blob: ee283a04c588a3775c783bfd4cb3117f3914f6a6 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/Type.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Support/CFG.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Transforms/Utils/BasicBlockUtils.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include <algorithm>
27#include <functional>
28#include <set>
29#include <map>
30using namespace llvm;
31
32/// SafeToMergeTerminators - Return true if it is safe to merge these two
33/// terminator instructions together.
34///
35static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
36 if (SI1 == SI2) return false; // Can't merge with self!
37
38 // It is not safe to merge these two switch instructions if they have a common
39 // successor, and if that successor has a PHI node, and if *that* PHI node has
40 // conflicting incoming values from the two switch blocks.
41 BasicBlock *SI1BB = SI1->getParent();
42 BasicBlock *SI2BB = SI2->getParent();
43 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
44
45 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
46 if (SI1Succs.count(*I))
47 for (BasicBlock::iterator BBI = (*I)->begin();
48 isa<PHINode>(BBI); ++BBI) {
49 PHINode *PN = cast<PHINode>(BBI);
50 if (PN->getIncomingValueForBlock(SI1BB) !=
51 PN->getIncomingValueForBlock(SI2BB))
52 return false;
53 }
54
55 return true;
56}
57
58/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
59/// now be entries in it from the 'NewPred' block. The values that will be
60/// flowing into the PHI nodes will be the same as those coming in from
61/// ExistPred, an existing predecessor of Succ.
62static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
63 BasicBlock *ExistPred) {
64 assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
65 succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
66 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
67
68 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
69 PHINode *PN = cast<PHINode>(I);
70 Value *V = PN->getIncomingValueForBlock(ExistPred);
71 PN->addIncoming(V, NewPred);
72 }
73}
74
75// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
76// almost-empty BB ending in an unconditional branch to Succ, into succ.
77//
78// Assumption: Succ is the single successor for BB.
79//
80static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
81 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
82
83 // Check to see if one of the predecessors of BB is already a predecessor of
84 // Succ. If so, we cannot do the transformation if there are any PHI nodes
85 // with incompatible values coming in from the two edges!
86 //
87 if (isa<PHINode>(Succ->front())) {
88 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
89 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
90 PI != PE; ++PI)
91 if (BBPreds.count(*PI)) {
92 // Loop over all of the PHI nodes checking to see if there are
93 // incompatible values coming in.
94 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
95 PHINode *PN = cast<PHINode>(I);
96 // Loop up the entries in the PHI node for BB and for *PI if the
97 // values coming in are non-equal, we cannot merge these two blocks
98 // (instead we should insert a conditional move or something, then
99 // merge the blocks).
100 if (PN->getIncomingValueForBlock(BB) !=
101 PN->getIncomingValueForBlock(*PI))
102 return false; // Values are not equal...
103 }
104 }
105 }
106
107 // Finally, if BB has PHI nodes that are used by things other than the PHIs in
108 // Succ and Succ has predecessors that are not Succ and not Pred, we cannot
109 // fold these blocks, as we don't know whether BB dominates Succ or not to
110 // update the PHI nodes correctly.
111 if (!isa<PHINode>(BB->begin()) || Succ->getSinglePredecessor()) return true;
112
Devang Patel8bb31412007-12-22 01:32:53 +0000113 // If the predecessors of Succ are only BB, handle it.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000114 bool IsSafe = true;
115 for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
Devang Patel8bb31412007-12-22 01:32:53 +0000116 if (*PI != BB) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000117 IsSafe = false;
118 break;
119 }
120 if (IsSafe) return true;
121
122 // If the PHI nodes in BB are only used by instructions in Succ, we are ok if
123 // BB and Succ have no common predecessors.
124 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
125 PHINode *PN = cast<PHINode>(I);
126 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E;
127 ++UI)
128 if (cast<Instruction>(*UI)->getParent() != Succ)
129 return false;
130 }
131
132 // Scan the predecessor sets of BB and Succ, making sure there are no common
133 // predecessors. Common predecessors would cause us to build a phi node with
134 // differing incoming values, which is not legal.
135 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
136 for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
137 if (BBPreds.count(*PI))
138 return false;
139
140 return true;
141}
142
143/// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
144/// branch to Succ, and contains no instructions other than PHI nodes and the
145/// branch. If possible, eliminate BB.
146static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
147 BasicBlock *Succ) {
148 // If our successor has PHI nodes, then we need to update them to include
149 // entries for BB's predecessors, not for BB itself. Be careful though,
150 // if this transformation fails (returns true) then we cannot do this
151 // transformation!
152 //
153 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
154
155 DOUT << "Killing Trivial BB: \n" << *BB;
156
157 if (isa<PHINode>(Succ->begin())) {
158 // If there is more than one pred of succ, and there are PHI nodes in
159 // the successor, then we need to add incoming edges for the PHI nodes
160 //
161 const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
162
163 // Loop over all of the PHI nodes in the successor of BB.
164 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
165 PHINode *PN = cast<PHINode>(I);
166 Value *OldVal = PN->removeIncomingValue(BB, false);
167 assert(OldVal && "No entry in PHI for Pred BB!");
168
169 // If this incoming value is one of the PHI nodes in BB, the new entries
170 // in the PHI node are the entries from the old PHI.
171 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
172 PHINode *OldValPN = cast<PHINode>(OldVal);
173 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
174 PN->addIncoming(OldValPN->getIncomingValue(i),
175 OldValPN->getIncomingBlock(i));
176 } else {
177 for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
178 End = BBPreds.end(); PredI != End; ++PredI) {
179 // Add an incoming value for each of the new incoming values...
180 PN->addIncoming(OldVal, *PredI);
181 }
182 }
183 }
184 }
185
186 if (isa<PHINode>(&BB->front())) {
187 std::vector<BasicBlock*>
188 OldSuccPreds(pred_begin(Succ), pred_end(Succ));
189
190 // Move all PHI nodes in BB to Succ if they are alive, otherwise
191 // delete them.
192 while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
193 if (PN->use_empty()) {
194 // Just remove the dead phi. This happens if Succ's PHIs were the only
195 // users of the PHI nodes.
196 PN->eraseFromParent();
197 } else {
198 // The instruction is alive, so this means that Succ must have
199 // *ONLY* had BB as a predecessor, and the PHI node is still valid
200 // now. Simply move it into Succ, because we know that BB
201 // strictly dominated Succ.
202 Succ->getInstList().splice(Succ->begin(),
203 BB->getInstList(), BB->begin());
204
205 // We need to add new entries for the PHI node to account for
206 // predecessors of Succ that the PHI node does not take into
207 // account. At this point, since we know that BB dominated succ,
208 // this means that we should any newly added incoming edges should
209 // use the PHI node as the value for these edges, because they are
210 // loop back edges.
211 for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
212 if (OldSuccPreds[i] != BB)
213 PN->addIncoming(PN, OldSuccPreds[i]);
214 }
215 }
216
217 // Everything that jumped to BB now goes to Succ.
218 BB->replaceAllUsesWith(Succ);
219 if (!Succ->hasName()) Succ->takeName(BB);
220 BB->eraseFromParent(); // Delete the old basic block.
221 return true;
222}
223
224/// GetIfCondition - Given a basic block (BB) with two predecessors (and
225/// presumably PHI nodes in it), check to see if the merge at this block is due
226/// to an "if condition". If so, return the boolean condition that determines
227/// which entry into BB will be taken. Also, return by references the block
228/// that will be entered from if the condition is true, and the block that will
229/// be entered if the condition is false.
230///
231///
232static Value *GetIfCondition(BasicBlock *BB,
233 BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
234 assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
235 "Function can only handle blocks with 2 predecessors!");
236 BasicBlock *Pred1 = *pred_begin(BB);
237 BasicBlock *Pred2 = *++pred_begin(BB);
238
239 // We can only handle branches. Other control flow will be lowered to
240 // branches if possible anyway.
241 if (!isa<BranchInst>(Pred1->getTerminator()) ||
242 !isa<BranchInst>(Pred2->getTerminator()))
243 return 0;
244 BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
245 BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
246
247 // Eliminate code duplication by ensuring that Pred1Br is conditional if
248 // either are.
249 if (Pred2Br->isConditional()) {
250 // If both branches are conditional, we don't have an "if statement". In
251 // reality, we could transform this case, but since the condition will be
252 // required anyway, we stand no chance of eliminating it, so the xform is
253 // probably not profitable.
