blob: 1092b8892771f090100a4f8c787212e3ac6a7561 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation. This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible). Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs. As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/PromoteMemToReg.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43STATISTIC(NumReplaced, "Number of allocas broken up");
44STATISTIC(NumPromoted, "Number of allocas promoted");
45STATISTIC(NumConverted, "Number of aggregates converted to scalar");
46STATISTIC(NumGlobals, "Number of allocas copied from constant global");
47
48namespace {
49 struct VISIBILITY_HIDDEN SROA : public FunctionPass {
50 static char ID; // Pass identification, replacement for typeid
Dan Gohman34c280e2007-08-01 15:32:29 +000051 explicit SROA(signed T = -1) : FunctionPass((intptr_t)&ID) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000052 if (T == -1)
Chris Lattner6d7faec2007-08-02 21:33:36 +000053 SRThreshold = 128;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000054 else
55 SRThreshold = T;
56 }
57
58 bool runOnFunction(Function &F);
59
60 bool performScalarRepl(Function &F);
61 bool performPromotion(Function &F);
62
63 // getAnalysisUsage - This pass does not require any passes, but we know it
64 // will not alter the CFG, so say so.
65 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66 AU.addRequired<DominatorTree>();
67 AU.addRequired<DominanceFrontier>();
68 AU.addRequired<TargetData>();
69 AU.setPreservesCFG();
70 }
71
72 private:
73 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
74 /// information about the uses. All these fields are initialized to false
75 /// and set to true when something is learned.
76 struct AllocaInfo {
77 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
78 bool isUnsafe : 1;
79
80 /// needsCanon - This is set to true if there is some use of the alloca
81 /// that requires canonicalization.
82 bool needsCanon : 1;
83
84 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
85 bool isMemCpySrc : 1;
86
87 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
88 bool isMemCpyDst : 1;
89
90 AllocaInfo()
91 : isUnsafe(false), needsCanon(false),
92 isMemCpySrc(false), isMemCpyDst(false) {}
93 };
94
95 unsigned SRThreshold;
96
97 void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
98
99 int isSafeAllocaToScalarRepl(AllocationInst *AI);
100
101 void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
102 AllocaInfo &Info);
103 void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
104 AllocaInfo &Info);
105 void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
106 unsigned OpNo, AllocaInfo &Info);
107 void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
108 AllocaInfo &Info);
109
110 void DoScalarReplacement(AllocationInst *AI,
111 std::vector<AllocationInst*> &WorkList);
112 void CanonicalizeAllocaUsers(AllocationInst *AI);
113 AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
114
115 void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
116 SmallVector<AllocaInst*, 32> &NewElts);
117
118 const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
119 void ConvertToScalar(AllocationInst *AI, const Type *Ty);
120 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
121 static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
122 };
123
124 char SROA::ID = 0;
125 RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
126}
127
128// Public interface to the ScalarReplAggregates pass
129FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
130 return new SROA(Threshold);
131}
132
133
134bool SROA::runOnFunction(Function &F) {
135 bool Changed = performPromotion(F);
136 while (1) {
137 bool LocalChange = performScalarRepl(F);
138 if (!LocalChange) break; // No need to repromote if no scalarrepl
139 Changed = true;
140 LocalChange = performPromotion(F);
141 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
142 }
143
144 return Changed;
145}
146
147
148bool SROA::performPromotion(Function &F) {
149 std::vector<AllocaInst*> Allocas;
150 DominatorTree &DT = getAnalysis<DominatorTree>();
151 DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
152
153 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
154
155 bool Changed = false;
156
157 while (1) {
158 Allocas.clear();
159
160 // Find allocas that are safe to promote, by looking at all instructions in
161 // the entry node
162 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
163 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
164 if (isAllocaPromotable(AI))
165 Allocas.push_back(AI);
166
167 if (Allocas.empty()) break;
168
169 PromoteMemToReg(Allocas, DT, DF);
170 NumPromoted += Allocas.size();
171 Changed = true;
172 }
173
174 return Changed;
175}
176
177// performScalarRepl - This algorithm is a simple worklist driven algorithm,
178// which runs on all of the malloc/alloca instructions in the function, removing
179// them if they are only used by getelementptr instructions.
180//
181bool SROA::performScalarRepl(Function &F) {
182 std::vector<AllocationInst*> WorkList;
183
184 // Scan the entry basic block, adding any alloca's and mallocs to the worklist
185 BasicBlock &BB = F.getEntryBlock();
186 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
187 if (AllocationInst *A = dyn_cast<AllocationInst>(I))
188 WorkList.push_back(A);
189
190 const TargetData &TD = getAnalysis<TargetData>();
191
192 // Process the worklist
193 bool Changed = false;
194 while (!WorkList.empty()) {
195 AllocationInst *AI = WorkList.back();
196 WorkList.pop_back();
197
198 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
199 // with unused elements.
200 if (AI->use_empty()) {
201 AI->eraseFromParent();
202 continue;
203 }
204
205 // If we can turn this aggregate value (potentially with casts) into a
206 // simple scalar value that can be mem2reg'd into a register value.
207 bool IsNotTrivial = false;
208 if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
209 if (IsNotTrivial && ActualType != Type::VoidTy) {
210 ConvertToScalar(AI, ActualType);
211 Changed = true;
212 continue;
213 }
214
215 // Check to see if we can perform the core SROA transformation. We cannot
216 // transform the allocation instruction if it is an array allocation
217 // (allocations OF arrays are ok though), and an allocation of a scalar
218 // value cannot be decomposed at all.
