blob: f51f02da677b40a5dbacf819cc280e2fa1f49385 [file] [log] [blame]
Chris Lattner233f7dc2002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner8a2a3112001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Chris Lattner62b14df2002-09-02 04:59:56 +000011// instructions. This pass does not modify the CFG This pass is where algebraic
12// simplification happens.
Chris Lattner8a2a3112001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner318bf792007-03-18 22:51:34 +000015// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
Chris Lattner8a2a3112001-12-14 16:52:21 +000017// into:
Chris Lattner318bf792007-03-18 22:51:34 +000018// %Z = add i32 %X, 2
Chris Lattner8a2a3112001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner065a6162003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattner2cd91962003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdf17af12003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Reid Spencere4d87aa2006-12-23 06:05:41 +000027// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
Chris Lattnere92d2f42003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattnerbac32862004-11-14 19:13:23 +000032// ... etc.
Chris Lattner2cd91962003-07-23 21:41:57 +000033//
Chris Lattner8a2a3112001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattner0cea42a2004-03-13 23:54:27 +000036#define DEBUG_TYPE "instcombine"
Chris Lattner022103b2002-05-07 20:03:00 +000037#include "llvm/Transforms/Scalar.h"
Chris Lattner35b9e482004-10-12 04:52:52 +000038#include "llvm/IntrinsicInst.h"
Chris Lattnerbd0ef772002-02-26 21:46:54 +000039#include "llvm/Pass.h"
Chris Lattner0864acf2002-11-04 16:18:53 +000040#include "llvm/DerivedTypes.h"
Chris Lattner833b8a42003-06-26 05:06:25 +000041#include "llvm/GlobalVariable.h"
Chris Lattner79066fa2007-01-30 23:46:24 +000042#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnerbc61e662003-11-02 05:57:39 +000043#include "llvm/Target/TargetData.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include "llvm/Transforms/Utils/Local.h"
Chris Lattner28977af2004-04-05 01:30:19 +000046#include "llvm/Support/CallSite.h"
Nick Lewycky5be29202008-02-03 16:33:09 +000047#include "llvm/Support/ConstantRange.h"
Chris Lattnerea1c4542004-12-08 23:43:58 +000048#include "llvm/Support/Debug.h"
Chris Lattner28977af2004-04-05 01:30:19 +000049#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerdd841ae2002-04-18 17:39:14 +000050#include "llvm/Support/InstVisitor.h"
Chris Lattnerbcd7db52005-08-02 19:16:58 +000051#include "llvm/Support/MathExtras.h"
Chris Lattneracd1f0f2004-07-30 07:50:03 +000052#include "llvm/Support/PatternMatch.h"
Chris Lattnera4f0b3a2006-08-27 12:54:02 +000053#include "llvm/Support/Compiler.h"
Chris Lattnerdbab3862007-03-02 21:28:56 +000054#include "llvm/ADT/DenseMap.h"
Chris Lattner55eb1c42007-01-31 04:40:53 +000055#include "llvm/ADT/SmallVector.h"
Chris Lattner1f87a582007-02-15 19:41:52 +000056#include "llvm/ADT/SmallPtrSet.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000057#include "llvm/ADT/Statistic.h"
Chris Lattnerea1c4542004-12-08 23:43:58 +000058#include "llvm/ADT/STLExtras.h"
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +000059#include <algorithm>
Torok Edwin3eaee312008-04-20 08:33:11 +000060#include <climits>
Reid Spencera9b81012007-03-26 17:44:01 +000061#include <sstream>
Chris Lattner67b1e1b2003-12-07 01:24:23 +000062using namespace llvm;
Chris Lattneracd1f0f2004-07-30 07:50:03 +000063using namespace llvm::PatternMatch;
Brian Gaeked0fde302003-11-11 22:41:34 +000064
Chris Lattner0e5f4992006-12-19 21:40:18 +000065STATISTIC(NumCombined , "Number of insts combined");
66STATISTIC(NumConstProp, "Number of constant folds");
67STATISTIC(NumDeadInst , "Number of dead inst eliminated");
68STATISTIC(NumDeadStore, "Number of dead stores eliminated");
69STATISTIC(NumSunkInst , "Number of instructions sunk");
Chris Lattnera92f6962002-10-01 22:38:41 +000070
Chris Lattner0e5f4992006-12-19 21:40:18 +000071namespace {
Chris Lattnerf4b54612006-06-28 22:08:15 +000072 class VISIBILITY_HIDDEN InstCombiner
73 : public FunctionPass,
74 public InstVisitor<InstCombiner, Instruction*> {
Chris Lattnerdd841ae2002-04-18 17:39:14 +000075 // Worklist of all of the instructions that need to be simplified.
Chris Lattnerdbab3862007-03-02 21:28:56 +000076 std::vector<Instruction*> Worklist;
77 DenseMap<Instruction*, unsigned> WorklistMap;
Chris Lattnerbc61e662003-11-02 05:57:39 +000078 TargetData *TD;
Chris Lattnerf964f322007-03-04 04:27:24 +000079 bool MustPreserveLCSSA;
Chris Lattnerdbab3862007-03-02 21:28:56 +000080 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +000081 static char ID; // Pass identification, replacement for typeid
Devang Patel794fd752007-05-01 21:15:47 +000082 InstCombiner() : FunctionPass((intptr_t)&ID) {}
83
Chris Lattnerdbab3862007-03-02 21:28:56 +000084 /// AddToWorkList - Add the specified instruction to the worklist if it
85 /// isn't already in it.
86 void AddToWorkList(Instruction *I) {
87 if (WorklistMap.insert(std::make_pair(I, Worklist.size())))
88 Worklist.push_back(I);
89 }
90
91 // RemoveFromWorkList - remove I from the worklist if it exists.
92 void RemoveFromWorkList(Instruction *I) {
93 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
94 if (It == WorklistMap.end()) return; // Not in worklist.
95
96 // Don't bother moving everything down, just null out the slot.
97 Worklist[It->second] = 0;
98
99 WorklistMap.erase(It);
100 }
101
102 Instruction *RemoveOneFromWorkList() {
103 Instruction *I = Worklist.back();
104 Worklist.pop_back();
105 WorklistMap.erase(I);
106 return I;
107 }
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000108
Chris Lattnerdbab3862007-03-02 21:28:56 +0000109
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000110 /// AddUsersToWorkList - When an instruction is simplified, add all users of
111 /// the instruction to the work lists because they might get more simplified
112 /// now.
113 ///
Chris Lattner6dce1a72006-02-07 06:56:34 +0000114 void AddUsersToWorkList(Value &I) {
Chris Lattner7e708292002-06-25 16:13:24 +0000115 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000116 UI != UE; ++UI)
Chris Lattnerdbab3862007-03-02 21:28:56 +0000117 AddToWorkList(cast<Instruction>(*UI));
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000118 }
119
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000120 /// AddUsesToWorkList - When an instruction is simplified, add operands to
121 /// the work lists because they might get more simplified now.
122 ///
123 void AddUsesToWorkList(Instruction &I) {
124 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
125 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
Chris Lattnerdbab3862007-03-02 21:28:56 +0000126 AddToWorkList(Op);
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000127 }
Chris Lattner867b99f2006-10-05 06:55:50 +0000128
129 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
130 /// dead. Add all of its operands to the worklist, turning them into
131 /// undef's to reduce the number of uses of those instructions.
132 ///
133 /// Return the specified operand before it is turned into an undef.
134 ///
135 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
136 Value *R = I.getOperand(op);
137
138 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
139 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
Chris Lattnerdbab3862007-03-02 21:28:56 +0000140 AddToWorkList(Op);
Chris Lattner867b99f2006-10-05 06:55:50 +0000141 // Set the operand to undef to drop the use.
142 I.setOperand(i, UndefValue::get(Op->getType()));
143 }
144
145 return R;
146 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000147
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000148 public:
Chris Lattner7e708292002-06-25 16:13:24 +0000149 virtual bool runOnFunction(Function &F);
Chris Lattnerec9c3582007-03-03 02:04:50 +0000150
151 bool DoOneIteration(Function &F, unsigned ItNum);
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000152
Chris Lattner97e52e42002-04-28 21:27:06 +0000153 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnerbc61e662003-11-02 05:57:39 +0000154 AU.addRequired<TargetData>();
Owen Andersond1b78a12006-07-10 19:03:49 +0000155 AU.addPreservedID(LCSSAID);
Chris Lattnercb2610e2002-10-21 20:00:28 +0000156 AU.setPreservesCFG();
Chris Lattner97e52e42002-04-28 21:27:06 +0000157 }
158
Chris Lattner28977af2004-04-05 01:30:19 +0000159 TargetData &getTargetData() const { return *TD; }
160
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000161 // Visitation implementation - Implement instruction combining for different
162 // instruction types. The semantics are as follows:
163 // Return Value:
164 // null - No change was made
Chris Lattner233f7dc2002-08-12 21:17:25 +0000165 // I - Change was made, I is still valid, I may be dead though
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000166 // otherwise - Change was made, replace I with returned instruction
Misha Brukmanfd939082005-04-21 23:48:37 +0000167 //
Chris Lattner7e708292002-06-25 16:13:24 +0000168 Instruction *visitAdd(BinaryOperator &I);
169 Instruction *visitSub(BinaryOperator &I);
170 Instruction *visitMul(BinaryOperator &I);
Reid Spencer0a783f72006-11-02 01:53:59 +0000171 Instruction *visitURem(BinaryOperator &I);
172 Instruction *visitSRem(BinaryOperator &I);
173 Instruction *visitFRem(BinaryOperator &I);
174 Instruction *commonRemTransforms(BinaryOperator &I);
175 Instruction *commonIRemTransforms(BinaryOperator &I);
Reid Spencer1628cec2006-10-26 06:15:43 +0000176 Instruction *commonDivTransforms(BinaryOperator &I);
177 Instruction *commonIDivTransforms(BinaryOperator &I);
178 Instruction *visitUDiv(BinaryOperator &I);
179 Instruction *visitSDiv(BinaryOperator &I);
180 Instruction *visitFDiv(BinaryOperator &I);
Chris Lattner7e708292002-06-25 16:13:24 +0000181 Instruction *visitAnd(BinaryOperator &I);
182 Instruction *visitOr (BinaryOperator &I);
183 Instruction *visitXor(BinaryOperator &I);
Reid Spencer832254e2007-02-02 02:16:23 +0000184 Instruction *visitShl(BinaryOperator &I);
185 Instruction *visitAShr(BinaryOperator &I);
186 Instruction *visitLShr(BinaryOperator &I);
187 Instruction *commonShiftTransforms(BinaryOperator &I);
Reid Spencere4d87aa2006-12-23 06:05:41 +0000188 Instruction *visitFCmpInst(FCmpInst &I);
189 Instruction *visitICmpInst(ICmpInst &I);
190 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
Chris Lattner01deb9d2007-04-03 17:43:25 +0000191 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
192 Instruction *LHS,
193 ConstantInt *RHS);
Chris Lattner562ef782007-06-20 23:46:26 +0000194 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
195 ConstantInt *DivRHS);
Chris Lattner484d3cf2005-04-24 06:59:08 +0000196
Reid Spencere4d87aa2006-12-23 06:05:41 +0000197 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
198 ICmpInst::Predicate Cond, Instruction &I);
Reid Spencerb83eb642006-10-20 07:07:24 +0000199 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
Reid Spencer832254e2007-02-02 02:16:23 +0000200 BinaryOperator &I);
Reid Spencer3da59db2006-11-27 01:05:10 +0000201 Instruction *commonCastTransforms(CastInst &CI);
202 Instruction *commonIntCastTransforms(CastInst &CI);
Chris Lattnerd3e28342007-04-27 17:44:50 +0000203 Instruction *commonPointerCastTransforms(CastInst &CI);
Chris Lattner8a9f5712007-04-11 06:57:46 +0000204 Instruction *visitTrunc(TruncInst &CI);
205 Instruction *visitZExt(ZExtInst &CI);
206 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerb7530652008-01-27 05:29:54 +0000207 Instruction *visitFPTrunc(FPTruncInst &CI);
Reid Spencer3da59db2006-11-27 01:05:10 +0000208 Instruction *visitFPExt(CastInst &CI);
209 Instruction *visitFPToUI(CastInst &CI);
210 Instruction *visitFPToSI(CastInst &CI);
211 Instruction *visitUIToFP(CastInst &CI);
212 Instruction *visitSIToFP(CastInst &CI);
213 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattnerf9d9e452008-01-08 07:23:51 +0000214 Instruction *visitIntToPtr(IntToPtrInst &CI);
Chris Lattnerd3e28342007-04-27 17:44:50 +0000215 Instruction *visitBitCast(BitCastInst &CI);
Chris Lattner6fb5a4a2005-01-19 21:50:18 +0000216 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
217 Instruction *FI);
Chris Lattner3d69f462004-03-12 05:52:32 +0000218 Instruction *visitSelectInst(SelectInst &CI);
Chris Lattner9fe38862003-06-19 17:00:31 +0000219 Instruction *visitCallInst(CallInst &CI);
220 Instruction *visitInvokeInst(InvokeInst &II);
Chris Lattner7e708292002-06-25 16:13:24 +0000221 Instruction *visitPHINode(PHINode &PN);
222 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
Chris Lattner0864acf2002-11-04 16:18:53 +0000223 Instruction *visitAllocationInst(AllocationInst &AI);
Chris Lattner67b1e1b2003-12-07 01:24:23 +0000224 Instruction *visitFreeInst(FreeInst &FI);
Chris Lattner833b8a42003-06-26 05:06:25 +0000225 Instruction *visitLoadInst(LoadInst &LI);
Chris Lattner2f503e62005-01-31 05:36:43 +0000226 Instruction *visitStoreInst(StoreInst &SI);
Chris Lattnerc4d10eb2003-06-04 04:46:00 +0000227 Instruction *visitBranchInst(BranchInst &BI);
Chris Lattner46238a62004-07-03 00:26:11 +0000228 Instruction *visitSwitchInst(SwitchInst &SI);
Chris Lattnerefb47352006-04-15 01:39:45 +0000229 Instruction *visitInsertElementInst(InsertElementInst &IE);
Robert Bocchino1d7456d2006-01-13 22:48:06 +0000230 Instruction *visitExtractElementInst(ExtractElementInst &EI);
Chris Lattnera844fc4c2006-04-10 22:45:52 +0000231 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000232
233 // visitInstruction - Specify what to return for unhandled instructions...
Chris Lattner7e708292002-06-25 16:13:24 +0000234 Instruction *visitInstruction(Instruction &I) { return 0; }
Chris Lattner8b170942002-08-09 23:47:40 +0000235
Chris Lattner9fe38862003-06-19 17:00:31 +0000236 private:
Chris Lattnera44d8a22003-10-07 22:32:43 +0000237 Instruction *visitCallSite(CallSite CS);
Chris Lattner9fe38862003-06-19 17:00:31 +0000238 bool transformConstExprCastCall(CallSite CS);
Duncan Sandscdb6d922007-09-17 10:26:40 +0000239 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chengb98a10e2008-03-24 00:21:34 +0000240 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
241 bool DoXform = true);
Chris Lattner9fe38862003-06-19 17:00:31 +0000242
Chris Lattner28977af2004-04-05 01:30:19 +0000243 public:
Chris Lattner8b170942002-08-09 23:47:40 +0000244 // InsertNewInstBefore - insert an instruction New before instruction Old
245 // in the program. Add the new instruction to the worklist.
246 //
Chris Lattner955f3312004-09-28 21:48:02 +0000247 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
Chris Lattnere6f9a912002-08-23 18:32:43 +0000248 assert(New && New->getParent() == 0 &&
249 "New instruction already inserted into a basic block!");
Chris Lattner8b170942002-08-09 23:47:40 +0000250 BasicBlock *BB = Old.getParent();
251 BB->getInstList().insert(&Old, New); // Insert inst
Chris Lattnerdbab3862007-03-02 21:28:56 +0000252 AddToWorkList(New);
Chris Lattner4cb170c2004-02-23 06:38:22 +0000253 return New;
Chris Lattner8b170942002-08-09 23:47:40 +0000254 }
255
Chris Lattner0c967662004-09-24 15:21:34 +0000256 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
257 /// This also adds the cast to the worklist. Finally, this returns the
258 /// cast.
