blob: 1f08ca34ff1148df6e1ab4df9516222180f926a4 [file] [log] [blame]
Chris Lattnerdf986172009-01-02 07:01:27 +00001//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/ValueSymbolTable.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
Chris Lattnerdf986172009-01-02 07:01:27 +000028namespace llvm {
Chris Lattner3ed88ef2009-01-02 08:05:26 +000029 /// ValID - Represents a reference of a definition of some sort with no type.
30 /// There are several cases where we have to parse the value but where the
31 /// type can depend on later context. This may either be a numeric reference
32 /// or a symbolic (%var) reference. This is just a discriminated union.
Chris Lattnerdf986172009-01-02 07:01:27 +000033 struct ValID {
34 enum {
35 t_LocalID, t_GlobalID, // ID in UIntVal.
36 t_LocalName, t_GlobalName, // Name in StrVal.
37 t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal.
38 t_Null, t_Undef, t_Zero, // No value.
39 t_Constant, // Value in ConstantVal.
40 t_InlineAsm // Value in StrVal/StrVal2/UIntVal.
41 } Kind;
42
43 LLParser::LocTy Loc;
44 unsigned UIntVal;
45 std::string StrVal, StrVal2;
46 APSInt APSIntVal;
47 APFloat APFloatVal;
48 Constant *ConstantVal;
49 ValID() : APFloatVal(0.0) {}
50 };
51}
52
Chris Lattner3ed88ef2009-01-02 08:05:26 +000053/// Run: module ::= toplevelentity*
Chris Lattnerad7d1e22009-01-04 20:44:11 +000054bool LLParser::Run() {
Chris Lattner3ed88ef2009-01-02 08:05:26 +000055 // Prime the lexer.
56 Lex.Lex();
57
Chris Lattnerad7d1e22009-01-04 20:44:11 +000058 return ParseTopLevelEntities() ||
59 ValidateEndOfModule();
Chris Lattnerdf986172009-01-02 07:01:27 +000060}
61
62/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
63/// module.
64bool LLParser::ValidateEndOfModule() {
65 if (!ForwardRefTypes.empty())
66 return Error(ForwardRefTypes.begin()->second.second,
67 "use of undefined type named '" +
68 ForwardRefTypes.begin()->first + "'");
69 if (!ForwardRefTypeIDs.empty())
70 return Error(ForwardRefTypeIDs.begin()->second.second,
71 "use of undefined type '%" +
72 utostr(ForwardRefTypeIDs.begin()->first) + "'");
73
74 if (!ForwardRefVals.empty())
75 return Error(ForwardRefVals.begin()->second.second,
76 "use of undefined value '@" + ForwardRefVals.begin()->first +
77 "'");
78
79 if (!ForwardRefValIDs.empty())
80 return Error(ForwardRefValIDs.begin()->second.second,
81 "use of undefined value '@" +
82 utostr(ForwardRefValIDs.begin()->first) + "'");
83
84 // Look for intrinsic functions and CallInst that need to be upgraded
85 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
86 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
87
88 return false;
89}
90
91//===----------------------------------------------------------------------===//
92// Top-Level Entities
93//===----------------------------------------------------------------------===//
94
95bool LLParser::ParseTopLevelEntities() {
Chris Lattnerdf986172009-01-02 07:01:27 +000096 while (1) {
97 switch (Lex.getKind()) {
98 default: return TokError("expected top-level entity");
99 case lltok::Eof: return false;
100 //case lltok::kw_define:
101 case lltok::kw_declare: if (ParseDeclare()) return true; break;
102 case lltok::kw_define: if (ParseDefine()) return true; break;
103 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
104 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
105 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
106 case lltok::kw_type: if (ParseUnnamedType()) return true; break;
107 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
108 case lltok::LocalVar: if (ParseNamedType()) return true; break;
109 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
110
111 // The Global variable production with no name can have many different
112 // optional leading prefixes, the production is:
113 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
114 // OptionalAddrSpace ('constant'|'global') ...
115 case lltok::kw_internal: // OptionalLinkage
116 case lltok::kw_weak: // OptionalLinkage
117 case lltok::kw_linkonce: // OptionalLinkage
118 case lltok::kw_appending: // OptionalLinkage
119 case lltok::kw_dllexport: // OptionalLinkage
120 case lltok::kw_common: // OptionalLinkage
121 case lltok::kw_dllimport: // OptionalLinkage
122 case lltok::kw_extern_weak: // OptionalLinkage
123 case lltok::kw_external: { // OptionalLinkage
124 unsigned Linkage, Visibility;
125 if (ParseOptionalLinkage(Linkage) ||
126 ParseOptionalVisibility(Visibility) ||
127 ParseGlobal("", 0, Linkage, true, Visibility))
128 return true;
129 break;
130 }
131 case lltok::kw_default: // OptionalVisibility
132 case lltok::kw_hidden: // OptionalVisibility
133 case lltok::kw_protected: { // OptionalVisibility
134 unsigned Visibility;
135 if (ParseOptionalVisibility(Visibility) ||
136 ParseGlobal("", 0, 0, false, Visibility))
137 return true;
138 break;
139 }
140
141 case lltok::kw_thread_local: // OptionalThreadLocal
142 case lltok::kw_addrspace: // OptionalAddrSpace
143 case lltok::kw_constant: // GlobalType
144 case lltok::kw_global: // GlobalType
145 if (ParseGlobal("", 0, 0, false, 0)) return true;
146 break;
147 }
148 }
149}
150
151
152/// toplevelentity
153/// ::= 'module' 'asm' STRINGCONSTANT
154bool LLParser::ParseModuleAsm() {
155 assert(Lex.getKind() == lltok::kw_module);
156 Lex.Lex();
157
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000158 std::string AsmStr;
159 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
160 ParseStringConstant(AsmStr)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000161
162 const std::string &AsmSoFar = M->getModuleInlineAsm();
163 if (AsmSoFar.empty())
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000164 M->setModuleInlineAsm(AsmStr);
Chris Lattnerdf986172009-01-02 07:01:27 +0000165 else
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000166 M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
Chris Lattnerdf986172009-01-02 07:01:27 +0000167 return false;
168}
169
170/// toplevelentity
171/// ::= 'target' 'triple' '=' STRINGCONSTANT
172/// ::= 'target' 'datalayout' '=' STRINGCONSTANT
173bool LLParser::ParseTargetDefinition() {
174 assert(Lex.getKind() == lltok::kw_target);
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000175 std::string Str;
Chris Lattnerdf986172009-01-02 07:01:27 +0000176 switch (Lex.Lex()) {
177 default: return TokError("unknown target property");
178 case lltok::kw_triple:
179 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000180 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
181 ParseStringConstant(Str))
Chris Lattnerdf986172009-01-02 07:01:27 +0000182 return true;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000183 M->setTargetTriple(Str);
Chris Lattnerdf986172009-01-02 07:01:27 +0000184 return false;
185 case lltok::kw_datalayout:
186 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000187 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
188 ParseStringConstant(Str))
Chris Lattnerdf986172009-01-02 07:01:27 +0000189 return true;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000190 M->setDataLayout(Str);
Chris Lattnerdf986172009-01-02 07:01:27 +0000191 return false;
192 }
193}
194
195/// toplevelentity
196/// ::= 'deplibs' '=' '[' ']'
197/// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
198bool LLParser::ParseDepLibs() {
199 assert(Lex.getKind() == lltok::kw_deplibs);
Chris Lattnerdf986172009-01-02 07:01:27 +0000200 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000201 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
202 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
203 return true;
204
205 if (EatIfPresent(lltok::rsquare))
206 return false;
207
208 std::string Str;
209 if (ParseStringConstant(Str)) return true;
210 M->addLibrary(Str);
211
212 while (EatIfPresent(lltok::comma)) {
213 if (ParseStringConstant(Str)) return true;
214 M->addLibrary(Str);
215 }
216
217 return ParseToken(lltok::rsquare, "expected ']' at end of list");
Chris Lattnerdf986172009-01-02 07:01:27 +0000218}
219
220/// toplevelentity
221/// ::= 'type' type
222bool LLParser::ParseUnnamedType() {
223 assert(Lex.getKind() == lltok::kw_type);
224 LocTy TypeLoc = Lex.getLoc();
225 Lex.Lex(); // eat kw_type
226
227 PATypeHolder Ty(Type::VoidTy);
228 if (ParseType(Ty)) return true;
229
230 unsigned TypeID = NumberedTypes.size();
231
232 // We don't allow assigning names to void type
233 if (Ty == Type::VoidTy)
234 return Error(TypeLoc, "can't assign name to the void type");
235
236 // See if this type was previously referenced.
237 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
238 FI = ForwardRefTypeIDs.find(TypeID);
239 if (FI != ForwardRefTypeIDs.end()) {
240 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
241 Ty = FI->second.first.get();
242 ForwardRefTypeIDs.erase(FI);
243 }
244
245 NumberedTypes.push_back(Ty);
246
247 return false;
248}
249
250/// toplevelentity
251/// ::= LocalVar '=' 'type' type
252bool LLParser::ParseNamedType() {
253 std::string Name = Lex.getStrVal();
254 LocTy NameLoc = Lex.getLoc();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000255 Lex.Lex(); // eat LocalVar.
Chris Lattnerdf986172009-01-02 07:01:27 +0000256
257 PATypeHolder Ty(Type::VoidTy);
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000258
259 if (ParseToken(lltok::equal, "expected '=' after name") ||
260 ParseToken(lltok::kw_type, "expected 'type' after name") ||
261 ParseType(Ty))
262 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000263
264 // We don't allow assigning names to void type
265 if (Ty == Type::VoidTy)
266 return Error(NameLoc, "can't assign name '" + Name + "' to the void type");
267
268 // Set the type name, checking for conflicts as we do so.
269 bool AlreadyExists = M->addTypeName(Name, Ty);
270 if (!AlreadyExists) return false;
271
272 // See if this type is a forward reference. We need to eagerly resolve
273 // types to allow recursive type redefinitions below.
274 std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
275 FI = ForwardRefTypes.find(Name);
276 if (FI != ForwardRefTypes.end()) {
277 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
278 Ty = FI->second.first.get();
279 ForwardRefTypes.erase(FI);
280 }
281
282 // Inserting a name that is already defined, get the existing name.
283 const Type *Existing = M->getTypeByName(Name);
284 assert(Existing && "Conflict but no matching type?!");
285
286 // Otherwise, this is an attempt to redefine a type. That's okay if
287 // the redefinition is identical to the original.
288 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
289 if (Existing == Ty) return false;
290
291 // Any other kind of (non-equivalent) redefinition is an error.
292 return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
293 Ty->getDescription() + "'");
294}
295
296
297/// toplevelentity
298/// ::= 'declare' FunctionHeader
299bool LLParser::ParseDeclare() {
300 assert(Lex.getKind() == lltok::kw_declare);
301 Lex.Lex();
302
303 Function *F;
304 return ParseFunctionHeader(F, false);
305}
306
307/// toplevelentity
308/// ::= 'define' FunctionHeader '{' ...
309bool LLParser::ParseDefine() {
310 assert(Lex.getKind() == lltok::kw_define);
311 Lex.Lex();
312
313 Function *F;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000314 return ParseFunctionHeader(F, true) ||
315 ParseFunctionBody(*F);
Chris Lattnerdf986172009-01-02 07:01:27 +0000316}
317
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000318/// ParseGlobalType
319/// ::= 'constant'
320/// ::= 'global'
Chris Lattnerdf986172009-01-02 07:01:27 +0000321bool LLParser::ParseGlobalType(bool &IsConstant) {
322 if (Lex.getKind() == lltok::kw_constant)
323 IsConstant = true;
324 else if (Lex.getKind() == lltok::kw_global)
325 IsConstant = false;
326 else
327 return TokError("expected 'global' or 'constant'");
328 Lex.Lex();
329 return false;
330}
331
332/// ParseNamedGlobal:
333/// GlobalVar '=' OptionalVisibility ALIAS ...
334/// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
335bool LLParser::ParseNamedGlobal() {
336 assert(Lex.getKind() == lltok::GlobalVar);
337 LocTy NameLoc = Lex.getLoc();
338 std::string Name = Lex.getStrVal();
339 Lex.Lex();
340
341 bool HasLinkage;
342 unsigned Linkage, Visibility;
343 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
344 ParseOptionalLinkage(Linkage, HasLinkage) ||
345 ParseOptionalVisibility(Visibility))
346 return true;
347
348 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
349 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
350 return ParseAlias(Name, NameLoc, Visibility);
351}
352
353/// ParseAlias:
354/// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
355/// Aliasee
356/// ::= TypeAndValue | 'bitcast' '(' TypeAndValue 'to' Type ')'
357///
358/// Everything through visibility has already been parsed.
