blob: cc3919da846e2f1e049a0b56f51c7db9466f1e1c [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16// 1. All loops are transformed to have a SINGLE canonical induction variable
17// which starts at zero and steps by one.
18// 2. The canonical induction variable is guaranteed to be the first PHI node
19// in the loop header block.
20// 3. Any pointer arithmetic recurrences are raised to use array subscripts.
21//
22// If the trip count of a loop is computable, this pass also makes the following
23// changes:
24// 1. The exit condition for the loop is canonicalized to compare the
25// induction value against the exit value. This turns loops like:
26// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27// 2. Any use outside of the loop of an expression derived from the indvar
28// is changed to compute the derived value outside of the loop, eliminating
29// the dependence on the exit value of the induction variable. If the only
30// purpose of the loop is to compute the exit value of some derived
31// expression, this transformation will make the loop dead.
32//
33// This transformation should be followed by strength reduction after all of the
34// desired loop transformations have been performed. Additionally, on targets
35// where it is profitable, the loop could be transformed to count down to zero
36// (the "do loop" optimization).
37//
38//===----------------------------------------------------------------------===//
39
40#define DEBUG_TYPE "indvars"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/BasicBlock.h"
43#include "llvm/Constants.h"
44#include "llvm/Instructions.h"
45#include "llvm/Type.h"
46#include "llvm/Analysis/ScalarEvolutionExpander.h"
47#include "llvm/Analysis/LoopInfo.h"
48#include "llvm/Analysis/LoopPass.h"
49#include "llvm/Support/CFG.h"
50#include "llvm/Support/Compiler.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/GetElementPtrTypeIterator.h"
53#include "llvm/Transforms/Utils/Local.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/ADT/SmallVector.h"
Dan Gohmancacd2012009-02-12 22:19:27 +000056#include "llvm/ADT/SetVector.h"
Chris Lattnerb25465e2008-11-16 07:17:51 +000057#include "llvm/ADT/SmallPtrSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000058#include "llvm/ADT/Statistic.h"
59using namespace llvm;
60
61STATISTIC(NumRemoved , "Number of aux indvars removed");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062STATISTIC(NumInserted, "Number of canonical indvars added");
63STATISTIC(NumReplaced, "Number of exit values replaced");
64STATISTIC(NumLFTR , "Number of loop exit tests replaced");
65
66namespace {
67 class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
68 LoopInfo *LI;
69 ScalarEvolution *SE;
70 bool Changed;
71 public:
72
73 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000074 IndVarSimplify() : LoopPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000075
Dan Gohmanf3a060a2009-02-17 20:49:49 +000076 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
77
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Devang Patele6a8d482007-09-10 18:08:23 +000079 AU.addRequired<ScalarEvolution>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000080 AU.addRequiredID(LCSSAID);
81 AU.addRequiredID(LoopSimplifyID);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000082 AU.addRequired<LoopInfo>();
Dan Gohman0d35b112009-02-23 16:29:41 +000083 AU.addPreserved<ScalarEvolution>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084 AU.addPreservedID(LoopSimplifyID);
85 AU.addPreservedID(LCSSAID);
86 AU.setPreservesCFG();
87 }
88
89 private:
90
Dan Gohmanf3a060a2009-02-17 20:49:49 +000091 void RewriteNonIntegerIVs(Loop *L);
92
Dan Gohman76d5a0d2009-02-24 18:55:53 +000093 void LinearFunctionTestReplace(Loop *L, SCEVHandle BackedgeTakenCount,
Dan Gohman1247dc32009-02-17 15:57:39 +000094 Value *IndVar,
Dan Gohmancacd2012009-02-12 22:19:27 +000095 BasicBlock *ExitingBlock,
96 BranchInst *BI,
Dan Gohmanebac2542009-02-23 23:20:35 +000097 SCEVExpander &Rewriter);
Dan Gohman9a769972009-04-18 17:56:28 +000098 void RewriteLoopExitValues(Loop *L, const SCEV *BackedgeTakenCount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000099
Chris Lattnerb25465e2008-11-16 07:17:51 +0000100 void DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts);
Devang Patelbda43802008-09-09 21:41:07 +0000101
Dan Gohman963fc812009-02-17 19:13:57 +0000102 void HandleFloatingPointIV(Loop *L, PHINode *PH,
Devang Patelc8dac622008-11-17 21:32:02 +0000103 SmallPtrSet<Instruction*, 16> &DeadInsts);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000105}
106
Dan Gohman089efff2008-05-13 00:00:25 +0000107char IndVarSimplify::ID = 0;
108static RegisterPass<IndVarSimplify>
109X("indvars", "Canonicalize Induction Variables");
110
Daniel Dunbar163555a2008-10-22 23:32:42 +0000111Pass *llvm::createIndVarSimplifyPass() {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000112 return new IndVarSimplify();
113}
114
115/// DeleteTriviallyDeadInstructions - If any of the instructions is the
116/// specified set are trivially dead, delete them and see if this makes any of
117/// their operands subsequently dead.
118void IndVarSimplify::
Chris Lattnerb25465e2008-11-16 07:17:51 +0000119DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000120 while (!Insts.empty()) {
121 Instruction *I = *Insts.begin();
Chris Lattnerb25465e2008-11-16 07:17:51 +0000122 Insts.erase(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123 if (isInstructionTriviallyDead(I)) {
124 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
125 if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
126 Insts.insert(U);
127 SE->deleteValueFromRecords(I);
128 DOUT << "INDVARS: Deleting: " << *I;
129 I->eraseFromParent();
130 Changed = true;
131 }
132 }
133}
134
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000135/// LinearFunctionTestReplace - This method rewrites the exit condition of the
136/// loop to be a canonical != comparison against the incremented loop induction
137/// variable. This pass is able to rewrite the exit tests of any loop where the
138/// SCEV analysis can determine a loop-invariant trip count of the loop, which
139/// is actually a much broader range than just linear tests.
Dan Gohmancacd2012009-02-12 22:19:27 +0000140void IndVarSimplify::LinearFunctionTestReplace(Loop *L,
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000141 SCEVHandle BackedgeTakenCount,
Dan Gohmancacd2012009-02-12 22:19:27 +0000142 Value *IndVar,
143 BasicBlock *ExitingBlock,
144 BranchInst *BI,
Dan Gohmanebac2542009-02-23 23:20:35 +0000145 SCEVExpander &Rewriter) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000146 // If the exiting block is not the same as the backedge block, we must compare
147 // against the preincremented value, otherwise we prefer to compare against
148 // the post-incremented value.
Dan Gohmancacd2012009-02-12 22:19:27 +0000149 Value *CmpIndVar;
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000150 SCEVHandle RHS = BackedgeTakenCount;
Dan Gohmancacd2012009-02-12 22:19:27 +0000151 if (ExitingBlock == L->getLoopLatch()) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000152 // Add one to the "backedge-taken" count to get the trip count.
153 // If this addition may overflow, we have to be more pessimistic and
154 // cast the induction variable before doing the add.
155 SCEVHandle Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
Dan Gohmancacd2012009-02-12 22:19:27 +0000156 SCEVHandle N =
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000157 SE->getAddExpr(BackedgeTakenCount,
158 SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
Dan Gohmancacd2012009-02-12 22:19:27 +0000159 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
160 SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
161 // No overflow. Cast the sum.
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000162 RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
Dan Gohmancacd2012009-02-12 22:19:27 +0000163 } else {
164 // Potential overflow. Cast before doing the add.
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000165 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
166 IndVar->getType());
167 RHS = SE->getAddExpr(RHS,
168 SE->getIntegerSCEV(1, IndVar->getType()));
Dan Gohmancacd2012009-02-12 22:19:27 +0000169 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000170
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000171 // The BackedgeTaken expression contains the number of times that the
172 // backedge branches to the loop header. This is one less than the
173 // number of times the loop executes, so use the incremented indvar.
