blob: 3bbb51e02f8557c8d160012ebbcf220ffc8e9b98 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000018#include "X86.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86RegisterInfo.h"
Dan Gohmanc24a3f82009-01-05 17:59:02 +000020#include "llvm/ADT/DenseMap.h"
Dan Gohman1e57df32008-02-10 18:45:23 +000021#include "llvm/Target/TargetRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022
23namespace llvm {
24 class X86RegisterInfo;
25 class X86TargetMachine;
26
27namespace X86 {
28 // X86 specific condition code. These correspond to X86_*_COND in
29 // X86InstrInfo.td. They must be kept in synch.
30 enum CondCode {
31 COND_A = 0,
32 COND_AE = 1,
33 COND_B = 2,
34 COND_BE = 3,
35 COND_E = 4,
36 COND_G = 5,
37 COND_GE = 6,
38 COND_L = 7,
39 COND_LE = 8,
40 COND_NE = 9,
41 COND_NO = 10,
42 COND_NP = 11,
43 COND_NS = 12,
Dan Gohman0fc9ed62009-01-07 00:15:08 +000044 COND_O = 13,
45 COND_P = 14,
46 COND_S = 15,
Dan Gohman6a00fcb2008-10-21 03:29:32 +000047
48 // Artificial condition codes. These are used by AnalyzeBranch
49 // to indicate a block terminated with two conditional branches to
50 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51 // which can't be represented on x86 with a single condition. These
52 // are never used in MachineInstrs.
53 COND_NE_OR_P,
54 COND_NP_OR_E,
55
Dan Gohmanf17a25c2007-07-18 16:29:46 +000056 COND_INVALID
57 };
Christopher Lambb371e032008-03-13 05:47:01 +000058
Dan Gohmanf17a25c2007-07-18 16:29:46 +000059 // Turn condition code into conditional branch opcode.
60 unsigned GetCondBranchFromCond(CondCode CC);
61
62 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63 /// e.g. turning COND_E to COND_NE.
64 CondCode GetOppositeBranchCondition(X86::CondCode CC);
65
66}
67
68/// X86II - This namespace holds all of the target specific flags that
69/// instruction info tracks.
70///
71namespace X86II {
72 enum {
73 //===------------------------------------------------------------------===//
74 // Instruction types. These are the standard/most common forms for X86
75 // instructions.
76 //
77
78 // PseudoFrm - This represents an instruction that is a pseudo instruction
79 // or one that has not been implemented yet. It is illegal to code generate
80 // it, but tolerated for intermediate implementation stages.
81 Pseudo = 0,
82
83 /// Raw - This form is for instructions that don't have any operands, so
84 /// they are just a fixed opcode value, like 'leave'.
85 RawFrm = 1,
86
87 /// AddRegFrm - This form is used for instructions like 'push r32' that have
88 /// their one register operand added to their opcode.
89 AddRegFrm = 2,
90
91 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
92 /// to specify a destination, which in this case is a register.
93 ///
94 MRMDestReg = 3,
95
96 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
97 /// to specify a destination, which in this case is memory.
98 ///
99 MRMDestMem = 4,
100
101 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
102 /// to specify a source, which in this case is a register.
103 ///
104 MRMSrcReg = 5,
105
106 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
107 /// to specify a source, which in this case is memory.
108 ///
109 MRMSrcMem = 6,
110
111 /// MRM[0-7][rm] - These forms are used to represent instructions that use
112 /// a Mod/RM byte, and use the middle field to hold extended opcode
113 /// information. In the intel manual these are represented as /0, /1, ...
114 ///
115
116 // First, instructions that operate on a register r/m operand...
117 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
118 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
119
120 // Next, instructions that operate on a memory r/m operand...
121 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
122 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
123
124 // MRMInitReg - This form is used for instructions whose source and
125 // destinations are the same register.
126 MRMInitReg = 32,
127
128 FormMask = 63,
129
130 //===------------------------------------------------------------------===//
131 // Actual flags...
132
133 // OpSize - Set if this instruction requires an operand size prefix (0x66),
134 // which most often indicates that the instruction operates on 16 bit data
135 // instead of 32 bit data.
136 OpSize = 1 << 6,
137
138 // AsSize - Set if this instruction requires an operand size prefix (0x67),
139 // which most often indicates that the instruction address 16 bit address
140 // instead of 32 bit address (or 32 bit address in 64 bit mode).