359///
360bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
361 unsigned Visibility) {
362 assert(Lex.getKind() == lltok::kw_alias);
363 Lex.Lex();
364 unsigned Linkage;
365 LocTy LinkageLoc = Lex.getLoc();
366 if (ParseOptionalLinkage(Linkage))
367 return true;
368
369 if (Linkage != GlobalValue::ExternalLinkage &&
370 Linkage != GlobalValue::WeakLinkage &&
371 Linkage != GlobalValue::InternalLinkage)
372 return Error(LinkageLoc, "invalid linkage type for alias");
373
374 Constant *Aliasee;
375 LocTy AliaseeLoc = Lex.getLoc();
376 if (Lex.getKind() != lltok::kw_bitcast) {
377 if (ParseGlobalTypeAndValue(Aliasee)) return true;
378 } else {
379 // The bitcast dest type is not present, it is implied by the dest type.
380 ValID ID;
381 if (ParseValID(ID)) return true;
382 if (ID.Kind != ValID::t_Constant)
383 return Error(AliaseeLoc, "invalid aliasee");
384 Aliasee = ID.ConstantVal;
385 }
386
387 if (!isa<PointerType>(Aliasee->getType()))
388 return Error(AliaseeLoc, "alias must have pointer type");
389
390 // Okay, create the alias but do not insert it into the module yet.
391 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
392 (GlobalValue::LinkageTypes)Linkage, Name,
393 Aliasee);
394 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
395
396 // See if this value already exists in the symbol table. If so, it is either
397 // a redefinition or a definition of a forward reference.
398 if (GlobalValue *Val =
399 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
400 // See if this was a redefinition. If so, there is no entry in
401 // ForwardRefVals.
402 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
403 I = ForwardRefVals.find(Name);
404 if (I == ForwardRefVals.end())
405 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
406
407 // Otherwise, this was a definition of forward ref. Verify that types
408 // agree.
409 if (Val->getType() != GA->getType())
410 return Error(NameLoc,
411 "forward reference and definition of alias have different types");
412
413 // If they agree, just RAUW the old value with the alias and remove the
414 // forward ref info.
415 Val->replaceAllUsesWith(GA);
416 Val->eraseFromParent();
417 ForwardRefVals.erase(I);
418 }
419
420 // Insert into the module, we know its name won't collide now.
421 M->getAliasList().push_back(GA);
422 assert(GA->getNameStr() == Name && "Should not be a name conflict!");
423
424 return false;
425}
426
427/// ParseGlobal
428/// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
429/// OptionalAddrSpace GlobalType Type Const
430/// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
431/// OptionalAddrSpace GlobalType Type Const
432///
433/// Everything through visibility has been parsed already.
434///
435bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
436 unsigned Linkage, bool HasLinkage,
437 unsigned Visibility) {
438 unsigned AddrSpace;
439 bool ThreadLocal, IsConstant;
440 LocTy TyLoc;
441
442 PATypeHolder Ty(Type::VoidTy);
443 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
444 ParseOptionalAddrSpace(AddrSpace) ||
445 ParseGlobalType(IsConstant) ||
446 ParseType(Ty, TyLoc))
447 return true;
448
449 // If the linkage is specified and is external, then no initializer is
450 // present.
451 Constant *Init = 0;
452 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
453 Linkage != GlobalValue::ExternalWeakLinkage &&
454 Linkage != GlobalValue::ExternalLinkage)) {
455 if (ParseGlobalValue(Ty, Init))
456 return true;
457 }
458
459 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
460 return Error(TyLoc, "invald type for global variable");
461
462 GlobalVariable *GV = 0;
463
464 // See if the global was forward referenced, if so, use the global.
465 if (!Name.empty() && (GV = M->getGlobalVariable(Name, true))) {
466 if (!ForwardRefVals.erase(Name))
467 return Error(NameLoc, "redefinition of global '@" + Name + "'");
468 } else {
469 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
470 I = ForwardRefValIDs.find(NumberedVals.size());
471 if (I != ForwardRefValIDs.end()) {
472 GV = cast<GlobalVariable>(I->second.first);
473 ForwardRefValIDs.erase(I);
474 }
475 }
476
477 if (GV == 0) {
478 GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
479 M, false, AddrSpace);
480 } else {
481 if (GV->getType()->getElementType() != Ty)
482 return Error(TyLoc,
483 "forward reference and definition of global have different types");
484
485 // Move the forward-reference to the correct spot in the module.
486 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
487 }
488
489 if (Name.empty())
490 NumberedVals.push_back(GV);
491
492 // Set the parsed properties on the global.
493 if (Init)
494 GV->setInitializer(Init);
495 GV->setConstant(IsConstant);
496 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
497 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
498 GV->setThreadLocal(ThreadLocal);
499
500 // Parse attributes on the global.
501 while (Lex.getKind() == lltok::comma) {
502 Lex.Lex();
503
504 if (Lex.getKind() == lltok::kw_section) {
505 Lex.Lex();
506 GV->setSection(Lex.getStrVal());
507 if (ParseToken(lltok::StringConstant, "expected global section string"))
508 return true;
509 } else if (Lex.getKind() == lltok::kw_align) {
510 unsigned Alignment;
511 if (ParseOptionalAlignment(Alignment)) return true;
512 GV->setAlignment(Alignment);
513 } else {
514 TokError("unknown global variable property!");
515 }
516 }
517
518 return false;
519}
520
521
522//===----------------------------------------------------------------------===//
523// GlobalValue Reference/Resolution Routines.
524//===----------------------------------------------------------------------===//
525
526/// GetGlobalVal - Get a value with the specified name or ID, creating a
527/// forward reference record if needed. This can return null if the value
528/// exists but does not have the right type.
529GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
530 LocTy Loc) {
531 const PointerType *PTy = dyn_cast<PointerType>(Ty);
532 if (PTy == 0) {
533 Error(Loc, "global variable reference must have pointer type");
534 return 0;
535 }
536
537 // Look this name up in the normal function symbol table.
538 GlobalValue *Val =
539 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
540
541 // If this is a forward reference for the value, see if we already created a
542 // forward ref record.
543 if (Val == 0) {
544 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
545 I = ForwardRefVals.find(Name);
546 if (I != ForwardRefVals.end())
547 Val = I->second.first;
548 }
549
550 // If we have the value in the symbol table or fwd-ref table, return it.
551 if (Val) {
552 if (Val->getType() == Ty) return Val;
553 Error(Loc, "'@" + Name + "' defined with type '" +
554 Val->getType()->getDescription() + "'");
555 return 0;
556 }
557
558 // Otherwise, create a new forward reference for this value and remember it.
559 GlobalValue *FwdVal;
560 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
561 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
562 else
563 FwdVal = new GlobalVariable(PTy->getElementType(), false,
564 GlobalValue::ExternalWeakLinkage, 0, Name, M);
565
566 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
567 return FwdVal;
568}
569
570GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
571 const PointerType *PTy = dyn_cast<PointerType>(Ty);
572 if (PTy == 0) {
573 Error(Loc, "global variable reference must have pointer type");
574 return 0;
575 }
576
577 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
578
579 // If this is a forward reference for the value, see if we already created a
580 // forward ref record.
581 if (Val == 0) {
582 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
583 I = ForwardRefValIDs.find(ID);
584 if (I != ForwardRefValIDs.end())
585 Val = I->second.first;
586 }
587
588 // If we have the value in the symbol table or fwd-ref table, return it.
589 if (Val) {
590 if (Val->getType() == Ty) return Val;
591 Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
592 Val->getType()->getDescription() + "'");
593 return 0;
594 }
595
596 // Otherwise, create a new forward reference for this value and remember it.
597 GlobalValue *FwdVal;
598 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
599 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
600 else
601 FwdVal = new GlobalVariable(PTy->getElementType(), false,
602 GlobalValue::ExternalWeakLinkage, 0, "", M);
603
604 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
605 return FwdVal;
606}
607
608
609//===----------------------------------------------------------------------===//
610// Helper Routines.
611//===----------------------------------------------------------------------===//
612
613/// ParseToken - If the current token has the specified kind, eat it and return
614/// success. Otherwise, emit the specified error and return failure.
615bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
616 if (Lex.getKind() != T)
617 return TokError(ErrMsg);
618 Lex.Lex();
619 return false;
620}
621
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000622/// ParseStringConstant
623/// ::= StringConstant
624bool LLParser::ParseStringConstant(std::string &Result) {
625 if (Lex.getKind() != lltok::StringConstant)
626 return TokError("expected string constant");
627 Result = Lex.getStrVal();
628 Lex.Lex();
629 return false;
630}
631
632/// ParseUInt32
633/// ::= uint32
634bool LLParser::ParseUInt32(unsigned &Val) {
Chris Lattnerdf986172009-01-02 07:01:27 +0000635 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
636 return TokError("expected integer");
637 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
638 if (Val64 != unsigned(Val64))
639 return TokError("expected 32-bit integer (too large)");
640 Val = Val64;
641 Lex.Lex();
642 return false;
643}
644
645
646/// ParseOptionalAddrSpace
647/// := /*empty*/
648/// := 'addrspace' '(' uint32 ')'
649bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
650 AddrSpace = 0;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000651 if (!EatIfPresent(lltok::kw_addrspace))
Chris Lattnerdf986172009-01-02 07:01:27 +0000652 return false;
Chris Lattnerdf986172009-01-02 07:01:27 +0000653 return ParseToken(lltok::lparen, "expected '(' in address space") ||
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000654 ParseUInt32(AddrSpace) ||
Chris Lattnerdf986172009-01-02 07:01:27 +0000655 ParseToken(lltok::rparen, "expected ')' in address space");
656}
657
658/// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
659/// indicates what kind of attribute list this is: 0: function arg, 1: result,
660/// 2: function attr.
661bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
662 Attrs = Attribute::None;
663 LocTy AttrLoc = Lex.getLoc();
664
665 while (1) {
666 switch (Lex.getKind()) {
667 case lltok::kw_sext:
668 case lltok::kw_zext:
669 // Treat these as signext/zeroext unless they are function attrs.
670 // FIXME: REMOVE THIS IN LLVM 3.0
671 if (AttrKind != 2) {
672 if (Lex.getKind() == lltok::kw_sext)
673 Attrs |= Attribute::SExt;
674 else
675 Attrs |= Attribute::ZExt;
676 break;
677 }
678 // FALL THROUGH.
679 default: // End of attributes.
680 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
681 return Error(AttrLoc, "invalid use of function-only attribute");
682
683 if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
684 return Error(AttrLoc, "invalid use of parameter-only attribute");
685
686 return false;
687 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
688 case lltok::kw_signext: Attrs |= Attribute::SExt; break;
689 case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
690 case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
691 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
692 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
693 case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
694 case lltok::kw_nest: Attrs |= Attribute::Nest; break;
695
696 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
697 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
698 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
699 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
700 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
701 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
702 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
703 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
704 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
705
706
707 case lltok::kw_align: {
708 unsigned Alignment;
709 if (ParseOptionalAlignment(Alignment))
710 return true;
711 Attrs |= Attribute::constructAlignmentFromInt(Alignment);
712 continue;
713 }
714 }
715 Lex.Lex();
716 }
717}
718
719/// ParseOptionalLinkage
720/// ::= /*empty*/
721/// ::= 'internal'
722/// ::= 'weak'
723/// ::= 'linkonce'
724/// ::= 'appending'
725/// ::= 'dllexport'
726/// ::= 'common'
727/// ::= 'dllimport'
728/// ::= 'extern_weak'
729/// ::= 'external'
730bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
731 HasLinkage = false;
732 switch (Lex.getKind()) {
733 default: Res = GlobalValue::ExternalLinkage; return false;
734 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
735 case lltok::kw_weak: Res = GlobalValue::WeakLinkage; break;
736 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceLinkage; break;
737 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
738 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
739 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
740 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
741 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
742 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
743 }
744 Lex.Lex();
745 HasLinkage = true;
746 return false;
747}
748
749/// ParseOptionalVisibility
750/// ::= /*empty*/
751/// ::= 'default'
752/// ::= 'hidden'
753/// ::= 'protected'
754///
755bool LLParser::ParseOptionalVisibility(unsigned &Res) {
756 switch (Lex.getKind()) {
757 default: Res = GlobalValue::DefaultVisibility; return false;
758 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
759 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
760 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
761 }
762 Lex.Lex();
763 return false;
764}
765
766/// ParseOptionalCallingConv
767/// ::= /*empty*/
768/// ::= 'ccc'
769/// ::= 'fastcc'
770/// ::= 'coldcc'
771/// ::= 'x86_stdcallcc'
772/// ::= 'x86_fastcallcc'
773/// ::= 'cc' UINT
774///
775bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
776 switch (Lex.getKind()) {
777 default: CC = CallingConv::C; return false;
778 case lltok::kw_ccc: CC = CallingConv::C; break;
779 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
780 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
781 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
782 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000783 case lltok::kw_cc: Lex.Lex(); return ParseUInt32(CC);
Chris Lattnerdf986172009-01-02 07:01:27 +0000784 }
785 Lex.Lex();
786 return false;
787}
788
789/// ParseOptionalAlignment
790/// ::= /* empty */
791/// ::= 'align' 4
792bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
793 Alignment = 0;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000794 if (!EatIfPresent(lltok::kw_align))
795 return false;
Chris Lattner3fbb3ab2009-01-05 07:46:05 +0000796 LocTy AlignLoc = Lex.getLoc();
797 if (ParseUInt32(Alignment)) return true;
798 if (!isPowerOf2_32(Alignment))
799 return Error(AlignLoc, "alignment is not a power of two");
800 return false;
Chris Lattnerdf986172009-01-02 07:01:27 +0000801}
802
803/// ParseOptionalCommaAlignment
804/// ::= /* empty */
805/// ::= ',' 'align' 4
806bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
807 Alignment = 0;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000808 if (!EatIfPresent(lltok::comma))
Chris Lattnerdf986172009-01-02 07:01:27 +0000809 return false;
Chris Lattnerdf986172009-01-02 07:01:27 +0000810 return ParseToken(lltok::kw_align, "expected 'align'") ||
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000811 ParseUInt32(Alignment);
Chris Lattnerdf986172009-01-02 07:01:27 +0000812}
813
814/// ParseIndexList
815/// ::= (',' uint32)+
816bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
817 if (Lex.getKind() != lltok::comma)
818 return TokError("expected ',' as start of index list");
819
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000820 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +0000821 unsigned Idx;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000822 if (ParseUInt32(Idx)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000823 Indices.push_back(Idx);
824 }
825
826 return false;
827}
828
829//===----------------------------------------------------------------------===//
830// Type Parsing.