219 if (!AI->isArrayAllocation() &&
220 (isa<StructType>(AI->getAllocatedType()) ||
221 isa<ArrayType>(AI->getAllocatedType())) &&
222 AI->getAllocatedType()->isSized() &&
223 TD.getTypeSize(AI->getAllocatedType()) < SRThreshold) {
224 // Check that all of the users of the allocation are capable of being
225 // transformed.
226 switch (isSafeAllocaToScalarRepl(AI)) {
227 default: assert(0 && "Unexpected value!");
228 case 0: // Not safe to scalar replace.
229 break;
230 case 1: // Safe, but requires cleanup/canonicalizations first
231 CanonicalizeAllocaUsers(AI);
232 // FALL THROUGH.
233 case 3: // Safe to scalar replace.
234 DoScalarReplacement(AI, WorkList);
235 Changed = true;
236 continue;
237 }
238 }
239
240 // Check to see if this allocation is only modified by a memcpy/memmove from
241 // a constant global. If this is the case, we can change all users to use
242 // the constant global instead. This is commonly produced by the CFE by
243 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
244 // is only subsequently read.
245 if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
246 DOUT << "Found alloca equal to global: " << *AI;
247 DOUT << " memcpy = " << *TheCopy;
248 Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
249 AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
250 TheCopy->eraseFromParent(); // Don't mutate the global.
251 AI->eraseFromParent();
252 ++NumGlobals;
253 Changed = true;
254 continue;
255 }
256
257 // Otherwise, couldn't process this.
258 }
259
260 return Changed;
261}
262
263/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
264/// predicate, do SROA now.
265void SROA::DoScalarReplacement(AllocationInst *AI,
266 std::vector<AllocationInst*> &WorkList) {
267 DOUT << "Found inst to SROA: " << *AI;
268 SmallVector<AllocaInst*, 32> ElementAllocas;
269 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
270 ElementAllocas.reserve(ST->getNumContainedTypes());
271 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
272 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
273 AI->getAlignment(),
274 AI->getName() + "." + utostr(i), AI);
275 ElementAllocas.push_back(NA);
276 WorkList.push_back(NA); // Add to worklist for recursive processing
277 }
278 } else {
279 const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
280 ElementAllocas.reserve(AT->getNumElements());
281 const Type *ElTy = AT->getElementType();
282 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
283 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
284 AI->getName() + "." + utostr(i), AI);
285 ElementAllocas.push_back(NA);
286 WorkList.push_back(NA); // Add to worklist for recursive processing
287 }
288 }
289
290 // Now that we have created the alloca instructions that we want to use,
291 // expand the getelementptr instructions to use them.
292 //
293 while (!AI->use_empty()) {
294 Instruction *User = cast<Instruction>(AI->use_back());
295 if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
296 RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
297 BCInst->eraseFromParent();
298 continue;
299 }
300
301 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
302 // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
303 unsigned Idx =
304 (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
305
306 assert(Idx < ElementAllocas.size() && "Index out of range?");
307 AllocaInst *AllocaToUse = ElementAllocas[Idx];
308
309 Value *RepValue;
310 if (GEPI->getNumOperands() == 3) {
311 // Do not insert a new getelementptr instruction with zero indices, only
312 // to have it optimized out later.
313 RepValue = AllocaToUse;
314 } else {
315 // We are indexing deeply into the structure, so we still need a
316 // getelement ptr instruction to finish the indexing. This may be
317 // expanded itself once the worklist is rerun.
318 //
319 SmallVector<Value*, 8> NewArgs;
320 NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
321 NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
David Greene393be882007-09-04 15:46:09 +0000322 RepValue = new GetElementPtrInst(AllocaToUse, NewArgs.begin(),
323 NewArgs.end(), "", GEPI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000324 RepValue->takeName(GEPI);
325 }
326
327 // If this GEP is to the start of the aggregate, check for memcpys.
328 if (Idx == 0) {
329 bool IsStartOfAggregateGEP = true;
330 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) {
331 if (!isa<ConstantInt>(GEPI->getOperand(i))) {
332 IsStartOfAggregateGEP = false;
333 break;
334 }
335 if (!cast<ConstantInt>(GEPI->getOperand(i))->isZero()) {
336 IsStartOfAggregateGEP = false;
337 break;
338 }
339 }
340
341 if (IsStartOfAggregateGEP)
342 RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
343 }
344
345
346 // Move all of the users over to the new GEP.
347 GEPI->replaceAllUsesWith(RepValue);
348 // Delete the old GEP
349 GEPI->eraseFromParent();
350 }
351
352 // Finally, delete the Alloca instruction
353 AI->eraseFromParent();
354 NumReplaced++;
355}
356
357
358/// isSafeElementUse - Check to see if this use is an allowed use for a
359/// getelementptr instruction of an array aggregate allocation. isFirstElt
360/// indicates whether Ptr is known to the start of the aggregate.
361///
362void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
363 AllocaInfo &Info) {
364 for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
365 I != E; ++I) {
366 Instruction *User = cast<Instruction>(*I);
367 switch (User->getOpcode()) {
368 case Instruction::Load: break;
369 case Instruction::Store:
370 // Store is ok if storing INTO the pointer, not storing the pointer
371 if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
372 break;
373 case Instruction::GetElementPtr: {
374 GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
375 bool AreAllZeroIndices = isFirstElt;
376 if (GEP->getNumOperands() > 1) {
377 if (!isa<ConstantInt>(GEP->getOperand(1)) ||
378 !cast<ConstantInt>(GEP->getOperand(1))->isZero())
379 // Using pointer arithmetic to navigate the array.
