end/iterator</tt> and supports querying to see if a
2850specific name is in the symbol table (with <tt>lookup</tt>). The
2851<tt>ValueSymbolTable</tt> class exposes no public mutator methods, instead,
2852simply call <tt>setName</tt> on a value, which will autoinsert it into the
Chris Lattner1afcace2011-07-09 17:41:24 +00002853appropriate symbol table.</p>
Chris Lattnerd9d6e102005-04-23 16:10:52 +00002854
Chris Lattnerd9d6e102005-04-23 16:10:52 +00002855</div>
2856
2857
2858
Gabor Greife98fc272008-06-16 21:06:12 +00002859<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002860<h3>
Gabor Greife98fc272008-06-16 21:06:12 +00002861 <a name="UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002862</h3>
Gabor Greife98fc272008-06-16 21:06:12 +00002863
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002864<div>
Gabor Greife98fc272008-06-16 21:06:12 +00002865<p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1User.html">
Gabor Greiffd095b62009-01-05 16:05:32 +00002866User</a></tt> class provides a basis for expressing the ownership of <tt>User</tt>
Gabor Greife98fc272008-06-16 21:06:12 +00002867towards other <tt><a href="http://llvm.org/doxygen/classllvm_1_1Value.html">
2868Value</a></tt>s. The <tt><a href="http://llvm.org/doxygen/classllvm_1_1Use.html">
Gabor Greifdfed1182008-06-18 13:44:57 +00002869Use</a></tt> helper class is employed to do the bookkeeping and to facilitate <i>O(1)</i>
Gabor Greife98fc272008-06-16 21:06:12 +00002870addition and removal.</p>
2871
Gabor Greifdfed1182008-06-18 13:44:57 +00002872<!-- ______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002873<h4>
2874 <a name="Use2User">
2875 Interaction and relationship between <tt>User</tt> and <tt>Use</tt> objects
2876 </a>
2877</h4>
Gabor Greife98fc272008-06-16 21:06:12 +00002878
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002879<div>
Gabor Greifdfed1182008-06-18 13:44:57 +00002880<p>
2881A subclass of <tt>User</tt> can choose between incorporating its <tt>Use</tt> objects
Gabor Greife98fc272008-06-16 21:06:12 +00002882or refer to them out-of-line by means of a pointer. A mixed variant
Gabor Greifdfed1182008-06-18 13:44:57 +00002883(some <tt>Use</tt>s inline others hung off) is impractical and breaks the invariant
2884that the <tt>Use</tt> objects belonging to the same <tt>User</tt> form a contiguous array.
2885</p>
Gabor Greife98fc272008-06-16 21:06:12 +00002886
Gabor Greifdfed1182008-06-18 13:44:57 +00002887<p>
2888We have 2 different layouts in the <tt>User</tt> (sub)classes:
2889<ul>
2890<li><p>Layout a)
2891The <tt>Use</tt> object(s) are inside (resp. at fixed offset) of the <tt>User</tt>
2892object and there are a fixed number of them.</p>
Gabor Greife98fc272008-06-16 21:06:12 +00002893
Gabor Greifdfed1182008-06-18 13:44:57 +00002894<li><p>Layout b)
2895The <tt>Use</tt> object(s) are referenced by a pointer to an
2896array from the <tt>User</tt> object and there may be a variable
2897number of them.</p>
2898</ul>
2899<p>
Gabor Greifd41720a2008-06-25 00:10:22 +00002900As of v2.4 each layout still possesses a direct pointer to the
Gabor Greifdfed1182008-06-18 13:44:57 +00002901start of the array of <tt>Use</tt>s. Though not mandatory for layout a),
Gabor Greife98fc272008-06-16 21:06:12 +00002902we stick to this redundancy for the sake of simplicity.
Gabor Greifd41720a2008-06-25 00:10:22 +00002903The <tt>User</tt> object also stores the number of <tt>Use</tt> objects it
Gabor Greife98fc272008-06-16 21:06:12 +00002904has. (Theoretically this information can also be calculated
Gabor Greifdfed1182008-06-18 13:44:57 +00002905given the scheme presented below.)</p>
2906<p>
2907Special forms of allocation operators (<tt>operator new</tt>)
Gabor Greifd41720a2008-06-25 00:10:22 +00002908enforce the following memory layouts:</p>
Gabor Greife98fc272008-06-16 21:06:12 +00002909
Gabor Greifdfed1182008-06-18 13:44:57 +00002910<ul>
Gabor Greifd41720a2008-06-25 00:10:22 +00002911<li><p>Layout a) is modelled by prepending the <tt>User</tt> object by the <tt>Use[]</tt> array.</p>
Gabor Greife98fc272008-06-16 21:06:12 +00002912
Gabor Greifdfed1182008-06-18 13:44:57 +00002913<pre>
2914...---.---.---.---.-------...
2915 | P | P | P | P | User
2916'''---'---'---'---'-------'''
2917</pre>
Gabor Greife98fc272008-06-16 21:06:12 +00002918
Gabor Greifd41720a2008-06-25 00:10:22 +00002919<li><p>Layout b) is modelled by pointing at the <tt>Use[]</tt> array.</p>
Gabor Greifdfed1182008-06-18 13:44:57 +00002920<pre>
2921.-------...
2922| User
2923'-------'''
2924 |
2925 v
2926 .---.---.---.---...
