blob: 5489ef1d7044710df029040ef856bcdc745161f5 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chad Rosier618c1db2011-12-01 03:08:23 +000077#include "llvm/Target/TargetLibraryInfo.h"
Chris Lattner95255282006-06-28 23:17:24 +000078#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000079#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000080#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000081#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000082#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000083#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000084#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000085#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000086#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000087#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000088#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000089#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000090using namespace llvm;
91
Chris Lattner3b27d682006-12-19 22:30:33 +000092STATISTIC(NumArrayLenItCounts,
93 "Number of trip counts computed with array length");
94STATISTIC(NumTripCountsComputed,
95 "Number of loops with predictable loop counts");
96STATISTIC(NumTripCountsNotComputed,
97 "Number of loops without predictable loop counts");
98STATISTIC(NumBruteForceTripCountsComputed,
99 "Number of loops with trip counts computed by force");
100
Dan Gohman844731a2008-05-13 00:00:25 +0000101static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000102MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000104 "symbolically execute a constant "
105 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000106 cl::init(100));
107
Owen Anderson2ab36d32010-10-12 19:48:12 +0000108INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
109 "Scalar Evolution Analysis", false, true)
110INITIALIZE_PASS_DEPENDENCY(LoopInfo)
111INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Chad Rosier618c1db2011-12-01 03:08:23 +0000112INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000113INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000114 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000115char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000116
117//===----------------------------------------------------------------------===//
118// SCEV class definitions
119//===----------------------------------------------------------------------===//
120
121//===----------------------------------------------------------------------===//
122// Implementation of the SCEV class.
123//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000124
Chris Lattner53e677a2004-04-02 20:23:17 +0000125void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000126 print(dbgs());
127 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000128}
129
Dan Gohman4ce32db2010-11-17 22:27:42 +0000130void SCEV::print(raw_ostream &OS) const {
131 switch (getSCEVType()) {
132 case scConstant:
133 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
134 return;
135 case scTruncate: {
136 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
137 const SCEV *Op = Trunc->getOperand();
138 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
139 << *Trunc->getType() << ")";
140 return;
141 }
142 case scZeroExtend: {
143 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
144 const SCEV *Op = ZExt->getOperand();
145 OS << "(zext " << *Op->getType() << " " << *Op << " to "
146 << *ZExt->getType() << ")";
147 return;
148 }
149 case scSignExtend: {
150 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
151 const SCEV *Op = SExt->getOperand();
152 OS << "(sext " << *Op->getType() << " " << *Op << " to "
153 << *SExt->getType() << ")";
154 return;
155 }
156 case scAddRecExpr: {
157 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
158 OS << "{" << *AR->getOperand(0);
159 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
160 OS << ",+," << *AR->getOperand(i);
161 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000162 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000163 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000165 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000166 if (AR->getNoWrapFlags(FlagNW) &&
167 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
168 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000169 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
170 OS << ">";
171 return;
172 }
173 case scAddExpr:
174 case scMulExpr:
175 case scUMaxExpr:
176 case scSMaxExpr: {
177 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000178 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000179 switch (NAry->getSCEVType()) {
180 case scAddExpr: OpStr = " + "; break;
181 case scMulExpr: OpStr = " * "; break;
182 case scUMaxExpr: OpStr = " umax "; break;
183 case scSMaxExpr: OpStr = " smax "; break;
184 }
185 OS << "(";
186 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
187 I != E; ++I) {
188 OS << **I;
189 if (llvm::next(I) != E)
190 OS << OpStr;
191 }
192 OS << ")";
Andrew Trick121d78f2011-11-29 02:06:35 +0000193 switch (NAry->getSCEVType()) {
194 case scAddExpr:
195 case scMulExpr:
196 if (NAry->getNoWrapFlags(FlagNUW))
197 OS << "<nuw>";
198 if (NAry->getNoWrapFlags(FlagNSW))
199 OS << "<nsw>";
200 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000201 return;
202 }
203 case scUDivExpr: {
204 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
205 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
206 return;
207 }
208 case scUnknown: {
209 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000210 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000211 if (U->isSizeOf(AllocTy)) {
212 OS << "sizeof(" << *AllocTy << ")";
213 return;
214 }
215 if (U->isAlignOf(AllocTy)) {
216 OS << "alignof(" << *AllocTy << ")";
217 return;
218 }
Andrew Trick635f7182011-03-09 17:23:39 +0000219
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000220 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000221 Constant *FieldNo;
222 if (U->isOffsetOf(CTy, FieldNo)) {
223 OS << "offsetof(" << *CTy << ", ";
224 WriteAsOperand(OS, FieldNo, false);
225 OS << ")";
226 return;
227 }
Andrew Trick635f7182011-03-09 17:23:39 +0000228
Dan Gohman4ce32db2010-11-17 22:27:42 +0000229 // Otherwise just print it normally.
230 WriteAsOperand(OS, U->getValue(), false);
231 return;
232 }
233 case scCouldNotCompute:
234 OS << "***COULDNOTCOMPUTE***";
235 return;
236 default: break;
237 }
238 llvm_unreachable("Unknown SCEV kind!");
239}
240
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000241Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000242 switch (getSCEVType()) {
243 case scConstant:
244 return cast<SCEVConstant>(this)->getType();
245 case scTruncate:
246 case scZeroExtend:
247 case scSignExtend:
248 return cast<SCEVCastExpr>(this)->getType();
249 case scAddRecExpr:
250 case scMulExpr:
251 case scUMaxExpr:
252 case scSMaxExpr:
253 return cast<SCEVNAryExpr>(this)->getType();
254 case scAddExpr:
255 return cast<SCEVAddExpr>(this)->getType();
256 case scUDivExpr:
257 return cast<SCEVUDivExpr>(this)->getType();
258 case scUnknown:
259 return cast<SCEVUnknown>(this)->getType();
260 case scCouldNotCompute:
261 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +0000262 default:
263 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman4ce32db2010-11-17 22:27:42 +0000264 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000265}
266
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000267bool SCEV::isZero() const {
268 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
269 return SC->getValue()->isZero();
270 return false;
271}
272
Dan Gohman70a1fe72009-05-18 15:22:39 +0000273bool SCEV::isOne() const {
274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
275 return SC->getValue()->isOne();
276 return false;
277}
Chris Lattner53e677a2004-04-02 20:23:17 +0000278
Dan Gohman4d289bf2009-06-24 00:30:26 +0000279bool SCEV::isAllOnesValue() const {
280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281 return SC->getValue()->isAllOnesValue();
282 return false;
283}
284
Andrew Trickf8fd8412012-01-07 00:27:31 +0000285/// isNonConstantNegative - Return true if the specified scev is negated, but
286/// not a constant.
287bool SCEV::isNonConstantNegative() const {
288 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
289 if (!Mul) return false;
290
291 // If there is a constant factor, it will be first.
292 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
293 if (!SC) return false;
294
295 // Return true if the value is negative, this matches things like (-42 * V).
296 return SC->getValue()->getValue().isNegative();
297}
298
Owen Anderson753ad612009-06-22 21:57:23 +0000299SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000300 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000301
Chris Lattner53e677a2004-04-02 20:23:17 +0000302bool SCEVCouldNotCompute::classof(const SCEV *S) {
303 return S->getSCEVType() == scCouldNotCompute;
304}
305
Dan Gohman0bba49c2009-07-07 17:06:11 +0000306const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000307 FoldingSetNodeID ID;
308 ID.AddInteger(scConstant);
309 ID.AddPointer(V);
310 void *IP = 0;
311 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000312 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000313 UniqueSCEVs.InsertNode(S, IP);
314 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000315}
Chris Lattner53e677a2004-04-02 20:23:17 +0000316
Dan Gohman0bba49c2009-07-07 17:06:11 +0000317const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000318 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000319}
320
Dan Gohman0bba49c2009-07-07 17:06:11 +0000321const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000322ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
323 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000324 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000325}
326
Dan Gohman3bf63762010-06-18 19:54:20 +0000327SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000328 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000329 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000330
Dan Gohman3bf63762010-06-18 19:54:20 +0000331SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000332 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000333 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000334 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
335 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000336 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000337}
Chris Lattner53e677a2004-04-02 20:23:17 +0000338
Dan Gohman3bf63762010-06-18 19:54:20 +0000339SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000340 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000341 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000344 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345}
346
Dan Gohman3bf63762010-06-18 19:54:20 +0000347SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000348 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000349 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000352 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000353}
354
Dan Gohmanab37f502010-08-02 23:49:30 +0000355void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000356 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000357 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000358
359 // Remove this SCEVUnknown from the uniquing map.
360 SE->UniqueSCEVs.RemoveNode(this);
361
362 // Release the value.
363 setValPtr(0);
364}
365
366void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000367 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000368 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000369
370 // Remove this SCEVUnknown from the uniquing map.
371 SE->UniqueSCEVs.RemoveNode(this);
372
373 // Update this SCEVUnknown to point to the new value. This is needed
374 // because there may still be outstanding SCEVs which still point to
375 // this SCEVUnknown.
376 setValPtr(New);
377}
378
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000379bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000380 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000381 if (VCE->getOpcode() == Instruction::PtrToInt)
382 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000383 if (CE->getOpcode() == Instruction::GetElementPtr &&
384 CE->getOperand(0)->isNullValue() &&
385 CE->getNumOperands() == 2)
386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
387 if (CI->isOne()) {
388 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
389 ->getElementType();
390 return true;
391 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000392
393 return false;
394}
395
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000396bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000402 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000403 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000404 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000405 if (!STy->isPacked() &&
406 CE->getNumOperands() == 3 &&
407 CE->getOperand(1)->isNullValue()) {
408 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
409 if (CI->isOne() &&
410 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000411 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000412 AllocTy = STy->getElementType(1);
413 return true;
414 }
415 }
416 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000417
418 return false;
419}
420
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000421bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000422 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000423 if (VCE->getOpcode() == Instruction::PtrToInt)
424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
425 if (CE->getOpcode() == Instruction::GetElementPtr &&
426 CE->getNumOperands() == 3 &&
427 CE->getOperand(0)->isNullValue() &&
428 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000429 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000430 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
431 // Ignore vector types here so that ScalarEvolutionExpander doesn't
432 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000433 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000434 CTy = Ty;
435 FieldNo = CE->getOperand(2);
436 return true;
437 }
438 }
439
440 return false;
441}
442
Chris Lattner8d741b82004-06-20 06:23:15 +0000443//===----------------------------------------------------------------------===//
444// SCEV Utilities
445//===----------------------------------------------------------------------===//
446
447namespace {
448 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
449 /// than the complexity of the RHS. This comparator is used to canonicalize
450 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000451 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000452 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000453 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000454 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000455
Dan Gohman67ef74e2010-08-27 15:26:01 +0000456 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000457 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000458 return compare(LHS, RHS) < 0;
459 }
460
461 // Return negative, zero, or positive, if LHS is less than, equal to, or
462 // greater than RHS, respectively. A three-way result allows recursive
463 // comparisons to be more efficient.
464 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000465 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
466 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000467 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000468
Dan Gohman72861302009-05-07 14:39:04 +0000469 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000470 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
471 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000472 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000473
Dan Gohman3bf63762010-06-18 19:54:20 +0000474 // Aside from the getSCEVType() ordering, the particular ordering
475 // isn't very important except that it's beneficial to be consistent,
476 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000477 switch (LType) {
478 case scUnknown: {
479 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000480 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000481
482 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
483 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000484 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000485
486 // Order pointer values after integer values. This helps SCEVExpander
487 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000488 bool LIsPointer = LV->getType()->isPointerTy(),
489 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000490 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000491 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000492
493 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000494 unsigned LID = LV->getValueID(),
495 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000496 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000497 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000498
499 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000500 if (const Argument *LA = dyn_cast<Argument>(LV)) {
501 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
503 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000504 }
505
Dan Gohman67ef74e2010-08-27 15:26:01 +0000506 // For instructions, compare their loop depth, and their operand
507 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000508 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
509 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000510
511 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000512 const BasicBlock *LParent = LInst->getParent(),
513 *RParent = RInst->getParent();
514 if (LParent != RParent) {
515 unsigned LDepth = LI->getLoopDepth(LParent),
516 RDepth = LI->getLoopDepth(RParent);
517 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000518 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000519 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000520
521 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000522 unsigned LNumOps = LInst->getNumOperands(),
523 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000524 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000525 }
526
Dan Gohman67ef74e2010-08-27 15:26:01 +0000527 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000528 }
529
Dan Gohman67ef74e2010-08-27 15:26:01 +0000530 case scConstant: {
531 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000532 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000533
534 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000535 const APInt &LA = LC->getValue()->getValue();
536 const APInt &RA = RC->getValue()->getValue();
537 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000538 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000539 return (int)LBitWidth - (int)RBitWidth;
540 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000541 }
542
Dan Gohman67ef74e2010-08-27 15:26:01 +0000543 case scAddRecExpr: {
544 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000545 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546
547 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000548 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
549 if (LLoop != RLoop) {
550 unsigned LDepth = LLoop->getLoopDepth(),
551 RDepth = RLoop->getLoopDepth();
552 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000553 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000554 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000555
556 // Addrec complexity grows with operand count.
557 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
558 if (LNumOps != RNumOps)
559 return (int)LNumOps - (int)RNumOps;
560
561 // Lexicographically compare.
562 for (unsigned i = 0; i != LNumOps; ++i) {
563 long X = compare(LA->getOperand(i), RA->getOperand(i));
564 if (X != 0)
565 return X;
566 }
567
568 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000569 }
570
Dan Gohman67ef74e2010-08-27 15:26:01 +0000571 case scAddExpr:
572 case scMulExpr:
573 case scSMaxExpr:
574 case scUMaxExpr: {
575 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000576 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000577
578 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000579 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
580 for (unsigned i = 0; i != LNumOps; ++i) {
581 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000582 return 1;
583 long X = compare(LC->getOperand(i), RC->getOperand(i));
584 if (X != 0)
585 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000586 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000587 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
589
Dan Gohman67ef74e2010-08-27 15:26:01 +0000590 case scUDivExpr: {
591 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000592 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000593
594 // Lexicographically compare udiv expressions.
595 long X = compare(LC->getLHS(), RC->getLHS());
596 if (X != 0)
597 return X;
598 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000599 }
600
Dan Gohman67ef74e2010-08-27 15:26:01 +0000601 case scTruncate:
602 case scZeroExtend:
603 case scSignExtend: {
604 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000606
607 // Compare cast expressions by operand.
608 return compare(LC->getOperand(), RC->getOperand());
609 }
610
611 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +0000612 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman3bf63762010-06-18 19:54:20 +0000613 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000614 }
615 };
616}
617
618/// GroupByComplexity - Given a list of SCEV objects, order them by their
619/// complexity, and group objects of the same complexity together by value.
620/// When this routine is finished, we know that any duplicates in the vector are
621/// consecutive and that complexity is monotonically increasing.
622///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000623/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000624/// results from this routine. In other words, we don't want the results of
625/// this to depend on where the addresses of various SCEV objects happened to
626/// land in memory.
627///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000628static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000629 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000630 if (Ops.size() < 2) return; // Noop
631 if (Ops.size() == 2) {
632 // This is the common case, which also happens to be trivially simple.
633 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000634 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
635 if (SCEVComplexityCompare(LI)(RHS, LHS))
636 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000637 return;
638 }
639
Dan Gohman3bf63762010-06-18 19:54:20 +0000640 // Do the rough sort by complexity.
641 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
642
643 // Now that we are sorted by complexity, group elements of the same
644 // complexity. Note that this is, at worst, N^2, but the vector is likely to
645 // be extremely short in practice. Note that we take this approach because we
646 // do not want to depend on the addresses of the objects we are grouping.
647 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
648 const SCEV *S = Ops[i];
649 unsigned Complexity = S->getSCEVType();
650
651 // If there are any objects of the same complexity and same value as this
652 // one, group them.
653 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
654 if (Ops[j] == S) { // Found a duplicate.
655 // Move it to immediately after i'th element.
656 std::swap(Ops[i+1], Ops[j]);
657 ++i; // no need to rescan it.
658 if (i == e-2) return; // Done!
659 }
660 }
661 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000662}
663
Chris Lattner53e677a2004-04-02 20:23:17 +0000664
Chris Lattner53e677a2004-04-02 20:23:17 +0000665
666//===----------------------------------------------------------------------===//
667// Simple SCEV method implementations
668//===----------------------------------------------------------------------===//
669
Eli Friedmanb42a6262008-08-04 23:49:06 +0000670/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000671/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000672static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000673 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000674 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000675 // Handle the simplest case efficiently.
676 if (K == 1)
677 return SE.getTruncateOrZeroExtend(It, ResultTy);
678
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000679 // We are using the following formula for BC(It, K):
680 //
681 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
682 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000683 // Suppose, W is the bitwidth of the return value. We must be prepared for
684 // overflow. Hence, we must assure that the result of our computation is
685 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
686 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000687 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000688 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000689 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000690 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
691 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000692 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000693 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000694 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000695 // This formula is trivially equivalent to the previous formula. However,
696 // this formula can be implemented much more efficiently. The trick is that
697 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
698 // arithmetic. To do exact division in modular arithmetic, all we have
699 // to do is multiply by the inverse. Therefore, this step can be done at
700 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000701 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000702 // The next issue is how to safely do the division by 2^T. The way this
703 // is done is by doing the multiplication step at a width of at least W + T
704 // bits. This way, the bottom W+T bits of the product are accurate. Then,
705 // when we perform the division by 2^T (which is equivalent to a right shift
706 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
707 // truncated out after the division by 2^T.
708 //
709 // In comparison to just directly using the first formula, this technique
710 // is much more efficient; using the first formula requires W * K bits,
711 // but this formula less than W + K bits. Also, the first formula requires
712 // a division step, whereas this formula only requires multiplies and shifts.
713 //
714 // It doesn't matter whether the subtraction step is done in the calculation
715 // width or the input iteration count's width; if the subtraction overflows,
716 // the result must be zero anyway. We prefer here to do it in the width of
717 // the induction variable because it helps a lot for certain cases; CodeGen
718 // isn't smart enough to ignore the overflow, which leads to much less
719 // efficient code if the width of the subtraction is wider than the native
720 // register width.
721 //
722 // (It's possible to not widen at all by pulling out factors of 2 before
723 // the multiplication; for example, K=2 can be calculated as
724 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
725 // extra arithmetic, so it's not an obvious win, and it gets
726 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000727
Eli Friedmanb42a6262008-08-04 23:49:06 +0000728 // Protection from insane SCEVs; this bound is conservative,
729 // but it probably doesn't matter.
730 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000731 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000732
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000733 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000734
Eli Friedmanb42a6262008-08-04 23:49:06 +0000735 // Calculate K! / 2^T and T; we divide out the factors of two before
736 // multiplying for calculating K! / 2^T to avoid overflow.
737 // Other overflow doesn't matter because we only care about the bottom
738 // W bits of the result.
739 APInt OddFactorial(W, 1);
740 unsigned T = 1;
741 for (unsigned i = 3; i <= K; ++i) {
742 APInt Mult(W, i);
743 unsigned TwoFactors = Mult.countTrailingZeros();
744 T += TwoFactors;
745 Mult = Mult.lshr(TwoFactors);
746 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000747 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000748
Eli Friedmanb42a6262008-08-04 23:49:06 +0000749 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000750 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000751
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000752 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000753 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
754
755 // Calculate the multiplicative inverse of K! / 2^T;
756 // this multiplication factor will perform the exact division by
757 // K! / 2^T.
758 APInt Mod = APInt::getSignedMinValue(W+1);
759 APInt MultiplyFactor = OddFactorial.zext(W+1);
760 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
761 MultiplyFactor = MultiplyFactor.trunc(W);
762
763 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000764 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000765 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000766 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000767 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000768 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000769 Dividend = SE.getMulExpr(Dividend,
770 SE.getTruncateOrZeroExtend(S, CalculationTy));
771 }
772
773 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000774 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000775
776 // Truncate the result, and divide by K! / 2^T.
777
778 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
779 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000780}
781
Chris Lattner53e677a2004-04-02 20:23:17 +0000782/// evaluateAtIteration - Return the value of this chain of recurrences at
783/// the specified iteration number. We can evaluate this recurrence by
784/// multiplying each element in the chain by the binomial coefficient
785/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
786///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000787/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000788///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000789/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000790///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000791const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000792 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000793 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000794 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000795 // The computation is correct in the face of overflow provided that the
796 // multiplication is performed _after_ the evaluation of the binomial
797 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000798 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000799 if (isa<SCEVCouldNotCompute>(Coeff))
800 return Coeff;
801
802 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000803 }
804 return Result;
805}
806
Chris Lattner53e677a2004-04-02 20:23:17 +0000807//===----------------------------------------------------------------------===//
808// SCEV Expression folder implementations
809//===----------------------------------------------------------------------===//
810
Dan Gohman0bba49c2009-07-07 17:06:11 +0000811const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000812 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000813 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000814 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000815 assert(isSCEVable(Ty) &&
816 "This is not a conversion to a SCEVable type!");
817 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000818
Dan Gohmanc050fd92009-07-13 20:50:19 +0000819 FoldingSetNodeID ID;
820 ID.AddInteger(scTruncate);
821 ID.AddPointer(Op);
822 ID.AddPointer(Ty);
823 void *IP = 0;
824 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
825
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000826 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000827 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000828 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000829 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000830
Dan Gohman20900ca2009-04-22 16:20:48 +0000831 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000832 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000833 return getTruncateExpr(ST->getOperand(), Ty);
834
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000835 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000836 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000837 return getTruncateOrSignExtend(SS->getOperand(), Ty);
838
839 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000840 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000841 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
842
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000843 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
844 // eliminate all the truncates.
845 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
846 SmallVector<const SCEV *, 4> Operands;
847 bool hasTrunc = false;
848 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
849 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
850 hasTrunc = isa<SCEVTruncateExpr>(S);
851 Operands.push_back(S);
852 }
853 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000854 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000855 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000856 }
857
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000858 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
859 // eliminate all the truncates.
860 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
861 SmallVector<const SCEV *, 4> Operands;
862 bool hasTrunc = false;
863 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
864 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
865 hasTrunc = isa<SCEVTruncateExpr>(S);
866 Operands.push_back(S);
867 }
868 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000869 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000870 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000871 }
872
Dan Gohman6864db62009-06-18 16:24:47 +0000873 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000874 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000875 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000876 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000877 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000878 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000879 }
880
Dan Gohmanf53462d2010-07-15 20:02:11 +0000881 // As a special case, fold trunc(undef) to undef. We don't want to
882 // know too much about SCEVUnknowns, but this special case is handy
883 // and harmless.
884 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
885 if (isa<UndefValue>(U->getValue()))
886 return getSCEV(UndefValue::get(Ty));
887
Dan Gohman420ab912010-06-25 18:47:08 +0000888 // The cast wasn't folded; create an explicit cast node. We can reuse
889 // the existing insert position since if we get here, we won't have
890 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000891 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
892 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000893 UniqueSCEVs.InsertNode(S, IP);
894 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000895}
896
Dan Gohman0bba49c2009-07-07 17:06:11 +0000897const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000898 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000899 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000900 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000901 assert(isSCEVable(Ty) &&
902 "This is not a conversion to a SCEVable type!");
903 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000904
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000905 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000906 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
907 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000908 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000909
Dan Gohman20900ca2009-04-22 16:20:48 +0000910 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000911 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000912 return getZeroExtendExpr(SZ->getOperand(), Ty);
913
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000914 // Before doing any expensive analysis, check to see if we've already
915 // computed a SCEV for this Op and Ty.
916 FoldingSetNodeID ID;
917 ID.AddInteger(scZeroExtend);
918 ID.AddPointer(Op);
919 ID.AddPointer(Ty);
920 void *IP = 0;
921 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
922
Nick Lewycky630d85a2011-01-23 06:20:19 +0000923 // zext(trunc(x)) --> zext(x) or x or trunc(x)
924 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
925 // It's possible the bits taken off by the truncate were all zero bits. If
926 // so, we should be able to simplify this further.
