blob: f1a5373626062371d32772cbc6039db70f399a38 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
Chris Lattner2ac19022010-11-15 05:19:05 +000014#define DEBUG_TYPE "mccodeemitter"
Evan Cheng8c3fee52011-07-25 18:43:53 +000015#include "MCTargetDesc/X86MCTargetDesc.h"
16#include "MCTargetDesc/X86BaseInfo.h"
17#include "MCTargetDesc/X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
Evan Cheng8c3fee52011-07-25 18:43:53 +000021#include "llvm/MC/MCInstrInfo.h"
22#include "llvm/MC/MCRegisterInfo.h"
Evan Cheng59ee62d2011-07-11 03:57:24 +000023#include "llvm/MC/MCSubtargetInfo.h"
Rafael Espindola64e67192010-10-20 16:46:08 +000024#include "llvm/MC/MCSymbol.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000025#include "llvm/Support/raw_ostream.h"
Evan Cheng59ee62d2011-07-11 03:57:24 +000026
Chris Lattner45762472010-02-03 21:24:49 +000027using namespace llvm;
28
29namespace {
30class X86MCCodeEmitter : public MCCodeEmitter {
Argyrios Kyrtzidis8c8b9ee2010-08-15 10:27:23 +000031 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
32 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Evan Cheng59ee62d2011-07-11 03:57:24 +000033 const MCInstrInfo &MCII;
34 const MCSubtargetInfo &STI;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000035 MCContext &Ctx;
Chris Lattner45762472010-02-03 21:24:49 +000036public:
Evan Cheng59ee62d2011-07-11 03:57:24 +000037 X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
38 MCContext &ctx)
39 : MCII(mcii), STI(sti), Ctx(ctx) {
Chris Lattner45762472010-02-03 21:24:49 +000040 }
41
42 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000043
Evan Cheng59ee62d2011-07-11 03:57:24 +000044 bool is64BitMode() const {
45 // FIXME: Can tablegen auto-generate this?
46 return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
47 }
48
Chris Lattner28249d92010-02-05 01:53:19 +000049 static unsigned GetX86RegNum(const MCOperand &MO) {
Evan Cheng0e6a0522011-07-18 20:57:22 +000050 return X86_MC::getX86RegNum(MO.getReg());
Chris Lattner28249d92010-02-05 01:53:19 +000051 }
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000052
53 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
54 // 0-7 and the difference between the 2 groups is given by the REX prefix.
55 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
56 // in 1's complement form, example:
57 //
58 // ModRM field => XMM9 => 1
59 // VEX.VVVV => XMM9 => ~9
60 //
61 // See table 4-35 of Intel AVX Programming Reference for details.
62 static unsigned char getVEXRegisterEncoding(const MCInst &MI,
63 unsigned OpNum) {
64 unsigned SrcReg = MI.getOperand(OpNum).getReg();
65 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
Bruno Cardoso Lopese86b01c2010-07-09 18:27:43 +000066 if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) ||
67 (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15))
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000068 SrcRegNum += 8;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000069
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000070 // The registers represented through VEX_VVVV should
71 // be encoded in 1's complement form.
72 return (~SrcRegNum) & 0xf;
73 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000074
Chris Lattner37ce80e2010-02-10 06:41:02 +000075 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000076 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000077 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000078 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000079
Chris Lattner37ce80e2010-02-10 06:41:02 +000080 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
81 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000082 // Output the constant in little endian byte order.
83 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000084 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000085 Val >>= 8;
86 }
87 }
Chris Lattner0e73c392010-02-05 06:16:07 +000088
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000089 void EmitImmediate(const MCOperand &Disp,
Chris Lattnercf653392010-02-12 22:36:47 +000090 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +000091 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +000092 SmallVectorImpl<MCFixup> &Fixups,
93 int ImmOffset = 0) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000094
Chris Lattner28249d92010-02-05 01:53:19 +000095 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
96 unsigned RM) {
97 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
98 return RM | (RegOpcode << 3) | (Mod << 6);
99 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000100
Chris Lattner28249d92010-02-05 01:53:19 +0000101 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000102 unsigned &CurByte, raw_ostream &OS) const {
103 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000104 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000105
Chris Lattner0e73c392010-02-05 06:16:07 +0000106 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000107 unsigned &CurByte, raw_ostream &OS) const {
108 // SIB byte is in the same format as the ModRMByte.
109 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000110 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000111
112
Chris Lattner1ac23b12010-02-05 02:18:40 +0000113 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000114 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000115 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000116 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000117
Daniel Dunbar73c55742010-02-09 22:59:55 +0000118 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
119 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000120
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000121 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Evan Chenge837dea2011-06-28 19:10:37 +0000122 const MCInst &MI, const MCInstrDesc &Desc,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000123 raw_ostream &OS) const;
124
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000125 void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
126 int MemOperand, const MCInst &MI,
127 raw_ostream &OS) const;
128
Chris Lattner834df192010-07-08 22:28:12 +0000129 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Evan Chenge837dea2011-06-28 19:10:37 +0000130 const MCInst &MI, const MCInstrDesc &Desc,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000131 raw_ostream &OS) const;
Chris Lattner45762472010-02-03 21:24:49 +0000132};
133
134} // end anonymous namespace
135
136
Evan Cheng59ee62d2011-07-11 03:57:24 +0000137MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
138 const MCSubtargetInfo &STI,
139 MCContext &Ctx) {
140 return new X86MCCodeEmitter(MCII, STI, Ctx);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000141}
142
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000143/// isDisp8 - Return true if this signed displacement fits in a 8-bit
144/// sign-extended field.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000145static bool isDisp8(int Value) {
146 return Value == (signed char)Value;
147}
148
Chris Lattnercf653392010-02-12 22:36:47 +0000149/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
150/// in an instruction with the specified TSFlags.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000151static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
Chris Lattnercf653392010-02-12 22:36:47 +0000152 unsigned Size = X86II::getSizeOfImm(TSFlags);
153 bool isPCRel = X86II::isImmPCRel(TSFlags);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000154
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000155 return MCFixup::getKindForSize(Size, isPCRel);
Chris Lattnercf653392010-02-12 22:36:47 +0000156}
157
Chris Lattner8a507292010-09-29 03:33:25 +0000158/// Is32BitMemOperand - Return true if the specified instruction with a memory
159/// operand should emit the 0x67 prefix byte in 64-bit mode due to a 32-bit
160/// memory operand. Op specifies the operand # of the memoperand.