380 return MarkUnsafe(Info);
381
382 if (AreAllZeroIndices) {
383 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) {
384 if (!isa<ConstantInt>(GEP->getOperand(i)) ||
385 !cast<ConstantInt>(GEP->getOperand(i))->isZero()) {
386 AreAllZeroIndices = false;
387 break;
388 }
389 }
390 }
391 }
392 isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
393 if (Info.isUnsafe) return;
394 break;
395 }
396 case Instruction::BitCast:
397 if (isFirstElt) {
398 isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
399 if (Info.isUnsafe) return;
400 break;
401 }
402 DOUT << " Transformation preventing inst: " << *User;
403 return MarkUnsafe(Info);
404 case Instruction::Call:
405 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
406 if (isFirstElt) {
407 isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
408 if (Info.isUnsafe) return;
409 break;
410 }
411 }
412 DOUT << " Transformation preventing inst: " << *User;
413 return MarkUnsafe(Info);
414 default:
415 DOUT << " Transformation preventing inst: " << *User;
416 return MarkUnsafe(Info);
417 }
418 }
419 return; // All users look ok :)
420}
421
422/// AllUsersAreLoads - Return true if all users of this value are loads.
423static bool AllUsersAreLoads(Value *Ptr) {
424 for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
425 I != E; ++I)
426 if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
427 return false;
428 return true;
429}
430
431/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
432/// aggregate allocation.
433///
434void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
435 AllocaInfo &Info) {
436 if (BitCastInst *C = dyn_cast<BitCastInst>(User))
437 return isSafeUseOfBitCastedAllocation(C, AI, Info);
438
439 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
440 if (GEPI == 0)
441 return MarkUnsafe(Info);
442
443 gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
444
445 // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
446 if (I == E ||
447 I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
448 return MarkUnsafe(Info);
449 }
450
451 ++I;
452 if (I == E) return MarkUnsafe(Info); // ran out of GEP indices??
453
454 bool IsAllZeroIndices = true;
455
456 // If this is a use of an array allocation, do a bit more checking for sanity.
457 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
458 uint64_t NumElements = AT->getNumElements();
459
460 if (ConstantInt *Idx = dyn_cast<ConstantInt>(I.getOperand())) {
461 IsAllZeroIndices &= Idx->isZero();
462
463 // Check to make sure that index falls within the array. If not,
464 // something funny is going on, so we won't do the optimization.
465 //
466 if (Idx->getZExtValue() >= NumElements)
467 return MarkUnsafe(Info);
468
469 // We cannot scalar repl this level of the array unless any array
470 // sub-indices are in-range constants. In particular, consider:
471 // A[0][i]. We cannot know that the user isn't doing invalid things like
472 // allowing i to index an out-of-range subscript that accesses A[1].
473 //
474 // Scalar replacing *just* the outer index of the array is probably not
475 // going to be a win anyway, so just give up.
476 for (++I; I != E && (isa<ArrayType>(*I) || isa<VectorType>(*I)); ++I) {
477 uint64_t NumElements;
478 if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*I))
479 NumElements = SubArrayTy->getNumElements();
480 else
481 NumElements = cast<VectorType>(*I)->getNumElements();
482
483 ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
484 if (!IdxVal) return MarkUnsafe(Info);
485 if (IdxVal->getZExtValue() >= NumElements)
486 return MarkUnsafe(Info);
487 IsAllZeroIndices &= IdxVal->isZero();
488 }
489
490 } else {
491 IsAllZeroIndices = 0;
492
493 // If this is an array index and the index is not constant, we cannot
494 // promote... that is unless the array has exactly one or two elements in
495 // it, in which case we CAN promote it, but we have to canonicalize this
496 // out if this is the only problem.
497 if ((NumElements == 1 || NumElements == 2) &&
498 AllUsersAreLoads(GEPI)) {
499 Info.needsCanon = true;
500 return; // Canonicalization required!
501 }
502 return MarkUnsafe(Info);
503 }
504 }
505
506 // If there are any non-simple uses of this getelementptr, make sure to reject
507 // them.
508 return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
509}
510
511/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
512/// intrinsic can be promoted by SROA. At this point, we know that the operand
513/// of the memintrinsic is a pointer to the beginning of the allocation.
514void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
515 unsigned OpNo, AllocaInfo &Info) {
516 // If not constant length, give up.
517 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
518 if (!Length) return MarkUnsafe(Info);
519
520 // If not the whole aggregate, give up.
521 const TargetData &TD = getAnalysis<TargetData>();
522 if (Length->getZExtValue() != TD.getTypeSize(AI->getType()->getElementType()))
523 return MarkUnsafe(Info);
524
525 // We only know about memcpy/memset/memmove.
526 if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
527 return MarkUnsafe(Info);
528
529 // Otherwise, we can transform it. Determine whether this is a memcpy/set
530 // into or out of the aggregate.
531 if (OpNo == 1)
532 Info.isMemCpyDst = true;
533 else {
534 assert(OpNo == 2);
535 Info.isMemCpySrc = true;
536 }
537}
538
539/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
540/// are
541void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
542 AllocaInfo &Info) {
543 for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
544 UI != E; ++UI) {
545 if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
546 isSafeUseOfBitCastedAllocation(BCU, AI, Info);
547 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
548 isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
549 } else {
550 return MarkUnsafe(Info);
551 }
552 if (Info.isUnsafe) return;
553 }
554}
555
556/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
557/// to its first element. Transform users of the cast to use the new values
558/// instead.