2927 | P | P | P | P |
2928 '---'---'---'---'''
2929</pre>
2930</ul>
2931<i>(In the above figures '<tt>P</tt>' stands for the <tt>Use**</tt> that
2932 is stored in each <tt>Use</tt> object in the member <tt>Use::Prev</tt>)</i>
Gabor Greife98fc272008-06-16 21:06:12 +00002933
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002934</div>
2935
Gabor Greifdfed1182008-06-18 13:44:57 +00002936<!-- ______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002937<h4>
Gabor Greiffd095b62009-01-05 16:05:32 +00002938 <a name="Waymarking">The waymarking algorithm</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002939</h4>
Gabor Greife98fc272008-06-16 21:06:12 +00002940
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002941<div>
Gabor Greifdfed1182008-06-18 13:44:57 +00002942<p>
Gabor Greifd41720a2008-06-25 00:10:22 +00002943Since the <tt>Use</tt> objects are deprived of the direct (back)pointer to
Gabor Greifdfed1182008-06-18 13:44:57 +00002944their <tt>User</tt> objects, there must be a fast and exact method to
2945recover it. This is accomplished by the following scheme:</p>
Gabor Greife98fc272008-06-16 21:06:12 +00002946
Gabor Greifd41720a2008-06-25 00:10:22 +00002947A bit-encoding in the 2 LSBits (least significant bits) of the <tt>Use::Prev</tt> allows to find the
Gabor Greifdfed1182008-06-18 13:44:57 +00002948start of the <tt>User</tt> object:
2949<ul>
2950<li><tt>00</tt> &mdash;&gt; binary digit 0</li>
2951<li><tt>01</tt> &mdash;&gt; binary digit 1</li>
2952<li><tt>10</tt> &mdash;&gt; stop and calculate (<tt>s</tt>)</li>
2953<li><tt>11</tt> &mdash;&gt; full stop (<tt>S</tt>)</li>
2954</ul>
2955<p>
2956Given a <tt>Use*</tt>, all we have to do is to walk till we get
2957a stop and we either have a <tt>User</tt> immediately behind or
Gabor Greife98fc272008-06-16 21:06:12 +00002958we have to walk to the next stop picking up digits
Gabor Greifdfed1182008-06-18 13:44:57 +00002959and calculating the offset:</p>
2960<pre>
Gabor Greife98fc272008-06-16 21:06:12 +00002961.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
2962| 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
2963'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
2964 |+15 |+10 |+6 |+3 |+1
2965 | | | | |__>
2966 | | | |__________>
2967 | | |______________________>
2968 | |______________________________________>
2969 |__________________________________________________________>
Gabor Greifdfed1182008-06-18 13:44:57 +00002970</pre>
2971<p>
Gabor Greife98fc272008-06-16 21:06:12 +00002972Only the significant number of bits need to be stored between the
Gabor Greifdfed1182008-06-18 13:44:57 +00002973stops, so that the <i>worst case is 20 memory accesses</i> when there are
29741000 <tt>Use</tt> objects associated with a <tt>User</tt>.</p>
Gabor Greife98fc272008-06-16 21:06:12 +00002975
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002976</div>
2977
Gabor Greifdfed1182008-06-18 13:44:57 +00002978<!-- ______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002979<h4>
Gabor Greiffd095b62009-01-05 16:05:32 +00002980 <a name="ReferenceImpl">Reference implementation</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002981</h4>
Gabor Greife98fc272008-06-16 21:06:12 +00002982
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002983<div>
Gabor Greifdfed1182008-06-18 13:44:57 +00002984<p>
2985The following literate Haskell fragment demonstrates the concept:</p>
Gabor Greifdfed1182008-06-18 13:44:57 +00002986
2987<div class="doc_code">
2988<pre>
Gabor Greife98fc272008-06-16 21:06:12 +00002989> import Test.QuickCheck
2990>
2991> digits :: Int -> [Char] -> [Char]
2992> digits 0 acc = '0' : acc
2993> digits 1 acc = '1' : acc
2994> digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
2995>
2996> dist :: Int -> [Char] -> [Char]
2997> dist 0 [] = ['S']
2998> dist 0 acc = acc
2999> dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
3000> dist n acc = dist (n - 1) $ dist 1 acc
3001>
3002> takeLast n ss = reverse $ take n $ reverse ss
3003>
3004> test = takeLast 40 $ dist 20 []
3005>
Gabor Greifdfed1182008-06-18 13:44:57 +00003006</pre>
3007</div>
3008<p>
3009Printing &lt;test&gt; gives: <tt>"1s100000s11010s10100s1111s1010s110s11s1S"</tt></p>
3010<p>
3011The reverse algorithm computes the length of the string just by examining
3012a certain prefix:</p>
Gabor Greife98fc272008-06-16 21:06:12 +00003013
Gabor Greifdfed1182008-06-18 13:44:57 +00003014<div class="doc_code">
3015<pre>
Gabor Greife98fc272008-06-16 21:06:12 +00003016> pref :: [Char] -> Int
3017> pref "S" = 1
3018> pref ('s':'1':rest) = decode 2 1 rest
3019> pref (_:rest) = 1 + pref rest
3020>
3021> decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
3022> decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
3023> decode walk acc _ = walk + acc
3024>
Gabor Greifdfed1182008-06-18 13:44:57 +00003025</pre>
3026</div>
3027<p>
3028Now, as expected, printing &lt;pref test&gt; gives <tt>40</tt>.</p>
3029<p>
3030We can <i>quickCheck</i> this with following property:</p>
Gabor Greife98fc272008-06-16 21:06:12 +00003031
Gabor Greifdfed1182008-06-18 13:44:57 +00003032<div class="doc_code">
3033<pre>
Gabor Greife98fc272008-06-16 21:06:12 +00003034> testcase = dist 2000 []
3035> testcaseLength = length testcase
3036>
3037> identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
3038> where arr = takeLast n testcase
Gabor Greifdfed1182008-06-18 13:44:57 +00003039>
3040</pre>
3041</div>
3042<p>
3043As expected &lt;quickCheck identityProp&gt; gives:</p>
Gabor Greife98fc272008-06-16 21:06:12 +00003044
Gabor Greifdfed1182008-06-18 13:44:57 +00003045<pre>
Gabor Greife98fc272008-06-16 21:06:12 +00003046*Main> quickCheck identityProp
3047OK, passed 100 tests.
Gabor Greifdfed1182008-06-18 13:44:57 +00003048</pre>
3049<p>
3050Let's be a bit more exhaustive:</p>
Gabor Greife98fc272008-06-16 21:06:12 +00003051
Gabor Greifdfed1182008-06-18 13:44:57 +00003052<div class="doc_code">
3053<pre>
Gabor Greife98fc272008-06-16 21:06:12 +00003054>
3055> deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
3056>
Gabor Greifdfed1182008-06-18 13:44:57 +00003057</pre>
3058</div>
3059<p>
3060And here is the result of &lt;deepCheck identityProp&gt;:</p>
Gabor Greife98fc272008-06-16 21:06:12 +00003061
Gabor Greifdfed1182008-06-18 13:44:57 +00003062<pre>
Gabor Greife98fc272008-06-16 21:06:12 +00003063*Main> deepCheck identityProp
3064OK, passed 500 tests.
Gabor Greife98fc272008-06-16 21:06:12 +00003065</pre>
3066
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003067</div>
3068
Gabor Greifdfed1182008-06-18 13:44:57 +00003069<!-- ______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003070<h4>
Gabor Greiffd095b62009-01-05 16:05:32 +00003071 <a name="Tagging">Tagging considerations</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003072</h4>
Gabor Greifdfed1182008-06-18 13:44:57 +00003073
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003074<div>
3075
Gabor Greifdfed1182008-06-18 13:44:57 +00003076<p>
3077To maintain the invariant that the 2 LSBits of each <tt>Use**</tt> in <tt>Use</tt>
3078never change after being set up, setters of <tt>Use::Prev</tt> must re-tag the
3079new <tt>Use**</tt> on every modification. Accordingly getters must strip the
3080tag bits.</p>
3081<p>
Gabor Greifd41720a2008-06-25 00:10:22 +00003082For layout b) instead of the <tt>User</tt> we find a pointer (<tt>User*</tt> with LSBit set).