161static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
162 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
163 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
164
Evan Cheng8c3fee52011-07-25 18:43:53 +0000165 if ((BaseReg.getReg() != 0 &&
166 X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
167 (IndexReg.getReg() != 0 &&
168 X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
Chris Lattner8a507292010-09-29 03:33:25 +0000169 return true;
170 return false;
171}
Chris Lattnercf653392010-02-12 22:36:47 +0000172
Rafael Espindola64e67192010-10-20 16:46:08 +0000173/// StartsWithGlobalOffsetTable - Return true for the simple cases where this
174/// expression starts with _GLOBAL_OFFSET_TABLE_. This is a needed to support
175/// PIC on ELF i386 as that symbol is magic. We check only simple case that
176/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
177/// of a binary expression.
178static bool StartsWithGlobalOffsetTable(const MCExpr *Expr) {
179 if (Expr->getKind() == MCExpr::Binary) {
180 const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
181 Expr = BE->getLHS();
182 }
183
184 if (Expr->getKind() != MCExpr::SymbolRef)
185 return false;
186
187 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
188 const MCSymbol &S = Ref->getSymbol();
189 return S.getName() == "_GLOBAL_OFFSET_TABLE_";
190}
191
Chris Lattner0e73c392010-02-05 06:16:07 +0000192void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000193EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000194 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000195 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Rafael Espindolad93ceeb2010-11-23 07:20:12 +0000196 const MCExpr *Expr = NULL;
Chris Lattner8496a262010-02-10 06:30:00 +0000197 if (DispOp.isImm()) {
Rafael Espindolad93ceeb2010-11-23 07:20:12 +0000198 // If this is a simple integer displacement that doesn't require a relocation,
199 // emit it now.
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000200 if (FixupKind != FK_PCRel_1 &&
201 FixupKind != FK_PCRel_2 &&
202 FixupKind != FK_PCRel_4) {
Rafael Espindolad93ceeb2010-11-23 07:20:12 +0000203 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
204 return;
205 }
206 Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
207 } else {
208 Expr = DispOp.getExpr();
Chris Lattner0e73c392010-02-05 06:16:07 +0000209 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000210
Chris Lattner835acab2010-02-12 23:00:36 +0000211 // If we have an immoffset, add it to the expression.
Eli Friedmana4d0bd82011-07-20 19:36:11 +0000212 if ((FixupKind == FK_Data_4 ||
213 FixupKind == MCFixupKind(X86::reloc_signed_4byte)) &&
214 StartsWithGlobalOffsetTable(Expr)) {
Rafael Espindola64e67192010-10-20 16:46:08 +0000215 assert(ImmOffset == 0);
Rafael Espindola24ba4f72010-10-24 17:35:42 +0000216
217 FixupKind = MCFixupKind(X86::reloc_global_offset_table);
Rafael Espindola64e67192010-10-20 16:46:08 +0000218 ImmOffset = CurByte;
219 }
220
Chris Lattnera08b5872010-02-16 05:03:17 +0000221 // If the fixup is pc-relative, we need to bias the value to be relative to
222 // the start of the field, not the end of the field.
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000223 if (FixupKind == FK_PCRel_4 ||
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000224 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
225 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
Chris Lattnera08b5872010-02-16 05:03:17 +0000226 ImmOffset -= 4;
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000227 if (FixupKind == FK_PCRel_2)
Chris Lattnerda3051a2010-07-07 22:35:13 +0000228 ImmOffset -= 2;
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000229 if (FixupKind == FK_PCRel_1)
Chris Lattnera08b5872010-02-16 05:03:17 +0000230 ImmOffset -= 1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000231
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000232 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000233 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000234 Ctx);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000235
Chris Lattner5dccfad2010-02-10 06:52:12 +0000236 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000237 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000238 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000239}
240
Chris Lattner1ac23b12010-02-05 02:18:40 +0000241void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
242 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000243 uint64_t TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000244 raw_ostream &OS,
245 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8a507292010-09-29 03:33:25 +0000246 const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
247 const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg);
248 const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt);
249 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000250 unsigned BaseReg = Base.getReg();
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000251
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000252 // Handle %rip relative addressing.
253 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Evan Cheng59ee62d2011-07-11 03:57:24 +0000254 assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
Eric Christopher497f1eb2010-06-08 22:57:33 +0000255 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000256 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000257
Chris Lattner0f53cf22010-03-18 18:10:56 +0000258 unsigned FixupKind = X86::reloc_riprel_4byte;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000259
Chris Lattner0f53cf22010-03-18 18:10:56 +0000260 // movq loads are handled with a special relocation form which allows the
261 // linker to eliminate some loads for GOT references which end up in the
262 // same linkage unit.