Reid Spencer17212df2006-12-12 09:18:51 +0000259 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
260 Instruction &Pos) {
Chris Lattner0c967662004-09-24 15:21:34 +0000261 if (V->getType() == Ty) return V;
Misha Brukmanfd939082005-04-21 23:48:37 +0000262
Chris Lattnere2ed0572006-04-06 19:19:17 +0000263 if (Constant *CV = dyn_cast<Constant>(V))
Reid Spencer17212df2006-12-12 09:18:51 +0000264 return ConstantExpr::getCast(opc, CV, Ty);
Chris Lattnere2ed0572006-04-06 19:19:17 +0000265
Reid Spencer17212df2006-12-12 09:18:51 +0000266 Instruction *C = CastInst::create(opc, V, Ty, V->getName(), &Pos);
Chris Lattnerdbab3862007-03-02 21:28:56 +0000267 AddToWorkList(C);
Chris Lattner0c967662004-09-24 15:21:34 +0000268 return C;
269 }
Chris Lattner6d0339d2008-01-13 22:23:22 +0000270
271 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
272 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
273 }
274
Chris Lattner0c967662004-09-24 15:21:34 +0000275
Chris Lattner8b170942002-08-09 23:47:40 +0000276 // ReplaceInstUsesWith - This method is to be used when an instruction is
277 // found to be dead, replacable with another preexisting expression. Here
278 // we add all uses of I to the worklist, replace all uses of I with the new
279 // value, then return I, so that the inst combiner will know that I was
280 // modified.
281 //
282 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000283 AddUsersToWorkList(I); // Add all modified instrs to worklist
Chris Lattner15a76c02004-04-05 02:10:19 +0000284 if (&I != V) {
285 I.replaceAllUsesWith(V);
286 return &I;
287 } else {
288 // If we are replacing the instruction with itself, this must be in a
289 // segment of unreachable code, so just clobber the instruction.
Chris Lattner17be6352004-10-18 02:59:09 +0000290 I.replaceAllUsesWith(UndefValue::get(I.getType()));
Chris Lattner15a76c02004-04-05 02:10:19 +0000291 return &I;
292 }
Chris Lattner8b170942002-08-09 23:47:40 +0000293 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000294
Chris Lattner6dce1a72006-02-07 06:56:34 +0000295 // UpdateValueUsesWith - This method is to be used when an value is
296 // found to be replacable with another preexisting expression or was
297 // updated. Here we add all uses of I to the worklist, replace all uses of
298 // I with the new value (unless the instruction was just updated), then
299 // return true, so that the inst combiner will know that I was modified.
300 //
301 bool UpdateValueUsesWith(Value *Old, Value *New) {
302 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
303 if (Old != New)
304 Old->replaceAllUsesWith(New);
305 if (Instruction *I = dyn_cast<Instruction>(Old))
Chris Lattnerdbab3862007-03-02 21:28:56 +0000306 AddToWorkList(I);
Chris Lattnerf8c36f52006-02-12 08:02:11 +0000307 if (Instruction *I = dyn_cast<Instruction>(New))
Chris Lattnerdbab3862007-03-02 21:28:56 +0000308 AddToWorkList(I);
Chris Lattner6dce1a72006-02-07 06:56:34 +0000309 return true;
310 }
311
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000312 // EraseInstFromFunction - When dealing with an instruction that has side
313 // effects or produces a void value, we can't rely on DCE to delete the
314 // instruction. Instead, visit methods should return the value returned by
315 // this function.
316 Instruction *EraseInstFromFunction(Instruction &I) {
317 assert(I.use_empty() && "Cannot erase instruction that is used!");
318 AddUsesToWorkList(I);
Chris Lattnerdbab3862007-03-02 21:28:56 +0000319 RemoveFromWorkList(&I);
Chris Lattner954f66a2004-11-18 21:41:39 +0000320 I.eraseFromParent();
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000321 return 0; // Don't do anything with FI
322 }
323
Chris Lattneraa9c1f12003-08-13 20:16:26 +0000324 private:
Chris Lattner24c8e382003-07-24 17:35:25 +0000325 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
326 /// InsertBefore instruction. This is specialized a bit to avoid inserting
327 /// casts that are known to not do anything...
328 ///
Reid Spencer17212df2006-12-12 09:18:51 +0000329 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
330 Value *V, const Type *DestTy,
Chris Lattner24c8e382003-07-24 17:35:25 +0000331 Instruction *InsertBefore);
332
Reid Spencere4d87aa2006-12-23 06:05:41 +0000333 /// SimplifyCommutative - This performs a few simplifications for
334 /// commutative operators.
Chris Lattnerc8802d22003-03-11 00:12:48 +0000335 bool SimplifyCommutative(BinaryOperator &I);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +0000336
Reid Spencere4d87aa2006-12-23 06:05:41 +0000337 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
338 /// most-complex to least-complex order.
339 bool SimplifyCompare(CmpInst &I);
340
Reid Spencer2ec619a2007-03-23 21:24:59 +0000341 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
342 /// on the demanded bits.
Reid Spencer8cb68342007-03-12 17:25:59 +0000343 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
344 APInt& KnownZero, APInt& KnownOne,
345 unsigned Depth = 0);
346
Chris Lattner867b99f2006-10-05 06:55:50 +0000347 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
348 uint64_t &UndefElts, unsigned Depth = 0);
349
Chris Lattner4e998b22004-09-29 05:07:12 +0000350 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
351 // PHI node as operand #0, see if we can fold the instruction into the PHI
352 // (which is only possible if all operands to the PHI are constants).
353 Instruction *FoldOpIntoPhi(Instruction &I);
354
Chris Lattnerbac32862004-11-14 19:13:23 +0000355 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
356 // operator and they all are only used by the PHI, PHI together their
357 // inputs, and do the operation once, to the result of the PHI.
358 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
Chris Lattner7da52b22006-11-01 04:51:18 +0000359 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
360
361
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000362 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
363 ConstantInt *AndRHS, BinaryOperator &TheAnd);
Chris Lattnerc8e77562005-09-18 04:24:45 +0000364
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000365 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
Chris Lattnerc8e77562005-09-18 04:24:45 +0000366 bool isSub, Instruction &I);
Chris Lattnera96879a2004-09-29 17:40:11 +0000367 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
Reid Spencere4d87aa2006-12-23 06:05:41 +0000368 bool isSigned, bool Inside, Instruction &IB);
Chris Lattnerd3e28342007-04-27 17:44:50 +0000369 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
Chris Lattnerafe91a52006-06-15 19:07:26 +0000370 Instruction *MatchBSwap(BinaryOperator &I);
Chris Lattner3284d1f2007-04-15 00:07:55 +0000371 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattnerf497b022008-01-13 23:50:23 +0000372 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
373
Chris Lattnerafe91a52006-06-15 19:07:26 +0000374
Reid Spencerc55b2432006-12-13 18:21:21 +0000375 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohmaneee962e2008-04-10 18:43:06 +0000376
377 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt& KnownZero,
378 APInt& KnownOne, unsigned Depth = 0);
379 bool MaskedValueIsZero(Value *V, const APInt& Mask, unsigned Depth = 0);
380 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
381 unsigned CastOpc,
382 int &NumCastsRemoved);
383 unsigned GetOrEnforceKnownAlignment(Value *V,
384 unsigned PrefAlign = 0);
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000385 };
Chris Lattnerf6293092002-07-23 18:06:35 +0000386
Devang Patel19974732007-05-03 01:11:54 +0000387 char InstCombiner::ID = 0;
Chris Lattner7f8897f2006-08-27 22:42:52 +0000388 RegisterPass<InstCombiner> X("instcombine", "Combine redundant instructions");
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000389}
390
Chris Lattner4f98c562003-03-10 21:43:22 +0000391// getComplexity: Assign a complexity or rank value to LLVM Values...
Chris Lattnere87597f2004-10-16 18:11:37 +0000392// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
Chris Lattner4f98c562003-03-10 21:43:22 +0000393static unsigned getComplexity(Value *V) {
394 if (isa<Instruction>(V)) {
395 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
Chris Lattnere87597f2004-10-16 18:11:37 +0000396 return 3;
397 return 4;
Chris Lattner4f98c562003-03-10 21:43:22 +0000398 }
Chris Lattnere87597f2004-10-16 18:11:37 +0000399 if (isa<Argument>(V)) return 3;
400 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
Chris Lattner4f98c562003-03-10 21:43:22 +0000401}
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000402
Chris Lattnerc8802d22003-03-11 00:12:48 +0000403// isOnlyUse - Return true if this instruction will be deleted if we stop using
404// it.
405static bool isOnlyUse(Value *V) {
Chris Lattnerfd059242003-10-15 16:48:29 +0000406 return V->hasOneUse() || isa<Constant>(V);
Chris Lattnerc8802d22003-03-11 00:12:48 +0000407}
408
Chris Lattner4cb170c2004-02-23 06:38:22 +0000409// getPromotedType - Return the specified type promoted as it would be to pass
410// though a va_arg area...
411static const Type *getPromotedType(const Type *Ty) {
Reid Spencera54b7cb2007-01-12 07:05:14 +0000412 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
413 if (ITy->getBitWidth() < 32)
414 return Type::Int32Ty;
Chris Lattner2b7e0ad2007-05-23 01:17:04 +0000415 }
Reid Spencera54b7cb2007-01-12 07:05:14 +0000416 return Ty;
Chris Lattner4cb170c2004-02-23 06:38:22 +0000417}
418
Reid Spencer3da59db2006-11-27 01:05:10 +0000419/// getBitCastOperand - If the specified operand is a CastInst or a constant
420/// expression bitcast, return the operand value, otherwise return null.
421static Value *getBitCastOperand(Value *V) {
422 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Chris Lattnereed48272005-09-13 00:40:14 +0000423 return I->getOperand(0);
424 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Reid Spencer3da59db2006-11-27 01:05:10 +0000425 if (CE->getOpcode() == Instruction::BitCast)
Chris Lattnereed48272005-09-13 00:40:14 +0000426 return CE->getOperand(0);
427 return 0;
428}
429
Reid Spencer3da59db2006-11-27 01:05:10 +0000430/// This function is a wrapper around CastInst::isEliminableCastPair. It
431/// simply extracts arguments and returns what that function returns.
Reid Spencer3da59db2006-11-27 01:05:10 +0000432static Instruction::CastOps
433isEliminableCastPair(
434 const CastInst *CI, ///< The first cast instruction
435 unsigned opcode, ///< The opcode of the second cast instruction
436 const Type *DstTy, ///< The target type for the second cast instruction
437 TargetData *TD ///< The target data for pointer size
438) {
439
440 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
441 const Type *MidTy = CI->getType(); // B from above
Chris Lattner33a61132006-05-06 09:00:16 +0000442
Reid Spencer3da59db2006-11-27 01:05:10 +0000443 // Get the opcodes of the two Cast instructions
444 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
445 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
Chris Lattner33a61132006-05-06 09:00:16 +0000446
Reid Spencer3da59db2006-11-27 01:05:10 +0000447 return Instruction::CastOps(
448 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
449 DstTy, TD->getIntPtrType()));
Chris Lattner33a61132006-05-06 09:00:16 +0000450}
451
452/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
453/// in any code being generated. It does not require codegen if V is simple
454/// enough or if the cast can be folded into other casts.
Reid Spencere4d87aa2006-12-23 06:05:41 +0000455static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
456 const Type *Ty, TargetData *TD) {
Chris Lattner33a61132006-05-06 09:00:16 +0000457 if (V->getType() == Ty || isa<Constant>(V)) return false;
458
Chris Lattner01575b72006-05-25 23:24:33 +0000459 // If this is another cast that can be eliminated, it isn't codegen either.
Chris Lattner33a61132006-05-06 09:00:16 +0000460 if (const CastInst *CI = dyn_cast<CastInst>(V))
Reid Spencere4d87aa2006-12-23 06:05:41 +0000461 if (isEliminableCastPair(CI, opcode, Ty, TD))
Chris Lattner33a61132006-05-06 09:00:16 +0000462 return false;
463 return true;
464}
465
466/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
467/// InsertBefore instruction. This is specialized a bit to avoid inserting
468/// casts that are known to not do anything...
469///
Reid Spencer17212df2006-12-12 09:18:51 +0000470Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
471 Value *V, const Type *DestTy,
Chris Lattner33a61132006-05-06 09:00:16 +0000472 Instruction *InsertBefore) {
473 if (V->getType() == DestTy) return V;
474 if (Constant *C = dyn_cast<Constant>(V))
Reid Spencer17212df2006-12-12 09:18:51 +0000475 return ConstantExpr::getCast(opcode, C, DestTy);
Chris Lattner33a61132006-05-06 09:00:16 +0000476
Reid Spencer17212df2006-12-12 09:18:51 +0000477 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
Chris Lattner33a61132006-05-06 09:00:16 +0000478}
479
Chris Lattner4f98c562003-03-10 21:43:22 +0000480// SimplifyCommutative - This performs a few simplifications for commutative
481// operators:
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000482//
Chris Lattner4f98c562003-03-10 21:43:22 +0000483// 1. Order operands such that they are listed from right (least complex) to
484// left (most complex). This puts constants before unary operators before
485// binary operators.
486//
Chris Lattnerc8802d22003-03-11 00:12:48 +0000487// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
488// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattner4f98c562003-03-10 21:43:22 +0000489//
Chris Lattnerc8802d22003-03-11 00:12:48 +0000490bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +0000491 bool Changed = false;
492 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
493 Changed = !I.swapOperands();
Misha Brukmanfd939082005-04-21 23:48:37 +0000494
Chris Lattner4f98c562003-03-10 21:43:22 +0000495 if (!I.isAssociative()) return Changed;
496 Instruction::BinaryOps Opcode = I.getOpcode();
Chris Lattnerc8802d22003-03-11 00:12:48 +0000497 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
498 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
499 if (isa<Constant>(I.getOperand(1))) {
Chris Lattner2a9c8472003-05-27 16:40:51 +0000500 Constant *Folded = ConstantExpr::get(I.getOpcode(),
501 cast<Constant>(I.getOperand(1)),
502 cast<Constant>(Op->getOperand(1)));
Chris Lattnerc8802d22003-03-11 00:12:48 +0000503 I.setOperand(0, Op->getOperand(0));
504 I.setOperand(1, Folded);
505 return true;
506 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
507 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
508 isOnlyUse(Op) && isOnlyUse(Op1)) {
509 Constant *C1 = cast<Constant>(Op->getOperand(1));
510 Constant *C2 = cast<Constant>(Op1->getOperand(1));
511
512 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattner2a9c8472003-05-27 16:40:51 +0000513 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Chris Lattnerc8802d22003-03-11 00:12:48 +0000514 Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
515 Op1->getOperand(0),
516 Op1->getName(), &I);
Chris Lattnerdbab3862007-03-02 21:28:56 +0000517 AddToWorkList(New);
Chris Lattnerc8802d22003-03-11 00:12:48 +0000518 I.setOperand(0, New);
519 I.setOperand(1, Folded);
520 return true;
Misha Brukmanfd939082005-04-21 23:48:37 +0000521 }
Chris Lattner4f98c562003-03-10 21:43:22 +0000522 }
Chris Lattner4f98c562003-03-10 21:43:22 +0000523 return Changed;
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000524}
Chris Lattner8a2a3112001-12-14 16:52:21 +0000525
Reid Spencere4d87aa2006-12-23 06:05:41 +0000526/// SimplifyCompare - For a CmpInst this function just orders the operands
527/// so that theyare listed from right (least complex) to left (most complex).