3083Following this pointer brings us to the <tt>User</tt>. A portable trick ensures
3084that the first bytes of <tt>User</tt> (if interpreted as a pointer) never has
Gabor Greiffd095b62009-01-05 16:05:32 +00003085the LSBit set. (Portability is relying on the fact that all known compilers place the
3086<tt>vptr</tt> in the first word of the instances.)</p>
Gabor Greifdfed1182008-06-18 13:44:57 +00003087
Gabor Greife98fc272008-06-16 21:06:12 +00003088</div>
3089
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003090</div>
3091
3092</div>
3093
3094<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003095<h2>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003096 <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003097</h2>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003098<!-- *********************************************************************** -->
3099
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003100<div>
Reid Spencer303c4b42007-01-12 17:26:25 +00003101<p><tt>#include "<a href="/doxygen/Type_8h-source.html">llvm/Type.h</a>"</tt>
3102<br>doxygen info: <a href="/doxygen/classllvm_1_1Type.html">Type Class</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003103
3104<p>The Core LLVM classes are the primary means of representing the program
Chris Lattner261efe92003-11-25 01:02:51 +00003105being inspected or transformed. The core LLVM classes are defined in
3106header files in the <tt>include/llvm/</tt> directory, and implemented in
Misha Brukman13fd15c2004-01-15 00:14:41 +00003107the <tt>lib/VMCore</tt> directory.</p>
3108
Misha Brukman13fd15c2004-01-15 00:14:41 +00003109<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003110<h3>
Reid Spencer303c4b42007-01-12 17:26:25 +00003111 <a name="Type">The <tt>Type</tt> class and Derived Types</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003112</h3>
Reid Spencer303c4b42007-01-12 17:26:25 +00003113
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003114<div>
Reid Spencer303c4b42007-01-12 17:26:25 +00003115
3116 <p><tt>Type</tt> is a superclass of all type classes. Every <tt>Value</tt> has
3117 a <tt>Type</tt>. <tt>Type</tt> cannot be instantiated directly but only
3118 through its subclasses. Certain primitive types (<tt>VoidType</tt>,
3119 <tt>LabelType</tt>, <tt>FloatType</tt> and <tt>DoubleType</tt>) have hidden
3120 subclasses. They are hidden because they offer no useful functionality beyond
3121 what the <tt>Type</tt> class offers except to distinguish themselves from
3122 other subclasses of <tt>Type</tt>.</p>
3123 <p>All other types are subclasses of <tt>DerivedType</tt>. Types can be
3124 named, but this is not a requirement. There exists exactly
3125 one instance of a given shape at any one time. This allows type equality to
3126 be performed with address equality of the Type Instance. That is, given two
3127 <tt>Type*</tt> values, the types are identical if the pointers are identical.
3128 </p>
Reid Spencer303c4b42007-01-12 17:26:25 +00003129
3130<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003131<h4>
Gabor Greiffd095b62009-01-05 16:05:32 +00003132 <a name="m_Type">Important Public Methods</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003133</h4>
Reid Spencer303c4b42007-01-12 17:26:25 +00003134
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003135<div>
Reid Spencer303c4b42007-01-12 17:26:25 +00003136
3137<ul>
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003138 <li><tt>bool isIntegerTy() const</tt>: Returns true for any integer type.</li>
Reid Spencer303c4b42007-01-12 17:26:25 +00003139
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003140 <li><tt>bool isFloatingPointTy()</tt>: Return true if this is one of the five
Reid Spencer303c4b42007-01-12 17:26:25 +00003141 floating point types.</li>
3142
Reid Spencer303c4b42007-01-12 17:26:25 +00003143 <li><tt>bool isSized()</tt>: Return true if the type has known size. Things
3144 that don't have a size are abstract types, labels and void.</li>
3145
3146</ul>
3147</div>
3148
3149<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003150<h4>
Gabor Greiffd095b62009-01-05 16:05:32 +00003151 <a name="derivedtypes">Important Derived Types</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003152</h4>
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003153<div>
Reid Spencer303c4b42007-01-12 17:26:25 +00003154<dl>
3155 <dt><tt>IntegerType</tt></dt>
3156 <dd>Subclass of DerivedType that represents integer types of any bit width.
3157 Any bit width between <tt>IntegerType::MIN_INT_BITS</tt> (1) and
3158 <tt>IntegerType::MAX_INT_BITS</tt> (~8 million) can be represented.
3159 <ul>
3160 <li><tt>static const IntegerType* get(unsigned NumBits)</tt>: get an integer
3161 type of a specific bit width.</li>
3162 <li><tt>unsigned getBitWidth() const</tt>: Get the bit width of an integer
3163 type.</li>
3164 </ul>
3165 </dd>
3166 <dt><tt>SequentialType</tt></dt>
Tobias Grosserd475c102011-07-12 11:37:02 +00003167 <dd>This is subclassed by ArrayType, PointerType and VectorType.
Reid Spencer303c4b42007-01-12 17:26:25 +00003168 <ul>
3169 <li><tt>const Type * getElementType() const</tt>: Returns the type of each
3170 of the elements in the sequential type. </li>
3171 </ul>
3172 </dd>
3173 <dt><tt>ArrayType</tt></dt>
3174 <dd>This is a subclass of SequentialType and defines the interface for array
3175 types.
3176 <ul>
3177 <li><tt>unsigned getNumElements() const</tt>: Returns the number of
3178 elements in the array. </li>
3179 </ul>
3180 </dd>
3181 <dt><tt>PointerType</tt></dt>
Chris Lattner302da1e2007-02-03 03:05:57 +00003182 <dd>Subclass of SequentialType for pointer types.</dd>
Reid Spencer9d6565a2007-02-15 02:26:10 +00003183 <dt><tt>VectorType</tt></dt>
Reid Spencer485bad12007-02-15 03:07:05 +00003184 <dd>Subclass of SequentialType for vector types. A
3185 vector type is similar to an ArrayType but is distinguished because it is
Benjamin Kramer8040cd32009-10-12 14:46:08 +00003186 a first class type whereas ArrayType is not. Vector types are used for
Reid Spencer303c4b42007-01-12 17:26:25 +00003187 vector operations and are usually small vectors of of an integer or floating
3188 point type.</dd>
3189 <dt><tt>StructType</tt></dt>
3190 <dd>Subclass of DerivedTypes for struct types.</dd>
Duncan Sands8036ca42007-03-30 12:22:09 +00003191 <dt><tt><a name="FunctionType">FunctionType</a></tt></dt>
Reid Spencer303c4b42007-01-12 17:26:25 +00003192 <dd>Subclass of DerivedTypes for function types.