Jakob Stoklund Olesend0eeeeb2010-10-12 17:15:00 +0000263 if (MI.getOpcode() == X86::MOV64rm)
Chris Lattner0f53cf22010-03-18 18:10:56 +0000264 FixupKind = X86::reloc_riprel_4byte_movq_load;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000265
Chris Lattner835acab2010-02-12 23:00:36 +0000266 // rip-relative addressing is actually relative to the *next* instruction.
267 // Since an immediate can follow the mod/rm byte for an instruction, this
268 // means that we need to bias the immediate field of the instruction with
269 // the size of the immediate field. If we have this case, add it into the
270 // expression to emit.
271 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000272
Chris Lattner0f53cf22010-03-18 18:10:56 +0000273 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000274 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000275 return;
276 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000277
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000278 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000279
Chris Lattnera8168ec2010-02-09 21:57:34 +0000280 // Determine whether a SIB byte is needed.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000281 // If no BaseReg, issue a RIP relative instruction only if the MCE can
Chris Lattner1ac23b12010-02-05 02:18:40 +0000282 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
283 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000284
Chris Lattnera8168ec2010-02-09 21:57:34 +0000285 if (// The SIB byte must be used if there is an index register.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000286 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000287 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
288 // encode to an R/M value of 4, which indicates that a SIB byte is
289 // present.
290 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000291 // If there is no base register and we're in 64-bit mode, we need a SIB
292 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
Evan Cheng59ee62d2011-07-11 03:57:24 +0000293 (!is64BitMode() || BaseReg != 0)) {
Chris Lattnera8168ec2010-02-09 21:57:34 +0000294
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000295 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000296 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000297 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000298 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000299 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000300
Chris Lattnera8168ec2010-02-09 21:57:34 +0000301 // If the base is not EBP/ESP and there is no displacement, use simple
302 // indirect register encoding, this handles addresses like [EAX]. The
303 // encoding for [EBP] with no displacement means [disp32] so we handle it
304 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000305 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000306 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000307 return;
308 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000309
Chris Lattnera8168ec2010-02-09 21:57:34 +0000310 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000311 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000312 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000313 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000314 return;
315 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000316
Chris Lattnera8168ec2010-02-09 21:57:34 +0000317 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000318 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +0000319 EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
320 Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000321 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000322 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000323
Chris Lattner0e73c392010-02-05 06:16:07 +0000324 // We need a SIB byte, so start by outputting the ModR/M byte first
325 assert(IndexReg.getReg() != X86::ESP &&
326 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000327
Chris Lattner0e73c392010-02-05 06:16:07 +0000328 bool ForceDisp32 = false;
329 bool ForceDisp8 = false;
330 if (BaseReg == 0) {
331 // If there is no base register, we emit the special case SIB byte with
332 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000333 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000334 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000335 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000336 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000337 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000338 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000339 } else if (Disp.getImm() == 0 &&
340 // Base reg can't be anything that ends up with '5' as the base
341 // reg, it is the magic [*] nomenclature that indicates no base.
342 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000343 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000344 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000345 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000346 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000347 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000348 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
349 } else {
350 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000351 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000352 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000353
Chris Lattner0e73c392010-02-05 06:16:07 +0000354 // Calculate what the SS field value should be...
Jeffrey Yasskina44defe2011-07-27 06:22:51 +0000355 static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
Chris Lattner0e73c392010-02-05 06:16:07 +0000356 unsigned SS = SSTable[Scale.getImm()];
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000357
Chris Lattner0e73c392010-02-05 06:16:07 +0000358 if (BaseReg == 0) {
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000359 // Handle the SIB byte for the case where there is no base, see Intel
Chris Lattner0e73c392010-02-05 06:16:07 +0000360 // Manual 2A, table 2-7. The displacement has already been output.
361 unsigned IndexRegNo;
362 if (IndexReg.getReg())
363 IndexRegNo = GetX86RegNum(IndexReg);
364 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
365 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000366 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000367 } else {
368 unsigned IndexRegNo;
369 if (IndexReg.getReg())
370 IndexRegNo = GetX86RegNum(IndexReg);
371 else
372 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000373 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000374 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000375
Chris Lattner0e73c392010-02-05 06:16:07 +0000376 // Do we need to output a displacement?
377 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000378 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000379 else if (ForceDisp32 || Disp.getImm() != 0)
Rafael Espindolaa8c02c32010-09-30 03:11:42 +0000380 EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
381 Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000382}
383
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000384/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
385/// called VEX.
386void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000387 int MemOperand, const MCInst &MI,
Evan Chenge837dea2011-06-28 19:10:37 +0000388 const MCInstrDesc &Desc,
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000389 raw_ostream &OS) const {
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000390 bool HasVEX_4V = false;
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000391 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V)
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000392 HasVEX_4V = true;
393
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000394 // VEX_R: opcode externsion equivalent to REX.R in
395 // 1's complement (inverted) form
396 //
397 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
398 // 0: Same as REX_R=1 (64 bit mode only)
399 //
400 unsigned char VEX_R = 0x1;
401
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000402 // VEX_X: equivalent to REX.X, only used when a
403 // register is used for index in SIB Byte.