528/// This puts constants before unary operators before binary operators.
529bool InstCombiner::SimplifyCompare(CmpInst &I) {
530 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
531 return false;
532 I.swapOperands();
533 // Compare instructions are not associative so there's nothing else we can do.
534 return true;
535}
536
Chris Lattner8d969642003-03-10 23:06:50 +0000537// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
538// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattnerb35dde12002-05-06 16:49:18 +0000539//
Chris Lattner8d969642003-03-10 23:06:50 +0000540static inline Value *dyn_castNegVal(Value *V) {
541 if (BinaryOperator::isNeg(V))
Chris Lattnera1df33c2005-04-24 07:30:14 +0000542 return BinaryOperator::getNegArgument(V);
Chris Lattner8d969642003-03-10 23:06:50 +0000543
Chris Lattner0ce85802004-12-14 20:08:06 +0000544 // Constants can be considered to be negated values if they can be folded.
545 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
546 return ConstantExpr::getNeg(C);
Chris Lattner8d969642003-03-10 23:06:50 +0000547 return 0;
Chris Lattnerb35dde12002-05-06 16:49:18 +0000548}
549
Chris Lattner8d969642003-03-10 23:06:50 +0000550static inline Value *dyn_castNotVal(Value *V) {
551 if (BinaryOperator::isNot(V))
Chris Lattnera1df33c2005-04-24 07:30:14 +0000552 return BinaryOperator::getNotArgument(V);
Chris Lattner8d969642003-03-10 23:06:50 +0000553
554 // Constants can be considered to be not'ed values...
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000555 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
Zhou Sheng4a1822a2007-04-02 13:45:30 +0000556 return ConstantInt::get(~C->getValue());
Chris Lattner8d969642003-03-10 23:06:50 +0000557 return 0;
558}
559
Chris Lattnerc8802d22003-03-11 00:12:48 +0000560// dyn_castFoldableMul - If this value is a multiply that can be folded into
561// other computations (because it has a constant operand), return the
Chris Lattner50af16a2004-11-13 19:50:12 +0000562// non-constant operand of the multiply, and set CST to point to the multiplier.
563// Otherwise, return null.
Chris Lattnerc8802d22003-03-11 00:12:48 +0000564//
Chris Lattner50af16a2004-11-13 19:50:12 +0000565static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
Chris Lattner42a75512007-01-15 02:27:26 +0000566 if (V->hasOneUse() && V->getType()->isInteger())
Chris Lattner50af16a2004-11-13 19:50:12 +0000567 if (Instruction *I = dyn_cast<Instruction>(V)) {
Chris Lattnerc8802d22003-03-11 00:12:48 +0000568 if (I->getOpcode() == Instruction::Mul)
Chris Lattner50e60c72004-11-15 05:54:07 +0000569 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
Chris Lattnerc8802d22003-03-11 00:12:48 +0000570 return I->getOperand(0);
Chris Lattner50af16a2004-11-13 19:50:12 +0000571 if (I->getOpcode() == Instruction::Shl)
Chris Lattner50e60c72004-11-15 05:54:07 +0000572 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
Chris Lattner50af16a2004-11-13 19:50:12 +0000573 // The multiplier is really 1 << CST.
Zhou Sheng97b52c22007-03-29 01:57:21 +0000574 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +0000575 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
Zhou Sheng97b52c22007-03-29 01:57:21 +0000576 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
Chris Lattner50af16a2004-11-13 19:50:12 +0000577 return I->getOperand(0);
578 }
579 }
Chris Lattnerc8802d22003-03-11 00:12:48 +0000580 return 0;
Chris Lattnera2881962003-02-18 19:28:33 +0000581}
Chris Lattneraf2930e2002-08-14 17:51:49 +0000582
Chris Lattner574da9b2005-01-13 20:14:25 +0000583/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
584/// expression, return it.
585static User *dyn_castGetElementPtr(Value *V) {
586 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
587 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
588 if (CE->getOpcode() == Instruction::GetElementPtr)
589 return cast<User>(V);
590 return false;
591}
592
Dan Gohmaneee962e2008-04-10 18:43:06 +0000593/// getOpcode - If this is an Instruction or a ConstantExpr, return the
594/// opcode value. Otherwise return UserOp1.
595static unsigned getOpcode(User *U) {
596 if (Instruction *I = dyn_cast<Instruction>(U))
597 return I->getOpcode();
598 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U))
599 return CE->getOpcode();
600 // Use UserOp1 to mean there's no opcode.
601 return Instruction::UserOp1;
602}
603
Reid Spencer7177c3a2007-03-25 05:33:51 +0000604/// AddOne - Add one to a ConstantInt
Chris Lattnera96879a2004-09-29 17:40:11 +0000605static ConstantInt *AddOne(ConstantInt *C) {
Reid Spencer2149a9d2007-03-25 19:55:33 +0000606 APInt Val(C->getValue());
607 return ConstantInt::get(++Val);
Chris Lattner955f3312004-09-28 21:48:02 +0000608}
Reid Spencer7177c3a2007-03-25 05:33:51 +0000609/// SubOne - Subtract one from a ConstantInt
Chris Lattnera96879a2004-09-29 17:40:11 +0000610static ConstantInt *SubOne(ConstantInt *C) {
Reid Spencer2149a9d2007-03-25 19:55:33 +0000611 APInt Val(C->getValue());
612 return ConstantInt::get(--Val);
Reid Spencer7177c3a2007-03-25 05:33:51 +0000613}
614/// Add - Add two ConstantInts together
615static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
616 return ConstantInt::get(C1->getValue() + C2->getValue());
617}
618/// And - Bitwise AND two ConstantInts together
619static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
620 return ConstantInt::get(C1->getValue() & C2->getValue());
621}
622/// Subtract - Subtract one ConstantInt from another
623static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
624 return ConstantInt::get(C1->getValue() - C2->getValue());
625}
626/// Multiply - Multiply two ConstantInts together
627static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
628 return ConstantInt::get(C1->getValue() * C2->getValue());
Chris Lattner955f3312004-09-28 21:48:02 +0000629}
Nick Lewyckye0cfecf2008-02-18 22:48:05 +0000630/// MultiplyOverflows - True if the multiply can not be expressed in an int
631/// this size.
632static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
633 uint32_t W = C1->getBitWidth();
634 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
635 if (sign) {
636 LHSExt.sext(W * 2);
637 RHSExt.sext(W * 2);
638 } else {
639 LHSExt.zext(W * 2);
640 RHSExt.zext(W * 2);
641 }
642
643 APInt MulExt = LHSExt * RHSExt;
644
645 if (sign) {
646 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
647 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
648 return MulExt.slt(Min) || MulExt.sgt(Max);
649 } else
650 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
651}
Chris Lattner955f3312004-09-28 21:48:02 +0000652
Chris Lattner68d5ff22006-02-09 07:38:58 +0000653/// ComputeMaskedBits - Determine which of the bits specified in Mask are
654/// known to be either zero or one and return them in the KnownZero/KnownOne
Reid Spencer3e7594f2007-03-08 01:46:38 +0000655/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
656/// processing.
657/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
658/// we cannot optimize based on the assumption that it is zero without changing
659/// it to be an explicit zero. If we don't change it to zero, other code could
660/// optimized based on the contradictory assumption that it is non-zero.
661/// Because instcombine aggressively folds operations with undef args anyway,
662/// this won't lose us code quality.
Dan Gohmaneee962e2008-04-10 18:43:06 +0000663void InstCombiner::ComputeMaskedBits(Value *V, const APInt &Mask,
664 APInt& KnownZero, APInt& KnownOne,
665 unsigned Depth) {
Zhou Sheng771dbf72007-03-13 02:23:10 +0000666 assert(V && "No Value?");
667 assert(Depth <= 6 && "Limit Search Depth");
Reid Spencer3e7594f2007-03-08 01:46:38 +0000668 uint32_t BitWidth = Mask.getBitWidth();
Dan Gohmaneee962e2008-04-10 18:43:06 +0000669 assert((V->getType()->isInteger() || isa<PointerType>(V->getType())) &&
670 "Not integer or pointer type!");
671 assert((!TD || TD->getTypeSizeInBits(V->getType()) == BitWidth) &&
672 (!isa<IntegerType>(V->getType()) ||
673 V->getType()->getPrimitiveSizeInBits() == BitWidth) &&
Zhou Sheng771dbf72007-03-13 02:23:10 +0000674 KnownZero.getBitWidth() == BitWidth &&
Reid Spencer3e7594f2007-03-08 01:46:38 +0000675 KnownOne.getBitWidth() == BitWidth &&
Zhou Shengaa305ab2007-03-28 02:19:03 +0000676 "V, Mask, KnownOne and KnownZero should have same BitWidth");
Reid Spencer3e7594f2007-03-08 01:46:38 +0000677 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
678 // We know all of the bits for a constant!
Zhou Sheng771dbf72007-03-13 02:23:10 +0000679 KnownOne = CI->getValue() & Mask;
Reid Spencer3e7594f2007-03-08 01:46:38 +0000680 KnownZero = ~KnownOne & Mask;
681 return;
682 }
Dan Gohmaneee962e2008-04-10 18:43:06 +0000683 // Null is all-zeros.
684 if (isa<ConstantPointerNull>(V)) {
685 KnownOne.clear();
686 KnownZero = Mask;
687 return;
688 }
689 // The address of an aligned GlobalValue has trailing zeros.
690 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
691 unsigned Align = GV->getAlignment();
692 if (Align == 0 && TD && GV->getType()->getElementType()->isSized())
693 Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
694 if (Align > 0)
695 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
696 CountTrailingZeros_32(Align));
697 else
698 KnownZero.clear();
699 KnownOne.clear();
700 return;
701 }
Reid Spencer3e7594f2007-03-08 01:46:38 +0000702
Reid Spencer3e7594f2007-03-08 01:46:38 +0000703 if (Depth == 6 || Mask == 0)
704 return; // Limit search depth.
705
Dan Gohmaneee962e2008-04-10 18:43:06 +0000706 User *I = dyn_cast<User>(V);
Reid Spencer3e7594f2007-03-08 01:46:38 +0000707 if (!I) return;
708
Zhou Sheng771dbf72007-03-13 02:23:10 +0000709 KnownZero.clear(); KnownOne.clear(); // Don't know anything.
Reid Spencer3e7594f2007-03-08 01:46:38 +0000710 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Reid Spencer3e7594f2007-03-08 01:46:38 +0000711
Dan Gohmaneee962e2008-04-10 18:43:06 +0000712 switch (getOpcode(I)) {
713 default: break;
Reid Spencer2b812072007-03-25 02:03:12 +0000714 case Instruction::And: {
Reid Spencer3e7594f2007-03-08 01:46:38 +0000715 // If either the LHS or the RHS are Zero, the result is zero.
716 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
Reid Spencer2b812072007-03-25 02:03:12 +0000717 APInt Mask2(Mask & ~KnownZero);
718 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
Reid Spencer3e7594f2007-03-08 01:46:38 +0000719 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
720 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
721
722 // Output known-1 bits are only known if set in both the LHS & RHS.
723 KnownOne &= KnownOne2;
724 // Output known-0 are known to be clear if zero in either the LHS | RHS.
725 KnownZero |= KnownZero2;
726 return;
Reid Spencer2b812072007-03-25 02:03:12 +0000727 }
728 case Instruction::Or: {
Reid Spencer3e7594f2007-03-08 01:46:38 +0000729 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
Reid Spencer2b812072007-03-25 02:03:12 +0000730 APInt Mask2(Mask & ~KnownOne);
731 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
Reid Spencer3e7594f2007-03-08 01:46:38 +0000732 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
733 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
734
735 // Output known-0 bits are only known if clear in both the LHS & RHS.
736 KnownZero &= KnownZero2;
737 // Output known-1 are known to be set if set in either the LHS | RHS.
738 KnownOne |= KnownOne2;
739 return;
Reid Spencer2b812072007-03-25 02:03:12 +0000740 }
Reid Spencer3e7594f2007-03-08 01:46:38 +0000741 case Instruction::Xor: {
742 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
743 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
744 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
745 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
746
747 // Output known-0 bits are known if clear or set in both the LHS & RHS.
748 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
749 // Output known-1 are known to be set if set in only one of the LHS, RHS.
750 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
751 KnownZero = KnownZeroOut;
752 return;
753 }
Dan Gohmaneee962e2008-04-10 18:43:06 +0000754 case Instruction::Mul: {
755 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
756 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
757 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
758 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
759 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
760
761 // If low bits are zero in either operand, output low known-0 bits.
762 // More trickiness is possible, but this is sufficient for the
763 // interesting case of alignment computation.
764 KnownOne.clear();
765 unsigned TrailZ = KnownZero.countTrailingOnes() +
766 KnownZero2.countTrailingOnes();
767 TrailZ = std::min(TrailZ, BitWidth);
768 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
769 KnownZero &= Mask;
770 return;
771 }
Reid Spencer3e7594f2007-03-08 01:46:38 +0000772 case Instruction::Select:
773 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
774 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
775 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
776 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
777
778 // Only known if known in both the LHS and RHS.
779 KnownOne &= KnownOne2;
780 KnownZero &= KnownZero2;
781 return;
782 case Instruction::FPTrunc:
783 case Instruction::FPExt:
784 case Instruction::FPToUI:
785 case Instruction::FPToSI:
786 case Instruction::SIToFP:
Reid Spencer3e7594f2007-03-08 01:46:38 +0000787 case Instruction::UIToFP:
Dan Gohmaneee962e2008-04-10 18:43:06 +0000788 return; // Can't work with floating point.
789 case Instruction::PtrToInt:
Reid Spencer3e7594f2007-03-08 01:46:38 +0000790 case Instruction::IntToPtr:
Dan Gohmaneee962e2008-04-10 18:43:06 +0000791 // We can't handle these if we don't know the pointer size.
792 if (!TD) return;
793 // Fall through and handle them the same as zext/trunc.
794 case Instruction::ZExt:
Zhou Sheng771dbf72007-03-13 02:23:10 +0000795 case Instruction::Trunc: {
Reid Spencer3e7594f2007-03-08 01:46:38 +0000796 // All these have integer operands
Dan Gohmaneee962e2008-04-10 18:43:06 +0000797 const Type *SrcTy = I->getOperand(0)->getType();
798 uint32_t SrcBitWidth = TD ?
799 TD->getTypeSizeInBits(SrcTy) :
800 SrcTy->getPrimitiveSizeInBits();
Zhou Shengaa305ab2007-03-28 02:19:03 +0000801 APInt MaskIn(Mask);
Dan Gohmaneee962e2008-04-10 18:43:06 +0000802 MaskIn.zextOrTrunc(SrcBitWidth);
803 KnownZero.zextOrTrunc(SrcBitWidth);
804 KnownOne.zextOrTrunc(SrcBitWidth);
Zhou Shengaa305ab2007-03-28 02:19:03 +0000805 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
Dan Gohmaneee962e2008-04-10 18:43:06 +0000806 KnownZero.zextOrTrunc(BitWidth);
807 KnownOne.zextOrTrunc(BitWidth);
808 // Any top bits are known to be zero.
809 if (BitWidth > SrcBitWidth)
810 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Reid Spencer3e7594f2007-03-08 01:46:38 +0000811 return;
Zhou Sheng771dbf72007-03-13 02:23:10 +0000812 }
Reid Spencer3e7594f2007-03-08 01:46:38 +0000813 case Instruction::BitCast: {
814 const Type *SrcTy = I->getOperand(0)->getType();
Dan Gohmaneee962e2008-04-10 18:43:06 +0000815 if (SrcTy->isInteger() || isa<PointerType>(SrcTy)) {
Reid Spencer3e7594f2007-03-08 01:46:38 +0000816 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
817 return;
818 }
819 break;
820 }
Reid Spencer3e7594f2007-03-08 01:46:38 +0000821 case Instruction::SExt: {
822 // Compute the bits in the result that are not present in the input.