3193 <ul>
Dan Gohman4bb31bf2010-03-30 20:04:57 +00003194 <li><tt>bool isVarArg() const</tt>: Returns true if it's a vararg
Reid Spencer303c4b42007-01-12 17:26:25 +00003195 function</li>
3196 <li><tt> const Type * getReturnType() const</tt>: Returns the
3197 return type of the function.</li>
3198 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
3199 the type of the ith parameter.</li>
3200 <li><tt> const unsigned getNumParams() const</tt>: Returns the
3201 number of formal parameters.</li>
3202 </ul>
3203 </dd>
Reid Spencer303c4b42007-01-12 17:26:25 +00003204</dl>
3205</div>
3206
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003207</div>
Chris Lattner2b78d962007-02-03 20:02:25 +00003208
3209<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003210<h3>
Chris Lattner2b78d962007-02-03 20:02:25 +00003211 <a name="Module">The <tt>Module</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003212</h3>
Chris Lattner2b78d962007-02-03 20:02:25 +00003213
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003214<div>
Chris Lattner2b78d962007-02-03 20:02:25 +00003215
3216<p><tt>#include "<a
3217href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
3218<a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
3219
3220<p>The <tt>Module</tt> class represents the top level structure present in LLVM
3221programs. An LLVM module is effectively either a translation unit of the
3222original program or a combination of several translation units merged by the
3223linker. The <tt>Module</tt> class keeps track of a list of <a
3224href="#Function"><tt>Function</tt></a>s, a list of <a
3225href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
3226href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
3227helpful member functions that try to make common operations easy.</p>
3228
Chris Lattner2b78d962007-02-03 20:02:25 +00003229<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003230<h4>
Chris Lattner2b78d962007-02-03 20:02:25 +00003231 <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003232</h4>
Chris Lattner2b78d962007-02-03 20:02:25 +00003233
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003234<div>
Chris Lattner2b78d962007-02-03 20:02:25 +00003235
3236<ul>
3237 <li><tt>Module::Module(std::string name = "")</tt></li>
3238</ul>
3239
3240<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
3241provide a name for it (probably based on the name of the translation unit).</p>
3242
3243<ul>
3244 <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
3245 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
3246
3247 <tt>begin()</tt>, <tt>end()</tt>
3248 <tt>size()</tt>, <tt>empty()</tt>
3249
3250 <p>These are forwarding methods that make it easy to access the contents of
3251 a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
3252 list.</p></li>
3253
3254 <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
3255
3256 <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
3257 necessary to use when you need to update the list or perform a complex
3258 action that doesn't have a forwarding method.</p>
3259
3260 <p><!-- Global Variable --></p></li>
3261</ul>
3262
3263<hr>
3264
3265<ul>
3266 <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
3267
3268 <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
3269
3270 <tt>global_begin()</tt>, <tt>global_end()</tt>
3271 <tt>global_size()</tt>, <tt>global_empty()</tt>
3272
3273 <p> These are forwarding methods that make it easy to access the contents of
3274 a <tt>Module</tt> object's <a
3275 href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
3276
3277 <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
3278
3279 <p>Returns the list of <a
3280 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s. This is necessary to
3281 use when you need to update the list or perform a complex action that
3282 doesn't have a forwarding method.</p>
3283
3284 <p><!-- Symbol table stuff --> </p></li>
3285</ul>
3286
3287<hr>
3288
3289<ul>
3290 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3291
3292 <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3293 for this <tt>Module</tt>.</p>
3294
3295 <p><!-- Convenience methods --></p></li>
3296</ul>
3297
3298<hr>
3299
3300<ul>
3301 <li><tt><a href="#Function">Function</a> *getFunction(const std::string
3302 &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
3303
3304 <p>Look up the specified function in the <tt>Module</tt> <a
3305 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
3306 <tt>null</tt>.</p></li>
3307
3308 <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
3309 std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
3310
3311 <p>Look up the specified function in the <tt>Module</tt> <a
3312 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
3313 external declaration for the function and return it.</p></li>
3314
3315 <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
3316
3317 <p>If there is at least one entry in the <a
3318 href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
3319 href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
3320 string.</p></li>
3321
3322 <li><tt>bool addTypeName(const std::string &amp;Name, const <a
3323 href="#Type">Type</a> *Ty)</tt>
3324
3325 <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3326 mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
3327 name, true is returned and the <a
3328 href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
3329</ul>
3330
3331</div>
3332
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003333</div>
Chris Lattner2b78d962007-02-03 20:02:25 +00003334
Reid Spencer303c4b42007-01-12 17:26:25 +00003335<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003336<h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003337 <a name="Value">The <tt>Value</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003338</h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003339
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003340<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003341
3342<p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
3343<br>
Chris Lattner00815172007-01-04 22:01:45 +00003344doxygen info: <a href="/doxygen/classllvm_1_1Value.html">Value Class</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003345
3346<p>The <tt>Value</tt> class is the most important class in the LLVM Source
3347base. It represents a typed value that may be used (among other things) as an
3348operand to an instruction. There are many different types of <tt>Value</tt>s,
3349such as <a href="#Constant"><tt>Constant</tt></a>s,<a
3350href="#Argument"><tt>Argument</tt></a>s. Even <a
3351href="#Instruction"><tt>Instruction</tt></a>s and <a
3352href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
3353
3354<p>A particular <tt>Value</tt> may be used many times in the LLVM representation
3355for a program. For example, an incoming argument to a function (represented
3356with an instance of the <a href="#Argument">Argument</a> class) is "used" by
3357every instruction in the function that references the argument. To keep track
3358of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
3359href="#User"><tt>User</tt></a>s that is using it (the <a
3360href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
3361graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
3362def-use information in the program, and is accessible through the <tt>use_</tt>*
3363methods, shown below.</p>
3364
3365<p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
3366and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
3367method. In addition, all LLVM values can be named. The "name" of the
3368<tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
3369
Bill Wendling3cd5ca62006-10-11 06:30:10 +00003370<div class="doc_code">
3371<pre>
Reid Spencer06565dc2007-01-12 17:11:23 +00003372%<b>foo</b> = add i32 1, 2
Bill Wendling3cd5ca62006-10-11 06:30:10 +00003373</pre>
3374</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003375
Duncan Sands8036ca42007-03-30 12:22:09 +00003376<p><a name="nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003377that the name of any value may be missing (an empty string), so names should
3378<b>ONLY</b> be used for debugging (making the source code easier to read,
3379debugging printouts), they should not be used to keep track of values or map
3380between them. For this purpose, use a <tt>std::map</tt> of pointers to the
3381<tt>Value</tt> itself instead.</p>
3382
3383<p>One important aspect of LLVM is that there is no distinction between an SSA
3384variable and the operation that produces it. Because of this, any reference to
3385the value produced by an instruction (or the value available as an incoming
Chris Lattnerd5fc4fc2004-03-18 14:58:55 +00003386argument, for example) is represented as a direct pointer to the instance of
3387the class that
Misha Brukman13fd15c2004-01-15 00:14:41 +00003388represents this value. Although this may take some getting used to, it
3389simplifies the representation and makes it easier to manipulate.</p>
3390
Misha Brukman13fd15c2004-01-15 00:14:41 +00003391<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003392<h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003393 <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003394</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003395
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003396<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003397
Chris Lattner261efe92003-11-25 01:02:51 +00003398<ul>
3399 <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
3400use-list<br>
Gabor Greifbbbf9a22010-03-26 19:59:25 +00003401 <tt>Value::const_use_iterator</tt> - Typedef for const_iterator over
Chris Lattner261efe92003-11-25 01:02:51 +00003402the use-list<br>
3403 <tt>unsigned use_size()</tt> - Returns the number of users of the
3404value.<br>
Chris Lattner9355b472002-09-06 02:50:58 +00003405 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
Chris Lattner261efe92003-11-25 01:02:51 +00003406 <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
3407the use-list.<br>
3408 <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
3409use-list.<br>
3410 <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
3411element in the list.