Dan Gohmancacd2012009-02-12 22:19:27 +0000174 CmpIndVar = L->getCanonicalInductionVariableIncrement();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000175 } else {
176 // We have to use the preincremented value...
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000177 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
178 IndVar->getType());
Dan Gohmancacd2012009-02-12 22:19:27 +0000179 CmpIndVar = IndVar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000180 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000181
182 // Expand the code for the iteration count into the preheader of the loop.
183 BasicBlock *Preheader = L->getLoopPreheader();
Dan Gohman01c2ee72009-04-16 03:18:22 +0000184 Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(),
Dan Gohmancacd2012009-02-12 22:19:27 +0000185 Preheader->getTerminator());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000186
187 // Insert a new icmp_ne or icmp_eq instruction before the branch.
188 ICmpInst::Predicate Opcode;
189 if (L->contains(BI->getSuccessor(0)))
190 Opcode = ICmpInst::ICMP_NE;
191 else
192 Opcode = ICmpInst::ICMP_EQ;
193
Dan Gohmancacd2012009-02-12 22:19:27 +0000194 DOUT << "INDVARS: Rewriting loop exit condition to:\n"
195 << " LHS:" << *CmpIndVar // includes a newline
196 << " op:\t"
Dan Gohman8555ff72009-02-14 02:26:50 +0000197 << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000198 << " RHS:\t" << *RHS << "\n";
Dan Gohmancacd2012009-02-12 22:19:27 +0000199
200 Value *Cond = new ICmpInst(Opcode, CmpIndVar, ExitCnt, "exitcond", BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000201 BI->setCondition(Cond);
202 ++NumLFTR;
203 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000204}
205
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000206/// RewriteLoopExitValues - Check to see if this loop has a computable
207/// loop-invariant execution count. If so, this means that we can compute the
208/// final value of any expressions that are recurrent in the loop, and
209/// substitute the exit values from the loop into any instructions outside of
210/// the loop that use the final values of the current expressions.
Dan Gohman9a769972009-04-18 17:56:28 +0000211void IndVarSimplify::RewriteLoopExitValues(Loop *L,
212 const SCEV *BackedgeTakenCount) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000213 BasicBlock *Preheader = L->getLoopPreheader();
214
215 // Scan all of the instructions in the loop, looking at those that have
216 // extra-loop users and which are recurrences.
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000217 SCEVExpander Rewriter(*SE, *LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000218
219 // We insert the code into the preheader of the loop if the loop contains
220 // multiple exit blocks, or in the exit block if there is exactly one.
221 BasicBlock *BlockToInsertInto;
Devang Patel02451fa2007-08-21 00:31:24 +0000222 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000223 L->getUniqueExitBlocks(ExitBlocks);
224 if (ExitBlocks.size() == 1)
225 BlockToInsertInto = ExitBlocks[0];
226 else
227 BlockToInsertInto = Preheader;
Dan Gohman514277c2008-05-23 21:05:58 +0000228 BasicBlock::iterator InsertPt = BlockToInsertInto->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000229
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000230 bool HasConstantItCount = isa<SCEVConstant>(BackedgeTakenCount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000231
Chris Lattnerb25465e2008-11-16 07:17:51 +0000232 SmallPtrSet<Instruction*, 16> InstructionsToDelete;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000233 std::map<Instruction*, Value*> ExitValues;
234
235 // Find all values that are computed inside the loop, but used outside of it.
236 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
237 // the exit blocks of the loop to find them.
238 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
239 BasicBlock *ExitBB = ExitBlocks[i];
Dan Gohman963fc812009-02-17 19:13:57 +0000240
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000241 // If there are no PHI nodes in this exit block, then no values defined
242 // inside the loop are used on this path, skip it.
243 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
244 if (!PN) continue;
Dan Gohman963fc812009-02-17 19:13:57 +0000245
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000246 unsigned NumPreds = PN->getNumIncomingValues();
Dan Gohman963fc812009-02-17 19:13:57 +0000247
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000248 // Iterate over all of the PHI nodes.
249 BasicBlock::iterator BBI = ExitBB->begin();
250 while ((PN = dyn_cast<PHINode>(BBI++))) {
Dan Gohman963fc812009-02-17 19:13:57 +0000251
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000252 // Iterate over all of the values in all the PHI nodes.
253 for (unsigned i = 0; i != NumPreds; ++i) {
254 // If the value being merged in is not integer or is not defined
255 // in the loop, skip it.
256 Value *InVal = PN->getIncomingValue(i);
257 if (!isa<Instruction>(InVal) ||
258 // SCEV only supports integer expressions for now.
Dan Gohman01c2ee72009-04-16 03:18:22 +0000259 (!isa<IntegerType>(InVal->getType()) &&
260 !isa<PointerType>(InVal->getType())))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000261 continue;
262
263 // If this pred is for a subloop, not L itself, skip it.
Dan Gohman963fc812009-02-17 19:13:57 +0000264 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000265 continue; // The Block is in a subloop, skip it.
266
267 // Check that InVal is defined in the loop.
268 Instruction *Inst = cast<Instruction>(InVal);
269 if (!L->contains(Inst->getParent()))
270 continue;
Dan Gohman963fc812009-02-17 19:13:57 +0000271
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000272 // We require that this value either have a computable evolution or that
273 // the loop have a constant iteration count. In the case where the loop
274 // has a constant iteration count, we can sometimes force evaluation of
275 // the exit value through brute force.
276 SCEVHandle SH = SE->getSCEV(Inst);
277 if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount)
278 continue; // Cannot get exit evolution for the loop value.
Dan Gohman963fc812009-02-17 19:13:57 +0000279
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000280 // Okay, this instruction has a user outside of the current loop
281 // and varies predictably *inside* the loop. Evaluate the value it
282 // contains when the loop exits, if possible.
283 SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
284 if (isa<SCEVCouldNotCompute>(ExitValue) ||
285 !ExitValue->isLoopInvariant(L))
286 continue;
287
288 Changed = true;
289 ++NumReplaced;
Dan Gohman963fc812009-02-17 19:13:57 +0000290
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000291 // See if we already computed the exit value for the instruction, if so,
292 // just reuse it.
293 Value *&ExitVal = ExitValues[Inst];
294 if (!ExitVal)
Dan Gohman01c2ee72009-04-16 03:18:22 +0000295 ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), InsertPt);
Dan Gohman963fc812009-02-17 19:13:57 +0000296
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000297 DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
298 << " LoopVal = " << *Inst << "\n";
299
300 PN->setIncomingValue(i, ExitVal);
Dan Gohman963fc812009-02-17 19:13:57 +0000301
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000302 // If this instruction is dead now, schedule it to be removed.
303 if (Inst->use_empty())
304 InstructionsToDelete.insert(Inst);
Dan Gohman963fc812009-02-17 19:13:57 +0000305
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000306 // See if this is a single-entry LCSSA PHI node. If so, we can (and
307 // have to) remove
308 // the PHI entirely. This is safe, because the NewVal won't be variant
309 // in the loop, so we don't need an LCSSA phi node anymore.
310 if (NumPreds == 1) {
311 SE->deleteValueFromRecords(PN);
312 PN->replaceAllUsesWith(ExitVal);
313 PN->eraseFromParent();
314 break;
315 }
316 }
317 }
318 }
Dan Gohman963fc812009-02-17 19:13:57 +0000319
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000320 DeleteTriviallyDeadInstructions(InstructionsToDelete);
321}
322
Dan Gohmanf3a060a2009-02-17 20:49:49 +0000323void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000324 // First step. Check to see if there are any floating-point recurrences.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000325 // If there are, change them into integer recurrences, permitting analysis by
326 // the SCEV routines.
