blob: b0637ba3e5a2eba1e94c48f590eb89d6f33936be [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnere96fda32003-05-02 19:26:34 +000011// to promote better constant propagation, GCSE, LICM, PRE...
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000025#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000026#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000027#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000029#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000030#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000031#include "llvm/Support/CFG.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000032#include "llvm/Support/Debug.h"
33#include "llvm/ADT/PostOrderIterator.h"
34#include "llvm/ADT/Statistic.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000035#include <algorithm>
Chris Lattnerdac58ad2006-01-22 23:32:06 +000036#include <iostream>
Chris Lattnerd7456022004-01-09 06:02:20 +000037using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000038
Chris Lattner4fd56002002-05-08 22:19:27 +000039namespace {
Chris Lattnera92f6962002-10-01 22:38:41 +000040 Statistic<> NumLinear ("reassociate","Number of insts linearized");
41 Statistic<> NumChanged("reassociate","Number of insts reassociated");
42 Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
Chris Lattner109d34d2005-05-08 18:59:37 +000043 Statistic<> NumAnnihil("reassociate","Number of expr tree annihilated");
Chris Lattnere5022fe2006-03-04 09:31:13 +000044 Statistic<> NumFactor ("reassociate","Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000045
Chris Lattnerc0649ac2005-05-07 21:59:39 +000046 struct ValueEntry {
47 unsigned Rank;
48 Value *Op;
49 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
50 };
51 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
52 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
53 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000054}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000055
Chris Lattnere5022fe2006-03-04 09:31:13 +000056/// PrintOps - Print out the expression identified in the Ops list.
57///
58static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
59 Module *M = I->getParent()->getParent()->getParent();
60 std::cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
61 << *Ops[0].Op->getType();
62 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Chris Lattner3749c9c2006-12-06 06:16:21 +000063 WriteAsOperand(std::cerr << " ", Ops[i].Op, false, M)
Chris Lattnere5022fe2006-03-04 09:31:13 +000064 << "," << Ops[i].Rank;
65}
66
67namespace {
Chris Lattner4fd56002002-05-08 22:19:27 +000068 class Reassociate : public FunctionPass {
Chris Lattner0c0edf82002-07-25 06:17:51 +000069 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattnerfb5be092003-08-13 16:16:26 +000070 std::map<Value*, unsigned> ValueRankMap;
Chris Lattnerc0649ac2005-05-07 21:59:39 +000071 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +000072 public:
Chris Lattner7e708292002-06-25 16:13:24 +000073 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000074
75 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +000076 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +000077 }
78 private:
Chris Lattner7e708292002-06-25 16:13:24 +000079 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000080 unsigned getRank(Value *V);
Chris Lattner895b3922006-03-14 07:11:11 +000081 void ReassociateExpression(BinaryOperator *I);
Chris Lattnere9efecb2006-03-14 16:04:29 +000082 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
83 unsigned Idx = 0);
Chris Lattnere5022fe2006-03-04 09:31:13 +000084 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000085 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
86 void LinearizeExpr(BinaryOperator *I);
Chris Lattnere5022fe2006-03-04 09:31:13 +000087 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000088 void ReassociateBB(BasicBlock *BB);
Chris Lattnere5022fe2006-03-04 09:31:13 +000089
90 void RemoveDeadBinaryOp(Value *V);
Chris Lattner4fd56002002-05-08 22:19:27 +000091 };
Chris Lattnerf6293092002-07-23 18:06:35 +000092
Chris Lattner7f8897f2006-08-27 22:42:52 +000093 RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
Chris Lattner4fd56002002-05-08 22:19:27 +000094}
95
Brian Gaeked0fde302003-11-11 22:41:34 +000096// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +000097FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +000098
Chris Lattnere5022fe2006-03-04 09:31:13 +000099void Reassociate::RemoveDeadBinaryOp(Value *V) {
100 BinaryOperator *BOp = dyn_cast<BinaryOperator>(V);
101 if (!BOp || !BOp->use_empty()) return;
102
103 Value *LHS = BOp->getOperand(0), *RHS = BOp->getOperand(1);
104 RemoveDeadBinaryOp(LHS);
105 RemoveDeadBinaryOp(RHS);
106}
107
Chris Lattner9c723192005-05-08 20:57:04 +0000108
109static bool isUnmovableInstruction(Instruction *I) {
110 if (I->getOpcode() == Instruction::PHI ||
111 I->getOpcode() == Instruction::Alloca ||
112 I->getOpcode() == Instruction::Load ||
113 I->getOpcode() == Instruction::Malloc ||
114 I->getOpcode() == Instruction::Invoke ||
115 I->getOpcode() == Instruction::Call ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000116 I->getOpcode() == Instruction::UDiv ||
117 I->getOpcode() == Instruction::SDiv ||
118 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000119 I->getOpcode() == Instruction::URem ||
120 I->getOpcode() == Instruction::SRem ||
121 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000122 return true;
123 return false;
124}
125
Chris Lattner7e708292002-06-25 16:13:24 +0000126void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000127 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000128
129 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000130 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerfb5be092003-08-13 16:16:26 +0000131 ValueRankMap[I] = ++i;
132
Chris Lattner7e708292002-06-25 16:13:24 +0000133 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000134 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000135 E = RPOT.end(); I != E; ++I) {
136 BasicBlock *BB = *I;
137 unsigned BBRank = RankMap[BB] = ++i << 16;
138
139 // Walk the basic block, adding precomputed ranks for any instructions that
140 // we cannot move. This ensures that the ranks for these instructions are
141 // all different in the block.