3412 <p> These methods are the interface to access the def-use
3413information in LLVM. As with all other iterators in LLVM, the naming
3414conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003415 </li>
3416 <li><tt><a href="#Type">Type</a> *getType() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003417 <p>This method returns the Type of the Value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003418 </li>
3419 <li><tt>bool hasName() const</tt><br>
Chris Lattner9355b472002-09-06 02:50:58 +00003420 <tt>std::string getName() const</tt><br>
Chris Lattner261efe92003-11-25 01:02:51 +00003421 <tt>void setName(const std::string &amp;Name)</tt>
3422 <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
3423be aware of the <a href="#nameWarning">precaution above</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003424 </li>
3425 <li><tt>void replaceAllUsesWith(Value *V)</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003426
3427 <p>This method traverses the use list of a <tt>Value</tt> changing all <a
3428 href="#User"><tt>User</tt>s</a> of the current value to refer to
3429 "<tt>V</tt>" instead. For example, if you detect that an instruction always
3430 produces a constant value (for example through constant folding), you can
3431 replace all uses of the instruction with the constant like this:</p>
3432
Bill Wendling3cd5ca62006-10-11 06:30:10 +00003433<div class="doc_code">
3434<pre>
3435Inst-&gt;replaceAllUsesWith(ConstVal);
3436</pre>
3437</div>
3438
Chris Lattner261efe92003-11-25 01:02:51 +00003439</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003440
3441</div>
3442
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003443</div>
3444
Misha Brukman13fd15c2004-01-15 00:14:41 +00003445<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003446<h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003447 <a name="User">The <tt>User</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003448</h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003449
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003450<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003451
3452<p>
3453<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
Misha Brukman384047f2004-06-03 23:29:12 +00003454doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003455Superclass: <a href="#Value"><tt>Value</tt></a></p>
3456
3457<p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
3458refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
3459that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
3460referring to. The <tt>User</tt> class itself is a subclass of
3461<tt>Value</tt>.</p>
3462
3463<p>The operands of a <tt>User</tt> point directly to the LLVM <a
3464href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
3465Single Assignment (SSA) form, there can only be one definition referred to,
3466allowing this direct connection. This connection provides the use-def
3467information in LLVM.</p>
3468
Misha Brukman13fd15c2004-01-15 00:14:41 +00003469<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003470<h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003471 <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003472</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003473
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003474<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003475
3476<p>The <tt>User</tt> class exposes the operand list in two ways: through
3477an index access interface and through an iterator based interface.</p>
3478
Chris Lattner261efe92003-11-25 01:02:51 +00003479<ul>
Chris Lattner261efe92003-11-25 01:02:51 +00003480 <li><tt>Value *getOperand(unsigned i)</tt><br>
3481 <tt>unsigned getNumOperands()</tt>
3482 <p> These two methods expose the operands of the <tt>User</tt> in a
Misha Brukman13fd15c2004-01-15 00:14:41 +00003483convenient form for direct access.</p></li>
3484
Chris Lattner261efe92003-11-25 01:02:51 +00003485 <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
3486list<br>
Chris Lattner58360822005-01-17 00:12:04 +00003487 <tt>op_iterator op_begin()</tt> - Get an iterator to the start of
3488the operand list.<br>
3489 <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
Chris Lattner261efe92003-11-25 01:02:51 +00003490operand list.
3491 <p> Together, these methods make up the iterator based interface to
Misha Brukman13fd15c2004-01-15 00:14:41 +00003492the operands of a <tt>User</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00003493</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003494
3495</div>
3496
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003497</div>
3498
Misha Brukman13fd15c2004-01-15 00:14:41 +00003499<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003500<h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003501 <a name="Instruction">The <tt>Instruction</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003502</h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003503
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003504<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003505
3506<p><tt>#include "</tt><tt><a
3507href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
Misha Brukman31ca1de2004-06-03 23:35:54 +00003508doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003509Superclasses: <a href="#User"><tt>User</tt></a>, <a
3510href="#Value"><tt>Value</tt></a></p>
3511
3512<p>The <tt>Instruction</tt> class is the common base class for all LLVM
3513instructions. It provides only a few methods, but is a very commonly used
3514class. The primary data tracked by the <tt>Instruction</tt> class itself is the
3515opcode (instruction type) and the parent <a
3516href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
3517into. To represent a specific type of instruction, one of many subclasses of
3518<tt>Instruction</tt> are used.</p>
3519
3520<p> Because the <tt>Instruction</tt> class subclasses the <a
3521href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
3522way as for other <a href="#User"><tt>User</tt></a>s (with the
3523<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
3524<tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
3525the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
3526file contains some meta-data about the various different types of instructions
3527in LLVM. It describes the enum values that are used as opcodes (for example
Reid Spencerc92d25d2006-12-19 19:47:19 +00003528<tt>Instruction::Add</tt> and <tt>Instruction::ICmp</tt>), as well as the
Misha Brukman13fd15c2004-01-15 00:14:41 +00003529concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
3530example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
Reid Spencerc92d25d2006-12-19 19:47:19 +00003531href="#CmpInst">CmpInst</a></tt>). Unfortunately, the use of macros in
Misha Brukman13fd15c2004-01-15 00:14:41 +00003532this file confuses doxygen, so these enum values don't show up correctly in the
Misha Brukman31ca1de2004-06-03 23:35:54 +00003533<a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003534
Misha Brukman13fd15c2004-01-15 00:14:41 +00003535<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003536<h4>
3537 <a name="s_Instruction">
3538 Important Subclasses of the <tt>Instruction</tt> class
3539 </a>
3540</h4>
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003541<div>
Reid Spencerc92d25d2006-12-19 19:47:19 +00003542 <ul>
3543 <li><tt><a name="BinaryOperator">BinaryOperator</a></tt>
3544 <p>This subclasses represents all two operand instructions whose operands
3545 must be the same type, except for the comparison instructions.</p></li>
3546 <li><tt><a name="CastInst">CastInst</a></tt>
3547 <p>This subclass is the parent of the 12 casting instructions. It provides
3548 common operations on cast instructions.</p>
3549 <li><tt><a name="CmpInst">CmpInst</a></tt>
3550 <p>This subclass respresents the two comparison instructions,
3551 <a href="LangRef.html#i_icmp">ICmpInst</a> (integer opreands), and
3552 <a href="LangRef.html#i_fcmp">FCmpInst</a> (floating point operands).</p>
3553 <li><tt><a name="TerminatorInst">TerminatorInst</a></tt>
3554 <p>This subclass is the parent of all terminator instructions (those which
3555 can terminate a block).</p>
3556 </ul>
3557 </div>
3558
3559<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003560<h4>
3561 <a name="m_Instruction">
3562 Important Public Members of the <tt>Instruction</tt> class
3563 </a>
3564</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003565
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003566<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003567
Chris Lattner261efe92003-11-25 01:02:51 +00003568<ul>
3569 <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003570 <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
3571this <tt>Instruction</tt> is embedded into.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00003572 <li><tt>bool mayWriteToMemory()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003573 <p>Returns true if the instruction writes to memory, i.e. it is a
3574 <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00003575 <li><tt>unsigned getOpcode()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003576 <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00003577 <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003578 <p>Returns another instance of the specified instruction, identical
Chris Lattner261efe92003-11-25 01:02:51 +00003579in all ways to the original except that the instruction has no parent
3580(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
Misha Brukman13fd15c2004-01-15 00:14:41 +00003581and it has no name</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00003582</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003583
3584</div>
3585
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003586</div>
3587
Misha Brukman13fd15c2004-01-15 00:14:41 +00003588<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003589<h3>
Chris Lattner2b78d962007-02-03 20:02:25 +00003590 <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003591</h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003592
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003593<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003594
Chris Lattner2b78d962007-02-03 20:02:25 +00003595<p>Constant represents a base class for different types of constants. It
3596is subclassed by ConstantInt, ConstantArray, etc. for representing
3597the various types of Constants. <a href="#GlobalValue">GlobalValue</a> is also
3598a subclass, which represents the address of a global variable or function.