327 //
328 BasicBlock *Header = L->getHeader();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000329
Chris Lattnerb25465e2008-11-16 07:17:51 +0000330 SmallPtrSet<Instruction*, 16> DeadInsts;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000331 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
332 PHINode *PN = cast<PHINode>(I);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000333 HandleFloatingPointIV(L, PN, DeadInsts);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000334 }
335
Dan Gohman01c2ee72009-04-16 03:18:22 +0000336 // If the loop previously had floating-point IV, ScalarEvolution
Dan Gohmanf3a060a2009-02-17 20:49:49 +0000337 // may not have been able to compute a trip count. Now that we've done some
338 // re-writing, the trip count may be computable.
339 if (Changed)
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000340 SE->forgetLoopBackedgeTakenCount(L);
Dan Gohmanf3a060a2009-02-17 20:49:49 +0000341
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000342 if (!DeadInsts.empty())
343 DeleteTriviallyDeadInstructions(DeadInsts);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000344}
345
Dan Gohmancacd2012009-02-12 22:19:27 +0000346/// getEffectiveIndvarType - Determine the widest type that the
347/// induction-variable PHINode Phi is cast to.
348///
Dan Gohman01c2ee72009-04-16 03:18:22 +0000349static const Type *getEffectiveIndvarType(const PHINode *Phi,
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000350 const ScalarEvolution *SE) {
Dan Gohmancacd2012009-02-12 22:19:27 +0000351 const Type *Ty = Phi->getType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000352
Dan Gohmancacd2012009-02-12 22:19:27 +0000353 for (Value::use_const_iterator UI = Phi->use_begin(), UE = Phi->use_end();
354 UI != UE; ++UI) {
355 const Type *CandidateType = NULL;
356 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(UI))
357 CandidateType = ZI->getDestTy();
358 else if (const SExtInst *SI = dyn_cast<SExtInst>(UI))
359 CandidateType = SI->getDestTy();
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000360 else if (const IntToPtrInst *IP = dyn_cast<IntToPtrInst>(UI))
361 CandidateType = IP->getDestTy();
362 else if (const PtrToIntInst *PI = dyn_cast<PtrToIntInst>(UI))
363 CandidateType = PI->getDestTy();
Dan Gohmancacd2012009-02-12 22:19:27 +0000364 if (CandidateType &&
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000365 SE->isSCEVable(CandidateType) &&
366 SE->getTypeSizeInBits(CandidateType) > SE->getTypeSizeInBits(Ty))
Dan Gohmancacd2012009-02-12 22:19:27 +0000367 Ty = CandidateType;
368 }
369
370 return Ty;
371}
372
Dan Gohmancecc80f2009-02-14 02:31:09 +0000373/// TestOrigIVForWrap - Analyze the original induction variable
Dan Gohmana730da32009-02-18 00:52:00 +0000374/// that controls the loop's iteration to determine whether it
Dan Gohmana5d38012009-02-18 17:22:41 +0000375/// would ever undergo signed or unsigned overflow. Also, check
376/// whether an induction variable in the same type that starts
377/// at 0 would undergo signed overflow.
Dan Gohmana730da32009-02-18 00:52:00 +0000378///
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000379/// In addition to setting the NoSignedWrap and NoUnsignedWrap
380/// variables to true when appropriate (they are not set to false here),
381/// return the PHI for this induction variable. Also record the initial
382/// and final values and the increment; these are not meaningful unless
383/// either NoSignedWrap or NoUnsignedWrap is true, and are always meaningful
384/// in that case, although the final value may be 0 indicating a nonconstant.
Dan Gohmancacd2012009-02-12 22:19:27 +0000385///
386/// TODO: This duplicates a fair amount of ScalarEvolution logic.
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000387/// Perhaps this can be merged with
388/// ScalarEvolution::getBackedgeTakenCount
Dan Gohmancecc80f2009-02-14 02:31:09 +0000389/// and/or ScalarEvolution::get{Sign,Zero}ExtendExpr.
Dan Gohmancacd2012009-02-12 22:19:27 +0000390///
Dan Gohmana730da32009-02-18 00:52:00 +0000391static const PHINode *TestOrigIVForWrap(const Loop *L,
392 const BranchInst *BI,
393 const Instruction *OrigCond,
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000394 const ScalarEvolution &SE,
Dan Gohmana730da32009-02-18 00:52:00 +0000395 bool &NoSignedWrap,
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000396 bool &NoUnsignedWrap,
397 const ConstantInt* &InitialVal,
398 const ConstantInt* &IncrVal,
399 const ConstantInt* &LimitVal) {
Dan Gohmancacd2012009-02-12 22:19:27 +0000400 // Verify that the loop is sane and find the exit condition.
401 const ICmpInst *Cmp = dyn_cast<ICmpInst>(OrigCond);
Dan Gohmana730da32009-02-18 00:52:00 +0000402 if (!Cmp) return 0;
Dan Gohmancacd2012009-02-12 22:19:27 +0000403
Dan Gohmancecc80f2009-02-14 02:31:09 +0000404 const Value *CmpLHS = Cmp->getOperand(0);
405 const Value *CmpRHS = Cmp->getOperand(1);
406 const BasicBlock *TrueBB = BI->getSuccessor(0);
407 const BasicBlock *FalseBB = BI->getSuccessor(1);
408 ICmpInst::Predicate Pred = Cmp->getPredicate();
Dan Gohmancacd2012009-02-12 22:19:27 +0000409
Dan Gohmancecc80f2009-02-14 02:31:09 +0000410 // Canonicalize a constant to the RHS.
411 if (isa<ConstantInt>(CmpLHS)) {
412 Pred = ICmpInst::getSwappedPredicate(Pred);
413 std::swap(CmpLHS, CmpRHS);
414 }
415 // Canonicalize SLE to SLT.
416 if (Pred == ICmpInst::ICMP_SLE)
417 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
418 if (!CI->getValue().isMaxSignedValue()) {
419 CmpRHS = ConstantInt::get(CI->getValue() + 1);
420 Pred = ICmpInst::ICMP_SLT;
421 }
422 // Canonicalize SGT to SGE.
423 if (Pred == ICmpInst::ICMP_SGT)
424 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
425 if (!CI->getValue().isMaxSignedValue()) {
426 CmpRHS = ConstantInt::get(CI->getValue() + 1);
427 Pred = ICmpInst::ICMP_SGE;
428 }
429 // Canonicalize SGE to SLT.
430 if (Pred == ICmpInst::ICMP_SGE) {
431 std::swap(TrueBB, FalseBB);
432 Pred = ICmpInst::ICMP_SLT;
433 }
434 // Canonicalize ULE to ULT.
435 if (Pred == ICmpInst::ICMP_ULE)
436 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
437 if (!CI->getValue().isMaxValue()) {
438 CmpRHS = ConstantInt::get(CI->getValue() + 1);
439 Pred = ICmpInst::ICMP_ULT;
440 }
441 // Canonicalize UGT to UGE.
442 if (Pred == ICmpInst::ICMP_UGT)
443 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
444 if (!CI->getValue().isMaxValue()) {
445 CmpRHS = ConstantInt::get(CI->getValue() + 1);
446 Pred = ICmpInst::ICMP_UGE;
447 }
448 // Canonicalize UGE to ULT.
449 if (Pred == ICmpInst::ICMP_UGE) {
450 std::swap(TrueBB, FalseBB);
451 Pred = ICmpInst::ICMP_ULT;
452 }
453 // For now, analyze only LT loops for signed overflow.
454 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_ULT)
Dan Gohmana730da32009-02-18 00:52:00 +0000455 return 0;
Dan Gohmancecc80f2009-02-14 02:31:09 +0000456
457 bool isSigned = Pred == ICmpInst::ICMP_SLT;
458
459 // Get the increment instruction. Look past casts if we will
Dan Gohmancacd2012009-02-12 22:19:27 +0000460 // be able to prove that the original induction variable doesn't
Dan Gohmancecc80f2009-02-14 02:31:09 +0000461 // undergo signed or unsigned overflow, respectively.