831//===----------------------------------------------------------------------===//
832
833/// ParseType - Parse and resolve a full type.
834bool LLParser::ParseType(PATypeHolder &Result) {
835 if (ParseTypeRec(Result)) return true;
836
837 // Verify no unresolved uprefs.
838 if (!UpRefs.empty())
839 return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
Chris Lattnerdf986172009-01-02 07:01:27 +0000840
841 return false;
842}
843
844/// HandleUpRefs - Every time we finish a new layer of types, this function is
845/// called. It loops through the UpRefs vector, which is a list of the
846/// currently active types. For each type, if the up-reference is contained in
847/// the newly completed type, we decrement the level count. When the level
848/// count reaches zero, the up-referenced type is the type that is passed in:
849/// thus we can complete the cycle.
850///
851PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
852 // If Ty isn't abstract, or if there are no up-references in it, then there is
853 // nothing to resolve here.
854 if (!ty->isAbstract() || UpRefs.empty()) return ty;
855
856 PATypeHolder Ty(ty);
857#if 0
858 errs() << "Type '" << Ty->getDescription()
859 << "' newly formed. Resolving upreferences.\n"
860 << UpRefs.size() << " upreferences active!\n";
861#endif
862
863 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
864 // to zero), we resolve them all together before we resolve them to Ty. At
865 // the end of the loop, if there is anything to resolve to Ty, it will be in
866 // this variable.
867 OpaqueType *TypeToResolve = 0;
868
869 for (unsigned i = 0; i != UpRefs.size(); ++i) {
870 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
871 bool ContainsType =
872 std::find(Ty->subtype_begin(), Ty->subtype_end(),
873 UpRefs[i].LastContainedTy) != Ty->subtype_end();
874
875#if 0
876 errs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
877 << UpRefs[i].LastContainedTy->getDescription() << ") = "
878 << (ContainsType ? "true" : "false")
879 << " level=" << UpRefs[i].NestingLevel << "\n";
880#endif
881 if (!ContainsType)
882 continue;
883
884 // Decrement level of upreference
885 unsigned Level = --UpRefs[i].NestingLevel;
886 UpRefs[i].LastContainedTy = Ty;
887
888 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
889 if (Level != 0)
890 continue;
891
892#if 0
893 errs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
894#endif
895 if (!TypeToResolve)
896 TypeToResolve = UpRefs[i].UpRefTy;
897 else
898 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
899 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list.
900 --i; // Do not skip the next element.
901 }
902
903 if (TypeToResolve)
904 TypeToResolve->refineAbstractTypeTo(Ty);
905
906 return Ty;
907}
908
909
910/// ParseTypeRec - The recursive function used to process the internal
911/// implementation details of types.
912bool LLParser::ParseTypeRec(PATypeHolder &Result) {
913 switch (Lex.getKind()) {
914 default:
915 return TokError("expected type");
916 case lltok::Type:
917 // TypeRec ::= 'float' | 'void' (etc)
918 Result = Lex.getTyVal();
919 Lex.Lex();
920 break;
921 case lltok::kw_opaque:
922 // TypeRec ::= 'opaque'
923 Result = OpaqueType::get();
924 Lex.Lex();
925 break;
926 case lltok::lbrace:
927 // TypeRec ::= '{' ... '}'
928 if (ParseStructType(Result, false))
929 return true;
930 break;
931 case lltok::lsquare:
932 // TypeRec ::= '[' ... ']'
933 Lex.Lex(); // eat the lsquare.
934 if (ParseArrayVectorType(Result, false))
935 return true;
936 break;
937 case lltok::less: // Either vector or packed struct.
938 // TypeRec ::= '<' ... '>'
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000939 Lex.Lex();
940 if (Lex.getKind() == lltok::lbrace) {
941 if (ParseStructType(Result, true) ||
942 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
Chris Lattnerdf986172009-01-02 07:01:27 +0000943 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000944 } else if (ParseArrayVectorType(Result, true))
945 return true;
946 break;
947 case lltok::LocalVar:
948 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
949 // TypeRec ::= %foo
950 if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
951 Result = T;
952 } else {
953 Result = OpaqueType::get();
954 ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
955 std::make_pair(Result,
956 Lex.getLoc())));
957 M->addTypeName(Lex.getStrVal(), Result.get());
958 }
959 Lex.Lex();
960 break;
961
962 case lltok::LocalVarID:
963 // TypeRec ::= %4
964 if (Lex.getUIntVal() < NumberedTypes.size())
965 Result = NumberedTypes[Lex.getUIntVal()];
966 else {
967 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
968 I = ForwardRefTypeIDs.find(Lex.getUIntVal());
969 if (I != ForwardRefTypeIDs.end())
970 Result = I->second.first;
971 else {
972 Result = OpaqueType::get();
973 ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
974 std::make_pair(Result,
975 Lex.getLoc())));
976 }
977 }
978 Lex.Lex();
979 break;
980 case lltok::backslash: {
981 // TypeRec ::= '\' 4
Chris Lattnerdf986172009-01-02 07:01:27 +0000982 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000983 unsigned Val;
984 if (ParseUInt32(Val)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000985 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder.
986 UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
987 Result = OT;
988 break;
989 }
990 }
991
992 // Parse the type suffixes.
993 while (1) {
994 switch (Lex.getKind()) {
995 // End of type.
996 default: return false;
997
998 // TypeRec ::= TypeRec '*'
999 case lltok::star:
1000 if (Result.get() == Type::LabelTy)
1001 return TokError("basic block pointers are invalid");
1002 Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1003 Lex.Lex();
1004 break;
1005
1006 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1007 case lltok::kw_addrspace: {
1008 if (Result.get() == Type::LabelTy)
1009 return TokError("basic block pointers are invalid");
1010 unsigned AddrSpace;
1011 if (ParseOptionalAddrSpace(AddrSpace) ||
1012 ParseToken(lltok::star, "expected '*' in address space"))
1013 return true;
1014
1015 Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1016 break;
1017 }
1018
1019 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1020 case lltok::lparen:
1021 if (ParseFunctionType(Result))
1022 return true;
1023 break;
1024 }
1025 }
1026}
1027
1028/// ParseParameterList
1029/// ::= '(' ')'
1030/// ::= '(' Arg (',' Arg)* ')'
1031/// Arg
1032/// ::= Type OptionalAttributes Value OptionalAttributes
1033bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1034 PerFunctionState &PFS) {
1035 if (ParseToken(lltok::lparen, "expected '(' in call"))
1036 return true;
1037
1038 while (Lex.getKind() != lltok::rparen) {
1039 // If this isn't the first argument, we need a comma.
1040 if (!ArgList.empty() &&
1041 ParseToken(lltok::comma, "expected ',' in argument list"))
1042 return true;
1043
1044 // Parse the argument.
1045 LocTy ArgLoc;
1046 PATypeHolder ArgTy(Type::VoidTy);
1047 unsigned ArgAttrs1, ArgAttrs2;
1048 Value *V;
1049 if (ParseType(ArgTy, ArgLoc) ||
1050 ParseOptionalAttrs(ArgAttrs1, 0) ||
1051 ParseValue(ArgTy, V, PFS) ||
1052 // FIXME: Should not allow attributes after the argument, remove this in
1053 // LLVM 3.0.
1054 ParseOptionalAttrs(ArgAttrs2, 0))
1055 return true;
1056 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1057 }
1058
1059 Lex.Lex(); // Lex the ')'.
1060 return false;
1061}
1062
1063
1064
1065/// ParseArgumentList
1066/// ::= '(' ArgTypeListI ')'
1067/// ArgTypeListI
1068/// ::= /*empty*/
1069/// ::= '...'
1070/// ::= ArgTypeList ',' '...'
1071/// ::= ArgType (',' ArgType)*
1072bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1073 bool &isVarArg) {
1074 isVarArg = false;
1075 assert(Lex.getKind() == lltok::lparen);
1076 Lex.Lex(); // eat the (.
1077
1078 if (Lex.getKind() == lltok::rparen) {
1079 // empty
1080 } else if (Lex.getKind() == lltok::dotdotdot) {
1081 isVarArg = true;
1082 Lex.Lex();
1083 } else {
1084 LocTy TypeLoc = Lex.getLoc();
1085 PATypeHolder ArgTy(Type::VoidTy);
Chris Lattnerdf986172009-01-02 07:01:27 +00001086 unsigned Attrs;
Chris Lattnerdf986172009-01-02 07:01:27 +00001087 std::string Name;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001088
1089 if (ParseTypeRec(ArgTy) ||
1090 ParseOptionalAttrs(Attrs, 0)) return true;
1091
Chris Lattnerdf986172009-01-02 07:01:27 +00001092 if (Lex.getKind() == lltok::LocalVar ||
1093 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1094 Name = Lex.getStrVal();
1095 Lex.Lex();
1096 }
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001097
1098 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1099 return Error(TypeLoc, "invalid type for function argument");
Chris Lattnerdf986172009-01-02 07:01:27 +00001100
1101 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1102
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001103 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001104 // Handle ... at end of arg list.
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001105 if (EatIfPresent(lltok::dotdotdot)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001106 isVarArg = true;
Chris Lattnerdf986172009-01-02 07:01:27 +00001107 break;
1108 }
1109
1110 // Otherwise must be an argument type.
1111 TypeLoc = Lex.getLoc();
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001112 if (ParseTypeRec(ArgTy) ||
1113 ParseOptionalAttrs(Attrs, 0)) return true;
1114
Chris Lattnerdf986172009-01-02 07:01:27 +00001115 if (Lex.getKind() == lltok::LocalVar ||
1116 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1117 Name = Lex.getStrVal();
1118 Lex.Lex();
1119 } else {
1120 Name = "";
1121 }
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001122
1123 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1124 return Error(TypeLoc, "invalid type for function argument");
Chris Lattnerdf986172009-01-02 07:01:27 +00001125
1126 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1127 }
1128 }
1129
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001130 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
Chris Lattnerdf986172009-01-02 07:01:27 +00001131}
1132
1133/// ParseFunctionType
1134/// ::= Type ArgumentList OptionalAttrs
1135bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1136 assert(Lex.getKind() == lltok::lparen);
1137
1138 std::vector<ArgInfo> ArgList;
1139 bool isVarArg;
1140 unsigned Attrs;
1141 if (ParseArgumentList(ArgList, isVarArg) ||
1142 // FIXME: Allow, but ignore attributes on function types!
1143 // FIXME: Remove in LLVM 3.0
1144 ParseOptionalAttrs(Attrs, 2))
1145 return true;
1146
1147 // Reject names on the arguments lists.
1148 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1149 if (!ArgList[i].Name.empty())
1150 return Error(ArgList[i].Loc, "argument name invalid in function type");
1151 if (!ArgList[i].Attrs != 0) {
1152 // Allow but ignore attributes on function types; this permits
1153 // auto-upgrade.
1154 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1155 }
1156 }
1157
1158 std::vector<const Type*> ArgListTy;
1159 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1160 ArgListTy.push_back(ArgList[i].Type);
1161
1162 Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1163 return false;
1164}
1165
1166/// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1167/// TypeRec
1168/// ::= '{' '}'
1169/// ::= '{' TypeRec (',' TypeRec)* '}'
1170/// ::= '<' '{' '}' '>'
1171/// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1172bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1173 assert(Lex.getKind() == lltok::lbrace);
1174 Lex.Lex(); // Consume the '{'
1175
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001176 if (EatIfPresent(lltok::rbrace)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001177 Result = StructType::get(std::vector<const Type*>(), Packed);
Chris Lattnerdf986172009-01-02 07:01:27 +00001178 return false;
1179 }
1180
1181 std::vector<PATypeHolder> ParamsList;
1182 if (ParseTypeRec(Result)) return true;
1183 ParamsList.push_back(Result);
1184
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001185 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001186 if (ParseTypeRec(Result)) return true;
1187 ParamsList.push_back(Result);
1188 }
1189
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001190 if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1191 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00001192
1193 std::vector<const Type*> ParamsListTy;
1194 for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1195 ParamsListTy.push_back(ParamsList[i].get());
1196 Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1197 return false;
1198}
1199
1200/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1201/// token has already been consumed.