254 if (Pred1Br->isConditional())
255 return 0;
256
257 std::swap(Pred1, Pred2);
258 std::swap(Pred1Br, Pred2Br);
259 }
260
261 if (Pred1Br->isConditional()) {
262 // If we found a conditional branch predecessor, make sure that it branches
263 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
264 if (Pred1Br->getSuccessor(0) == BB &&
265 Pred1Br->getSuccessor(1) == Pred2) {
266 IfTrue = Pred1;
267 IfFalse = Pred2;
268 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
269 Pred1Br->getSuccessor(1) == BB) {
270 IfTrue = Pred2;
271 IfFalse = Pred1;
272 } else {
273 // We know that one arm of the conditional goes to BB, so the other must
274 // go somewhere unrelated, and this must not be an "if statement".
275 return 0;
276 }
277
278 // The only thing we have to watch out for here is to make sure that Pred2
279 // doesn't have incoming edges from other blocks. If it does, the condition
280 // doesn't dominate BB.
281 if (++pred_begin(Pred2) != pred_end(Pred2))
282 return 0;
283
284 return Pred1Br->getCondition();
285 }
286
287 // Ok, if we got here, both predecessors end with an unconditional branch to
288 // BB. Don't panic! If both blocks only have a single (identical)
289 // predecessor, and THAT is a conditional branch, then we're all ok!
290 if (pred_begin(Pred1) == pred_end(Pred1) ||
291 ++pred_begin(Pred1) != pred_end(Pred1) ||
292 pred_begin(Pred2) == pred_end(Pred2) ||
293 ++pred_begin(Pred2) != pred_end(Pred2) ||
294 *pred_begin(Pred1) != *pred_begin(Pred2))
295 return 0;
296
297 // Otherwise, if this is a conditional branch, then we can use it!
298 BasicBlock *CommonPred = *pred_begin(Pred1);
299 if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
300 assert(BI->isConditional() && "Two successors but not conditional?");
301 if (BI->getSuccessor(0) == Pred1) {
302 IfTrue = Pred1;
303 IfFalse = Pred2;
304 } else {
305 IfTrue = Pred2;
306 IfFalse = Pred1;
307 }
308 return BI->getCondition();
309 }
310 return 0;
311}
312
313
314// If we have a merge point of an "if condition" as accepted above, return true
315// if the specified value dominates the block. We don't handle the true
316// generality of domination here, just a special case which works well enough
317// for us.
318//
319// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
320// see if V (which must be an instruction) is cheap to compute and is
321// non-trapping. If both are true, the instruction is inserted into the set and
322// true is returned.
323static bool DominatesMergePoint(Value *V, BasicBlock *BB,
324 std::set<Instruction*> *AggressiveInsts) {
325 Instruction *I = dyn_cast<Instruction>(V);
326 if (!I) {
327 // Non-instructions all dominate instructions, but not all constantexprs
328 // can be executed unconditionally.
329 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
330 if (C->canTrap())
331 return false;
332 return true;
333 }
334 BasicBlock *PBB = I->getParent();
335
336 // We don't want to allow weird loops that might have the "if condition" in
337 // the bottom of this block.
338 if (PBB == BB) return false;
339
340 // If this instruction is defined in a block that contains an unconditional
341 // branch to BB, then it must be in the 'conditional' part of the "if
342 // statement".
343 if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
344 if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
345 if (!AggressiveInsts) return false;
346 // Okay, it looks like the instruction IS in the "condition". Check to
347 // see if its a cheap instruction to unconditionally compute, and if it
348 // only uses stuff defined outside of the condition. If so, hoist it out.
349 switch (I->getOpcode()) {
350 default: return false; // Cannot hoist this out safely.
351 case Instruction::Load:
352 // We can hoist loads that are non-volatile and obviously cannot trap.
353 if (cast<LoadInst>(I)->isVolatile())
354 return false;
355 if (!isa<AllocaInst>(I->getOperand(0)) &&
356 !isa<Constant>(I->getOperand(0)))
357 return false;
358
359 // Finally, we have to check to make sure there are no instructions
360 // before the load in its basic block, as we are going to hoist the loop
361 // out to its predecessor.
362 if (PBB->begin() != BasicBlock::iterator(I))
363 return false;
364 break;
365 case Instruction::Add:
366 case Instruction::Sub:
367 case Instruction::And:
368 case Instruction::Or:
369 case Instruction::Xor:
370 case Instruction::Shl:
371 case Instruction::LShr:
372 case Instruction::AShr:
373 case Instruction::ICmp:
374 case Instruction::FCmp:
375 break; // These are all cheap and non-trapping instructions.
376 }
377
378 // Okay, we can only really hoist these out if their operands are not
379 // defined in the conditional region.
380 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
381 if (!DominatesMergePoint(I->getOperand(i), BB, 0))
382 return false;
383 // Okay, it's safe to do this! Remember this instruction.
384 AggressiveInsts->insert(I);
385 }
386
387 return true;
388}
389
390// GatherConstantSetEQs - Given a potentially 'or'd together collection of
391// icmp_eq instructions that compare a value against a constant, return the
392// value being compared, and stick the constant into the Values vector.
393static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
394 if (Instruction *Inst = dyn_cast<Instruction>(V))
395 if (Inst->getOpcode() == Instruction::ICmp &&
396 cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
397 if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
398 Values.push_back(C);
399 return Inst->getOperand(0);
400 } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
401 Values.push_back(C);
402 return Inst->getOperand(1);
403 }
404 } else if (Inst->getOpcode() == Instruction::Or) {
405 if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
406 if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
407 if (LHS == RHS)
408 return LHS;
409 }
410 return 0;
411}
412
413// GatherConstantSetNEs - Given a potentially 'and'd together collection of
414// setne instructions that compare a value against a constant, return the value
415// being compared, and stick the constant into the Values vector.
416static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
417 if (Instruction *Inst = dyn_cast<Instruction>(V))
418 if (Inst->getOpcode() == Instruction::ICmp &&
419 cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
420 if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
421 Values.push_back(C);
422 return Inst->getOperand(0);
423 } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
424 Values.push_back(C);
425 return Inst->getOperand(1);
426 }
427 } else if (Inst->getOpcode() == Instruction::And) {
428 if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
429 if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
430 if (LHS == RHS)
431 return LHS;
432 }
433 return 0;
434}
435
436
437
438/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
439/// bunch of comparisons of one value against constants, return the value and
440/// the constants being compared.
441static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
442 std::vector<ConstantInt*> &Values) {
443 if (Cond->getOpcode() == Instruction::Or) {
444 CompVal = GatherConstantSetEQs(Cond, Values);
445
446 // Return true to indicate that the condition is true if the CompVal is
447 // equal to one of the constants.
448 return true;
449 } else if (Cond->getOpcode() == Instruction::And) {
450 CompVal = GatherConstantSetNEs(Cond, Values);
451
452 // Return false to indicate that the condition is false if the CompVal is
453 // equal to one of the constants.
454 return false;
455 }
456 return false;
457}
458
459/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
460/// has no side effects, nuke it. If it uses any instructions that become dead
461/// because the instruction is now gone, nuke them too.
462static void ErasePossiblyDeadInstructionTree(Instruction *I) {
463 if (!isInstructionTriviallyDead(I)) return;
464
465 std::vector<Instruction*> InstrsToInspect;
466 InstrsToInspect.push_back(I);
467
468 while (!InstrsToInspect.empty()) {
469 I = InstrsToInspect.back();
470 InstrsToInspect.pop_back();
471
472 if (!isInstructionTriviallyDead(I)) continue;
473
474 // If I is in the work list multiple times, remove previous instances.
475 for (unsigned i = 0, e = InstrsToInspect.size(); i != e; ++i)
476 if (InstrsToInspect[i] == I) {
477 InstrsToInspect.erase(InstrsToInspect.begin()+i);
478 --i, --e;
479 }
480
481 // Add operands of dead instruction to worklist.
482 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
483 if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
484 InstrsToInspect.push_back(OpI);
485
486 // Remove dead instruction.
487 I->eraseFromParent();
488 }
489}
490
491// isValueEqualityComparison - Return true if the specified terminator checks to
492// see if a value is equal to constant integer value.
493static Value *isValueEqualityComparison(TerminatorInst *TI) {
494 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
495 // Do not permit merging of large switch instructions into their
496 // predecessors unless there is only one predecessor.
497 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
498 pred_end(SI->getParent())) > 128)
499 return 0;
500
501 return SI->getCondition();
502 }
503 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
504 if (BI->isConditional() && BI->getCondition()->hasOneUse())
505 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
506 if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
507 ICI->getPredicate() == ICmpInst::ICMP_NE) &&
508 isa<ConstantInt>(ICI->getOperand(1)))
509 return ICI->getOperand(0);
510 return 0;
511}
512
513// Given a value comparison instruction, decode all of the 'cases' that it
514// represents and return the 'default' block.