927 const SCEV *X = ST->getOperand();
928 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000929 unsigned TruncBits = getTypeSizeInBits(ST->getType());
930 unsigned NewBits = getTypeSizeInBits(Ty);
931 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000932 CR.zextOrTrunc(NewBits)))
933 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000934 }
935
Dan Gohman01ecca22009-04-27 20:16:15 +0000936 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000937 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000938 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000939 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000940 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000941 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000942 const SCEV *Start = AR->getStart();
943 const SCEV *Step = AR->getStepRecurrence(*this);
944 unsigned BitWidth = getTypeSizeInBits(AR->getType());
945 const Loop *L = AR->getLoop();
946
Dan Gohmaneb490a72009-07-25 01:22:26 +0000947 // If we have special knowledge that this addrec won't overflow,
948 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000949 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000950 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
951 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000952 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000953
Dan Gohman01ecca22009-04-27 20:16:15 +0000954 // Check whether the backedge-taken count is SCEVCouldNotCompute.
955 // Note that this serves two purposes: It filters out loops that are
956 // simply not analyzable, and it covers the case where this code is
957 // being called from within backedge-taken count analysis, such that
958 // attempting to ask for the backedge-taken count would likely result
959 // in infinite recursion. In the later case, the analysis code will
960 // cope with a conservative value, and it will take care to purge
961 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000962 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000963 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000964 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000965 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000966
967 // Check whether the backedge-taken count can be losslessly casted to
968 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000969 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000970 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000971 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000972 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
973 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000974 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000975 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000976 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000977 const SCEV *Add = getAddExpr(Start, ZMul);
978 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000979 getAddExpr(getZeroExtendExpr(Start, WideTy),
980 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
981 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000982 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
983 // Cache knowledge of AR NUW, which is propagated to this AddRec.
984 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000985 // Return the expression with the addrec on the outside.
986 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
987 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000988 L, AR->getNoWrapFlags());
989 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000990 // Similar to above, only this time treat the step value as signed.
991 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000992 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000993 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000994 OperandExtendedAdd =
995 getAddExpr(getZeroExtendExpr(Start, WideTy),
996 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
997 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000998 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
999 // Cache knowledge of AR NW, which is propagated to this AddRec.
1000 // Negative step causes unsigned wrap, but it still can't self-wrap.
1001 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001002 // Return the expression with the addrec on the outside.
1003 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1004 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001005 L, AR->getNoWrapFlags());
1006 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001007 }
1008
1009 // If the backedge is guarded by a comparison with the pre-inc value
1010 // the addrec is safe. Also, if the entry is guarded by a comparison
1011 // with the start value and the backedge is guarded by a comparison
1012 // with the post-inc value, the addrec is safe.
1013 if (isKnownPositive(Step)) {
1014 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1015 getUnsignedRange(Step).getUnsignedMax());
1016 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001017 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001018 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001019 AR->getPostIncExpr(*this), N))) {
1020 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1021 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001022 // Return the expression with the addrec on the outside.
1023 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1024 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001025 L, AR->getNoWrapFlags());
1026 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001027 } else if (isKnownNegative(Step)) {
1028 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1029 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001030 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1031 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001032 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001033 AR->getPostIncExpr(*this), N))) {
1034 // Cache knowledge of AR NW, which is propagated to this AddRec.
1035 // Negative step causes unsigned wrap, but it still can't self-wrap.
1036 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1037 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001038 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1039 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001040 L, AR->getNoWrapFlags());
1041 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001042 }
1043 }
1044 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001045
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001046 // The cast wasn't folded; create an explicit cast node.
1047 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001048 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001049 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1050 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001051 UniqueSCEVs.InsertNode(S, IP);
1052 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001053}
1054
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001055// Get the limit of a recurrence such that incrementing by Step cannot cause
1056// signed overflow as long as the value of the recurrence within the loop does
1057// not exceed this limit before incrementing.
1058static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1059 ICmpInst::Predicate *Pred,
1060 ScalarEvolution *SE) {
1061 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1062 if (SE->isKnownPositive(Step)) {
1063 *Pred = ICmpInst::ICMP_SLT;
1064 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1065 SE->getSignedRange(Step).getSignedMax());
1066 }
1067 if (SE->isKnownNegative(Step)) {
1068 *Pred = ICmpInst::ICMP_SGT;
1069 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1070 SE->getSignedRange(Step).getSignedMin());
1071 }
1072 return 0;
1073}
1074
1075// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1076// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1077// or postincrement sibling. This allows normalizing a sign extended AddRec as
1078// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1079// result, the expression "Step + sext(PreIncAR)" is congruent with
1080// "sext(PostIncAR)"
1081static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001082 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001083 ScalarEvolution *SE) {
1084 const Loop *L = AR->getLoop();
1085 const SCEV *Start = AR->getStart();
1086 const SCEV *Step = AR->getStepRecurrence(*SE);
1087
1088 // Check for a simple looking step prior to loop entry.
1089 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001090 if (!SA)
1091 return 0;
1092
1093 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1094 // subtraction is expensive. For this purpose, perform a quick and dirty
1095 // difference, by checking for Step in the operand list.
1096 SmallVector<const SCEV *, 4> DiffOps;
1097 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1098 I != E; ++I) {
1099 if (*I != Step)
1100 DiffOps.push_back(*I);
1101 }
1102 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001103 return 0;
1104
1105 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1106 // same three conditions that getSignExtendedExpr checks.
1107
1108 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001109 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001110 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1111 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1112
Andrew Trickcf31f912011-06-01 19:14:56 +00001113 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001114 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001115
1116 // 2. Direct overflow check on the step operation's expression.
1117 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001118 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001119 const SCEV *OperandExtendedStart =
1120 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1121 SE->getSignExtendExpr(Step, WideTy));
1122 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1123 // Cache knowledge of PreAR NSW.
1124 if (PreAR)
1125 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1126 // FIXME: this optimization needs a unit test
1127 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1128 return PreStart;
1129 }
1130
1131 // 3. Loop precondition.
1132 ICmpInst::Predicate Pred;
1133 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1134
Andrew Trickcf31f912011-06-01 19:14:56 +00001135 if (OverflowLimit &&
1136 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001137 return PreStart;
1138 }
1139 return 0;
1140}
1141
1142// Get the normalized sign-extended expression for this AddRec's Start.
1143static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001144 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001145 ScalarEvolution *SE) {
1146 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1147 if (!PreStart)
1148 return SE->getSignExtendExpr(AR->getStart(), Ty);
1149
1150 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1151 SE->getSignExtendExpr(PreStart, Ty));
1152}
1153
Dan Gohman0bba49c2009-07-07 17:06:11 +00001154const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001155 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001156 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001157 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001158 assert(isSCEVable(Ty) &&
1159 "This is not a conversion to a SCEVable type!");
1160 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001161
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001162 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001163 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1164 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +00001165 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmand19534a2007-06-15 14:38:12 +00001166
Dan Gohman20900ca2009-04-22 16:20:48 +00001167 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001168 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001169 return getSignExtendExpr(SS->getOperand(), Ty);
1170
Nick Lewycky73f565e2011-01-19 15:56:12 +00001171 // sext(zext(x)) --> zext(x)
1172 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1173 return getZeroExtendExpr(SZ->getOperand(), Ty);
1174
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001175 // Before doing any expensive analysis, check to see if we've already
1176 // computed a SCEV for this Op and Ty.
1177 FoldingSetNodeID ID;
1178 ID.AddInteger(scSignExtend);
1179 ID.AddPointer(Op);
1180 ID.AddPointer(Ty);
1181 void *IP = 0;
1182 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1183
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001184 // If the input value is provably positive, build a zext instead.
1185 if (isKnownNonNegative(Op))
1186 return getZeroExtendExpr(Op, Ty);
1187
Nick Lewycky630d85a2011-01-23 06:20:19 +00001188 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1189 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1190 // It's possible the bits taken off by the truncate were all sign bits. If
1191 // so, we should be able to simplify this further.
1192 const SCEV *X = ST->getOperand();
1193 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001194 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1195 unsigned NewBits = getTypeSizeInBits(Ty);
1196 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001197 CR.sextOrTrunc(NewBits)))
1198 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001199 }
1200
Dan Gohman01ecca22009-04-27 20:16:15 +00001201 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001202 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001203 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001204 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001205 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001206 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001207 const SCEV *Start = AR->getStart();
1208 const SCEV *Step = AR->getStepRecurrence(*this);
1209 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1210 const Loop *L = AR->getLoop();
1211
Dan Gohmaneb490a72009-07-25 01:22:26 +00001212 // If we have special knowledge that this addrec won't overflow,
1213 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001214 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001215 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001216 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001217 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001218
Dan Gohman01ecca22009-04-27 20:16:15 +00001219 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1220 // Note that this serves two purposes: It filters out loops that are
1221 // simply not analyzable, and it covers the case where this code is
1222 // being called from within backedge-taken count analysis, such that
1223 // attempting to ask for the backedge-taken count would likely result
1224 // in infinite recursion. In the later case, the analysis code will
1225 // cope with a conservative value, and it will take care to purge
1226 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001227 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001228 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001229 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001230 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001231
1232 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001233 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001234 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001235 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001236 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001237 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1238 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001239 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001240 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001241 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001242 const SCEV *Add = getAddExpr(Start, SMul);
1243 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001244 getAddExpr(getSignExtendExpr(Start, WideTy),
1245 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1246 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001247 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1248 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1249 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001250 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001251 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001252 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001253 L, AR->getNoWrapFlags());
1254 }
Dan Gohman850f7912009-07-16 17:34:36 +00001255 // Similar to above, only this time treat the step value as unsigned.
1256 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001257 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001258 Add = getAddExpr(Start, UMul);
1259 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001260 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001261 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1262 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001263 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1264 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1265 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001266 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001267 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001268 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001269 L, AR->getNoWrapFlags());
1270 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001271 }
1272
1273 // If the backedge is guarded by a comparison with the pre-inc value
1274 // the addrec is safe. Also, if the entry is guarded by a comparison
1275 // with the start value and the backedge is guarded by a comparison
1276 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001277 ICmpInst::Predicate Pred;
1278 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1279 if (OverflowLimit &&
1280 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1281 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1282 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1283 OverflowLimit)))) {
1284 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1285 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1286 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1287 getSignExtendExpr(Step, Ty),
1288 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001289 }
1290 }
1291 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001292
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001293 // The cast wasn't folded; create an explicit cast node.
1294 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001295 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001296 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1297 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001298 UniqueSCEVs.InsertNode(S, IP);
1299 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001300}
1301
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001302/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1303/// unspecified bits out to the given type.
1304///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001305const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001306 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001307 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1308 "This is not an extending conversion!");
1309 assert(isSCEVable(Ty) &&
1310 "This is not a conversion to a SCEVable type!");
1311 Ty = getEffectiveSCEVType(Ty);
1312
1313 // Sign-extend negative constants.
1314 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1315 if (SC->getValue()->getValue().isNegative())
1316 return getSignExtendExpr(Op, Ty);
1317
1318 // Peel off a truncate cast.
1319 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001320 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001321 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1322 return getAnyExtendExpr(NewOp, Ty);
1323 return getTruncateOrNoop(NewOp, Ty);
1324 }
1325
1326 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001327 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001328 if (!isa<SCEVZeroExtendExpr>(ZExt))
1329 return ZExt;
1330
1331 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001332 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001333 if (!isa<SCEVSignExtendExpr>(SExt))
1334 return SExt;
1335
Dan Gohmana10756e2010-01-21 02:09:26 +00001336 // Force the cast to be folded into the operands of an addrec.
1337 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1338 SmallVector<const SCEV *, 4> Ops;
1339 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1340 I != E; ++I)
1341 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001342 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001343 }
1344
Dan Gohmanf53462d2010-07-15 20:02:11 +00001345 // As a special case, fold anyext(undef) to undef. We don't want to
1346 // know too much about SCEVUnknowns, but this special case is handy
1347 // and harmless.
1348 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1349 if (isa<UndefValue>(U->getValue()))
1350 return getSCEV(UndefValue::get(Ty));
1351
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001352 // If the expression is obviously signed, use the sext cast value.
1353 if (isa<SCEVSMaxExpr>(Op))
1354 return SExt;
1355
1356 // Absent any other information, use the zext cast value.
1357 return ZExt;
1358}
1359
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001360/// CollectAddOperandsWithScales - Process the given Ops list, which is
1361/// a list of operands to be added under the given scale, update the given
1362/// map. This is a helper function for getAddRecExpr. As an example of
1363/// what it does, given a sequence of operands that would form an add
1364/// expression like this:
1365///
1366/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1367///
1368/// where A and B are constants, update the map with these values:
1369///
1370/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1371///
1372/// and add 13 + A*B*29 to AccumulatedConstant.
1373/// This will allow getAddRecExpr to produce this:
1374///
1375/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1376///
1377/// This form often exposes folding opportunities that are hidden in
1378/// the original operand list.
1379///
1380/// Return true iff it appears that any interesting folding opportunities
1381/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1382/// the common case where no interesting opportunities are present, and
1383/// is also used as a check to avoid infinite recursion.
1384///
1385static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001386CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1387 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001388 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001389 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001390 const APInt &Scale,
1391 ScalarEvolution &SE) {
1392 bool Interesting = false;
1393
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001394 // Iterate over the add operands. They are sorted, with constants first.
1395 unsigned i = 0;
1396 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1397 ++i;
1398 // Pull a buried constant out to the outside.
1399 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1400 Interesting = true;
1401 AccumulatedConstant += Scale * C->getValue()->getValue();
1402 }
1403
1404 // Next comes everything else. We're especially interested in multiplies
1405 // here, but they're in the middle, so just visit the rest with one loop.
1406 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001407 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1408 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1409 APInt NewScale =
1410 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1411 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1412 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001413 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001414 Interesting |=
1415 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001416 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001417 NewScale, SE);
1418 } else {
1419 // A multiplication of a constant with some other value. Update
1420 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001421 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1422 const SCEV *Key = SE.getMulExpr(MulOps);
1423 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001424 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001425 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001426 NewOps.push_back(Pair.first->first);
1427 } else {
1428 Pair.first->second += NewScale;
1429 // The map already had an entry for this value, which may indicate
1430 // a folding opportunity.
1431 Interesting = true;
1432 }
1433 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001434 } else {
1435 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001436 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001437 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001438 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001439 NewOps.push_back(Pair.first->first);
1440 } else {
1441 Pair.first->second += Scale;
1442 // The map already had an entry for this value, which may indicate
1443 // a folding opportunity.
1444 Interesting = true;
1445 }
1446 }
1447 }
1448
1449 return Interesting;
1450}
1451
1452namespace {
1453 struct APIntCompare {
1454 bool operator()(const APInt &LHS, const APInt &RHS) const {
1455 return LHS.ult(RHS);
1456 }
1457 };
1458}
1459
Dan Gohman6c0866c2009-05-24 23:45:28 +00001460/// getAddExpr - Get a canonical add expression, or something simpler if
1461/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001462const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001463 SCEV::NoWrapFlags Flags) {
1464 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1465 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001466 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001467 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001468#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001469 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001470 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001471 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001472 "SCEVAddExpr operand types don't match!");
1473#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001474
Andrew Trick3228cc22011-03-14 16:50:06 +00001475 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001476 // And vice-versa.
1477 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1478 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1479 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001480 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001481 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1482 E = Ops.end(); I != E; ++I)
1483 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001484 All = false;
1485 break;
1486 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001487 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001488 }
1489
Chris Lattner53e677a2004-04-02 20:23:17 +00001490 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001491 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001492
1493 // If there are any constants, fold them together.
1494 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001495 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001496 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001497 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001498 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001499 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001500 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1501 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001502 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001503 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001504 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001505 }
1506
1507 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001508 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001509 Ops.erase(Ops.begin());
1510 --Idx;
1511 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001512
Dan Gohmanbca091d2010-04-12 23:08:18 +00001513 if (Ops.size() == 1) return Ops[0];
1514 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001515
Dan Gohman68ff7762010-08-27 21:39:59 +00001516 // Okay, check to see if the same value occurs in the operand list more than
1517 // once. If so, merge them together into an multiply expression. Since we
1518 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001519 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001520 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001521 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001522 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001523 // Scan ahead to count how many equal operands there are.
1524 unsigned Count = 2;
1525 while (i+Count != e && Ops[i+Count] == Ops[i])
1526 ++Count;
1527 // Merge the values into a multiply.
1528 const SCEV *Scale = getConstant(Ty, Count);
1529 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1530 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001531 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001532 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001533 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001534 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001535 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001536 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001537 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001538 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001539
Dan Gohman728c7f32009-05-08 21:03:19 +00001540 // Check for truncates. If all the operands are truncated from the same
1541 // type, see if factoring out the truncate would permit the result to be
1542 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1543 // if the contents of the resulting outer trunc fold to something simple.
1544 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1545 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001546 Type *DstType = Trunc->getType();
1547 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001548 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001549 bool Ok = true;
1550 // Check all the operands to see if they can be represented in the
1551 // source type of the truncate.
1552 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1553 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1554 if (T->getOperand()->getType() != SrcType) {
1555 Ok = false;
1556 break;
1557 }
1558 LargeOps.push_back(T->getOperand());
1559 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001560 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001561 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001562 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001563 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1564 if (const SCEVTruncateExpr *T =
1565 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1566 if (T->getOperand()->getType() != SrcType) {
1567 Ok = false;
1568 break;
1569 }
1570 LargeMulOps.push_back(T->getOperand());
1571 } else if (const SCEVConstant *C =
1572 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001573 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001574 } else {
1575 Ok = false;
1576 break;
1577 }
1578 }
1579 if (Ok)
1580 LargeOps.push_back(getMulExpr(LargeMulOps));
1581 } else {
1582 Ok = false;
1583 break;
1584 }
1585 }
1586 if (Ok) {
1587 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001588 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001589 // If it folds to something simple, use it. Otherwise, don't.
1590 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1591 return getTruncateExpr(Fold, DstType);
1592 }
1593 }
1594
1595 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001596 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1597 ++Idx;
1598
1599 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001600 if (Idx < Ops.size()) {
1601 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001602 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001603 // If we have an add, expand the add operands onto the end of the operands
1604 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001605 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001606 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001607 DeletedAdd = true;
1608 }
1609
1610 // If we deleted at least one add, we added operands to the end of the list,
1611 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001612 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001613 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001614 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001615 }
1616
1617 // Skip over the add expression until we get to a multiply.
1618 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1619 ++Idx;
1620
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001621 // Check to see if there are any folding opportunities present with
1622 // operands multiplied by constant values.
1623 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1624 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001625 DenseMap<const SCEV *, APInt> M;
1626 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001627 APInt AccumulatedConstant(BitWidth, 0);
1628 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001629 Ops.data(), Ops.size(),
1630 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001631 // Some interesting folding opportunity is present, so its worthwhile to
1632 // re-generate the operands list. Group the operands by constant scale,
1633 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001634 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001635 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001636 E = NewOps.end(); I != E; ++I)
1637 MulOpLists[M.find(*I)->second].push_back(*I);
1638 // Re-generate the operands list.
1639 Ops.clear();
1640 if (AccumulatedConstant != 0)
1641 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001642 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1643 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001644 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001645 Ops.push_back(getMulExpr(getConstant(I->first),
1646 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001647 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001648 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001649 if (Ops.size() == 1)
1650 return Ops[0];
1651 return getAddExpr(Ops);
1652 }
1653 }
1654
Chris Lattner53e677a2004-04-02 20:23:17 +00001655 // If we are adding something to a multiply expression, make sure the
1656 // something is not already an operand of the multiply. If so, merge it into
1657 // the multiply.
1658 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001659 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001660 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001661 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001662 if (isa<SCEVConstant>(MulOpSCEV))
1663 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001664 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001665 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001666 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001667 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001668 if (Mul->getNumOperands() != 2) {
1669 // If the multiply has more than two operands, we must get the
1670 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001671 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1672 Mul->op_begin()+MulOp);
1673 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001674 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001675 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001676 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001677 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001678 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001679 if (Ops.size() == 2) return OuterMul;
1680 if (AddOp < Idx) {
1681 Ops.erase(Ops.begin()+AddOp);
1682 Ops.erase(Ops.begin()+Idx-1);
1683 } else {
1684 Ops.erase(Ops.begin()+Idx);
1685 Ops.erase(Ops.begin()+AddOp-1);
1686 }
1687 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001688 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001689 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001690
Chris Lattner53e677a2004-04-02 20:23:17 +00001691 // Check this multiply against other multiplies being added together.
1692 for (unsigned OtherMulIdx = Idx+1;
1693 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1694 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001695 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001696 // If MulOp occurs in OtherMul, we can fold the two multiplies
1697 // together.
1698 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1699 OMulOp != e; ++OMulOp)
1700 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1701 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001702 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001703 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001704 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001705 Mul->op_begin()+MulOp);
1706 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001707 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001708 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001709 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001710 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001711 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001712 OtherMul->op_begin()+OMulOp);
1713 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001714 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001715 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001716 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1717 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001718 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001719 Ops.erase(Ops.begin()+Idx);
1720 Ops.erase(Ops.begin()+OtherMulIdx-1);
1721 Ops.push_back(OuterMul);
1722 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001723 }
1724 }
1725 }
1726 }
1727
1728 // If there are any add recurrences in the operands list, see if any other
1729 // added values are loop invariant. If so, we can fold them into the
1730 // recurrence.
1731 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1732 ++Idx;
1733
1734 // Scan over all recurrences, trying to fold loop invariants into them.
1735 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1736 // Scan all of the other operands to this add and add them to the vector if
1737 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001738 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001739 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001740 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001741 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001742 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001743 LIOps.push_back(Ops[i]);
1744 Ops.erase(Ops.begin()+i);
1745 --i; --e;
1746 }
1747
1748 // If we found some loop invariants, fold them into the recurrence.
1749 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001750 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001751 LIOps.push_back(AddRec->getStart());
1752
Dan Gohman0bba49c2009-07-07 17:06:11 +00001753 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001754 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001755 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001756
Dan Gohmanb9f96512010-06-30 07:16:37 +00001757 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001758 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001759 // Always propagate NW.
1760 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001761 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001762
Chris Lattner53e677a2004-04-02 20:23:17 +00001763 // If all of the other operands were loop invariant, we are done.
1764 if (Ops.size() == 1) return NewRec;
1765
Nick Lewycky980e9f32011-09-06 05:08:09 +00001766 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001767 for (unsigned i = 0;; ++i)
1768 if (Ops[i] == AddRec) {
1769 Ops[i] = NewRec;
1770 break;
1771 }
Dan Gohman246b2562007-10-22 18:31:58 +00001772 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001773 }
1774
1775 // Okay, if there weren't any loop invariants to be folded, check to see if
1776 // there are multiple AddRec's with the same loop induction variable being
1777 // added together. If so, we can fold them.
1778 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001779 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1780 ++OtherIdx)
1781 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1782 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1783 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1784 AddRec->op_end());
1785 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1786 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001787 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001788 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001789 if (OtherAddRec->getLoop() == AddRecLoop) {
1790 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1791 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001792 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001793 AddRecOps.append(OtherAddRec->op_begin()+i,
1794 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001795 break;
1796 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001797 AddRecOps[i] = getAddExpr(AddRecOps[i],
1798 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001799 }
1800 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001801 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001802 // Step size has changed, so we cannot guarantee no self-wraparound.
1803 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001804 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001805 }
1806
1807 // Otherwise couldn't fold anything into this recurrence. Move onto the
1808 // next one.
1809 }
1810
1811 // Okay, it looks like we really DO need an add expr. Check to see if we
1812 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001813 FoldingSetNodeID ID;
1814 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001815 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1816 ID.AddPointer(Ops[i]);
1817 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001818 SCEVAddExpr *S =
1819 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1820 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001821 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1822 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001823 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1824 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001825 UniqueSCEVs.InsertNode(S, IP);
1826 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001827 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001828 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001829}
1830
Nick Lewyckye97728e2011-10-04 06:51:26 +00001831static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1832 uint64_t k = i*j;
1833 if (j > 1 && k / j != i) Overflow = true;
1834 return k;
1835}
1836
1837/// Compute the result of "n choose k", the binomial coefficient. If an
1838/// intermediate computation overflows, Overflow will be set and the return will
1839/// be garbage. Overflow is not cleared on absense of overflow.
1840static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1841 // We use the multiplicative formula:
1842 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1843 // At each iteration, we take the n-th term of the numeral and divide by the
1844 // (k-n)th term of the denominator. This division will always produce an
1845 // integral result, and helps reduce the chance of overflow in the
1846 // intermediate computations. However, we can still overflow even when the
1847 // final result would fit.