559void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
560 SmallVector<AllocaInst*, 32> &NewElts) {
561 Constant *Zero = Constant::getNullValue(Type::Int32Ty);
562 const TargetData &TD = getAnalysis<TargetData>();
563
564 Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
565 while (UI != UE) {
566 if (BitCastInst *BCU = dyn_cast<BitCastInst>(*UI)) {
567 RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
568 ++UI;
569 BCU->eraseFromParent();
570 continue;
571 }
572
573 // Otherwise, must be memcpy/memmove/memset of the entire aggregate. Split
574 // into one per element.
575 MemIntrinsic *MI = dyn_cast<MemIntrinsic>(*UI);
576
577 // If it's not a mem intrinsic, it must be some other user of a gep of the
578 // first pointer. Just leave these alone.
579 if (!MI) {
580 ++UI;
581 continue;
582 }
583
584 // If this is a memcpy/memmove, construct the other pointer as the
585 // appropriate type.
586 Value *OtherPtr = 0;
587 if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
588 if (BCInst == MCI->getRawDest())
589 OtherPtr = MCI->getRawSource();
590 else {
591 assert(BCInst == MCI->getRawSource());
592 OtherPtr = MCI->getRawDest();
593 }
594 } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
595 if (BCInst == MMI->getRawDest())
596 OtherPtr = MMI->getRawSource();
597 else {
598 assert(BCInst == MMI->getRawSource());
599 OtherPtr = MMI->getRawDest();
600 }
601 }
602
603 // If there is an other pointer, we want to convert it to the same pointer
604 // type as AI has, so we can GEP through it.
605 if (OtherPtr) {
606 // It is likely that OtherPtr is a bitcast, if so, remove it.
607 if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
608 OtherPtr = BC->getOperand(0);
609 if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
610 if (BCE->getOpcode() == Instruction::BitCast)
611 OtherPtr = BCE->getOperand(0);
612
613 // If the pointer is not the right type, insert a bitcast to the right
614 // type.
615 if (OtherPtr->getType() != AI->getType())
616 OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
617 MI);
618 }
619
620 // Process each element of the aggregate.
621 Value *TheFn = MI->getOperand(0);
622 const Type *BytePtrTy = MI->getRawDest()->getType();
623 bool SROADest = MI->getRawDest() == BCInst;
624
625 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
626 // If this is a memcpy/memmove, emit a GEP of the other element address.
627 Value *OtherElt = 0;
628 if (OtherPtr) {
David Greene393be882007-09-04 15:46:09 +0000629 Value *Idx[2];
630 Idx[0] = Zero;
631 Idx[1] = ConstantInt::get(Type::Int32Ty, i);
632 OtherElt = new GetElementPtrInst(OtherPtr, Idx, Idx + 2,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000633 OtherPtr->getNameStr()+"."+utostr(i),
634 MI);
635 }
636
637 Value *EltPtr = NewElts[i];
638 const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
639
640 // If we got down to a scalar, insert a load or store as appropriate.
641 if (EltTy->isFirstClassType()) {
642 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
643 Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
644 MI);
645 new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
646 continue;
647 } else {
648 assert(isa<MemSetInst>(MI));
649
650 // If the stored element is zero (common case), just store a null
651 // constant.
652 Constant *StoreVal;
653 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
654 if (CI->isZero()) {
655 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
656 } else {
657 // If EltTy is a vector type, get the element type.
658 const Type *ValTy = EltTy;
659 if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
660 ValTy = VTy->getElementType();
661
662 // Construct an integer with the right value.
663 unsigned EltSize = TD.getTypeSize(ValTy);
664 APInt OneVal(EltSize*8, CI->getZExtValue());
665 APInt TotalVal(OneVal);
666 // Set each byte.
667 for (unsigned i = 0; i != EltSize-1; ++i) {
668 TotalVal = TotalVal.shl(8);
669 TotalVal |= OneVal;
670 }
671
672 // Convert the integer value to the appropriate type.
673 StoreVal = ConstantInt::get(TotalVal);
674 if (isa<PointerType>(ValTy))
675 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
676 else if (ValTy->isFloatingPoint())
677 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
678 assert(StoreVal->getType() == ValTy && "Type mismatch!");
679
680 // If the requested value was a vector constant, create it.
681 if (EltTy != ValTy) {
682 unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
683 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
684 StoreVal = ConstantVector::get(&Elts[0], NumElts);
685 }
686 }
687 new StoreInst(StoreVal, EltPtr, MI);
688 continue;
689 }
690 // Otherwise, if we're storing a byte variable, use a memset call for
691 // this element.
692 }
693 }
694
695 // Cast the element pointer to BytePtrTy.
696 if (EltPtr->getType() != BytePtrTy)
697 EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
698
699 // Cast the other pointer (if we have one) to BytePtrTy.
700 if (OtherElt && OtherElt->getType() != BytePtrTy)
701 OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
702 MI);
703
704 unsigned EltSize = TD.getTypeSize(EltTy);
705
706 // Finally, insert the meminst for this element.
707 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
708 Value *Ops[] = {
709 SROADest ? EltPtr : OtherElt, // Dest ptr
710 SROADest ? OtherElt : EltPtr, // Src ptr
711 ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
712 Zero // Align
713 };
David Greeneb1c4a7b2007-08-01 03:43:44 +0000714 new CallInst(TheFn, Ops, Ops + 4, "", MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000715 } else {
716 assert(isa<MemSetInst>(MI));
717 Value *Ops[] = {
718 EltPtr, MI->getOperand(2), // Dest, Value,
719 ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
720 Zero // Align
721 };
David Greeneb1c4a7b2007-08-01 03:43:44 +0000722 new CallInst(TheFn, Ops, Ops + 4, "", MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000723 }
724 }
725
726 // Finally, MI is now dead, as we've modified its actions to occur on all of
727 // the elements of the aggregate.