404 //
405 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
406 // 0: Same as REX.X=1 (64-bit mode only)
407 unsigned char VEX_X = 0x1;
408
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000409 // VEX_B:
410 //
411 // 1: Same as REX_B=0 (ignored in 32-bit mode)
412 // 0: Same as REX_B=1 (64 bit mode only)
413 //
414 unsigned char VEX_B = 0x1;
415
416 // VEX_W: opcode specific (use like REX.W, or used for
417 // opcode extension, or ignored, depending on the opcode byte)
418 unsigned char VEX_W = 0;
419
420 // VEX_5M (VEX m-mmmmm field):
421 //
422 // 0b00000: Reserved for future use
423 // 0b00001: implied 0F leading opcode
424 // 0b00010: implied 0F 38 leading opcode bytes
425 // 0b00011: implied 0F 3A leading opcode bytes
426 // 0b00100-0b11111: Reserved for future use
427 //
428 unsigned char VEX_5M = 0x1;
429
430 // VEX_4V (VEX vvvv field): a register specifier
431 // (in 1's complement form) or 1111 if unused.
432 unsigned char VEX_4V = 0xf;
433
434 // VEX_L (Vector Length):
435 //
436 // 0: scalar or 128-bit vector
437 // 1: 256-bit vector
438 //
439 unsigned char VEX_L = 0;
440
441 // VEX_PP: opcode extension providing equivalent
442 // functionality of a SIMD prefix
443 //
444 // 0b00: None
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000445 // 0b01: 66
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000446 // 0b10: F3
447 // 0b11: F2
448 //
449 unsigned char VEX_PP = 0;
450
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000451 // Encode the operand size opcode prefix as needed.
452 if (TSFlags & X86II::OpSize)
453 VEX_PP = 0x01;
454
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000455 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000456 VEX_W = 1;
457
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000458 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
Bruno Cardoso Lopes87a85c72010-07-13 21:07:28 +0000459 VEX_L = 1;
460
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000461 switch (TSFlags & X86II::Op0Mask) {
462 default: assert(0 && "Invalid prefix!");
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000463 case X86II::T8: // 0F 38
464 VEX_5M = 0x2;
465 break;
466 case X86II::TA: // 0F 3A
467 VEX_5M = 0x3;
468 break;
469 case X86II::TF: // F2 0F 38
470 VEX_PP = 0x3;
471 VEX_5M = 0x2;
472 break;
473 case X86II::XS: // F3 0F
474 VEX_PP = 0x2;
475 break;
476 case X86II::XD: // F2 0F
477 VEX_PP = 0x3;
478 break;
Joerg Sonnenberger4a8ac8d2011-04-04 16:58:13 +0000479 case X86II::A6: // Bypass: Not used by VEX
480 case X86II::A7: // Bypass: Not used by VEX
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000481 case X86II::TB: // Bypass: Not used by VEX
482 case 0:
483 break; // No prefix!
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000484 }
485
Bruno Cardoso Lopese86b01c2010-07-09 18:27:43 +0000486 // Set the vector length to 256-bit if YMM0-YMM15 is used
487 for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
488 if (!MI.getOperand(i).isReg())
489 continue;
490 unsigned SrcReg = MI.getOperand(i).getReg();
491 if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
492 VEX_L = 1;
493 }
494
Bruno Cardoso Lopes0c9acfc2011-08-19 22:27:29 +0000495 // Classify VEX_B, VEX_4V, VEX_R, VEX_X
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000496 unsigned CurOp = 0;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000497 switch (TSFlags & X86II::FormMask) {
498 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
Bruno Cardoso Lopes0c9acfc2011-08-19 22:27:29 +0000499 case X86II::MRMDestMem: {
500 // MRMDestMem instructions forms:
501 // MemAddr, src1(ModR/M)
502 // MemAddr, src1(VEX_4V), src2(ModR/M)
503 // MemAddr, src1(ModR/M), imm8
504 //
505 if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
506 VEX_B = 0x0;
507 if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
508 VEX_X = 0x0;
509
510 CurOp = X86::AddrNumOperands;
511 if (HasVEX_4V)
512 VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
513
514 const MCOperand &MO = MI.getOperand(CurOp);
515 if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
516 VEX_R = 0x0;
517 break;
518 }
519 case X86II::MRMSrcMem: {
520 // MRMSrcMem instructions forms:
521 // src1(ModR/M), MemAddr
522 // src1(ModR/M), src2(VEX_4V), MemAddr
523 // src1(ModR/M), MemAddr, imm8
524 // src1(ModR/M), MemAddr, src2(VEX_I8IMM)
525 //
526 if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
527 VEX_R = 0x0;
528
529 unsigned MemAddrOffset = 1;
530 if (HasVEX_4V) {
531 VEX_4V = getVEXRegisterEncoding(MI, 1);
532 MemAddrOffset++;
533 }
534
535 if (X86II::isX86_64ExtendedReg(
536 MI.getOperand(MemAddrOffset+X86::AddrBaseReg).getReg()))
537 VEX_B = 0x0;
538 if (X86II::isX86_64ExtendedReg(
539 MI.getOperand(MemAddrOffset+X86::AddrIndexReg).getReg()))
540 VEX_X = 0x0;
541 break;
542 }
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000543 case X86II::MRM0m: case X86II::MRM1m:
544 case X86II::MRM2m: case X86II::MRM3m:
545 case X86II::MRM4m: case X86II::MRM5m:
546 case X86II::MRM6m: case X86II::MRM7m:
Bruno Cardoso Lopes0c9acfc2011-08-19 22:27:29 +0000547 // MRM[0-9]m instructions forms:
548 // MemAddr
549 if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
550 VEX_B = 0x0;
551 if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
552 VEX_X = 0x0;
553 break;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000554 case X86II::MRMSrcReg:
Bruno Cardoso Lopes0c9acfc2011-08-19 22:27:29 +0000555 // MRMSrcReg instructions forms:
556 // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
557 // dst(ModR/M), src1(ModR/M)
558 // dst(ModR/M), src1(ModR/M), imm8
559 //
560 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000561 VEX_R = 0x0;
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000562 CurOp++;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000563
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000564 if (HasVEX_4V)
Bruno Cardoso Lopes0c9acfc2011-08-19 22:27:29 +0000565 VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
566 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
567 VEX_B = 0x0;
568 break;
569 case X86II::MRMDestReg:
570 // MRMDestReg instructions forms:
571 // dst(ModR/M), src(ModR/M)
572 // dst(ModR/M), src(ModR/M), imm8
573 if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
574 VEX_B = 0x0;
575 if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
576 VEX_R = 0x0;
577 break;
578 case X86II::MRM0r: case X86II::MRM1r:
579 case X86II::MRM2r: case X86II::MRM3r:
580 case X86II::MRM4r: case X86II::MRM5r:
581 case X86II::MRM6r: case X86II::MRM7r:
582 // MRM0r-MRM7r instructions forms:
583 // dst(VEX_4V), src(ModR/M), imm8
584 VEX_4V = getVEXRegisterEncoding(MI, 0);
585 if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
586 VEX_B = 0x0;
587 break;
588 default: // RawFrm
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000589 break;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000590 }
591
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000592 // Emit segment override opcode prefix as needed.