1848
1849 if (n == 0 || n == k) return 1;
1850 if (k > n) return 0;
1851
1852 if (k > n/2)
1853 k = n-k;
1854
1855 uint64_t r = 1;
1856 for (uint64_t i = 1; i <= k; ++i) {
1857 r = umul_ov(r, n-(i-1), Overflow);
1858 r /= i;
1859 }
1860 return r;
1861}
1862
Dan Gohman6c0866c2009-05-24 23:45:28 +00001863/// getMulExpr - Get a canonical multiply expression, or something simpler if
1864/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001865const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001866 SCEV::NoWrapFlags Flags) {
1867 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1868 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001869 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001870 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001871#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001872 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001873 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001874 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001875 "SCEVMulExpr operand types don't match!");
1876#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001877
Andrew Trick3228cc22011-03-14 16:50:06 +00001878 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001879 // And vice-versa.
1880 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1881 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1882 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001883 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001884 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1885 E = Ops.end(); I != E; ++I)
1886 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001887 All = false;
1888 break;
1889 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001890 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001891 }
1892
Chris Lattner53e677a2004-04-02 20:23:17 +00001893 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001894 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001895
1896 // If there are any constants, fold them together.
1897 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001898 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001899
1900 // C1*(C2+V) -> C1*C2 + C1*V
1901 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001902 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001903 if (Add->getNumOperands() == 2 &&
1904 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001905 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1906 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001907
Chris Lattner53e677a2004-04-02 20:23:17 +00001908 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001909 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001910 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001911 ConstantInt *Fold = ConstantInt::get(getContext(),
1912 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001913 RHSC->getValue()->getValue());
1914 Ops[0] = getConstant(Fold);
1915 Ops.erase(Ops.begin()+1); // Erase the folded element
1916 if (Ops.size() == 1) return Ops[0];
1917 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001918 }
1919
1920 // If we are left with a constant one being multiplied, strip it off.
1921 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1922 Ops.erase(Ops.begin());
1923 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001924 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001925 // If we have a multiply of zero, it will always be zero.
1926 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001927 } else if (Ops[0]->isAllOnesValue()) {
1928 // If we have a mul by -1 of an add, try distributing the -1 among the
1929 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001930 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001931 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1932 SmallVector<const SCEV *, 4> NewOps;
1933 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001934 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1935 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001936 const SCEV *Mul = getMulExpr(Ops[0], *I);
1937 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1938 NewOps.push_back(Mul);
1939 }
1940 if (AnyFolded)
1941 return getAddExpr(NewOps);
1942 }
Andrew Tricka053b212011-03-14 17:38:54 +00001943 else if (const SCEVAddRecExpr *
1944 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1945 // Negation preserves a recurrence's no self-wrap property.
1946 SmallVector<const SCEV *, 4> Operands;
1947 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1948 E = AddRec->op_end(); I != E; ++I) {
1949 Operands.push_back(getMulExpr(Ops[0], *I));
1950 }
1951 return getAddRecExpr(Operands, AddRec->getLoop(),
1952 AddRec->getNoWrapFlags(SCEV::FlagNW));
1953 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001954 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001955 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001956
1957 if (Ops.size() == 1)
1958 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001959 }
1960
1961 // Skip over the add expression until we get to a multiply.
1962 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1963 ++Idx;
1964
Chris Lattner53e677a2004-04-02 20:23:17 +00001965 // If there are mul operands inline them all into this expression.
1966 if (Idx < Ops.size()) {
1967 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001968 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001969 // If we have an mul, expand the mul operands onto the end of the operands
1970 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001971 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001972 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001973 DeletedMul = true;
1974 }
1975
1976 // If we deleted at least one mul, we added operands to the end of the list,
1977 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001978 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001979 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001980 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001981 }
1982
1983 // If there are any add recurrences in the operands list, see if any other
1984 // added values are loop invariant. If so, we can fold them into the
1985 // recurrence.
1986 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1987 ++Idx;
1988
1989 // Scan over all recurrences, trying to fold loop invariants into them.
1990 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1991 // Scan all of the other operands to this mul and add them to the vector if
1992 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001993 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001994 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001995 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001996 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001997 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001998 LIOps.push_back(Ops[i]);
1999 Ops.erase(Ops.begin()+i);
2000 --i; --e;
2001 }
2002
2003 // If we found some loop invariants, fold them into the recurrence.
2004 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00002005 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00002006 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00002007 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00002008 const SCEV *Scale = getMulExpr(LIOps);
2009 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2010 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002011
Dan Gohmanb9f96512010-06-30 07:16:37 +00002012 // Build the new addrec. Propagate the NUW and NSW flags if both the
2013 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00002014 //
2015 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002016 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00002017 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2018 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002019
2020 // If all of the other operands were loop invariant, we are done.
2021 if (Ops.size() == 1) return NewRec;
2022
Nick Lewycky980e9f32011-09-06 05:08:09 +00002023 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00002024 for (unsigned i = 0;; ++i)
2025 if (Ops[i] == AddRec) {
2026 Ops[i] = NewRec;
2027 break;
2028 }
Dan Gohman246b2562007-10-22 18:31:58 +00002029 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002030 }
2031
2032 // Okay, if there weren't any loop invariants to be folded, check to see if
2033 // there are multiple AddRec's with the same loop induction variable being
2034 // multiplied together. If so, we can fold them.
2035 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002036 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002037 ++OtherIdx) {
Dan Gohman6a0c1252010-08-31 22:52:12 +00002038 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
Nick Lewyckye97728e2011-10-04 06:51:26 +00002039 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2040 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2041 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2042 // ]]],+,...up to x=2n}.
2043 // Note that the arguments to choose() are always integers with values
2044 // known at compile time, never SCEV objects.
Nick Lewycky28682ae2011-09-06 05:33:18 +00002045 //
Nick Lewyckye97728e2011-10-04 06:51:26 +00002046 // The implementation avoids pointless extra computations when the two
2047 // addrec's are of different length (mathematically, it's equivalent to
2048 // an infinite stream of zeros on the right).
2049 bool OpsModified = false;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002050 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2051 ++OtherIdx)
2052 if (const SCEVAddRecExpr *OtherAddRec =
2053 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2054 if (OtherAddRec->getLoop() == AddRecLoop) {
Nick Lewyckye97728e2011-10-04 06:51:26 +00002055 bool Overflow = false;
2056 Type *Ty = AddRec->getType();
2057 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2058 SmallVector<const SCEV*, 7> AddRecOps;
2059 for (int x = 0, xe = AddRec->getNumOperands() +
2060 OtherAddRec->getNumOperands() - 1;
2061 x != xe && !Overflow; ++x) {
2062 const SCEV *Term = getConstant(Ty, 0);
2063 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2064 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2065 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2066 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2067 z < ze && !Overflow; ++z) {
2068 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2069 uint64_t Coeff;
2070 if (LargerThan64Bits)
2071 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2072 else
2073 Coeff = Coeff1*Coeff2;
2074 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2075 const SCEV *Term1 = AddRec->getOperand(y-z);
2076 const SCEV *Term2 = OtherAddRec->getOperand(z);
2077 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2078 }
2079 }
2080 AddRecOps.push_back(Term);
2081 }
2082 if (!Overflow) {
Nick Lewyckyc103a082011-09-06 21:42:18 +00002083 const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
2084 AddRec->getLoop(),
2085 SCEV::FlagAnyWrap);
2086 if (Ops.size() == 2) return NewAddRec;
2087 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
2088 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Nick Lewyckye97728e2011-10-04 06:51:26 +00002089 OpsModified = true;
Nick Lewyckyc103a082011-09-06 21:42:18 +00002090 }
Dan Gohman6a0c1252010-08-31 22:52:12 +00002091 }
Nick Lewyckye97728e2011-10-04 06:51:26 +00002092 if (OpsModified)
Nick Lewyckyc103a082011-09-06 21:42:18 +00002093 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002094 }
Nick Lewyckyc103a082011-09-06 21:42:18 +00002095 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002096
2097 // Otherwise couldn't fold anything into this recurrence. Move onto the
2098 // next one.
2099 }
2100
2101 // Okay, it looks like we really DO need an mul expr. Check to see if we
2102 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002103 FoldingSetNodeID ID;
2104 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002105 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2106 ID.AddPointer(Ops[i]);
2107 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002108 SCEVMulExpr *S =
2109 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2110 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002111 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2112 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002113 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2114 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002115 UniqueSCEVs.InsertNode(S, IP);
2116 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002117 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002118 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002119}
2120
Andreas Bolka8a11c982009-08-07 22:55:26 +00002121/// getUDivExpr - Get a canonical unsigned division expression, or something
2122/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002123const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2124 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002125 assert(getEffectiveSCEVType(LHS->getType()) ==
2126 getEffectiveSCEVType(RHS->getType()) &&
2127 "SCEVUDivExpr operand types don't match!");
2128
Dan Gohman622ed672009-05-04 22:02:23 +00002129 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002130 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002131 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002132 // If the denominator is zero, the result of the udiv is undefined. Don't
2133 // try to analyze it, because the resolution chosen here may differ from
2134 // the resolution chosen in other parts of the compiler.
2135 if (!RHSC->getValue()->isZero()) {
2136 // Determine if the division can be folded into the operands of
2137 // its operands.
2138 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002139 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002140 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002141 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002142 // For non-power-of-two values, effectively round the value up to the
2143 // nearest power of two.
2144 if (!RHSC->getValue()->getValue().isPowerOf2())
2145 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002146 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002147 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002148 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2149 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002150 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2151 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2152 const APInt &StepInt = Step->getValue()->getValue();
2153 const APInt &DivInt = RHSC->getValue()->getValue();
2154 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002155 getZeroExtendExpr(AR, ExtTy) ==
2156 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2157 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002158 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002159 SmallVector<const SCEV *, 4> Operands;
2160 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2161 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002162 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002163 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002164 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002165 /// Get a canonical UDivExpr for a recurrence.
2166 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2167 // We can currently only fold X%N if X is constant.
2168 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2169 if (StartC && !DivInt.urem(StepInt) &&
2170 getZeroExtendExpr(AR, ExtTy) ==
2171 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2172 getZeroExtendExpr(Step, ExtTy),
2173 AR->getLoop(), SCEV::FlagAnyWrap)) {
2174 const APInt &StartInt = StartC->getValue()->getValue();
2175 const APInt &StartRem = StartInt.urem(StepInt);
2176 if (StartRem != 0)
2177 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2178 AR->getLoop(), SCEV::FlagNW);
2179 }
2180 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002181 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2182 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2183 SmallVector<const SCEV *, 4> Operands;
2184 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2185 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2186 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2187 // Find an operand that's safely divisible.
2188 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2189 const SCEV *Op = M->getOperand(i);
2190 const SCEV *Div = getUDivExpr(Op, RHSC);
2191 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2192 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2193 M->op_end());
2194 Operands[i] = Div;
2195 return getMulExpr(Operands);
2196 }
2197 }
Dan Gohman185cf032009-05-08 20:18:49 +00002198 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002199 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002200 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002201 SmallVector<const SCEV *, 4> Operands;
2202 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2203 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2204 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2205 Operands.clear();
2206 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2207 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2208 if (isa<SCEVUDivExpr>(Op) ||
2209 getMulExpr(Op, RHS) != A->getOperand(i))
2210 break;
2211 Operands.push_back(Op);
2212 }
2213 if (Operands.size() == A->getNumOperands())
2214 return getAddExpr(Operands);
2215 }
2216 }
Dan Gohman185cf032009-05-08 20:18:49 +00002217
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002218 // Fold if both operands are constant.
2219 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2220 Constant *LHSCV = LHSC->getValue();
2221 Constant *RHSCV = RHSC->getValue();
2222 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2223 RHSCV)));
2224 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002225 }
2226 }
2227
Dan Gohman1c343752009-06-27 21:21:31 +00002228 FoldingSetNodeID ID;
2229 ID.AddInteger(scUDivExpr);
2230 ID.AddPointer(LHS);
2231 ID.AddPointer(RHS);
2232 void *IP = 0;
2233 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002234 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2235 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002236 UniqueSCEVs.InsertNode(S, IP);
2237 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002238}
2239
2240
Dan Gohman6c0866c2009-05-24 23:45:28 +00002241/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2242/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002243const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2244 const Loop *L,
2245 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002246 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002247 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002248 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002249 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002250 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002251 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002252 }
2253
2254 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002255 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002256}
2257
Dan Gohman6c0866c2009-05-24 23:45:28 +00002258/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2259/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002260const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002261ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002262 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002263 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002264#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002265 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002266 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002267 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002268 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002269 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002270 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002271 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002272#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002273
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002274 if (Operands.back()->isZero()) {
2275 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002276 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002277 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002278
Dan Gohmanbc028532010-02-19 18:49:22 +00002279 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2280 // use that information to infer NUW and NSW flags. However, computing a
2281 // BE count requires calling getAddRecExpr, so we may not yet have a
2282 // meaningful BE count at this point (and if we don't, we'd be stuck
2283 // with a SCEVCouldNotCompute as the cached BE count).
2284
Andrew Trick3228cc22011-03-14 16:50:06 +00002285 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002286 // And vice-versa.
2287 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2288 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2289 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002290 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002291 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2292 E = Operands.end(); I != E; ++I)
2293 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002294 All = false;
2295 break;
2296 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002297 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002298 }
2299
Dan Gohmand9cc7492008-08-08 18:33:12 +00002300 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002301 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002302 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002303 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002304 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002305 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002306 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002307 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002308 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002309 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002310 // AddRecs require their operands be loop-invariant with respect to their
2311 // loops. Don't perform this transformation if it would break this
2312 // requirement.
2313 bool AllInvariant = true;
2314 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002315 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002316 AllInvariant = false;
2317 break;
2318 }
2319 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002320 // Create a recurrence for the outer loop with the same step size.
2321 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002322 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2323 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002324 SCEV::NoWrapFlags OuterFlags =
2325 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002326
2327 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002328 AllInvariant = true;
2329 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002330 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002331 AllInvariant = false;
2332 break;
2333 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002334 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002335 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002336 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002337 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2338 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002339 SCEV::NoWrapFlags InnerFlags =
2340 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002341 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2342 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002343 }
2344 // Reset Operands to its original state.
2345 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002346 }
2347 }
2348
Dan Gohman67847532010-01-19 22:27:22 +00002349 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2350 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002351 FoldingSetNodeID ID;
2352 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002353 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2354 ID.AddPointer(Operands[i]);
2355 ID.AddPointer(L);
2356 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002357 SCEVAddRecExpr *S =
2358 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2359 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002360 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2361 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002362 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2363 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002364 UniqueSCEVs.InsertNode(S, IP);
2365 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002366 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002367 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002368}
2369
Dan Gohman9311ef62009-06-24 14:49:00 +00002370const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2371 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002372 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002373 Ops.push_back(LHS);
2374 Ops.push_back(RHS);
2375 return getSMaxExpr(Ops);
2376}
2377
Dan Gohman0bba49c2009-07-07 17:06:11 +00002378const SCEV *
2379ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002380 assert(!Ops.empty() && "Cannot get empty smax!");
2381 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002382#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002383 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002384 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002385 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002386 "SCEVSMaxExpr operand types don't match!");
2387#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002388
2389 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002390 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002391
2392 // If there are any constants, fold them together.
2393 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002394 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002395 ++Idx;
2396 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002397 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002398 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002399 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002400 APIntOps::smax(LHSC->getValue()->getValue(),
2401 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002402 Ops[0] = getConstant(Fold);
2403 Ops.erase(Ops.begin()+1); // Erase the folded element
2404 if (Ops.size() == 1) return Ops[0];
2405 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002406 }
2407
Dan Gohmane5aceed2009-06-24 14:46:22 +00002408 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002409 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2410 Ops.erase(Ops.begin());
2411 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002412 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2413 // If we have an smax with a constant maximum-int, it will always be
2414 // maximum-int.
2415 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002416 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002417
Dan Gohman3ab13122010-04-13 16:49:23 +00002418 if (Ops.size() == 1) return Ops[0];
2419 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002420
2421 // Find the first SMax
2422 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2423 ++Idx;
2424
2425 // Check to see if one of the operands is an SMax. If so, expand its operands
2426 // onto our operand list, and recurse to simplify.
2427 if (Idx < Ops.size()) {
2428 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002429 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002430 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002431 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002432 DeletedSMax = true;
2433 }
2434
2435 if (DeletedSMax)
2436 return getSMaxExpr(Ops);
2437 }
2438
2439 // Okay, check to see if the same value occurs in the operand list twice. If
2440 // so, delete one. Since we sorted the list, these values are required to
2441 // be adjacent.
2442 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002443 // X smax Y smax Y --> X smax Y
2444 // X smax Y --> X, if X is always greater than Y
2445 if (Ops[i] == Ops[i+1] ||
2446 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2447 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2448 --i; --e;
2449 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002450 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2451 --i; --e;
2452 }
2453
2454 if (Ops.size() == 1) return Ops[0];
2455
2456 assert(!Ops.empty() && "Reduced smax down to nothing!");
2457
Nick Lewycky3e630762008-02-20 06:48:22 +00002458 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002459 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002460 FoldingSetNodeID ID;
2461 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002462 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2463 ID.AddPointer(Ops[i]);
2464 void *IP = 0;
2465 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002466 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2467 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002468 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2469 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002470 UniqueSCEVs.InsertNode(S, IP);
2471 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002472}
2473
Dan Gohman9311ef62009-06-24 14:49:00 +00002474const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2475 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002476 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002477 Ops.push_back(LHS);
2478 Ops.push_back(RHS);
2479 return getUMaxExpr(Ops);
2480}
2481
Dan Gohman0bba49c2009-07-07 17:06:11 +00002482const SCEV *
2483ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002484 assert(!Ops.empty() && "Cannot get empty umax!");
2485 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002486#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002487 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002488 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002489 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002490 "SCEVUMaxExpr operand types don't match!");
2491#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002492
2493 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002494 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002495
2496 // If there are any constants, fold them together.
2497 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002498 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002499 ++Idx;
2500 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002501 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002502 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002503 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002504 APIntOps::umax(LHSC->getValue()->getValue(),
2505 RHSC->getValue()->getValue()));
2506 Ops[0] = getConstant(Fold);
2507 Ops.erase(Ops.begin()+1); // Erase the folded element
2508 if (Ops.size() == 1) return Ops[0];
2509 LHSC = cast<SCEVConstant>(Ops[0]);
2510 }
2511
Dan Gohmane5aceed2009-06-24 14:46:22 +00002512 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002513 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2514 Ops.erase(Ops.begin());
2515 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002516 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2517 // If we have an umax with a constant maximum-int, it will always be
2518 // maximum-int.
2519 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002520 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002521
Dan Gohman3ab13122010-04-13 16:49:23 +00002522 if (Ops.size() == 1) return Ops[0];
2523 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002524
2525 // Find the first UMax
2526 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2527 ++Idx;
2528
2529 // Check to see if one of the operands is a UMax. If so, expand its operands
2530 // onto our operand list, and recurse to simplify.
2531 if (Idx < Ops.size()) {
2532 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002533 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002534 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002535 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002536 DeletedUMax = true;
2537 }
2538
2539 if (DeletedUMax)
2540 return getUMaxExpr(Ops);
2541 }
2542
2543 // Okay, check to see if the same value occurs in the operand list twice. If
2544 // so, delete one. Since we sorted the list, these values are required to
2545 // be adjacent.
2546 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002547 // X umax Y umax Y --> X umax Y
2548 // X umax Y --> X, if X is always greater than Y
2549 if (Ops[i] == Ops[i+1] ||
2550 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2551 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2552 --i; --e;
2553 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002554 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2555 --i; --e;
2556 }
2557
2558 if (Ops.size() == 1) return Ops[0];
2559
2560 assert(!Ops.empty() && "Reduced umax down to nothing!");
2561
2562 // Okay, it looks like we really DO need a umax expr. Check to see if we
2563 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002564 FoldingSetNodeID ID;
2565 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002566 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2567 ID.AddPointer(Ops[i]);
2568 void *IP = 0;
2569 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002570 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2571 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002572 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2573 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002574 UniqueSCEVs.InsertNode(S, IP);
2575 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002576}
2577
Dan Gohman9311ef62009-06-24 14:49:00 +00002578const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2579 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002580 // ~smax(~x, ~y) == smin(x, y).
2581 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2582}
2583
Dan Gohman9311ef62009-06-24 14:49:00 +00002584const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2585 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002586 // ~umax(~x, ~y) == umin(x, y)
2587 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2588}
2589
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002590const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002591 // If we have TargetData, we can bypass creating a target-independent
2592 // constant expression and then folding it back into a ConstantInt.
2593 // This is just a compile-time optimization.
2594 if (TD)
2595 return getConstant(TD->getIntPtrType(getContext()),
2596 TD->getTypeAllocSize(AllocTy));
2597
Dan Gohman4f8eea82010-02-01 18:27:38 +00002598 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2599 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002600 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002601 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002602 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002603 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2604}
2605
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002606const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002607 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2608 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002609 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002610 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002611 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002612 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2613}
2614
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002615const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002616 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002617 // If we have TargetData, we can bypass creating a target-independent
2618 // constant expression and then folding it back into a ConstantInt.
2619 // This is just a compile-time optimization.
2620 if (TD)
2621 return getConstant(TD->getIntPtrType(getContext()),
2622 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2623
Dan Gohman0f5efe52010-01-28 02:15:55 +00002624 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2625 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002626 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002627 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002628 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002629 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002630}
2631
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002632const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002633 Constant *FieldNo) {
2634 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002635 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002636 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002637 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002638 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002639 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002640}
2641
Dan Gohman0bba49c2009-07-07 17:06:11 +00002642const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002643 // Don't attempt to do anything other than create a SCEVUnknown object
2644 // here. createSCEV only calls getUnknown after checking for all other
2645 // interesting possibilities, and any other code that calls getUnknown
2646 // is doing so in order to hide a value from SCEV canonicalization.
2647
Dan Gohman1c343752009-06-27 21:21:31 +00002648 FoldingSetNodeID ID;
2649 ID.AddInteger(scUnknown);
2650 ID.AddPointer(V);
2651 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002652 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2653 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2654 "Stale SCEVUnknown in uniquing map!");
2655 return S;
2656 }
2657 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2658 FirstUnknown);
2659 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002660 UniqueSCEVs.InsertNode(S, IP);
2661 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002662}
2663
Chris Lattner53e677a2004-04-02 20:23:17 +00002664//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002665// Basic SCEV Analysis and PHI Idiom Recognition Code
2666//
2667
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002668/// isSCEVable - Test if values of the given type are analyzable within
2669/// the SCEV framework. This primarily includes integer types, and it
2670/// can optionally include pointer types if the ScalarEvolution class
2671/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002672bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002673 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002674 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002675}
2676
2677/// getTypeSizeInBits - Return the size in bits of the specified type,
2678/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002679uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002680 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2681
2682 // If we have a TargetData, use it!
2683 if (TD)
2684 return TD->getTypeSizeInBits(Ty);
2685
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002686 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002687 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002688 return Ty->getPrimitiveSizeInBits();
2689
2690 // The only other support type is pointer. Without TargetData, conservatively
2691 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002692 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002693 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002694}
2695
2696/// getEffectiveSCEVType - Return a type with the same bitwidth as
2697/// the given type and which represents how SCEV will treat the given
2698/// type, for which isSCEVable must return true. For pointer types,
2699/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002700Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002701 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2702
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002703 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002704 return Ty;
2705
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002706 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002707 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002708 if (TD) return TD->getIntPtrType(getContext());
2709
2710 // Without TargetData, conservatively assume pointers are 64-bit.
2711 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002712}
Chris Lattner53e677a2004-04-02 20:23:17 +00002713
Dan Gohman0bba49c2009-07-07 17:06:11 +00002714const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002715 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002716}
2717
Chris Lattner53e677a2004-04-02 20:23:17 +00002718/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2719/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002720const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002721 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002722
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002723 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2724 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002725 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002726
2727 // The process of creating a SCEV for V may have caused other SCEVs
2728 // to have been created, so it's necessary to insert the new entry
2729 // from scratch, rather than trying to remember the insert position
2730 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002731 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002732 return S;
2733}
2734
Dan Gohman2d1be872009-04-16 03:18:22 +00002735/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2736///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002737const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002738 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002739 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002740 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002741
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002742 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002743 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002744 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002745 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002746}
2747
2748/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002749const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002750 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002751 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002752 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002753
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002754 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002755 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002756 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002757 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002758 return getMinusSCEV(AllOnes, V);
2759}
2760
Andrew Trick3228cc22011-03-14 16:50:06 +00002761/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002762const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002763 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002764 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2765
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002766 // Fast path: X - X --> 0.