823 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
Zhou Sheng771dbf72007-03-13 02:23:10 +0000824 uint32_t SrcBitWidth = SrcTy->getBitWidth();
Reid Spencer2f549172007-03-25 04:26:16 +0000825
Zhou Shengaa305ab2007-03-28 02:19:03 +0000826 APInt MaskIn(Mask);
827 MaskIn.trunc(SrcBitWidth);
828 KnownZero.trunc(SrcBitWidth);
829 KnownOne.trunc(SrcBitWidth);
830 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
Reid Spencer3e7594f2007-03-08 01:46:38 +0000831 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Zhou Sheng771dbf72007-03-13 02:23:10 +0000832 KnownZero.zext(BitWidth);
833 KnownOne.zext(BitWidth);
Reid Spencer3e7594f2007-03-08 01:46:38 +0000834
835 // If the sign bit of the input is known set or clear, then we know the
836 // top bits of the result.
Zhou Shengaa305ab2007-03-28 02:19:03 +0000837 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
Zhou Sheng34a4b382007-03-28 17:38:21 +0000838 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Zhou Shengaa305ab2007-03-28 02:19:03 +0000839 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
Zhou Sheng34a4b382007-03-28 17:38:21 +0000840 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Reid Spencer3e7594f2007-03-08 01:46:38 +0000841 return;
842 }
843 case Instruction::Shl:
844 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
845 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +0000846 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Reid Spencer2b812072007-03-25 02:03:12 +0000847 APInt Mask2(Mask.lshr(ShiftAmt));
848 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, Depth+1);
Reid Spencer3e7594f2007-03-08 01:46:38 +0000849 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Zhou Sheng430f6262007-03-12 05:44:52 +0000850 KnownZero <<= ShiftAmt;
851 KnownOne <<= ShiftAmt;
Reid Spencer2149a9d2007-03-25 19:55:33 +0000852 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
Reid Spencer3e7594f2007-03-08 01:46:38 +0000853 return;
854 }
855 break;
856 case Instruction::LShr:
857 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
858 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
859 // Compute the new bits that are at the top now.
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +0000860 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Reid Spencer3e7594f2007-03-08 01:46:38 +0000861
862 // Unsigned shift right.
Reid Spencer2b812072007-03-25 02:03:12 +0000863 APInt Mask2(Mask.shl(ShiftAmt));
864 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1);
Reid Spencer3e7594f2007-03-08 01:46:38 +0000865 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
866 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
867 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Zhou Shengaa305ab2007-03-28 02:19:03 +0000868 // high bits known zero.
869 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
Reid Spencer3e7594f2007-03-08 01:46:38 +0000870 return;
871 }
872 break;
873 case Instruction::AShr:
Zhou Shengaa305ab2007-03-28 02:19:03 +0000874 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Reid Spencer3e7594f2007-03-08 01:46:38 +0000875 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
876 // Compute the new bits that are at the top now.
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +0000877 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Reid Spencer3e7594f2007-03-08 01:46:38 +0000878
879 // Signed shift right.
Reid Spencer2b812072007-03-25 02:03:12 +0000880 APInt Mask2(Mask.shl(ShiftAmt));
881 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1);
Reid Spencer3e7594f2007-03-08 01:46:38 +0000882 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
883 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
884 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
885
Zhou Shengaa305ab2007-03-28 02:19:03 +0000886 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
887 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
Reid Spencer3e7594f2007-03-08 01:46:38 +0000888 KnownZero |= HighBits;
Zhou Shengaa305ab2007-03-28 02:19:03 +0000889 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
Reid Spencer3e7594f2007-03-08 01:46:38 +0000890 KnownOne |= HighBits;
Reid Spencer3e7594f2007-03-08 01:46:38 +0000891 return;
892 }
893 break;
Dan Gohmaneee962e2008-04-10 18:43:06 +0000894 case Instruction::Sub: {
895 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
896 // We know that the top bits of C-X are clear if X contains less bits
897 // than C (i.e. no wrap-around can happen). For example, 20-X is
898 // positive if we can prove that X is >= 0 and < 16.
899 if (!CLHS->getValue().isNegative()) {
900 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
901 // NLZ can't be BitWidth with no sign bit
902 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
903 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
904
905 // If all of the MaskV bits are known to be zero, then we know the output
906 // top bits are zero, because we now know that the output is from [0-C].
907 if ((KnownZero & MaskV) == MaskV) {
908 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
909 // Top bits known zero.
910 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
911 KnownOne = APInt(BitWidth, 0); // No one bits known.
912 } else {
913 KnownZero = KnownOne = APInt(BitWidth, 0); // Otherwise, nothing known.
914 }
915 return;
916 }
917 }
918 }
919 // fall through
Duncan Sands1d57a752008-03-21 08:32:17 +0000920 case Instruction::Add: {
Chris Lattner41dc0fc2008-03-21 05:19:58 +0000921 // If either the LHS or the RHS are Zero, the result is zero.
922 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
923 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
924 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
925 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
926
927 // Output known-0 bits are known if clear or set in both the low clear bits
928 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
929 // low 3 bits clear.
930 unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(),
931 KnownZero2.countTrailingOnes());
932
933 KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
934 KnownOne = APInt(BitWidth, 0);
935 return;
Duncan Sands1d57a752008-03-21 08:32:17 +0000936 }
Nick Lewyckyc1a2a612008-03-06 06:48:30 +0000937 case Instruction::SRem:
938 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
939 APInt RA = Rem->getValue();
940 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
941 APInt LowBits = RA.isStrictlyPositive() ? ((RA - 1) | RA) : ~RA;
942 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
943 ComputeMaskedBits(I->getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
944
945 // The sign of a remainder is equal to the sign of the first
946 // operand (zero being positive).
947 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
948 KnownZero2 |= ~LowBits;
949 else if (KnownOne2[BitWidth-1])
950 KnownOne2 |= ~LowBits;
951
952 KnownZero |= KnownZero2 & Mask;
953 KnownOne |= KnownOne2 & Mask;
954
955 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
956 }
957 }
958 break;
959 case Instruction::URem:
960 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
961 APInt RA = Rem->getValue();
962 if (RA.isStrictlyPositive() && RA.isPowerOf2()) {
963 APInt LowBits = (RA - 1) | RA;
964 APInt Mask2 = LowBits & Mask;
965 KnownZero |= ~LowBits & Mask;
966 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
967 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
968 }
969 } else {
970 // Since the result is less than or equal to RHS, any leading zero bits
971 // in RHS must also exist in the result.
972 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Chris Lattner41dc0fc2008-03-21 05:19:58 +0000973 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
974 Depth+1);
Nick Lewyckyc1a2a612008-03-06 06:48:30 +0000975
976 uint32_t Leaders = KnownZero2.countLeadingOnes();
977 KnownZero |= APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
978 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
979 }
980 break;
Dan Gohmaneee962e2008-04-10 18:43:06 +0000981
982 case Instruction::Alloca:
983 case Instruction::Malloc: {
984 AllocationInst *AI = cast<AllocationInst>(V);
985 unsigned Align = AI->getAlignment();
986 if (Align == 0 && TD) {
987 if (isa<AllocaInst>(AI))
988 Align = TD->getPrefTypeAlignment(AI->getType()->getElementType());
989 else if (isa<MallocInst>(AI)) {
990 // Malloc returns maximally aligned memory.
991 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
992 Align =
993 std::max(Align,
994 (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
995 Align =
996 std::max(Align,
997 (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
998 }
999 }
1000
1001 if (Align > 0)
1002 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
1003 CountTrailingZeros_32(Align));
1004 break;
1005 }
1006 case Instruction::GetElementPtr: {
1007 // Analyze all of the subscripts of this getelementptr instruction
1008 // to determine if we can prove known low zero bits.
1009 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
1010 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1011 ComputeMaskedBits(I->getOperand(0), LocalMask,
1012 LocalKnownZero, LocalKnownOne, Depth+1);
1013 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1014
1015 gep_type_iterator GTI = gep_type_begin(I);
1016 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1017 Value *Index = I->getOperand(i);
1018 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
1019 // Handle struct member offset arithmetic.
1020 if (!TD) return;
1021 const StructLayout *SL = TD->getStructLayout(STy);
1022 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1023 uint64_t Offset = SL->getElementOffset(Idx);
1024 TrailZ = std::min(TrailZ,
1025 CountTrailingZeros_64(Offset));
1026 } else {
1027 // Handle array index arithmetic.
1028 const Type *IndexedTy = GTI.getIndexedType();
1029 if (!IndexedTy->isSized()) return;
1030 unsigned GEPOpiBits = Index->getType()->getPrimitiveSizeInBits();
1031 uint64_t TypeSize = TD ? TD->getABITypeSize(IndexedTy) : 1;
1032 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
1033 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1034 ComputeMaskedBits(Index, LocalMask,
1035 LocalKnownZero, LocalKnownOne, Depth+1);
1036 TrailZ = std::min(TrailZ,
1037 CountTrailingZeros_64(TypeSize) +
1038 LocalKnownZero.countTrailingOnes());
1039 }
1040 }
1041
1042 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
1043 break;
1044 }
1045 case Instruction::PHI: {
1046 PHINode *P = cast<PHINode>(I);
1047 // Handle the case of a simple two-predecessor recurrence PHI.
1048 // There's a lot more that could theoretically be done here, but
1049 // this is sufficient to catch some interesting cases.
1050 if (P->getNumIncomingValues() == 2) {
1051 for (unsigned i = 0; i != 2; ++i) {
1052 Value *L = P->getIncomingValue(i);
1053 Value *R = P->getIncomingValue(!i);
1054 User *LU = dyn_cast<User>(L);
1055 unsigned Opcode = LU ? getOpcode(LU) : (unsigned)Instruction::UserOp1;
1056 // Check for operations that have the property that if
1057 // both their operands have low zero bits, the result
1058 // will have low zero bits.
1059 if (Opcode == Instruction::Add ||
1060 Opcode == Instruction::Sub ||
1061 Opcode == Instruction::And ||
1062 Opcode == Instruction::Or ||
1063 Opcode == Instruction::Mul) {
1064 Value *LL = LU->getOperand(0);
1065 Value *LR = LU->getOperand(1);
1066 // Find a recurrence.
1067 if (LL == I)
1068 L = LR;
1069 else if (LR == I)
1070 L = LL;
1071 else
1072 break;
1073 // Ok, we have a PHI of the form L op= R. Check for low
1074 // zero bits.
1075 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1076 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, Depth+1);
1077 Mask2 = APInt::getLowBitsSet(BitWidth,
1078 KnownZero2.countTrailingOnes());
1079 KnownOne2.clear();
1080 KnownZero2.clear();
1081 ComputeMaskedBits(L, Mask2, KnownZero2, KnownOne2, Depth+1);
1082 KnownZero = Mask &
1083 APInt::getLowBitsSet(BitWidth,
1084 KnownZero2.countTrailingOnes());
1085 break;
1086 }
1087 }
1088 }
1089 break;
1090 }
Reid Spencer3e7594f2007-03-08 01:46:38 +00001091 }
1092}
1093
Reid Spencere7816b52007-03-08 01:52:58 +00001094/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1095/// this predicate to simplify operations downstream. Mask is known to be zero
1096/// for bits that V cannot have.
Dan Gohmaneee962e2008-04-10 18:43:06 +00001097bool InstCombiner::MaskedValueIsZero(Value *V, const APInt& Mask,
1098 unsigned Depth) {
Zhou Shengedd089c2007-03-12 16:54:56 +00001099 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Reid Spencere7816b52007-03-08 01:52:58 +00001100 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
1101 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1102 return (KnownZero & Mask) == Mask;
1103}
1104
Chris Lattner255d8912006-02-11 09:31:47 +00001105/// ShrinkDemandedConstant - Check to see if the specified operand of the
1106/// specified instruction is a constant integer. If so, check to see if there
1107/// are any bits set in the constant that are not demanded. If so, shrink the
1108/// constant and return true.
1109static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
Reid Spencer6b79e2d2007-03-12 17:15:10 +00001110 APInt Demanded) {
1111 assert(I && "No instruction?");
1112 assert(OpNo < I->getNumOperands() && "Operand index too large");
1113
1114 // If the operand is not a constant integer, nothing to do.
1115 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
1116 if (!OpC) return false;
1117
1118 // If there are no bits set that aren't demanded, nothing to do.
1119 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
1120 if ((~Demanded & OpC->getValue()) == 0)
1121 return false;
1122
1123 // This instruction is producing bits that are not demanded. Shrink the RHS.
1124 Demanded &= OpC->getValue();
1125 I->setOperand(OpNo, ConstantInt::get(Demanded));
1126 return true;
1127}
1128
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00001129// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
1130// set of known zero and one bits, compute the maximum and minimum values that
1131// could have the specified known zero and known one bits, returning them in
1132// min/max.
1133static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
Reid Spencer0460fb32007-03-22 20:36:03 +00001134 const APInt& KnownZero,
1135 const APInt& KnownOne,
1136 APInt& Min, APInt& Max) {
1137 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
1138 assert(KnownZero.getBitWidth() == BitWidth &&
1139 KnownOne.getBitWidth() == BitWidth &&
1140 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
1141 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
Reid Spencer2f549172007-03-25 04:26:16 +00001142 APInt UnknownBits = ~(KnownZero|KnownOne);
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00001143
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00001144 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
1145 // bit if it is unknown.
1146 Min = KnownOne;
1147 Max = KnownOne|UnknownBits;
1148
Zhou Sheng4acf1552007-03-28 05:15:57 +00001149 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
Zhou Sheng4a1822a2007-04-02 13:45:30 +00001150 Min.set(BitWidth-1);
1151 Max.clear(BitWidth-1);
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00001152 }
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00001153}
1154
1155// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
1156// a set of known zero and one bits, compute the maximum and minimum values that
1157// could have the specified known zero and known one bits, returning them in
1158// min/max.
1159static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnera9ff5eb2007-08-05 08:47:58 +00001160 const APInt &KnownZero,
1161 const APInt &KnownOne,
1162 APInt &Min, APInt &Max) {
1163 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Reid Spencer0460fb32007-03-22 20:36:03 +00001164 assert(KnownZero.getBitWidth() == BitWidth &&
1165 KnownOne.getBitWidth() == BitWidth &&
1166 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
1167 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
Reid Spencer2f549172007-03-25 04:26:16 +00001168 APInt UnknownBits = ~(KnownZero|KnownOne);
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00001169
1170 // The minimum value is when the unknown bits are all zeros.
1171 Min = KnownOne;
1172 // The maximum value is when the unknown bits are all ones.
1173 Max = KnownOne|UnknownBits;
1174}
Chris Lattner255d8912006-02-11 09:31:47 +00001175
Reid Spencer8cb68342007-03-12 17:25:59 +00001176/// SimplifyDemandedBits - This function attempts to replace V with a simpler
1177/// value based on the demanded bits. When this function is called, it is known
1178/// that only the bits set in DemandedMask of the result of V are ever used
1179/// downstream. Consequently, depending on the mask and V, it may be possible
1180/// to replace V with a constant or one of its operands. In such cases, this
1181/// function does the replacement and returns true. In all other cases, it
1182/// returns false after analyzing the expression and setting KnownOne and known
1183/// to be one in the expression. KnownZero contains all the bits that are known
1184/// to be zero in the expression. These are provided to potentially allow the
1185/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
1186/// the expression. KnownOne and KnownZero always follow the invariant that
1187/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
1188/// the bits in KnownOne and KnownZero may only be accurate for those bits set
1189/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
1190/// and KnownOne must all be the same.