593 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
594
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000595 // VEX opcode prefix can have 2 or 3 bytes
596 //
597 // 3 bytes:
598 // +-----+ +--------------+ +-------------------+
599 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
600 // +-----+ +--------------+ +-------------------+
601 // 2 bytes:
602 // +-----+ +-------------------+
603 // | C5h | | R | vvvv | L | pp |
604 // +-----+ +-------------------+
605 //
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000606 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
607
Bruno Cardoso Lopesf5cd8c52010-07-02 22:06:54 +0000608 if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000609 EmitByte(0xC5, CurByte, OS);
610 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
611 return;
612 }
613
614 // 3 byte VEX prefix
615 EmitByte(0xC4, CurByte, OS);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000616 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000617 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
618}
619
Chris Lattner39a612e2010-02-05 22:10:22 +0000620/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
621/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
622/// size, and 3) use of X86-64 extended registers.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000623static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
Evan Chenge837dea2011-06-28 19:10:37 +0000624 const MCInstrDesc &Desc) {
Chris Lattner7e851802010-02-11 22:39:10 +0000625 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000626 if (TSFlags & X86II::REX_W)
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000627 REX |= 1 << 3; // set REX.W
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000628
Chris Lattner39a612e2010-02-05 22:10:22 +0000629 if (MI.getNumOperands() == 0) return REX;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000630
Chris Lattner39a612e2010-02-05 22:10:22 +0000631 unsigned NumOps = MI.getNumOperands();
632 // FIXME: MCInst should explicitize the two-addrness.
633 bool isTwoAddr = NumOps > 1 &&
Evan Chenge837dea2011-06-28 19:10:37 +0000634 Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000635
Chris Lattner39a612e2010-02-05 22:10:22 +0000636 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
637 unsigned i = isTwoAddr ? 1 : 0;
638 for (; i != NumOps; ++i) {
639 const MCOperand &MO = MI.getOperand(i);
640 if (!MO.isReg()) continue;
641 unsigned Reg = MO.getReg();
Evan Cheng8c3fee52011-07-25 18:43:53 +0000642 if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000643 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
644 // that returns non-zero.
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000645 REX |= 0x40; // REX fixed encoding prefix
Chris Lattner39a612e2010-02-05 22:10:22 +0000646 break;
647 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000648
Chris Lattner39a612e2010-02-05 22:10:22 +0000649 switch (TSFlags & X86II::FormMask) {
650 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
651 case X86II::MRMSrcReg:
652 if (MI.getOperand(0).isReg() &&
Evan Cheng8c3fee52011-07-25 18:43:53 +0000653 X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000654 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000655 i = isTwoAddr ? 2 : 1;
656 for (; i != NumOps; ++i) {
657 const MCOperand &MO = MI.getOperand(i);
Evan Cheng8c3fee52011-07-25 18:43:53 +0000658 if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000659 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000660 }
661 break;
662 case X86II::MRMSrcMem: {
663 if (MI.getOperand(0).isReg() &&
Evan Cheng8c3fee52011-07-25 18:43:53 +0000664 X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000665 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000666 unsigned Bit = 0;
667 i = isTwoAddr ? 2 : 1;
668 for (; i != NumOps; ++i) {
669 const MCOperand &MO = MI.getOperand(i);
670 if (MO.isReg()) {
Evan Cheng8c3fee52011-07-25 18:43:53 +0000671 if (X86II::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000672 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000673 Bit++;
674 }
675 }
676 break;
677 }
678 case X86II::MRM0m: case X86II::MRM1m:
679 case X86II::MRM2m: case X86II::MRM3m:
680 case X86II::MRM4m: case X86II::MRM5m:
681 case X86II::MRM6m: case X86II::MRM7m:
682 case X86II::MRMDestMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000683 unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
Chris Lattner39a612e2010-02-05 22:10:22 +0000684 i = isTwoAddr ? 1 : 0;
685 if (NumOps > e && MI.getOperand(e).isReg() &&
Evan Cheng8c3fee52011-07-25 18:43:53 +0000686 X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000687 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000688 unsigned Bit = 0;
689 for (; i != e; ++i) {
690 const MCOperand &MO = MI.getOperand(i);
691 if (MO.isReg()) {
Evan Cheng8c3fee52011-07-25 18:43:53 +0000692 if (X86II::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000693 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000694 Bit++;
695 }
696 }
697 break;
698 }
699 default:
700 if (MI.getOperand(0).isReg() &&
Evan Cheng8c3fee52011-07-25 18:43:53 +0000701 X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000702 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000703 i = isTwoAddr ? 2 : 1;
704 for (unsigned e = NumOps; i != e; ++i) {
705 const MCOperand &MO = MI.getOperand(i);
Evan Cheng8c3fee52011-07-25 18:43:53 +0000706 if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000707 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000708 }
709 break;
710 }
711 return REX;
712}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000713
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000714/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
715void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
716 unsigned &CurByte, int MemOperand,
717 const MCInst &MI,
Chris Lattner9d199892010-07-04 22:56:10 +0000718 raw_ostream &OS) const {
Chris Lattner1e80f402010-02-03 21:57:59 +0000719 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000720 default: assert(0 && "Invalid segment!");
Chris Lattner834df192010-07-08 22:28:12 +0000721 case 0:
722 // No segment override, check for explicit one on memory operand.