2767 if (LHS == RHS)
2768 return getConstant(LHS->getType(), 0);
2769
Dan Gohman2d1be872009-04-16 03:18:22 +00002770 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002771 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002772}
2773
2774/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2775/// input value to the specified type. If the type must be extended, it is zero
2776/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002777const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002778ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2779 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002780 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2781 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002782 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002783 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002784 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002785 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002786 return getTruncateExpr(V, Ty);
2787 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002788}
2789
2790/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2791/// input value to the specified type. If the type must be extended, it is sign
2792/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002793const SCEV *
2794ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002795 Type *Ty) {
2796 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002797 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2798 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002799 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002800 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002801 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002802 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002803 return getTruncateExpr(V, Ty);
2804 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002805}
2806
Dan Gohman467c4302009-05-13 03:46:30 +00002807/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2808/// input value to the specified type. If the type must be extended, it is zero
2809/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002810const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002811ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2812 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002813 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2814 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002815 "Cannot noop or zero extend with non-integer arguments!");
2816 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2817 "getNoopOrZeroExtend cannot truncate!");
2818 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2819 return V; // No conversion
2820 return getZeroExtendExpr(V, Ty);
2821}
2822
2823/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2824/// input value to the specified type. If the type must be extended, it is sign
2825/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002826const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002827ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2828 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002829 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2830 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002831 "Cannot noop or sign extend with non-integer arguments!");
2832 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2833 "getNoopOrSignExtend cannot truncate!");
2834 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2835 return V; // No conversion
2836 return getSignExtendExpr(V, Ty);
2837}
2838
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002839/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2840/// the input value to the specified type. If the type must be extended,
2841/// it is extended with unspecified bits. The conversion must not be
2842/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002843const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002844ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2845 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002846 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2847 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002848 "Cannot noop or any extend with non-integer arguments!");
2849 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2850 "getNoopOrAnyExtend cannot truncate!");
2851 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2852 return V; // No conversion
2853 return getAnyExtendExpr(V, Ty);
2854}
2855
Dan Gohman467c4302009-05-13 03:46:30 +00002856/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2857/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002858const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002859ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2860 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002861 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2862 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002863 "Cannot truncate or noop with non-integer arguments!");
2864 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2865 "getTruncateOrNoop cannot extend!");
2866 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2867 return V; // No conversion
2868 return getTruncateExpr(V, Ty);
2869}
2870
Dan Gohmana334aa72009-06-22 00:31:57 +00002871/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2872/// the types using zero-extension, and then perform a umax operation
2873/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002874const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2875 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002876 const SCEV *PromotedLHS = LHS;
2877 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002878
2879 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2880 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2881 else
2882 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2883
2884 return getUMaxExpr(PromotedLHS, PromotedRHS);
2885}
2886
Dan Gohmanc9759e82009-06-22 15:03:27 +00002887/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2888/// the types using zero-extension, and then perform a umin operation
2889/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002890const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2891 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002892 const SCEV *PromotedLHS = LHS;
2893 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002894
2895 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2896 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2897 else
2898 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2899
2900 return getUMinExpr(PromotedLHS, PromotedRHS);
2901}
2902
Andrew Trickb12a7542011-03-17 23:51:11 +00002903/// getPointerBase - Transitively follow the chain of pointer-type operands
2904/// until reaching a SCEV that does not have a single pointer operand. This
2905/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2906/// but corner cases do exist.
2907const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2908 // A pointer operand may evaluate to a nonpointer expression, such as null.
2909 if (!V->getType()->isPointerTy())
2910 return V;
2911
2912 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2913 return getPointerBase(Cast->getOperand());
2914 }
2915 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2916 const SCEV *PtrOp = 0;
2917 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2918 I != E; ++I) {
2919 if ((*I)->getType()->isPointerTy()) {
2920 // Cannot find the base of an expression with multiple pointer operands.
2921 if (PtrOp)
2922 return V;
2923 PtrOp = *I;
2924 }
2925 }
2926 if (!PtrOp)
2927 return V;
2928 return getPointerBase(PtrOp);
2929 }
2930 return V;
2931}
2932
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002933/// PushDefUseChildren - Push users of the given Instruction
2934/// onto the given Worklist.
2935static void
2936PushDefUseChildren(Instruction *I,
2937 SmallVectorImpl<Instruction *> &Worklist) {
2938 // Push the def-use children onto the Worklist stack.
2939 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2940 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002941 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002942}
2943
2944/// ForgetSymbolicValue - This looks up computed SCEV values for all
2945/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002946/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002947/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002948void
Dan Gohman85669632010-02-25 06:57:05 +00002949ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002950 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002951 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002952
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002953 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002954 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002955 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002956 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002957 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002958
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002959 ValueExprMapType::iterator It =
2960 ValueExprMap.find(static_cast<Value *>(I));
2961 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002962 const SCEV *Old = It->second;
2963
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002964 // Short-circuit the def-use traversal if the symbolic name
2965 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002966 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002967 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002968
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002969 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002970 // structure, it's a PHI that's in the progress of being computed
2971 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2972 // additional loop trip count information isn't going to change anything.
2973 // In the second case, createNodeForPHI will perform the necessary
2974 // updates on its own when it gets to that point. In the third, we do
2975 // want to forget the SCEVUnknown.
2976 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002977 !isa<SCEVUnknown>(Old) ||
2978 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002979 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002980 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002981 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002982 }
2983
2984 PushDefUseChildren(I, Worklist);
2985 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002986}
Chris Lattner53e677a2004-04-02 20:23:17 +00002987
2988/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2989/// a loop header, making it a potential recurrence, or it doesn't.
2990///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002991const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002992 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2993 if (L->getHeader() == PN->getParent()) {
2994 // The loop may have multiple entrances or multiple exits; we can analyze
2995 // this phi as an addrec if it has a unique entry value and a unique
2996 // backedge value.
2997 Value *BEValueV = 0, *StartValueV = 0;
2998 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2999 Value *V = PN->getIncomingValue(i);
3000 if (L->contains(PN->getIncomingBlock(i))) {
3001 if (!BEValueV) {
3002 BEValueV = V;
3003 } else if (BEValueV != V) {
3004 BEValueV = 0;
3005 break;
3006 }
3007 } else if (!StartValueV) {
3008 StartValueV = V;
3009 } else if (StartValueV != V) {
3010 StartValueV = 0;
3011 break;
3012 }
3013 }
3014 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003015 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003016 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003017 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003018 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003019 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00003020
3021 // Using this symbolic name for the PHI, analyze the value coming around
3022 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003023 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00003024
3025 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3026 // has a special value for the first iteration of the loop.
3027
3028 // If the value coming around the backedge is an add with the symbolic
3029 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00003030 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003031 // If there is a single occurrence of the symbolic value, replace it
3032 // with a recurrence.
3033 unsigned FoundIndex = Add->getNumOperands();
3034 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3035 if (Add->getOperand(i) == SymbolicName)
3036 if (FoundIndex == e) {
3037 FoundIndex = i;
3038 break;
3039 }
3040
3041 if (FoundIndex != Add->getNumOperands()) {
3042 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003043 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00003044 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3045 if (i != FoundIndex)
3046 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00003047 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00003048
3049 // This is not a valid addrec if the step amount is varying each
3050 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003051 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00003052 (isa<SCEVAddRecExpr>(Accum) &&
3053 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003054 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00003055
3056 // If the increment doesn't overflow, then neither the addrec nor
3057 // the post-increment will overflow.
3058 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3059 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003060 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003061 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003062 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003063 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003064 dyn_cast<GEPOperator>(BEValueV)) {
3065 // If the increment is an inbounds GEP, then we know the address
3066 // space cannot be wrapped around. We cannot make any guarantee
3067 // about signed or unsigned overflow because pointers are
3068 // unsigned but we may have a negative index from the base
3069 // pointer.
3070 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003071 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003072 }
3073
Dan Gohman27dead42010-04-12 07:49:36 +00003074 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003075 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003076
Dan Gohmana10756e2010-01-21 02:09:26 +00003077 // Since the no-wrap flags are on the increment, they apply to the
3078 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003079 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003080 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003081 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003082
3083 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003084 // to be symbolic. We now need to go back and purge all of the
3085 // entries for the scalars that use the symbolic expression.
3086 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003087 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003088 return PHISCEV;
3089 }
3090 }
Dan Gohman622ed672009-05-04 22:02:23 +00003091 } else if (const SCEVAddRecExpr *AddRec =
3092 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003093 // Otherwise, this could be a loop like this:
3094 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3095 // In this case, j = {1,+,1} and BEValue is j.
3096 // Because the other in-value of i (0) fits the evolution of BEValue
3097 // i really is an addrec evolution.
3098 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003099 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003100
3101 // If StartVal = j.start - j.stride, we can use StartVal as the
3102 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003103 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003104 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003105 // FIXME: For constant StartVal, we should be able to infer
3106 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003107 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003108 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3109 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003110
3111 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003112 // to be symbolic. We now need to go back and purge all of the
3113 // entries for the scalars that use the symbolic expression.
3114 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003115 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003116 return PHISCEV;
3117 }
3118 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003119 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003120 }
Dan Gohman27dead42010-04-12 07:49:36 +00003121 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003122
Dan Gohman85669632010-02-25 06:57:05 +00003123 // If the PHI has a single incoming value, follow that value, unless the
3124 // PHI's incoming blocks are in a different loop, in which case doing so
3125 // risks breaking LCSSA form. Instcombine would normally zap these, but
3126 // it doesn't have DominatorTree information, so it may miss cases.
Chad Rosier618c1db2011-12-01 03:08:23 +00003127 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003128 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003129 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003130
Chris Lattner53e677a2004-04-02 20:23:17 +00003131 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003132 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003133}
3134
Dan Gohman26466c02009-05-08 20:26:55 +00003135/// createNodeForGEP - Expand GEP instructions into add and multiply
3136/// operations. This allows them to be analyzed by regular SCEV code.
3137///
Dan Gohmand281ed22009-12-18 02:09:29 +00003138const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003139
Dan Gohmanb9f96512010-06-30 07:16:37 +00003140 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3141 // Add expression, because the Instruction may be guarded by control flow
3142 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003143 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003144 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003145
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003146 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003147 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003148 // Don't attempt to analyze GEPs over unsized objects.
3149 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3150 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003151 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003152 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003153 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003154 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003155 I != E; ++I) {
3156 Value *Index = *I;
3157 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003158 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003159 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003160 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00003161 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3162
Dan Gohmanb9f96512010-06-30 07:16:37 +00003163 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003164 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003165 } else {
3166 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003167 const SCEV *ElementSize = getSizeOfExpr(*GTI);
3168 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003169 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003170 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3171
Dan Gohmanb9f96512010-06-30 07:16:37 +00003172 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003173 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3174 isInBounds ? SCEV::FlagNSW :
3175 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003176
3177 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003178 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003179 }
3180 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003181
3182 // Get the SCEV for the GEP base.
3183 const SCEV *BaseS = getSCEV(Base);
3184
Dan Gohmanb9f96512010-06-30 07:16:37 +00003185 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003186 return getAddExpr(BaseS, TotalOffset,
Benjamin Kramer86df0622012-04-17 06:33:57 +00003187 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003188}
3189
Nick Lewycky83bb0052007-11-22 07:59:40 +00003190/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3191/// guaranteed to end in (at every loop iteration). It is, at the same time,
3192/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3193/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003194uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003195ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003196 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003197 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003198
Dan Gohman622ed672009-05-04 22:02:23 +00003199 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003200 return std::min(GetMinTrailingZeros(T->getOperand()),
3201 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003202
Dan Gohman622ed672009-05-04 22:02:23 +00003203 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003204 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3205 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3206 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003207 }
3208
Dan Gohman622ed672009-05-04 22:02:23 +00003209 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003210 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3211 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3212 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003213 }
3214
Dan Gohman622ed672009-05-04 22:02:23 +00003215 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003216 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003217 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003218 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003219 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003220 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003221 }
3222
Dan Gohman622ed672009-05-04 22:02:23 +00003223 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003224 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003225 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3226 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003227 for (unsigned i = 1, e = M->getNumOperands();
3228 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003229 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003230 BitWidth);
3231 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003232 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003233
Dan Gohman622ed672009-05-04 22:02:23 +00003234 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003235 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003236 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003237 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003238 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003239 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003240 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003241
Dan Gohman622ed672009-05-04 22:02:23 +00003242 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003243 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003244 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003245 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003246 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003247 return MinOpRes;
3248 }
3249
Dan Gohman622ed672009-05-04 22:02:23 +00003250 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003251 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003252 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003253 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003254 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003255 return MinOpRes;
3256 }
3257
Dan Gohman2c364ad2009-06-19 23:29:04 +00003258 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3259 // For a SCEVUnknown, ask ValueTracking.
3260 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003261 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003262 ComputeMaskedBits(U->getValue(), Zeros, Ones);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003263 return Zeros.countTrailingOnes();
3264 }
3265
3266 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003267 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003268}
Chris Lattner53e677a2004-04-02 20:23:17 +00003269
Dan Gohman85b05a22009-07-13 21:35:55 +00003270/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3271///
3272ConstantRange
3273ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003274 // See if we've computed this range already.
3275 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3276 if (I != UnsignedRanges.end())
3277 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003278
3279 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003280 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003281
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003282 unsigned BitWidth = getTypeSizeInBits(S->getType());
3283 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3284
3285 // If the value has known zeros, the maximum unsigned value will have those
3286 // known zeros as well.
3287 uint32_t TZ = GetMinTrailingZeros(S);
3288 if (TZ != 0)
3289 ConservativeResult =
3290 ConstantRange(APInt::getMinValue(BitWidth),
3291 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3292
Dan Gohman85b05a22009-07-13 21:35:55 +00003293 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3294 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3295 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3296 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003297 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003298 }
3299
3300 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3301 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3302 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3303 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003304 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003305 }
3306
3307 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3308 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3309 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3310 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003311 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003312 }
3313
3314 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3315 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3316 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3317 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003318 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003319 }
3320
3321 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3322 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3323 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003324 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003325 }
3326
3327 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3328 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003329 return setUnsignedRange(ZExt,
3330 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003331 }
3332
3333 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3334 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003335 return setUnsignedRange(SExt,
3336 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003337 }
3338
3339 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3340 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003341 return setUnsignedRange(Trunc,
3342 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003343 }
3344
Dan Gohman85b05a22009-07-13 21:35:55 +00003345 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003346 // If there's no unsigned wrap, the value will never be less than its
3347 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003348 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003349 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003350 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003351 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003352 ConservativeResult.intersectWith(
3353 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003354
3355 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003356 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003357 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003358 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003359 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3360 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003361 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3362
3363 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003364 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003365
3366 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003367 ConstantRange StepRange = getSignedRange(Step);
3368 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3369 ConstantRange EndRange =
3370 StartRange.add(MaxBECountRange.multiply(StepRange));
3371
3372 // Check for overflow. This must be done with ConstantRange arithmetic
3373 // because we could be called from within the ScalarEvolution overflow
3374 // checking code.
3375 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3376 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3377 ConstantRange ExtMaxBECountRange =
3378 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3379 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3380 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3381 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003382 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003383
Dan Gohman85b05a22009-07-13 21:35:55 +00003384 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3385 EndRange.getUnsignedMin());
3386 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3387 EndRange.getUnsignedMax());
3388 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003389 return setUnsignedRange(AddRec, ConservativeResult);
3390 return setUnsignedRange(AddRec,
3391 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003392 }
3393 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003394
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003395 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003396 }
3397
3398 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3399 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003400 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003401 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003402 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003403 return setUnsignedRange(U, ConservativeResult);
3404 return setUnsignedRange(U,
3405 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003406 }
3407
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003408 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003409}
3410
Dan Gohman85b05a22009-07-13 21:35:55 +00003411/// getSignedRange - Determine the signed range for a particular SCEV.
3412///
3413ConstantRange
3414ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003415 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003416 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3417 if (I != SignedRanges.end())
3418 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003419
Dan Gohman85b05a22009-07-13 21:35:55 +00003420 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003421 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003422
Dan Gohman52fddd32010-01-26 04:40:18 +00003423 unsigned BitWidth = getTypeSizeInBits(S->getType());
3424 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3425
3426 // If the value has known zeros, the maximum signed value will have those
3427 // known zeros as well.
3428 uint32_t TZ = GetMinTrailingZeros(S);
3429 if (TZ != 0)
3430 ConservativeResult =
3431 ConstantRange(APInt::getSignedMinValue(BitWidth),
3432 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3433
Dan Gohman85b05a22009-07-13 21:35:55 +00003434 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3435 ConstantRange X = getSignedRange(Add->getOperand(0));
3436 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3437 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003438 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003439 }
3440
Dan Gohman85b05a22009-07-13 21:35:55 +00003441 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3442 ConstantRange X = getSignedRange(Mul->getOperand(0));
3443 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3444 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003445 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003446 }
3447
Dan Gohman85b05a22009-07-13 21:35:55 +00003448 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3449 ConstantRange X = getSignedRange(SMax->getOperand(0));
3450 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3451 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003452 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003453 }
Dan Gohman62849c02009-06-24 01:05:09 +00003454
Dan Gohman85b05a22009-07-13 21:35:55 +00003455 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3456 ConstantRange X = getSignedRange(UMax->getOperand(0));
3457 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3458 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003459 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003460 }
Dan Gohman62849c02009-06-24 01:05:09 +00003461
Dan Gohman85b05a22009-07-13 21:35:55 +00003462 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3463 ConstantRange X = getSignedRange(UDiv->getLHS());
3464 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003465 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003466 }
Dan Gohman62849c02009-06-24 01:05:09 +00003467
Dan Gohman85b05a22009-07-13 21:35:55 +00003468 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3469 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003470 return setSignedRange(ZExt,
3471 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003472 }
3473
3474 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3475 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003476 return setSignedRange(SExt,
3477 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003478 }
3479
3480 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3481 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003482 return setSignedRange(Trunc,
3483 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003484 }
3485
Dan Gohman85b05a22009-07-13 21:35:55 +00003486 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003487 // If there's no signed wrap, and all the operands have the same sign or
3488 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003489 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003490 bool AllNonNeg = true;
3491 bool AllNonPos = true;
3492 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3493 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3494 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3495 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003496 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003497 ConservativeResult = ConservativeResult.intersectWith(
3498 ConstantRange(APInt(BitWidth, 0),
3499 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003500 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003501 ConservativeResult = ConservativeResult.intersectWith(
3502 ConstantRange(APInt::getSignedMinValue(BitWidth),
3503 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003504 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003505
3506 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003507 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003508 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003509 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003510 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3511 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003512 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3513
3514 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003515 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003516
3517 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003518 ConstantRange StepRange = getSignedRange(Step);
3519 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3520 ConstantRange EndRange =
3521 StartRange.add(MaxBECountRange.multiply(StepRange));
3522
3523 // Check for overflow. This must be done with ConstantRange arithmetic
3524 // because we could be called from within the ScalarEvolution overflow
3525 // checking code.
3526 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3527 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3528 ConstantRange ExtMaxBECountRange =
3529 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3530 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3531 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3532 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003533 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003534
Dan Gohman85b05a22009-07-13 21:35:55 +00003535 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3536 EndRange.getSignedMin());
3537 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3538 EndRange.getSignedMax());
3539 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003540 return setSignedRange(AddRec, ConservativeResult);
3541 return setSignedRange(AddRec,
3542 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003543 }
Dan Gohman62849c02009-06-24 01:05:09 +00003544 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003545
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003546 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003547 }
3548
Dan Gohman2c364ad2009-06-19 23:29:04 +00003549 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3550 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003551 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003552 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003553 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3554 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003555 return setSignedRange(U, ConservativeResult);
3556 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003557 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003558 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003559 }
3560
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003561 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003562}
3563
Chris Lattner53e677a2004-04-02 20:23:17 +00003564/// createSCEV - We know that there is no SCEV for the specified value.
3565/// Analyze the expression.
3566///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003567const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003568 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003569 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003570
Dan Gohman6c459a22008-06-22 19:56:46 +00003571 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003572 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003573 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003574
3575 // Don't attempt to analyze instructions in blocks that aren't
3576 // reachable. Such instructions don't matter, and they aren't required
3577 // to obey basic rules for definitions dominating uses which this
3578 // analysis depends on.
3579 if (!DT->isReachableFromEntry(I->getParent()))
3580 return getUnknown(V);
3581 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003582 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003583 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3584 return getConstant(CI);
3585 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003586 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003587 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3588 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003589 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003590 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003591
Dan Gohmanca178902009-07-17 20:47:02 +00003592 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003593 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003594 case Instruction::Add: {
3595 // The simple thing to do would be to just call getSCEV on both operands
3596 // and call getAddExpr with the result. However if we're looking at a
3597 // bunch of things all added together, this can be quite inefficient,
3598 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3599 // Instead, gather up all the operands and make a single getAddExpr call.
3600 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickecb35ec2011-11-29 02:16:38 +00003601 //
3602 // Don't apply this instruction's NSW or NUW flags to the new
3603 // expression. The instruction may be guarded by control flow that the
3604 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3605 // mapped to the same SCEV expression, and it would be incorrect to transfer
3606 // NSW/NUW semantics to those operations.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003607 SmallVector<const SCEV *, 4> AddOps;
3608 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003609 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3610 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3611 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3612 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003613 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003614 const SCEV *Op1 = getSCEV(U->getOperand(1));
3615 if (Opcode == Instruction::Sub)
3616 AddOps.push_back(getNegativeSCEV(Op1));
3617 else
3618 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003619 }
3620 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickecb35ec2011-11-29 02:16:38 +00003621 return getAddExpr(AddOps);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003622 }
3623 case Instruction::Mul: {
Andrew Trickecb35ec2011-11-29 02:16:38 +00003624 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003625 SmallVector<const SCEV *, 4> MulOps;
3626 MulOps.push_back(getSCEV(U->getOperand(1)));
3627 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003628 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003629 Op = U->getOperand(0)) {
3630 U = cast<Operator>(Op);
3631 MulOps.push_back(getSCEV(U->getOperand(1)));
3632 }
3633 MulOps.push_back(getSCEV(U->getOperand(0)));
3634 return getMulExpr(MulOps);
3635 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003636 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003637 return getUDivExpr(getSCEV(U->getOperand(0)),
3638 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003639 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003640 return getMinusSCEV(getSCEV(U->getOperand(0)),
3641 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003642 case Instruction::And:
3643 // For an expression like x&255 that merely masks off the high bits,
3644 // use zext(trunc(x)) as the SCEV expression.
3645 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003646 if (CI->isNullValue())
3647 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003648 if (CI->isAllOnesValue())
3649 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003650 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003651
3652 // Instcombine's ShrinkDemandedConstant may strip bits out of
3653 // constants, obscuring what would otherwise be a low-bits mask.
3654 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3655 // knew about to reconstruct a low-bits mask value.
3656 unsigned LZ = A.countLeadingZeros();
3657 unsigned BitWidth = A.getBitWidth();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003658 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003659 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003660
3661 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3662
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003663 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003664 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003665 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003666 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003667 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003668 }
3669 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003670
Dan Gohman6c459a22008-06-22 19:56:46 +00003671 case Instruction::Or:
3672 // If the RHS of the Or is a constant, we may have something like:
3673 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3674 // optimizations will transparently handle this case.
3675 //
3676 // In order for this transformation to be safe, the LHS must be of the
3677 // form X*(2^n) and the Or constant must be less than 2^n.
3678 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003679 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003680 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003681 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003682 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3683 // Build a plain add SCEV.
3684 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3685 // If the LHS of the add was an addrec and it has no-wrap flags,
3686 // transfer the no-wrap flags, since an or won't introduce a wrap.
3687 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3688 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003689 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3690 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003691 }
3692 return S;
3693 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003694 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003695 break;
3696 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003697 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003698 // If the RHS of the xor is a signbit, then this is just an add.