728 ++UI;
729 MI->eraseFromParent();
730 }
731}
732
733/// HasStructPadding - Return true if the specified type has any structure
734/// padding, false otherwise.
735static bool HasStructPadding(const Type *Ty, const TargetData &TD) {
736 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
737 const StructLayout *SL = TD.getStructLayout(STy);
738 unsigned PrevFieldBitOffset = 0;
739 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
740 unsigned FieldBitOffset = SL->getElementOffset(i)*8;
741
742 // Padding in sub-elements?
743 if (HasStructPadding(STy->getElementType(i), TD))
744 return true;
745
746 // Check to see if there is any padding between this element and the
747 // previous one.
748 if (i) {
749 unsigned PrevFieldEnd =
750 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
751 if (PrevFieldEnd < FieldBitOffset)
752 return true;
753 }
754
755 PrevFieldBitOffset = FieldBitOffset;
756 }
757
758 // Check for tail padding.
759 if (unsigned EltCount = STy->getNumElements()) {
760 unsigned PrevFieldEnd = PrevFieldBitOffset +
761 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
762 if (PrevFieldEnd < SL->getSizeInBytes()*8)
763 return true;
764 }
765
766 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
767 return HasStructPadding(ATy->getElementType(), TD);
768 }
769 return false;
770}
771
772/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
773/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
774/// or 1 if safe after canonicalization has been performed.
775///
776int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
777 // Loop over the use list of the alloca. We can only transform it if all of
778 // the users are safe to transform.
779 AllocaInfo Info;
780
781 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
782 I != E; ++I) {
783 isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
784 if (Info.isUnsafe) {
785 DOUT << "Cannot transform: " << *AI << " due to user: " << **I;
786 return 0;
787 }
788 }
789
790 // Okay, we know all the users are promotable. If the aggregate is a memcpy
791 // source and destination, we have to be careful. In particular, the memcpy
792 // could be moving around elements that live in structure padding of the LLVM
793 // types, but may actually be used. In these cases, we refuse to promote the
794 // struct.
795 if (Info.isMemCpySrc && Info.isMemCpyDst &&
796 HasStructPadding(AI->getType()->getElementType(),
797 getAnalysis<TargetData>()))
798 return 0;
799
800 // If we require cleanup, return 1, otherwise return 3.
801 return Info.needsCanon ? 1 : 3;
802}
803
804/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
805/// allocation, but only if cleaned up, perform the cleanups required.
806void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
807 // At this point, we know that the end result will be SROA'd and promoted, so
808 // we can insert ugly code if required so long as sroa+mem2reg will clean it
809 // up.
810 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
811 UI != E; ) {
812 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
813 if (!GEPI) continue;
814 gep_type_iterator I = gep_type_begin(GEPI);
815 ++I;
816
817 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
818 uint64_t NumElements = AT->getNumElements();
819
820 if (!isa<ConstantInt>(I.getOperand())) {
821 if (NumElements == 1) {
822 GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
823 } else {
824 assert(NumElements == 2 && "Unhandled case!");
825 // All users of the GEP must be loads. At each use of the GEP, insert
826 // two loads of the appropriate indexed GEP and select between them.
827 Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
828 Constant::getNullValue(I.getOperand()->getType()),
829 "isone", GEPI);
830 // Insert the new GEP instructions, which are properly indexed.
831 SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
832 Indices[1] = Constant::getNullValue(Type::Int32Ty);
833 Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0),
David Greene393be882007-09-04 15:46:09 +0000834 Indices.begin(),
835 Indices.end(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000836 GEPI->getName()+".0", GEPI);
837 Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
838 Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0),
David Greene393be882007-09-04 15:46:09 +0000839 Indices.begin(),
840 Indices.end(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000841 GEPI->getName()+".1", GEPI);
842 // Replace all loads of the variable index GEP with loads from both
843 // indexes and a select.
844 while (!GEPI->use_empty()) {
845 LoadInst *LI = cast<LoadInst>(GEPI->use_back());
846 Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
847 Value *One = new LoadInst(OneIdx , LI->getName()+".1", LI);
848 Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
849 LI->replaceAllUsesWith(R);
850 LI->eraseFromParent();
851 }
852 GEPI->eraseFromParent();
853 }
854 }
855 }
856 }
857}
858
859/// MergeInType - Add the 'In' type to the accumulated type so far. If the
860/// types are incompatible, return true, otherwise update Accum and return
861/// false.
862///
863/// There are three cases we handle here:
864/// 1) An effectively-integer union, where the pieces are stored into as
865/// smaller integers (common with byte swap and other idioms).
866/// 2) A union of vector types of the same size and potentially its elements.
867/// Here we turn element accesses into insert/extract element operations.
868/// 3) A union of scalar types, such as int/float or int/pointer. Here we
869/// merge together into integers, allowing the xform to work with #1 as
870/// well.
871static bool MergeInType(const Type *In, const Type *&Accum,
872 const TargetData &TD) {
873 // If this is our first type, just use it.
874 const VectorType *PTy;
875 if (Accum == Type::VoidTy || In == Accum) {
876 Accum = In;
877 } else if (In == Type::VoidTy) {
878 // Noop.
879 } else if (In->isInteger() && Accum->isInteger()) { // integer union.