1202/// TypeRec
1203/// ::= '[' APSINTVAL 'x' Types ']'
1204/// ::= '<' APSINTVAL 'x' Types '>'
1205bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1206 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1207 Lex.getAPSIntVal().getBitWidth() > 64)
1208 return TokError("expected number in address space");
1209
1210 LocTy SizeLoc = Lex.getLoc();
1211 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001212 Lex.Lex();
1213
1214 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1215 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00001216
1217 LocTy TypeLoc = Lex.getLoc();
1218 PATypeHolder EltTy(Type::VoidTy);
1219 if (ParseTypeRec(EltTy)) return true;
1220
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001221 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1222 "expected end of sequential type"))
1223 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00001224
1225 if (isVector) {
1226 if ((unsigned)Size != Size)
1227 return Error(SizeLoc, "size too large for vector");
1228 if (!EltTy->isFloatingPoint() && !EltTy->isInteger())
1229 return Error(TypeLoc, "vector element type must be fp or integer");
1230 Result = VectorType::get(EltTy, unsigned(Size));
1231 } else {
1232 if (!EltTy->isFirstClassType() && !isa<OpaqueType>(EltTy))
1233 return Error(TypeLoc, "invalid array element type");
1234 Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1235 }
1236 return false;
1237}
1238
1239//===----------------------------------------------------------------------===//
1240// Function Semantic Analysis.
1241//===----------------------------------------------------------------------===//
1242
1243LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1244 : P(p), F(f) {
1245
1246 // Insert unnamed arguments into the NumberedVals list.
1247 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1248 AI != E; ++AI)
1249 if (!AI->hasName())
1250 NumberedVals.push_back(AI);
1251}
1252
1253LLParser::PerFunctionState::~PerFunctionState() {
1254 // If there were any forward referenced non-basicblock values, delete them.
1255 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1256 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1257 if (!isa<BasicBlock>(I->second.first)) {
1258 I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1259 ->getType()));
1260 delete I->second.first;
1261 I->second.first = 0;
1262 }
1263
1264 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1265 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1266 if (!isa<BasicBlock>(I->second.first)) {
1267 I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1268 ->getType()));
1269 delete I->second.first;
1270 I->second.first = 0;
1271 }
1272}
1273
1274bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1275 if (!ForwardRefVals.empty())
1276 return P.Error(ForwardRefVals.begin()->second.second,
1277 "use of undefined value '%" + ForwardRefVals.begin()->first +
1278 "'");
1279 if (!ForwardRefValIDs.empty())
1280 return P.Error(ForwardRefValIDs.begin()->second.second,
1281 "use of undefined value '%" +
1282 utostr(ForwardRefValIDs.begin()->first) + "'");
1283 return false;
1284}
1285
1286
1287/// GetVal - Get a value with the specified name or ID, creating a
1288/// forward reference record if needed. This can return null if the value
1289/// exists but does not have the right type.
1290Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1291 const Type *Ty, LocTy Loc) {
1292 // Look this name up in the normal function symbol table.
1293 Value *Val = F.getValueSymbolTable().lookup(Name);
1294
1295 // If this is a forward reference for the value, see if we already created a
1296 // forward ref record.
1297 if (Val == 0) {
1298 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1299 I = ForwardRefVals.find(Name);
1300 if (I != ForwardRefVals.end())
1301 Val = I->second.first;
1302 }
1303
1304 // If we have the value in the symbol table or fwd-ref table, return it.
1305 if (Val) {
1306 if (Val->getType() == Ty) return Val;
1307 if (Ty == Type::LabelTy)
1308 P.Error(Loc, "'%" + Name + "' is not a basic block");
1309 else
1310 P.Error(Loc, "'%" + Name + "' defined with type '" +
1311 Val->getType()->getDescription() + "'");
1312 return 0;
1313 }
1314
1315 // Don't make placeholders with invalid type.
1316 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1317 P.Error(Loc, "invalid use of a non-first-class type");
1318 return 0;
1319 }
1320
1321 // Otherwise, create a new forward reference for this value and remember it.
1322 Value *FwdVal;
1323 if (Ty == Type::LabelTy)
1324 FwdVal = BasicBlock::Create(Name, &F);
1325 else
1326 FwdVal = new Argument(Ty, Name);
1327
1328 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1329 return FwdVal;
1330}
1331
1332Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1333 LocTy Loc) {
1334 // Look this name up in the normal function symbol table.
1335 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1336
1337 // If this is a forward reference for the value, see if we already created a
1338 // forward ref record.
1339 if (Val == 0) {
1340 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1341 I = ForwardRefValIDs.find(ID);
1342 if (I != ForwardRefValIDs.end())
1343 Val = I->second.first;
1344 }
1345
1346 // If we have the value in the symbol table or fwd-ref table, return it.
1347 if (Val) {
1348 if (Val->getType() == Ty) return Val;
1349 if (Ty == Type::LabelTy)
1350 P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1351 else
1352 P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1353 Val->getType()->getDescription() + "'");
1354 return 0;
1355 }
1356
1357 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1358 P.Error(Loc, "invalid use of a non-first-class type");
1359 return 0;
1360 }
1361
1362 // Otherwise, create a new forward reference for this value and remember it.
1363 Value *FwdVal;
1364 if (Ty == Type::LabelTy)
1365 FwdVal = BasicBlock::Create("", &F);
1366 else
1367 FwdVal = new Argument(Ty);
1368
1369 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1370 return FwdVal;
1371}
1372
1373/// SetInstName - After an instruction is parsed and inserted into its
1374/// basic block, this installs its name.
1375bool LLParser::PerFunctionState::SetInstName(int NameID,
1376 const std::string &NameStr,
1377 LocTy NameLoc, Instruction *Inst) {
1378 // If this instruction has void type, it cannot have a name or ID specified.
1379 if (Inst->getType() == Type::VoidTy) {
1380 if (NameID != -1 || !NameStr.empty())
1381 return P.Error(NameLoc, "instructions returning void cannot have a name");
1382 return false;
1383 }
1384
1385 // If this was a numbered instruction, verify that the instruction is the
1386 // expected value and resolve any forward references.
1387 if (NameStr.empty()) {
1388 // If neither a name nor an ID was specified, just use the next ID.
1389 if (NameID == -1)
1390 NameID = NumberedVals.size();
1391
1392 if (unsigned(NameID) != NumberedVals.size())
1393 return P.Error(NameLoc, "instruction expected to be numbered '%" +
1394 utostr(NumberedVals.size()) + "'");
1395
1396 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1397 ForwardRefValIDs.find(NameID);
1398 if (FI != ForwardRefValIDs.end()) {
1399 if (FI->second.first->getType() != Inst->getType())
1400 return P.Error(NameLoc, "instruction forward referenced with type '" +
1401 FI->second.first->getType()->getDescription() + "'");
1402 FI->second.first->replaceAllUsesWith(Inst);
1403 ForwardRefValIDs.erase(FI);
1404 }
1405
1406 NumberedVals.push_back(Inst);
1407 return false;
1408 }
1409
1410 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1411 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1412 FI = ForwardRefVals.find(NameStr);
1413 if (FI != ForwardRefVals.end()) {
1414 if (FI->second.first->getType() != Inst->getType())
1415 return P.Error(NameLoc, "instruction forward referenced with type '" +
1416 FI->second.first->getType()->getDescription() + "'");
1417 FI->second.first->replaceAllUsesWith(Inst);
1418 ForwardRefVals.erase(FI);
1419 }
1420
1421 // Set the name on the instruction.
1422 Inst->setName(NameStr);
1423
1424 if (Inst->getNameStr() != NameStr)
1425 return P.Error(NameLoc, "multiple definition of local value named '" +
1426 NameStr + "'");
1427 return false;
1428}
1429
1430/// GetBB - Get a basic block with the specified name or ID, creating a
1431/// forward reference record if needed.
1432BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1433 LocTy Loc) {
1434 return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1435}
1436
1437BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1438 return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1439}
1440
1441/// DefineBB - Define the specified basic block, which is either named or
1442/// unnamed. If there is an error, this returns null otherwise it returns
1443/// the block being defined.
1444BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1445 LocTy Loc) {
1446 BasicBlock *BB;
1447 if (Name.empty())
1448 BB = GetBB(NumberedVals.size(), Loc);
1449 else
1450 BB = GetBB(Name, Loc);
1451 if (BB == 0) return 0; // Already diagnosed error.
1452
1453 // Move the block to the end of the function. Forward ref'd blocks are
1454 // inserted wherever they happen to be referenced.
1455 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1456
1457 // Remove the block from forward ref sets.
1458 if (Name.empty()) {
1459 ForwardRefValIDs.erase(NumberedVals.size());
1460 NumberedVals.push_back(BB);
1461 } else {
1462 // BB forward references are already in the function symbol table.
1463 ForwardRefVals.erase(Name);
1464 }
1465
1466 return BB;
1467}
1468
1469//===----------------------------------------------------------------------===//
1470// Constants.
1471//===----------------------------------------------------------------------===//
1472
1473/// ParseValID - Parse an abstract value that doesn't necessarily have a
1474/// type implied. For example, if we parse "4" we don't know what integer type
1475/// it has. The value will later be combined with its type and checked for
1476/// sanity.
1477bool LLParser::ParseValID(ValID &ID) {
1478 ID.Loc = Lex.getLoc();
1479 switch (Lex.getKind()) {
1480 default: return TokError("expected value token");
1481 case lltok::GlobalID: // @42
1482 ID.UIntVal = Lex.getUIntVal();
1483 ID.Kind = ValID::t_GlobalID;
1484 break;
1485 case lltok::GlobalVar: // @foo
1486 ID.StrVal = Lex.getStrVal();
1487 ID.Kind = ValID::t_GlobalName;
1488 break;
1489 case lltok::LocalVarID: // %42
1490 ID.UIntVal = Lex.getUIntVal();
1491 ID.Kind = ValID::t_LocalID;
1492 break;
1493 case lltok::LocalVar: // %foo
1494 case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0
1495 ID.StrVal = Lex.getStrVal();
1496 ID.Kind = ValID::t_LocalName;
1497 break;
1498 case lltok::APSInt:
1499 ID.APSIntVal = Lex.getAPSIntVal();
1500 ID.Kind = ValID::t_APSInt;
1501 break;
1502 case lltok::APFloat:
1503 ID.APFloatVal = Lex.getAPFloatVal();
1504 ID.Kind = ValID::t_APFloat;
1505 break;
1506 case lltok::kw_true:
1507 ID.ConstantVal = ConstantInt::getTrue();
1508 ID.Kind = ValID::t_Constant;
1509 break;
1510 case lltok::kw_false:
1511 ID.ConstantVal = ConstantInt::getFalse();
1512 ID.Kind = ValID::t_Constant;
1513 break;
1514 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1515 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1516 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1517
1518 case lltok::lbrace: {
1519 // ValID ::= '{' ConstVector '}'
1520 Lex.Lex();
1521 SmallVector<Constant*, 16> Elts;
1522 if (ParseGlobalValueVector(Elts) ||
1523 ParseToken(lltok::rbrace, "expected end of struct constant"))
1524 return true;
1525
1526 ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), false);
1527 ID.Kind = ValID::t_Constant;
1528 return false;
1529 }
1530 case lltok::less: {
1531 // ValID ::= '<' ConstVector '>' --> Vector.
1532 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1533 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001534 bool isPackedStruct = EatIfPresent(lltok::lbrace);
Chris Lattnerdf986172009-01-02 07:01:27 +00001535
1536 SmallVector<Constant*, 16> Elts;
1537 LocTy FirstEltLoc = Lex.getLoc();
1538 if (ParseGlobalValueVector(Elts) ||
1539 (isPackedStruct &&
1540 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1541 ParseToken(lltok::greater, "expected end of constant"))
1542 return true;
1543
1544 if (isPackedStruct) {
1545 ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), true);
1546 ID.Kind = ValID::t_Constant;
1547 return false;
1548 }
1549
1550 if (Elts.empty())
1551 return Error(ID.Loc, "constant vector must not be empty");
1552
1553 if (!Elts[0]->getType()->isInteger() &&
1554 !Elts[0]->getType()->isFloatingPoint())
1555 return Error(FirstEltLoc,
1556 "vector elements must have integer or floating point type");
1557
1558 // Verify that all the vector elements have the same type.
1559 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1560 if (Elts[i]->getType() != Elts[0]->getType())
1561 return Error(FirstEltLoc,
1562 "vector element #" + utostr(i) +
1563 " is not of type '" + Elts[0]->getType()->getDescription());
1564
1565 ID.ConstantVal = ConstantVector::get(&Elts[0], Elts.size());
1566 ID.Kind = ValID::t_Constant;
1567 return false;
1568 }
1569 case lltok::lsquare: { // Array Constant
1570 Lex.Lex();
1571 SmallVector<Constant*, 16> Elts;
1572 LocTy FirstEltLoc = Lex.getLoc();
1573 if (ParseGlobalValueVector(Elts) ||
1574 ParseToken(lltok::rsquare, "expected end of array constant"))
1575 return true;
1576
1577 // Handle empty element.