515static BasicBlock *
516GetValueEqualityComparisonCases(TerminatorInst *TI,
517 std::vector<std::pair<ConstantInt*,
518 BasicBlock*> > &Cases) {
519 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
520 Cases.reserve(SI->getNumCases());
521 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
522 Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
523 return SI->getDefaultDest();
524 }
525
526 BranchInst *BI = cast<BranchInst>(TI);
527 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
528 Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
529 BI->getSuccessor(ICI->getPredicate() ==
530 ICmpInst::ICMP_NE)));
531 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
532}
533
534
535// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
536// in the list that match the specified block.
537static void EliminateBlockCases(BasicBlock *BB,
538 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
539 for (unsigned i = 0, e = Cases.size(); i != e; ++i)
540 if (Cases[i].second == BB) {
541 Cases.erase(Cases.begin()+i);
542 --i; --e;
543 }
544}
545
546// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
547// well.
548static bool
549ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
550 std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
551 std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
552
553 // Make V1 be smaller than V2.
554 if (V1->size() > V2->size())
555 std::swap(V1, V2);
556
557 if (V1->size() == 0) return false;
558 if (V1->size() == 1) {
559 // Just scan V2.
560 ConstantInt *TheVal = (*V1)[0].first;
561 for (unsigned i = 0, e = V2->size(); i != e; ++i)
562 if (TheVal == (*V2)[i].first)
563 return true;
564 }
565
566 // Otherwise, just sort both lists and compare element by element.
567 std::sort(V1->begin(), V1->end());
568 std::sort(V2->begin(), V2->end());
569 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
570 while (i1 != e1 && i2 != e2) {
571 if ((*V1)[i1].first == (*V2)[i2].first)
572 return true;
573 if ((*V1)[i1].first < (*V2)[i2].first)
574 ++i1;
575 else
576 ++i2;
577 }
578 return false;
579}
580
581// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
582// terminator instruction and its block is known to only have a single
583// predecessor block, check to see if that predecessor is also a value
584// comparison with the same value, and if that comparison determines the outcome
585// of this comparison. If so, simplify TI. This does a very limited form of
586// jump threading.
587static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
588 BasicBlock *Pred) {
589 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
590 if (!PredVal) return false; // Not a value comparison in predecessor.
591
592 Value *ThisVal = isValueEqualityComparison(TI);
593 assert(ThisVal && "This isn't a value comparison!!");
594 if (ThisVal != PredVal) return false; // Different predicates.
595
596 // Find out information about when control will move from Pred to TI's block.
597 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
598 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
599 PredCases);
600 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
601
602 // Find information about how control leaves this block.
603 std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
604 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
605 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
606
607 // If TI's block is the default block from Pred's comparison, potentially
608 // simplify TI based on this knowledge.
609 if (PredDef == TI->getParent()) {
610 // If we are here, we know that the value is none of those cases listed in
611 // PredCases. If there are any cases in ThisCases that are in PredCases, we
612 // can simplify TI.
613 if (ValuesOverlap(PredCases, ThisCases)) {
614 if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
615 // Okay, one of the successors of this condbr is dead. Convert it to a
616 // uncond br.
617 assert(ThisCases.size() == 1 && "Branch can only have one case!");
618 Value *Cond = BTI->getCondition();
619 // Insert the new branch.
620 Instruction *NI = new BranchInst(ThisDef, TI);
621
622 // Remove PHI node entries for the dead edge.
623 ThisCases[0].second->removePredecessor(TI->getParent());
624
625 DOUT << "Threading pred instr: " << *Pred->getTerminator()
626 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
627
628 TI->eraseFromParent(); // Nuke the old one.
629 // If condition is now dead, nuke it.
630 if (Instruction *CondI = dyn_cast<Instruction>(Cond))
631 ErasePossiblyDeadInstructionTree(CondI);
632 return true;
633
634 } else {
635 SwitchInst *SI = cast<SwitchInst>(TI);
636 // Okay, TI has cases that are statically dead, prune them away.
637 SmallPtrSet<Constant*, 16> DeadCases;
638 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
639 DeadCases.insert(PredCases[i].first);
640
641 DOUT << "Threading pred instr: " << *Pred->getTerminator()
642 << "Through successor TI: " << *TI;
643
644 for (unsigned i = SI->getNumCases()-1; i != 0; --i)
645 if (DeadCases.count(SI->getCaseValue(i))) {
646 SI->getSuccessor(i)->removePredecessor(TI->getParent());
647 SI->removeCase(i);
648 }
649
650 DOUT << "Leaving: " << *TI << "\n";
651 return true;
652 }
653 }
654
655 } else {
656 // Otherwise, TI's block must correspond to some matched value. Find out
657 // which value (or set of values) this is.
658 ConstantInt *TIV = 0;
659 BasicBlock *TIBB = TI->getParent();
660 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
661 if (PredCases[i].second == TIBB)
662 if (TIV == 0)
663 TIV = PredCases[i].first;
664 else
665 return false; // Cannot handle multiple values coming to this block.
666 assert(TIV && "No edge from pred to succ?");
667
668 // Okay, we found the one constant that our value can be if we get into TI's
669 // BB. Find out which successor will unconditionally be branched to.
670 BasicBlock *TheRealDest = 0;
671 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
672 if (ThisCases[i].first == TIV) {
673 TheRealDest = ThisCases[i].second;
674 break;
675 }
676
677 // If not handled by any explicit cases, it is handled by the default case.
678 if (TheRealDest == 0) TheRealDest = ThisDef;
679
680 // Remove PHI node entries for dead edges.
681 BasicBlock *CheckEdge = TheRealDest;
682 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
683 if (*SI != CheckEdge)
684 (*SI)->removePredecessor(TIBB);
685 else
686 CheckEdge = 0;
687
688 // Insert the new branch.
689 Instruction *NI = new BranchInst(TheRealDest, TI);
690
691 DOUT << "Threading pred instr: " << *Pred->getTerminator()
692 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
693 Instruction *Cond = 0;
694 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
695 Cond = dyn_cast<Instruction>(BI->getCondition());
696 TI->eraseFromParent(); // Nuke the old one.
697
698 if (Cond) ErasePossiblyDeadInstructionTree(Cond);
699 return true;
700 }
701 return false;
702}
703
704// FoldValueComparisonIntoPredecessors - The specified terminator is a value
705// equality comparison instruction (either a switch or a branch on "X == c").
706// See if any of the predecessors of the terminator block are value comparisons
707// on the same value. If so, and if safe to do so, fold them together.
708static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
709 BasicBlock *BB = TI->getParent();
710 Value *CV = isValueEqualityComparison(TI); // CondVal
711 assert(CV && "Not a comparison?");
712 bool Changed = false;
713
714 std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
715 while (!Preds.empty()) {
716 BasicBlock *Pred = Preds.back();
717 Preds.pop_back();
718
719 // See if the predecessor is a comparison with the same value.
720 TerminatorInst *PTI = Pred->getTerminator();
721 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
722
723 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
724 // Figure out which 'cases' to copy from SI to PSI.
725 std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
726 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
727
728 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
729 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
730
731 // Based on whether the default edge from PTI goes to BB or not, fill in
732 // PredCases and PredDefault with the new switch cases we would like to
733 // build.
734 std::vector<BasicBlock*> NewSuccessors;
735
736 if (PredDefault == BB) {
737 // If this is the default destination from PTI, only the edges in TI
738 // that don't occur in PTI, or that branch to BB will be activated.
739 std::set<ConstantInt*> PTIHandled;
740 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
741 if (PredCases[i].second != BB)
742 PTIHandled.insert(PredCases[i].first);
743 else {
744 // The default destination is BB, we don't need explicit targets.
745 std::swap(PredCases[i], PredCases.back());
746 PredCases.pop_back();
747 --i; --e;
748 }
749
750 // Reconstruct the new switch statement we will be building.
751 if (PredDefault != BBDefault) {
752 PredDefault->removePredecessor(Pred);
753 PredDefault = BBDefault;
754 NewSuccessors.push_back(BBDefault);
755 }
756 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
757 if (!PTIHandled.count(BBCases[i].first) &&
758 BBCases[i].second != BBDefault) {
759 PredCases.push_back(BBCases[i]);
760 NewSuccessors.push_back(BBCases[i].second);
761 }
762
763 } else {
764 // If this is not the default destination from PSI, only the edges
765 // in SI that occur in PSI with a destination of BB will be
766 // activated.
767 std::set<ConstantInt*> PTIHandled;
768 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
769 if (PredCases[i].second == BB) {
770 PTIHandled.insert(PredCases[i].first);
771 std::swap(PredCases[i], PredCases.back());
772 PredCases.pop_back();
773 --i; --e;
774 }
775
776 // Okay, now we know which constants were sent to BB from the
777 // predecessor. Figure out where they will all go now.