142 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
143 if (isUnmovableInstruction(I))
144 ValueRankMap[I] = ++BBRank;
145 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000146}
147
148unsigned Reassociate::getRank(Value *V) {
Chris Lattnerfb5be092003-08-13 16:16:26 +0000149 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
150
Chris Lattner08b43922005-05-07 04:08:02 +0000151 Instruction *I = dyn_cast<Instruction>(V);
152 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
Chris Lattner4fd56002002-05-08 22:19:27 +0000153
Chris Lattner08b43922005-05-07 04:08:02 +0000154 unsigned &CachedRank = ValueRankMap[I];
155 if (CachedRank) return CachedRank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000156
Chris Lattner08b43922005-05-07 04:08:02 +0000157 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
158 // we can reassociate expressions for code motion! Since we do not recurse
159 // for PHI nodes, we cannot have infinite recursion here, because there
160 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000161 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
162 for (unsigned i = 0, e = I->getNumOperands();
163 i != e && Rank != MaxRank; ++i)
164 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000165
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000166 // If this is a not or neg instruction, do not count it for rank. This
167 // assures us that X and ~X will have the same rank.
168 if (!I->getType()->isIntegral() ||
169 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
170 ++Rank;
171
Chris Lattner9c723192005-05-08 20:57:04 +0000172 //DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
173 //<< Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000174
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000175 return CachedRank = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000176}
177
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000178/// isReassociableOp - Return true if V is an instruction of the specified
179/// opcode and if it only has one use.
180static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000181 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000182 cast<Instruction>(V)->getOpcode() == Opcode)
183 return cast<BinaryOperator>(V);
184 return 0;
185}
Chris Lattner4fd56002002-05-08 22:19:27 +0000186
Chris Lattnerf33151a2005-05-08 21:28:52 +0000187/// LowerNegateToMultiply - Replace 0-X with X*-1.
188///
189static Instruction *LowerNegateToMultiply(Instruction *Neg) {
190 Constant *Cst;
191 if (Neg->getType()->isFloatingPoint())
192 Cst = ConstantFP::get(Neg->getType(), -1);
193 else
194 Cst = ConstantInt::getAllOnesValue(Neg->getType());
195
196 std::string NegName = Neg->getName(); Neg->setName("");
197 Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, NegName,
198 Neg);
199 Neg->replaceAllUsesWith(Res);
200 Neg->eraseFromParent();
201 return Res;
202}
203
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000204// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
205// Note that if D is also part of the expression tree that we recurse to
206// linearize it as well. Besides that case, this does not recurse into A,B, or
207// C.
208void Reassociate::LinearizeExpr(BinaryOperator *I) {
209 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
210 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen00b168892005-07-27 06:12:32 +0000211 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000212 isReassociableOp(RHS, I->getOpcode()) &&
213 "Not an expression that needs linearization?");
Misha Brukmanfd939082005-04-21 23:48:37 +0000214
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000215 DEBUG(std::cerr << "Linear" << *LHS << *RHS << *I);
Chris Lattner4fd56002002-05-08 22:19:27 +0000216
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000217 // Move the RHS instruction to live immediately before I, avoiding breaking
218 // dominator properties.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000219 RHS->moveBefore(I);
Chris Lattnere4b73042002-10-31 17:12:59 +0000220
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000221 // Move operands around to do the linearization.