3699 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003700 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003701 return getAddExpr(getSCEV(U->getOperand(0)),
3702 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003703
3704 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003705 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003706 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003707
3708 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3709 // This is a variant of the check for xor with -1, and it handles
3710 // the case where instcombine has trimmed non-demanded bits out
3711 // of an xor with -1.
3712 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3713 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3714 if (BO->getOpcode() == Instruction::And &&
3715 LCI->getValue() == CI->getValue())
3716 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003717 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003718 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003719 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003720 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003721 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3722
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003723 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003724 // mask off the high bits. Complement the operand and
3725 // re-apply the zext.
3726 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3727 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3728
3729 // If C is a single bit, it may be in the sign-bit position
3730 // before the zero-extend. In this case, represent the xor
3731 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003732 APInt Trunc = CI->getValue().trunc(Z0TySize);
3733 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003734 Trunc.isSignBit())
3735 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3736 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003737 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003738 }
3739 break;
3740
3741 case Instruction::Shl:
3742 // Turn shift left of a constant amount into a multiply.
3743 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003744 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003745
3746 // If the shift count is not less than the bitwidth, the result of
3747 // the shift is undefined. Don't try to analyze it, because the
3748 // resolution chosen here may differ from the resolution chosen in
3749 // other parts of the compiler.
3750 if (SA->getValue().uge(BitWidth))
3751 break;
3752
Owen Andersoneed707b2009-07-24 23:12:02 +00003753 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003754 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003755 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003756 }
3757 break;
3758
Nick Lewycky01eaf802008-07-07 06:15:49 +00003759 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003760 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003761 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003762 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003763
3764 // If the shift count is not less than the bitwidth, the result of
3765 // the shift is undefined. Don't try to analyze it, because the
3766 // resolution chosen here may differ from the resolution chosen in
3767 // other parts of the compiler.
3768 if (SA->getValue().uge(BitWidth))
3769 break;
3770
Owen Andersoneed707b2009-07-24 23:12:02 +00003771 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003772 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003773 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003774 }
3775 break;
3776
Dan Gohman4ee29af2009-04-21 02:26:00 +00003777 case Instruction::AShr:
3778 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3779 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003780 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003781 if (L->getOpcode() == Instruction::Shl &&
3782 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003783 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3784
3785 // If the shift count is not less than the bitwidth, the result of
3786 // the shift is undefined. Don't try to analyze it, because the
3787 // resolution chosen here may differ from the resolution chosen in
3788 // other parts of the compiler.
3789 if (CI->getValue().uge(BitWidth))
3790 break;
3791
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003792 uint64_t Amt = BitWidth - CI->getZExtValue();
3793 if (Amt == BitWidth)
3794 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003795 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003796 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003797 IntegerType::get(getContext(),
3798 Amt)),
3799 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003800 }
3801 break;
3802
Dan Gohman6c459a22008-06-22 19:56:46 +00003803 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003804 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003805
3806 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003807 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003808
3809 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003810 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003811
3812 case Instruction::BitCast:
3813 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003814 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003815 return getSCEV(U->getOperand(0));
3816 break;
3817
Dan Gohman4f8eea82010-02-01 18:27:38 +00003818 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3819 // lead to pointer expressions which cannot safely be expanded to GEPs,
3820 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3821 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003822
Dan Gohman26466c02009-05-08 20:26:55 +00003823 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003824 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003825
Dan Gohman6c459a22008-06-22 19:56:46 +00003826 case Instruction::PHI:
3827 return createNodeForPHI(cast<PHINode>(U));
3828
3829 case Instruction::Select:
3830 // This could be a smax or umax that was lowered earlier.
3831 // Try to recover it.
3832 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3833 Value *LHS = ICI->getOperand(0);
3834 Value *RHS = ICI->getOperand(1);
3835 switch (ICI->getPredicate()) {
3836 case ICmpInst::ICMP_SLT:
3837 case ICmpInst::ICMP_SLE:
3838 std::swap(LHS, RHS);
3839 // fall through
3840 case ICmpInst::ICMP_SGT:
3841 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003842 // a >s b ? a+x : b+x -> smax(a, b)+x
3843 // a >s b ? b+x : a+x -> smin(a, b)+x
3844 if (LHS->getType() == U->getType()) {
3845 const SCEV *LS = getSCEV(LHS);
3846 const SCEV *RS = getSCEV(RHS);
3847 const SCEV *LA = getSCEV(U->getOperand(1));
3848 const SCEV *RA = getSCEV(U->getOperand(2));
3849 const SCEV *LDiff = getMinusSCEV(LA, LS);
3850 const SCEV *RDiff = getMinusSCEV(RA, RS);
3851 if (LDiff == RDiff)
3852 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3853 LDiff = getMinusSCEV(LA, RS);
3854 RDiff = getMinusSCEV(RA, LS);
3855 if (LDiff == RDiff)
3856 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3857 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003858 break;
3859 case ICmpInst::ICMP_ULT:
3860 case ICmpInst::ICMP_ULE:
3861 std::swap(LHS, RHS);
3862 // fall through
3863 case ICmpInst::ICMP_UGT:
3864 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003865 // a >u b ? a+x : b+x -> umax(a, b)+x
3866 // a >u b ? b+x : a+x -> umin(a, b)+x
3867 if (LHS->getType() == U->getType()) {
3868 const SCEV *LS = getSCEV(LHS);
3869 const SCEV *RS = getSCEV(RHS);
3870 const SCEV *LA = getSCEV(U->getOperand(1));
3871 const SCEV *RA = getSCEV(U->getOperand(2));
3872 const SCEV *LDiff = getMinusSCEV(LA, LS);
3873 const SCEV *RDiff = getMinusSCEV(RA, RS);
3874 if (LDiff == RDiff)
3875 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3876 LDiff = getMinusSCEV(LA, RS);
3877 RDiff = getMinusSCEV(RA, LS);
3878 if (LDiff == RDiff)
3879 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3880 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003881 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003882 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003883 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3884 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003885 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003886 cast<ConstantInt>(RHS)->isZero()) {
3887 const SCEV *One = getConstant(LHS->getType(), 1);
3888 const SCEV *LS = getSCEV(LHS);
3889 const SCEV *LA = getSCEV(U->getOperand(1));
3890 const SCEV *RA = getSCEV(U->getOperand(2));
3891 const SCEV *LDiff = getMinusSCEV(LA, LS);
3892 const SCEV *RDiff = getMinusSCEV(RA, One);
3893 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003894 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003895 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003896 break;
3897 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003898 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3899 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003900 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003901 cast<ConstantInt>(RHS)->isZero()) {
3902 const SCEV *One = getConstant(LHS->getType(), 1);
3903 const SCEV *LS = getSCEV(LHS);
3904 const SCEV *LA = getSCEV(U->getOperand(1));
3905 const SCEV *RA = getSCEV(U->getOperand(2));
3906 const SCEV *LDiff = getMinusSCEV(LA, One);
3907 const SCEV *RDiff = getMinusSCEV(RA, LS);
3908 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003909 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003910 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003911 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003912 default:
3913 break;
3914 }
3915 }
3916
3917 default: // We cannot analyze this expression.
3918 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003919 }
3920
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003921 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003922}
3923
3924
3925
3926//===----------------------------------------------------------------------===//
3927// Iteration Count Computation Code
3928//
3929
Andrew Trickb1831c62011-08-11 23:36:16 +00003930/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Trick3eada312012-01-11 06:52:55 +00003931/// normal unsigned value. Returns 0 if the trip count is unknown or not
3932/// constant. Will also return 0 if the maximum trip count is very large (>=
3933/// 2^32).
3934///
3935/// This "trip count" assumes that control exits via ExitingBlock. More
3936/// precisely, it is the number of times that control may reach ExitingBlock
3937/// before taking the branch. For loops with multiple exits, it may not be the
3938/// number times that the loop header executes because the loop may exit
3939/// prematurely via another branch.
3940unsigned ScalarEvolution::
3941getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) {
Andrew Trickb1831c62011-08-11 23:36:16 +00003942 const SCEVConstant *ExitCount =
Andrew Trick3eada312012-01-11 06:52:55 +00003943 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trickb1831c62011-08-11 23:36:16 +00003944 if (!ExitCount)
3945 return 0;
3946
3947 ConstantInt *ExitConst = ExitCount->getValue();
3948
3949 // Guard against huge trip counts.
3950 if (ExitConst->getValue().getActiveBits() > 32)
3951 return 0;
3952
3953 // In case of integer overflow, this returns 0, which is correct.
3954 return ((unsigned)ExitConst->getZExtValue()) + 1;
3955}
3956
3957/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3958/// trip count of this loop as a normal unsigned value, if possible. This
3959/// means that the actual trip count is always a multiple of the returned
3960/// value (don't forget the trip count could very well be zero as well!).
3961///
3962/// Returns 1 if the trip count is unknown or not guaranteed to be the
3963/// multiple of a constant (which is also the case if the trip count is simply
3964/// constant, use getSmallConstantTripCount for that case), Will also return 1
3965/// if the trip count is very large (>= 2^32).
Andrew Trick3eada312012-01-11 06:52:55 +00003966///
3967/// As explained in the comments for getSmallConstantTripCount, this assumes
3968/// that control exits the loop via ExitingBlock.
3969unsigned ScalarEvolution::
3970getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) {
3971 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trickb1831c62011-08-11 23:36:16 +00003972 if (ExitCount == getCouldNotCompute())
3973 return 1;
3974
3975 // Get the trip count from the BE count by adding 1.
3976 const SCEV *TCMul = getAddExpr(ExitCount,
3977 getConstant(ExitCount->getType(), 1));
3978 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3979 // to factor simple cases.
3980 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3981 TCMul = Mul->getOperand(0);
3982
3983 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3984 if (!MulC)
3985 return 1;
3986
3987 ConstantInt *Result = MulC->getValue();
3988
3989 // Guard against huge trip counts.
3990 if (!Result || Result->getValue().getActiveBits() > 32)
3991 return 1;
3992
3993 return (unsigned)Result->getZExtValue();
3994}
3995
Andrew Trick5116ff62011-07-26 17:19:55 +00003996// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickfcb43562011-08-02 04:23:35 +00003997// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00003998// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00003999const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4000 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00004001}
4002
Dan Gohman46bdfb02009-02-24 18:55:53 +00004003/// getBackedgeTakenCount - If the specified loop has a predictable
4004/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4005/// object. The backedge-taken count is the number of times the loop header
4006/// will be branched to from within the loop. This is one less than the
4007/// trip count of the loop, since it doesn't count the first iteration,
4008/// when the header is branched to from outside the loop.
4009///
4010/// Note that it is not valid to call this method on a loop without a
4011/// loop-invariant backedge-taken count (see
4012/// hasLoopInvariantBackedgeTakenCount).
4013///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004014const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004015 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004016}
4017
4018/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4019/// return the least SCEV value that is known never to be less than the
4020/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004021const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004022 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004023}
4024
Dan Gohman59ae6b92009-07-08 19:23:34 +00004025/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4026/// onto the given Worklist.
4027static void
4028PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4029 BasicBlock *Header = L->getHeader();
4030
4031 // Push all Loop-header PHIs onto the Worklist stack.
4032 for (BasicBlock::iterator I = Header->begin();
4033 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4034 Worklist.push_back(PN);
4035}
4036
Dan Gohmana1af7572009-04-30 20:47:05 +00004037const ScalarEvolution::BackedgeTakenInfo &
4038ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004039 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004040 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00004041 // update the value. The temporary CouldNotCompute value tells SCEV
4042 // code elsewhere that it shouldn't attempt to request a new
4043 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004044 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00004045 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00004046 if (!Pair.second)
4047 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00004048
Andrew Trick5116ff62011-07-26 17:19:55 +00004049 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4050 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4051 // must be cleared in this scope.
4052 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4053
4054 if (Result.getExact(this) != getCouldNotCompute()) {
4055 assert(isLoopInvariant(Result.getExact(this), L) &&
4056 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00004057 "Computed backedge-taken count isn't loop invariant for loop!");
4058 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00004059 }
4060 else if (Result.getMax(this) == getCouldNotCompute() &&
4061 isa<PHINode>(L->getHeader()->begin())) {
4062 // Only count loops that have phi nodes as not being computable.
4063 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004064 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004065
Chris Lattnerf1859892011-01-09 02:16:18 +00004066 // Now that we know more about the trip count for this loop, forget any
4067 // existing SCEV values for PHI nodes in this loop since they are only
4068 // conservative estimates made without the benefit of trip count
4069 // information. This is similar to the code in forgetLoop, except that
4070 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004071 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004072 SmallVector<Instruction *, 16> Worklist;
4073 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004074
Chris Lattnerf1859892011-01-09 02:16:18 +00004075 SmallPtrSet<Instruction *, 8> Visited;
4076 while (!Worklist.empty()) {
4077 Instruction *I = Worklist.pop_back_val();
4078 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004079
Chris Lattnerf1859892011-01-09 02:16:18 +00004080 ValueExprMapType::iterator It =
4081 ValueExprMap.find(static_cast<Value *>(I));
4082 if (It != ValueExprMap.end()) {
4083 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004084
Chris Lattnerf1859892011-01-09 02:16:18 +00004085 // SCEVUnknown for a PHI either means that it has an unrecognized
4086 // structure, or it's a PHI that's in the progress of being computed
4087 // by createNodeForPHI. In the former case, additional loop trip
4088 // count information isn't going to change anything. In the later
4089 // case, createNodeForPHI will perform the necessary updates on its
4090 // own when it gets to that point.
4091 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4092 forgetMemoizedResults(Old);
4093 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004094 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004095 if (PHINode *PN = dyn_cast<PHINode>(I))
4096 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004097 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004098
4099 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004100 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004101 }
Dan Gohman308bec32011-04-25 22:48:29 +00004102
4103 // Re-lookup the insert position, since the call to
4104 // ComputeBackedgeTakenCount above could result in a
4105 // recusive call to getBackedgeTakenInfo (on a different
4106 // loop), which would invalidate the iterator computed
4107 // earlier.
4108 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004109}
4110
Dan Gohman4c7279a2009-10-31 15:04:55 +00004111/// forgetLoop - This method should be called by the client when it has
4112/// changed a loop in a way that may effect ScalarEvolution's ability to
4113/// compute a trip count, or if the loop is deleted.
4114void ScalarEvolution::forgetLoop(const Loop *L) {
4115 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004116 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4117 BackedgeTakenCounts.find(L);
4118 if (BTCPos != BackedgeTakenCounts.end()) {
4119 BTCPos->second.clear();
4120 BackedgeTakenCounts.erase(BTCPos);
4121 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004122
Dan Gohman4c7279a2009-10-31 15:04:55 +00004123 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004124 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004125 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004126
Dan Gohman59ae6b92009-07-08 19:23:34 +00004127 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004128 while (!Worklist.empty()) {
4129 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004130 if (!Visited.insert(I)) continue;
4131
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004132 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4133 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004134 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004135 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004136 if (PHINode *PN = dyn_cast<PHINode>(I))
4137 ConstantEvolutionLoopExitValue.erase(PN);
4138 }
4139
4140 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004141 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004142
4143 // Forget all contained loops too, to avoid dangling entries in the
4144 // ValuesAtScopes map.
4145 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4146 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004147}
4148
Eric Christophere6cbfa62010-07-29 01:25:38 +00004149/// forgetValue - This method should be called by the client when it has
4150/// changed a value in a way that may effect its value, or which may
4151/// disconnect it from a def-use chain linking it to a loop.
4152void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004153 Instruction *I = dyn_cast<Instruction>(V);
4154 if (!I) return;
4155
4156 // Drop information about expressions based on loop-header PHIs.
4157 SmallVector<Instruction *, 16> Worklist;
4158 Worklist.push_back(I);
4159
4160 SmallPtrSet<Instruction *, 8> Visited;
4161 while (!Worklist.empty()) {
4162 I = Worklist.pop_back_val();
4163 if (!Visited.insert(I)) continue;
4164
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004165 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4166 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004167 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004168 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004169 if (PHINode *PN = dyn_cast<PHINode>(I))
4170 ConstantEvolutionLoopExitValue.erase(PN);
4171 }
4172
4173 PushDefUseChildren(I, Worklist);
4174 }
4175}
4176
Andrew Trick5116ff62011-07-26 17:19:55 +00004177/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004178/// exits. A computable result can only be return for loops with a single exit.
4179/// Returning the minimum taken count among all exits is incorrect because one
4180/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4181/// the limit of each loop test is never skipped. This is a valid assumption as
4182/// long as the loop exits via that test. For precise results, it is the
4183/// caller's responsibility to specify the relevant loop exit using
4184/// getExact(ExitingBlock, SE).
Andrew Trick5116ff62011-07-26 17:19:55 +00004185const SCEV *
4186ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4187 // If any exits were not computable, the loop is not computable.
4188 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4189
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004190 // We need exactly one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004191 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004192 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4193
4194 const SCEV *BECount = 0;
4195 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4196 ENT != 0; ENT = ENT->getNextExit()) {
4197
4198 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4199
4200 if (!BECount)
4201 BECount = ENT->ExactNotTaken;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004202 else if (BECount != ENT->ExactNotTaken)
4203 return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004204 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004205 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004206 return BECount;
4207}
4208
4209/// getExact - Get the exact not taken count for this loop exit.
4210const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004211ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004212 ScalarEvolution *SE) const {
4213 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4214 ENT != 0; ENT = ENT->getNextExit()) {
4215
Andrew Trickfcb43562011-08-02 04:23:35 +00004216 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004217 return ENT->ExactNotTaken;
4218 }
4219 return SE->getCouldNotCompute();
4220}
4221
4222/// getMax - Get the max backedge taken count for the loop.
4223const SCEV *
4224ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4225 return Max ? Max : SE->getCouldNotCompute();
4226}
4227
4228/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4229/// computable exit into a persistent ExitNotTakenInfo array.
4230ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4231 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4232 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4233
4234 if (!Complete)
4235 ExitNotTaken.setIncomplete();
4236
4237 unsigned NumExits = ExitCounts.size();
4238 if (NumExits == 0) return;
4239
Andrew Trickfcb43562011-08-02 04:23:35 +00004240 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004241 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4242 if (NumExits == 1) return;
4243
4244 // Handle the rare case of multiple computable exits.
4245 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4246
4247 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4248 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4249 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004250 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004251 ENT->ExactNotTaken = ExitCounts[i].second;
4252 }
4253}
4254
4255/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4256void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004257 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004258 ExitNotTaken.ExactNotTaken = 0;
4259 delete[] ExitNotTaken.getNextExit();
4260}
4261
Dan Gohman46bdfb02009-02-24 18:55:53 +00004262/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4263/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004264ScalarEvolution::BackedgeTakenInfo
4265ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004266 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004267 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004268
Dan Gohmana334aa72009-06-22 00:31:57 +00004269 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004270 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004271 bool CouldComputeBECount = true;
4272 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004273 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004274 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4275 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004276 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004277 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004278 CouldComputeBECount = false;
4279 else
4280 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4281
Dan Gohman1c343752009-06-27 21:21:31 +00004282 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004283 MaxBECount = EL.Max;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004284 else if (EL.Max != getCouldNotCompute()) {
4285 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4286 // skip some loop tests. Taking the max over the exits is sufficiently
4287 // conservative. TODO: We could do better taking into consideration
4288 // that (1) the loop has unit stride (2) the last loop test is
4289 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4290 // falls-through some constant times less then the other tests.
4291 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4292 }
Dan Gohmana334aa72009-06-22 00:31:57 +00004293 }
4294
Andrew Trick5116ff62011-07-26 17:19:55 +00004295 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004296}
4297
Andrew Trick5116ff62011-07-26 17:19:55 +00004298/// ComputeExitLimit - Compute the number of times the backedge of the specified
4299/// loop will execute if it exits via the specified block.
4300ScalarEvolution::ExitLimit
4301ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004302
4303 // Okay, we've chosen an exiting block. See what condition causes us to
4304 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004305 //
4306 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004307 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004308 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004309 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004310
Chris Lattner8b0e3602007-01-07 02:24:26 +00004311 // At this point, we know we have a conditional branch that determines whether
4312 // the loop is exited. However, we don't know if the branch is executed each
4313 // time through the loop. If not, then the execution count of the branch will
4314 // not be equal to the trip count of the loop.
4315 //
4316 // Currently we check for this by checking to see if the Exit branch goes to
4317 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004318 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004319 // loop header. This is common for un-rotated loops.
4320 //
4321 // If both of those tests fail, walk up the unique predecessor chain to the
4322 // header, stopping if there is an edge that doesn't exit the loop. If the
4323 // header is reached, the execution count of the branch will be equal to the
4324 // trip count of the loop.
4325 //
4326 // More extensive analysis could be done to handle more cases here.
4327 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004328 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004329 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004330 ExitBr->getParent() != L->getHeader()) {
4331 // The simple checks failed, try climbing the unique predecessor chain
4332 // up to the header.
4333 bool Ok = false;
4334 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4335 BasicBlock *Pred = BB->getUniquePredecessor();
4336 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004337 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004338 TerminatorInst *PredTerm = Pred->getTerminator();
4339 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4340 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4341 if (PredSucc == BB)
4342 continue;
4343 // If the predecessor has a successor that isn't BB and isn't
4344 // outside the loop, assume the worst.
4345 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004346 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004347 }
4348 if (Pred == L->getHeader()) {
4349 Ok = true;
4350 break;
4351 }
4352 BB = Pred;
4353 }
4354 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004355 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004356 }
4357
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004358 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004359 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4360 ExitBr->getSuccessor(0),
4361 ExitBr->getSuccessor(1));
Dan Gohmana334aa72009-06-22 00:31:57 +00004362}
4363
Andrew Trick5116ff62011-07-26 17:19:55 +00004364/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004365/// backedge of the specified loop will execute if its exit condition
4366/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004367ScalarEvolution::ExitLimit
4368ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4369 Value *ExitCond,
4370 BasicBlock *TBB,
4371 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004372 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004373 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4374 if (BO->getOpcode() == Instruction::And) {
4375 // Recurse on the operands of the and.
Andrew Trick5116ff62011-07-26 17:19:55 +00004376 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4377 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004378 const SCEV *BECount = getCouldNotCompute();
4379 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004380 if (L->contains(TBB)) {
4381 // Both conditions must be true for the loop to continue executing.
4382 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004383 if (EL0.Exact == getCouldNotCompute() ||
4384 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004385 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004386 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004387 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4388 if (EL0.Max == getCouldNotCompute())
4389 MaxBECount = EL1.Max;
4390 else if (EL1.Max == getCouldNotCompute())
4391 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004392 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004393 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004394 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004395 // Both conditions must be true at the same time for the loop to exit.
4396 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004397 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004398 if (EL0.Max == EL1.Max)
4399 MaxBECount = EL0.Max;
4400 if (EL0.Exact == EL1.Exact)
4401 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004402 }
4403
Andrew Trick5116ff62011-07-26 17:19:55 +00004404 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004405 }
4406 if (BO->getOpcode() == Instruction::Or) {
4407 // Recurse on the operands of the or.
Andrew Trick5116ff62011-07-26 17:19:55 +00004408 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4409 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004410 const SCEV *BECount = getCouldNotCompute();
4411 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004412 if (L->contains(FBB)) {
4413 // Both conditions must be false for the loop to continue executing.
4414 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004415 if (EL0.Exact == getCouldNotCompute() ||
4416 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004417 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004418 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004419 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4420 if (EL0.Max == getCouldNotCompute())
4421 MaxBECount = EL1.Max;
4422 else if (EL1.Max == getCouldNotCompute())
4423 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004424 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004425 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004426 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004427 // Both conditions must be false at the same time for the loop to exit.
4428 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004429 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004430 if (EL0.Max == EL1.Max)
4431 MaxBECount = EL0.Max;
4432 if (EL0.Exact == EL1.Exact)
4433 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004434 }
4435
Andrew Trick5116ff62011-07-26 17:19:55 +00004436 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004437 }
4438 }
4439
4440 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004441 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004442 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5116ff62011-07-26 17:19:55 +00004443 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004444
Dan Gohman00cb5b72010-02-19 18:12:07 +00004445 // Check for a constant condition. These are normally stripped out by
4446 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4447 // preserve the CFG and is temporarily leaving constant conditions
4448 // in place.
4449 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4450 if (L->contains(FBB) == !CI->getZExtValue())
4451 // The backedge is always taken.