3599</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003600
Misha Brukman13fd15c2004-01-15 00:14:41 +00003601<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003602<h4>Important Subclasses of Constant</h4>
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003603<div>
Chris Lattner261efe92003-11-25 01:02:51 +00003604<ul>
Chris Lattner2b78d962007-02-03 20:02:25 +00003605 <li>ConstantInt : This subclass of Constant represents an integer constant of
3606 any width.
3607 <ul>
Reid Spencer97b4ee32007-03-01 21:05:33 +00003608 <li><tt>const APInt&amp; getValue() const</tt>: Returns the underlying
3609 value of this constant, an APInt value.</li>
3610 <li><tt>int64_t getSExtValue() const</tt>: Converts the underlying APInt
3611 value to an int64_t via sign extension. If the value (not the bit width)
3612 of the APInt is too large to fit in an int64_t, an assertion will result.
3613 For this reason, use of this method is discouraged.</li>
3614 <li><tt>uint64_t getZExtValue() const</tt>: Converts the underlying APInt
3615 value to a uint64_t via zero extension. IF the value (not the bit width)
3616 of the APInt is too large to fit in a uint64_t, an assertion will result.
Reid Spencer4474d872007-03-02 01:31:31 +00003617 For this reason, use of this method is discouraged.</li>
Reid Spencer97b4ee32007-03-01 21:05:33 +00003618 <li><tt>static ConstantInt* get(const APInt&amp; Val)</tt>: Returns the
3619 ConstantInt object that represents the value provided by <tt>Val</tt>.
3620 The type is implied as the IntegerType that corresponds to the bit width
3621 of <tt>Val</tt>.</li>
Chris Lattner2b78d962007-02-03 20:02:25 +00003622 <li><tt>static ConstantInt* get(const Type *Ty, uint64_t Val)</tt>:
3623 Returns the ConstantInt object that represents the value provided by
3624 <tt>Val</tt> for integer type <tt>Ty</tt>.</li>
3625 </ul>
3626 </li>
3627 <li>ConstantFP : This class represents a floating point constant.
3628 <ul>
3629 <li><tt>double getValue() const</tt>: Returns the underlying value of
3630 this constant. </li>
3631 </ul>
3632 </li>
3633 <li>ConstantArray : This represents a constant array.
3634 <ul>
3635 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
3636 a vector of component constants that makeup this array. </li>
3637 </ul>
3638 </li>
3639 <li>ConstantStruct : This represents a constant struct.
3640 <ul>
3641 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
3642 a vector of component constants that makeup this array. </li>
3643 </ul>
3644 </li>
3645 <li>GlobalValue : This represents either a global variable or a function. In
3646 either case, the value is a constant fixed address (after linking).
3647 </li>
Chris Lattner261efe92003-11-25 01:02:51 +00003648</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003649</div>
3650
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003651</div>
Chris Lattner2b78d962007-02-03 20:02:25 +00003652
Misha Brukman13fd15c2004-01-15 00:14:41 +00003653<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003654<h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003655 <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003656</h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003657
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003658<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003659
3660<p><tt>#include "<a
3661href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
Misha Brukman384047f2004-06-03 23:29:12 +00003662doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
3663Class</a><br>
Reid Spencerbe5e85e2006-04-14 14:11:48 +00003664Superclasses: <a href="#Constant"><tt>Constant</tt></a>,
3665<a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003666
3667<p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
3668href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
3669visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
3670Because they are visible at global scope, they are also subject to linking with
3671other globals defined in different translation units. To control the linking
3672process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
3673<tt>GlobalValue</tt>s know whether they have internal or external linkage, as
Reid Spencer8b2da7a2004-07-18 13:10:31 +00003674defined by the <tt>LinkageTypes</tt> enumeration.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003675
3676<p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
3677<tt>static</tt> in C), it is not visible to code outside the current translation
3678unit, and does not participate in linking. If it has external linkage, it is
3679visible to external code, and does participate in linking. In addition to
3680linkage information, <tt>GlobalValue</tt>s keep track of which <a
3681href="#Module"><tt>Module</tt></a> they are currently part of.</p>
3682
3683<p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
3684by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
3685global is always a pointer to its contents. It is important to remember this
3686when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
3687be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
3688subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
Reid Spencer06565dc2007-01-12 17:11:23 +00003689i32]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
Misha Brukman13fd15c2004-01-15 00:14:41 +00003690the address of the first element of this array and the value of the
3691<tt>GlobalVariable</tt> are the same, they have different types. The
Reid Spencer06565dc2007-01-12 17:11:23 +00003692<tt>GlobalVariable</tt>'s type is <tt>[24 x i32]</tt>. The first element's type
3693is <tt>i32.</tt> Because of this, accessing a global value requires you to
Misha Brukman13fd15c2004-01-15 00:14:41 +00003694dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
3695can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
3696Language Reference Manual</a>.</p>
3697
Misha Brukman13fd15c2004-01-15 00:14:41 +00003698<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003699<h4>
3700 <a name="m_GlobalValue">
3701 Important Public Members of the <tt>GlobalValue</tt> class
3702 </a>
3703</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003704
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003705<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003706
Chris Lattner261efe92003-11-25 01:02:51 +00003707<ul>
3708 <li><tt>bool hasInternalLinkage() const</tt><br>
Chris Lattner9355b472002-09-06 02:50:58 +00003709 <tt>bool hasExternalLinkage() const</tt><br>
Chris Lattner261efe92003-11-25 01:02:51 +00003710 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
3711 <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
3712 <p> </p>
3713 </li>
3714 <li><tt><a href="#Module">Module</a> *getParent()</tt>
3715 <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
Misha Brukman13fd15c2004-01-15 00:14:41 +00003716GlobalValue is currently embedded into.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00003717</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003718
3719</div>
3720
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003721</div>
3722
Misha Brukman13fd15c2004-01-15 00:14:41 +00003723<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003724<h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003725 <a name="Function">The <tt>Function</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003726</h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003727
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003728<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003729
3730<p><tt>#include "<a
3731href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
Misha Brukman31ca1de2004-06-03 23:35:54 +00003732info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
Reid Spencerbe5e85e2006-04-14 14:11:48 +00003733Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>,
3734<a href="#Constant"><tt>Constant</tt></a>,
3735<a href="#User"><tt>User</tt></a>,
3736<a href="#Value"><tt>Value</tt></a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003737
3738<p>The <tt>Function</tt> class represents a single procedure in LLVM. It is
Torok Edwin87469292009-10-12 13:37:29 +00003739actually one of the more complex classes in the LLVM hierarchy because it must
Misha Brukman13fd15c2004-01-15 00:14:41 +00003740keep track of a large amount of data. The <tt>Function</tt> class keeps track
Reid Spencerbe5e85e2006-04-14 14:11:48 +00003741of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal
3742<a href="#Argument"><tt>Argument</tt></a>s, and a
3743<a href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003744
3745<p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
3746commonly used part of <tt>Function</tt> objects. The list imposes an implicit
3747ordering of the blocks in the function, which indicate how the code will be
Benjamin Kramer8040cd32009-10-12 14:46:08 +00003748laid out by the backend. Additionally, the first <a
Misha Brukman13fd15c2004-01-15 00:14:41 +00003749href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
3750<tt>Function</tt>. It is not legal in LLVM to explicitly branch to this initial