1578 if (Elts.empty()) {
1579 // Use undef instead of an array because it's inconvenient to determine
1580 // the element type at this point, there being no elements to examine.
1581 ID.Kind = ValID::t_Undef;
1582 return false;
1583 }
1584
1585 if (!Elts[0]->getType()->isFirstClassType())
1586 return Error(FirstEltLoc, "invalid array element type: " +
1587 Elts[0]->getType()->getDescription());
1588
1589 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1590
1591 // Verify all elements are correct type!
Chris Lattner6d6b3cc2009-01-02 08:49:06 +00001592 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001593 if (Elts[i]->getType() != Elts[0]->getType())
1594 return Error(FirstEltLoc,
1595 "array element #" + utostr(i) +
1596 " is not of type '" +Elts[0]->getType()->getDescription());
1597 }
1598
1599 ID.ConstantVal = ConstantArray::get(ATy, &Elts[0], Elts.size());
1600 ID.Kind = ValID::t_Constant;
1601 return false;
1602 }
1603 case lltok::kw_c: // c "foo"
1604 Lex.Lex();
1605 ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1606 if (ParseToken(lltok::StringConstant, "expected string")) return true;
1607 ID.Kind = ValID::t_Constant;
1608 return false;
1609
1610 case lltok::kw_asm: {
1611 // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1612 bool HasSideEffect;
1613 Lex.Lex();
1614 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001615 ParseStringConstant(ID.StrVal) ||
1616 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
Chris Lattnerdf986172009-01-02 07:01:27 +00001617 ParseToken(lltok::StringConstant, "expected constraint string"))
1618 return true;
1619 ID.StrVal2 = Lex.getStrVal();
1620 ID.UIntVal = HasSideEffect;
1621 ID.Kind = ValID::t_InlineAsm;
1622 return false;
1623 }
1624
1625 case lltok::kw_trunc:
1626 case lltok::kw_zext:
1627 case lltok::kw_sext:
1628 case lltok::kw_fptrunc:
1629 case lltok::kw_fpext:
1630 case lltok::kw_bitcast:
1631 case lltok::kw_uitofp:
1632 case lltok::kw_sitofp:
1633 case lltok::kw_fptoui:
1634 case lltok::kw_fptosi:
1635 case lltok::kw_inttoptr:
1636 case lltok::kw_ptrtoint: {
1637 unsigned Opc = Lex.getUIntVal();
1638 PATypeHolder DestTy(Type::VoidTy);
1639 Constant *SrcVal;
1640 Lex.Lex();
1641 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1642 ParseGlobalTypeAndValue(SrcVal) ||
1643 ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") ||
1644 ParseType(DestTy) ||
1645 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1646 return true;
1647 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1648 return Error(ID.Loc, "invalid cast opcode for cast from '" +
1649 SrcVal->getType()->getDescription() + "' to '" +
1650 DestTy->getDescription() + "'");
1651 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1652 DestTy);
1653 ID.Kind = ValID::t_Constant;
1654 return false;
1655 }
1656 case lltok::kw_extractvalue: {
1657 Lex.Lex();
1658 Constant *Val;
1659 SmallVector<unsigned, 4> Indices;
1660 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1661 ParseGlobalTypeAndValue(Val) ||
1662 ParseIndexList(Indices) ||
1663 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1664 return true;
1665 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1666 return Error(ID.Loc, "extractvalue operand must be array or struct");
1667 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1668 Indices.end()))
1669 return Error(ID.Loc, "invalid indices for extractvalue");
1670 ID.ConstantVal = ConstantExpr::getExtractValue(Val,
1671 &Indices[0], Indices.size());
1672 ID.Kind = ValID::t_Constant;
1673 return false;
1674 }
1675 case lltok::kw_insertvalue: {
1676 Lex.Lex();
1677 Constant *Val0, *Val1;
1678 SmallVector<unsigned, 4> Indices;
1679 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1680 ParseGlobalTypeAndValue(Val0) ||
1681 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1682 ParseGlobalTypeAndValue(Val1) ||
1683 ParseIndexList(Indices) ||
1684 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1685 return true;
1686 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1687 return Error(ID.Loc, "extractvalue operand must be array or struct");
1688 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1689 Indices.end()))
1690 return Error(ID.Loc, "invalid indices for insertvalue");
1691 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
1692 &Indices[0], Indices.size());
1693 ID.Kind = ValID::t_Constant;
1694 return false;
1695 }
1696 case lltok::kw_icmp:
1697 case lltok::kw_fcmp:
1698 case lltok::kw_vicmp:
1699 case lltok::kw_vfcmp: {
1700 unsigned PredVal, Opc = Lex.getUIntVal();
1701 Constant *Val0, *Val1;
1702 Lex.Lex();
1703 if (ParseCmpPredicate(PredVal, Opc) ||
1704 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1705 ParseGlobalTypeAndValue(Val0) ||
1706 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1707 ParseGlobalTypeAndValue(Val1) ||
1708 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1709 return true;
1710
1711 if (Val0->getType() != Val1->getType())
1712 return Error(ID.Loc, "compare operands must have the same type");
1713
1714 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1715
1716 if (Opc == Instruction::FCmp) {
1717 if (!Val0->getType()->isFPOrFPVector())
1718 return Error(ID.Loc, "fcmp requires floating point operands");
1719 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1720 } else if (Opc == Instruction::ICmp) {
1721 if (!Val0->getType()->isIntOrIntVector() &&
1722 !isa<PointerType>(Val0->getType()))
1723 return Error(ID.Loc, "icmp requires pointer or integer operands");
1724 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1725 } else if (Opc == Instruction::VFCmp) {
1726 // FIXME: REMOVE VFCMP Support
1727 ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1728 } else if (Opc == Instruction::VICmp) {
1729 // FIXME: REMOVE VFCMP Support
1730 ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1731 }
1732 ID.Kind = ValID::t_Constant;
1733 return false;
1734 }
1735
1736 // Binary Operators.
1737 case lltok::kw_add:
1738 case lltok::kw_sub:
1739 case lltok::kw_mul:
1740 case lltok::kw_udiv:
1741 case lltok::kw_sdiv:
1742 case lltok::kw_fdiv:
1743 case lltok::kw_urem:
1744 case lltok::kw_srem:
1745 case lltok::kw_frem: {
1746 unsigned Opc = Lex.getUIntVal();
1747 Constant *Val0, *Val1;
1748 Lex.Lex();
1749 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1750 ParseGlobalTypeAndValue(Val0) ||
1751 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1752 ParseGlobalTypeAndValue(Val1) ||
1753 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1754 return true;
1755 if (Val0->getType() != Val1->getType())
1756 return Error(ID.Loc, "operands of constexpr must have same type");
1757 if (!Val0->getType()->isIntOrIntVector() &&
1758 !Val0->getType()->isFPOrFPVector())
1759 return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1760 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1761 ID.Kind = ValID::t_Constant;
1762 return false;
1763 }
1764
1765 // Logical Operations
1766 case lltok::kw_shl:
1767 case lltok::kw_lshr:
1768 case lltok::kw_ashr:
1769 case lltok::kw_and:
1770 case lltok::kw_or:
1771 case lltok::kw_xor: {
1772 unsigned Opc = Lex.getUIntVal();
1773 Constant *Val0, *Val1;
1774 Lex.Lex();
1775 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1776 ParseGlobalTypeAndValue(Val0) ||
1777 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1778 ParseGlobalTypeAndValue(Val1) ||
1779 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1780 return true;
1781 if (Val0->getType() != Val1->getType())
1782 return Error(ID.Loc, "operands of constexpr must have same type");
1783 if (!Val0->getType()->isIntOrIntVector())
1784 return Error(ID.Loc,
1785 "constexpr requires integer or integer vector operands");
1786 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1787 ID.Kind = ValID::t_Constant;
1788 return false;
1789 }
1790
1791 case lltok::kw_getelementptr:
1792 case lltok::kw_shufflevector:
1793 case lltok::kw_insertelement:
1794 case lltok::kw_extractelement:
1795 case lltok::kw_select: {
1796 unsigned Opc = Lex.getUIntVal();
1797 SmallVector<Constant*, 16> Elts;
1798 Lex.Lex();
1799 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1800 ParseGlobalValueVector(Elts) ||
1801 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1802 return true;
1803
1804 if (Opc == Instruction::GetElementPtr) {
1805 if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1806 return Error(ID.Loc, "getelementptr requires pointer operand");
1807
1808 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1809 (Value**)&Elts[1], Elts.size()-1))
1810 return Error(ID.Loc, "invalid indices for getelementptr");
1811 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1812 &Elts[1], Elts.size()-1);
1813 } else if (Opc == Instruction::Select) {
1814 if (Elts.size() != 3)
1815 return Error(ID.Loc, "expected three operands to select");
1816 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1817 Elts[2]))
1818 return Error(ID.Loc, Reason);
1819 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1820 } else if (Opc == Instruction::ShuffleVector) {
1821 if (Elts.size() != 3)
1822 return Error(ID.Loc, "expected three operands to shufflevector");
1823 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1824 return Error(ID.Loc, "invalid operands to shufflevector");
1825 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1826 } else if (Opc == Instruction::ExtractElement) {
1827 if (Elts.size() != 2)
1828 return Error(ID.Loc, "expected two operands to extractelement");
1829 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1830 return Error(ID.Loc, "invalid extractelement operands");
1831 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1832 } else {
1833 assert(Opc == Instruction::InsertElement && "Unknown opcode");
1834 if (Elts.size() != 3)
1835 return Error(ID.Loc, "expected three operands to insertelement");
1836 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1837 return Error(ID.Loc, "invalid insertelement operands");
1838 ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1839 }
1840
1841 ID.Kind = ValID::t_Constant;
1842 return false;
1843 }
1844 }
1845
1846 Lex.Lex();
1847 return false;
1848}
1849
1850/// ParseGlobalValue - Parse a global value with the specified type.
1851bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1852 V = 0;
1853 ValID ID;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001854 return ParseValID(ID) ||
1855 ConvertGlobalValIDToValue(Ty, ID, V);
Chris Lattnerdf986172009-01-02 07:01:27 +00001856}
1857
1858/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1859/// constant.
1860bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1861 Constant *&V) {
1862 if (isa<FunctionType>(Ty))
1863 return Error(ID.Loc, "functions are not values, refer to them as pointers");
1864
1865 switch (ID.Kind) {
1866 default: assert(0 && "Unknown ValID!");
1867 case ValID::t_LocalID:
1868 case ValID::t_LocalName:
1869 return Error(ID.Loc, "invalid use of function-local name");
1870 case ValID::t_InlineAsm:
1871 return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1872 case ValID::t_GlobalName:
1873 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1874 return V == 0;
1875 case ValID::t_GlobalID:
1876 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1877 return V == 0;
1878 case ValID::t_APSInt:
1879 if (!isa<IntegerType>(Ty))
1880 return Error(ID.Loc, "integer constant must have integer type");
1881 ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
1882 V = ConstantInt::get(ID.APSIntVal);
1883 return false;
1884 case ValID::t_APFloat:
1885 if (!Ty->isFloatingPoint() ||
1886 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
1887 return Error(ID.Loc, "floating point constant invalid for type");
1888
1889 // The lexer has no type info, so builds all float and double FP constants
1890 // as double. Fix this here. Long double does not need this.
1891 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
1892 Ty == Type::FloatTy) {
1893 bool Ignored;
1894 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1895 &Ignored);
1896 }
1897 V = ConstantFP::get(ID.APFloatVal);
1898 return false;
1899 case ValID::t_Null:
1900 if (!isa<PointerType>(Ty))
1901 return Error(ID.Loc, "null must be a pointer type");
1902 V = ConstantPointerNull::get(cast<PointerType>(Ty));
1903 return false;
1904 case ValID::t_Undef:
1905 V = UndefValue::get(Ty);
1906 return false;
1907 case ValID::t_Zero:
1908 if (!Ty->isFirstClassType())
1909 return Error(ID.Loc, "invalid type for null constant");
1910 V = Constant::getNullValue(Ty);
1911 return false;
1912 case ValID::t_Constant:
1913 if (ID.ConstantVal->getType() != Ty)
1914 return Error(ID.Loc, "constant expression type mismatch");
1915 V = ID.ConstantVal;
1916 return false;
1917 }
1918}
1919
1920bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
1921 PATypeHolder Type(Type::VoidTy);
1922 return ParseType(Type) ||
1923 ParseGlobalValue(Type, V);
1924}
1925
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001926/// ParseGlobalValueVector
1927/// ::= /*empty*/
1928/// ::= TypeAndValue (',' TypeAndValue)*
Chris Lattnerdf986172009-01-02 07:01:27 +00001929bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
1930 // Empty list.
1931 if (Lex.getKind() == lltok::rbrace ||
1932 Lex.getKind() == lltok::rsquare ||
1933 Lex.getKind() == lltok::greater ||
1934 Lex.getKind() == lltok::rparen)
1935 return false;
1936
1937 Constant *C;
1938 if (ParseGlobalTypeAndValue(C)) return true;
1939 Elts.push_back(C);
1940
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001941 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001942 if (ParseGlobalTypeAndValue(C)) return true;
1943 Elts.push_back(C);
1944 }
1945
1946 return false;
1947}
1948
1949
1950//===----------------------------------------------------------------------===//
1951// Function Parsing.