880 // Otherwise pick whichever type is larger.
881 if (cast<IntegerType>(In)->getBitWidth() >
882 cast<IntegerType>(Accum)->getBitWidth())
883 Accum = In;
884 } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
885 // Pointer unions just stay as one of the pointers.
886 } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
887 if ((PTy = dyn_cast<VectorType>(Accum)) &&
888 PTy->getElementType() == In) {
889 // Accum is a vector, and we are accessing an element: ok.
890 } else if ((PTy = dyn_cast<VectorType>(In)) &&
891 PTy->getElementType() == Accum) {
892 // In is a vector, and accum is an element: ok, remember In.
893 Accum = In;
894 } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
895 PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
896 // Two vectors of the same size: keep Accum.
897 } else {
898 // Cannot insert an short into a <4 x int> or handle
899 // <2 x int> -> <4 x int>
900 return true;
901 }
902 } else {
903 // Pointer/FP/Integer unions merge together as integers.
904 switch (Accum->getTypeID()) {
905 case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
906 case Type::FloatTyID: Accum = Type::Int32Ty; break;
907 case Type::DoubleTyID: Accum = Type::Int64Ty; break;
908 default:
909 assert(Accum->isInteger() && "Unknown FP type!");
910 break;
911 }
912
913 switch (In->getTypeID()) {
914 case Type::PointerTyID: In = TD.getIntPtrType(); break;
915 case Type::FloatTyID: In = Type::Int32Ty; break;
916 case Type::DoubleTyID: In = Type::Int64Ty; break;
917 default:
918 assert(In->isInteger() && "Unknown FP type!");
919 break;
920 }
921 return MergeInType(In, Accum, TD);
922 }
923 return false;
924}
925
926/// getUIntAtLeastAsBitAs - Return an unsigned integer type that is at least
927/// as big as the specified type. If there is no suitable type, this returns
928/// null.
929const Type *getUIntAtLeastAsBitAs(unsigned NumBits) {
930 if (NumBits > 64) return 0;
931 if (NumBits > 32) return Type::Int64Ty;
932 if (NumBits > 16) return Type::Int32Ty;
933 if (NumBits > 8) return Type::Int16Ty;
934 return Type::Int8Ty;
935}
936
937/// CanConvertToScalar - V is a pointer. If we can convert the pointee to a
938/// single scalar integer type, return that type. Further, if the use is not
939/// a completely trivial use that mem2reg could promote, set IsNotTrivial. If
940/// there are no uses of this pointer, return Type::VoidTy to differentiate from
941/// failure.
942///
943const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
944 const Type *UsedType = Type::VoidTy; // No uses, no forced type.
945 const TargetData &TD = getAnalysis<TargetData>();
946 const PointerType *PTy = cast<PointerType>(V->getType());
947
948 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
949 Instruction *User = cast<Instruction>(*UI);
950
951 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
952 if (MergeInType(LI->getType(), UsedType, TD))
953 return 0;
954
955 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
956 // Storing the pointer, not into the value?
957 if (SI->getOperand(0) == V) return 0;
958
959 // NOTE: We could handle storing of FP imms into integers here!
960
961 if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
962 return 0;
963 } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
964 IsNotTrivial = true;
965 const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
966 if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
967 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
968 // Check to see if this is stepping over an element: GEP Ptr, int C
969 if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
970 unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
971 unsigned ElSize = TD.getTypeSize(PTy->getElementType());
972 unsigned BitOffset = Idx*ElSize*8;
973 if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
974
975 IsNotTrivial = true;
976 const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
977 if (SubElt == 0) return 0;
978 if (SubElt != Type::VoidTy && SubElt->isInteger()) {
979 const Type *NewTy =
980 getUIntAtLeastAsBitAs(TD.getTypeSize(SubElt)*8+BitOffset);
981 if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
982 continue;
983 }
984 } else if (GEP->getNumOperands() == 3 &&
985 isa<ConstantInt>(GEP->getOperand(1)) &&
986 isa<ConstantInt>(GEP->getOperand(2)) &&
987 cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
988 // We are stepping into an element, e.g. a structure or an array:
989 // GEP Ptr, int 0, uint C
990 const Type *AggTy = PTy->getElementType();
991 unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
992
993 if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
994 if (Idx >= ATy->getNumElements()) return 0; // Out of range.
995 } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
996 // Getting an element of the vector.
997 if (Idx >= VectorTy->getNumElements()) return 0; // Out of range.
998
999 // Merge in the vector type.
1000 if (MergeInType(VectorTy, UsedType, TD)) return 0;
1001
1002 const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1003 if (SubTy == 0) return 0;
1004
1005 if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1006 return 0;
1007
1008 // We'll need to change this to an insert/extract element operation.
1009 IsNotTrivial = true;
1010 continue; // Everything looks ok
1011
1012 } else if (isa<StructType>(AggTy)) {
1013 // Structs are always ok.
1014 } else {
1015 return 0;
1016 }
1017 const Type *NTy = getUIntAtLeastAsBitAs(TD.getTypeSize(AggTy)*8);
1018 if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
1019 const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1020 if (SubTy == 0) return 0;
1021 if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1022 return 0;
1023 continue; // Everything looks ok
1024 }
1025 return 0;
1026 } else {
1027 // Cannot handle this!
1028 return 0;
1029 }
1030 }
1031
1032 return UsedType;
1033}
1034
1035/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
1036/// predicate and is non-trivial. Convert it to something that can be trivially
1037/// promoted into a register by mem2reg.