4452 return getCouldNotCompute();
4453 else
4454 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004455 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004456 }
4457
Eli Friedman361e54d2009-05-09 12:32:42 +00004458 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004459 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004460}
4461
Andrew Trick5116ff62011-07-26 17:19:55 +00004462/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004463/// backedge of the specified loop will execute if its exit condition
4464/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004465ScalarEvolution::ExitLimit
4466ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4467 ICmpInst *ExitCond,
4468 BasicBlock *TBB,
4469 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004470
Reid Spencere4d87aa2006-12-23 06:05:41 +00004471 // If the condition was exit on true, convert the condition to exit on false
4472 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004473 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004474 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004475 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004476 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004477
4478 // Handle common loops like: for (X = "string"; *X; ++X)
4479 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4480 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004481 ExitLimit ItCnt =
4482 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004483 if (ItCnt.hasAnyInfo())
4484 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004485 }
4486
Dan Gohman0bba49c2009-07-07 17:06:11 +00004487 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4488 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004489
4490 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004491 LHS = getSCEVAtScope(LHS, L);
4492 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004493
Dan Gohman64a845e2009-06-24 04:48:43 +00004494 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004495 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004496 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004497 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004498 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004499 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004500 }
4501
Dan Gohman03557dc2010-05-03 16:35:17 +00004502 // Simplify the operands before analyzing them.
4503 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4504
Chris Lattner53e677a2004-04-02 20:23:17 +00004505 // If we have a comparison of a chrec against a constant, try to use value
4506 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004507 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4508 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004509 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004510 // Form the constant range.
4511 ConstantRange CompRange(
4512 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004513
Dan Gohman0bba49c2009-07-07 17:06:11 +00004514 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004515 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004516 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004517
Chris Lattner53e677a2004-04-02 20:23:17 +00004518 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004519 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004520 // Convert to: while (X-Y != 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004521 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4522 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004523 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004524 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004525 case ICmpInst::ICMP_EQ: { // while (X == Y)
4526 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004527 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4528 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004529 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004530 }
4531 case ICmpInst::ICMP_SLT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004532 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4533 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004534 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004535 }
4536 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004537 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004538 getNotSCEV(RHS), L, true);
Andrew Trick5116ff62011-07-26 17:19:55 +00004539 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004540 break;
4541 }
4542 case ICmpInst::ICMP_ULT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004543 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4544 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004545 break;
4546 }
4547 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004548 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004549 getNotSCEV(RHS), L, false);
Andrew Trick5116ff62011-07-26 17:19:55 +00004550 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004551 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004552 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004553 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004554#if 0
David Greene25e0e872009-12-23 22:18:14 +00004555 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004556 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004557 dbgs() << "[unsigned] ";
4558 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004559 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004560 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004561#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004562 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004563 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004564 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004565}
4566
Chris Lattner673e02b2004-10-12 01:49:27 +00004567static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004568EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4569 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004570 const SCEV *InVal = SE.getConstant(C);
4571 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004572 assert(isa<SCEVConstant>(Val) &&
4573 "Evaluation of SCEV at constant didn't fold correctly?");
4574 return cast<SCEVConstant>(Val)->getValue();
4575}
4576
Andrew Trick5116ff62011-07-26 17:19:55 +00004577/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004578/// 'icmp op load X, cst', try to see if we can compute the backedge
4579/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004580ScalarEvolution::ExitLimit
4581ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4582 LoadInst *LI,
4583 Constant *RHS,
4584 const Loop *L,
4585 ICmpInst::Predicate predicate) {
4586
Dan Gohman1c343752009-06-27 21:21:31 +00004587 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004588
4589 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004590 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004591 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004592 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004593
4594 // Make sure that it is really a constant global we are gepping, with an
4595 // initializer, and make sure the first IDX is really 0.
4596 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004597 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004598 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4599 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004600 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004601
4602 // Okay, we allow one non-constant index into the GEP instruction.
4603 Value *VarIdx = 0;
Chris Lattnerdada5862012-01-24 05:49:24 +00004604 std::vector<Constant*> Indexes;
Chris Lattner673e02b2004-10-12 01:49:27 +00004605 unsigned VarIdxNum = 0;
4606 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4607 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4608 Indexes.push_back(CI);
4609 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004610 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004611 VarIdx = GEP->getOperand(i);
4612 VarIdxNum = i-2;
4613 Indexes.push_back(0);
4614 }
4615
Andrew Trickeb6dd232012-03-26 22:33:59 +00004616 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4617 if (!VarIdx)
4618 return getCouldNotCompute();
4619
Chris Lattner673e02b2004-10-12 01:49:27 +00004620 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4621 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004622 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004623 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004624
4625 // We can only recognize very limited forms of loop index expressions, in
4626 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004627 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004628 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004629 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4630 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004631 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004632
4633 unsigned MaxSteps = MaxBruteForceIterations;
4634 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004635 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004636 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004637 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004638
4639 // Form the GEP offset.
4640 Indexes[VarIdxNum] = Val;
4641
Chris Lattnerdada5862012-01-24 05:49:24 +00004642 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4643 Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004644 if (Result == 0) break; // Cannot compute!
4645
4646 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004647 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004648 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004649 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004650#if 0
David Greene25e0e872009-12-23 22:18:14 +00004651 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004652 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4653 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004654#endif
4655 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004656 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004657 }
4658 }
Dan Gohman1c343752009-06-27 21:21:31 +00004659 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004660}
4661
4662
Chris Lattner3221ad02004-04-17 22:58:41 +00004663/// CanConstantFold - Return true if we can constant fold an instruction of the
4664/// specified type, assuming that all operands were constants.
4665static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004666 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewycky614fef62011-10-22 19:58:20 +00004667 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4668 isa<LoadInst>(I))
Chris Lattner3221ad02004-04-17 22:58:41 +00004669 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004670
Chris Lattner3221ad02004-04-17 22:58:41 +00004671 if (const CallInst *CI = dyn_cast<CallInst>(I))
4672 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004673 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004674 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004675}
4676
Andrew Trick13d31e02011-10-05 03:25:31 +00004677/// Determine whether this instruction can constant evolve within this loop
4678/// assuming its operands can all constant evolve.
4679static bool canConstantEvolve(Instruction *I, const Loop *L) {
4680 // An instruction outside of the loop can't be derived from a loop PHI.
4681 if (!L->contains(I)) return false;
4682
4683 if (isa<PHINode>(I)) {
4684 if (L->getHeader() == I->getParent())
4685 return true;
4686 else
4687 // We don't currently keep track of the control flow needed to evaluate
4688 // PHIs, so we cannot handle PHIs inside of loops.
4689 return false;
4690 }
4691
4692 // If we won't be able to constant fold this expression even if the operands
4693 // are constants, bail early.
4694 return CanConstantFold(I);
4695}
4696
4697/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4698/// recursing through each instruction operand until reaching a loop header phi.
4699static PHINode *
4700getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Trick28ab7db2011-10-05 05:58:49 +00004701 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004702
4703 // Otherwise, we can evaluate this instruction if all of its operands are
4704 // constant or derived from a PHI node themselves.
4705 PHINode *PHI = 0;
4706 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4707 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4708
4709 if (isa<Constant>(*OpI)) continue;
4710
4711 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4712 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4713
4714 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trickef8a4c22011-10-05 22:06:53 +00004715 if (!P)
4716 // If this operand is already visited, reuse the prior result.
4717 // We may have P != PHI if this is the deepest point at which the
4718 // inconsistent paths meet.
4719 P = PHIMap.lookup(OpInst);
4720 if (!P) {
4721 // Recurse and memoize the results, whether a phi is found or not.
4722 // This recursive call invalidates pointers into PHIMap.
4723 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4724 PHIMap[OpInst] = P;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004725 }
Andrew Trick28ab7db2011-10-05 05:58:49 +00004726 if (P == 0) return 0; // Not evolving from PHI
4727 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4728 PHI = P;
Andrew Trick13d31e02011-10-05 03:25:31 +00004729 }
4730 // This is a expression evolving from a constant PHI!
4731 return PHI;
4732}
4733
Chris Lattner3221ad02004-04-17 22:58:41 +00004734/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4735/// in the loop that V is derived from. We allow arbitrary operations along the
4736/// way, but the operands of an operation must either be constants or a value
4737/// derived from a constant PHI. If this expression does not fit with these
4738/// constraints, return null.
4739static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004740 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick13d31e02011-10-05 03:25:31 +00004741 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004742
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004743 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004744 return PN;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004745 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004746
Andrew Trick13d31e02011-10-05 03:25:31 +00004747 // Record non-constant instructions contained by the loop.
Andrew Trick28ab7db2011-10-05 05:58:49 +00004748 DenseMap<Instruction *, PHINode *> PHIMap;
4749 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattner3221ad02004-04-17 22:58:41 +00004750}
4751
4752/// EvaluateExpression - Given an expression that passes the
4753/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4754/// in the loop has the value PHIVal. If we can't fold this expression for some
4755/// reason, return null.
Andrew Trick13d31e02011-10-05 03:25:31 +00004756static Constant *EvaluateExpression(Value *V, const Loop *L,
4757 DenseMap<Instruction *, Constant *> &Vals,
Chad Rosier00737bd2011-12-01 21:29:16 +00004758 const TargetData *TD,
4759 const TargetLibraryInfo *TLI) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004760 // Convenient constant check, but redundant for recursive calls.
Reid Spencere8404342004-07-18 00:18:30 +00004761 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewycky614fef62011-10-22 19:58:20 +00004762 Instruction *I = dyn_cast<Instruction>(V);
4763 if (!I) return 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004764
Andrew Trick13d31e02011-10-05 03:25:31 +00004765 if (Constant *C = Vals.lookup(I)) return C;
4766
Nick Lewycky614fef62011-10-22 19:58:20 +00004767 // An instruction inside the loop depends on a value outside the loop that we
4768 // weren't given a mapping for, or a value such as a call inside the loop.
4769 if (!canConstantEvolve(I, L)) return 0;
4770
4771 // An unmapped PHI can be due to a branch or another loop inside this loop,
4772 // or due to this not being the initial iteration through a loop where we
4773 // couldn't compute the evolution of this particular PHI last time.
4774 if (isa<PHINode>(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004775
Dan Gohman9d4588f2010-06-22 13:15:46 +00004776 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004777
4778 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004779 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4780 if (!Operand) {
Nick Lewycky4c7f1ca2011-10-14 09:38:46 +00004781 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4782 if (!Operands[i]) return 0;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004783 continue;
4784 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004785 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
Andrew Trick28ab7db2011-10-05 05:58:49 +00004786 Vals[Operand] = C;
4787 if (!C) return 0;
4788 Operands[i] = C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004789 }
4790
Nick Lewycky614fef62011-10-22 19:58:20 +00004791 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004792 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chad Rosieraab8e282011-12-02 01:26:24 +00004793 Operands[1], TD, TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00004794 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4795 if (!LI->isVolatile())
4796 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4797 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004798 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4799 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004800}
4801
4802/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4803/// in the header of its containing loop, we know the loop executes a
4804/// constant number of times, and the PHI node is just a recurrence
4805/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004806Constant *
4807ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004808 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004809 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004810 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004811 ConstantEvolutionLoopExitValue.find(PN);
4812 if (I != ConstantEvolutionLoopExitValue.end())
4813 return I->second;
4814
Dan Gohmane0567812010-04-08 23:03:40 +00004815 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004816 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4817
4818 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4819
Andrew Trick13d31e02011-10-05 03:25:31 +00004820 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewycky614fef62011-10-22 19:58:20 +00004821 BasicBlock *Header = L->getHeader();
4822 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick13d31e02011-10-05 03:25:31 +00004823
Chris Lattner3221ad02004-04-17 22:58:41 +00004824 // Since the loop is canonicalized, the PHI node must have two entries. One
4825 // entry must be a constant (coming in from outside of the loop), and the
4826 // second must be derived from the same PHI.
4827 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewycky614fef62011-10-22 19:58:20 +00004828 PHINode *PHI = 0;
4829 for (BasicBlock::iterator I = Header->begin();
4830 (PHI = dyn_cast<PHINode>(I)); ++I) {
4831 Constant *StartCST =
4832 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4833 if (StartCST == 0) continue;
4834 CurrentIterVals[PHI] = StartCST;
4835 }
4836 if (!CurrentIterVals.count(PN))
4837 return RetVal = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004838
4839 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattner3221ad02004-04-17 22:58:41 +00004840
4841 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004842 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004843 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004844
Dan Gohman46bdfb02009-02-24 18:55:53 +00004845 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004846 unsigned IterationNum = 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004847 for (; ; ++IterationNum) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004848 if (IterationNum == NumIterations)
Andrew Trick13d31e02011-10-05 03:25:31 +00004849 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattner3221ad02004-04-17 22:58:41 +00004850
Nick Lewycky614fef62011-10-22 19:58:20 +00004851 // Compute the value of the PHIs for the next iteration.
Andrew Trick13d31e02011-10-05 03:25:31 +00004852 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewycky614fef62011-10-22 19:58:20 +00004853 DenseMap<Instruction *, Constant *> NextIterVals;
Chad Rosier00737bd2011-12-01 21:29:16 +00004854 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4855 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004856 if (NextPHI == 0)
4857 return 0; // Couldn't evaluate!
Andrew Trick13d31e02011-10-05 03:25:31 +00004858 NextIterVals[PN] = NextPHI;
Nick Lewycky614fef62011-10-22 19:58:20 +00004859
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004860 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4861
Nick Lewycky614fef62011-10-22 19:58:20 +00004862 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4863 // cease to be able to evaluate one of them or if they stop evolving,
4864 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004865 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewycky614fef62011-10-22 19:58:20 +00004866 for (DenseMap<Instruction *, Constant *>::const_iterator
4867 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4868 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky5bef0eb2011-10-24 05:51:01 +00004869 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004870 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4871 }
4872 // We use two distinct loops because EvaluateExpression may invalidate any
4873 // iterators into CurrentIterVals.
4874 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4875 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4876 PHINode *PHI = I->first;
Nick Lewycky614fef62011-10-22 19:58:20 +00004877 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004878 if (!NextPHI) { // Not already computed.
4879 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004880 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004881 }
4882 if (NextPHI != I->second)
4883 StoppedEvolving = false;
Nick Lewycky614fef62011-10-22 19:58:20 +00004884 }
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004885
4886 // If all entries in CurrentIterVals == NextIterVals then we can stop
4887 // iterating, the loop can't continue to change.
4888 if (StoppedEvolving)
4889 return RetVal = CurrentIterVals[PN];
4890
Andrew Trick13d31e02011-10-05 03:25:31 +00004891 CurrentIterVals.swap(NextIterVals);
Chris Lattner3221ad02004-04-17 22:58:41 +00004892 }
4893}
4894
Andrew Trick5116ff62011-07-26 17:19:55 +00004895/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004896/// constant number of times (the condition evolves only from constants),
4897/// try to evaluate a few iterations of the loop until we get the exit
4898/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004899/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewycky614fef62011-10-22 19:58:20 +00004900const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4901 Value *Cond,
4902 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004903 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004904 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004905
Dan Gohmanb92654d2010-06-19 14:17:24 +00004906 // If the loop is canonicalized, the PHI will have exactly two entries.
4907 // That's the only form we support here.
4908 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4909
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004910 DenseMap<Instruction *, Constant *> CurrentIterVals;
4911 BasicBlock *Header = L->getHeader();
4912 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4913
Dan Gohmanb92654d2010-06-19 14:17:24 +00004914 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004915 // second must be derived from the same PHI.
4916 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004917 PHINode *PHI = 0;
4918 for (BasicBlock::iterator I = Header->begin();
4919 (PHI = dyn_cast<PHINode>(I)); ++I) {
4920 Constant *StartCST =
4921 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4922 if (StartCST == 0) continue;
4923 CurrentIterVals[PHI] = StartCST;
4924 }
4925 if (!CurrentIterVals.count(PN))
4926 return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004927
4928 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4929 // the loop symbolically to determine when the condition gets a value of
4930 // "ExitWhen".
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004931
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004932 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004933 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004934 ConstantInt *CondVal =
Chad Rosier00737bd2011-12-01 21:29:16 +00004935 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
4936 TD, TLI));
Chris Lattner3221ad02004-04-17 22:58:41 +00004937
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004938 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004939 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004940
Reid Spencere8019bb2007-03-01 07:25:48 +00004941 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004942 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004943 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004944 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004945
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004946 // Update all the PHI nodes for the next iteration.
4947 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004948
4949 // Create a list of which PHIs we need to compute. We want to do this before
4950 // calling EvaluateExpression on them because that may invalidate iterators
4951 // into CurrentIterVals.
4952 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004953 for (DenseMap<Instruction *, Constant *>::const_iterator
4954 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4955 PHINode *PHI = dyn_cast<PHINode>(I->first);
4956 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004957 PHIsToCompute.push_back(PHI);
4958 }
4959 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
4960 E = PHIsToCompute.end(); I != E; ++I) {
4961 PHINode *PHI = *I;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004962 Constant *&NextPHI = NextIterVals[PHI];
4963 if (NextPHI) continue; // Already computed!
4964
4965 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004966 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004967 }
4968 CurrentIterVals.swap(NextIterVals);
Chris Lattner7980fb92004-04-17 18:36:24 +00004969 }
4970
4971 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004972 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004973}
4974
Dan Gohmane7125f42009-09-03 15:00:26 +00004975/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004976/// at the specified scope in the program. The L value specifies a loop
4977/// nest to evaluate the expression at, where null is the top-level or a
4978/// specified loop is immediately inside of the loop.
4979///
4980/// This method can be used to compute the exit value for a variable defined
4981/// in a loop by querying what the value will hold in the parent loop.
4982///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004983/// In the case that a relevant loop exit value cannot be computed, the
4984/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004985const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004986 // Check to see if we've folded this expression at this loop before.
4987 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4988 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4989 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4990 if (!Pair.second)
4991 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004992
Dan Gohman42214892009-08-31 21:15:23 +00004993 // Otherwise compute it.
4994 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004995 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004996 return C;
4997}
4998
Nick Lewycky614fef62011-10-22 19:58:20 +00004999/// This builds up a Constant using the ConstantExpr interface. That way, we
5000/// will return Constants for objects which aren't represented by a
5001/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5002/// Returns NULL if the SCEV isn't representable as a Constant.
5003static Constant *BuildConstantFromSCEV(const SCEV *V) {
5004 switch (V->getSCEVType()) {
5005 default: // TODO: smax, umax.
5006 case scCouldNotCompute:
5007 case scAddRecExpr:
5008 break;
5009 case scConstant:
5010 return cast<SCEVConstant>(V)->getValue();
5011 case scUnknown:
5012 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5013 case scSignExtend: {
5014 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5015 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5016 return ConstantExpr::getSExt(CastOp, SS->getType());
5017 break;
5018 }
5019 case scZeroExtend: {
5020 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5021 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5022 return ConstantExpr::getZExt(CastOp, SZ->getType());
5023 break;
5024 }
5025 case scTruncate: {
5026 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5027 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5028 return ConstantExpr::getTrunc(CastOp, ST->getType());
5029 break;
5030 }
5031 case scAddExpr: {
5032 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5033 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5034 if (C->getType()->isPointerTy())
5035 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5036 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5037 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5038 if (!C2) return 0;
5039
5040 // First pointer!
5041 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5042 std::swap(C, C2);
5043 // The offsets have been converted to bytes. We can add bytes to an
5044 // i8* by GEP with the byte count in the first index.
5045 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5046 }
5047
5048 // Don't bother trying to sum two pointers. We probably can't
5049 // statically compute a load that results from it anyway.
5050 if (C2->getType()->isPointerTy())
5051 return 0;
5052
5053 if (C->getType()->isPointerTy()) {
5054 if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5055 C2 = ConstantExpr::getIntegerCast(
5056 C2, Type::getInt32Ty(C->getContext()), true);
5057 C = ConstantExpr::getGetElementPtr(C, C2);
5058 } else
5059 C = ConstantExpr::getAdd(C, C2);
5060 }
5061 return C;
5062 }
5063 break;
5064 }
5065 case scMulExpr: {
5066 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5067 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5068 // Don't bother with pointers at all.
5069 if (C->getType()->isPointerTy()) return 0;
5070 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5071 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5072 if (!C2 || C2->getType()->isPointerTy()) return 0;
5073 C = ConstantExpr::getMul(C, C2);
5074 }
5075 return C;
5076 }
5077 break;
5078 }
5079 case scUDivExpr: {
5080 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5081 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5082 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5083 if (LHS->getType() == RHS->getType())
5084 return ConstantExpr::getUDiv(LHS, RHS);
5085 break;
5086 }
5087 }
5088 return 0;
5089}
5090
Dan Gohman42214892009-08-31 21:15:23 +00005091const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005092 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005093
Nick Lewycky3e630762008-02-20 06:48:22 +00005094 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00005095 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00005096 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005097 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005098 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00005099 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5100 if (PHINode *PN = dyn_cast<PHINode>(I))
5101 if (PN->getParent() == LI->getHeader()) {
5102 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00005103 // to see if the loop that contains it has a known backedge-taken
5104 // count. If so, we may be able to force computation of the exit
5105 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005106 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00005107 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00005108 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005109 // Okay, we know how many times the containing loop executes. If
5110 // this is a constant evolving PHI node, get the final value at
5111 // the specified iteration number.
5112 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00005113 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00005114 LI);
Dan Gohman09987962009-06-29 21:31:18 +00005115 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00005116 }
5117 }
5118
Reid Spencer09906f32006-12-04 21:33:23 +00005119 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00005120 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00005121 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00005122 // result. This is particularly useful for computing loop exit values.
5123 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00005124 SmallVector<Constant *, 4> Operands;
5125 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00005126 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5127 Value *Op = I->getOperand(i);
5128 if (Constant *C = dyn_cast<Constant>(Op)) {
5129 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00005130 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00005131 }
Dan Gohman11046452010-06-29 23:43:06 +00005132
5133 // If any of the operands is non-constant and if they are
5134 // non-integer and non-pointer, don't even try to analyze them
5135 // with scev techniques.
5136 if (!isSCEVable(Op->getType()))
5137 return V;
5138
5139 const SCEV *OrigV = getSCEV(Op);
5140 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5141 MadeImprovement |= OrigV != OpV;
5142
Nick Lewycky614fef62011-10-22 19:58:20 +00005143 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohman11046452010-06-29 23:43:06 +00005144 if (!C) return V;
5145 if (C->getType() != Op->getType())
5146 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5147 Op->getType(),
5148 false),
5149 C, Op->getType());
5150 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00005151 }
Dan Gohman64a845e2009-06-24 04:48:43 +00005152
Dan Gohman11046452010-06-29 23:43:06 +00005153 // Check to see if getSCEVAtScope actually made an improvement.
5154 if (MadeImprovement) {
5155 Constant *C = 0;
5156 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5157 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Chad Rosieraab8e282011-12-02 01:26:24 +00005158 Operands[0], Operands[1], TD,
5159 TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00005160 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5161 if (!LI->isVolatile())
5162 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5163 } else
Dan Gohman11046452010-06-29 23:43:06 +00005164 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Chad Rosier00737bd2011-12-01 21:29:16 +00005165 Operands, TD, TLI);
Dan Gohman11046452010-06-29 23:43:06 +00005166 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00005167 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00005168 }
Chris Lattner3221ad02004-04-17 22:58:41 +00005169 }
5170 }
5171
5172 // This is some other type of SCEVUnknown, just return it.
5173 return V;
5174 }
5175
Dan Gohman622ed672009-05-04 22:02:23 +00005176 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005177 // Avoid performing the look-up in the common case where the specified
5178 // expression has no loop-variant portions.
5179 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005180 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005181 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005182 // Okay, at least one of these operands is loop variant but might be
5183 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00005184 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5185 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00005186 NewOps.push_back(OpAtScope);
5187
5188 for (++i; i != e; ++i) {
5189 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005190 NewOps.push_back(OpAtScope);
5191 }
5192 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005193 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005194 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005195 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005196 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005197 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00005198 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005199 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00005200 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005201 }
5202 }
5203 // If we got here, all operands are loop invariant.
5204 return Comm;
5205 }
5206
Dan Gohman622ed672009-05-04 22:02:23 +00005207 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005208 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5209 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00005210 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5211 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005212 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00005213 }
5214
5215 // If this is a loop recurrence for a loop that does not contain L, then we
5216 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00005217 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00005218 // First, attempt to evaluate each operand.