1952//===----------------------------------------------------------------------===//
1953
1954bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
1955 PerFunctionState &PFS) {
1956 if (ID.Kind == ValID::t_LocalID)
1957 V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
1958 else if (ID.Kind == ValID::t_LocalName)
1959 V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
1960 else if (ID.Kind == ValID::ValID::t_InlineAsm) {
1961 const PointerType *PTy = dyn_cast<PointerType>(Ty);
1962 const FunctionType *FTy =
1963 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
1964 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
1965 return Error(ID.Loc, "invalid type for inline asm constraint string");
1966 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
1967 return false;
1968 } else {
1969 Constant *C;
1970 if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
1971 V = C;
1972 return false;
1973 }
1974
1975 return V == 0;
1976}
1977
1978bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
1979 V = 0;
1980 ValID ID;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001981 return ParseValID(ID) ||
1982 ConvertValIDToValue(Ty, ID, V, PFS);
Chris Lattnerdf986172009-01-02 07:01:27 +00001983}
1984
1985bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
1986 PATypeHolder T(Type::VoidTy);
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001987 return ParseType(T) ||
1988 ParseValue(T, V, PFS);
Chris Lattnerdf986172009-01-02 07:01:27 +00001989}
1990
1991/// FunctionHeader
1992/// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
1993/// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
1994/// OptionalAlign OptGC
1995bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
1996 // Parse the linkage.
1997 LocTy LinkageLoc = Lex.getLoc();
1998 unsigned Linkage;
1999
2000 unsigned Visibility, CC, RetAttrs;
2001 PATypeHolder RetType(Type::VoidTy);
2002 LocTy RetTypeLoc = Lex.getLoc();
2003 if (ParseOptionalLinkage(Linkage) ||
2004 ParseOptionalVisibility(Visibility) ||
2005 ParseOptionalCallingConv(CC) ||
2006 ParseOptionalAttrs(RetAttrs, 1) ||
2007 ParseType(RetType, RetTypeLoc))
2008 return true;
2009
2010 // Verify that the linkage is ok.
2011 switch ((GlobalValue::LinkageTypes)Linkage) {
2012 case GlobalValue::ExternalLinkage:
2013 break; // always ok.
2014 case GlobalValue::DLLImportLinkage:
2015 case GlobalValue::ExternalWeakLinkage:
2016 if (isDefine)
2017 return Error(LinkageLoc, "invalid linkage for function definition");
2018 break;
2019 case GlobalValue::InternalLinkage:
2020 case GlobalValue::LinkOnceLinkage:
2021 case GlobalValue::WeakLinkage:
2022 case GlobalValue::DLLExportLinkage:
2023 if (!isDefine)
2024 return Error(LinkageLoc, "invalid linkage for function declaration");
2025 break;
2026 case GlobalValue::AppendingLinkage:
2027 case GlobalValue::GhostLinkage:
2028 case GlobalValue::CommonLinkage:
2029 return Error(LinkageLoc, "invalid function linkage type");
2030 }
2031
2032 if (!FunctionType::isValidReturnType(RetType))
2033 return Error(RetTypeLoc, "invalid function return type");
2034
2035 if (Lex.getKind() != lltok::GlobalVar)
2036 return TokError("expected function name");
2037
2038 LocTy NameLoc = Lex.getLoc();
2039 std::string FunctionName = Lex.getStrVal();
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002040 Lex.Lex();
Chris Lattnerdf986172009-01-02 07:01:27 +00002041
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002042 if (Lex.getKind() != lltok::lparen)
Chris Lattnerdf986172009-01-02 07:01:27 +00002043 return TokError("expected '(' in function argument list");
2044
2045 std::vector<ArgInfo> ArgList;
2046 bool isVarArg;
Chris Lattnerdf986172009-01-02 07:01:27 +00002047 unsigned FuncAttrs;
Chris Lattnerdf986172009-01-02 07:01:27 +00002048 std::string Section;
Chris Lattnerdf986172009-01-02 07:01:27 +00002049 unsigned Alignment;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002050 std::string GC;
2051
2052 if (ParseArgumentList(ArgList, isVarArg) ||
2053 ParseOptionalAttrs(FuncAttrs, 2) ||
2054 (EatIfPresent(lltok::kw_section) &&
2055 ParseStringConstant(Section)) ||
2056 ParseOptionalAlignment(Alignment) ||
2057 (EatIfPresent(lltok::kw_gc) &&
2058 ParseStringConstant(GC)))
2059 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00002060
2061 // If the alignment was parsed as an attribute, move to the alignment field.
2062 if (FuncAttrs & Attribute::Alignment) {
2063 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2064 FuncAttrs &= ~Attribute::Alignment;
2065 }
2066
Chris Lattnerdf986172009-01-02 07:01:27 +00002067 // Okay, if we got here, the function is syntactically valid. Convert types
2068 // and do semantic checks.
2069 std::vector<const Type*> ParamTypeList;
2070 SmallVector<AttributeWithIndex, 8> Attrs;
2071 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2072 // attributes.
2073 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2074 if (FuncAttrs & ObsoleteFuncAttrs) {
2075 RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2076 FuncAttrs &= ~ObsoleteFuncAttrs;
2077 }
2078
2079 if (RetAttrs != Attribute::None)
2080 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2081
2082 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2083 ParamTypeList.push_back(ArgList[i].Type);
2084 if (ArgList[i].Attrs != Attribute::None)
2085 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2086 }
2087
2088 if (FuncAttrs != Attribute::None)
2089 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2090
2091 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2092
2093 const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2094 const PointerType *PFT = PointerType::getUnqual(FT);
2095
2096 Fn = 0;
2097 if (!FunctionName.empty()) {
2098 // If this was a definition of a forward reference, remove the definition
2099 // from the forward reference table and fill in the forward ref.
2100 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2101 ForwardRefVals.find(FunctionName);
2102 if (FRVI != ForwardRefVals.end()) {
2103 Fn = M->getFunction(FunctionName);
2104 ForwardRefVals.erase(FRVI);
2105 } else if ((Fn = M->getFunction(FunctionName))) {
2106 // If this function already exists in the symbol table, then it is
2107 // multiply defined. We accept a few cases for old backwards compat.
2108 // FIXME: Remove this stuff for LLVM 3.0.
2109 if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2110 (!Fn->isDeclaration() && isDefine)) {
2111 // If the redefinition has different type or different attributes,
2112 // reject it. If both have bodies, reject it.
2113 return Error(NameLoc, "invalid redefinition of function '" +
2114 FunctionName + "'");
2115 } else if (Fn->isDeclaration()) {
2116 // Make sure to strip off any argument names so we can't get conflicts.
2117 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2118 AI != AE; ++AI)
2119 AI->setName("");
2120 }
2121 }
2122
2123 } else if (FunctionName.empty()) {
2124 // If this is a definition of a forward referenced function, make sure the
2125 // types agree.
2126 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2127 = ForwardRefValIDs.find(NumberedVals.size());
2128 if (I != ForwardRefValIDs.end()) {
2129 Fn = cast<Function>(I->second.first);
2130 if (Fn->getType() != PFT)
2131 return Error(NameLoc, "type of definition and forward reference of '@" +
2132 utostr(NumberedVals.size()) +"' disagree");
2133 ForwardRefValIDs.erase(I);
2134 }
2135 }
2136
2137 if (Fn == 0)
2138 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2139 else // Move the forward-reference to the correct spot in the module.
2140 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2141
2142 if (FunctionName.empty())
2143 NumberedVals.push_back(Fn);
2144
2145 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2146 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2147 Fn->setCallingConv(CC);
2148 Fn->setAttributes(PAL);
2149 Fn->setAlignment(Alignment);
2150 Fn->setSection(Section);
2151 if (!GC.empty()) Fn->setGC(GC.c_str());
2152
2153 // Add all of the arguments we parsed to the function.
2154 Function::arg_iterator ArgIt = Fn->arg_begin();
2155 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2156 // If the argument has a name, insert it into the argument symbol table.
2157 if (ArgList[i].Name.empty()) continue;
2158
2159 // Set the name, if it conflicted, it will be auto-renamed.
2160 ArgIt->setName(ArgList[i].Name);
2161
2162 if (ArgIt->getNameStr() != ArgList[i].Name)
2163 return Error(ArgList[i].Loc, "redefinition of argument '%" +
2164 ArgList[i].Name + "'");
2165 }
2166
2167 return false;
2168}
2169
2170
2171/// ParseFunctionBody
2172/// ::= '{' BasicBlock+ '}'
2173/// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2174///
2175bool LLParser::ParseFunctionBody(Function &Fn) {
2176 if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2177 return TokError("expected '{' in function body");
2178 Lex.Lex(); // eat the {.
2179
2180 PerFunctionState PFS(*this, Fn);
2181
2182 while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2183 if (ParseBasicBlock(PFS)) return true;
2184
2185 // Eat the }.
2186 Lex.Lex();
2187
2188 // Verify function is ok.
2189 return PFS.VerifyFunctionComplete();
2190}
2191
2192/// ParseBasicBlock
2193/// ::= LabelStr? Instruction*
2194bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2195 // If this basic block starts out with a name, remember it.
2196 std::string Name;
2197 LocTy NameLoc = Lex.getLoc();
2198 if (Lex.getKind() == lltok::LabelStr) {
2199 Name = Lex.getStrVal();
2200 Lex.Lex();
2201 }
2202
2203 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2204 if (BB == 0) return true;
2205
2206 std::string NameStr;
2207
2208 // Parse the instructions in this block until we get a terminator.
2209 Instruction *Inst;
2210 do {
2211 // This instruction may have three possibilities for a name: a) none
2212 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2213 LocTy NameLoc = Lex.getLoc();
2214 int NameID = -1;
2215 NameStr = "";
2216
2217 if (Lex.getKind() == lltok::LocalVarID) {
2218 NameID = Lex.getUIntVal();
2219 Lex.Lex();
2220 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2221 return true;
2222 } else if (Lex.getKind() == lltok::LocalVar ||
2223 // FIXME: REMOVE IN LLVM 3.0
2224 Lex.getKind() == lltok::StringConstant) {
2225 NameStr = Lex.getStrVal();
2226 Lex.Lex();
2227 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2228 return true;
2229 }
2230
2231 if (ParseInstruction(Inst, BB, PFS)) return true;
2232
2233 BB->getInstList().push_back(Inst);
2234
2235 // Set the name on the instruction.
2236 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2237 } while (!isa<TerminatorInst>(Inst));
2238
2239 return false;
2240}
2241
2242//===----------------------------------------------------------------------===//
2243// Instruction Parsing.
2244//===----------------------------------------------------------------------===//
2245
2246/// ParseInstruction - Parse one of the many different instructions.
2247///
2248bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2249 PerFunctionState &PFS) {
2250 lltok::Kind Token = Lex.getKind();
2251 if (Token == lltok::Eof)
2252 return TokError("found end of file when expecting more instructions");
2253 LocTy Loc = Lex.getLoc();
2254 Lex.Lex(); // Eat the keyword.
2255
2256 switch (Token) {
2257 default: return Error(Loc, "expected instruction opcode");
2258 // Terminator Instructions.
2259 case lltok::kw_unwind: Inst = new UnwindInst(); return false;
2260 case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2261 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
2262 case lltok::kw_br: return ParseBr(Inst, PFS);
2263 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
2264 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
2265 // Binary Operators.
2266 case lltok::kw_add:
2267 case lltok::kw_sub:
2268 case lltok::kw_mul:
2269 case lltok::kw_udiv:
2270 case lltok::kw_sdiv:
2271 case lltok::kw_fdiv:
2272 case lltok::kw_urem:
2273 case lltok::kw_srem:
2274 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, Lex.getUIntVal());
2275 case lltok::kw_shl:
2276 case lltok::kw_lshr:
2277 case lltok::kw_ashr:
2278 case lltok::kw_and:
2279 case lltok::kw_or:
2280 case lltok::kw_xor: return ParseLogical(Inst, PFS, Lex.getUIntVal());
2281 case lltok::kw_icmp:
2282 case lltok::kw_fcmp:
2283 case lltok::kw_vicmp:
2284 case lltok::kw_vfcmp: return ParseCompare(Inst, PFS, Lex.getUIntVal());
2285 // Casts.
2286 case lltok::kw_trunc:
2287 case lltok::kw_zext:
2288 case lltok::kw_sext:
2289 case lltok::kw_fptrunc:
2290 case lltok::kw_fpext:
2291 case lltok::kw_bitcast:
2292 case lltok::kw_uitofp:
2293 case lltok::kw_sitofp:
2294 case lltok::kw_fptoui:
2295 case lltok::kw_fptosi:
2296 case lltok::kw_inttoptr:
2297 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, Lex.getUIntVal());
2298 // Other.
2299 case lltok::kw_select: return ParseSelect(Inst, PFS);
2300 case lltok::kw_va_arg: return ParseVAArg(Inst, PFS);
2301 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2302 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
2303 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
2304 case lltok::kw_phi: return ParsePHI(Inst, PFS);
2305 case lltok::kw_call: return ParseCall(Inst, PFS, false);
2306 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
2307 // Memory.