1038void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
1039 DOUT << "CONVERT TO SCALAR: " << *AI << " TYPE = "
1040 << *ActualTy << "\n";
1041 ++NumConverted;
1042
1043 BasicBlock *EntryBlock = AI->getParent();
1044 assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
1045 "Not in the entry block!");
1046 EntryBlock->getInstList().remove(AI); // Take the alloca out of the program.
1047
1048 // Create and insert the alloca.
1049 AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
1050 EntryBlock->begin());
1051 ConvertUsesToScalar(AI, NewAI, 0);
1052 delete AI;
1053}
1054
1055
1056/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1057/// directly. This happens when we are converting an "integer union" to a
1058/// single integer scalar, or when we are converting a "vector union" to a
1059/// vector with insert/extractelement instructions.
1060///
1061/// Offset is an offset from the original alloca, in bits that need to be
1062/// shifted to the right. By the end of this, there should be no uses of Ptr.
1063void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
1064 const TargetData &TD = getAnalysis<TargetData>();
1065 while (!Ptr->use_empty()) {
1066 Instruction *User = cast<Instruction>(Ptr->use_back());
1067
1068 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1069 // The load is a bit extract from NewAI shifted right by Offset bits.
1070 Value *NV = new LoadInst(NewAI, LI->getName(), LI);
1071 if (NV->getType() == LI->getType()) {
1072 // We win, no conversion needed.
1073 } else if (const VectorType *PTy = dyn_cast<VectorType>(NV->getType())) {
1074 // If the result alloca is a vector type, this is either an element
1075 // access or a bitcast to another vector type.
1076 if (isa<VectorType>(LI->getType())) {
1077 NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1078 } else {
1079 // Must be an element access.
1080 unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
1081 NV = new ExtractElementInst(
1082 NV, ConstantInt::get(Type::Int32Ty, Elt), "tmp", LI);
1083 }
1084 } else if (isa<PointerType>(NV->getType())) {
1085 assert(isa<PointerType>(LI->getType()));
1086 // Must be ptr->ptr cast. Anything else would result in NV being
1087 // an integer.
1088 NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1089 } else {
1090 const IntegerType *NTy = cast<IntegerType>(NV->getType());
1091 unsigned LIBitWidth = TD.getTypeSizeInBits(LI->getType());
1092
1093 // If this is a big-endian system and the load is narrower than the
1094 // full alloca type, we need to do a shift to get the right bits.
1095 int ShAmt = 0;
1096 if (TD.isBigEndian()) {
1097 ShAmt = NTy->getBitWidth()-LIBitWidth-Offset;
1098 } else {
1099 ShAmt = Offset;
1100 }
1101
1102 // Note: we support negative bitwidths (with shl) which are not defined.
1103 // We do this to support (f.e.) loads off the end of a structure where
1104 // only some bits are used.
1105 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1106 NV = BinaryOperator::createLShr(NV,
1107 ConstantInt::get(NV->getType(),ShAmt),
1108 LI->getName(), LI);
1109 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1110 NV = BinaryOperator::createShl(NV,
1111 ConstantInt::get(NV->getType(),-ShAmt),
1112 LI->getName(), LI);
1113
1114 // Finally, unconditionally truncate the integer to the right width.
1115 if (LIBitWidth < NTy->getBitWidth())
1116 NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
1117 LI->getName(), LI);
1118
1119 // If the result is an integer, this is a trunc or bitcast.
1120 if (isa<IntegerType>(LI->getType())) {
1121 assert(NV->getType() == LI->getType() && "Truncate wasn't enough?");
1122 } else if (LI->getType()->isFloatingPoint()) {
1123 // Just do a bitcast, we know the sizes match up.
1124 NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1125 } else {
1126 // Otherwise must be a pointer.
1127 NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
1128 }
1129 }
1130 LI->replaceAllUsesWith(NV);
1131 LI->eraseFromParent();
1132 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1133 assert(SI->getOperand(0) != Ptr && "Consistency error!");
1134
1135 // Convert the stored type to the actual type, shift it left to insert
1136 // then 'or' into place.
1137 Value *SV = SI->getOperand(0);
1138 const Type *AllocaType = NewAI->getType()->getElementType();
1139 if (SV->getType() == AllocaType) {
1140 // All is well.
1141 } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
1142 Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1143
1144 // If the result alloca is a vector type, this is either an element
1145 // access or a bitcast to another vector type.
1146 if (isa<VectorType>(SV->getType())) {
1147 SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1148 } else {
1149 // Must be an element insertion.
1150 unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
1151 SV = new InsertElementInst(Old, SV,
1152 ConstantInt::get(Type::Int32Ty, Elt),
1153 "tmp", SI);
1154 }
1155 } else if (isa<PointerType>(AllocaType)) {
1156 // If the alloca type is a pointer, then all the elements must be
1157 // pointers.
1158 if (SV->getType() != AllocaType)
1159 SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1160 } else {
1161 Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1162
1163 // If SV is a float, convert it to the appropriate integer type.
1164 // If it is a pointer, do the same, and also handle ptr->ptr casts
1165 // here.
1166 unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
1167 unsigned DestWidth = AllocaType->getPrimitiveSizeInBits();
1168 if (SV->getType()->isFloatingPoint())
1169 SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
1170 SV->getName(), SI);
1171 else if (isa<PointerType>(SV->getType()))
1172 SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI);
1173
1174 // Always zero extend the value if needed.
1175 if (SV->getType() != AllocaType)
1176 SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
1177
1178 // If this is a big-endian system and the store is narrower than the
1179 // full alloca type, we need to do a shift to get the right bits.