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000462 const Value *IncrInst = CmpLHS;
Dan Gohmancecc80f2009-02-14 02:31:09 +0000463 if (isSigned) {
464 if (const SExtInst *SI = dyn_cast<SExtInst>(CmpLHS)) {
465 if (!isa<ConstantInt>(CmpRHS) ||
466 !cast<ConstantInt>(CmpRHS)->getValue()
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000467 .isSignedIntN(SE.getTypeSizeInBits(IncrInst->getType())))
Dan Gohmana730da32009-02-18 00:52:00 +0000468 return 0;
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000469 IncrInst = SI->getOperand(0);
Dan Gohmancecc80f2009-02-14 02:31:09 +0000470 }
471 } else {
472 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(CmpLHS)) {
473 if (!isa<ConstantInt>(CmpRHS) ||
474 !cast<ConstantInt>(CmpRHS)->getValue()
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000475 .isIntN(SE.getTypeSizeInBits(IncrInst->getType())))
Dan Gohmana730da32009-02-18 00:52:00 +0000476 return 0;
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000477 IncrInst = ZI->getOperand(0);
Dan Gohmancecc80f2009-02-14 02:31:09 +0000478 }
Dan Gohmancacd2012009-02-12 22:19:27 +0000479 }
480
481 // For now, only analyze induction variables that have simple increments.
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000482 const BinaryOperator *IncrOp = dyn_cast<BinaryOperator>(IncrInst);
483 if (!IncrOp || IncrOp->getOpcode() != Instruction::Add)
484 return 0;
485 IncrVal = dyn_cast<ConstantInt>(IncrOp->getOperand(1));
486 if (!IncrVal)
Dan Gohmana730da32009-02-18 00:52:00 +0000487 return 0;
Dan Gohmancacd2012009-02-12 22:19:27 +0000488
489 // Make sure the PHI looks like a normal IV.
490 const PHINode *PN = dyn_cast<PHINode>(IncrOp->getOperand(0));
491 if (!PN || PN->getNumIncomingValues() != 2)
Dan Gohmana730da32009-02-18 00:52:00 +0000492 return 0;
Dan Gohmancacd2012009-02-12 22:19:27 +0000493 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
494 unsigned BackEdge = !IncomingEdge;
495 if (!L->contains(PN->getIncomingBlock(BackEdge)) ||
496 PN->getIncomingValue(BackEdge) != IncrOp)
Dan Gohmana730da32009-02-18 00:52:00 +0000497 return 0;
Dan Gohmancecc80f2009-02-14 02:31:09 +0000498 if (!L->contains(TrueBB))
Dan Gohmana730da32009-02-18 00:52:00 +0000499 return 0;
Dan Gohmancacd2012009-02-12 22:19:27 +0000500
501 // For now, only analyze loops with a constant start value, so that
Dan Gohmancecc80f2009-02-14 02:31:09 +0000502 // we can easily determine if the start value is not a maximum value
503 // which would wrap on the first iteration.
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000504 InitialVal = dyn_cast<ConstantInt>(PN->getIncomingValue(IncomingEdge));
Dan Gohman6f2a83e2009-02-18 16:54:33 +0000505 if (!InitialVal)
Dan Gohmana730da32009-02-18 00:52:00 +0000506 return 0;
Dan Gohmancacd2012009-02-12 22:19:27 +0000507
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000508 // The upper limit need not be a constant; we'll check later.
509 LimitVal = dyn_cast<ConstantInt>(CmpRHS);
510
511 // We detect the impossibility of wrapping in two cases, both of
512 // which require starting with a non-max value:
513 // - The IV counts up by one, and the loop iterates only while it remains
514 // less than a limiting value (any) in the same type.
515 // - The IV counts up by a positive increment other than 1, and the
516 // constant limiting value + the increment is less than the max value
517 // (computed as max-increment to avoid overflow)
Dan Gohmana5d38012009-02-18 17:22:41 +0000518 if (isSigned && !InitialVal->getValue().isMaxSignedValue()) {
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000519 if (IncrVal->equalsInt(1))
520 NoSignedWrap = true; // LimitVal need not be constant
521 else if (LimitVal) {
522 uint64_t numBits = LimitVal->getValue().getBitWidth();
523 if (IncrVal->getValue().sgt(APInt::getNullValue(numBits)) &&
524 (APInt::getSignedMaxValue(numBits) - IncrVal->getValue())
525 .sgt(LimitVal->getValue()))
526 NoSignedWrap = true;
527 }
528 } else if (!isSigned && !InitialVal->getValue().isMaxValue()) {
529 if (IncrVal->equalsInt(1))
530 NoUnsignedWrap = true; // LimitVal need not be constant
531 else if (LimitVal) {
532 uint64_t numBits = LimitVal->getValue().getBitWidth();
533 if (IncrVal->getValue().ugt(APInt::getNullValue(numBits)) &&
534 (APInt::getMaxValue(numBits) - IncrVal->getValue())
535 .ugt(LimitVal->getValue()))
536 NoUnsignedWrap = true;
537 }
538 }
Dan Gohmana730da32009-02-18 00:52:00 +0000539 return PN;
Dan Gohmancacd2012009-02-12 22:19:27 +0000540}
541
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000542static Value *getSignExtendedTruncVar(const SCEVAddRecExpr *AR,
543 ScalarEvolution *SE,
544 const Type *LargestType, Loop *L,
545 const Type *myType,
Dan Gohman6860e162009-04-23 15:16:49 +0000546 SCEVExpander &Rewriter) {
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000547 SCEVHandle ExtendedStart =
548 SE->getSignExtendExpr(AR->getStart(), LargestType);
549 SCEVHandle ExtendedStep =
550 SE->getSignExtendExpr(AR->getStepRecurrence(*SE), LargestType);
551 SCEVHandle ExtendedAddRec =
552 SE->getAddRecExpr(ExtendedStart, ExtendedStep, L);
553 if (LargestType != myType)
554 ExtendedAddRec = SE->getTruncateExpr(ExtendedAddRec, myType);
Dan Gohman6860e162009-04-23 15:16:49 +0000555 return Rewriter.expandCodeFor(ExtendedAddRec, myType);
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000556}
557
558static Value *getZeroExtendedTruncVar(const SCEVAddRecExpr *AR,
559 ScalarEvolution *SE,
560 const Type *LargestType, Loop *L,
561 const Type *myType,
Dan Gohman6860e162009-04-23 15:16:49 +0000562 SCEVExpander &Rewriter) {
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000563 SCEVHandle ExtendedStart =
564 SE->getZeroExtendExpr(AR->getStart(), LargestType);
565 SCEVHandle ExtendedStep =
566 SE->getZeroExtendExpr(AR->getStepRecurrence(*SE), LargestType);
567 SCEVHandle ExtendedAddRec =
568 SE->getAddRecExpr(ExtendedStart, ExtendedStep, L);
569 if (LargestType != myType)
570 ExtendedAddRec = SE->getTruncateExpr(ExtendedAddRec, myType);
Dan Gohman6860e162009-04-23 15:16:49 +0000571 return Rewriter.expandCodeFor(ExtendedAddRec, myType);
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000572}
573
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000574/// allUsesAreSameTyped - See whether all Uses of I are instructions
575/// with the same Opcode and the same type.