5219 // Avoid performing the look-up in the common case where the specified
5220 // expression has no loop-variant portions.
5221 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5222 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5223 if (OpAtScope == AddRec->getOperand(i))
5224 continue;
5225
5226 // Okay, at least one of these operands is loop variant but might be
5227 // foldable. Build a new instance of the folded commutative expression.
5228 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5229 AddRec->op_begin()+i);
5230 NewOps.push_back(OpAtScope);
5231 for (++i; i != e; ++i)
5232 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5233
Andrew Trick3f95c882011-04-27 01:21:25 +00005234 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00005235 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00005236 AddRec->getNoWrapFlags(SCEV::FlagNW));
5237 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00005238 // The addrec may be folded to a nonrecurrence, for example, if the
5239 // induction variable is multiplied by zero after constant folding. Go
5240 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00005241 if (!AddRec)
5242 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00005243 break;
5244 }
5245
5246 // If the scope is outside the addrec's loop, evaluate it by using the
5247 // loop exit value of the addrec.
5248 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005249 // To evaluate this recurrence, we need to know how many times the AddRec
5250 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005251 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00005252 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005253
Eli Friedmanb42a6262008-08-04 23:49:06 +00005254 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005255 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005256 }
Dan Gohman11046452010-06-29 23:43:06 +00005257
Dan Gohmand594e6f2009-05-24 23:25:42 +00005258 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00005259 }
5260
Dan Gohman622ed672009-05-04 22:02:23 +00005261 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005262 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005263 if (Op == Cast->getOperand())
5264 return Cast; // must be loop invariant
5265 return getZeroExtendExpr(Op, Cast->getType());
5266 }
5267
Dan Gohman622ed672009-05-04 22:02:23 +00005268 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005269 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005270 if (Op == Cast->getOperand())
5271 return Cast; // must be loop invariant
5272 return getSignExtendExpr(Op, Cast->getType());
5273 }
5274
Dan Gohman622ed672009-05-04 22:02:23 +00005275 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005276 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005277 if (Op == Cast->getOperand())
5278 return Cast; // must be loop invariant
5279 return getTruncateExpr(Op, Cast->getType());
5280 }
5281
Torok Edwinc23197a2009-07-14 16:55:14 +00005282 llvm_unreachable("Unknown SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005283}
5284
Dan Gohman66a7e852009-05-08 20:38:54 +00005285/// getSCEVAtScope - This is a convenience function which does
5286/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005287const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005288 return getSCEVAtScope(getSCEV(V), L);
5289}
5290
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005291/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5292/// following equation:
5293///
5294/// A * X = B (mod N)
5295///
5296/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5297/// A and B isn't important.
5298///
5299/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005300static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005301 ScalarEvolution &SE) {
5302 uint32_t BW = A.getBitWidth();
5303 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5304 assert(A != 0 && "A must be non-zero.");
5305
5306 // 1. D = gcd(A, N)
5307 //
5308 // The gcd of A and N may have only one prime factor: 2. The number of
5309 // trailing zeros in A is its multiplicity
5310 uint32_t Mult2 = A.countTrailingZeros();
5311 // D = 2^Mult2
5312
5313 // 2. Check if B is divisible by D.
5314 //
5315 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5316 // is not less than multiplicity of this prime factor for D.
5317 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005318 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005319
5320 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5321 // modulo (N / D).
5322 //
5323 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5324 // bit width during computations.
5325 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5326 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005327 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005328 APInt I = AD.multiplicativeInverse(Mod);
5329
5330 // 4. Compute the minimum unsigned root of the equation:
5331 // I * (B / D) mod (N / D)
5332 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5333
5334 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5335 // bits.
5336 return SE.getConstant(Result.trunc(BW));
5337}
Chris Lattner53e677a2004-04-02 20:23:17 +00005338
5339/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5340/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5341/// might be the same) or two SCEVCouldNotCompute objects.
5342///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005343static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005344SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005345 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005346 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5347 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5348 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005349
Chris Lattner53e677a2004-04-02 20:23:17 +00005350 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005351 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005352 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005353 return std::make_pair(CNC, CNC);
5354 }
5355
Reid Spencere8019bb2007-03-01 07:25:48 +00005356 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005357 const APInt &L = LC->getValue()->getValue();
5358 const APInt &M = MC->getValue()->getValue();
5359 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005360 APInt Two(BitWidth, 2);
5361 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005362
Dan Gohman64a845e2009-06-24 04:48:43 +00005363 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005364 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005365 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005366 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5367 // The B coefficient is M-N/2
5368 APInt B(M);
5369 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005370
Reid Spencere8019bb2007-03-01 07:25:48 +00005371 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005372 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005373
Reid Spencere8019bb2007-03-01 07:25:48 +00005374 // Compute the B^2-4ac term.
5375 APInt SqrtTerm(B);
5376 SqrtTerm *= B;
5377 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005378
Reid Spencere8019bb2007-03-01 07:25:48 +00005379 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5380 // integer value or else APInt::sqrt() will assert.
5381 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005382
Dan Gohman64a845e2009-06-24 04:48:43 +00005383 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005384 // The divisions must be performed as signed divisions.
5385 APInt NegB(-B);
Nick Lewycky1cbae182011-10-03 07:10:45 +00005386 APInt TwoA(A << 1);
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005387 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005388 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005389 return std::make_pair(CNC, CNC);
5390 }
5391
Owen Andersone922c022009-07-22 00:24:57 +00005392 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005393
5394 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005395 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005396 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005397 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005398
Dan Gohman64a845e2009-06-24 04:48:43 +00005399 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005400 SE.getConstant(Solution2));
Nick Lewycky1cbae182011-10-03 07:10:45 +00005401 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005402}
5403
5404/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005405/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005406///
5407/// This is only used for loops with a "x != y" exit test. The exit condition is
5408/// now expressed as a single expression, V = x-y. So the exit test is
5409/// effectively V != 0. We know and take advantage of the fact that this
5410/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005411ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005412ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005413 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005414 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005415 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005416 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005417 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005418 }
5419
Dan Gohman35738ac2009-05-04 22:30:44 +00005420 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005421 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005422 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005423
Chris Lattner7975e3e2011-01-09 22:39:48 +00005424 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5425 // the quadratic equation to solve it.
5426 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5427 std::pair<const SCEV *,const SCEV *> Roots =
5428 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005429 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5430 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005431 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005432#if 0
David Greene25e0e872009-12-23 22:18:14 +00005433 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005434 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005435#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005436 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005437 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005438 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5439 R1->getValue(),
5440 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005441 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005442 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005443
Chris Lattner53e677a2004-04-02 20:23:17 +00005444 // We can only use this value if the chrec ends up with an exact zero
5445 // value at this index. When solving for "X*X != 5", for example, we
5446 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005447 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005448 if (Val->isZero())
5449 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005450 }
5451 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005452 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005453 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005454
Chris Lattner7975e3e2011-01-09 22:39:48 +00005455 // Otherwise we can only handle this if it is affine.
5456 if (!AddRec->isAffine())
5457 return getCouldNotCompute();
5458
5459 // If this is an affine expression, the execution count of this branch is
5460 // the minimum unsigned root of the following equation:
5461 //
5462 // Start + Step*N = 0 (mod 2^BW)
5463 //
5464 // equivalent to:
5465 //
5466 // Step*N = -Start (mod 2^BW)
5467 //
5468 // where BW is the common bit width of Start and Step.
5469
5470 // Get the initial value for the loop.
5471 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5472 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5473
5474 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005475 //
5476 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5477 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5478 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5479 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005480 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5481 if (StepC == 0)
5482 return getCouldNotCompute();
5483
Andrew Trick3228cc22011-03-14 16:50:06 +00005484 // For positive steps (counting up until unsigned overflow):
5485 // N = -Start/Step (as unsigned)
5486 // For negative steps (counting down to zero):
5487 // N = Start/-Step
5488 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005489 bool CountDown = StepC->getValue()->getValue().isNegative();
5490 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005491
5492 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005493 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5494 // N = Distance (as unsigned)
Nick Lewycky1cbae182011-10-03 07:10:45 +00005495 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5496 ConstantRange CR = getUnsignedRange(Start);
5497 const SCEV *MaxBECount;
5498 if (!CountDown && CR.getUnsignedMin().isMinValue())
5499 // When counting up, the worst starting value is 1, not 0.
5500 MaxBECount = CR.getUnsignedMax().isMinValue()
5501 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5502 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5503 else
5504 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5505 : -CR.getUnsignedMin());
5506 return ExitLimit(Distance, MaxBECount);
5507 }
Andrew Trick635f7182011-03-09 17:23:39 +00005508
Andrew Trickdcfd4042011-03-14 17:28:02 +00005509 // If the recurrence is known not to wraparound, unsigned divide computes the
5510 // back edge count. We know that the value will either become zero (and thus
5511 // the loop terminates), that the loop will terminate through some other exit
5512 // condition first, or that the loop has undefined behavior. This means
5513 // we can't "miss" the exit value, even with nonunit stride.
5514 //
5515 // FIXME: Prove that loops always exhibits *acceptable* undefined
5516 // behavior. Loops must exhibit defined behavior until a wrapped value is
5517 // actually used. So the trip count computed by udiv could be smaller than the
5518 // number of well-defined iterations.
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005519 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
Andrew Trickdcfd4042011-03-14 17:28:02 +00005520 // FIXME: We really want an "isexact" bit for udiv.
5521 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005522 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005523 // Then, try to solve the above equation provided that Start is constant.
5524 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5525 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5526 -StartC->getValue()->getValue(),
5527 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005528 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005529}
5530
5531/// HowFarToNonZero - Return the number of times a backedge checking the
5532/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005533/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005534ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005535ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005536 // Loops that look like: while (X == 0) are very strange indeed. We don't
5537 // handle them yet except for the trivial case. This could be expanded in the
5538 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005539
Chris Lattner53e677a2004-04-02 20:23:17 +00005540 // If the value is a constant, check to see if it is known to be non-zero
5541 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005542 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005543 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005544 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005545 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005546 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005547
Chris Lattner53e677a2004-04-02 20:23:17 +00005548 // We could implement others, but I really doubt anyone writes loops like
5549 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005550 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005551}
5552
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005553/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5554/// (which may not be an immediate predecessor) which has exactly one
5555/// successor from which BB is reachable, or null if no such block is
5556/// found.
5557///
Dan Gohman005752b2010-04-15 16:19:08 +00005558std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005559ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005560 // If the block has a unique predecessor, then there is no path from the
5561 // predecessor to the block that does not go through the direct edge
5562 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005563 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005564 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005565
5566 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005567 // If the header has a unique predecessor outside the loop, it must be
5568 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005569 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005570 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005571
Dan Gohman005752b2010-04-15 16:19:08 +00005572 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005573}
5574
Dan Gohman763bad12009-06-20 00:35:32 +00005575/// HasSameValue - SCEV structural equivalence is usually sufficient for
5576/// testing whether two expressions are equal, however for the purposes of
5577/// looking for a condition guarding a loop, it can be useful to be a little
5578/// more general, since a front-end may have replicated the controlling
5579/// expression.
5580///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005581static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005582 // Quick check to see if they are the same SCEV.
5583 if (A == B) return true;
5584
5585 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5586 // two different instructions with the same value. Check for this case.
5587 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5588 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5589 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5590 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005591 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005592 return true;
5593
5594 // Otherwise assume they may have a different value.
5595 return false;
5596}
5597
Dan Gohmane9796502010-04-24 01:28:42 +00005598/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5599/// predicate Pred. Return true iff any changes were made.
5600///
5601bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5602 const SCEV *&LHS, const SCEV *&RHS) {
5603 bool Changed = false;
5604
5605 // Canonicalize a constant to the right side.
5606 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5607 // Check for both operands constant.
5608 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5609 if (ConstantExpr::getICmp(Pred,
5610 LHSC->getValue(),
5611 RHSC->getValue())->isNullValue())
5612 goto trivially_false;
5613 else
5614 goto trivially_true;
5615 }
5616 // Otherwise swap the operands to put the constant on the right.
5617 std::swap(LHS, RHS);
5618 Pred = ICmpInst::getSwappedPredicate(Pred);
5619 Changed = true;
5620 }
5621
5622 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005623 // addrec's loop, put the addrec on the left. Also make a dominance check,
5624 // as both operands could be addrecs loop-invariant in each other's loop.
5625 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5626 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005627 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005628 std::swap(LHS, RHS);
5629 Pred = ICmpInst::getSwappedPredicate(Pred);
5630 Changed = true;
5631 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005632 }
Dan Gohmane9796502010-04-24 01:28:42 +00005633
5634 // If there's a constant operand, canonicalize comparisons with boundary
5635 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5636 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5637 const APInt &RA = RC->getValue()->getValue();
5638 switch (Pred) {
5639 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5640 case ICmpInst::ICMP_EQ:
5641 case ICmpInst::ICMP_NE:
5642 break;
5643 case ICmpInst::ICMP_UGE:
5644 if ((RA - 1).isMinValue()) {
5645 Pred = ICmpInst::ICMP_NE;
5646 RHS = getConstant(RA - 1);
5647 Changed = true;
5648 break;
5649 }
5650 if (RA.isMaxValue()) {
5651 Pred = ICmpInst::ICMP_EQ;
5652 Changed = true;
5653 break;
5654 }
5655 if (RA.isMinValue()) goto trivially_true;
5656
5657 Pred = ICmpInst::ICMP_UGT;
5658 RHS = getConstant(RA - 1);
5659 Changed = true;
5660 break;
5661 case ICmpInst::ICMP_ULE:
5662 if ((RA + 1).isMaxValue()) {
5663 Pred = ICmpInst::ICMP_NE;
5664 RHS = getConstant(RA + 1);
5665 Changed = true;
5666 break;
5667 }
5668 if (RA.isMinValue()) {
5669 Pred = ICmpInst::ICMP_EQ;
5670 Changed = true;
5671 break;
5672 }
5673 if (RA.isMaxValue()) goto trivially_true;
5674
5675 Pred = ICmpInst::ICMP_ULT;
5676 RHS = getConstant(RA + 1);
5677 Changed = true;
5678 break;
5679 case ICmpInst::ICMP_SGE:
5680 if ((RA - 1).isMinSignedValue()) {
5681 Pred = ICmpInst::ICMP_NE;
5682 RHS = getConstant(RA - 1);
5683 Changed = true;
5684 break;
5685 }
5686 if (RA.isMaxSignedValue()) {
5687 Pred = ICmpInst::ICMP_EQ;
5688 Changed = true;
5689 break;
5690 }
5691 if (RA.isMinSignedValue()) goto trivially_true;
5692
5693 Pred = ICmpInst::ICMP_SGT;
5694 RHS = getConstant(RA - 1);
5695 Changed = true;
5696 break;
5697 case ICmpInst::ICMP_SLE:
5698 if ((RA + 1).isMaxSignedValue()) {
5699 Pred = ICmpInst::ICMP_NE;
5700 RHS = getConstant(RA + 1);
5701 Changed = true;
5702 break;
5703 }
5704 if (RA.isMinSignedValue()) {
5705 Pred = ICmpInst::ICMP_EQ;
5706 Changed = true;
5707 break;
5708 }
5709 if (RA.isMaxSignedValue()) goto trivially_true;
5710
5711 Pred = ICmpInst::ICMP_SLT;
5712 RHS = getConstant(RA + 1);
5713 Changed = true;
5714 break;
5715 case ICmpInst::ICMP_UGT:
5716 if (RA.isMinValue()) {
5717 Pred = ICmpInst::ICMP_NE;
5718 Changed = true;
5719 break;
5720 }
5721 if ((RA + 1).isMaxValue()) {
5722 Pred = ICmpInst::ICMP_EQ;
5723 RHS = getConstant(RA + 1);
5724 Changed = true;
5725 break;
5726 }
5727 if (RA.isMaxValue()) goto trivially_false;
5728 break;
5729 case ICmpInst::ICMP_ULT:
5730 if (RA.isMaxValue()) {
5731 Pred = ICmpInst::ICMP_NE;
5732 Changed = true;
5733 break;
5734 }
5735 if ((RA - 1).isMinValue()) {
5736 Pred = ICmpInst::ICMP_EQ;
5737 RHS = getConstant(RA - 1);
5738 Changed = true;
5739 break;
5740 }
5741 if (RA.isMinValue()) goto trivially_false;
5742 break;
5743 case ICmpInst::ICMP_SGT:
5744 if (RA.isMinSignedValue()) {
5745 Pred = ICmpInst::ICMP_NE;
5746 Changed = true;
5747 break;
5748 }
5749 if ((RA + 1).isMaxSignedValue()) {
5750 Pred = ICmpInst::ICMP_EQ;
5751 RHS = getConstant(RA + 1);
5752 Changed = true;
5753 break;
5754 }
5755 if (RA.isMaxSignedValue()) goto trivially_false;
5756 break;
5757 case ICmpInst::ICMP_SLT:
5758 if (RA.isMaxSignedValue()) {
5759 Pred = ICmpInst::ICMP_NE;
5760 Changed = true;
5761 break;
5762 }
5763 if ((RA - 1).isMinSignedValue()) {
5764 Pred = ICmpInst::ICMP_EQ;
5765 RHS = getConstant(RA - 1);
5766 Changed = true;
5767 break;
5768 }
5769 if (RA.isMinSignedValue()) goto trivially_false;
5770 break;
5771 }
5772 }
5773
5774 // Check for obvious equality.
5775 if (HasSameValue(LHS, RHS)) {
5776 if (ICmpInst::isTrueWhenEqual(Pred))
5777 goto trivially_true;
5778 if (ICmpInst::isFalseWhenEqual(Pred))
5779 goto trivially_false;
5780 }
5781
Dan Gohman03557dc2010-05-03 16:35:17 +00005782 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5783 // adding or subtracting 1 from one of the operands.
5784 switch (Pred) {
5785 case ICmpInst::ICMP_SLE:
5786 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5787 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005788 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005789 Pred = ICmpInst::ICMP_SLT;
5790 Changed = true;
5791 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005792 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005793 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005794 Pred = ICmpInst::ICMP_SLT;
5795 Changed = true;
5796 }
5797 break;
5798 case ICmpInst::ICMP_SGE:
5799 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005800 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005801 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005802 Pred = ICmpInst::ICMP_SGT;
5803 Changed = true;
5804 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5805 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005806 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005807 Pred = ICmpInst::ICMP_SGT;
5808 Changed = true;
5809 }
5810 break;
5811 case ICmpInst::ICMP_ULE:
5812 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005813 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005814 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005815 Pred = ICmpInst::ICMP_ULT;
5816 Changed = true;
5817 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005818 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005819 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005820 Pred = ICmpInst::ICMP_ULT;
5821 Changed = true;
5822 }
5823 break;
5824 case ICmpInst::ICMP_UGE:
5825 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005826 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005827 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005828 Pred = ICmpInst::ICMP_UGT;
5829 Changed = true;
5830 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005831 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005832 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005833 Pred = ICmpInst::ICMP_UGT;
5834 Changed = true;
5835 }
5836 break;
5837 default:
5838 break;
5839 }
5840
Dan Gohmane9796502010-04-24 01:28:42 +00005841 // TODO: More simplifications are possible here.
5842
5843 return Changed;
5844
5845trivially_true:
5846 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005847 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005848 Pred = ICmpInst::ICMP_EQ;
5849 return true;
5850
5851trivially_false:
5852 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005853 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005854 Pred = ICmpInst::ICMP_NE;
5855 return true;
5856}
5857
Dan Gohman85b05a22009-07-13 21:35:55 +00005858bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5859 return getSignedRange(S).getSignedMax().isNegative();
5860}
5861
5862bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5863 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5864}
5865
5866bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5867 return !getSignedRange(S).getSignedMin().isNegative();
5868}
5869
5870bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5871 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5872}
5873
5874bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5875 return isKnownNegative(S) || isKnownPositive(S);
5876}
5877
5878bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5879 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005880 // Canonicalize the inputs first.
5881 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5882
Dan Gohman53c66ea2010-04-11 22:16:48 +00005883 // If LHS or RHS is an addrec, check to see if the condition is true in
5884 // every iteration of the loop.
5885 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5886 if (isLoopEntryGuardedByCond(
5887 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5888 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005889 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005890 return true;
5891 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5892 if (isLoopEntryGuardedByCond(
5893 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5894 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005895 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005896 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005897
Dan Gohman53c66ea2010-04-11 22:16:48 +00005898 // Otherwise see what can be done with known constant ranges.
5899 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5900}
5901
5902bool
5903ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5904 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005905 if (HasSameValue(LHS, RHS))
5906 return ICmpInst::isTrueWhenEqual(Pred);
5907
Dan Gohman53c66ea2010-04-11 22:16:48 +00005908 // This code is split out from isKnownPredicate because it is called from
5909 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005910 switch (Pred) {
5911 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005912 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005913 case ICmpInst::ICMP_SGT:
5914 Pred = ICmpInst::ICMP_SLT;
5915 std::swap(LHS, RHS);
5916 case ICmpInst::ICMP_SLT: {
5917 ConstantRange LHSRange = getSignedRange(LHS);
5918 ConstantRange RHSRange = getSignedRange(RHS);
5919 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5920 return true;
5921 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5922 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005923 break;
5924 }
5925 case ICmpInst::ICMP_SGE:
5926 Pred = ICmpInst::ICMP_SLE;
5927 std::swap(LHS, RHS);
5928 case ICmpInst::ICMP_SLE: {
5929 ConstantRange LHSRange = getSignedRange(LHS);
5930 ConstantRange RHSRange = getSignedRange(RHS);
5931 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5932 return true;
5933 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5934 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005935 break;
5936 }
5937 case ICmpInst::ICMP_UGT:
5938 Pred = ICmpInst::ICMP_ULT;
5939 std::swap(LHS, RHS);
5940 case ICmpInst::ICMP_ULT: {
5941 ConstantRange LHSRange = getUnsignedRange(LHS);
5942 ConstantRange RHSRange = getUnsignedRange(RHS);
5943 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5944 return true;
5945 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5946 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005947 break;
5948 }
5949 case ICmpInst::ICMP_UGE:
5950 Pred = ICmpInst::ICMP_ULE;
5951 std::swap(LHS, RHS);
5952 case ICmpInst::ICMP_ULE: {
5953 ConstantRange LHSRange = getUnsignedRange(LHS);
5954 ConstantRange RHSRange = getUnsignedRange(RHS);
5955 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5956 return true;
5957 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5958 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005959 break;
5960 }
5961 case ICmpInst::ICMP_NE: {
5962 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5963 return true;
5964 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5965 return true;
5966
5967 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5968 if (isKnownNonZero(Diff))
5969 return true;
5970 break;
5971 }
5972 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005973 // The check at the top of the function catches the case where
5974 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005975 break;
5976 }
5977 return false;
5978}
5979
5980/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5981/// protected by a conditional between LHS and RHS. This is used to
5982/// to eliminate casts.
5983bool
5984ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5985 ICmpInst::Predicate Pred,
5986 const SCEV *LHS, const SCEV *RHS) {
5987 // Interpret a null as meaning no loop, where there is obviously no guard
5988 // (interprocedural conditions notwithstanding).
5989 if (!L) return true;
5990
5991 BasicBlock *Latch = L->getLoopLatch();
5992 if (!Latch)
5993 return false;
5994
5995 BranchInst *LoopContinuePredicate =
5996 dyn_cast<BranchInst>(Latch->getTerminator());
5997 if (!LoopContinuePredicate ||
5998 LoopContinuePredicate->isUnconditional())
5999 return false;
6000
Dan Gohmanaf08a362010-08-10 23:46:30 +00006001 return isImpliedCond(Pred, LHS, RHS,
6002 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00006003 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00006004}
6005
Dan Gohman3948d0b2010-04-11 19:27:13 +00006006/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00006007/// by a conditional between LHS and RHS. This is used to help avoid max
6008/// expressions in loop trip counts, and to eliminate casts.
6009bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00006010ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6011 ICmpInst::Predicate Pred,
6012 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00006013 // Interpret a null as meaning no loop, where there is obviously no guard
6014 // (interprocedural conditions notwithstanding).