778 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
779 if (PTIHandled.count(BBCases[i].first)) {
780 // If this is one we are capable of getting...
781 PredCases.push_back(BBCases[i]);
782 NewSuccessors.push_back(BBCases[i].second);
783 PTIHandled.erase(BBCases[i].first);// This constant is taken care of
784 }
785
786 // If there are any constants vectored to BB that TI doesn't handle,
787 // they must go to the default destination of TI.
788 for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
789 E = PTIHandled.end(); I != E; ++I) {
790 PredCases.push_back(std::make_pair(*I, BBDefault));
791 NewSuccessors.push_back(BBDefault);
792 }
793 }
794
795 // Okay, at this point, we know which new successor Pred will get. Make
796 // sure we update the number of entries in the PHI nodes for these
797 // successors.
798 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
799 AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
800
801 // Now that the successors are updated, create the new Switch instruction.
802 SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PredCases.size(),PTI);
803 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
804 NewSI->addCase(PredCases[i].first, PredCases[i].second);
805
806 Instruction *DeadCond = 0;
807 if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
808 // If PTI is a branch, remember the condition.
809 DeadCond = dyn_cast<Instruction>(BI->getCondition());
810 Pred->getInstList().erase(PTI);
811
812 // If the condition is dead now, remove the instruction tree.
813 if (DeadCond) ErasePossiblyDeadInstructionTree(DeadCond);
814
815 // Okay, last check. If BB is still a successor of PSI, then we must
816 // have an infinite loop case. If so, add an infinitely looping block
817 // to handle the case to preserve the behavior of the code.
818 BasicBlock *InfLoopBlock = 0;
819 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
820 if (NewSI->getSuccessor(i) == BB) {
821 if (InfLoopBlock == 0) {
822 // Insert it at the end of the loop, because it's either code,
823 // or it won't matter if it's hot. :)
824 InfLoopBlock = new BasicBlock("infloop", BB->getParent());
825 new BranchInst(InfLoopBlock, InfLoopBlock);
826 }
827 NewSI->setSuccessor(i, InfLoopBlock);
828 }
829
830 Changed = true;
831 }
832 }
833 return Changed;
834}
835
836/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
837/// BB2, hoist any common code in the two blocks up into the branch block. The
838/// caller of this function guarantees that BI's block dominates BB1 and BB2.
839static bool HoistThenElseCodeToIf(BranchInst *BI) {
840 // This does very trivial matching, with limited scanning, to find identical
841 // instructions in the two blocks. In particular, we don't want to get into
842 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
843 // such, we currently just scan for obviously identical instructions in an
844 // identical order.
845 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
846 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
847
848 Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
849 if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
850 isa<InvokeInst>(I1) || !I1->isIdenticalTo(I2))
851 return false;
852
853 // If we get here, we can hoist at least one instruction.
854 BasicBlock *BIParent = BI->getParent();
855
856 do {
857 // If we are hoisting the terminator instruction, don't move one (making a
858 // broken BB), instead clone it, and remove BI.
859 if (isa<TerminatorInst>(I1))
860 goto HoistTerminator;
861
862 // For a normal instruction, we just move one to right before the branch,
863 // then replace all uses of the other with the first. Finally, we remove
864 // the now redundant second instruction.
865 BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
866 if (!I2->use_empty())
867 I2->replaceAllUsesWith(I1);
868 BB2->getInstList().erase(I2);
869
870 I1 = BB1->begin();
871 I2 = BB2->begin();
872 } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
873
874 return true;
875
876HoistTerminator:
877 // Okay, it is safe to hoist the terminator.
878 Instruction *NT = I1->clone();
879 BIParent->getInstList().insert(BI, NT);
880 if (NT->getType() != Type::VoidTy) {
881 I1->replaceAllUsesWith(NT);
882 I2->replaceAllUsesWith(NT);
883 NT->takeName(I1);
884 }
885
886 // Hoisting one of the terminators from our successor is a great thing.
887 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
888 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
889 // nodes, so we insert select instruction to compute the final result.
890 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
891 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
892 PHINode *PN;
893 for (BasicBlock::iterator BBI = SI->begin();
894 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
895 Value *BB1V = PN->getIncomingValueForBlock(BB1);
896 Value *BB2V = PN->getIncomingValueForBlock(BB2);
897 if (BB1V != BB2V) {
898 // These values do not agree. Insert a select instruction before NT
899 // that determines the right value.
900 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
901 if (SI == 0)
902 SI = new SelectInst(BI->getCondition(), BB1V, BB2V,
903 BB1V->getName()+"."+BB2V->getName(), NT);
904 // Make the PHI node use the select for all incoming values for BB1/BB2
905 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
906 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
907 PN->setIncomingValue(i, SI);
908 }
909 }
910 }
911
912 // Update any PHI nodes in our new successors.
913 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
914 AddPredecessorToBlock(*SI, BIParent, BB1);
915
916 BI->eraseFromParent();
917 return true;
918}
919
920/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
921/// across this block.
922static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
923 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
924 unsigned Size = 0;
925
926 // If this basic block contains anything other than a PHI (which controls the
927 // branch) and branch itself, bail out. FIXME: improve this in the future.
928 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI, ++Size) {
929 if (Size > 10) return false; // Don't clone large BB's.
930
931 // We can only support instructions that are do not define values that are
932 // live outside of the current basic block.
933 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
934 UI != E; ++UI) {
935 Instruction *U = cast<Instruction>(*UI);
936 if (U->getParent() != BB || isa<PHINode>(U)) return false;
937 }
938
939 // Looks ok, continue checking.
940 }
941
942 return true;
943}
944
945/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
946/// that is defined in the same block as the branch and if any PHI entries are
947/// constants, thread edges corresponding to that entry to be branches to their
948/// ultimate destination.
949static bool FoldCondBranchOnPHI(BranchInst *BI) {
950 BasicBlock *BB = BI->getParent();
951 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
952 // NOTE: we currently cannot transform this case if the PHI node is used
953 // outside of the block.
954 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
955 return false;
956
957 // Degenerate case of a single entry PHI.
958 if (PN->getNumIncomingValues() == 1) {
959 if (PN->getIncomingValue(0) != PN)
960 PN->replaceAllUsesWith(PN->getIncomingValue(0));
961 else
962 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
963 PN->eraseFromParent();
964 return true;
965 }
966
967 // Now we know that this block has multiple preds and two succs.
968 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
969
970 // Okay, this is a simple enough basic block. See if any phi values are
971 // constants.
972 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
973 ConstantInt *CB;
974 if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
975 CB->getType() == Type::Int1Ty) {
976 // Okay, we now know that all edges from PredBB should be revectored to
977 // branch to RealDest.
978 BasicBlock *PredBB = PN->getIncomingBlock(i);
979 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
980
981 if (RealDest == BB) continue; // Skip self loops.
982
983 // The dest block might have PHI nodes, other predecessors and other
984 // difficult cases. Instead of being smart about this, just insert a new
985 // block that jumps to the destination block, effectively splitting
986 // the edge we are about to create.
987 BasicBlock *EdgeBB = new BasicBlock(RealDest->getName()+".critedge",
988 RealDest->getParent(), RealDest);
989 new BranchInst(RealDest, EdgeBB);
990 PHINode *PN;
991 for (BasicBlock::iterator BBI = RealDest->begin();
992 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
993 Value *V = PN->getIncomingValueForBlock(BB);
994 PN->addIncoming(V, EdgeBB);
995 }
996
997 // BB may have instructions that are being threaded over. Clone these
998 // instructions into EdgeBB. We know that there will be no uses of the
999 // cloned instructions outside of EdgeBB.
1000 BasicBlock::iterator InsertPt = EdgeBB->begin();
1001 std::map<Value*, Value*> TranslateMap; // Track translated values.
1002 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1003 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1004 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1005 } else {
1006 // Clone the instruction.
1007 Instruction *N = BBI->clone();
1008 if (BBI->hasName()) N->setName(BBI->getName()+".c");
1009
1010 // Update operands due to translation.
1011 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1012 std::map<Value*, Value*>::iterator PI =
1013 TranslateMap.find(N->getOperand(i));
1014 if (PI != TranslateMap.end())
1015 N->setOperand(i, PI->second);
1016 }
1017
1018 // Check for trivial simplification.
1019 if (Constant *C = ConstantFoldInstruction(N)) {
1020 TranslateMap[BBI] = C;
1021 delete N; // Constant folded away, don't need actual inst
1022 } else {
1023 // Insert the new instruction into its new home.
1024 EdgeBB->getInstList().insert(InsertPt, N);
1025 if (!BBI->use_empty())
1026 TranslateMap[BBI] = N;
1027 }
1028 }
1029 }
1030
1031 // Loop over all of the edges from PredBB to BB, changing them to branch
1032 // to EdgeBB instead.