576static bool allUsesAreSameTyped(unsigned int Opcode, Instruction *I) {
577 const Type* firstType = NULL;
578 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
579 UI != UE; ++UI) {
580 Instruction *II = dyn_cast<Instruction>(*UI);
581 if (!II || II->getOpcode() != Opcode)
582 return false;
583 if (!firstType)
584 firstType = II->getType();
585 else if (firstType != II->getType())
586 return false;
587 }
588 return true;
589}
590
Dan Gohmancacd2012009-02-12 22:19:27 +0000591bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000592 LI = &getAnalysis<LoopInfo>();
593 SE = &getAnalysis<ScalarEvolution>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000594 Changed = false;
Dan Gohmanf3a060a2009-02-17 20:49:49 +0000595
Dan Gohman01c2ee72009-04-16 03:18:22 +0000596 // If there are any floating-point recurrences, attempt to
Dan Gohmanf3a060a2009-02-17 20:49:49 +0000597 // transform them to use integer recurrences.
598 RewriteNonIntegerIVs(L);
599
Dan Gohmancacd2012009-02-12 22:19:27 +0000600 BasicBlock *Header = L->getHeader();
601 BasicBlock *ExitingBlock = L->getExitingBlock();
Chris Lattnerb25465e2008-11-16 07:17:51 +0000602 SmallPtrSet<Instruction*, 16> DeadInsts;
Dan Gohmancacd2012009-02-12 22:19:27 +0000603
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000604 // Verify the input to the pass in already in LCSSA form.
605 assert(L->isLCSSAForm());
606
607 // Check to see if this loop has a computable loop-invariant execution count.
608 // If so, this means that we can compute the final value of any expressions
609 // that are recurrent in the loop, and substitute the exit values from the
610 // loop into any instructions outside of the loop that use the final values of
611 // the current expressions.
612 //
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000613 SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
614 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
615 RewriteLoopExitValues(L, BackedgeTakenCount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000616
617 // Next, analyze all of the induction variables in the loop, canonicalizing
618 // auxillary induction variables.
619 std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
620
621 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
622 PHINode *PN = cast<PHINode>(I);
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000623 if (SE->isSCEVable(PN->getType())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000624 SCEVHandle SCEV = SE->getSCEV(PN);
Dan Gohman173d9142009-02-14 02:25:19 +0000625 // FIXME: It is an extremely bad idea to indvar substitute anything more
626 // complex than affine induction variables. Doing so will put expensive
627 // polynomial evaluations inside of the loop, and the str reduction pass
628 // currently can only reduce affine polynomials. For now just disable
629 // indvar subst on anything more complex than an affine addrec.
Dan Gohman9a769972009-04-18 17:56:28 +0000630 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
Dan Gohman173d9142009-02-14 02:25:19 +0000631 if (AR->getLoop() == L && AR->isAffine())
632 IndVars.push_back(std::make_pair(PN, SCEV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000633 }
634 }
635
Dan Gohmancacd2012009-02-12 22:19:27 +0000636 // Compute the type of the largest recurrence expression, and collect
637 // the set of the types of the other recurrence expressions.
638 const Type *LargestType = 0;
639 SmallSetVector<const Type *, 4> SizesToInsert;
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000640 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
641 LargestType = BackedgeTakenCount->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000642 LargestType = SE->getEffectiveSCEVType(LargestType);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000643 SizesToInsert.insert(LargestType);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000644 }
Dan Gohmancacd2012009-02-12 22:19:27 +0000645 for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
646 const PHINode *PN = IndVars[i].first;
Dan Gohman01c2ee72009-04-16 03:18:22 +0000647 const Type *PNTy = PN->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000648 PNTy = SE->getEffectiveSCEVType(PNTy);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000649 SizesToInsert.insert(PNTy);
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000650 const Type *EffTy = getEffectiveIndvarType(PN, SE);
651 EffTy = SE->getEffectiveSCEVType(EffTy);
Dan Gohmancacd2012009-02-12 22:19:27 +0000652 SizesToInsert.insert(EffTy);
653 if (!LargestType ||
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000654 SE->getTypeSizeInBits(EffTy) >
655 SE->getTypeSizeInBits(LargestType))
Dan Gohmancacd2012009-02-12 22:19:27 +0000656 LargestType = EffTy;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000657 }
658
659 // Create a rewriter object which we'll use to transform the code with.
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000660 SCEVExpander Rewriter(*SE, *LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000661
662 // Now that we know the largest of of the induction variables in this loop,
663 // insert a canonical induction variable of the largest size.
Dan Gohmancacd2012009-02-12 22:19:27 +0000664 Value *IndVar = 0;
665 if (!SizesToInsert.empty()) {
666 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
667 ++NumInserted;
668 Changed = true;
669 DOUT << "INDVARS: New CanIV: " << *IndVar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000670 }
671
Dan Gohmancacd2012009-02-12 22:19:27 +0000672 // If we have a trip count expression, rewrite the loop's exit condition
673 // using it. We can currently only handle loops with a single exit.
Dan Gohmancecc80f2009-02-14 02:31:09 +0000674 bool NoSignedWrap = false;
675 bool NoUnsignedWrap = false;
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000676 const ConstantInt* InitialVal, * IncrVal, * LimitVal;
Dan Gohmana730da32009-02-18 00:52:00 +0000677 const PHINode *OrigControllingPHI = 0;
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000678 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && ExitingBlock)
Dan Gohmancacd2012009-02-12 22:19:27 +0000679 // Can't rewrite non-branch yet.
680 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) {
681 if (Instruction *OrigCond = dyn_cast<Instruction>(BI->getCondition())) {
Dan Gohmancecc80f2009-02-14 02:31:09 +0000682 // Determine if the OrigIV will ever undergo overflow.
Dan Gohmana730da32009-02-18 00:52:00 +0000683 OrigControllingPHI =
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000684 TestOrigIVForWrap(L, BI, OrigCond, *SE,
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000685 NoSignedWrap, NoUnsignedWrap,
686 InitialVal, IncrVal, LimitVal);
Dan Gohmancacd2012009-02-12 22:19:27 +0000687
688 // We'll be replacing the original condition, so it'll be dead.
689 DeadInsts.insert(OrigCond);
690 }
691
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000692 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
Dan Gohmanebac2542009-02-23 23:20:35 +0000693 ExitingBlock, BI, Rewriter);
Dan Gohmancacd2012009-02-12 22:19:27 +0000694 }
695
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000696 // Now that we have a canonical induction variable, we can rewrite any
697 // recurrences in terms of the induction variable. Start with the auxillary
698 // induction variables, and recursively rewrite any of their uses.
Dan Gohman514277c2008-05-23 21:05:58 +0000699 BasicBlock::iterator InsertPt = Header->getFirstNonPHI();
Dan Gohman6860e162009-04-23 15:16:49 +0000700 Rewriter.setInsertionPoint(InsertPt);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000701
702 // If there were induction variables of other sizes, cast the primary
703 // induction variable to the right size for them, avoiding the need for the
704 // code evaluation methods to insert induction variables of different sizes.
Dan Gohmancacd2012009-02-12 22:19:27 +0000705 for (unsigned i = 0, e = SizesToInsert.size(); i != e; ++i) {
706 const Type *Ty = SizesToInsert[i];
707 if (Ty != LargestType) {
708 Instruction *New = new TruncInst(IndVar, Ty, "indvar", InsertPt);
709 Rewriter.addInsertedValue(New, SE->getSCEV(New));
710 DOUT << "INDVARS: Made trunc IV for type " << *Ty << ": "
711 << *New << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000712 }
713 }
714
715 // Rewrite all induction variables in terms of the canonical induction
716 // variable.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000717 while (!IndVars.empty()) {
718 PHINode *PN = IndVars.back().first;
Dan Gohman9a769972009-04-18 17:56:28 +0000719 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(IndVars.back().second);
Dan Gohman6860e162009-04-23 15:16:49 +0000720 Value *NewVal = Rewriter.expandCodeFor(AR, PN->getType());
Dan Gohmanc71cac12009-02-17 00:10:53 +0000721 DOUT << "INDVARS: Rewrote IV '" << *AR << "' " << *PN
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000722 << " into = " << *NewVal << "\n";
723 NewVal->takeName(PN);
724
Dan Gohmancacd2012009-02-12 22:19:27 +0000725 /// If the new canonical induction variable is wider than the original,
726 /// and the original has uses that are casts to wider types, see if the
727 /// truncate and extend can be omitted.