141 AdSize = 1 << 7,
142
143 //===------------------------------------------------------------------===//
144 // Op0Mask - There are several prefix bytes that are used to form two byte
145 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
146 // used to obtain the setting of this field. If no bits in this field is
147 // set, there is no prefix byte for obtaining a multibyte opcode.
148 //
149 Op0Shift = 8,
150 Op0Mask = 0xF << Op0Shift,
151
152 // TB - TwoByte - Set if this instruction has a two byte opcode, which
153 // starts with a 0x0F byte before the real opcode.
154 TB = 1 << Op0Shift,
155
156 // REP - The 0xF3 prefix byte indicating repetition of the following
157 // instruction.
158 REP = 2 << Op0Shift,
159
160 // D8-DF - These escape opcodes are used by the floating point unit. These
161 // values must remain sequential.
162 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
163 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
164 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
165 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
166
167 // XS, XD - These prefix codes are for single and double precision scalar
168 // floating point operations performed in the SSE registers.
169 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
170
171 // T8, TA - Prefix after the 0x0F prefix.
172 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
173
174 //===------------------------------------------------------------------===//
175 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
176 // They are used to specify GPRs and SSE registers, 64-bit operand size,
177 // etc. We only cares about REX.W and REX.R bits and only the former is
178 // statically determined.
179 //
180 REXShift = 12,
181 REX_W = 1 << REXShift,
182
183 //===------------------------------------------------------------------===//
184 // This three-bit field describes the size of an immediate operand. Zero is
185 // unused so that we can tell if we forgot to set a value.
186 ImmShift = 13,
187 ImmMask = 7 << ImmShift,
188 Imm8 = 1 << ImmShift,
189 Imm16 = 2 << ImmShift,
190 Imm32 = 3 << ImmShift,
191 Imm64 = 4 << ImmShift,
192
193 //===------------------------------------------------------------------===//
194 // FP Instruction Classification... Zero is non-fp instruction.
195
196 // FPTypeMask - Mask for all of the FP types...
197 FPTypeShift = 16,
198 FPTypeMask = 7 << FPTypeShift,
199
200 // NotFP - The default, set for instructions that do not use FP registers.
201 NotFP = 0 << FPTypeShift,
202
203 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
204 ZeroArgFP = 1 << FPTypeShift,
205
206 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
207 OneArgFP = 2 << FPTypeShift,
208
209 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
210 // result back to ST(0). For example, fcos, fsqrt, etc.
211 //
212 OneArgFPRW = 3 << FPTypeShift,
213
214 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
215 // explicit argument, storing the result to either ST(0) or the implicit
216 // argument. For example: fadd, fsub, fmul, etc...
217 TwoArgFP = 4 << FPTypeShift,
218
219 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
220 // explicit argument, but have no destination. Example: fucom, fucomi, ...
221 CompareFP = 5 << FPTypeShift,
222
223 // CondMovFP - "2 operand" floating point conditional move instructions.
224 CondMovFP = 6 << FPTypeShift,
225
226 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
227 SpecialFP = 7 << FPTypeShift,
228
Andrew Lenharth7a5a4b22008-03-01 13:37:02 +0000229 // Lock prefix
230 LOCKShift = 19,
231 LOCK = 1 << LOCKShift,
232
Anton Korobeynikov975e1472008-10-11 19:09:15 +0000233 // Segment override prefixes. Currently we just need ability to address
234 // stuff in gs and fs segments.
235 SegOvrShift = 20,
236 SegOvrMask = 3 << SegOvrShift,
237 FS = 1 << SegOvrShift,
238 GS = 2 << SegOvrShift,
239
240 // Bits 22 -> 23 are unused
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000241 OpcodeShift = 24,
242 OpcodeMask = 0xFF << OpcodeShift
243 };
244}
245
Rafael Espindola3ef73652009-03-28 18:55:31 +0000246const int X86AddrNumOperands = 4;
247
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000248inline static bool isScale(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000249 return MO.isImm() &&
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000250 (MO.getImm() == 1 || MO.getImm() == 2 ||
251 MO.getImm() == 4 || MO.getImm() == 8);
252}
253
254inline static bool isMem(const MachineInstr *MI, unsigned Op) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000255 if (MI->getOperand(Op).isFI()) return true;
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000256 return Op+4 <= MI->getNumOperands() &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000257 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
258 MI->getOperand(Op+2).isReg() &&
259 (MI->getOperand(Op+3).isImm() ||
260 MI->getOperand(Op+3).isGlobal() ||
261 MI->getOperand(Op+3).isCPI() ||
262 MI->getOperand(Op+3).isJTI());
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000263}
264
Chris Lattnerd2fd6db2008-01-01 01:03:04 +0000265class X86InstrInfo : public TargetInstrInfoImpl {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000266 X86TargetMachine &TM;
267 const X86RegisterInfo RI;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000268
269 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
270 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
271 ///
272 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
273 DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
274 DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
275 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
276
277 /// MemOp2RegOpTable - Load / store unfolding opcode map.