1033 TerminatorInst *PredBBTI = PredBB->getTerminator();
1034 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1035 if (PredBBTI->getSuccessor(i) == BB) {
1036 BB->removePredecessor(PredBB);
1037 PredBBTI->setSuccessor(i, EdgeBB);
1038 }
1039
1040 // Recurse, simplifying any other constants.
1041 return FoldCondBranchOnPHI(BI) | true;
1042 }
1043 }
1044
1045 return false;
1046}
1047
1048/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1049/// PHI node, see if we can eliminate it.
1050static bool FoldTwoEntryPHINode(PHINode *PN) {
1051 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1052 // statement", which has a very simple dominance structure. Basically, we
1053 // are trying to find the condition that is being branched on, which
1054 // subsequently causes this merge to happen. We really want control
1055 // dependence information for this check, but simplifycfg can't keep it up
1056 // to date, and this catches most of the cases we care about anyway.
1057 //
1058 BasicBlock *BB = PN->getParent();
1059 BasicBlock *IfTrue, *IfFalse;
1060 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1061 if (!IfCond) return false;
1062
1063 // Okay, we found that we can merge this two-entry phi node into a select.
1064 // Doing so would require us to fold *all* two entry phi nodes in this block.
1065 // At some point this becomes non-profitable (particularly if the target
1066 // doesn't support cmov's). Only do this transformation if there are two or
1067 // fewer PHI nodes in this block.
1068 unsigned NumPhis = 0;
1069 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1070 if (NumPhis > 2)
1071 return false;
1072
1073 DOUT << "FOUND IF CONDITION! " << *IfCond << " T: "
1074 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n";
1075
1076 // Loop over the PHI's seeing if we can promote them all to select
1077 // instructions. While we are at it, keep track of the instructions
1078 // that need to be moved to the dominating block.
1079 std::set<Instruction*> AggressiveInsts;
1080
1081 BasicBlock::iterator AfterPHIIt = BB->begin();
1082 while (isa<PHINode>(AfterPHIIt)) {
1083 PHINode *PN = cast<PHINode>(AfterPHIIt++);
1084 if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
1085 if (PN->getIncomingValue(0) != PN)
1086 PN->replaceAllUsesWith(PN->getIncomingValue(0));
1087 else
1088 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1089 } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1090 &AggressiveInsts) ||
1091 !DominatesMergePoint(PN->getIncomingValue(1), BB,
1092 &AggressiveInsts)) {
1093 return false;
1094 }
1095 }
1096
1097 // If we all PHI nodes are promotable, check to make sure that all
1098 // instructions in the predecessor blocks can be promoted as well. If
1099 // not, we won't be able to get rid of the control flow, so it's not
1100 // worth promoting to select instructions.
1101 BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1102 PN = cast<PHINode>(BB->begin());
1103 BasicBlock *Pred = PN->getIncomingBlock(0);
1104 if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1105 IfBlock1 = Pred;
1106 DomBlock = *pred_begin(Pred);
1107 for (BasicBlock::iterator I = Pred->begin();
1108 !isa<TerminatorInst>(I); ++I)
1109 if (!AggressiveInsts.count(I)) {
1110 // This is not an aggressive instruction that we can promote.
1111 // Because of this, we won't be able to get rid of the control
1112 // flow, so the xform is not worth it.
1113 return false;
1114 }
1115 }
1116
1117 Pred = PN->getIncomingBlock(1);
1118 if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1119 IfBlock2 = Pred;
1120 DomBlock = *pred_begin(Pred);
1121 for (BasicBlock::iterator I = Pred->begin();
1122 !isa<TerminatorInst>(I); ++I)
1123 if (!AggressiveInsts.count(I)) {
1124 // This is not an aggressive instruction that we can promote.
1125 // Because of this, we won't be able to get rid of the control
1126 // flow, so the xform is not worth it.
1127 return false;
1128 }
1129 }
1130
1131 // If we can still promote the PHI nodes after this gauntlet of tests,
1132 // do all of the PHI's now.
1133
1134 // Move all 'aggressive' instructions, which are defined in the
1135 // conditional parts of the if's up to the dominating block.
1136 if (IfBlock1) {
1137 DomBlock->getInstList().splice(DomBlock->getTerminator(),
1138 IfBlock1->getInstList(),
1139 IfBlock1->begin(),
1140 IfBlock1->getTerminator());
1141 }
1142 if (IfBlock2) {
1143 DomBlock->getInstList().splice(DomBlock->getTerminator(),
1144 IfBlock2->getInstList(),
1145 IfBlock2->begin(),
1146 IfBlock2->getTerminator());
1147 }
1148
1149 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1150 // Change the PHI node into a select instruction.
1151 Value *TrueVal =
1152 PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1153 Value *FalseVal =
1154 PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1155
1156 Value *NV = new SelectInst(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
1157 PN->replaceAllUsesWith(NV);
1158 NV->takeName(PN);
1159
1160 BB->getInstList().erase(PN);
1161 }
1162 return true;
1163}
1164
1165namespace {
1166 /// ConstantIntOrdering - This class implements a stable ordering of constant
1167 /// integers that does not depend on their address. This is important for
1168 /// applications that sort ConstantInt's to ensure uniqueness.
1169 struct ConstantIntOrdering {
1170 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1171 return LHS->getValue().ult(RHS->getValue());
1172 }
1173 };
1174}
1175
1176// SimplifyCFG - This function is used to do simplification of a CFG. For
1177// example, it adjusts branches to branches to eliminate the extra hop, it
1178// eliminates unreachable basic blocks, and does other "peephole" optimization
1179// of the CFG. It returns true if a modification was made.
1180//
1181// WARNING: The entry node of a function may not be simplified.
1182//
1183bool llvm::SimplifyCFG(BasicBlock *BB) {
1184 bool Changed = false;
1185 Function *M = BB->getParent();
1186
1187 assert(BB && BB->getParent() && "Block not embedded in function!");
1188 assert(BB->getTerminator() && "Degenerate basic block encountered!");
1189 assert(&BB->getParent()->getEntryBlock() != BB &&
1190 "Can't Simplify entry block!");
1191
1192 // Remove basic blocks that have no predecessors... which are unreachable.
1193 if (pred_begin(BB) == pred_end(BB) ||
1194 *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
1195 DOUT << "Removing BB: \n" << *BB;
1196
1197 // Loop through all of our successors and make sure they know that one
1198 // of their predecessors is going away.
1199 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1200 SI->removePredecessor(BB);
1201
1202 while (!BB->empty()) {
1203 Instruction &I = BB->back();
1204 // If this instruction is used, replace uses with an arbitrary
1205 // value. Because control flow can't get here, we don't care
1206 // what we replace the value with. Note that since this block is
1207 // unreachable, and all values contained within it must dominate their
1208 // uses, that all uses will eventually be removed.
1209 if (!I.use_empty())
1210 // Make all users of this instruction use undef instead
1211 I.replaceAllUsesWith(UndefValue::get(I.getType()));
1212
1213 // Remove the instruction from the basic block
1214 BB->getInstList().pop_back();
1215 }
1216 M->getBasicBlockList().erase(BB);
1217 return true;
1218 }
1219
1220 // Check to see if we can constant propagate this terminator instruction
1221 // away...
1222 Changed |= ConstantFoldTerminator(BB);
1223
1224 // If this is a returning block with only PHI nodes in it, fold the return
1225 // instruction into any unconditional branch predecessors.
1226 //
1227 // If any predecessor is a conditional branch that just selects among
1228 // different return values, fold the replace the branch/return with a select
1229 // and return.
1230 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1231 BasicBlock::iterator BBI = BB->getTerminator();
1232 if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
1233 // Find predecessors that end with branches.
1234 std::vector<BasicBlock*> UncondBranchPreds;
1235 std::vector<BranchInst*> CondBranchPreds;
1236 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1237 TerminatorInst *PTI = (*PI)->getTerminator();
1238 if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
1239 if (BI->isUnconditional())
1240 UncondBranchPreds.push_back(*PI);
1241 else
1242 CondBranchPreds.push_back(BI);
1243 }
1244
1245 // If we found some, do the transformation!
1246 if (!UncondBranchPreds.empty()) {
1247 while (!UncondBranchPreds.empty()) {
1248 BasicBlock *Pred = UncondBranchPreds.back();
1249 DOUT << "FOLDING: " << *BB
1250 << "INTO UNCOND BRANCH PRED: " << *Pred;
1251 UncondBranchPreds.pop_back();
1252 Instruction *UncondBranch = Pred->getTerminator();
1253 // Clone the return and add it to the end of the predecessor.