222 I->setOperand(1, RHS->getOperand(0));
223 RHS->setOperand(0, LHS);
224 I->setOperand(0, RHS);
Jeff Cohen00b168892005-07-27 06:12:32 +0000225
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000226 ++NumLinear;
227 MadeChange = true;
228 DEBUG(std::cerr << "Linearized: " << *I);
229
230 // If D is part of this expression tree, tail recurse.
231 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
232 LinearizeExpr(I);
233}
234
235
236/// LinearizeExprTree - Given an associative binary expression tree, traverse
237/// all of the uses putting it into canonical form. This forces a left-linear
238/// form of the the expression (((a+b)+c)+d), and collects information about the
239/// rank of the non-tree operands.
240///
Chris Lattnere9efecb2006-03-14 16:04:29 +0000241/// NOTE: These intentionally destroys the expression tree operands (turning
242/// them into undef values) to reduce #uses of the values. This means that the
243/// caller MUST use something like RewriteExprTree to put the values back in.
244///
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000245void Reassociate::LinearizeExprTree(BinaryOperator *I,
246 std::vector<ValueEntry> &Ops) {
247 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
248 unsigned Opcode = I->getOpcode();
249
250 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
251 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
252 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
253
Chris Lattnerf33151a2005-05-08 21:28:52 +0000254 // If this is a multiply expression tree and it contains internal negations,
255 // transform them into multiplies by -1 so they can be reassociated.
256 if (I->getOpcode() == Instruction::Mul) {
257 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
258 LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
259 LHSBO = isReassociableOp(LHS, Opcode);
260 }
261 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
262 RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
263 RHSBO = isReassociableOp(RHS, Opcode);
264 }
265 }
266
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000267 if (!LHSBO) {
268 if (!RHSBO) {
269 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
270 // such, just remember these operands and their rank.
271 Ops.push_back(ValueEntry(getRank(LHS), LHS));
272 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000273
274 // Clear the leaves out.
275 I->setOperand(0, UndefValue::get(I->getType()));
276 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000277 return;
278 } else {
279 // Turn X+(Y+Z) -> (Y+Z)+X
280 std::swap(LHSBO, RHSBO);
281 std::swap(LHS, RHS);
282 bool Success = !I->swapOperands();
283 assert(Success && "swapOperands failed");
284 MadeChange = true;
285 }
286 } else if (RHSBO) {
287 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
288 // part of the expression tree.
289 LinearizeExpr(I);
290 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
291 RHS = I->getOperand(1);
292 RHSBO = 0;
Chris Lattner4fd56002002-05-08 22:19:27 +0000293 }
Misha Brukmanfd939082005-04-21 23:48:37 +0000294
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000295 // Okay, now we know that the LHS is a nested expression and that the RHS is
296 // not. Perform reassociation.
297 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattner4fd56002002-05-08 22:19:27 +0000298
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000299 // Move LHS right before I to make sure that the tree expression dominates all
300 // values.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000301 LHSBO->moveBefore(I);
Chris Lattnere9608e32003-08-12 21:45:24 +0000302
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000303 // Linearize the expression tree on the LHS.
304 LinearizeExprTree(LHSBO, Ops);
Chris Lattnere4b73042002-10-31 17:12:59 +0000305
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000306 // Remember the RHS operand and its rank.
307 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000308
309 // Clear the RHS leaf out.
310 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattner4fd56002002-05-08 22:19:27 +0000311}
312
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000313// RewriteExprTree - Now that the operands for this expression tree are
314// linearized and optimized, emit them in-order. This function is written to be
315// tail recursive.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000316void Reassociate::RewriteExprTree(BinaryOperator *I,
317 std::vector<ValueEntry> &Ops,
318 unsigned i) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000319 if (i+2 == Ops.size()) {
320 if (I->getOperand(0) != Ops[i].Op ||
321 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000322 Value *OldLHS = I->getOperand(0);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000323 DEBUG(std::cerr << "RA: " << *I);
324 I->setOperand(0, Ops[i].Op);
325 I->setOperand(1, Ops[i+1].Op);
326 DEBUG(std::cerr << "TO: " << *I);
327 MadeChange = true;
328 ++NumChanged;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000329
330 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
331 // delete the extra, now dead, nodes.