Chris Lattner599b5312010-07-08 23:46:44 +0000723 if (MemOperand != -1) { // If the instruction has a memory operand.
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000724 switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
Chris Lattner834df192010-07-08 22:28:12 +0000725 default: assert(0 && "Unknown segment register!");
726 case 0: break;
727 case X86::CS: EmitByte(0x2E, CurByte, OS); break;
728 case X86::SS: EmitByte(0x36, CurByte, OS); break;
729 case X86::DS: EmitByte(0x3E, CurByte, OS); break;
730 case X86::ES: EmitByte(0x26, CurByte, OS); break;
731 case X86::FS: EmitByte(0x64, CurByte, OS); break;
732 case X86::GS: EmitByte(0x65, CurByte, OS); break;
733 }
734 }
735 break;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000736 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000737 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000738 break;
739 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000740 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000741 break;
742 }
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000743}
744
745/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
746///
747/// MemOperand is the operand # of the start of a memory operand if present. If
748/// Not present, it is -1.
749void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
750 int MemOperand, const MCInst &MI,
Evan Chenge837dea2011-06-28 19:10:37 +0000751 const MCInstrDesc &Desc,
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000752 raw_ostream &OS) const {
753
754 // Emit the lock opcode prefix as needed.
755 if (TSFlags & X86II::LOCK)
756 EmitByte(0xF0, CurByte, OS);
757
758 // Emit segment override opcode prefix as needed.
759 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000760
Chris Lattner1e80f402010-02-03 21:57:59 +0000761 // Emit the repeat opcode prefix as needed.
762 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000763 EmitByte(0xF3, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000764
Chris Lattner1e80f402010-02-03 21:57:59 +0000765 // Emit the address size opcode prefix as needed.
Chris Lattner8a507292010-09-29 03:33:25 +0000766 if ((TSFlags & X86II::AdSize) ||
Evan Cheng59ee62d2011-07-11 03:57:24 +0000767 (MemOperand != -1 && is64BitMode() && Is32BitMemOperand(MI, MemOperand)))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000768 EmitByte(0x67, CurByte, OS);
Chris Lattner78a19462010-09-29 03:43:43 +0000769
770 // Emit the operand size opcode prefix as needed.
771 if (TSFlags & X86II::OpSize)
772 EmitByte(0x66, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000773
Chris Lattner1e80f402010-02-03 21:57:59 +0000774 bool Need0FPrefix = false;
775 switch (TSFlags & X86II::Op0Mask) {
776 default: assert(0 && "Invalid prefix!");
777 case 0: break; // No prefix!
778 case X86II::REP: break; // already handled.
779 case X86II::TB: // Two-byte opcode prefix
780 case X86II::T8: // 0F 38
781 case X86II::TA: // 0F 3A
Joerg Sonnenberger4a8ac8d2011-04-04 16:58:13 +0000782 case X86II::A6: // 0F A6
783 case X86II::A7: // 0F A7
Chris Lattner1e80f402010-02-03 21:57:59 +0000784 Need0FPrefix = true;
785 break;
786 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000787 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000788 Need0FPrefix = true;
789 break;
790 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000791 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000792 Need0FPrefix = true;
793 break;
794 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000795 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000796 Need0FPrefix = true;
797 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000798 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
799 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
800 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
801 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
802 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
803 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
804 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
805 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000806 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000807
Chris Lattner1e80f402010-02-03 21:57:59 +0000808 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000809 // FIXME: Can this come before F2 etc to simplify emission?
Evan Cheng59ee62d2011-07-11 03:57:24 +0000810 if (is64BitMode()) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000811 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000812 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000813 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000814
Chris Lattner1e80f402010-02-03 21:57:59 +0000815 // 0x0F escape code must be emitted just before the opcode.
816 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000817 EmitByte(0x0F, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000818
Chris Lattner1e80f402010-02-03 21:57:59 +0000819 // FIXME: Pull this up into previous switch if REX can be moved earlier.