1254 Instruction *NewRet = RI->clone();
1255 Pred->getInstList().push_back(NewRet);
1256
1257 // If the return instruction returns a value, and if the value was a
1258 // PHI node in "BB", propagate the right value into the return.
1259 if (NewRet->getNumOperands() == 1)
1260 if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
1261 if (PN->getParent() == BB)
1262 NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
1263 // Update any PHI nodes in the returning block to realize that we no
1264 // longer branch to them.
1265 BB->removePredecessor(Pred);
1266 Pred->getInstList().erase(UncondBranch);
1267 }
1268
1269 // If we eliminated all predecessors of the block, delete the block now.
1270 if (pred_begin(BB) == pred_end(BB))
1271 // We know there are no successors, so just nuke the block.
1272 M->getBasicBlockList().erase(BB);
1273
1274 return true;
1275 }
1276
1277 // Check out all of the conditional branches going to this return
1278 // instruction. If any of them just select between returns, change the
1279 // branch itself into a select/return pair.
1280 while (!CondBranchPreds.empty()) {
1281 BranchInst *BI = CondBranchPreds.back();
1282 CondBranchPreds.pop_back();
1283 BasicBlock *TrueSucc = BI->getSuccessor(0);
1284 BasicBlock *FalseSucc = BI->getSuccessor(1);
1285 BasicBlock *OtherSucc = TrueSucc == BB ? FalseSucc : TrueSucc;
1286
1287 // Check to see if the non-BB successor is also a return block.
1288 if (isa<ReturnInst>(OtherSucc->getTerminator())) {
1289 // Check to see if there are only PHI instructions in this block.
1290 BasicBlock::iterator OSI = OtherSucc->getTerminator();
1291 if (OSI == OtherSucc->begin() || isa<PHINode>(--OSI)) {
1292 // Okay, we found a branch that is going to two return nodes. If
1293 // there is no return value for this function, just change the
1294 // branch into a return.
1295 if (RI->getNumOperands() == 0) {
1296 TrueSucc->removePredecessor(BI->getParent());
1297 FalseSucc->removePredecessor(BI->getParent());
1298 new ReturnInst(0, BI);
1299 BI->getParent()->getInstList().erase(BI);
1300 return true;
1301 }
1302
1303 // Otherwise, figure out what the true and false return values are
1304 // so we can insert a new select instruction.
1305 Value *TrueValue = TrueSucc->getTerminator()->getOperand(0);
1306 Value *FalseValue = FalseSucc->getTerminator()->getOperand(0);
1307
1308 // Unwrap any PHI nodes in the return blocks.
1309 if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
1310 if (TVPN->getParent() == TrueSucc)
1311 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1312 if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
1313 if (FVPN->getParent() == FalseSucc)
1314 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1315
1316 // In order for this transformation to be safe, we must be able to
1317 // unconditionally execute both operands to the return. This is
1318 // normally the case, but we could have a potentially-trapping
1319 // constant expression that prevents this transformation from being
1320 // safe.
1321 if ((!isa<ConstantExpr>(TrueValue) ||
1322 !cast<ConstantExpr>(TrueValue)->canTrap()) &&
1323 (!isa<ConstantExpr>(TrueValue) ||
1324 !cast<ConstantExpr>(TrueValue)->canTrap())) {
1325 TrueSucc->removePredecessor(BI->getParent());
1326 FalseSucc->removePredecessor(BI->getParent());
1327
1328 // Insert a new select instruction.
1329 Value *NewRetVal;
1330 Value *BrCond = BI->getCondition();
1331 if (TrueValue != FalseValue)
1332 NewRetVal = new SelectInst(BrCond, TrueValue,
1333 FalseValue, "retval", BI);
1334 else
1335 NewRetVal = TrueValue;
1336
1337 DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1338 << "\n " << *BI << "Select = " << *NewRetVal
1339 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
1340
1341 new ReturnInst(NewRetVal, BI);
1342 BI->eraseFromParent();
1343 if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
1344 if (isInstructionTriviallyDead(BrCondI))
1345 BrCondI->eraseFromParent();
1346 return true;
1347 }
1348 }
1349 }
1350 }
1351 }
1352 } else if (isa<UnwindInst>(BB->begin())) {
1353 // Check to see if the first instruction in this block is just an unwind.
1354 // If so, replace any invoke instructions which use this as an exception
1355 // destination with call instructions, and any unconditional branch
1356 // predecessor with an unwind.
1357 //
1358 std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
1359 while (!Preds.empty()) {
1360 BasicBlock *Pred = Preds.back();
1361 if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
1362 if (BI->isUnconditional()) {
1363 Pred->getInstList().pop_back(); // nuke uncond branch
1364 new UnwindInst(Pred); // Use unwind.
1365 Changed = true;
1366 }
1367 } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
1368 if (II->getUnwindDest() == BB) {
1369 // Insert a new branch instruction before the invoke, because this
1370 // is now a fall through...
1371 BranchInst *BI = new BranchInst(II->getNormalDest(), II);
1372 Pred->getInstList().remove(II); // Take out of symbol table
1373
1374 // Insert the call now...
1375 SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
1376 CallInst *CI = new CallInst(II->getCalledValue(),
David Greeneb1c4a7b2007-08-01 03:43:44 +00001377 Args.begin(), Args.end(), II->getName(), BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001378 CI->setCallingConv(II->getCallingConv());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001379 CI->setParamAttrs(II->getParamAttrs());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001380 // If the invoke produced a value, the Call now does instead
1381 II->replaceAllUsesWith(CI);
1382 delete II;
1383 Changed = true;
1384 }
1385
1386 Preds.pop_back();
1387 }
1388
1389 // If this block is now dead, remove it.
1390 if (pred_begin(BB) == pred_end(BB)) {
1391 // We know there are no successors, so just nuke the block.
1392 M->getBasicBlockList().erase(BB);
1393 return true;
1394 }
1395
1396 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1397 if (isValueEqualityComparison(SI)) {
1398 // If we only have one predecessor, and if it is a branch on this value,
1399 // see if that predecessor totally determines the outcome of this switch.
1400 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1401 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1402 return SimplifyCFG(BB) || 1;
1403
1404 // If the block only contains the switch, see if we can fold the block
1405 // away into any preds.
1406 if (SI == &BB->front())
1407 if (FoldValueComparisonIntoPredecessors(SI))
1408 return SimplifyCFG(BB) || 1;
1409 }
1410 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1411 if (BI->isUnconditional()) {
1412 BasicBlock::iterator BBI = BB->begin(); // Skip over phi nodes...
1413 while (isa<PHINode>(*BBI)) ++BBI;
1414
1415 BasicBlock *Succ = BI->getSuccessor(0);
1416 if (BBI->isTerminator() && // Terminator is the only non-phi instruction!
1417 Succ != BB) // Don't hurt infinite loops!
1418 if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
1419 return 1;
1420
1421 } else { // Conditional branch
1422 if (isValueEqualityComparison(BI)) {
1423 // If we only have one predecessor, and if it is a branch on this value,
1424 // see if that predecessor totally determines the outcome of this
1425 // switch.
1426 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1427 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
1428 return SimplifyCFG(BB) || 1;
1429
1430 // This block must be empty, except for the setcond inst, if it exists.
1431 BasicBlock::iterator I = BB->begin();
1432 if (&*I == BI ||
1433 (&*I == cast<Instruction>(BI->getCondition()) &&
1434 &*++I == BI))
1435 if (FoldValueComparisonIntoPredecessors(BI))
1436 return SimplifyCFG(BB) | true;
1437 }
1438
1439 // If this is a branch on a phi node in the current block, thread control
1440 // through this block if any PHI node entries are constants.
1441 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
1442 if (PN->getParent() == BI->getParent())
1443 if (FoldCondBranchOnPHI(BI))
1444 return SimplifyCFG(BB) | true;
1445
1446 // If this basic block is ONLY a setcc and a branch, and if a predecessor
1447 // branches to us and one of our successors, fold the setcc into the
1448 // predecessor and use logical operations to pick the right destination.
1449 BasicBlock *TrueDest = BI->getSuccessor(0);
1450 BasicBlock *FalseDest = BI->getSuccessor(1);
1451 if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition())) {
1452 BasicBlock::iterator CondIt = Cond;
1453 if ((isa<CmpInst>(Cond) || isa<BinaryOperator>(Cond)) &&
1454 Cond->getParent() == BB && &BB->front() == Cond &&
1455 &*++CondIt == BI && Cond->hasOneUse() &&
1456 TrueDest != BB && FalseDest != BB)
1457 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI!=E; ++PI)
1458 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1459 if (PBI->isConditional() && SafeToMergeTerminators(BI, PBI)) {
1460 BasicBlock *PredBlock = *PI;
1461 if (PBI->getSuccessor(0) == FalseDest ||
1462 PBI->getSuccessor(1) == TrueDest) {
1463 // Invert the predecessors condition test (xor it with true),
1464 // which allows us to write this code once.