332 RemoveDeadBinaryOp(OldLHS);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000333 }
334 return;
335 }
336 assert(i+2 < Ops.size() && "Ops index out of range!");
337
338 if (I->getOperand(1) != Ops[i].Op) {
339 DEBUG(std::cerr << "RA: " << *I);
340 I->setOperand(1, Ops[i].Op);
341 DEBUG(std::cerr << "TO: " << *I);
342 MadeChange = true;
343 ++NumChanged;
344 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000345
346 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
347 assert(LHS->getOpcode() == I->getOpcode() &&
348 "Improper expression tree!");
349
350 // Compactify the tree instructions together with each other to guarantee
351 // that the expression tree is dominated by all of Ops.
352 LHS->moveBefore(I);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000353 RewriteExprTree(LHS, Ops, i+1);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000354}
355
356
Chris Lattner4fd56002002-05-08 22:19:27 +0000357
Chris Lattnera36e6c82002-05-16 04:37:07 +0000358// NegateValue - Insert instructions before the instruction pointed to by BI,
359// that computes the negative version of the value specified. The negative
360// version of the value is returned, and BI is left pointing at the instruction
361// that should be processed next by the reassociation pass.
362//
Chris Lattner08b43922005-05-07 04:08:02 +0000363static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattnera36e6c82002-05-16 04:37:07 +0000364 // We are trying to expose opportunity for reassociation. One of the things
365 // that we want to do to achieve this is to push a negation as deep into an
366 // expression chain as possible, to expose the add instructions. In practice,
367 // this means that we turn this:
368 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
369 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
370 // the constants. We assume that instcombine will clean up the mess later if
Misha Brukman5560c9d2003-08-18 14:43:39 +0000371 // we introduce tons of unnecessary negation instructions...
Chris Lattnera36e6c82002-05-16 04:37:07 +0000372 //
373 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000374 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner2cd85da2005-09-02 06:38:04 +0000375 // Push the negates through the add.
376 I->setOperand(0, NegateValue(I->getOperand(0), BI));
377 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000378
Chris Lattner2cd85da2005-09-02 06:38:04 +0000379 // We must move the add instruction here, because the neg instructions do
380 // not dominate the old add instruction in general. By moving it, we are
381 // assured that the neg instructions we just inserted dominate the
382 // instruction we are about to insert after them.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000383 //
Chris Lattner2cd85da2005-09-02 06:38:04 +0000384 I->moveBefore(BI);
385 I->setName(I->getName()+".neg");
386 return I;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000387 }
388
389 // Insert a 'neg' instruction that subtracts the value from zero to get the
390 // negation.
391 //
Chris Lattner08b43922005-05-07 04:08:02 +0000392 return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
393}
394
Chris Lattner08b43922005-05-07 04:08:02 +0000395/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
396/// only used by an add, transform this into (X+(0-Y)) to promote better
397/// reassociation.
398static Instruction *BreakUpSubtract(Instruction *Sub) {
Chris Lattner08b43922005-05-07 04:08:02 +0000399 // Don't bother to break this up unless either the LHS is an associable add or
400 // if this is only used by one.
401 if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
402 !isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
403 !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
404 return 0;
405
406 // Convert a subtract into an add and a neg instruction... so that sub
407 // instructions can be commuted with other add instructions...
408 //
409 // Calculate the negative value of Operand 1 of the sub instruction...
410 // and set it as the RHS of the add instruction we just made...
411 //
412 std::string Name = Sub->getName();
413 Sub->setName("");
414 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
415 Instruction *New =
416 BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);
417
418 // Everyone now refers to the add instruction.
419 Sub->replaceAllUsesWith(New);
420 Sub->eraseFromParent();
Jeff Cohen00b168892005-07-27 06:12:32 +0000421
Chris Lattner08b43922005-05-07 04:08:02 +0000422 DEBUG(std::cerr << "Negated: " << *New);
423 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000424}
425
Chris Lattner0975ed52005-05-07 04:24:13 +0000426/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
427/// by one, change this into a multiply by a constant to assist with further
428/// reassociation.
429static Instruction *ConvertShiftToMul(Instruction *Shl) {
Chris Lattner22a66c42006-03-14 06:55:18 +0000430 // If an operand of this shift is a reassociable multiply, or if the shift
431 // is used by a reassociable multiply or add, turn into a multiply.
432 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
433 (Shl->hasOneUse() &&
434 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
435 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
436 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
437 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
438
439 std::string Name = Shl->getName(); Shl->setName("");
440 Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
441 Name, Shl);
442 Shl->replaceAllUsesWith(Mul);
443 Shl->eraseFromParent();
444 return Mul;
445 }
446 return 0;
Chris Lattner0975ed52005-05-07 04:24:13 +0000447}
448
Chris Lattner109d34d2005-05-08 18:59:37 +0000449// Scan backwards and forwards among values with the same rank as element i to
450// see if X exists. If X does not exist, return i.