Dan Gohmana730da32009-02-18 00:52:00 +0000728 if (PN == OrigControllingPHI && PN->getType() != LargestType)
Dan Gohmancacd2012009-02-12 22:19:27 +0000729 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
Dan Gohmancecc80f2009-02-14 02:31:09 +0000730 UI != UE; ++UI) {
Dale Johannesencb91b762009-04-15 20:41:02 +0000731 Instruction *UInst = dyn_cast<Instruction>(*UI);
732 if (UInst && isa<SExtInst>(UInst) && NoSignedWrap) {
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000733 Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType, L,
Dan Gohman6860e162009-04-23 15:16:49 +0000734 UInst->getType(), Rewriter);
Dale Johannesencb91b762009-04-15 20:41:02 +0000735 UInst->replaceAllUsesWith(TruncIndVar);
736 DeadInsts.insert(UInst);
Dan Gohmancacd2012009-02-12 22:19:27 +0000737 }
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000738 // See if we can figure out sext(i+constant) doesn't wrap, so we can
739 // use a larger add. This is common in subscripting.
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000740 if (UInst && UInst->getOpcode()==Instruction::Add &&
Evan Cheng1a5947b2009-04-22 23:09:16 +0000741 !UInst->use_empty() &&
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000742 allUsesAreSameTyped(Instruction::SExt, UInst) &&
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000743 isa<ConstantInt>(UInst->getOperand(1)) &&
Dale Johannesencb91b762009-04-15 20:41:02 +0000744 NoSignedWrap && LimitVal) {
745 uint64_t oldBitSize = LimitVal->getValue().getBitWidth();
746 uint64_t newBitSize = LargestType->getPrimitiveSizeInBits();
747 ConstantInt* AddRHS = dyn_cast<ConstantInt>(UInst->getOperand(1));
748 if (((APInt::getSignedMaxValue(oldBitSize) - IncrVal->getValue()) -
749 AddRHS->getValue()).sgt(LimitVal->getValue())) {
750 // We've determined this is (i+constant) and it won't overflow.
751 if (isa<SExtInst>(UInst->use_begin())) {
752 SExtInst* oldSext = dyn_cast<SExtInst>(UInst->use_begin());
Evan Cheng27b84062009-04-22 23:39:28 +0000753 uint64_t truncSize = oldSext->getType()->getPrimitiveSizeInBits();
Dale Johannesencb91b762009-04-15 20:41:02 +0000754 Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType,
Dan Gohman6860e162009-04-23 15:16:49 +0000755 L, oldSext->getType(), Rewriter);
Evan Cheng27b84062009-04-22 23:39:28 +0000756 APInt APnewAddRHS = APInt(AddRHS->getValue()).sext(newBitSize);
757 if (newBitSize > truncSize)
758 APnewAddRHS = APnewAddRHS.trunc(truncSize);
759 ConstantInt* newAddRHS =ConstantInt::get(APnewAddRHS);
Dale Johannesencb91b762009-04-15 20:41:02 +0000760 Value *NewAdd =
761 BinaryOperator::CreateAdd(TruncIndVar, newAddRHS,
762 UInst->getName()+".nosex", UInst);
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000763 for (Value::use_iterator UI2 = UInst->use_begin(),
764 UE2 = UInst->use_end(); UI2 != UE2; ++UI2) {
765 Instruction *II = dyn_cast<Instruction>(UI2);
766 II->replaceAllUsesWith(NewAdd);
767 DeadInsts.insert(II);
768 }
Dale Johannesencb91b762009-04-15 20:41:02 +0000769 DeadInsts.insert(UInst);
770 }
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000771 }
772 }
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000773 // Try for sext(i | constant). This is safe as long as the
774 // high bit of the constant is not set.
775 if (UInst && UInst->getOpcode()==Instruction::Or &&
Evan Cheng1a5947b2009-04-22 23:09:16 +0000776 !UInst->use_empty() &&
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000777 allUsesAreSameTyped(Instruction::SExt, UInst) && NoSignedWrap &&
778 isa<ConstantInt>(UInst->getOperand(1))) {
779 ConstantInt* RHS = dyn_cast<ConstantInt>(UInst->getOperand(1));
780 if (!RHS->getValue().isNegative()) {
781 uint64_t newBitSize = LargestType->getPrimitiveSizeInBits();
782 SExtInst* oldSext = dyn_cast<SExtInst>(UInst->use_begin());
Evan Cheng27b84062009-04-22 23:39:28 +0000783 uint64_t truncSize = oldSext->getType()->getPrimitiveSizeInBits();
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000784 Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType,
Dan Gohman6860e162009-04-23 15:16:49 +0000785 L, oldSext->getType(), Rewriter);
Evan Cheng27b84062009-04-22 23:39:28 +0000786 APInt APnewOrRHS = APInt(RHS->getValue()).sext(newBitSize);
787 if (newBitSize > truncSize)
788 APnewOrRHS = APnewOrRHS.trunc(truncSize);
789 ConstantInt* newOrRHS =ConstantInt::get(APnewOrRHS);
790 Value *NewOr =
791 BinaryOperator::CreateOr(TruncIndVar, newOrRHS,
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000792 UInst->getName()+".nosex", UInst);
793 for (Value::use_iterator UI2 = UInst->use_begin(),
794 UE2 = UInst->use_end(); UI2 != UE2; ++UI2) {
795 Instruction *II = dyn_cast<Instruction>(UI2);
Evan Cheng27b84062009-04-22 23:39:28 +0000796 II->replaceAllUsesWith(NewOr);
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000797 DeadInsts.insert(II);
798 }
799 DeadInsts.insert(UInst);
800 }
801 }
802 // A zext of a signed variable known not to overflow is still safe.
803 if (UInst && isa<ZExtInst>(UInst) && (NoUnsignedWrap || NoSignedWrap)) {
Dale Johannesenb6f383e2009-04-15 01:10:12 +0000804 Value *TruncIndVar = getZeroExtendedTruncVar(AR, SE, LargestType, L,
Dan Gohman6860e162009-04-23 15:16:49 +0000805 UInst->getType(), Rewriter);
Dale Johannesencb91b762009-04-15 20:41:02 +0000806 UInst->replaceAllUsesWith(TruncIndVar);
807 DeadInsts.insert(UInst);
808 }
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000809 // If we have zext(i&constant), it's always safe to use the larger
810 // variable. This is not common but is a bottleneck in Openssl.
Dale Johannesencb91b762009-04-15 20:41:02 +0000811 // (RHS doesn't have to be constant. There should be a better approach
812 // than bottom-up pattern matching for this...)