1465 Value *NewCond =
1466 BinaryOperator::createNot(PBI->getCondition(),
1467 PBI->getCondition()->getName()+".not", PBI);
1468 PBI->setCondition(NewCond);
1469 BasicBlock *OldTrue = PBI->getSuccessor(0);
1470 BasicBlock *OldFalse = PBI->getSuccessor(1);
1471 PBI->setSuccessor(0, OldFalse);
1472 PBI->setSuccessor(1, OldTrue);
1473 }
1474
1475 if ((PBI->getSuccessor(0) == TrueDest && FalseDest != BB) ||
1476 (PBI->getSuccessor(1) == FalseDest && TrueDest != BB)) {
1477 // Clone Cond into the predecessor basic block, and or/and the
1478 // two conditions together.
1479 Instruction *New = Cond->clone();
1480 PredBlock->getInstList().insert(PBI, New);
1481 New->takeName(Cond);
1482 Cond->setName(New->getName()+".old");
1483 Instruction::BinaryOps Opcode =
1484 PBI->getSuccessor(0) == TrueDest ?
1485 Instruction::Or : Instruction::And;
1486 Value *NewCond =
1487 BinaryOperator::create(Opcode, PBI->getCondition(),
1488 New, "bothcond", PBI);
1489 PBI->setCondition(NewCond);
1490 if (PBI->getSuccessor(0) == BB) {
1491 AddPredecessorToBlock(TrueDest, PredBlock, BB);
1492 PBI->setSuccessor(0, TrueDest);
1493 }
1494 if (PBI->getSuccessor(1) == BB) {
1495 AddPredecessorToBlock(FalseDest, PredBlock, BB);
1496 PBI->setSuccessor(1, FalseDest);
1497 }
1498 return SimplifyCFG(BB) | 1;
1499 }
1500 }
1501 }
1502
1503 // Scan predessor blocks for conditional branches.
1504 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1505 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1506 if (PBI != BI && PBI->isConditional()) {
1507
1508 // If this block ends with a branch instruction, and if there is a
1509 // predecessor that ends on a branch of the same condition, make
1510 // this conditional branch redundant.
1511 if (PBI->getCondition() == BI->getCondition() &&
1512 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1513 // Okay, the outcome of this conditional branch is statically
1514 // knowable. If this block had a single pred, handle specially.
1515 if (BB->getSinglePredecessor()) {
1516 // Turn this into a branch on constant.
1517 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1518 BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
1519 return SimplifyCFG(BB); // Nuke the branch on constant.
1520 }
1521
1522 // Otherwise, if there are multiple predecessors, insert a PHI
1523 // that merges in the constant and simplify the block result.
1524 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1525 PHINode *NewPN = new PHINode(Type::Int1Ty,
1526 BI->getCondition()->getName()+".pr",
1527 BB->begin());
1528 for (PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1529 if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
1530 PBI != BI && PBI->isConditional() &&
1531 PBI->getCondition() == BI->getCondition() &&
1532 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1533 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1534 NewPN->addIncoming(ConstantInt::get(Type::Int1Ty,
1535 CondIsTrue), *PI);
1536 } else {
1537 NewPN->addIncoming(BI->getCondition(), *PI);
1538 }
1539
1540 BI->setCondition(NewPN);
1541 // This will thread the branch.
1542 return SimplifyCFG(BB) | true;
1543 }
1544 }
1545
1546 // If this is a conditional branch in an empty block, and if any
1547 // predecessors is a conditional branch to one of our destinations,
1548 // fold the conditions into logical ops and one cond br.
1549 if (&BB->front() == BI) {
1550 int PBIOp, BIOp;
1551 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
1552 PBIOp = BIOp = 0;
1553 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
1554 PBIOp = 0; BIOp = 1;
1555 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
1556 PBIOp = 1; BIOp = 0;
1557 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
1558 PBIOp = BIOp = 1;
1559 } else {
1560 PBIOp = BIOp = -1;
1561 }
1562
1563 // Check to make sure that the other destination of this branch
1564 // isn't BB itself. If so, this is an infinite loop that will
1565 // keep getting unwound.
1566 if (PBIOp != -1 && PBI->getSuccessor(PBIOp) == BB)
1567 PBIOp = BIOp = -1;
1568
1569 // Do not perform this transformation if it would require
1570 // insertion of a large number of select instructions. For targets
1571 // without predication/cmovs, this is a big pessimization.
1572 if (PBIOp != -1) {
1573 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1574
1575 unsigned NumPhis = 0;
1576 for (BasicBlock::iterator II = CommonDest->begin();
1577 isa<PHINode>(II); ++II, ++NumPhis) {
1578 if (NumPhis > 2) {
1579 // Disable this xform.
1580 PBIOp = -1;
1581 break;
1582 }
1583 }
1584 }
1585
1586 // Finally, if everything is ok, fold the branches to logical ops.
1587 if (PBIOp != -1) {
1588 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1589 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
1590
1591 // If OtherDest *is* BB, then this is a basic block with just
1592 // a conditional branch in it, where one edge (OtherDesg) goes
1593 // back to the block. We know that the program doesn't get
1594 // stuck in the infinite loop, so the condition must be such
1595 // that OtherDest isn't branched through. Forward to CommonDest,
1596 // and avoid an infinite loop at optimizer time.
1597 if (OtherDest == BB)
1598 OtherDest = CommonDest;
1599
1600 DOUT << "FOLDING BRs:" << *PBI->getParent()
1601 << "AND: " << *BI->getParent();
1602
1603 // BI may have other predecessors. Because of this, we leave
1604 // it alone, but modify PBI.
1605
1606 // Make sure we get to CommonDest on True&True directions.
1607 Value *PBICond = PBI->getCondition();
1608 if (PBIOp)
1609 PBICond = BinaryOperator::createNot(PBICond,
1610 PBICond->getName()+".not",
1611 PBI);
1612 Value *BICond = BI->getCondition();
1613 if (BIOp)
1614 BICond = BinaryOperator::createNot(BICond,
1615 BICond->getName()+".not",
1616 PBI);
1617 // Merge the conditions.
1618 Value *Cond =
1619 BinaryOperator::createOr(PBICond, BICond, "brmerge", PBI);
1620
1621 // Modify PBI to branch on the new condition to the new dests.
1622 PBI->setCondition(Cond);
1623 PBI->setSuccessor(0, CommonDest);
1624 PBI->setSuccessor(1, OtherDest);
1625
1626 // OtherDest may have phi nodes. If so, add an entry from PBI's
1627 // block that are identical to the entries for BI's block.
1628 PHINode *PN;
1629 for (BasicBlock::iterator II = OtherDest->begin();
1630 (PN = dyn_cast<PHINode>(II)); ++II) {
1631 Value *V = PN->getIncomingValueForBlock(BB);
1632 PN->addIncoming(V, PBI->getParent());
1633 }
1634
1635 // We know that the CommonDest already had an edge from PBI to
1636 // it. If it has PHIs though, the PHIs may have different
1637 // entries for BB and PBI's BB. If so, insert a select to make
1638 // them agree.
1639 for (BasicBlock::iterator II = CommonDest->begin();
1640 (PN = dyn_cast<PHINode>(II)); ++II) {
1641 Value * BIV = PN->getIncomingValueForBlock(BB);
1642 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1643 Value *PBIV = PN->getIncomingValue(PBBIdx);
1644 if (BIV != PBIV) {
1645 // Insert a select in PBI to pick the right value.
1646 Value *NV = new SelectInst(PBICond, PBIV, BIV,
1647 PBIV->getName()+".mux", PBI);
1648 PN->setIncomingValue(PBBIdx, NV);
1649 }
1650 }
1651
1652 DOUT << "INTO: " << *PBI->getParent();
1653
1654 // This basic block is probably dead. We know it has at least
1655 // one fewer predecessor.
1656 return SimplifyCFG(BB) | true;
1657 }
1658 }
1659 }
1660 }
1661 } else if (isa<UnreachableInst>(BB->getTerminator())) {
1662 // If there are any instructions immediately before the unreachable that can
1663 // be removed, do so.
1664 Instruction *Unreachable = BB->getTerminator();
1665 while (Unreachable != BB->begin()) {
1666 BasicBlock::iterator BBI = Unreachable;
1667 --BBI;
1668 if (isa<CallInst>(BBI)) break;
1669 // Delete this instruction
1670 BB->getInstList().erase(BBI);
1671 Changed = true;
1672 }
1673
1674 // If the unreachable instruction is the first in the block, take a gander
1675 // at all of the predecessors of this instruction, and simplify them.