451static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
452 Value *X) {
453 unsigned XRank = Ops[i].Rank;
454 unsigned e = Ops.size();
455 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
456 if (Ops[j].Op == X)
457 return j;
458 // Scan backwards
459 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
460 if (Ops[j].Op == X)
461 return j;
462 return i;
463}
464
Chris Lattnere5022fe2006-03-04 09:31:13 +0000465/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
466/// and returning the result. Insert the tree before I.
467static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
468 if (Ops.size() == 1) return Ops.back();
469
470 Value *V1 = Ops.back();
471 Ops.pop_back();
472 Value *V2 = EmitAddTreeOfValues(I, Ops);
473 return BinaryOperator::createAdd(V2, V1, "tmp", I);
474}
475
476/// RemoveFactorFromExpression - If V is an expression tree that is a
477/// multiplication sequence, and if this sequence contains a multiply by Factor,
478/// remove Factor from the tree and return the new tree.
479Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
480 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
481 if (!BO) return 0;
482
483 std::vector<ValueEntry> Factors;
484 LinearizeExprTree(BO, Factors);
485
486 bool FoundFactor = false;
487 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
488 if (Factors[i].Op == Factor) {
489 FoundFactor = true;
490 Factors.erase(Factors.begin()+i);
491 break;
492 }
Chris Lattnere9efecb2006-03-14 16:04:29 +0000493 if (!FoundFactor) {
494 // Make sure to restore the operands to the expression tree.
495 RewriteExprTree(BO, Factors);
496 return 0;
497 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000498
499 if (Factors.size() == 1) return Factors[0].Op;
500
Chris Lattnere9efecb2006-03-14 16:04:29 +0000501 RewriteExprTree(BO, Factors);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000502 return BO;
503}
504
Chris Lattnere9efecb2006-03-14 16:04:29 +0000505/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
506/// add its operands as factors, otherwise add V to the list of factors.
507static void FindSingleUseMultiplyFactors(Value *V,
508 std::vector<Value*> &Factors) {
509 BinaryOperator *BO;
510 if ((!V->hasOneUse() && !V->use_empty()) ||
511 !(BO = dyn_cast<BinaryOperator>(V)) ||
512 BO->getOpcode() != Instruction::Mul) {
513 Factors.push_back(V);
514 return;
515 }
516
517 // Otherwise, add the LHS and RHS to the list of factors.
518 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
519 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
520}
521
522
Chris Lattnere5022fe2006-03-04 09:31:13 +0000523
524Value *Reassociate::OptimizeExpression(BinaryOperator *I,
525 std::vector<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +0000526 // Now that we have the linearized expression tree, try to optimize it.
527 // Start by folding any constants that we found.
Chris Lattner109d34d2005-05-08 18:59:37 +0000528 bool IterateOptimization = false;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000529 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000530
Chris Lattnere5022fe2006-03-04 09:31:13 +0000531 unsigned Opcode = I->getOpcode();
532
Chris Lattner46900102005-05-08 00:19:31 +0000533 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
534 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
535 Ops.pop_back();
536 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000537 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +0000538 }
539
540 // Check for destructive annihilation due to a constant being used.
541 if (ConstantIntegral *CstVal = dyn_cast<ConstantIntegral>(Ops.back().Op))
542 switch (Opcode) {
543 default: break;
544 case Instruction::And:
545 if (CstVal->isNullValue()) { // ... & 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000546 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000547 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000548 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
549 Ops.pop_back();
550 }
551 break;
552 case Instruction::Mul:
553 if (CstVal->isNullValue()) { // ... * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000554 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000555 return CstVal;
Reid Spencerb83eb642006-10-20 07:07:24 +0000556 } else if (cast<ConstantInt>(CstVal)->getZExtValue() == 1) {
Chris Lattner46900102005-05-08 00:19:31 +0000557 Ops.pop_back(); // ... * 1 -> ...
558 }
559 break;
560 case Instruction::Or:
561 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
Chris Lattner109d34d2005-05-08 18:59:37 +0000562 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000563 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000564 }
565 // FALLTHROUGH!
566 case Instruction::Add:
567 case Instruction::Xor:
568 if (CstVal->isNullValue()) // ... [|^+] 0 -> ...
569 Ops.pop_back();
570 break;
571 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000572 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000573
574 // Handle destructive annihilation do to identities between elements in the
575 // argument list here.