6015 if (!L) return false;
6016
Dan Gohman859b4822009-05-18 15:36:09 +00006017 // Starting at the loop predecessor, climb up the predecessor chain, as long
6018 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00006019 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00006020 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00006021 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00006022 Pair.first;
6023 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00006024
6025 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00006026 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00006027 if (!LoopEntryPredicate ||
6028 LoopEntryPredicate->isUnconditional())
6029 continue;
6030
Dan Gohmanaf08a362010-08-10 23:46:30 +00006031 if (isImpliedCond(Pred, LHS, RHS,
6032 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00006033 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00006034 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00006035 }
6036
Dan Gohman38372182008-08-12 20:17:31 +00006037 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00006038}
6039
Dan Gohman0f4b2852009-07-21 23:03:19 +00006040/// isImpliedCond - Test whether the condition described by Pred, LHS,
6041/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006042bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006043 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00006044 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006045 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006046 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006047 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006048 if (BO->getOpcode() == Instruction::And) {
6049 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006050 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6051 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006052 } else if (BO->getOpcode() == Instruction::Or) {
6053 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006054 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6055 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006056 }
6057 }
6058
Dan Gohmanaf08a362010-08-10 23:46:30 +00006059 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006060 if (!ICI) return false;
6061
Dan Gohman85b05a22009-07-13 21:35:55 +00006062 // Bail if the ICmp's operands' types are wider than the needed type
6063 // before attempting to call getSCEV on them. This avoids infinite
6064 // recursion, since the analysis of widening casts can require loop
6065 // exit condition information for overflow checking, which would
6066 // lead back here.
6067 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00006068 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00006069 return false;
6070
Dan Gohman0f4b2852009-07-21 23:03:19 +00006071 // Now that we found a conditional branch that dominates the loop, check to
6072 // see if it is the comparison we are looking for.
6073 ICmpInst::Predicate FoundPred;
6074 if (Inverse)
6075 FoundPred = ICI->getInversePredicate();
6076 else
6077 FoundPred = ICI->getPredicate();
6078
6079 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6080 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00006081
6082 // Balance the types. The case where FoundLHS' type is wider than
6083 // LHS' type is checked for above.
6084 if (getTypeSizeInBits(LHS->getType()) >
6085 getTypeSizeInBits(FoundLHS->getType())) {
6086 if (CmpInst::isSigned(Pred)) {
6087 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6088 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6089 } else {
6090 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6091 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6092 }
6093 }
6094
Dan Gohman0f4b2852009-07-21 23:03:19 +00006095 // Canonicalize the query to match the way instcombine will have
6096 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00006097 if (SimplifyICmpOperands(Pred, LHS, RHS))
6098 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006099 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00006100 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6101 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006102 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00006103
6104 // Check to see if we can make the LHS or RHS match.
6105 if (LHS == FoundRHS || RHS == FoundLHS) {
6106 if (isa<SCEVConstant>(RHS)) {
6107 std::swap(FoundLHS, FoundRHS);
6108 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6109 } else {
6110 std::swap(LHS, RHS);
6111 Pred = ICmpInst::getSwappedPredicate(Pred);
6112 }
6113 }
6114
6115 // Check whether the found predicate is the same as the desired predicate.
6116 if (FoundPred == Pred)
6117 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6118
6119 // Check whether swapping the found predicate makes it the same as the
6120 // desired predicate.
6121 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6122 if (isa<SCEVConstant>(RHS))
6123 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6124 else
6125 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6126 RHS, LHS, FoundLHS, FoundRHS);
6127 }
6128
6129 // Check whether the actual condition is beyond sufficient.
6130 if (FoundPred == ICmpInst::ICMP_EQ)
6131 if (ICmpInst::isTrueWhenEqual(Pred))
6132 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6133 return true;
6134 if (Pred == ICmpInst::ICMP_NE)
6135 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6136 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6137 return true;
6138
6139 // Otherwise assume the worst.
6140 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006141}
6142
Dan Gohman0f4b2852009-07-21 23:03:19 +00006143/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006144/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006145/// and FoundRHS is true.
6146bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6147 const SCEV *LHS, const SCEV *RHS,
6148 const SCEV *FoundLHS,
6149 const SCEV *FoundRHS) {
6150 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6151 FoundLHS, FoundRHS) ||
6152 // ~x < ~y --> x > y
6153 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6154 getNotSCEV(FoundRHS),
6155 getNotSCEV(FoundLHS));
6156}
6157
6158/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006159/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006160/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00006161bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00006162ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6163 const SCEV *LHS, const SCEV *RHS,
6164 const SCEV *FoundLHS,
6165 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006166 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00006167 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6168 case ICmpInst::ICMP_EQ:
6169 case ICmpInst::ICMP_NE:
6170 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6171 return true;
6172 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00006173 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00006174 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006175 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6176 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006177 return true;
6178 break;
6179 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006180 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006181 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6182 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006183 return true;
6184 break;
6185 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00006186 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006187 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6188 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006189 return true;
6190 break;
6191 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006192 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006193 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6194 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006195 return true;
6196 break;
6197 }
6198
6199 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006200}
6201
Dan Gohman51f53b72009-06-21 23:46:38 +00006202/// getBECount - Subtract the end and start values and divide by the step,
6203/// rounding up, to get the number of times the backedge is executed. Return
6204/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006205const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00006206 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00006207 const SCEV *Step,
6208 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00006209 assert(!isKnownNegative(Step) &&
6210 "This code doesn't handle negative strides yet!");
6211
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006212 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00006213
6214 // When Start == End, we have an exact BECount == 0. Short-circuit this case
6215 // here because SCEV may not be able to determine that the unsigned division
6216 // after rounding is zero.
6217 if (Start == End)
6218 return getConstant(Ty, 0);
6219
Dan Gohmandeff6212010-05-03 22:09:21 +00006220 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00006221 const SCEV *Diff = getMinusSCEV(End, Start);
6222 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00006223
6224 // Add an adjustment to the difference between End and Start so that
6225 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006226 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00006227
Dan Gohman1f96e672009-09-17 18:05:20 +00006228 if (!NoWrap) {
6229 // Check Add for unsigned overflow.
6230 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006231 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00006232 getTypeSizeInBits(Ty) + 1);
6233 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6234 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6235 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6236 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6237 return getCouldNotCompute();
6238 }
Dan Gohman51f53b72009-06-21 23:46:38 +00006239
6240 return getUDivExpr(Add, Step);
6241}
6242
Chris Lattnerdb25de42005-08-15 23:33:51 +00006243/// HowManyLessThans - Return the number of times a backedge containing the
6244/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00006245/// CouldNotCompute.
Andrew Trick5116ff62011-07-26 17:19:55 +00006246ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00006247ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6248 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00006249 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00006250 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006251
Dan Gohman35738ac2009-05-04 22:30:44 +00006252 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006253 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00006254 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006255
Dan Gohman1f96e672009-09-17 18:05:20 +00006256 // Check to see if we have a flag which makes analysis easy.
Nick Lewycky89d093d2011-11-09 07:11:37 +00006257 bool NoWrap = isSigned ?
6258 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
6259 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
Dan Gohman1f96e672009-09-17 18:05:20 +00006260
Chris Lattnerdb25de42005-08-15 23:33:51 +00006261 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006262 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00006263 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00006264
Dan Gohman52fddd32010-01-26 04:40:18 +00006265 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00006266 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00006267 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006268 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00006269 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00006270 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00006271 // value and past the maximum value for its type in a single step.
6272 // Note that it's not sufficient to check NoWrap here, because even
6273 // though the value after a wrap is undefined, it's not undefined
6274 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00006275 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00006276 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00006277 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006278 if (isSigned) {
6279 APInt Max = APInt::getSignedMaxValue(BitWidth);
6280 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6281 .slt(getSignedRange(RHS).getSignedMax()))
6282 return getCouldNotCompute();
6283 } else {
6284 APInt Max = APInt::getMaxValue(BitWidth);
6285 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6286 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6287 return getCouldNotCompute();
6288 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006289 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006290 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006291 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006292
Dan Gohmana1af7572009-04-30 20:47:05 +00006293 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6294 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6295 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006296 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006297
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006298 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006299 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006300
Dan Gohmana1af7572009-04-30 20:47:05 +00006301 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006302 const SCEV *MinStart = getConstant(isSigned ?
6303 getSignedRange(Start).getSignedMin() :
6304 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006305
Dan Gohmana1af7572009-04-30 20:47:05 +00006306 // If we know that the condition is true in order to enter the loop,
6307 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006308 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6309 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006310 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006311 if (!isLoopEntryGuardedByCond(L,
6312 isSigned ? ICmpInst::ICMP_SLT :
6313 ICmpInst::ICMP_ULT,
6314 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006315 End = isSigned ? getSMaxExpr(RHS, Start)
6316 : getUMaxExpr(RHS, Start);
6317
6318 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006319 const SCEV *MaxEnd = getConstant(isSigned ?
6320 getSignedRange(End).getSignedMax() :
6321 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006322
Dan Gohman52fddd32010-01-26 04:40:18 +00006323 // If MaxEnd is within a step of the maximum integer value in its type,
6324 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006325 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006326 // compute the correct value.
6327 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006328 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006329 MaxEnd = isSigned ?
6330 getSMinExpr(MaxEnd,
6331 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6332 StepMinusOne)) :
6333 getUMinExpr(MaxEnd,
6334 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6335 StepMinusOne));
6336
Dan Gohmana1af7572009-04-30 20:47:05 +00006337 // Finally, we subtract these two values and divide, rounding up, to get
6338 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006339 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006340
6341 // The maximum backedge count is similar, except using the minimum start
6342 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006343 // If we already have an exact constant BECount, use it instead.
6344 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6345 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6346
6347 // If the stride is nonconstant, and NoWrap == true, then
6348 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6349 // exact BECount and invalid MaxBECount, which should be avoided to catch
6350 // more optimization opportunities.
6351 if (isa<SCEVCouldNotCompute>(MaxBECount))
6352 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006353
Andrew Trick5116ff62011-07-26 17:19:55 +00006354 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006355 }
6356
Dan Gohman1c343752009-06-27 21:21:31 +00006357 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006358}
6359
Chris Lattner53e677a2004-04-02 20:23:17 +00006360/// getNumIterationsInRange - Return the number of iterations of this loop that
6361/// produce values in the specified constant range. Another way of looking at
6362/// this is that it returns the first iteration number where the value is not in
6363/// the condition, thus computing the exit count. If the iteration count can't
6364/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006365const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006366 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006367 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006368 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006369
6370 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006371 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006372 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006373 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006374 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006375 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006376 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006377 if (const SCEVAddRecExpr *ShiftedAddRec =
6378 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006379 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006380 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006381 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006382 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006383 }
6384
6385 // The only time we can solve this is when we have all constant indices.
6386 // Otherwise, we cannot determine the overflow conditions.
6387 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6388 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006389 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006390
6391
6392 // Okay at this point we know that all elements of the chrec are constants and
6393 // that the start element is zero.
6394
6395 // First check to see if the range contains zero. If not, the first
6396 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006397 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006398 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006399 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006400
Chris Lattner53e677a2004-04-02 20:23:17 +00006401 if (isAffine()) {
6402 // If this is an affine expression then we have this situation:
6403 // Solve {0,+,A} in Range === Ax in Range
6404
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006405 // We know that zero is in the range. If A is positive then we know that
6406 // the upper value of the range must be the first possible exit value.
6407 // If A is negative then the lower of the range is the last possible loop
6408 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006409 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006410 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6411 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006412
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006413 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006414 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006415 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006416
6417 // Evaluate at the exit value. If we really did fall out of the valid
6418 // range, then we computed our trip count, otherwise wrap around or other
6419 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006420 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006421 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006422 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006423
6424 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006425 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006426 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006427 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006428 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006429 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006430 } else if (isQuadratic()) {
6431 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6432 // quadratic equation to solve it. To do this, we must frame our problem in
6433 // terms of figuring out when zero is crossed, instead of when
6434 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006435 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006436 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006437 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6438 // getNoWrapFlags(FlagNW)
6439 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006440
6441 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006442 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006443 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006444 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6445 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006446 if (R1) {
6447 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006448 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006449 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006450 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006451 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006452 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006453
Chris Lattner53e677a2004-04-02 20:23:17 +00006454 // Make sure the root is not off by one. The returned iteration should
6455 // not be in the range, but the previous one should be. When solving
6456 // for "X*X < 5", for example, we should not return a root of 2.
6457 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006458 R1->getValue(),
6459 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006460 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006461 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006462 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006463 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006464
Dan Gohman246b2562007-10-22 18:31:58 +00006465 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006466 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006467 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006468 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006469 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006470
Chris Lattner53e677a2004-04-02 20:23:17 +00006471 // If R1 was not in the range, then it is a good return value. Make
6472 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006473 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006474 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006475 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006476 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006477 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006478 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006479 }
6480 }
6481 }
6482
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006483 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006484}
6485
6486
6487
6488//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006489// SCEVCallbackVH Class Implementation
6490//===----------------------------------------------------------------------===//
6491
Dan Gohman1959b752009-05-19 19:22:47 +00006492void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006493 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006494 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6495 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006496 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006497 // this now dangles!
6498}
6499
Dan Gohman81f91212010-07-28 01:09:07 +00006500void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006501 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006502
Dan Gohman35738ac2009-05-04 22:30:44 +00006503 // Forget all the expressions associated with users of the old value,
6504 // so that future queries will recompute the expressions using the new
6505 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006506 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006507 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006508 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006509 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6510 UI != UE; ++UI)
6511 Worklist.push_back(*UI);
6512 while (!Worklist.empty()) {
6513 User *U = Worklist.pop_back_val();
6514 // Deleting the Old value will cause this to dangle. Postpone
6515 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006516 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006517 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006518 if (!Visited.insert(U))
6519 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006520 if (PHINode *PN = dyn_cast<PHINode>(U))
6521 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006522 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006523 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6524 UI != UE; ++UI)
6525 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006526 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006527 // Delete the Old value.
6528 if (PHINode *PN = dyn_cast<PHINode>(Old))
6529 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006530 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006531 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006532}
6533
Dan Gohman1959b752009-05-19 19:22:47 +00006534ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006535 : CallbackVH(V), SE(se) {}
6536
6537//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006538// ScalarEvolution Class Implementation
6539//===----------------------------------------------------------------------===//
6540
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006541ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006542 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006543 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006544}
6545
Chris Lattner53e677a2004-04-02 20:23:17 +00006546bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006547 this->F = &F;
6548 LI = &getAnalysis<LoopInfo>();
6549 TD = getAnalysisIfAvailable<TargetData>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006550 TLI = &getAnalysis<TargetLibraryInfo>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006551 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006552 return false;
6553}
6554
6555void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006556 // Iterate through all the SCEVUnknown instances and call their
6557 // destructors, so that they release their references to their values.
6558 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6559 U->~SCEVUnknown();
6560 FirstUnknown = 0;
6561
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006562 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006563
6564 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6565 // that a loop had multiple computable exits.
6566 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6567 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6568 I != E; ++I) {
6569 I->second.clear();
6570 }
6571
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006572 BackedgeTakenCounts.clear();
6573 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006574 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006575 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006576 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006577 UnsignedRanges.clear();
6578 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006579 UniqueSCEVs.clear();
6580 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006581}
6582
6583void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6584 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006585 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006586 AU.addRequiredTransitive<DominatorTree>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006587 AU.addRequired<TargetLibraryInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006588}
6589
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006590bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006591 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006592}
6593
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006594static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006595 const Loop *L) {
6596 // Print all inner loops first
6597 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6598 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006599
Dan Gohman30733292010-01-09 18:17:45 +00006600 OS << "Loop ";
6601 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6602 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006603
Dan Gohman5d984912009-12-18 01:14:11 +00006604 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006605 L->getExitBlocks(ExitBlocks);
6606 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006607 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006608
Dan Gohman46bdfb02009-02-24 18:55:53 +00006609 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6610 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006611 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006612 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006613 }
6614
Dan Gohman30733292010-01-09 18:17:45 +00006615 OS << "\n"
6616 "Loop ";
6617 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6618 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006619
6620 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6621 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6622 } else {
6623 OS << "Unpredictable max backedge-taken count. ";
6624 }
6625
6626 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006627}
6628
Dan Gohman5d984912009-12-18 01:14:11 +00006629void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006630 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006631 // out SCEV values of all instructions that are interesting. Doing
6632 // this potentially causes it to create new SCEV objects though,
6633 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006634 // observable from outside the class though, so casting away the
6635 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006636 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006637
Dan Gohman30733292010-01-09 18:17:45 +00006638 OS << "Classifying expressions for: ";
6639 WriteAsOperand(OS, F, /*PrintType=*/false);
6640 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006641 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006642 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006643 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006644 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006645 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006646 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006647
Dan Gohman0c689c52009-06-19 17:49:54 +00006648 const Loop *L = LI->getLoopFor((*I).getParent());
6649
Dan Gohman0bba49c2009-07-07 17:06:11 +00006650 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006651 if (AtUse != SV) {
6652 OS << " --> ";
6653 AtUse->print(OS);
6654 }
6655
6656 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006657 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006658 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006659 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006660 OS << "<<Unknown>>";
6661 } else {
6662 OS << *ExitValue;
6663 }
6664 }
6665
Chris Lattner53e677a2004-04-02 20:23:17 +00006666 OS << "\n";
6667 }
6668
Dan Gohman30733292010-01-09 18:17:45 +00006669 OS << "Determining loop execution counts for: ";
6670 WriteAsOperand(OS, F, /*PrintType=*/false);
6671 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006672 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6673 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006674}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006675
Dan Gohman714b5292010-11-17 23:21:44 +00006676ScalarEvolution::LoopDisposition
6677ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6678 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6679 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6680 Values.insert(std::make_pair(L, LoopVariant));
6681 if (!Pair.second)
6682 return Pair.first->second;
6683
6684 LoopDisposition D = computeLoopDisposition(S, L);
6685 return LoopDispositions[S][L] = D;
6686}
6687
6688ScalarEvolution::LoopDisposition
6689ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006690 switch (S->getSCEVType()) {
6691 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006692 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006693 case scTruncate:
6694 case scZeroExtend:
6695 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006696 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006697 case scAddRecExpr: {
6698 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6699
Dan Gohman714b5292010-11-17 23:21:44 +00006700 // If L is the addrec's loop, it's computable.
6701 if (AR->getLoop() == L)
6702 return LoopComputable;
6703
Dan Gohman17ead4f2010-11-17 21:23:15 +00006704 // Add recurrences are never invariant in the function-body (null loop).
6705 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006706 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006707
6708 // This recurrence is variant w.r.t. L if L contains AR's loop.
6709 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006710 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006711
6712 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6713 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006714 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006715
6716 // This recurrence is variant w.r.t. L if any of its operands
6717 // are variant.
6718 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6719 I != E; ++I)
6720 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006721 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006722
6723 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006724 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006725 }
6726 case scAddExpr:
6727 case scMulExpr:
6728 case scUMaxExpr:
6729 case scSMaxExpr: {
6730 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006731 bool HasVarying = false;
6732 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6733 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006734 LoopDisposition D = getLoopDisposition(*I, L);
6735 if (D == LoopVariant)
6736 return LoopVariant;
6737 if (D == LoopComputable)
6738 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006739 }
Dan Gohman714b5292010-11-17 23:21:44 +00006740 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006741 }
6742 case scUDivExpr: {
6743 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006744 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6745 if (LD == LoopVariant)
6746 return LoopVariant;
6747 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6748 if (RD == LoopVariant)
6749 return LoopVariant;
6750 return (LD == LoopInvariant && RD == LoopInvariant) ?
6751 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006752 }
6753 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006754 // All non-instruction values are loop invariant. All instructions are loop
6755 // invariant if they are not contained in the specified loop.
6756 // Instructions are never considered invariant in the function body
6757 // (null loop) because they are defined within the "loop".
6758 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6759 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6760 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006761 case scCouldNotCompute:
6762 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +00006763 default: llvm_unreachable("Unknown SCEV kind!");
Dan Gohman17ead4f2010-11-17 21:23:15 +00006764 }
Dan Gohman714b5292010-11-17 23:21:44 +00006765}
6766
6767bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6768 return getLoopDisposition(S, L) == LoopInvariant;
6769}
6770
6771bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6772 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006773}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006774
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006775ScalarEvolution::BlockDisposition
6776ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6777 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6778 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6779 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6780 if (!Pair.second)
6781 return Pair.first->second;
6782
6783 BlockDisposition D = computeBlockDisposition(S, BB);
6784 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006785}
6786
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006787ScalarEvolution::BlockDisposition
6788ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006789 switch (S->getSCEVType()) {
6790 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006791 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006792 case scTruncate:
6793 case scZeroExtend:
6794 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006795 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006796 case scAddRecExpr: {
6797 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006798 // to test for proper dominance too, because the instruction which
6799 // produces the addrec's value is a PHI, and a PHI effectively properly
6800 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006801 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6802 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006803 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006804 }
6805 // FALL THROUGH into SCEVNAryExpr handling.
6806 case scAddExpr:
6807 case scMulExpr:
6808 case scUMaxExpr:
6809 case scSMaxExpr: {
6810 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006811 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006812 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006813 I != E; ++I) {
6814 BlockDisposition D = getBlockDisposition(*I, BB);
6815 if (D == DoesNotDominateBlock)
6816 return DoesNotDominateBlock;
6817 if (D == DominatesBlock)
6818 Proper = false;
6819 }
6820 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006821 }
6822 case scUDivExpr: {
6823 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006824 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6825 BlockDisposition LD = getBlockDisposition(LHS, BB);
6826 if (LD == DoesNotDominateBlock)
6827 return DoesNotDominateBlock;
6828 BlockDisposition RD = getBlockDisposition(RHS, BB);
6829 if (RD == DoesNotDominateBlock)
6830 return DoesNotDominateBlock;
6831 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6832 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006833 }
6834 case scUnknown:
6835 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006836 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6837 if (I->getParent() == BB)
6838 return DominatesBlock;
6839 if (DT->properlyDominates(I->getParent(), BB))
6840 return ProperlyDominatesBlock;
6841 return DoesNotDominateBlock;
6842 }
6843 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006844 case scCouldNotCompute:
6845 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Andrew Trickeb6dd232012-03-26 22:33:59 +00006846 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +00006847 llvm_unreachable("Unknown SCEV kind!");
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006848 }
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006849}
6850
6851bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6852 return getBlockDisposition(S, BB) >= DominatesBlock;
6853}
6854
6855bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6856 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006857}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006858
6859bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Dan Gohmanac844612012-05-10 17:21:30 +00006860 SmallVector<const SCEV *, 8> Worklist;
6861 Worklist.push_back(S);
6862 do {
6863 S = Worklist.pop_back_val();
6864
6865 switch (S->getSCEVType()) {
6866 case scConstant:
6867 break;
6868 case scTruncate:
6869 case scZeroExtend:
6870 case scSignExtend: {
6871 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6872 const SCEV *CastOp = Cast->getOperand();
6873 if (Op == CastOp)
Dan Gohman4ce32db2010-11-17 22:27:42 +00006874 return true;
Dan Gohmanac844612012-05-10 17:21:30 +00006875 Worklist.push_back(CastOp);
6876 break;
Dan Gohman4ce32db2010-11-17 22:27:42 +00006877 }
Dan Gohmanac844612012-05-10 17:21:30 +00006878 case scAddRecExpr:
6879 case scAddExpr:
6880 case scMulExpr:
6881 case scUMaxExpr:
6882 case scSMaxExpr: {
6883 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6884 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6885 I != E; ++I) {
6886 const SCEV *NAryOp = *I;
6887 if (NAryOp == Op)
6888 return true;
6889 Worklist.push_back(NAryOp);
6890 }
6891 break;
6892 }
6893 case scUDivExpr: {
6894 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6895 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6896 if (LHS == Op || RHS == Op)
6897 return true;
6898 Worklist.push_back(LHS);
6899 Worklist.push_back(RHS);
6900 break;
6901 }
6902 case scUnknown:
6903 break;
6904 case scCouldNotCompute:
6905 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6906 default:
6907 llvm_unreachable("Unknown SCEV kind!");
6908 }
6909 } while (!Worklist.empty());
6910
6911 return false;
Dan Gohman4ce32db2010-11-17 22:27:42 +00006912}
Dan Gohman56a75682010-11-17 23:28:48 +00006913
6914void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6915 ValuesAtScopes.erase(S);
6916 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006917 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006918 UnsignedRanges.erase(S);
6919 SignedRanges.erase(S);
6920}