1191bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
1192 APInt& KnownZero, APInt& KnownOne,
1193 unsigned Depth) {
1194 assert(V != 0 && "Null pointer of Value???");
1195 assert(Depth <= 6 && "Limit Search Depth");
1196 uint32_t BitWidth = DemandedMask.getBitWidth();
1197 const IntegerType *VTy = cast<IntegerType>(V->getType());
1198 assert(VTy->getBitWidth() == BitWidth &&
1199 KnownZero.getBitWidth() == BitWidth &&
1200 KnownOne.getBitWidth() == BitWidth &&
1201 "Value *V, DemandedMask, KnownZero and KnownOne \
1202 must have same BitWidth");
1203 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1204 // We know all of the bits for a constant!
1205 KnownOne = CI->getValue() & DemandedMask;
1206 KnownZero = ~KnownOne & DemandedMask;
1207 return false;
1208 }
1209
Zhou Sheng96704452007-03-14 03:21:24 +00001210 KnownZero.clear();
1211 KnownOne.clear();
Reid Spencer8cb68342007-03-12 17:25:59 +00001212 if (!V->hasOneUse()) { // Other users may use these bits.
1213 if (Depth != 0) { // Not at the root.
1214 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
1215 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
1216 return false;
1217 }
1218 // If this is the root being simplified, allow it to have multiple uses,
1219 // just set the DemandedMask to all bits.
1220 DemandedMask = APInt::getAllOnesValue(BitWidth);
1221 } else if (DemandedMask == 0) { // Not demanding any bits from V.
1222 if (V != UndefValue::get(VTy))
1223 return UpdateValueUsesWith(V, UndefValue::get(VTy));
1224 return false;
1225 } else if (Depth == 6) { // Limit search depth.
1226 return false;
1227 }
1228
1229 Instruction *I = dyn_cast<Instruction>(V);
1230 if (!I) return false; // Only analyze instructions.
1231
Reid Spencer8cb68342007-03-12 17:25:59 +00001232 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1233 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
1234 switch (I->getOpcode()) {
1235 default: break;
1236 case Instruction::And:
1237 // If either the LHS or the RHS are Zero, the result is zero.
1238 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1239 RHSKnownZero, RHSKnownOne, Depth+1))
1240 return true;
1241 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1242 "Bits known to be one AND zero?");
1243
1244 // If something is known zero on the RHS, the bits aren't demanded on the
1245 // LHS.
1246 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
1247 LHSKnownZero, LHSKnownOne, Depth+1))
1248 return true;
1249 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1250 "Bits known to be one AND zero?");
1251
1252 // If all of the demanded bits are known 1 on one side, return the other.
1253 // These bits cannot contribute to the result of the 'and'.
1254 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
1255 (DemandedMask & ~LHSKnownZero))
1256 return UpdateValueUsesWith(I, I->getOperand(0));
1257 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
1258 (DemandedMask & ~RHSKnownZero))
1259 return UpdateValueUsesWith(I, I->getOperand(1));
1260
1261 // If all of the demanded bits in the inputs are known zeros, return zero.
1262 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
1263 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
1264
1265 // If the RHS is a constant, see if we can simplify it.
1266 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
1267 return UpdateValueUsesWith(I, I);
1268
1269 // Output known-1 bits are only known if set in both the LHS & RHS.
1270 RHSKnownOne &= LHSKnownOne;
1271 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1272 RHSKnownZero |= LHSKnownZero;
1273 break;
1274 case Instruction::Or:
1275 // If either the LHS or the RHS are One, the result is One.
1276 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1277 RHSKnownZero, RHSKnownOne, Depth+1))
1278 return true;
1279 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1280 "Bits known to be one AND zero?");
1281 // If something is known one on the RHS, the bits aren't demanded on the
1282 // LHS.
1283 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
1284 LHSKnownZero, LHSKnownOne, Depth+1))
1285 return true;
1286 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1287 "Bits known to be one AND zero?");
1288
1289 // If all of the demanded bits are known zero on one side, return the other.
1290 // These bits cannot contribute to the result of the 'or'.
1291 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
1292 (DemandedMask & ~LHSKnownOne))
1293 return UpdateValueUsesWith(I, I->getOperand(0));
1294 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
1295 (DemandedMask & ~RHSKnownOne))
1296 return UpdateValueUsesWith(I, I->getOperand(1));
1297
1298 // If all of the potentially set bits on one side are known to be set on
1299 // the other side, just use the 'other' side.
1300 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
1301 (DemandedMask & (~RHSKnownZero)))
1302 return UpdateValueUsesWith(I, I->getOperand(0));
1303 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
1304 (DemandedMask & (~LHSKnownZero)))
1305 return UpdateValueUsesWith(I, I->getOperand(1));
1306
1307 // If the RHS is a constant, see if we can simplify it.
1308 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1309 return UpdateValueUsesWith(I, I);
1310
1311 // Output known-0 bits are only known if clear in both the LHS & RHS.
1312 RHSKnownZero &= LHSKnownZero;
1313 // Output known-1 are known to be set if set in either the LHS | RHS.
1314 RHSKnownOne |= LHSKnownOne;
1315 break;
1316 case Instruction::Xor: {
1317 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1318 RHSKnownZero, RHSKnownOne, Depth+1))
1319 return true;
1320 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1321 "Bits known to be one AND zero?");
1322 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1323 LHSKnownZero, LHSKnownOne, Depth+1))
1324 return true;
1325 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1326 "Bits known to be one AND zero?");
1327
1328 // If all of the demanded bits are known zero on one side, return the other.
1329 // These bits cannot contribute to the result of the 'xor'.
1330 if ((DemandedMask & RHSKnownZero) == DemandedMask)
1331 return UpdateValueUsesWith(I, I->getOperand(0));
1332 if ((DemandedMask & LHSKnownZero) == DemandedMask)
1333 return UpdateValueUsesWith(I, I->getOperand(1));
1334
1335 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1336 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
1337 (RHSKnownOne & LHSKnownOne);
1338 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1339 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
1340 (RHSKnownOne & LHSKnownZero);
1341
1342 // If all of the demanded bits are known to be zero on one side or the
1343 // other, turn this into an *inclusive* or.
1344 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1345 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
1346 Instruction *Or =
1347 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1348 I->getName());
1349 InsertNewInstBefore(Or, *I);
1350 return UpdateValueUsesWith(I, Or);
1351 }
1352
1353 // If all of the demanded bits on one side are known, and all of the set
1354 // bits on that side are also known to be set on the other side, turn this
1355 // into an AND, as we know the bits will be cleared.
1356 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1357 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
1358 // all known
1359 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
1360 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
1361 Instruction *And =
1362 BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
1363 InsertNewInstBefore(And, *I);
1364 return UpdateValueUsesWith(I, And);
1365 }
1366 }
1367
1368 // If the RHS is a constant, see if we can simplify it.
1369 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
1370 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1371 return UpdateValueUsesWith(I, I);
1372
1373 RHSKnownZero = KnownZeroOut;
1374 RHSKnownOne = KnownOneOut;
1375 break;
1376 }
1377 case Instruction::Select:
1378 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
1379 RHSKnownZero, RHSKnownOne, Depth+1))
1380 return true;
1381 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1382 LHSKnownZero, LHSKnownOne, Depth+1))
1383 return true;
1384 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1385 "Bits known to be one AND zero?");
1386 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1387 "Bits known to be one AND zero?");
1388
1389 // If the operands are constants, see if we can simplify them.
1390 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1391 return UpdateValueUsesWith(I, I);
1392 if (ShrinkDemandedConstant(I, 2, DemandedMask))
1393 return UpdateValueUsesWith(I, I);
1394
1395 // Only known if known in both the LHS and RHS.
1396 RHSKnownOne &= LHSKnownOne;
1397 RHSKnownZero &= LHSKnownZero;
1398 break;
1399 case Instruction::Trunc: {
1400 uint32_t truncBf =
1401 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
Zhou Sheng01542f32007-03-29 02:26:30 +00001402 DemandedMask.zext(truncBf);
1403 RHSKnownZero.zext(truncBf);
1404 RHSKnownOne.zext(truncBf);
1405 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1406 RHSKnownZero, RHSKnownOne, Depth+1))
Reid Spencer8cb68342007-03-12 17:25:59 +00001407 return true;
1408 DemandedMask.trunc(BitWidth);
1409 RHSKnownZero.trunc(BitWidth);
1410 RHSKnownOne.trunc(BitWidth);
1411 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1412 "Bits known to be one AND zero?");
1413 break;
1414 }
1415 case Instruction::BitCast:
1416 if (!I->getOperand(0)->getType()->isInteger())
1417 return false;
1418
1419 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1420 RHSKnownZero, RHSKnownOne, Depth+1))
1421 return true;
1422 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1423 "Bits known to be one AND zero?");
1424 break;
1425 case Instruction::ZExt: {
1426 // Compute the bits in the result that are not present in the input.
1427 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
Reid Spencer2f549172007-03-25 04:26:16 +00001428 uint32_t SrcBitWidth = SrcTy->getBitWidth();
Reid Spencer8cb68342007-03-12 17:25:59 +00001429
Zhou Shengd48653a2007-03-29 04:45:55 +00001430 DemandedMask.trunc(SrcBitWidth);
1431 RHSKnownZero.trunc(SrcBitWidth);
1432 RHSKnownOne.trunc(SrcBitWidth);
Zhou Sheng01542f32007-03-29 02:26:30 +00001433 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1434 RHSKnownZero, RHSKnownOne, Depth+1))
Reid Spencer8cb68342007-03-12 17:25:59 +00001435 return true;
1436 DemandedMask.zext(BitWidth);
1437 RHSKnownZero.zext(BitWidth);
1438 RHSKnownOne.zext(BitWidth);
1439 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1440 "Bits known to be one AND zero?");
1441 // The top bits are known to be zero.
Zhou Sheng01542f32007-03-29 02:26:30 +00001442 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Reid Spencer8cb68342007-03-12 17:25:59 +00001443 break;
1444 }
1445 case Instruction::SExt: {
1446 // Compute the bits in the result that are not present in the input.
1447 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
Reid Spencer2f549172007-03-25 04:26:16 +00001448 uint32_t SrcBitWidth = SrcTy->getBitWidth();
Reid Spencer8cb68342007-03-12 17:25:59 +00001449
Reid Spencer8cb68342007-03-12 17:25:59 +00001450 APInt InputDemandedBits = DemandedMask &
Zhou Sheng01542f32007-03-29 02:26:30 +00001451 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
Reid Spencer8cb68342007-03-12 17:25:59 +00001452
Zhou Sheng01542f32007-03-29 02:26:30 +00001453 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
Reid Spencer8cb68342007-03-12 17:25:59 +00001454 // If any of the sign extended bits are demanded, we know that the sign
1455 // bit is demanded.
1456 if ((NewBits & DemandedMask) != 0)
Zhou Sheng4a1822a2007-04-02 13:45:30 +00001457 InputDemandedBits.set(SrcBitWidth-1);
Reid Spencer8cb68342007-03-12 17:25:59 +00001458
Zhou Shengd48653a2007-03-29 04:45:55 +00001459 InputDemandedBits.trunc(SrcBitWidth);
1460 RHSKnownZero.trunc(SrcBitWidth);
1461 RHSKnownOne.trunc(SrcBitWidth);
Zhou Sheng01542f32007-03-29 02:26:30 +00001462 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1463 RHSKnownZero, RHSKnownOne, Depth+1))
Reid Spencer8cb68342007-03-12 17:25:59 +00001464 return true;
1465 InputDemandedBits.zext(BitWidth);
1466 RHSKnownZero.zext(BitWidth);
1467 RHSKnownOne.zext(BitWidth);
1468 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1469 "Bits known to be one AND zero?");
1470
1471 // If the sign bit of the input is known set or clear, then we know the
1472 // top bits of the result.
1473
1474 // If the input sign bit is known zero, or if the NewBits are not demanded
1475 // convert this into a zero extension.
Zhou Sheng01542f32007-03-29 02:26:30 +00001476 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
Reid Spencer8cb68342007-03-12 17:25:59 +00001477 {
1478 // Convert to ZExt cast
1479 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1480 return UpdateValueUsesWith(I, NewCast);
Zhou Sheng01542f32007-03-29 02:26:30 +00001481 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
Reid Spencer8cb68342007-03-12 17:25:59 +00001482 RHSKnownOne |= NewBits;
Reid Spencer8cb68342007-03-12 17:25:59 +00001483 }
1484 break;
1485 }
1486 case Instruction::Add: {
1487 // Figure out what the input bits are. If the top bits of the and result
1488 // are not demanded, then the add doesn't demand them from its input
1489 // either.
Reid Spencer55702aa2007-03-25 21:11:44 +00001490 uint32_t NLZ = DemandedMask.countLeadingZeros();
Reid Spencer8cb68342007-03-12 17:25:59 +00001491
1492 // If there is a constant on the RHS, there are a variety of xformations
1493 // we can do.
1494 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1495 // If null, this should be simplified elsewhere. Some of the xforms here
1496 // won't work if the RHS is zero.
1497 if (RHS->isZero())
1498 break;
1499
1500 // If the top bit of the output is demanded, demand everything from the
1501 // input. Otherwise, we demand all the input bits except NLZ top bits.
Zhou Sheng01542f32007-03-29 02:26:30 +00001502 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
Reid Spencer8cb68342007-03-12 17:25:59 +00001503
1504 // Find information about known zero/one bits in the input.
1505 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1506 LHSKnownZero, LHSKnownOne, Depth+1))
1507 return true;
1508
1509 // If the RHS of the add has bits set that can't affect the input, reduce
1510 // the constant.
1511 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1512 return UpdateValueUsesWith(I, I);
1513
1514 // Avoid excess work.
1515 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1516 break;
1517
1518 // Turn it into OR if input bits are zero.
1519 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1520 Instruction *Or =
1521 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1522 I->getName());
1523 InsertNewInstBefore(Or, *I);
1524 return UpdateValueUsesWith(I, Or);
1525 }
1526
1527 // We can say something about the output known-zero and known-one bits,
1528 // depending on potential carries from the input constant and the
1529 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1530 // bits set and the RHS constant is 0x01001, then we know we have a known
1531 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1532
1533 // To compute this, we first compute the potential carry bits. These are
1534 // the bits which may be modified. I'm not aware of a better way to do
1535 // this scan.
Zhou Shengb9cb95f2007-03-31 02:38:39 +00001536 const APInt& RHSVal = RHS->getValue();
1537 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
Reid Spencer8cb68342007-03-12 17:25:59 +00001538
1539 // Now that we know which bits have carries, compute the known-1/0 sets.
1540
1541 // Bits are known one if they are known zero in one operand and one in the
1542 // other, and there is no input carry.
1543 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1544 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1545
1546 // Bits are known zero if they are known zero in both operands and there
1547 // is no input carry.
1548 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1549 } else {
1550 // If the high-bits of this ADD are not demanded, then it does not demand
1551 // the high bits of its LHS or RHS.
Zhou Sheng01542f32007-03-29 02:26:30 +00001552 if (DemandedMask[BitWidth-1] == 0) {
Reid Spencer8cb68342007-03-12 17:25:59 +00001553 // Right fill the mask of bits for this ADD to demand the most
1554 // significant bit and all those below it.
Zhou Sheng01542f32007-03-29 02:26:30 +00001555 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
Reid Spencer8cb68342007-03-12 17:25:59 +00001556 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1557 LHSKnownZero, LHSKnownOne, Depth+1))
1558 return true;
1559 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1560 LHSKnownZero, LHSKnownOne, Depth+1))
1561 return true;
1562 }
1563 }
1564 break;
1565 }
1566 case Instruction::Sub:
1567 // If the high-bits of this SUB are not demanded, then it does not demand
1568 // the high bits of its LHS or RHS.
Zhou Sheng01542f32007-03-29 02:26:30 +00001569 if (DemandedMask[BitWidth-1] == 0) {
Reid Spencer8cb68342007-03-12 17:25:59 +00001570 // Right fill the mask of bits for this SUB to demand the most
1571 // significant bit and all those below it.