3751block. There are no implicit exit nodes, and in fact there may be multiple exit
3752nodes from a single <tt>Function</tt>. If the <a
3753href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
3754the <tt>Function</tt> is actually a function declaration: the actual body of the
3755function hasn't been linked in yet.</p>
3756
3757<p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
3758<tt>Function</tt> class also keeps track of the list of formal <a
3759href="#Argument"><tt>Argument</tt></a>s that the function receives. This
3760container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
3761nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
3762the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
3763
3764<p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
3765LLVM feature that is only used when you have to look up a value by name. Aside
3766from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
3767internally to make sure that there are not conflicts between the names of <a
3768href="#Instruction"><tt>Instruction</tt></a>s, <a
3769href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
3770href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
3771
Reid Spencer8b2da7a2004-07-18 13:10:31 +00003772<p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
3773and therefore also a <a href="#Constant">Constant</a>. The value of the function
3774is its address (after linking) which is guaranteed to be constant.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003775
3776<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003777<h4>
3778 <a name="m_Function">
3779 Important Public Members of the <tt>Function</tt> class
3780 </a>
3781</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003782
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003783<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003784
Chris Lattner261efe92003-11-25 01:02:51 +00003785<ul>
3786 <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
Chris Lattnerac479e52004-08-04 05:10:48 +00003787 *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003788
3789 <p>Constructor used when you need to create new <tt>Function</tt>s to add
3790 the the program. The constructor must specify the type of the function to
Chris Lattnerac479e52004-08-04 05:10:48 +00003791 create and what type of linkage the function should have. The <a
3792 href="#FunctionType"><tt>FunctionType</tt></a> argument
Misha Brukman13fd15c2004-01-15 00:14:41 +00003793 specifies the formal arguments and return value for the function. The same
Duncan Sands8036ca42007-03-30 12:22:09 +00003794 <a href="#FunctionType"><tt>FunctionType</tt></a> value can be used to
Misha Brukman13fd15c2004-01-15 00:14:41 +00003795 create multiple functions. The <tt>Parent</tt> argument specifies the Module
3796 in which the function is defined. If this argument is provided, the function
3797 will automatically be inserted into that module's list of
3798 functions.</p></li>
3799
Chris Lattner62810e32008-11-25 18:34:50 +00003800 <li><tt>bool isDeclaration()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003801
3802 <p>Return whether or not the <tt>Function</tt> has a body defined. If the
3803 function is "external", it does not have a body, and thus must be resolved
3804 by linking with a function defined in a different translation unit.</p></li>
3805
Chris Lattner261efe92003-11-25 01:02:51 +00003806 <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
Chris Lattner9355b472002-09-06 02:50:58 +00003807 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003808
Chris Lattner77d69242005-03-15 05:19:20 +00003809 <tt>begin()</tt>, <tt>end()</tt>
3810 <tt>size()</tt>, <tt>empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003811
3812 <p>These are forwarding methods that make it easy to access the contents of
3813 a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
3814 list.</p></li>
3815
Chris Lattner261efe92003-11-25 01:02:51 +00003816 <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003817
3818 <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This
3819 is necessary to use when you need to update the list or perform a complex
3820 action that doesn't have a forwarding method.</p></li>
3821
Chris Lattner89cc2652005-03-15 04:48:32 +00003822 <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
Chris Lattner261efe92003-11-25 01:02:51 +00003823iterator<br>
Chris Lattner89cc2652005-03-15 04:48:32 +00003824 <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003825
Chris Lattner77d69242005-03-15 05:19:20 +00003826 <tt>arg_begin()</tt>, <tt>arg_end()</tt>
Chris Lattner89cc2652005-03-15 04:48:32 +00003827 <tt>arg_size()</tt>, <tt>arg_empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003828
3829 <p>These are forwarding methods that make it easy to access the contents of
3830 a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
3831 list.</p></li>
3832
Chris Lattner261efe92003-11-25 01:02:51 +00003833 <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003834
3835 <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
3836 necessary to use when you need to update the list or perform a complex
3837 action that doesn't have a forwarding method.</p></li>
3838
Chris Lattner261efe92003-11-25 01:02:51 +00003839 <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003840
3841 <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
3842 function. Because the entry block for the function is always the first
3843 block, this returns the first block of the <tt>Function</tt>.</p></li>
3844
Chris Lattner261efe92003-11-25 01:02:51 +00003845 <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
3846 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003847
3848 <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
3849 <tt>Function</tt> and returns the return type of the function, or the <a
3850 href="#FunctionType"><tt>FunctionType</tt></a> of the actual
3851 function.</p></li>
3852
Chris Lattner261efe92003-11-25 01:02:51 +00003853 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003854
Chris Lattner261efe92003-11-25 01:02:51 +00003855 <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003856 for this <tt>Function</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00003857</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003858
3859</div>
3860
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003861</div>
3862
Misha Brukman13fd15c2004-01-15 00:14:41 +00003863<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003864<h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003865 <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003866</h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003867
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003868<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003869
3870<p><tt>#include "<a
3871href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
3872<br>
Tanya Lattnera3da7772004-06-22 08:02:25 +00003873doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
Reid Spencerbe5e85e2006-04-14 14:11:48 +00003874 Class</a><br>
3875Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>,
3876<a href="#Constant"><tt>Constant</tt></a>,
3877<a href="#User"><tt>User</tt></a>,
3878<a href="#Value"><tt>Value</tt></a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003879
Benjamin Kramer8040cd32009-10-12 14:46:08 +00003880<p>Global variables are represented with the (surprise surprise)
Misha Brukman13fd15c2004-01-15 00:14:41 +00003881<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
3882subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
3883always referenced by their address (global values must live in memory, so their
Reid Spencerbe5e85e2006-04-14 14:11:48 +00003884"name" refers to their constant address). See
3885<a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this. Global
3886variables may have an initial value (which must be a
3887<a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer,
3888they may be marked as "constant" themselves (indicating that their contents
3889never change at runtime).</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003890
3891<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003892<h4>
3893 <a name="m_GlobalVariable">
3894 Important Public Members of the <tt>GlobalVariable</tt> class
3895 </a>
3896</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003897
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003898<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003899
Chris Lattner261efe92003-11-25 01:02:51 +00003900<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003901 <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
3902 isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
3903 *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
3904
3905 <p>Create a new global variable of the specified type. If
3906 <tt>isConstant</tt> is true then the global variable will be marked as
3907 unchanging for the program. The Linkage parameter specifies the type of
Duncan Sands667d4b82009-03-07 15:45:40 +00003908 linkage (internal, external, weak, linkonce, appending) for the variable.