278 ///
279 DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
280
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000281public:
Dan Gohman40bd38e2008-03-25 22:06:05 +0000282 explicit X86InstrInfo(X86TargetMachine &tm);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000283
284 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
285 /// such, whenever a client has an instance of instruction info, it should
286 /// always be able to get register info as well (through this method).
287 ///
Dan Gohmanb41dfba2008-05-14 01:58:56 +0000288 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000289
Evan Chengf97496a2009-01-20 19:12:24 +0000290 /// Return true if the instruction is a register to register move and return
291 /// the source and dest operands and their sub-register indices by reference.
292 virtual bool isMoveInstr(const MachineInstr &MI,
293 unsigned &SrcReg, unsigned &DstReg,
294 unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
295
Dan Gohman90feee22008-11-18 19:49:32 +0000296 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
297 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000298
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000299 bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000300 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
301 unsigned DestReg, const MachineInstr *Orig) const;
302
Dan Gohman90feee22008-11-18 19:49:32 +0000303 bool isInvariantLoad(const MachineInstr *MI) const;
Bill Wendling57e31d62007-12-17 23:07:56 +0000304
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000305 /// convertToThreeAddress - This method must be implemented by targets that
306 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
307 /// may be able to convert a two-address instruction into a true
308 /// three-address instruction on demand. This allows the X86 target (for
309 /// example) to convert ADD and SHL instructions into LEA instructions if they
310 /// would require register copies due to two-addressness.
311 ///
312 /// This method returns a null pointer if the transformation cannot be
313 /// performed, otherwise it returns the new instruction.
314 ///
315 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
316 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +0000317 LiveVariables *LV) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000318
319 /// commuteInstruction - We have a few instructions that must be hacked on to
320 /// commute them.
321 ///
Evan Cheng5de1aaf2008-06-16 07:33:11 +0000322 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000323
324 // Branch analysis.
325 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
326 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
327 MachineBasicBlock *&FBB,
Evan Chengeac31642009-02-09 07:14:22 +0000328 SmallVectorImpl<MachineOperand> &Cond,
329 bool AllowModify) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000330 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
331 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
332 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +0000333 const SmallVectorImpl<MachineOperand> &Cond) const;
Owen Anderson9fa72d92008-08-26 18:03:31 +0000334 virtual bool copyRegToReg(MachineBasicBlock &MBB,
Owen Anderson8f2c8932007-12-31 06:32:00 +0000335 MachineBasicBlock::iterator MI,
336 unsigned DestReg, unsigned SrcReg,
337 const TargetRegisterClass *DestRC,
338 const TargetRegisterClass *SrcRC) const;
Owen Anderson81875432008-01-01 21:11:32 +0000339 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
340 MachineBasicBlock::iterator MI,
341 unsigned SrcReg, bool isKill, int FrameIndex,
342 const TargetRegisterClass *RC) const;
343
344 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
345 SmallVectorImpl<MachineOperand> &Addr,
346 const TargetRegisterClass *RC,
347 SmallVectorImpl<MachineInstr*> &NewMIs) const;
348
349 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
350 MachineBasicBlock::iterator MI,
351 unsigned DestReg, int FrameIndex,
352 const TargetRegisterClass *RC) const;
353
354 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
355 SmallVectorImpl<MachineOperand> &Addr,
356 const TargetRegisterClass *RC,
357 SmallVectorImpl<MachineInstr*> &NewMIs) const;
Owen Anderson6690c7f2008-01-04 23:57:37 +0000358
359 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
360 MachineBasicBlock::iterator MI,
361 const std::vector<CalleeSavedInfo> &CSI) const;
362
363 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
364 MachineBasicBlock::iterator MI,
365 const std::vector<CalleeSavedInfo> &CSI) const;
366
Owen Anderson9a184ef2008-01-07 01:35:02 +0000367 /// foldMemoryOperand - If this target supports it, fold a load or store of
368 /// the specified stack slot into the specified machine instruction for the
369 /// specified operand(s). If this is possible, the target should perform the
370 /// folding and return true, otherwise it should return false. If it folds
371 /// the instruction, it is likely that the MachineInstruction the iterator
372 /// references has been changed.