2308 case lltok::kw_alloca:
2309 case lltok::kw_malloc: return ParseAlloc(Inst, PFS, Lex.getUIntVal());
2310 case lltok::kw_free: return ParseFree(Inst, PFS);
2311 case lltok::kw_load: return ParseLoad(Inst, PFS, false);
2312 case lltok::kw_store: return ParseStore(Inst, PFS, false);
2313 case lltok::kw_volatile:
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002314 if (EatIfPresent(lltok::kw_load))
Chris Lattnerdf986172009-01-02 07:01:27 +00002315 return ParseLoad(Inst, PFS, true);
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002316 else if (EatIfPresent(lltok::kw_store))
Chris Lattnerdf986172009-01-02 07:01:27 +00002317 return ParseStore(Inst, PFS, true);
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002318 else
Chris Lattnerdf986172009-01-02 07:01:27 +00002319 return TokError("expected 'load' or 'store'");
Chris Lattnerdf986172009-01-02 07:01:27 +00002320 case lltok::kw_getresult: return ParseGetResult(Inst, PFS);
2321 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2322 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
2323 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
2324 }
2325}
2326
2327/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2328bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2329 // FIXME: REMOVE vicmp/vfcmp!
2330 if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2331 switch (Lex.getKind()) {
2332 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2333 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2334 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2335 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2336 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2337 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2338 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2339 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2340 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2341 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2342 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2343 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2344 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2345 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2346 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2347 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2348 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2349 }
2350 } else {
2351 switch (Lex.getKind()) {
2352 default: TokError("expected icmp predicate (e.g. 'eq')");
2353 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
2354 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
2355 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2356 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2357 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2358 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2359 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2360 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2361 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2362 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2363 }
2364 }
2365 Lex.Lex();
2366 return false;
2367}
2368
2369//===----------------------------------------------------------------------===//
2370// Terminator Instructions.
2371//===----------------------------------------------------------------------===//
2372
2373/// ParseRet - Parse a return instruction.
2374/// ::= 'ret' void
2375/// ::= 'ret' TypeAndValue
2376/// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]]
2377bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2378 PerFunctionState &PFS) {
2379 PATypeHolder Ty(Type::VoidTy);
2380 if (ParseType(Ty)) return true;
2381
2382 if (Ty == Type::VoidTy) {
2383 Inst = ReturnInst::Create();
2384 return false;
2385 }
2386
2387 Value *RV;
2388 if (ParseValue(Ty, RV, PFS)) return true;
2389
2390 // The normal case is one return value.
2391 if (Lex.getKind() == lltok::comma) {
2392 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2393 // of 'ret {i32,i32} {i32 1, i32 2}'
2394 SmallVector<Value*, 8> RVs;
2395 RVs.push_back(RV);
2396
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002397 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00002398 if (ParseTypeAndValue(RV, PFS)) return true;
2399 RVs.push_back(RV);
2400 }
2401
2402 RV = UndefValue::get(PFS.getFunction().getReturnType());
2403 for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2404 Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2405 BB->getInstList().push_back(I);
2406 RV = I;
2407 }
2408 }
2409 Inst = ReturnInst::Create(RV);
2410 return false;
2411}
2412
2413
2414/// ParseBr
2415/// ::= 'br' TypeAndValue
2416/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2417bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2418 LocTy Loc, Loc2;
2419 Value *Op0, *Op1, *Op2;
2420 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2421
2422 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2423 Inst = BranchInst::Create(BB);
2424 return false;
2425 }
2426
2427 if (Op0->getType() != Type::Int1Ty)
2428 return Error(Loc, "branch condition must have 'i1' type");
2429
2430 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2431 ParseTypeAndValue(Op1, Loc, PFS) ||
2432 ParseToken(lltok::comma, "expected ',' after true destination") ||
2433 ParseTypeAndValue(Op2, Loc2, PFS))
2434 return true;
2435
2436 if (!isa<BasicBlock>(Op1))
2437 return Error(Loc, "true destination of branch must be a basic block");
Chris Lattnerdf986172009-01-02 07:01:27 +00002438 if (!isa<BasicBlock>(Op2))
2439 return Error(Loc2, "true destination of branch must be a basic block");
2440
2441 Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2442 return false;
2443}
2444
2445/// ParseSwitch
2446/// Instruction
2447/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2448/// JumpTable
2449/// ::= (TypeAndValue ',' TypeAndValue)*
2450bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2451 LocTy CondLoc, BBLoc;
2452 Value *Cond, *DefaultBB;
2453 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2454 ParseToken(lltok::comma, "expected ',' after switch condition") ||
2455 ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2456 ParseToken(lltok::lsquare, "expected '[' with switch table"))
2457 return true;
2458
2459 if (!isa<IntegerType>(Cond->getType()))
2460 return Error(CondLoc, "switch condition must have integer type");
2461 if (!isa<BasicBlock>(DefaultBB))
2462 return Error(BBLoc, "default destination must be a basic block");
2463
2464 // Parse the jump table pairs.
2465 SmallPtrSet<Value*, 32> SeenCases;
2466 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2467 while (Lex.getKind() != lltok::rsquare) {
2468 Value *Constant, *DestBB;
2469
2470 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2471 ParseToken(lltok::comma, "expected ',' after case value") ||
2472 ParseTypeAndValue(DestBB, BBLoc, PFS))
2473 return true;
2474
2475 if (!SeenCases.insert(Constant))
2476 return Error(CondLoc, "duplicate case value in switch");
2477 if (!isa<ConstantInt>(Constant))
2478 return Error(CondLoc, "case value is not a constant integer");
2479 if (!isa<BasicBlock>(DestBB))
2480 return Error(BBLoc, "case destination is not a basic block");
2481
2482 Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2483 cast<BasicBlock>(DestBB)));
2484 }
2485
2486 Lex.Lex(); // Eat the ']'.
2487
2488 SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2489 Table.size());
2490 for (unsigned i = 0, e = Table.size(); i != e; ++i)
2491 SI->addCase(Table[i].first, Table[i].second);
2492 Inst = SI;
2493 return false;
2494}
2495
2496/// ParseInvoke
2497/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2498/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2499bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2500 LocTy CallLoc = Lex.getLoc();
2501 unsigned CC, RetAttrs, FnAttrs;
2502 PATypeHolder RetType(Type::VoidTy);
2503 LocTy RetTypeLoc;
2504 ValID CalleeID;
2505 SmallVector<ParamInfo, 16> ArgList;
2506
2507 Value *NormalBB, *UnwindBB;
2508 if (ParseOptionalCallingConv(CC) ||
2509 ParseOptionalAttrs(RetAttrs, 1) ||
2510 ParseType(RetType, RetTypeLoc) ||
2511 ParseValID(CalleeID) ||
2512 ParseParameterList(ArgList, PFS) ||
2513 ParseOptionalAttrs(FnAttrs, 2) ||
2514 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2515 ParseTypeAndValue(NormalBB, PFS) ||
2516 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2517 ParseTypeAndValue(UnwindBB, PFS))
2518 return true;
2519
2520 if (!isa<BasicBlock>(NormalBB))
2521 return Error(CallLoc, "normal destination is not a basic block");
2522 if (!isa<BasicBlock>(UnwindBB))
2523 return Error(CallLoc, "unwind destination is not a basic block");
2524
2525 // If RetType is a non-function pointer type, then this is the short syntax
2526 // for the call, which means that RetType is just the return type. Infer the
2527 // rest of the function argument types from the arguments that are present.
2528 const PointerType *PFTy = 0;
2529 const FunctionType *Ty = 0;
2530 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2531 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2532 // Pull out the types of all of the arguments...
2533 std::vector<const Type*> ParamTypes;
2534 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2535 ParamTypes.push_back(ArgList[i].V->getType());
2536
2537 if (!FunctionType::isValidReturnType(RetType))
2538 return Error(RetTypeLoc, "Invalid result type for LLVM function");
2539
2540 Ty = FunctionType::get(RetType, ParamTypes, false);
2541 PFTy = PointerType::getUnqual(Ty);
2542 }
2543
2544 // Look up the callee.
2545 Value *Callee;
2546 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2547
2548 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2549 // function attributes.
2550 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2551 if (FnAttrs & ObsoleteFuncAttrs) {
2552 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2553 FnAttrs &= ~ObsoleteFuncAttrs;
2554 }
2555
2556 // Set up the Attributes for the function.
2557 SmallVector<AttributeWithIndex, 8> Attrs;
2558 if (RetAttrs != Attribute::None)
2559 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2560
2561 SmallVector<Value*, 8> Args;
2562
2563 // Loop through FunctionType's arguments and ensure they are specified
2564 // correctly. Also, gather any parameter attributes.
2565 FunctionType::param_iterator I = Ty->param_begin();
2566 FunctionType::param_iterator E = Ty->param_end();
2567 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2568 const Type *ExpectedTy = 0;
2569 if (I != E) {
2570 ExpectedTy = *I++;
2571 } else if (!Ty->isVarArg()) {
2572 return Error(ArgList[i].Loc, "too many arguments specified");
2573 }
2574
2575 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2576 return Error(ArgList[i].Loc, "argument is not of expected type '" +
2577 ExpectedTy->getDescription() + "'");
2578 Args.push_back(ArgList[i].V);
2579 if (ArgList[i].Attrs != Attribute::None)
2580 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2581 }
2582
2583 if (I != E)
2584 return Error(CallLoc, "not enough parameters specified for call");
2585
2586 if (FnAttrs != Attribute::None)
2587 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2588
2589 // Finish off the Attributes and check them
2590 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2591
2592 InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2593 cast<BasicBlock>(UnwindBB),
2594 Args.begin(), Args.end());
2595 II->setCallingConv(CC);
2596 II->setAttributes(PAL);
2597 Inst = II;
2598 return false;
2599}
2600
2601
2602
2603//===----------------------------------------------------------------------===//
2604// Binary Operators.
2605//===----------------------------------------------------------------------===//
2606
2607/// ParseArithmetic
2608/// ::= ArithmeticOps TypeAndValue ',' Value {
2609bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2610 unsigned Opc) {
2611 LocTy Loc; Value *LHS, *RHS;
2612 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2613 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2614 ParseValue(LHS->getType(), RHS, PFS))
2615 return true;
2616
2617 if (!isa<IntegerType>(LHS->getType()) && !LHS->getType()->isFloatingPoint() &&
2618 !isa<VectorType>(LHS->getType()))
2619 return Error(Loc, "instruction requires integer, fp, or vector operands");
2620
2621 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2622 return false;
2623}
2624
2625/// ParseLogical
2626/// ::= ArithmeticOps TypeAndValue ',' Value {
2627bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2628 unsigned Opc) {
2629 LocTy Loc; Value *LHS, *RHS;
2630 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2631 ParseToken(lltok::comma, "expected ',' in logical operation") ||
2632 ParseValue(LHS->getType(), RHS, PFS))
2633 return true;
2634
2635 if (!LHS->getType()->isIntOrIntVector())
2636 return Error(Loc,"instruction requires integer or integer vector operands");
2637
2638 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2639 return false;
2640}
2641
2642
2643/// ParseCompare
2644/// ::= 'icmp' IPredicates TypeAndValue ',' Value
2645/// ::= 'fcmp' FPredicates TypeAndValue ',' Value
2646/// ::= 'vicmp' IPredicates TypeAndValue ',' Value
2647/// ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2648bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2649 unsigned Opc) {
2650 // Parse the integer/fp comparison predicate.
2651 LocTy Loc;
2652 unsigned Pred;
2653 Value *LHS, *RHS;
2654 if (ParseCmpPredicate(Pred, Opc) ||
2655 ParseTypeAndValue(LHS, Loc, PFS) ||
2656 ParseToken(lltok::comma, "expected ',' after compare value") ||
2657 ParseValue(LHS->getType(), RHS, PFS))
2658 return true;
2659
2660 if (Opc == Instruction::FCmp) {
2661 if (!LHS->getType()->isFPOrFPVector())
2662 return Error(Loc, "fcmp requires floating point operands");
2663 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2664 } else if (Opc == Instruction::ICmp) {
2665 if (!LHS->getType()->isIntOrIntVector() &&
2666 !isa<PointerType>(LHS->getType()))
2667 return Error(Loc, "icmp requires integer operands");
2668 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2669 } else if (Opc == Instruction::VFCmp) {
2670 Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2671 } else if (Opc == Instruction::VICmp) {
2672 Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2673 }
2674 return false;
2675}
2676
2677//===----------------------------------------------------------------------===//
2678// Other Instructions.