Chris Lattner109d34d2005-05-08 18:59:37 +0000576 switch (Opcode) {
577 default: break;
578 case Instruction::And:
579 case Instruction::Or:
580 case Instruction::Xor:
581 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
582 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
583 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
584 // First, check for X and ~X in the operand list.
Chris Lattner368a3aa2005-09-02 05:23:22 +0000585 assert(i < Ops.size());
Chris Lattner109d34d2005-05-08 18:59:37 +0000586 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
587 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
588 unsigned FoundX = FindInOperandList(Ops, i, X);
589 if (FoundX != i) {
590 if (Opcode == Instruction::And) { // ...&X&~X = 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000591 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000592 return Constant::getNullValue(X->getType());
Chris Lattner109d34d2005-05-08 18:59:37 +0000593 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
Chris Lattner109d34d2005-05-08 18:59:37 +0000594 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000595 return ConstantIntegral::getAllOnesValue(X->getType());
Chris Lattner109d34d2005-05-08 18:59:37 +0000596 }
597 }
598 }
599
600 // Next, check for duplicate pairs of values, which we assume are next to
601 // each other, due to our sorting criteria.
Chris Lattner368a3aa2005-09-02 05:23:22 +0000602 assert(i < Ops.size());
Chris Lattner109d34d2005-05-08 18:59:37 +0000603 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
604 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
605 // Drop duplicate values.
606 Ops.erase(Ops.begin()+i);
607 --i; --e;
608 IterateOptimization = true;
609 ++NumAnnihil;
610 } else {
611 assert(Opcode == Instruction::Xor);
Chris Lattnerac83b032005-08-24 17:55:32 +0000612 if (e == 2) {
Chris Lattnerac83b032005-08-24 17:55:32 +0000613 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000614 return Constant::getNullValue(Ops[0].Op->getType());
Chris Lattnerac83b032005-08-24 17:55:32 +0000615 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000616 // ... X^X -> ...
617 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
Chris Lattnerac83b032005-08-24 17:55:32 +0000618 i -= 1; e -= 2;
Chris Lattner109d34d2005-05-08 18:59:37 +0000619 IterateOptimization = true;
620 ++NumAnnihil;
621 }
622 }
623 }
624 break;
625
626 case Instruction::Add:
627 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattnere5022fe2006-03-04 09:31:13 +0000628 // can simplify the expression. X+-X == 0.
Chris Lattner109d34d2005-05-08 18:59:37 +0000629 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner368a3aa2005-09-02 05:23:22 +0000630 assert(i < Ops.size());
Chris Lattner109d34d2005-05-08 18:59:37 +0000631 // Check for X and -X in the operand list.
632 if (BinaryOperator::isNeg(Ops[i].Op)) {
633 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
634 unsigned FoundX = FindInOperandList(Ops, i, X);
635 if (FoundX != i) {
636 // Remove X and -X from the operand list.
637 if (Ops.size() == 2) {
Chris Lattner109d34d2005-05-08 18:59:37 +0000638 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000639 return Constant::getNullValue(X->getType());
Chris Lattner109d34d2005-05-08 18:59:37 +0000640 } else {
641 Ops.erase(Ops.begin()+i);
Chris Lattner368a3aa2005-09-02 05:23:22 +0000642 if (i < FoundX)
643 --FoundX;
644 else
645 --i; // Need to back up an extra one.
Chris Lattner109d34d2005-05-08 18:59:37 +0000646 Ops.erase(Ops.begin()+FoundX);
647 IterateOptimization = true;
648 ++NumAnnihil;
Chris Lattner368a3aa2005-09-02 05:23:22 +0000649 --i; // Revisit element.
650 e -= 2; // Removed two elements.
Chris Lattner109d34d2005-05-08 18:59:37 +0000651 }
652 }
653 }
654 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000655
656
657 // Scan the operand list, checking to see if there are any common factors
658 // between operands. Consider something like A*A+A*B*C+D. We would like to
659 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
660 // To efficiently find this, we count the number of times a factor occurs
661 // for any ADD operands that are MULs.
662 std::map<Value*, unsigned> FactorOccurrences;
663 unsigned MaxOcc = 0;
664 Value *MaxOccVal = 0;
665 if (!I->getType()->isFloatingPoint()) {
666 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
667 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op))
Chris Lattnere9efecb2006-03-14 16:04:29 +0000668 if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000669 // Compute all of the factors of this added value.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000670 std::vector<Value*> Factors;
671 FindSingleUseMultiplyFactors(BOp, Factors);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000672 assert(Factors.size() > 1 && "Bad linearize!");
673
674 // Add one to FactorOccurrences for each unique factor in this op.