820 switch (TSFlags & X86II::Op0Mask) {
821 case X86II::TF: // F2 0F 38
822 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000823 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000824 break;
825 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000826 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000827 break;
Joerg Sonnenberger4a8ac8d2011-04-04 16:58:13 +0000828 case X86II::A6: // 0F A6
829 EmitByte(0xA6, CurByte, OS);
830 break;
831 case X86II::A7: // 0F A7
832 EmitByte(0xA7, CurByte, OS);
833 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000834 }
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000835}
836
837void X86MCCodeEmitter::
838EncodeInstruction(const MCInst &MI, raw_ostream &OS,
839 SmallVectorImpl<MCFixup> &Fixups) const {
840 unsigned Opcode = MI.getOpcode();
Evan Cheng59ee62d2011-07-11 03:57:24 +0000841 const MCInstrDesc &Desc = MCII.get(Opcode);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000842 uint64_t TSFlags = Desc.TSFlags;
843
Chris Lattner757e8d62010-07-09 00:17:50 +0000844 // Pseudo instructions don't get encoded.
845 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
846 return;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000847
Chris Lattner834df192010-07-08 22:28:12 +0000848 // If this is a two-address instruction, skip one of the register operands.
849 // FIXME: This should be handled during MCInst lowering.
850 unsigned NumOps = Desc.getNumOperands();
851 unsigned CurOp = 0;
Evan Chenge837dea2011-06-28 19:10:37 +0000852 if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1)
Chris Lattner834df192010-07-08 22:28:12 +0000853 ++CurOp;
Evan Chenge837dea2011-06-28 19:10:37 +0000854 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, MCOI::TIED_TO)== 0)
Chris Lattner834df192010-07-08 22:28:12 +0000855 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
856 --NumOps;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000857
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000858 // Keep track of the current byte being emitted.
859 unsigned CurByte = 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000860
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000861 // Is this instruction encoded using the AVX VEX prefix?
862 bool HasVEXPrefix = false;
863
864 // It uses the VEX.VVVV field?
865 bool HasVEX_4V = false;
866
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000867 if ((TSFlags >> X86II::VEXShift) & X86II::VEX)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000868 HasVEXPrefix = true;
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000869 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000870 HasVEX_4V = true;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000871
Chris Lattner548abfc2010-10-03 18:08:05 +0000872
Chris Lattner834df192010-07-08 22:28:12 +0000873 // Determine where the memory operand starts, if present.
874 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
875 if (MemoryOperand != -1) MemoryOperand += CurOp;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000876
Chris Lattner834df192010-07-08 22:28:12 +0000877 if (!HasVEXPrefix)
878 EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
879 else
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000880 EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000881
Chris Lattner548abfc2010-10-03 18:08:05 +0000882
Chris Lattner74a21512010-02-05 19:24:13 +0000883 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner548abfc2010-10-03 18:08:05 +0000884
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000885 if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
Chris Lattner548abfc2010-10-03 18:08:05 +0000886 BaseOpcode = 0x0F; // Weird 3DNow! encoding.
887
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000888 unsigned SrcRegNum = 0;
Chris Lattner1e80f402010-02-03 21:57:59 +0000889 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000890 case X86II::MRMInitReg:
891 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000892 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000893 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner757e8d62010-07-09 00:17:50 +0000894 case X86II::Pseudo:
895 assert(0 && "Pseudo instruction shouldn't be emitted");
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000896 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000897 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000898 break;
Chris Lattner59f8a6a2010-08-19 01:18:43 +0000899
Chris Lattner40cc3f82010-09-17 18:02:29 +0000900 case X86II::RawFrmImm8:
901 EmitByte(BaseOpcode, CurByte, OS);
902 EmitImmediate(MI.getOperand(CurOp++),
903 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
904 CurByte, OS, Fixups);
905 EmitImmediate(MI.getOperand(CurOp++), 1, FK_Data_1, CurByte, OS, Fixups);
906 break;
Chris Lattner59f8a6a2010-08-19 01:18:43 +0000907 case X86II::RawFrmImm16:
908 EmitByte(BaseOpcode, CurByte, OS);
909 EmitImmediate(MI.getOperand(CurOp++),
910 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
911 CurByte, OS, Fixups);
912 EmitImmediate(MI.getOperand(CurOp++), 2, FK_Data_2, CurByte, OS, Fixups);
913 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000914
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000915 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000916 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000917 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000918
Chris Lattner28249d92010-02-05 01:53:19 +0000919 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000920 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000921 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000922 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000923 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000924 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000925
Chris Lattner1ac23b12010-02-05 02:18:40 +0000926 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000927 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000928 SrcRegNum = CurOp + X86::AddrNumOperands;
929
930 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
931 SrcRegNum++;
932
Chris Lattner1ac23b12010-02-05 02:18:40 +0000933 EmitMemModRMByte(MI, CurOp,
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000934 GetX86RegNum(MI.getOperand(SrcRegNum)),
Chris Lattner835acab2010-02-12 23:00:36 +0000935 TSFlags, CurByte, OS, Fixups);
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000936 CurOp = SrcRegNum + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000937 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000938
Chris Lattnerdaa45552010-02-05 19:04:37 +0000939 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000940 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000941 SrcRegNum = CurOp + 1;