Zhou Sheng4351c642007-04-02 08:20:41 +00001572 uint32_t NLZ = DemandedMask.countLeadingZeros();
Zhou Sheng01542f32007-03-29 02:26:30 +00001573 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
Reid Spencer8cb68342007-03-12 17:25:59 +00001574 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1575 LHSKnownZero, LHSKnownOne, Depth+1))
1576 return true;
1577 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1578 LHSKnownZero, LHSKnownOne, Depth+1))
1579 return true;
1580 }
1581 break;
1582 case Instruction::Shl:
1583 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00001584 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Zhou Sheng01542f32007-03-29 02:26:30 +00001585 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1586 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
Reid Spencer8cb68342007-03-12 17:25:59 +00001587 RHSKnownZero, RHSKnownOne, Depth+1))
1588 return true;
1589 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1590 "Bits known to be one AND zero?");
1591 RHSKnownZero <<= ShiftAmt;
1592 RHSKnownOne <<= ShiftAmt;
1593 // low bits known zero.
Zhou Shengadc14952007-03-14 09:07:33 +00001594 if (ShiftAmt)
Zhou Shenge9e03f62007-03-28 15:02:20 +00001595 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
Reid Spencer8cb68342007-03-12 17:25:59 +00001596 }
1597 break;
1598 case Instruction::LShr:
1599 // For a logical shift right
1600 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00001601 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Reid Spencer8cb68342007-03-12 17:25:59 +00001602
Reid Spencer8cb68342007-03-12 17:25:59 +00001603 // Unsigned shift right.
Zhou Sheng01542f32007-03-29 02:26:30 +00001604 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1605 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
Reid Spencer8cb68342007-03-12 17:25:59 +00001606 RHSKnownZero, RHSKnownOne, Depth+1))
1607 return true;
1608 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1609 "Bits known to be one AND zero?");
Reid Spencer8cb68342007-03-12 17:25:59 +00001610 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1611 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
Zhou Shengadc14952007-03-14 09:07:33 +00001612 if (ShiftAmt) {
1613 // Compute the new bits that are at the top now.
Zhou Sheng01542f32007-03-29 02:26:30 +00001614 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
Zhou Shengadc14952007-03-14 09:07:33 +00001615 RHSKnownZero |= HighBits; // high bits known zero.
1616 }
Reid Spencer8cb68342007-03-12 17:25:59 +00001617 }
1618 break;
1619 case Instruction::AShr:
1620 // If this is an arithmetic shift right and only the low-bit is set, we can
1621 // always convert this into a logical shr, even if the shift amount is
1622 // variable. The low bit of the shift cannot be an input sign bit unless
1623 // the shift amount is >= the size of the datatype, which is undefined.
1624 if (DemandedMask == 1) {
1625 // Perform the logical shift right.
1626 Value *NewVal = BinaryOperator::createLShr(
1627 I->getOperand(0), I->getOperand(1), I->getName());
1628 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1629 return UpdateValueUsesWith(I, NewVal);
1630 }
Chris Lattner4241e4d2007-07-15 20:54:51 +00001631
1632 // If the sign bit is the only bit demanded by this ashr, then there is no
1633 // need to do it, the shift doesn't change the high bit.
1634 if (DemandedMask.isSignBit())
1635 return UpdateValueUsesWith(I, I->getOperand(0));
Reid Spencer8cb68342007-03-12 17:25:59 +00001636
1637 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Zhou Sheng302748d2007-03-30 17:20:39 +00001638 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
Reid Spencer8cb68342007-03-12 17:25:59 +00001639
Reid Spencer8cb68342007-03-12 17:25:59 +00001640 // Signed shift right.
Zhou Sheng01542f32007-03-29 02:26:30 +00001641 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
Lauro Ramos Venanciod0499af2007-06-06 17:08:48 +00001642 // If any of the "high bits" are demanded, we should set the sign bit as
1643 // demanded.
1644 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1645 DemandedMaskIn.set(BitWidth-1);
Reid Spencer8cb68342007-03-12 17:25:59 +00001646 if (SimplifyDemandedBits(I->getOperand(0),
Zhou Sheng01542f32007-03-29 02:26:30 +00001647 DemandedMaskIn,
Reid Spencer8cb68342007-03-12 17:25:59 +00001648 RHSKnownZero, RHSKnownOne, Depth+1))
1649 return true;
1650 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1651 "Bits known to be one AND zero?");
1652 // Compute the new bits that are at the top now.
Zhou Sheng01542f32007-03-29 02:26:30 +00001653 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
Reid Spencer8cb68342007-03-12 17:25:59 +00001654 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1655 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1656
1657 // Handle the sign bits.
1658 APInt SignBit(APInt::getSignBit(BitWidth));
1659 // Adjust to where it is now in the mask.
1660 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1661
1662 // If the input sign bit is known to be zero, or if none of the top bits
1663 // are demanded, turn this into an unsigned shift right.
Zhou Sheng01542f32007-03-29 02:26:30 +00001664 if (RHSKnownZero[BitWidth-ShiftAmt-1] ||
Reid Spencer8cb68342007-03-12 17:25:59 +00001665 (HighBits & ~DemandedMask) == HighBits) {
1666 // Perform the logical shift right.
1667 Value *NewVal = BinaryOperator::createLShr(
1668 I->getOperand(0), SA, I->getName());
1669 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1670 return UpdateValueUsesWith(I, NewVal);
1671 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1672 RHSKnownOne |= HighBits;
1673 }
1674 }
1675 break;
Nick Lewyckyc1a2a612008-03-06 06:48:30 +00001676 case Instruction::SRem:
1677 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1678 APInt RA = Rem->getValue();
1679 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1680 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) | RA : ~RA;
1681 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1682 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1683 LHSKnownZero, LHSKnownOne, Depth+1))
1684 return true;
1685
1686 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1687 LHSKnownZero |= ~LowBits;
1688 else if (LHSKnownOne[BitWidth-1])
1689 LHSKnownOne |= ~LowBits;
1690
1691 KnownZero |= LHSKnownZero & DemandedMask;
1692 KnownOne |= LHSKnownOne & DemandedMask;
1693
1694 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1695 }
1696 }
1697 break;
1698 case Instruction::URem:
1699 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1700 APInt RA = Rem->getValue();
1701 if (RA.isPowerOf2()) {
1702 APInt LowBits = (RA - 1) | RA;
1703 APInt Mask2 = LowBits & DemandedMask;
1704 KnownZero |= ~LowBits & DemandedMask;
1705 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1706 KnownZero, KnownOne, Depth+1))
1707 return true;
1708
1709 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1710 }
1711 } else {
1712 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1713 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1714 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
1715 KnownZero2, KnownOne2, Depth+1))
1716 return true;
1717
1718 uint32_t Leaders = KnownZero2.countLeadingOnes();
1719 KnownZero |= APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
1720 }
1721 break;
Reid Spencer8cb68342007-03-12 17:25:59 +00001722 }
1723
1724 // If the client is only demanding bits that we know, return the known
1725 // constant.
1726 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1727 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1728 return false;
1729}
1730
Chris Lattner867b99f2006-10-05 06:55:50 +00001731
1732/// SimplifyDemandedVectorElts - The specified value producecs a vector with
1733/// 64 or fewer elements. DemandedElts contains the set of elements that are
1734/// actually used by the caller. This method analyzes which elements of the
1735/// operand are undef and returns that information in UndefElts.
1736///
1737/// If the information about demanded elements can be used to simplify the
1738/// operation, the operation is simplified, then the resultant value is
1739/// returned. This returns null if no change was made.
1740Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1741 uint64_t &UndefElts,
1742 unsigned Depth) {
Reid Spencer9d6565a2007-02-15 02:26:10 +00001743 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
Chris Lattner867b99f2006-10-05 06:55:50 +00001744 assert(VWidth <= 64 && "Vector too wide to analyze!");
1745 uint64_t EltMask = ~0ULL >> (64-VWidth);
1746 assert(DemandedElts != EltMask && (DemandedElts & ~EltMask) == 0 &&
1747 "Invalid DemandedElts!");
1748
1749 if (isa<UndefValue>(V)) {
1750 // If the entire vector is undefined, just return this info.
1751 UndefElts = EltMask;
1752 return 0;
1753 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1754 UndefElts = EltMask;
1755 return UndefValue::get(V->getType());
1756 }
1757
1758 UndefElts = 0;
Reid Spencer9d6565a2007-02-15 02:26:10 +00001759 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1760 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattner867b99f2006-10-05 06:55:50 +00001761 Constant *Undef = UndefValue::get(EltTy);
1762
1763 std::vector<Constant*> Elts;
1764 for (unsigned i = 0; i != VWidth; ++i)
1765 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1766 Elts.push_back(Undef);
1767 UndefElts |= (1ULL << i);
1768 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1769 Elts.push_back(Undef);
1770 UndefElts |= (1ULL << i);
1771 } else { // Otherwise, defined.
1772 Elts.push_back(CP->getOperand(i));
1773 }
1774
1775 // If we changed the constant, return it.
Reid Spencer9d6565a2007-02-15 02:26:10 +00001776 Constant *NewCP = ConstantVector::get(Elts);
Chris Lattner867b99f2006-10-05 06:55:50 +00001777 return NewCP != CP ? NewCP : 0;
1778 } else if (isa<ConstantAggregateZero>(V)) {
Reid Spencer9d6565a2007-02-15 02:26:10 +00001779 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
Chris Lattner867b99f2006-10-05 06:55:50 +00001780 // set to undef.
Reid Spencer9d6565a2007-02-15 02:26:10 +00001781 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattner867b99f2006-10-05 06:55:50 +00001782 Constant *Zero = Constant::getNullValue(EltTy);
1783 Constant *Undef = UndefValue::get(EltTy);
1784 std::vector<Constant*> Elts;
1785 for (unsigned i = 0; i != VWidth; ++i)
1786 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1787 UndefElts = DemandedElts ^ EltMask;
Reid Spencer9d6565a2007-02-15 02:26:10 +00001788 return ConstantVector::get(Elts);
Chris Lattner867b99f2006-10-05 06:55:50 +00001789 }
1790
1791 if (!V->hasOneUse()) { // Other users may use these bits.
1792 if (Depth != 0) { // Not at the root.
1793 // TODO: Just compute the UndefElts information recursively.
1794 return false;
1795 }
1796 return false;
1797 } else if (Depth == 10) { // Limit search depth.
1798 return false;
1799 }
1800
1801 Instruction *I = dyn_cast<Instruction>(V);
1802 if (!I) return false; // Only analyze instructions.
1803
1804 bool MadeChange = false;
1805 uint64_t UndefElts2;
1806 Value *TmpV;
1807 switch (I->getOpcode()) {
1808 default: break;
1809
1810 case Instruction::InsertElement: {
1811 // If this is a variable index, we don't know which element it overwrites.
1812 // demand exactly the same input as we produce.
Reid Spencerb83eb642006-10-20 07:07:24 +00001813 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
Chris Lattner867b99f2006-10-05 06:55:50 +00001814 if (Idx == 0) {
1815 // Note that we can't propagate undef elt info, because we don't know
1816 // which elt is getting updated.
1817 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1818 UndefElts2, Depth+1);
1819 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1820 break;
1821 }
1822
1823 // If this is inserting an element that isn't demanded, remove this
1824 // insertelement.
Reid Spencerb83eb642006-10-20 07:07:24 +00001825 unsigned IdxNo = Idx->getZExtValue();
Chris Lattner867b99f2006-10-05 06:55:50 +00001826 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1827 return AddSoonDeadInstToWorklist(*I, 0);
1828
1829 // Otherwise, the element inserted overwrites whatever was there, so the
1830 // input demanded set is simpler than the output set.
1831 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1832 DemandedElts & ~(1ULL << IdxNo),
1833 UndefElts, Depth+1);
1834 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1835
1836 // The inserted element is defined.
1837 UndefElts |= 1ULL << IdxNo;
1838 break;
1839 }
Chris Lattner69878332007-04-14 22:29:23 +00001840 case Instruction::BitCast: {
Dan Gohman07a96762007-07-16 14:29:03 +00001841 // Vector->vector casts only.
Chris Lattner69878332007-04-14 22:29:23 +00001842 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1843 if (!VTy) break;
1844 unsigned InVWidth = VTy->getNumElements();
1845 uint64_t InputDemandedElts = 0;
1846 unsigned Ratio;
1847
1848 if (VWidth == InVWidth) {
Dan Gohman07a96762007-07-16 14:29:03 +00001849 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
Chris Lattner69878332007-04-14 22:29:23 +00001850 // elements as are demanded of us.
1851 Ratio = 1;
1852 InputDemandedElts = DemandedElts;
1853 } else if (VWidth > InVWidth) {
1854 // Untested so far.
1855 break;
1856
1857 // If there are more elements in the result than there are in the source,
1858 // then an input element is live if any of the corresponding output
1859 // elements are live.
1860 Ratio = VWidth/InVWidth;
1861 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1862 if (DemandedElts & (1ULL << OutIdx))
1863 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1864 }
1865 } else {
1866 // Untested so far.
1867 break;
1868
1869 // If there are more elements in the source than there are in the result,
1870 // then an input element is live if the corresponding output element is
1871 // live.
1872 Ratio = InVWidth/VWidth;
1873 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1874 if (DemandedElts & (1ULL << InIdx/Ratio))
1875 InputDemandedElts |= 1ULL << InIdx;
1876 }
Chris Lattner867b99f2006-10-05 06:55:50 +00001877
Chris Lattner69878332007-04-14 22:29:23 +00001878 // div/rem demand all inputs, because they don't want divide by zero.
1879 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1880 UndefElts2, Depth+1);
1881 if (TmpV) {
1882 I->setOperand(0, TmpV);
1883 MadeChange = true;
1884 }
1885
1886 UndefElts = UndefElts2;
1887 if (VWidth > InVWidth) {
1888 assert(0 && "Unimp");
1889 // If there are more elements in the result than there are in the source,
1890 // then an output element is undef if the corresponding input element is
1891 // undef.
1892 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1893 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1894 UndefElts |= 1ULL << OutIdx;
1895 } else if (VWidth < InVWidth) {
1896 assert(0 && "Unimp");
1897 // If there are more elements in the source than there are in the result,
1898 // then a result element is undef if all of the corresponding input
1899 // elements are undef.
1900 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1901 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1902 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1903 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1904 }
1905 break;
1906 }
Chris Lattner867b99f2006-10-05 06:55:50 +00001907 case Instruction::And:
1908 case Instruction::Or:
1909 case Instruction::Xor:
1910 case Instruction::Add:
1911 case Instruction::Sub:
1912 case Instruction::Mul:
1913 // div/rem demand all inputs, because they don't want divide by zero.
1914 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1915 UndefElts, Depth+1);
1916 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1917 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1918 UndefElts2, Depth+1);
1919 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1920
1921 // Output elements are undefined if both are undefined. Consider things
1922 // like undef&0. The result is known zero, not undef.
1923 UndefElts &= UndefElts2;
1924 break;
1925
1926 case Instruction::Call: {
1927 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1928 if (!II) break;
1929 switch (II->getIntrinsicID()) {
1930 default: break;
1931
1932 // Binary vector operations that work column-wise. A dest element is a
1933 // function of the corresponding input elements from the two inputs.
1934 case Intrinsic::x86_sse_sub_ss:
1935 case Intrinsic::x86_sse_mul_ss:
1936 case Intrinsic::x86_sse_min_ss:
1937 case Intrinsic::x86_sse_max_ss:
1938 case Intrinsic::x86_sse2_sub_sd:
1939 case Intrinsic::x86_sse2_mul_sd:
1940 case Intrinsic::x86_sse2_min_sd:
1941 case Intrinsic::x86_sse2_max_sd:
1942 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1943 UndefElts, Depth+1);
1944 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1945 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1946 UndefElts2, Depth+1);
1947 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1948
1949 // If only the low elt is demanded and this is a scalarizable intrinsic,
1950 // scalarize it now.