675 if (Factors.size() == 2) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000676 unsigned Occ = ++FactorOccurrences[Factors[0]];
677 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
678 if (Factors[0] != Factors[1]) { // Don't double count A*A.
679 Occ = ++FactorOccurrences[Factors[1]];
680 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000681 }
682 } else {
683 std::set<Value*> Duplicates;
684 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
Chris Lattnere9efecb2006-03-14 16:04:29 +0000685 if (Duplicates.insert(Factors[i]).second) {
686 unsigned Occ = ++FactorOccurrences[Factors[i]];
687 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000688 }
689 }
690 }
691 }
692 }
693
694 // If any factor occurred more than one time, we can pull it out.
695 if (MaxOcc > 1) {
696 DEBUG(std::cerr << "\nFACTORING [" << MaxOcc << "]: "
697 << *MaxOccVal << "\n");
698
699 // Create a new instruction that uses the MaxOccVal twice. If we don't do
700 // this, we could otherwise run into situations where removing a factor
701 // from an expression will drop a use of maxocc, and this can cause
702 // RemoveFactorFromExpression on successive values to behave differently.
703 Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
704 std::vector<Value*> NewMulOps;
705 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
706 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
707 NewMulOps.push_back(V);
708 Ops.erase(Ops.begin()+i);
709 --i; --e;
710 }
711 }
712
713 // No need for extra uses anymore.
714 delete DummyInst;
715
Chris Lattnere9efecb2006-03-14 16:04:29 +0000716 unsigned NumAddedValues = NewMulOps.size();
Chris Lattnere5022fe2006-03-04 09:31:13 +0000717 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000718 Value *V2 = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000719
Chris Lattnere9efecb2006-03-14 16:04:29 +0000720 // Now that we have inserted V and its sole use, optimize it. This allows
721 // us to handle cases that require multiple factoring steps, such as this:
722 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
723 if (NumAddedValues > 1)
724 ReassociateExpression(cast<BinaryOperator>(V));
725
Chris Lattnere5022fe2006-03-04 09:31:13 +0000726 ++NumFactor;
727
728 if (Ops.size() == 0)
Chris Lattnere9efecb2006-03-14 16:04:29 +0000729 return V2;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000730
731 // Add the new value to the list of things being added.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000732 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
Chris Lattnere5022fe2006-03-04 09:31:13 +0000733
734 // Rewrite the tree so that there is now a use of V.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000735 RewriteExprTree(I, Ops);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000736 return OptimizeExpression(I, Ops);
737 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000738 break;
739 //case Instruction::Mul:
740 }
741
Jeff Cohen00b168892005-07-27 06:12:32 +0000742 if (IterateOptimization)
Chris Lattnere5022fe2006-03-04 09:31:13 +0000743 return OptimizeExpression(I, Ops);
744 return 0;
Chris Lattner46900102005-05-08 00:19:31 +0000745}
746
Chris Lattnera36e6c82002-05-16 04:37:07 +0000747
Chris Lattner08b43922005-05-07 04:08:02 +0000748/// ReassociateBB - Inspect all of the instructions in this basic block,
749/// reassociating them as we go.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000750void Reassociate::ReassociateBB(BasicBlock *BB) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000751 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
752 Instruction *BI = BBI++;
Chris Lattner641f02f2005-05-10 03:39:25 +0000753 if (BI->getOpcode() == Instruction::Shl &&
754 isa<ConstantInt>(BI->getOperand(1)))
755 if (Instruction *NI = ConvertShiftToMul(BI)) {
756 MadeChange = true;
757 BI = NI;
758 }
759
Chris Lattner6f156852005-05-08 21:33:47 +0000760 // Reject cases where it is pointless to do this.
Chris Lattnerae74f552006-04-28 04:14:49 +0000761 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
762 isa<PackedType>(BI->getType()))
Chris Lattner6f156852005-05-08 21:33:47 +0000763 continue; // Floating point ops are not associative.
764
Chris Lattner08b43922005-05-07 04:08:02 +0000765 // If this is a subtract instruction which is not already in negate form,
766 // see if we can convert it to X+-Y.