813 if (UInst && UInst->getOpcode()==Instruction::And &&
Evan Chengeecb8682009-04-22 22:45:37 +0000814 !UInst->use_empty() &&
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000815 allUsesAreSameTyped(Instruction::ZExt, UInst) &&
816 isa<ConstantInt>(UInst->getOperand(1))) {
Dale Johannesencb91b762009-04-15 20:41:02 +0000817 uint64_t newBitSize = LargestType->getPrimitiveSizeInBits();
818 ConstantInt* AndRHS = dyn_cast<ConstantInt>(UInst->getOperand(1));
819 ZExtInst* oldZext = dyn_cast<ZExtInst>(UInst->use_begin());
Evan Cheng27b84062009-04-22 23:39:28 +0000820 uint64_t truncSize = oldZext->getType()->getPrimitiveSizeInBits();
Dale Johannesencb91b762009-04-15 20:41:02 +0000821 Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType,
Dan Gohman6860e162009-04-23 15:16:49 +0000822 L, oldZext->getType(), Rewriter);
Evan Cheng27b84062009-04-22 23:39:28 +0000823 APInt APnewAndRHS = APInt(AndRHS->getValue()).zext(newBitSize);
824 if (newBitSize > truncSize)
825 APnewAndRHS = APnewAndRHS.trunc(truncSize);
826 ConstantInt* newAndRHS = ConstantInt::get(APnewAndRHS);
Dale Johannesencb91b762009-04-15 20:41:02 +0000827 Value *NewAnd =
828 BinaryOperator::CreateAnd(TruncIndVar, newAndRHS,
829 UInst->getName()+".nozex", UInst);
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000830 for (Value::use_iterator UI2 = UInst->use_begin(),
831 UE2 = UInst->use_end(); UI2 != UE2; ++UI2) {
832 Instruction *II = dyn_cast<Instruction>(UI2);
833 II->replaceAllUsesWith(NewAnd);
834 DeadInsts.insert(II);
835 }
Dale Johannesencb91b762009-04-15 20:41:02 +0000836 DeadInsts.insert(UInst);
837 }
838 // If we have zext((i+constant)&constant), we can use the larger
839 // variable even if the add does overflow. This works whenever the
840 // constant being ANDed is the same size as i, which it presumably is.
841 // We don't need to restrict the expression being and'ed to i+const,
842 // but we have to promote everything in it, so it's convenient.
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000843 // zext((i | constant)&constant) is also valid and accepted here.
844 if (UInst && (UInst->getOpcode()==Instruction::Add ||
845 UInst->getOpcode()==Instruction::Or) &&
Dale Johannesencb91b762009-04-15 20:41:02 +0000846 UInst->hasOneUse() &&
847 isa<ConstantInt>(UInst->getOperand(1))) {
848 uint64_t newBitSize = LargestType->getPrimitiveSizeInBits();
849 ConstantInt* AddRHS = dyn_cast<ConstantInt>(UInst->getOperand(1));
850 Instruction *UInst2 = dyn_cast<Instruction>(UInst->use_begin());
851 if (UInst2 && UInst2->getOpcode() == Instruction::And &&
Evan Cheng1a5947b2009-04-22 23:09:16 +0000852 !UInst2->use_empty() &&
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000853 allUsesAreSameTyped(Instruction::ZExt, UInst2) &&
854 isa<ConstantInt>(UInst2->getOperand(1))) {
Dale Johannesencb91b762009-04-15 20:41:02 +0000855 ZExtInst* oldZext = dyn_cast<ZExtInst>(UInst2->use_begin());
Evan Cheng27b84062009-04-22 23:39:28 +0000856 uint64_t truncSize = oldZext->getType()->getPrimitiveSizeInBits();
Dale Johannesencb91b762009-04-15 20:41:02 +0000857 Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType,
Dan Gohman6860e162009-04-23 15:16:49 +0000858 L, oldZext->getType(), Rewriter);
Dale Johannesencb91b762009-04-15 20:41:02 +0000859 ConstantInt* AndRHS = dyn_cast<ConstantInt>(UInst2->getOperand(1));
Evan Cheng27b84062009-04-22 23:39:28 +0000860 APInt APnewAddRHS = APInt(AddRHS->getValue()).zext(newBitSize);
861 if (newBitSize > truncSize)
862 APnewAddRHS = APnewAddRHS.trunc(truncSize);
863 ConstantInt* newAddRHS = ConstantInt::get(APnewAddRHS);
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000864 Value *NewAdd = ((UInst->getOpcode()==Instruction::Add) ?
Dale Johannesencb91b762009-04-15 20:41:02 +0000865 BinaryOperator::CreateAdd(TruncIndVar, newAddRHS,
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000866 UInst->getName()+".nozex", UInst2) :
867 BinaryOperator::CreateOr(TruncIndVar, newAddRHS,
868 UInst->getName()+".nozex", UInst2));
Dale Johannesencb91b762009-04-15 20:41:02 +0000869 APInt APcopy2 = APInt(AndRHS->getValue());
870 ConstantInt* newAndRHS = ConstantInt::get(APcopy2.zext(newBitSize));
871 Value *NewAnd =
872 BinaryOperator::CreateAnd(NewAdd, newAndRHS,
873 UInst->getName()+".nozex", UInst2);
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000874 for (Value::use_iterator UI2 = UInst2->use_begin(),
875 UE2 = UInst2->use_end(); UI2 != UE2; ++UI2) {
876 Instruction *II = dyn_cast<Instruction>(UI2);
877 II->replaceAllUsesWith(NewAnd);
878 DeadInsts.insert(II);
879 }
Dale Johannesencb91b762009-04-15 20:41:02 +0000880 DeadInsts.insert(UInst);
881 DeadInsts.insert(UInst2);
882 }
Dan Gohmancecc80f2009-02-14 02:31:09 +0000883 }
884 }
Dan Gohmancacd2012009-02-12 22:19:27 +0000885
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000886 // Replace the old PHI Node with the inserted computation.
887 PN->replaceAllUsesWith(NewVal);
888 DeadInsts.insert(PN);
889 IndVars.pop_back();
890 ++NumRemoved;
891 Changed = true;
892 }
893
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000894 DeleteTriviallyDeadInstructions(DeadInsts);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000895 assert(L->isLCSSAForm());
896 return Changed;
897}
Devang Patelbda43802008-09-09 21:41:07 +0000898
Devang Patelb8ccf572008-11-18 00:40:02 +0000899/// Return true if it is OK to use SIToFPInst for an inducation variable
900/// with given inital and exit values.
901static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
902 uint64_t intIV, uint64_t intEV) {
903
Dan Gohman963fc812009-02-17 19:13:57 +0000904 if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
Devang Patelb8ccf572008-11-18 00:40:02 +0000905 return true;
906
907 // If the iteration range can be handled by SIToFPInst then use it.
908 APInt Max = APInt::getSignedMaxValue(32);
Bill Wendlingb9a5a682008-11-18 10:57:27 +0000909 if (Max.getZExtValue() > static_cast<uint64_t>(abs(intEV - intIV)))
Devang Patelb8ccf572008-11-18 00:40:02 +0000910 return true;
Dan Gohman963fc812009-02-17 19:13:57 +0000911
Devang Patelb8ccf572008-11-18 00:40:02 +0000912 return false;
913}
914
915/// convertToInt - Convert APF to an integer, if possible.
Devang Patele2ba01d2008-11-17 23:27:13 +0000916static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
917
918 bool isExact = false;
Evan Cheng30e65f62008-11-26 01:11:57 +0000919 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
920 return false;
Dan Gohman963fc812009-02-17 19:13:57 +0000921 if (APF.convertToInteger(intVal, 32, APF.isNegative(),
Devang Patele2ba01d2008-11-17 23:27:13 +0000922 APFloat::rmTowardZero, &isExact)
923 != APFloat::opOK)
924 return false;
Dan Gohman963fc812009-02-17 19:13:57 +0000925 if (!isExact)
Devang Patele2ba01d2008-11-17 23:27:13 +0000926 return false;
927 return true;
928
929}
930
Devang Patel7ca23c92008-11-03 18:32:19 +0000931/// HandleFloatingPointIV - If the loop has floating induction variable
932/// then insert corresponding integer induction variable if possible.