1180 int ShAmt = 0;
1181 if (TD.isBigEndian()) {
1182 ShAmt = DestWidth-SrcWidth-Offset;
1183 } else {
1184 ShAmt = Offset;
1185 }
1186
1187 // Note: we support negative bitwidths (with shr) which are not defined.
1188 // We do this to support (f.e.) stores off the end of a structure where
1189 // only some bits in the structure are set.
1190 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1191 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1192 SV = BinaryOperator::createShl(SV,
1193 ConstantInt::get(SV->getType(), ShAmt),
1194 SV->getName(), SI);
1195 Mask <<= ShAmt;
1196 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1197 SV = BinaryOperator::createLShr(SV,
1198 ConstantInt::get(SV->getType(),-ShAmt),
1199 SV->getName(), SI);
1200 Mask = Mask.lshr(ShAmt);
1201 }
1202
1203 // Mask out the bits we are about to insert from the old value, and or
1204 // in the new bits.
1205 if (SrcWidth != DestWidth) {
1206 assert(DestWidth > SrcWidth);
1207 Old = BinaryOperator::createAnd(Old, ConstantInt::get(~Mask),
1208 Old->getName()+".mask", SI);
1209 SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI);
1210 }
1211 }
1212 new StoreInst(SV, NewAI, SI);
1213 SI->eraseFromParent();
1214
1215 } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1216 ConvertUsesToScalar(CI, NewAI, Offset);
1217 CI->eraseFromParent();
1218 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1219 const PointerType *AggPtrTy =
1220 cast<PointerType>(GEP->getOperand(0)->getType());
1221 const TargetData &TD = getAnalysis<TargetData>();
1222 unsigned AggSizeInBits = TD.getTypeSize(AggPtrTy->getElementType())*8;
1223
1224 // Check to see if this is stepping over an element: GEP Ptr, int C
1225 unsigned NewOffset = Offset;
1226 if (GEP->getNumOperands() == 2) {
1227 unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1228 unsigned BitOffset = Idx*AggSizeInBits;
1229
1230 NewOffset += BitOffset;
1231 } else if (GEP->getNumOperands() == 3) {
1232 // We know that operand #2 is zero.
1233 unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1234 const Type *AggTy = AggPtrTy->getElementType();
1235 if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
1236 unsigned ElSizeBits = TD.getTypeSize(SeqTy->getElementType())*8;
1237
1238 NewOffset += ElSizeBits*Idx;
1239 } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
1240 unsigned EltBitOffset =
1241 TD.getStructLayout(STy)->getElementOffset(Idx)*8;
1242
1243 NewOffset += EltBitOffset;
1244 } else {
1245 assert(0 && "Unsupported operation!");
1246 abort();
1247 }
1248 } else {
1249 assert(0 && "Unsupported operation!");
1250 abort();
1251 }
1252 ConvertUsesToScalar(GEP, NewAI, NewOffset);
1253 GEP->eraseFromParent();
1254 } else {
1255 assert(0 && "Unsupported operation!");
1256 abort();
1257 }
1258 }
1259}
1260
1261
1262/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1263/// some part of a constant global variable. This intentionally only accepts
1264/// constant expressions because we don't can't rewrite arbitrary instructions.
1265static bool PointsToConstantGlobal(Value *V) {
1266 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1267 return GV->isConstant();
1268 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1269 if (CE->getOpcode() == Instruction::BitCast ||
1270 CE->getOpcode() == Instruction::GetElementPtr)
1271 return PointsToConstantGlobal(CE->getOperand(0));
1272 return false;
1273}
1274
1275/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1276/// pointer to an alloca. Ignore any reads of the pointer, return false if we
1277/// see any stores or other unknown uses. If we see pointer arithmetic, keep
1278/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1279/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
1280/// the alloca, and if the source pointer is a pointer to a constant global, we
1281/// can optimize this.
1282static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1283 bool isOffset) {
1284 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1285 if (isa<LoadInst>(*UI)) {
1286 // Ignore loads, they are always ok.
1287 continue;
1288 }
1289 if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1290 // If uses of the bitcast are ok, we are ok.
1291 if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1292 return false;
1293 continue;
1294 }
1295 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1296 // If the GEP has all zero indices, it doesn't offset the pointer. If it
1297 // doesn't, it does.
1298 if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1299 isOffset || !GEP->hasAllZeroIndices()))
1300 return false;
1301 continue;
1302 }
1303
1304 // If this is isn't our memcpy/memmove, reject it as something we can't
1305 // handle.
1306 if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1307 return false;
1308
1309 // If we already have seen a copy, reject the second one.
1310 if (TheCopy) return false;
1311
1312 // If the pointer has been offset from the start of the alloca, we can't
1313 // safely handle this.
1314 if (isOffset) return false;
1315
1316 // If the memintrinsic isn't using the alloca as the dest, reject it.
1317 if (UI.getOperandNo() != 1) return false;
1318
1319 MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1320
1321 // If the source of the memcpy/move is not a constant global, reject it.
1322 if (!PointsToConstantGlobal(MI->getOperand(2)))
1323 return false;
1324
1325 // Otherwise, the transform is safe. Remember the copy instruction.
1326 TheCopy = MI;
1327 }
1328 return true;
1329}
1330
1331/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1332/// modified by a copy from a constant global. If we can prove this, we can
1333/// replace any uses of the alloca with uses of the global directly.
1334Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1335 Instruction *TheCopy = 0;
1336 if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1337 return TheCopy;
1338 return 0;
1339}