942
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000943 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000944 SrcRegNum++;
945
946 EmitRegModRMByte(MI.getOperand(SrcRegNum),
947 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
948 CurOp = SrcRegNum + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000949 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000950
Chris Lattnerdaa45552010-02-05 19:04:37 +0000951 case X86II::MRMSrcMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000952 int AddrOperands = X86::AddrNumOperands;
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000953 unsigned FirstMemOp = CurOp+1;
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000954 if (HasVEX_4V) {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000955 ++AddrOperands;
956 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
957 }
Chris Lattnerdaa45552010-02-05 19:04:37 +0000958
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000959 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000960
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000961 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000962 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000963 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000964 break;
965 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000966
967 case X86II::MRM0r: case X86II::MRM1r:
968 case X86II::MRM2r: case X86II::MRM3r:
969 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000970 case X86II::MRM6r: case X86II::MRM7r:
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000971 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
972 CurOp++;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000973 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000974 EmitRegModRMByte(MI.getOperand(CurOp++),
975 (TSFlags & X86II::FormMask)-X86II::MRM0r,
976 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000977 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000978 case X86II::MRM0m: case X86II::MRM1m:
979 case X86II::MRM2m: case X86II::MRM3m:
980 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000981 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000982 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000983 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000984 TSFlags, CurByte, OS, Fixups);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000985 CurOp += X86::AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000986 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000987 case X86II::MRM_C1:
988 EmitByte(BaseOpcode, CurByte, OS);
989 EmitByte(0xC1, CurByte, OS);
990 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000991 case X86II::MRM_C2:
992 EmitByte(BaseOpcode, CurByte, OS);
993 EmitByte(0xC2, CurByte, OS);
994 break;
995 case X86II::MRM_C3:
996 EmitByte(BaseOpcode, CurByte, OS);
997 EmitByte(0xC3, CurByte, OS);
998 break;
999 case X86II::MRM_C4:
1000 EmitByte(BaseOpcode, CurByte, OS);
1001 EmitByte(0xC4, CurByte, OS);
1002 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +00001003 case X86II::MRM_C8:
1004 EmitByte(BaseOpcode, CurByte, OS);
1005 EmitByte(0xC8, CurByte, OS);
1006 break;
1007 case X86II::MRM_C9:
1008 EmitByte(BaseOpcode, CurByte, OS);
1009 EmitByte(0xC9, CurByte, OS);
1010 break;
1011 case X86II::MRM_E8:
1012 EmitByte(BaseOpcode, CurByte, OS);
1013 EmitByte(0xE8, CurByte, OS);
1014 break;
1015 case X86II::MRM_F0:
1016 EmitByte(BaseOpcode, CurByte, OS);
1017 EmitByte(0xF0, CurByte, OS);
1018 break;
Chris Lattnera599de22010-02-13 00:41:14 +00001019 case X86II::MRM_F8:
1020 EmitByte(BaseOpcode, CurByte, OS);
1021 EmitByte(0xF8, CurByte, OS);
1022 break;
Chris Lattnerb7790332010-02-13 03:42:24 +00001023 case X86II::MRM_F9:
1024 EmitByte(BaseOpcode, CurByte, OS);
1025 EmitByte(0xF9, CurByte, OS);
1026 break;
Rafael Espindola87ca0e02011-02-22 00:35:18 +00001027 case X86II::MRM_D0:
1028 EmitByte(BaseOpcode, CurByte, OS);
1029 EmitByte(0xD0, CurByte, OS);
1030 break;
1031 case X86II::MRM_D1:
1032 EmitByte(BaseOpcode, CurByte, OS);
1033 EmitByte(0xD1, CurByte, OS);
1034 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +00001035 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +00001036
Chris Lattner8b0f7a72010-02-11 07:06:31 +00001037 // If there is a remaining operand, it must be a trailing immediate. Emit it
1038 // according to the right size for the instruction.
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001039 if (CurOp != NumOps) {
1040 // The last source register of a 4 operand instruction in AVX is encoded
1041 // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
Joerg Sonnenberger229e4522011-04-04 15:58:30 +00001042 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001043 const MCOperand &MO = MI.getOperand(CurOp++);
1044 bool IsExtReg =
Evan Cheng8c3fee52011-07-25 18:43:53 +00001045 X86II::isX86_64ExtendedReg(MO.getReg());
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001046 unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
1047 RegNum |= GetX86RegNum(MO) << 4;
1048 EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
1049 Fixups);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001050 } else {
1051 unsigned FixupKind;
Rafael Espindola3ee33aa2010-12-16 22:50:01 +00001052 // FIXME: Is there a better way to know that we need a signed relocation?
Rafael Espindolaa3bff992011-05-19 20:32:34 +00001053 if (MI.getOpcode() == X86::ADD64ri32 ||
1054 MI.getOpcode() == X86::MOV64ri32 ||
Rafael Espindola3ee33aa2010-12-16 22:50:01 +00001055 MI.getOpcode() == X86::MOV64mi32 ||
1056 MI.getOpcode() == X86::PUSH64i32)
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001057 FixupKind = X86::reloc_signed_4byte;
1058 else
1059 FixupKind = getImmFixupKind(TSFlags);
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001060 EmitImmediate(MI.getOperand(CurOp++),
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001061 X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001062 CurByte, OS, Fixups);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001063 }
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001064 }
1065
Joerg Sonnenberger229e4522011-04-04 15:58:30 +00001066 if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
Chris Lattner548abfc2010-10-03 18:08:05 +00001067 EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1068
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001069
Chris Lattner28249d92010-02-05 01:53:19 +00001070#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +00001071 // FIXME: Verify.
1072 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +00001073 errs() << "Cannot encode all operands of: ";
1074 MI.dump();
1075 errs() << '\n';
1076 abort();
1077 }
1078#endif
Chris Lattner45762472010-02-03 21:24:49 +00001079}