Chris Lattnerf33151a2005-05-08 21:28:52 +0000767 if (BI->getOpcode() == Instruction::Sub) {
768 if (!BinaryOperator::isNeg(BI)) {
769 if (Instruction *NI = BreakUpSubtract(BI)) {
770 MadeChange = true;
771 BI = NI;
772 }
773 } else {
774 // Otherwise, this is a negation. See if the operand is a multiply tree
775 // and if this is not an inner node of a multiply tree.
776 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
777 (!BI->hasOneUse() ||
778 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
779 BI = LowerNegateToMultiply(BI);
780 MadeChange = true;
781 }
Chris Lattner08b43922005-05-07 04:08:02 +0000782 }
Chris Lattnerf33151a2005-05-08 21:28:52 +0000783 }
Chris Lattnere4b73042002-10-31 17:12:59 +0000784
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000785 // If this instruction is a commutative binary operator, process it.
786 if (!BI->isAssociative()) continue;
787 BinaryOperator *I = cast<BinaryOperator>(BI);
Jeff Cohen00b168892005-07-27 06:12:32 +0000788
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000789 // If this is an interior node of a reassociable tree, ignore it until we
790 // get to the root of the tree, to avoid N^2 analysis.
791 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
792 continue;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000793
Chris Lattner7b4ad942005-09-02 07:07:58 +0000794 // If this is an add tree that is used by a sub instruction, ignore it
795 // until we process the subtract.
796 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
797 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
798 continue;
799
Chris Lattner895b3922006-03-14 07:11:11 +0000800 ReassociateExpression(I);
801 }
802}
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000803
Chris Lattner895b3922006-03-14 07:11:11 +0000804void Reassociate::ReassociateExpression(BinaryOperator *I) {
805
806 // First, walk the expression tree, linearizing the tree, collecting
807 std::vector<ValueEntry> Ops;
808 LinearizeExprTree(I, Ops);
809
810 DEBUG(std::cerr << "RAIn:\t"; PrintOps(I, Ops);
811 std::cerr << "\n");
812
813 // Now that we have linearized the tree to a list and have gathered all of
814 // the operands and their ranks, sort the operands by their rank. Use a
815 // stable_sort so that values with equal ranks will have their relative
816 // positions maintained (and so the compiler is deterministic). Note that
817 // this sorts so that the highest ranking values end up at the beginning of
818 // the vector.
819 std::stable_sort(Ops.begin(), Ops.end());
820
821 // OptimizeExpression - Now that we have the expression tree in a convenient
822 // sorted form, optimize it globally if possible.
823 if (Value *V = OptimizeExpression(I, Ops)) {
824 // This expression tree simplified to something that isn't a tree,
825 // eliminate it.
826 DEBUG(std::cerr << "Reassoc to scalar: " << *V << "\n");
827 I->replaceAllUsesWith(V);
828 RemoveDeadBinaryOp(I);
829 return;
830 }
831
832 // We want to sink immediates as deeply as possible except in the case where
833 // this is a multiply tree used only by an add, and the immediate is a -1.
834 // In this case we reassociate to put the negation on the outside so that we
835 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
836 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
837 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
838 isa<ConstantInt>(Ops.back().Op) &&
839 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
840 Ops.insert(Ops.begin(), Ops.back());
841 Ops.pop_back();
842 }
843
844 DEBUG(std::cerr << "RAOut:\t"; PrintOps(I, Ops);
845 std::cerr << "\n");
846
847 if (Ops.size() == 1) {
848 // This expression tree simplified to something that isn't a tree,
849 // eliminate it.
850 I->replaceAllUsesWith(Ops[0].Op);
851 RemoveDeadBinaryOp(I);
852 } else {
853 // Now that we ordered and optimized the expressions, splat them back into
854 // the expression tree, removing any unneeded nodes.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000855 RewriteExprTree(I, Ops);
Chris Lattner4fd56002002-05-08 22:19:27 +0000856 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000857}
858
859
Chris Lattner7e708292002-06-25 16:13:24 +0000860bool Reassociate::runOnFunction(Function &F) {
Chris Lattner4fd56002002-05-08 22:19:27 +0000861 // Recalculate the rank map for F
862 BuildRankMap(F);
863
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000864 MadeChange = false;
Chris Lattner7e708292002-06-25 16:13:24 +0000865 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000866 ReassociateBB(FI);
Chris Lattner4fd56002002-05-08 22:19:27 +0000867
868 // We are done with the rank map...
869 RankMap.clear();
Chris Lattnerfb5be092003-08-13 16:16:26 +0000870 ValueRankMap.clear();
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000871 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +0000872}
Brian Gaeked0fde302003-11-11 22:41:34 +0000873