1676 if (&BB->front() == Unreachable) {
1677 std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
1678 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1679 TerminatorInst *TI = Preds[i]->getTerminator();
1680
1681 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1682 if (BI->isUnconditional()) {
1683 if (BI->getSuccessor(0) == BB) {
1684 new UnreachableInst(TI);
1685 TI->eraseFromParent();
1686 Changed = true;
1687 }
1688 } else {
1689 if (BI->getSuccessor(0) == BB) {
1690 new BranchInst(BI->getSuccessor(1), BI);
1691 BI->eraseFromParent();
1692 } else if (BI->getSuccessor(1) == BB) {
1693 new BranchInst(BI->getSuccessor(0), BI);
1694 BI->eraseFromParent();
1695 Changed = true;
1696 }
1697 }
1698 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1699 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1700 if (SI->getSuccessor(i) == BB) {
1701 BB->removePredecessor(SI->getParent());
1702 SI->removeCase(i);
1703 --i; --e;
1704 Changed = true;
1705 }
1706 // If the default value is unreachable, figure out the most popular
1707 // destination and make it the default.
1708 if (SI->getSuccessor(0) == BB) {
1709 std::map<BasicBlock*, unsigned> Popularity;
1710 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1711 Popularity[SI->getSuccessor(i)]++;
1712
1713 // Find the most popular block.
1714 unsigned MaxPop = 0;
1715 BasicBlock *MaxBlock = 0;
1716 for (std::map<BasicBlock*, unsigned>::iterator
1717 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
1718 if (I->second > MaxPop) {
1719 MaxPop = I->second;
1720 MaxBlock = I->first;
1721 }
1722 }
1723 if (MaxBlock) {
1724 // Make this the new default, allowing us to delete any explicit
1725 // edges to it.
1726 SI->setSuccessor(0, MaxBlock);
1727 Changed = true;
1728
1729 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
1730 // it.
1731 if (isa<PHINode>(MaxBlock->begin()))
1732 for (unsigned i = 0; i != MaxPop-1; ++i)
1733 MaxBlock->removePredecessor(SI->getParent());
1734
1735 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1736 if (SI->getSuccessor(i) == MaxBlock) {
1737 SI->removeCase(i);
1738 --i; --e;
1739 }
1740 }
1741 }
1742 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
1743 if (II->getUnwindDest() == BB) {
1744 // Convert the invoke to a call instruction. This would be a good
1745 // place to note that the call does not throw though.
1746 BranchInst *BI = new BranchInst(II->getNormalDest(), II);
1747 II->removeFromParent(); // Take out of symbol table
1748
1749 // Insert the call now...
1750 SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end());
1751 CallInst *CI = new CallInst(II->getCalledValue(),
David Greeneb1c4a7b2007-08-01 03:43:44 +00001752 Args.begin(), Args.end(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001753 II->getName(), BI);
1754 CI->setCallingConv(II->getCallingConv());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001755 CI->setParamAttrs(II->getParamAttrs());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001756 // If the invoke produced a value, the Call does now instead.
1757 II->replaceAllUsesWith(CI);
1758 delete II;
1759 Changed = true;
1760 }
1761 }
1762 }
1763
1764 // If this block is now dead, remove it.
1765 if (pred_begin(BB) == pred_end(BB)) {
1766 // We know there are no successors, so just nuke the block.
1767 M->getBasicBlockList().erase(BB);
1768 return true;
1769 }
1770 }
1771 }
1772
1773 // Merge basic blocks into their predecessor if there is only one distinct
1774 // pred, and if there is only one distinct successor of the predecessor, and
1775 // if there are no PHI nodes.
1776 //
1777 pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
1778 BasicBlock *OnlyPred = *PI++;
1779 for (; PI != PE; ++PI) // Search all predecessors, see if they are all same
1780 if (*PI != OnlyPred) {
1781 OnlyPred = 0; // There are multiple different predecessors...
1782 break;
1783 }
1784
1785 BasicBlock *OnlySucc = 0;
1786 if (OnlyPred && OnlyPred != BB && // Don't break self loops
1787 OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
1788 // Check to see if there is only one distinct successor...
1789 succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
1790 OnlySucc = BB;
1791 for (; SI != SE; ++SI)
1792 if (*SI != OnlySucc) {
1793 OnlySucc = 0; // There are multiple distinct successors!
1794 break;
1795 }
1796 }
1797
1798 if (OnlySucc) {
1799 DOUT << "Merging: " << *BB << "into: " << *OnlyPred;
1800
1801 // Resolve any PHI nodes at the start of the block. They are all
1802 // guaranteed to have exactly one entry if they exist, unless there are
1803 // multiple duplicate (but guaranteed to be equal) entries for the
1804 // incoming edges. This occurs when there are multiple edges from
1805 // OnlyPred to OnlySucc.
1806 //
1807 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1808 PN->replaceAllUsesWith(PN->getIncomingValue(0));
1809 BB->getInstList().pop_front(); // Delete the phi node.
1810 }
1811
1812 // Delete the unconditional branch from the predecessor.
1813 OnlyPred->getInstList().pop_back();
1814
1815 // Move all definitions in the successor to the predecessor.
1816 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
1817
1818 // Make all PHI nodes that referred to BB now refer to Pred as their
1819 // source.
1820 BB->replaceAllUsesWith(OnlyPred);
1821
1822 // Inherit predecessors name if it exists.
1823 if (!OnlyPred->hasName())
1824 OnlyPred->takeName(BB);
1825
1826 // Erase basic block from the function.
1827 M->getBasicBlockList().erase(BB);
1828
1829 return true;
1830 }
1831
1832 // Otherwise, if this block only has a single predecessor, and if that block
1833 // is a conditional branch, see if we can hoist any code from this block up
1834 // into our predecessor.
1835 if (OnlyPred)
1836 if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
1837 if (BI->isConditional()) {
1838 // Get the other block.
1839 BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
1840 PI = pred_begin(OtherBB);
1841 ++PI;
1842 if (PI == pred_end(OtherBB)) {
1843 // We have a conditional branch to two blocks that are only reachable
1844 // from the condbr. We know that the condbr dominates the two blocks,
1845 // so see if there is any identical code in the "then" and "else"
1846 // blocks. If so, we can hoist it up to the branching block.
1847 Changed |= HoistThenElseCodeToIf(BI);
1848 }
1849 }
1850
1851 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1852 if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1853 // Change br (X == 0 | X == 1), T, F into a switch instruction.
1854 if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
1855 Instruction *Cond = cast<Instruction>(BI->getCondition());
1856 // If this is a bunch of seteq's or'd together, or if it's a bunch of
1857 // 'setne's and'ed together, collect them.
1858 Value *CompVal = 0;
1859 std::vector<ConstantInt*> Values;
1860 bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
1861 if (CompVal && CompVal->getType()->isInteger()) {
1862 // There might be duplicate constants in the list, which the switch
1863 // instruction can't handle, remove them now.
1864 std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
1865 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
1866
1867 // Figure out which block is which destination.
1868 BasicBlock *DefaultBB = BI->getSuccessor(1);
1869 BasicBlock *EdgeBB = BI->getSuccessor(0);
1870 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
1871
1872 // Create the new switch instruction now.
1873 SwitchInst *New = new SwitchInst(CompVal, DefaultBB,Values.size(),BI);
1874
1875 // Add all of the 'cases' to the switch instruction.
1876 for (unsigned i = 0, e = Values.size(); i != e; ++i)
1877 New->addCase(Values[i], EdgeBB);
1878
1879 // We added edges from PI to the EdgeBB. As such, if there were any
1880 // PHI nodes in EdgeBB, they need entries to be added corresponding to
1881 // the number of edges added.
1882 for (BasicBlock::iterator BBI = EdgeBB->begin();
1883 isa<PHINode>(BBI); ++BBI) {
1884 PHINode *PN = cast<PHINode>(BBI);
1885 Value *InVal = PN->getIncomingValueForBlock(*PI);
1886 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
1887 PN->addIncoming(InVal, *PI);
1888 }
1889
1890 // Erase the old branch instruction.
1891 (*PI)->getInstList().erase(BI);
1892
1893 // Erase the potentially condition tree that was used to computed the
1894 // branch condition.
1895 ErasePossiblyDeadInstructionTree(Cond);
1896 return true;
1897 }
1898 }
1899
1900 // If there is a trivial two-entry PHI node in this basic block, and we can
1901 // eliminate it, do so now.
1902 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1903 if (PN->getNumIncomingValues() == 2)
1904 Changed |= FoldTwoEntryPHINode(PN);
1905
1906 return Changed;
1907}