Dan Gohmanedc83d62008-12-03 18:43:12 +0000373 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
374 MachineInstr* MI,
375 const SmallVectorImpl<unsigned> &Ops,
376 int FrameIndex) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000377
378 /// foldMemoryOperand - Same as the previous version except it allows folding
379 /// of any load and store from / to any address, not just from a specific
380 /// stack slot.
Dan Gohmanedc83d62008-12-03 18:43:12 +0000381 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
382 MachineInstr* MI,
383 const SmallVectorImpl<unsigned> &Ops,
384 MachineInstr* LoadMI) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000385
386 /// canFoldMemoryOperand - Returns true if the specified load / store is
387 /// folding is possible.
Dan Gohman46b948e2008-10-16 01:49:15 +0000388 virtual bool canFoldMemoryOperand(const MachineInstr*,
389 const SmallVectorImpl<unsigned> &) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000390
391 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
392 /// a store or a load and a store into two or more instruction. If this is
393 /// possible, returns true as well as the new instructions by reference.
394 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
395 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
396 SmallVectorImpl<MachineInstr*> &NewMIs) const;
397
398 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
399 SmallVectorImpl<SDNode*> &NewNodes) const;
400
401 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
402 /// instruction after load / store are unfolded from an instruction of the
403 /// specified opcode. It returns zero if the specified unfolding is not
404 /// possible.
405 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
406 bool UnfoldLoad, bool UnfoldStore) const;
407
Dan Gohman46b948e2008-10-16 01:49:15 +0000408 virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
Owen Andersond131b5b2008-08-14 22:49:33 +0000409 virtual
410 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000411
Evan Chengf5a8a362009-02-06 17:17:30 +0000412 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
413 /// instruction that defines the specified register class.
414 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
Evan Cheng0e4a5a92008-10-27 07:14:50 +0000415
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000416 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
Duncan Sands466eadd2007-08-29 19:01:20 +0000417 // specified machine instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000418 //
Chris Lattner5b930372008-01-07 07:27:27 +0000419 unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000420 return TID->TSFlags >> X86II::OpcodeShift;
421 }
Chris Lattner99aa3372008-01-07 02:48:55 +0000422 unsigned char getBaseOpcodeFor(unsigned Opcode) const {
Duncan Sands466eadd2007-08-29 19:01:20 +0000423 return getBaseOpcodeFor(&get(Opcode));
424 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +0000425
426 static bool isX86_64NonExtLowByteReg(unsigned reg) {
427 return (reg == X86::SPL || reg == X86::BPL ||
428 reg == X86::SIL || reg == X86::DIL);
429 }
430
431 static unsigned sizeOfImm(const TargetInstrDesc *Desc);
Nicolas Geoffraycb162a02008-04-16 20:10:13 +0000432 static bool isX86_64ExtendedReg(const MachineOperand &MO);
433 static unsigned determineREX(const MachineInstr &MI);
434
435 /// GetInstSize - Returns the size of the specified MachineInstr.
436 ///
437 virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000438
Dan Gohman882ab732008-09-30 00:58:23 +0000439 /// getGlobalBaseReg - Return a virtual register initialized with the
440 /// the global base register value. Output instructions required to
441 /// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +0000442 ///
Dan Gohman882ab732008-09-30 00:58:23 +0000443 unsigned getGlobalBaseReg(MachineFunction *MF) const;
Dan Gohmanb60482f2008-09-23 18:22:58 +0000444
Owen Anderson9a184ef2008-01-07 01:35:02 +0000445private:
Dan Gohmanedc83d62008-12-03 18:43:12 +0000446 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
447 MachineInstr* MI,
448 unsigned OpNum,
Dan Gohmanc24a3f82009-01-05 17:59:02 +0000449 const SmallVectorImpl<MachineOperand> &MOs) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000450};
451
452} // End llvm namespace
453
454#endif