2679//===----------------------------------------------------------------------===//
2680
2681
2682/// ParseCast
2683/// ::= CastOpc TypeAndValue 'to' Type
2684bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2685 unsigned Opc) {
2686 LocTy Loc; Value *Op;
2687 PATypeHolder DestTy(Type::VoidTy);
2688 if (ParseTypeAndValue(Op, Loc, PFS) ||
2689 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2690 ParseType(DestTy))
2691 return true;
2692
2693 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy))
2694 return Error(Loc, "invalid cast opcode for cast from '" +
2695 Op->getType()->getDescription() + "' to '" +
2696 DestTy->getDescription() + "'");
2697 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2698 return false;
2699}
2700
2701/// ParseSelect
2702/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2703bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2704 LocTy Loc;
2705 Value *Op0, *Op1, *Op2;
2706 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2707 ParseToken(lltok::comma, "expected ',' after select condition") ||
2708 ParseTypeAndValue(Op1, PFS) ||
2709 ParseToken(lltok::comma, "expected ',' after select value") ||
2710 ParseTypeAndValue(Op2, PFS))
2711 return true;
2712
2713 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2714 return Error(Loc, Reason);
2715
2716 Inst = SelectInst::Create(Op0, Op1, Op2);
2717 return false;
2718}
2719
2720/// ParseVAArg
2721/// ::= 'vaarg' TypeAndValue ',' Type
2722bool LLParser::ParseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
2723 Value *Op;
2724 PATypeHolder EltTy(Type::VoidTy);
2725 if (ParseTypeAndValue(Op, PFS) ||
2726 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2727 ParseType(EltTy))
2728 return true;
2729
2730 Inst = new VAArgInst(Op, EltTy);
2731 return false;
2732}
2733
2734/// ParseExtractElement
2735/// ::= 'extractelement' TypeAndValue ',' TypeAndValue
2736bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2737 LocTy Loc;
2738 Value *Op0, *Op1;
2739 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2740 ParseToken(lltok::comma, "expected ',' after extract value") ||
2741 ParseTypeAndValue(Op1, PFS))
2742 return true;
2743
2744 if (!ExtractElementInst::isValidOperands(Op0, Op1))
2745 return Error(Loc, "invalid extractelement operands");
2746
2747 Inst = new ExtractElementInst(Op0, Op1);
2748 return false;
2749}
2750
2751/// ParseInsertElement
2752/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2753bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2754 LocTy Loc;
2755 Value *Op0, *Op1, *Op2;
2756 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2757 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2758 ParseTypeAndValue(Op1, PFS) ||
2759 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2760 ParseTypeAndValue(Op2, PFS))
2761 return true;
2762
2763 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2764 return Error(Loc, "invalid extractelement operands");
2765
2766 Inst = InsertElementInst::Create(Op0, Op1, Op2);
2767 return false;
2768}
2769
2770/// ParseShuffleVector
2771/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2772bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2773 LocTy Loc;
2774 Value *Op0, *Op1, *Op2;
2775 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2776 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2777 ParseTypeAndValue(Op1, PFS) ||
2778 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2779 ParseTypeAndValue(Op2, PFS))
2780 return true;
2781
2782 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2783 return Error(Loc, "invalid extractelement operands");
2784
2785 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2786 return false;
2787}
2788
2789/// ParsePHI
2790/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
2791bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2792 PATypeHolder Ty(Type::VoidTy);
2793 Value *Op0, *Op1;
2794 LocTy TypeLoc = Lex.getLoc();
2795
2796 if (ParseType(Ty) ||
2797 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2798 ParseValue(Ty, Op0, PFS) ||
2799 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2800 ParseValue(Type::LabelTy, Op1, PFS) ||
2801 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2802 return true;
2803
2804 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2805 while (1) {
2806 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2807
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002808 if (!EatIfPresent(lltok::comma))
Chris Lattnerdf986172009-01-02 07:01:27 +00002809 break;
2810
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002811 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
Chris Lattnerdf986172009-01-02 07:01:27 +00002812 ParseValue(Ty, Op0, PFS) ||
2813 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2814 ParseValue(Type::LabelTy, Op1, PFS) ||
2815 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2816 return true;
2817 }
2818
2819 if (!Ty->isFirstClassType())
2820 return Error(TypeLoc, "phi node must have first class type");
2821
2822 PHINode *PN = PHINode::Create(Ty);
2823 PN->reserveOperandSpace(PHIVals.size());
2824 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
2825 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
2826 Inst = PN;
2827 return false;
2828}
2829
2830/// ParseCall
2831/// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
2832/// ParameterList OptionalAttrs
2833bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
2834 bool isTail) {
2835 unsigned CC, RetAttrs, FnAttrs;
2836 PATypeHolder RetType(Type::VoidTy);
2837 LocTy RetTypeLoc;
2838 ValID CalleeID;
2839 SmallVector<ParamInfo, 16> ArgList;
2840 LocTy CallLoc = Lex.getLoc();
2841
2842 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
2843 ParseOptionalCallingConv(CC) ||
2844 ParseOptionalAttrs(RetAttrs, 1) ||
2845 ParseType(RetType, RetTypeLoc) ||
2846 ParseValID(CalleeID) ||
2847 ParseParameterList(ArgList, PFS) ||
2848 ParseOptionalAttrs(FnAttrs, 2))
2849 return true;
2850
2851 // If RetType is a non-function pointer type, then this is the short syntax
2852 // for the call, which means that RetType is just the return type. Infer the
2853 // rest of the function argument types from the arguments that are present.
2854 const PointerType *PFTy = 0;
2855 const FunctionType *Ty = 0;
2856 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2857 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2858 // Pull out the types of all of the arguments...
2859 std::vector<const Type*> ParamTypes;
2860 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2861 ParamTypes.push_back(ArgList[i].V->getType());
2862
2863 if (!FunctionType::isValidReturnType(RetType))
2864 return Error(RetTypeLoc, "Invalid result type for LLVM function");
2865
2866 Ty = FunctionType::get(RetType, ParamTypes, false);
2867 PFTy = PointerType::getUnqual(Ty);
2868 }
2869
2870 // Look up the callee.
2871 Value *Callee;
2872 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2873
2874 // Check for call to invalid intrinsic to avoid crashing later.
2875 if (Function *F = dyn_cast<Function>(Callee)) {
2876 if (F->hasName() && F->getNameLen() >= 5 &&
2877 !strncmp(F->getValueName()->getKeyData(), "llvm.", 5) &&
2878 !F->getIntrinsicID(true))
2879 return Error(CallLoc, "Call to invalid LLVM intrinsic function '" +
2880 F->getNameStr() + "'");
2881 }
2882
2883 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2884 // function attributes.
2885 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2886 if (FnAttrs & ObsoleteFuncAttrs) {
2887 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2888 FnAttrs &= ~ObsoleteFuncAttrs;
2889 }
2890
2891 // Set up the Attributes for the function.
2892 SmallVector<AttributeWithIndex, 8> Attrs;
2893 if (RetAttrs != Attribute::None)
2894 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2895
2896 SmallVector<Value*, 8> Args;
2897
2898 // Loop through FunctionType's arguments and ensure they are specified
2899 // correctly. Also, gather any parameter attributes.
2900 FunctionType::param_iterator I = Ty->param_begin();
2901 FunctionType::param_iterator E = Ty->param_end();
2902 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2903 const Type *ExpectedTy = 0;
2904 if (I != E) {
2905 ExpectedTy = *I++;
2906 } else if (!Ty->isVarArg()) {
2907 return Error(ArgList[i].Loc, "too many arguments specified");
2908 }
2909
2910 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2911 return Error(ArgList[i].Loc, "argument is not of expected type '" +
2912 ExpectedTy->getDescription() + "'");
2913 Args.push_back(ArgList[i].V);
2914 if (ArgList[i].Attrs != Attribute::None)
2915 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2916 }
2917
2918 if (I != E)
2919 return Error(CallLoc, "not enough parameters specified for call");
2920
2921 if (FnAttrs != Attribute::None)
2922 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2923
2924 // Finish off the Attributes and check them
2925 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2926
2927 CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
2928 CI->setTailCall(isTail);
2929 CI->setCallingConv(CC);
2930 CI->setAttributes(PAL);
2931 Inst = CI;
2932 return false;
2933}
2934
2935//===----------------------------------------------------------------------===//
2936// Memory Instructions.
2937//===----------------------------------------------------------------------===//
2938
2939/// ParseAlloc
2940/// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
2941/// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
2942bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
2943 unsigned Opc) {
2944 PATypeHolder Ty(Type::VoidTy);
2945 Value *Size = 0;
2946 LocTy SizeLoc = 0;
2947 unsigned Alignment = 0;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002948 if (ParseType(Ty)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00002949
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002950 if (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00002951 if (Lex.getKind() == lltok::kw_align) {
2952 if (ParseOptionalAlignment(Alignment)) return true;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002953 } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
2954 ParseOptionalCommaAlignment(Alignment)) {
2955 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00002956 }
2957 }
2958
2959 if (Size && Size->getType() != Type::Int32Ty)
2960 return Error(SizeLoc, "element count must be i32");
2961
2962 if (Opc == Instruction::Malloc)
2963 Inst = new MallocInst(Ty, Size, Alignment);
2964 else
2965 Inst = new AllocaInst(Ty, Size, Alignment);
2966 return false;
2967}
2968
2969/// ParseFree
2970/// ::= 'free' TypeAndValue
2971bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
2972 Value *Val; LocTy Loc;
2973 if (ParseTypeAndValue(Val, Loc, PFS)) return true;
2974 if (!isa<PointerType>(Val->getType()))
2975 return Error(Loc, "operand to free must be a pointer");
2976 Inst = new FreeInst(Val);
2977 return false;
2978}
2979
2980/// ParseLoad
2981/// ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
2982bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
2983 bool isVolatile) {
2984 Value *Val; LocTy Loc;
2985 unsigned Alignment;
2986 if (ParseTypeAndValue(Val, Loc, PFS) ||
2987 ParseOptionalCommaAlignment(Alignment))
2988 return true;
2989
2990 if (!isa<PointerType>(Val->getType()) ||
2991 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
2992 return Error(Loc, "load operand must be a pointer to a first class type");
2993
2994 Inst = new LoadInst(Val, "", isVolatile, Alignment);
2995 return false;
2996}
2997
2998/// ParseStore
2999/// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3000bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3001 bool isVolatile) {
3002 Value *Val, *Ptr; LocTy Loc, PtrLoc;
3003 unsigned Alignment;
3004 if (ParseTypeAndValue(Val, Loc, PFS) ||
3005 ParseToken(lltok::comma, "expected ',' after store operand") ||
3006 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3007 ParseOptionalCommaAlignment(Alignment))
3008 return true;
3009
3010 if (!isa<PointerType>(Ptr->getType()))
3011 return Error(PtrLoc, "store operand must be a pointer");
3012 if (!Val->getType()->isFirstClassType())
3013 return Error(Loc, "store operand must be a first class value");
3014 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3015 return Error(Loc, "stored value and pointer type do not match");
3016
3017 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3018 return false;
3019}
3020
3021/// ParseGetResult
3022/// ::= 'getresult' TypeAndValue ',' uint
3023/// FIXME: Remove support for getresult in LLVM 3.0
3024bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3025 Value *Val; LocTy ValLoc, EltLoc;
3026 unsigned Element;
3027 if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3028 ParseToken(lltok::comma, "expected ',' after getresult operand") ||
Chris Lattner3ed88ef2009-01-02 08:05:26 +00003029 ParseUInt32(Element, EltLoc))
Chris Lattnerdf986172009-01-02 07:01:27 +00003030 return true;
3031
3032 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3033 return Error(ValLoc, "getresult inst requires an aggregate operand");
3034 if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3035 return Error(EltLoc, "invalid getresult index for value");
3036 Inst = ExtractValueInst::Create(Val, Element);
3037 return false;
3038}
3039
3040/// ParseGetElementPtr
3041/// ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3042bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3043 Value *Ptr, *Val; LocTy Loc, EltLoc;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00003044 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00003045
3046 if (!isa<PointerType>(Ptr->getType()))
3047 return Error(Loc, "base of getelementptr must be a pointer");
3048
3049 SmallVector<Value*, 16> Indices;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00003050 while (EatIfPresent(lltok::comma)) {
3051 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00003052 if (!isa<IntegerType>(Val->getType()))
3053 return Error(EltLoc, "getelementptr index must be an integer");
3054 Indices.push_back(Val);
3055 }
3056
3057 if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3058 Indices.begin(), Indices.end()))
3059 return Error(Loc, "invalid getelementptr indices");
3060 Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3061 return false;
3062}
3063
3064/// ParseExtractValue
3065/// ::= 'extractvalue' TypeAndValue (',' uint32)+
3066bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3067 Value *Val; LocTy Loc;
3068 SmallVector<unsigned, 4> Indices;
3069 if (ParseTypeAndValue(Val, Loc, PFS) ||
3070 ParseIndexList(Indices))
3071 return true;
3072
3073 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3074 return Error(Loc, "extractvalue operand must be array or struct");
3075
3076 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3077 Indices.end()))
3078 return Error(Loc, "invalid indices for extractvalue");
3079 Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3080 return false;
3081}
3082
3083/// ParseInsertValue
3084/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3085bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3086 Value *Val0, *Val1; LocTy Loc0, Loc1;
3087 SmallVector<unsigned, 4> Indices;
3088 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3089 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3090 ParseTypeAndValue(Val1, Loc1, PFS) ||
3091 ParseIndexList(Indices))
3092 return true;
3093
3094 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3095 return Error(Loc0, "extractvalue operand must be array or struct");
3096
3097 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3098 Indices.end()))
3099 return Error(Loc0, "invalid indices for insertvalue");
3100 Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3101 return false;
3102}