Devang Patelc8dac622008-11-17 21:32:02 +0000933/// For example,
934/// for(double i = 0; i < 10000; ++i)
935/// bar(i)
936/// is converted into
937/// for(int i = 0; i < 10000; ++i)
938/// bar((double)i);
939///
Dan Gohman963fc812009-02-17 19:13:57 +0000940void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH,
Devang Patelc8dac622008-11-17 21:32:02 +0000941 SmallPtrSet<Instruction*, 16> &DeadInsts) {
Devang Patel7ca23c92008-11-03 18:32:19 +0000942
Devang Patelc8dac622008-11-17 21:32:02 +0000943 unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
944 unsigned BackEdge = IncomingEdge^1;
Dan Gohman963fc812009-02-17 19:13:57 +0000945
Devang Patelc8dac622008-11-17 21:32:02 +0000946 // Check incoming value.
Devang Patele2ba01d2008-11-17 23:27:13 +0000947 ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
948 if (!InitValue) return;
949 uint64_t newInitValue = Type::Int32Ty->getPrimitiveSizeInBits();
950 if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
951 return;
952
953 // Check IV increment. Reject this PH if increement operation is not
954 // an add or increment value can not be represented by an integer.
Dan Gohman963fc812009-02-17 19:13:57 +0000955 BinaryOperator *Incr =
Devang Patelc8dac622008-11-17 21:32:02 +0000956 dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
957 if (!Incr) return;
958 if (Incr->getOpcode() != Instruction::Add) return;
959 ConstantFP *IncrValue = NULL;
960 unsigned IncrVIndex = 1;
961 if (Incr->getOperand(1) == PH)
962 IncrVIndex = 0;
963 IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
964 if (!IncrValue) return;
Devang Patele2ba01d2008-11-17 23:27:13 +0000965 uint64_t newIncrValue = Type::Int32Ty->getPrimitiveSizeInBits();
966 if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
967 return;
Dan Gohman963fc812009-02-17 19:13:57 +0000968
Devang Patele2ba01d2008-11-17 23:27:13 +0000969 // Check Incr uses. One user is PH and the other users is exit condition used
970 // by the conditional terminator.
Devang Patelc8dac622008-11-17 21:32:02 +0000971 Value::use_iterator IncrUse = Incr->use_begin();
972 Instruction *U1 = cast<Instruction>(IncrUse++);
973 if (IncrUse == Incr->use_end()) return;
974 Instruction *U2 = cast<Instruction>(IncrUse++);
975 if (IncrUse != Incr->use_end()) return;
Dan Gohman963fc812009-02-17 19:13:57 +0000976
Devang Patelc8dac622008-11-17 21:32:02 +0000977 // Find exit condition.
978 FCmpInst *EC = dyn_cast<FCmpInst>(U1);
979 if (!EC)
980 EC = dyn_cast<FCmpInst>(U2);
981 if (!EC) return;
982
983 if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
984 if (!BI->isConditional()) return;
985 if (BI->getCondition() != EC) return;
Devang Patel7ca23c92008-11-03 18:32:19 +0000986 }
Devang Patel7ca23c92008-11-03 18:32:19 +0000987
Devang Patele2ba01d2008-11-17 23:27:13 +0000988 // Find exit value. If exit value can not be represented as an interger then
989 // do not handle this floating point PH.
Devang Patelc8dac622008-11-17 21:32:02 +0000990 ConstantFP *EV = NULL;
991 unsigned EVIndex = 1;
992 if (EC->getOperand(1) == Incr)
993 EVIndex = 0;
994 EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
995 if (!EV) return;
Devang Patelc8dac622008-11-17 21:32:02 +0000996 uint64_t intEV = Type::Int32Ty->getPrimitiveSizeInBits();
Devang Patele2ba01d2008-11-17 23:27:13 +0000997 if (!convertToInt(EV->getValueAPF(), &intEV))
Devang Patelc8dac622008-11-17 21:32:02 +0000998 return;
Dan Gohman963fc812009-02-17 19:13:57 +0000999
Devang Patelc8dac622008-11-17 21:32:02 +00001000 // Find new predicate for integer comparison.
1001 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
1002 switch (EC->getPredicate()) {
1003 case CmpInst::FCMP_OEQ:
1004 case CmpInst::FCMP_UEQ:
1005 NewPred = CmpInst::ICMP_EQ;
1006 break;
1007 case CmpInst::FCMP_OGT:
1008 case CmpInst::FCMP_UGT:
1009 NewPred = CmpInst::ICMP_UGT;
1010 break;
1011 case CmpInst::FCMP_OGE:
1012 case CmpInst::FCMP_UGE:
1013 NewPred = CmpInst::ICMP_UGE;
1014 break;
1015 case CmpInst::FCMP_OLT:
1016 case CmpInst::FCMP_ULT:
1017 NewPred = CmpInst::ICMP_ULT;
1018 break;
1019 case CmpInst::FCMP_OLE:
1020 case CmpInst::FCMP_ULE:
1021 NewPred = CmpInst::ICMP_ULE;
1022 break;
1023 default:
1024 break;
Devang Patel7ca23c92008-11-03 18:32:19 +00001025 }
Devang Patelc8dac622008-11-17 21:32:02 +00001026 if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
Dan Gohman963fc812009-02-17 19:13:57 +00001027
Devang Patelc8dac622008-11-17 21:32:02 +00001028 // Insert new integer induction variable.
1029 PHINode *NewPHI = PHINode::Create(Type::Int32Ty,
1030 PH->getName()+".int", PH);
Devang Patele2ba01d2008-11-17 23:27:13 +00001031 NewPHI->addIncoming(ConstantInt::get(Type::Int32Ty, newInitValue),
Devang Patelc8dac622008-11-17 21:32:02 +00001032 PH->getIncomingBlock(IncomingEdge));
1033
Dan Gohman963fc812009-02-17 19:13:57 +00001034 Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
1035 ConstantInt::get(Type::Int32Ty,
Devang Patele2ba01d2008-11-17 23:27:13 +00001036 newIncrValue),
Devang Patelc8dac622008-11-17 21:32:02 +00001037 Incr->getName()+".int", Incr);
1038 NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
1039
1040 ConstantInt *NewEV = ConstantInt::get(Type::Int32Ty, intEV);
1041 Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(BackEdge) : NewEV);
1042 Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(BackEdge));
Dan Gohman963fc812009-02-17 19:13:57 +00001043 ICmpInst *NewEC = new ICmpInst(NewPred, LHS, RHS, EC->getNameStart(),
Devang Patelc8dac622008-11-17 21:32:02 +00001044 EC->getParent()->getTerminator());
Dan Gohman963fc812009-02-17 19:13:57 +00001045
Devang Patelc8dac622008-11-17 21:32:02 +00001046 // Delete old, floating point, exit comparision instruction.
1047 EC->replaceAllUsesWith(NewEC);
1048 DeadInsts.insert(EC);
Dan Gohman963fc812009-02-17 19:13:57 +00001049
Devang Patelc8dac622008-11-17 21:32:02 +00001050 // Delete old, floating point, increment instruction.
1051 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
1052 DeadInsts.insert(Incr);
Dan Gohman963fc812009-02-17 19:13:57 +00001053
Devang Patelb8ccf572008-11-18 00:40:02 +00001054 // Replace floating induction variable. Give SIToFPInst preference over
1055 // UIToFPInst because it is faster on platforms that are widely used.
1056 if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
Dan Gohman963fc812009-02-17 19:13:57 +00001057 SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
Devang Patele2ba01d2008-11-17 23:27:13 +00001058 PH->getParent()->getFirstNonPHI());
1059 PH->replaceAllUsesWith(Conv);
1060 } else {
Dan Gohman963fc812009-02-17 19:13:57 +00001061 UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
Devang Patele2ba01d2008-11-17 23:27:13 +00001062 PH->getParent()->getFirstNonPHI());
1063 PH->replaceAllUsesWith(Conv);
1064 }
Devang Patelc8dac622008-11-17 21:32:02 +00001065 DeadInsts.insert(PH);
Devang Patel7ca23c92008-11-03 18:32:19 +00001066}
1067