1951 if (DemandedElts == 1) {
1952 switch (II->getIntrinsicID()) {
1953 default: break;
1954 case Intrinsic::x86_sse_sub_ss:
1955 case Intrinsic::x86_sse_mul_ss:
1956 case Intrinsic::x86_sse2_sub_sd:
1957 case Intrinsic::x86_sse2_mul_sd:
1958 // TODO: Lower MIN/MAX/ABS/etc
1959 Value *LHS = II->getOperand(1);
1960 Value *RHS = II->getOperand(2);
1961 // Extract the element as scalars.
1962 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1963 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1964
1965 switch (II->getIntrinsicID()) {
1966 default: assert(0 && "Case stmts out of sync!");
1967 case Intrinsic::x86_sse_sub_ss:
1968 case Intrinsic::x86_sse2_sub_sd:
1969 TmpV = InsertNewInstBefore(BinaryOperator::createSub(LHS, RHS,
1970 II->getName()), *II);
1971 break;
1972 case Intrinsic::x86_sse_mul_ss:
1973 case Intrinsic::x86_sse2_mul_sd:
1974 TmpV = InsertNewInstBefore(BinaryOperator::createMul(LHS, RHS,
1975 II->getName()), *II);
1976 break;
1977 }
1978
1979 Instruction *New =
Gabor Greif051a9502008-04-06 20:25:17 +00001980 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1981 II->getName());
Chris Lattner867b99f2006-10-05 06:55:50 +00001982 InsertNewInstBefore(New, *II);
1983 AddSoonDeadInstToWorklist(*II, 0);
1984 return New;
1985 }
1986 }
1987
1988 // Output elements are undefined if both are undefined. Consider things
1989 // like undef&0. The result is known zero, not undef.
1990 UndefElts &= UndefElts2;
1991 break;
1992 }
1993 break;
1994 }
1995 }
1996 return MadeChange ? I : 0;
1997}
1998
Nick Lewycky455e1762007-09-06 02:40:25 +00001999/// @returns true if the specified compare predicate is
Reid Spencere4d87aa2006-12-23 06:05:41 +00002000/// true when both operands are equal...
Nick Lewycky455e1762007-09-06 02:40:25 +00002001/// @brief Determine if the icmp Predicate is true when both operands are equal
2002static bool isTrueWhenEqual(ICmpInst::Predicate pred) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00002003 return pred == ICmpInst::ICMP_EQ || pred == ICmpInst::ICMP_UGE ||
2004 pred == ICmpInst::ICMP_SGE || pred == ICmpInst::ICMP_ULE ||
2005 pred == ICmpInst::ICMP_SLE;
2006}
2007
Nick Lewycky455e1762007-09-06 02:40:25 +00002008/// @returns true if the specified compare instruction is
2009/// true when both operands are equal...
2010/// @brief Determine if the ICmpInst returns true when both operands are equal
2011static bool isTrueWhenEqual(ICmpInst &ICI) {
2012 return isTrueWhenEqual(ICI.getPredicate());
2013}
2014
Chris Lattner564a7272003-08-13 19:01:45 +00002015/// AssociativeOpt - Perform an optimization on an associative operator. This
2016/// function is designed to check a chain of associative operators for a
2017/// potential to apply a certain optimization. Since the optimization may be
2018/// applicable if the expression was reassociated, this checks the chain, then
2019/// reassociates the expression as necessary to expose the optimization
2020/// opportunity. This makes use of a special Functor, which must define
2021/// 'shouldApply' and 'apply' methods.
2022///
2023template<typename Functor>
2024Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
2025 unsigned Opcode = Root.getOpcode();
2026 Value *LHS = Root.getOperand(0);
2027
2028 // Quick check, see if the immediate LHS matches...
2029 if (F.shouldApply(LHS))
2030 return F.apply(Root);
2031
2032 // Otherwise, if the LHS is not of the same opcode as the root, return.
2033 Instruction *LHSI = dyn_cast<Instruction>(LHS);
Chris Lattnerfd059242003-10-15 16:48:29 +00002034 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
Chris Lattner564a7272003-08-13 19:01:45 +00002035 // Should we apply this transform to the RHS?
2036 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
2037
2038 // If not to the RHS, check to see if we should apply to the LHS...
2039 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
2040 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
2041 ShouldApply = true;
2042 }
2043
2044 // If the functor wants to apply the optimization to the RHS of LHSI,
2045 // reassociate the expression from ((? op A) op B) to (? op (A op B))
2046 if (ShouldApply) {
2047 BasicBlock *BB = Root.getParent();
Misha Brukmanfd939082005-04-21 23:48:37 +00002048
Chris Lattner564a7272003-08-13 19:01:45 +00002049 // Now all of the instructions are in the current basic block, go ahead
2050 // and perform the reassociation.
2051 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
2052
2053 // First move the selected RHS to the LHS of the root...
2054 Root.setOperand(0, LHSI->getOperand(1));
2055
2056 // Make what used to be the LHS of the root be the user of the root...
2057 Value *ExtraOperand = TmpLHSI->getOperand(1);
Chris Lattner65725312004-04-16 18:08:07 +00002058 if (&Root == TmpLHSI) {
Chris Lattner15a76c02004-04-05 02:10:19 +00002059 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
2060 return 0;
2061 }
Chris Lattner65725312004-04-16 18:08:07 +00002062 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
Chris Lattner564a7272003-08-13 19:01:45 +00002063 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Chris Lattner65725312004-04-16 18:08:07 +00002064 TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
2065 BasicBlock::iterator ARI = &Root; ++ARI;
2066 BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root
2067 ARI = Root;
Chris Lattner564a7272003-08-13 19:01:45 +00002068
2069 // Now propagate the ExtraOperand down the chain of instructions until we
2070 // get to LHSI.
2071 while (TmpLHSI != LHSI) {
2072 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
Chris Lattner65725312004-04-16 18:08:07 +00002073 // Move the instruction to immediately before the chain we are
2074 // constructing to avoid breaking dominance properties.
2075 NextLHSI->getParent()->getInstList().remove(NextLHSI);
2076 BB->getInstList().insert(ARI, NextLHSI);
2077 ARI = NextLHSI;
2078
Chris Lattner564a7272003-08-13 19:01:45 +00002079 Value *NextOp = NextLHSI->getOperand(1);
2080 NextLHSI->setOperand(1, ExtraOperand);
2081 TmpLHSI = NextLHSI;
2082 ExtraOperand = NextOp;
2083 }
Misha Brukmanfd939082005-04-21 23:48:37 +00002084
Chris Lattner564a7272003-08-13 19:01:45 +00002085 // Now that the instructions are reassociated, have the functor perform
2086 // the transformation...
2087 return F.apply(Root);
2088 }
Misha Brukmanfd939082005-04-21 23:48:37 +00002089
Chris Lattner564a7272003-08-13 19:01:45 +00002090 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
2091 }
2092 return 0;
2093}
2094
2095
2096// AddRHS - Implements: X + X --> X << 1
2097struct AddRHS {
2098 Value *RHS;
2099 AddRHS(Value *rhs) : RHS(rhs) {}
2100 bool shouldApply(Value *LHS) const { return LHS == RHS; }
2101 Instruction *apply(BinaryOperator &Add) const {
Reid Spencercc46cdb2007-02-02 14:08:20 +00002102 return BinaryOperator::createShl(Add.getOperand(0),
Reid Spencer832254e2007-02-02 02:16:23 +00002103 ConstantInt::get(Add.getType(), 1));
Chris Lattner564a7272003-08-13 19:01:45 +00002104 }
2105};
2106
2107// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
2108// iff C1&C2 == 0
2109struct AddMaskingAnd {
2110 Constant *C2;
2111 AddMaskingAnd(Constant *c) : C2(c) {}
2112 bool shouldApply(Value *LHS) const {
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002113 ConstantInt *C1;
Misha Brukmanfd939082005-04-21 23:48:37 +00002114 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002115 ConstantExpr::getAnd(C1, C2)->isNullValue();
Chris Lattner564a7272003-08-13 19:01:45 +00002116 }
2117 Instruction *apply(BinaryOperator &Add) const {
Chris Lattner48595f12004-06-10 02:07:29 +00002118 return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
Chris Lattner564a7272003-08-13 19:01:45 +00002119 }
2120};
2121
Chris Lattner6e7ba452005-01-01 16:22:27 +00002122static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner2eefe512004-04-09 19:05:30 +00002123 InstCombiner *IC) {
Reid Spencer3da59db2006-11-27 01:05:10 +00002124 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Chris Lattner6e7ba452005-01-01 16:22:27 +00002125 if (Constant *SOC = dyn_cast<Constant>(SO))
Reid Spencer3da59db2006-11-27 01:05:10 +00002126 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
Misha Brukmanfd939082005-04-21 23:48:37 +00002127
Reid Spencer3da59db2006-11-27 01:05:10 +00002128 return IC->InsertNewInstBefore(CastInst::create(
2129 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
Chris Lattner6e7ba452005-01-01 16:22:27 +00002130 }
2131
Chris Lattner2eefe512004-04-09 19:05:30 +00002132 // Figure out if the constant is the left or the right argument.
Chris Lattner6e7ba452005-01-01 16:22:27 +00002133 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
2134 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattner564a7272003-08-13 19:01:45 +00002135
Chris Lattner2eefe512004-04-09 19:05:30 +00002136 if (Constant *SOC = dyn_cast<Constant>(SO)) {
2137 if (ConstIsRHS)
Chris Lattner6e7ba452005-01-01 16:22:27 +00002138 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
2139 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner2eefe512004-04-09 19:05:30 +00002140 }
2141
2142 Value *Op0 = SO, *Op1 = ConstOperand;
2143 if (!ConstIsRHS)
2144 std::swap(Op0, Op1);
2145 Instruction *New;
Chris Lattner6e7ba452005-01-01 16:22:27 +00002146 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
2147 New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Reid Spencere4d87aa2006-12-23 06:05:41 +00002148 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2149 New = CmpInst::create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
2150 SO->getName()+".cmp");
Chris Lattner326c0f32004-04-10 19:15:56 +00002151 else {
Chris Lattner2eefe512004-04-09 19:05:30 +00002152 assert(0 && "Unknown binary instruction type!");
Chris Lattner326c0f32004-04-10 19:15:56 +00002153 abort();
2154 }
Chris Lattner6e7ba452005-01-01 16:22:27 +00002155 return IC->InsertNewInstBefore(New, I);
2156}
2157
2158// FoldOpIntoSelect - Given an instruction with a select as one operand and a
2159// constant as the other operand, try to fold the binary operator into the
2160// select arguments. This also works for Cast instructions, which obviously do
2161// not have a second operand.
2162static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
2163 InstCombiner *IC) {
2164 // Don't modify shared select instructions
2165 if (!SI->hasOneUse()) return 0;
2166 Value *TV = SI->getOperand(1);
2167 Value *FV = SI->getOperand(2);
2168
2169 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner956db272005-04-21 05:43:13 +00002170 // Bool selects with constant operands can be folded to logical ops.
Reid Spencer4fe16d62007-01-11 18:21:29 +00002171 if (SI->getType() == Type::Int1Ty) return 0;
Chris Lattner956db272005-04-21 05:43:13 +00002172
Chris Lattner6e7ba452005-01-01 16:22:27 +00002173 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
2174 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
2175
Gabor Greif051a9502008-04-06 20:25:17 +00002176 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
2177 SelectFalseVal);
Chris Lattner6e7ba452005-01-01 16:22:27 +00002178 }
2179 return 0;
Chris Lattner2eefe512004-04-09 19:05:30 +00002180}
2181
Chris Lattner4e998b22004-09-29 05:07:12 +00002182
2183/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
2184/// node as operand #0, see if we can fold the instruction into the PHI (which
2185/// is only possible if all operands to the PHI are constants).
2186Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
2187 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattnerbac32862004-11-14 19:13:23 +00002188 unsigned NumPHIValues = PN->getNumIncomingValues();
Chris Lattner2a86f3b2006-09-09 22:02:56 +00002189 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
Chris Lattner4e998b22004-09-29 05:07:12 +00002190
Chris Lattner2a86f3b2006-09-09 22:02:56 +00002191 // Check to see if all of the operands of the PHI are constants. If there is
2192 // one non-constant value, remember the BB it is. If there is more than one
Chris Lattnerb3036682007-02-24 01:03:45 +00002193 // or if *it* is a PHI, bail out.
Chris Lattner2a86f3b2006-09-09 22:02:56 +00002194 BasicBlock *NonConstBB = 0;
2195 for (unsigned i = 0; i != NumPHIValues; ++i)
2196 if (!isa<Constant>(PN->getIncomingValue(i))) {
2197 if (NonConstBB) return 0; // More than one non-const value.
Chris Lattnerb3036682007-02-24 01:03:45 +00002198 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
Chris Lattner2a86f3b2006-09-09 22:02:56 +00002199 NonConstBB = PN->getIncomingBlock(i);
2200
2201 // If the incoming non-constant value is in I's block, we have an infinite
2202 // loop.
2203 if (NonConstBB == I.getParent())
2204 return 0;
2205 }
2206
2207 // If there is exactly one non-constant value, we can insert a copy of the
2208 // operation in that block. However, if this is a critical edge, we would be
2209 // inserting the computation one some other paths (e.g. inside a loop). Only
2210 // do this if the pred block is unconditionally branching into the phi block.
2211 if (NonConstBB) {
2212 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
2213 if (!BI || !BI->isUnconditional()) return 0;
2214 }
Chris Lattner4e998b22004-09-29 05:07:12 +00002215
2216 // Okay, we can do the transformation: create the new PHI node.
Gabor Greif051a9502008-04-06 20:25:17 +00002217 PHINode *NewPN = PHINode::Create(I.getType(), "");
Chris Lattner55517062005-01-29 00:39:08 +00002218 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
Chris Lattner4e998b22004-09-29 05:07:12 +00002219 InsertNewInstBefore(NewPN, *PN);
Chris Lattner6934a042007-02-11 01:23:03 +00002220 NewPN->takeName(PN);
Chris Lattner4e998b22004-09-29 05:07:12 +00002221
2222 // Next, add all of the operands to the PHI.
2223 if (I.getNumOperands() == 2) {
2224 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattnerbac32862004-11-14 19:13:23 +00002225 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnera9ff5eb2007-08-05 08:47:58 +00002226 Value *InV = 0;
Chris Lattner2a86f3b2006-09-09 22:02:56 +00002227 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00002228 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2229 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
2230 else
2231 InV = ConstantExpr::get(I.getOpcode(), InC, C);
Chris Lattner2a86f3b2006-09-09 22:02:56 +00002232 } else {
2233 assert(PN->getIncomingBlock(i) == NonConstBB);
2234 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
2235 InV = BinaryOperator::create(BO->getOpcode(),
2236 PN->getIncomingValue(i), C, "phitmp",
2237 NonConstBB->getTerminator());
Reid Spencere4d87aa2006-12-23 06:05:41 +00002238 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2239 InV = CmpInst::create(CI->getOpcode(),
2240 CI->getPredicate(),
2241 PN->getIncomingValue(i), C, "phitmp",
2242 NonConstBB->getTerminator());
Chris Lattner2a86f3b2006-09-09 22:02:56 +00002243 else
2244 assert(0 && "Unknown binop!");
2245
Chris Lattnerdbab3862007-03-02 21:28:56 +00002246 AddToWorkList(cast<Instruction>(InV));
Chris Lattner2a86f3b2006-09-09 22:02:56 +00002247 }
2248 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner4e998b22004-09-29 05:07:12 +00002249 }
Reid Spencer3da59db2006-11-27 01:05:10 +00002250 } else {
2251 CastInst *CI = cast<CastInst>(&I);
2252 const Type *RetTy = CI->getType();
Chris Lattnerbac32862004-11-14 19:13:23 +00002253 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner2a86f3b2006-09-09 22:02:56 +00002254 Value *InV;
2255 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
Reid Spencer3da59db2006-11-27 01:05:10 +00002256 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
Chris Lattner2a86f3b2006-09-09 22:02:56 +00002257 } else {
2258 assert(PN->getIncomingBlock(i) == NonConstBB);
Reid Spencer3da59db2006-11-27 01:05:10 +00002259 InV = CastInst::create(CI->getOpcode(), PN->getIncomingValue(i),
2260 I.getType(), "phitmp",
2261 NonConstBB->getTerminator());
Chris Lattnerdbab3862007-03-02 21:28:56 +00002262 AddToWorkList(cast<Instruction>(InV));
Chris Lattner2a86f3b2006-09-09 22:02:56 +00002263 }
2264 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner4e998b22004-09-29 05:07:12 +00002265 }
2266 }
2267 return ReplaceInstUsesWith(I, NewPN);
2268}
2269
Chris Lattner2454a2e2008-01-29 06:52:45 +00002270
2271/// CannotBeNegativeZero - Return true if we can prove that the specified FP
2272/// value is never equal to -0.0.