3909 If the linkage is InternalLinkage, WeakAnyLinkage, WeakODRLinkage,
3910 LinkOnceAnyLinkage or LinkOnceODRLinkage,&nbsp; then the resultant
3911 global variable will have internal linkage. AppendingLinkage concatenates
3912 together all instances (in different translation units) of the variable
3913 into a single variable but is only applicable to arrays. &nbsp;See
Misha Brukman13fd15c2004-01-15 00:14:41 +00003914 the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
3915 further details on linkage types. Optionally an initializer, a name, and the
3916 module to put the variable into may be specified for the global variable as
3917 well.</p></li>
3918
Chris Lattner261efe92003-11-25 01:02:51 +00003919 <li><tt>bool isConstant() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003920
3921 <p>Returns true if this is a global variable that is known not to
3922 be modified at runtime.</p></li>
3923
Chris Lattner261efe92003-11-25 01:02:51 +00003924 <li><tt>bool hasInitializer()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003925
3926 <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
3927
Chris Lattner261efe92003-11-25 01:02:51 +00003928 <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003929
Benjamin Kramer8040cd32009-10-12 14:46:08 +00003930 <p>Returns the initial value for a <tt>GlobalVariable</tt>. It is not legal
Misha Brukman13fd15c2004-01-15 00:14:41 +00003931 to call this method if there is no initializer.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00003932</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003933
3934</div>
3935
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003936</div>
Chris Lattner2b78d962007-02-03 20:02:25 +00003937
Misha Brukman13fd15c2004-01-15 00:14:41 +00003938<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003939<h3>
Chris Lattner2b78d962007-02-03 20:02:25 +00003940 <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003941</h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003942
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003943<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003944
3945<p><tt>#include "<a
Chris Lattner2b78d962007-02-03 20:02:25 +00003946href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
Stefanus Du Toit24e04112009-06-17 21:12:26 +00003947doxygen info: <a href="/doxygen/classllvm_1_1BasicBlock.html">BasicBlock
Chris Lattner2b78d962007-02-03 20:02:25 +00003948Class</a><br>
3949Superclass: <a href="#Value"><tt>Value</tt></a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003950
Nick Lewyckyccd279d2011-02-17 02:19:22 +00003951<p>This class represents a single entry single exit section of the code,
Chris Lattner2b78d962007-02-03 20:02:25 +00003952commonly known as a basic block by the compiler community. The
3953<tt>BasicBlock</tt> class maintains a list of <a
3954href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
3955Matching the language definition, the last element of this list of instructions
3956is always a terminator instruction (a subclass of the <a
3957href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
3958
3959<p>In addition to tracking the list of instructions that make up the block, the
3960<tt>BasicBlock</tt> class also keeps track of the <a
3961href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
3962
3963<p>Note that <tt>BasicBlock</tt>s themselves are <a
3964href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
3965like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
3966<tt>label</tt>.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003967
Misha Brukman13fd15c2004-01-15 00:14:41 +00003968<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003969<h4>
3970 <a name="m_BasicBlock">
3971 Important Public Members of the <tt>BasicBlock</tt> class
3972 </a>
3973</h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003974
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003975<div>
Chris Lattner261efe92003-11-25 01:02:51 +00003976<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003977
Chris Lattner2b78d962007-02-03 20:02:25 +00003978<li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
3979 href="#Function">Function</a> *Parent = 0)</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003980
Chris Lattner2b78d962007-02-03 20:02:25 +00003981<p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
3982insertion into a function. The constructor optionally takes a name for the new
3983block, and a <a href="#Function"><tt>Function</tt></a> to insert it into. If
3984the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
3985automatically inserted at the end of the specified <a
3986href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
3987manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +00003988
Chris Lattner2b78d962007-02-03 20:02:25 +00003989<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
3990<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
3991<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
3992<tt>size()</tt>, <tt>empty()</tt>
3993STL-style functions for accessing the instruction list.
Misha Brukman13fd15c2004-01-15 00:14:41 +00003994
Chris Lattner2b78d962007-02-03 20:02:25 +00003995<p>These methods and typedefs are forwarding functions that have the same
3996semantics as the standard library methods of the same names. These methods
3997expose the underlying instruction list of a basic block in a way that is easy to
3998manipulate. To get the full complement of container operations (including
3999operations to update the list), you must use the <tt>getInstList()</tt>
4000method.</p></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +00004001
Chris Lattner2b78d962007-02-03 20:02:25 +00004002<li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00004003
Chris Lattner2b78d962007-02-03 20:02:25 +00004004<p>This method is used to get access to the underlying container that actually
4005holds the Instructions. This method must be used when there isn't a forwarding
4006function in the <tt>BasicBlock</tt> class for the operation that you would like
4007to perform. Because there are no forwarding functions for "updating"
4008operations, you need to use this if you want to update the contents of a
4009<tt>BasicBlock</tt>.</p></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +00004010
Chris Lattner2b78d962007-02-03 20:02:25 +00004011<li><tt><a href="#Function">Function</a> *getParent()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00004012
Chris Lattner2b78d962007-02-03 20:02:25 +00004013<p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
4014embedded into, or a null pointer if it is homeless.</p></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +00004015
Chris Lattner2b78d962007-02-03 20:02:25 +00004016<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00004017
Chris Lattner2b78d962007-02-03 20:02:25 +00004018<p> Returns a pointer to the terminator instruction that appears at the end of
4019the <tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
4020instruction in the block is not a terminator, then a null pointer is
4021returned.</p></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +00004022
Misha Brukman13fd15c2004-01-15 00:14:41 +00004023</ul>
4024
4025</div>
4026
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004027</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00004028
Misha Brukman13fd15c2004-01-15 00:14:41 +00004029<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004030<h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00004031 <a name="Argument">The <tt>Argument</tt> class</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004032</h3>
Misha Brukman13fd15c2004-01-15 00:14:41 +00004033
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004034<div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00004035
4036<p>This subclass of Value defines the interface for incoming formal
Chris Lattner58360822005-01-17 00:12:04 +00004037arguments to a function. A Function maintains a list of its formal
Misha Brukman13fd15c2004-01-15 00:14:41 +00004038arguments. An argument has a pointer to the parent Function.</p>
4039
4040</div>
4041
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004042</div>
4043
Chris Lattner9355b472002-09-06 02:50:58 +00004044<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +00004045<hr>
4046<address>
4047 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00004048 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +00004049 <a href="http://validator.w3.org/check/referer"><img
Gabor Greifa9c0f2b2008-06-18 14:05:31 +00004050 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01 Strict"></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +00004051
4052 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
4053 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
NAKAMURA Takumib9a33632011-04-09 02:13:37 +00004054 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00004055 Last modified: $Date$
4056</address>
4057
Chris Lattner261efe92003-11-25 01:02:51 +00004058</body>
4059</html>