2273///
2274/// Note that this function will need to be revisited when we support nondefault
2275/// rounding modes!
2276///
2277static bool CannotBeNegativeZero(const Value *V) {
2278 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2279 return !CFP->getValueAPF().isNegZero();
2280
2281 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2282 if (const Instruction *I = dyn_cast<Instruction>(V)) {
2283 if (I->getOpcode() == Instruction::Add &&
2284 isa<ConstantFP>(I->getOperand(1)) &&
2285 cast<ConstantFP>(I->getOperand(1))->isNullValue())
2286 return true;
2287
2288 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2289 if (II->getIntrinsicID() == Intrinsic::sqrt)
2290 return CannotBeNegativeZero(II->getOperand(1));
2291
2292 if (const CallInst *CI = dyn_cast<CallInst>(I))
2293 if (const Function *F = CI->getCalledFunction()) {
2294 if (F->isDeclaration()) {
2295 switch (F->getNameLen()) {
2296 case 3: // abs(x) != -0.0
2297 if (!strcmp(F->getNameStart(), "abs")) return true;
2298 break;
2299 case 4: // abs[lf](x) != -0.0
2300 if (!strcmp(F->getNameStart(), "absf")) return true;
2301 if (!strcmp(F->getNameStart(), "absl")) return true;
2302 break;
2303 }
2304 }
2305 }
2306 }
2307
2308 return false;
2309}
2310
2311
Chris Lattner7e708292002-06-25 16:13:24 +00002312Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00002313 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00002314 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Chris Lattnerb35dde12002-05-06 16:49:18 +00002315
Chris Lattner66331a42004-04-10 22:01:55 +00002316 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
Chris Lattnere87597f2004-10-16 18:11:37 +00002317 // X + undef -> undef
2318 if (isa<UndefValue>(RHS))
2319 return ReplaceInstUsesWith(I, RHS);
2320
Chris Lattner66331a42004-04-10 22:01:55 +00002321 // X + 0 --> X
Chris Lattner9919e3d2006-12-02 00:13:08 +00002322 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
Chris Lattner5e678e02005-10-17 17:56:38 +00002323 if (RHSC->isNullValue())
2324 return ReplaceInstUsesWith(I, LHS);
Chris Lattner8532cf62005-10-17 20:18:38 +00002325 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen9e3d3ab2007-09-14 22:26:36 +00002326 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
2327 (I.getType())->getValueAPF()))
Chris Lattner8532cf62005-10-17 20:18:38 +00002328 return ReplaceInstUsesWith(I, LHS);
Chris Lattner5e678e02005-10-17 17:56:38 +00002329 }
Misha Brukmanfd939082005-04-21 23:48:37 +00002330
Chris Lattner66331a42004-04-10 22:01:55 +00002331 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
Chris Lattnerb4a2f052006-11-09 05:12:27 +00002332 // X + (signbit) --> X ^ signbit
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002333 const APInt& Val = CI->getValue();
Zhou Sheng4351c642007-04-02 08:20:41 +00002334 uint32_t BitWidth = Val.getBitWidth();
Reid Spencer2ec619a2007-03-23 21:24:59 +00002335 if (Val == APInt::getSignBit(BitWidth))
Chris Lattner48595f12004-06-10 02:07:29 +00002336 return BinaryOperator::createXor(LHS, RHS);
Chris Lattnerb4a2f052006-11-09 05:12:27 +00002337
2338 // See if SimplifyDemandedBits can simplify this. This handles stuff like
2339 // (X & 254)+1 -> (X&254)|1
Reid Spencer2ec619a2007-03-23 21:24:59 +00002340 if (!isa<VectorType>(I.getType())) {
2341 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2342 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2343 KnownZero, KnownOne))
2344 return &I;
2345 }
Chris Lattner66331a42004-04-10 22:01:55 +00002346 }
Chris Lattner4e998b22004-09-29 05:07:12 +00002347
2348 if (isa<PHINode>(LHS))
2349 if (Instruction *NV = FoldOpIntoPhi(I))
2350 return NV;
Chris Lattner5931c542005-09-24 23:43:33 +00002351
Chris Lattner4f637d42006-01-06 17:59:59 +00002352 ConstantInt *XorRHS = 0;
2353 Value *XorLHS = 0;
Chris Lattnerc5eff442007-01-30 22:32:46 +00002354 if (isa<ConstantInt>(RHSC) &&
2355 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
Zhou Sheng4351c642007-04-02 08:20:41 +00002356 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002357 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
Chris Lattner5931c542005-09-24 23:43:33 +00002358
Zhou Sheng4351c642007-04-02 08:20:41 +00002359 uint32_t Size = TySizeBits / 2;
Reid Spencer2ec619a2007-03-23 21:24:59 +00002360 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2361 APInt CFF80Val(-C0080Val);
Chris Lattner5931c542005-09-24 23:43:33 +00002362 do {
2363 if (TySizeBits > Size) {
Chris Lattner5931c542005-09-24 23:43:33 +00002364 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2365 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
Reid Spencer2ec619a2007-03-23 21:24:59 +00002366 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2367 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
Chris Lattner5931c542005-09-24 23:43:33 +00002368 // This is a sign extend if the top bits are known zero.
Zhou Sheng290bec52007-03-29 08:15:12 +00002369 if (!MaskedValueIsZero(XorLHS,
2370 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
Chris Lattner5931c542005-09-24 23:43:33 +00002371 Size = 0; // Not a sign ext, but can't be any others either.
Reid Spencer2ec619a2007-03-23 21:24:59 +00002372 break;
Chris Lattner5931c542005-09-24 23:43:33 +00002373 }
2374 }
2375 Size >>= 1;
Reid Spencer2ec619a2007-03-23 21:24:59 +00002376 C0080Val = APIntOps::lshr(C0080Val, Size);
2377 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2378 } while (Size >= 1);
Chris Lattner5931c542005-09-24 23:43:33 +00002379
Reid Spencer35c38852007-03-28 01:36:16 +00002380 // FIXME: This shouldn't be necessary. When the backends can handle types
2381 // with funny bit widths then this whole cascade of if statements should
2382 // be removed. It is just here to get the size of the "middle" type back
2383 // up to something that the back ends can handle.
2384 const Type *MiddleType = 0;
2385 switch (Size) {
2386 default: break;
2387 case 32: MiddleType = Type::Int32Ty; break;
2388 case 16: MiddleType = Type::Int16Ty; break;
2389 case 8: MiddleType = Type::Int8Ty; break;
2390 }
2391 if (MiddleType) {
Reid Spencerd977d862006-12-12 23:36:14 +00002392 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
Chris Lattner5931c542005-09-24 23:43:33 +00002393 InsertNewInstBefore(NewTrunc, I);
Reid Spencer35c38852007-03-28 01:36:16 +00002394 return new SExtInst(NewTrunc, I.getType(), I.getName());
Chris Lattner5931c542005-09-24 23:43:33 +00002395 }
2396 }
Chris Lattner66331a42004-04-10 22:01:55 +00002397 }
Chris Lattnerb35dde12002-05-06 16:49:18 +00002398
Chris Lattner564a7272003-08-13 19:01:45 +00002399 // X + X --> X << 1
Chris Lattner42a75512007-01-15 02:27:26 +00002400 if (I.getType()->isInteger() && I.getType() != Type::Int1Ty) {
Chris Lattner564a7272003-08-13 19:01:45 +00002401 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
Chris Lattner7edc8c22005-04-07 17:14:51 +00002402
2403 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2404 if (RHSI->getOpcode() == Instruction::Sub)
2405 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2406 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2407 }
2408 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2409 if (LHSI->getOpcode() == Instruction::Sub)
2410 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2411 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2412 }
Robert Bocchino71698282004-07-27 21:02:21 +00002413 }
Chris Lattnere92d2f42003-08-13 04:18:28 +00002414
Chris Lattner5c4afb92002-05-08 22:46:53 +00002415 // -A + B --> B - A
Chris Lattnerdd12f962008-02-17 21:03:36 +00002416 // -A + -B --> -(A + B)
2417 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattnere10c0b92008-02-18 17:50:16 +00002418 if (LHS->getType()->isIntOrIntVector()) {
2419 if (Value *RHSV = dyn_castNegVal(RHS)) {
2420 Instruction *NewAdd = BinaryOperator::createAdd(LHSV, RHSV, "sum");
2421 InsertNewInstBefore(NewAdd, I);
2422 return BinaryOperator::createNeg(NewAdd);
2423 }
Chris Lattnerdd12f962008-02-17 21:03:36 +00002424 }
2425
2426 return BinaryOperator::createSub(RHS, LHSV);
2427 }
Chris Lattnerb35dde12002-05-06 16:49:18 +00002428
2429 // A + -B --> A - B
Chris Lattner8d969642003-03-10 23:06:50 +00002430 if (!isa<Constant>(RHS))
2431 if (Value *V = dyn_castNegVal(RHS))
Chris Lattner48595f12004-06-10 02:07:29 +00002432 return BinaryOperator::createSub(LHS, V);
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002433
Misha Brukmanfd939082005-04-21 23:48:37 +00002434
Chris Lattner50af16a2004-11-13 19:50:12 +00002435 ConstantInt *C2;
2436 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2437 if (X == RHS) // X*C + X --> X * (C+1)
2438 return BinaryOperator::createMul(RHS, AddOne(C2));
2439
2440 // X*C1 + X*C2 --> X * (C1+C2)
2441 ConstantInt *C1;
2442 if (X == dyn_castFoldableMul(RHS, C1))
Reid Spencer7177c3a2007-03-25 05:33:51 +00002443 return BinaryOperator::createMul(X, Add(C1, C2));
Chris Lattnerad3448c2003-02-18 19:57:07 +00002444 }
2445
2446 // X + X*C --> X * (C+1)
Chris Lattner50af16a2004-11-13 19:50:12 +00002447 if (dyn_castFoldableMul(RHS, C2) == LHS)
2448 return BinaryOperator::createMul(LHS, AddOne(C2));
2449
Chris Lattnere617c9e2007-01-05 02:17:46 +00002450 // X + ~X --> -1 since ~X = -X-1
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00002451 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2452 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattnere617c9e2007-01-05 02:17:46 +00002453
Chris Lattnerad3448c2003-02-18 19:57:07 +00002454
Chris Lattner564a7272003-08-13 19:01:45 +00002455 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002456 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
Chris Lattnere617c9e2007-01-05 02:17:46 +00002457 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2458 return R;
Chris Lattnerc8802d22003-03-11 00:12:48 +00002459
Nick Lewyckyb6eabff2008-02-03 07:42:09 +00002460 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky0c2c3f62008-02-03 08:19:11 +00002461 if (I.getType()->isIntOrIntVector()) {
Nick Lewyckyb6eabff2008-02-03 07:42:09 +00002462 Value *W, *X, *Y, *Z;
2463 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2464 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2465 if (W != Y) {
2466 if (W == Z) {
Bill Wendling587c01d2008-02-26 10:53:30 +00002467 std::swap(Y, Z);
Nick Lewyckyb6eabff2008-02-03 07:42:09 +00002468 } else if (Y == X) {
Bill Wendling587c01d2008-02-26 10:53:30 +00002469 std::swap(W, X);
2470 } else if (X == Z) {
Nick Lewyckyb6eabff2008-02-03 07:42:09 +00002471 std::swap(Y, Z);
2472 std::swap(W, X);
2473 }
2474 }
2475
2476 if (W == Y) {
2477 Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, Z,
2478 LHS->getName()), I);
2479 return BinaryOperator::createMul(W, NewAdd);
2480 }
2481 }
2482 }
2483
Chris Lattner6b032052003-10-02 15:11:26 +00002484 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
Chris Lattner4f637d42006-01-06 17:59:59 +00002485 Value *X = 0;
Reid Spencer7177c3a2007-03-25 05:33:51 +00002486 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
2487 return BinaryOperator::createSub(SubOne(CRHS), X);
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002488
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002489 // (X & FF00) + xx00 -> (X+xx00) & FF00
2490 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
Reid Spencer7177c3a2007-03-25 05:33:51 +00002491 Constant *Anded = And(CRHS, C2);
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002492 if (Anded == CRHS) {
2493 // See if all bits from the first bit set in the Add RHS up are included
2494 // in the mask. First, get the rightmost bit.
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002495 const APInt& AddRHSV = CRHS->getValue();
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002496
2497 // Form a mask of all bits from the lowest bit added through the top.
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002498 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002499
2500 // See if the and mask includes all of these bits.
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002501 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
Misha Brukmanfd939082005-04-21 23:48:37 +00002502
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002503 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2504 // Okay, the xform is safe. Insert the new add pronto.
2505 Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
2506 LHS->getName()), I);
2507 return BinaryOperator::createAnd(NewAdd, C2);
2508 }
2509 }
2510 }
2511
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002512 // Try to fold constant add into select arguments.
2513 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002514 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002515 return R;
Chris Lattner6b032052003-10-02 15:11:26 +00002516 }
2517
Reid Spencer1628cec2006-10-26 06:15:43 +00002518 // add (cast *A to intptrtype) B ->
Chris Lattner42790482007-12-20 01:56:58 +00002519 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Andrew Lenharth16d79552006-09-19 18:24:51 +00002520 {
Reid Spencer3da59db2006-11-27 01:05:10 +00002521 CastInst *CI = dyn_cast<CastInst>(LHS);
2522 Value *Other = RHS;
Andrew Lenharth16d79552006-09-19 18:24:51 +00002523 if (!CI) {
2524 CI = dyn_cast<CastInst>(RHS);
2525 Other = LHS;
2526 }
Andrew Lenharth45633262006-09-20 15:37:57 +00002527 if (CI && CI->getType()->isSized() &&
Reid Spencerabaa8ca2007-01-08 16:32:00 +00002528 (CI->getType()->getPrimitiveSizeInBits() ==
2529 TD->getIntPtrType()->getPrimitiveSizeInBits())
Andrew Lenharth45633262006-09-20 15:37:57 +00002530 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lamb43ad6b32007-12-17 01:12:55 +00002531 unsigned AS =
2532 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner6d0339d2008-01-13 22:23:22 +00002533 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2534 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greif051a9502008-04-06 20:25:17 +00002535 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Reid Spencer3da59db2006-11-27 01:05:10 +00002536 return new PtrToIntInst(I2, CI->getType());
Andrew Lenharth16d79552006-09-19 18:24:51 +00002537 }
2538 }
Christopher Lamb30f017a2007-12-18 09:34:41 +00002539
Chris Lattner42790482007-12-20 01:56:58 +00002540 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb30f017a2007-12-18 09:34:41 +00002541 {
2542 SelectInst *SI = dyn_cast<SelectInst>(LHS);
2543 Value *Other = RHS;
2544 if (!SI) {
2545 SI = dyn_cast<SelectInst>(RHS);
2546 Other = LHS;
2547 }
Chris Lattner42790482007-12-20 01:56:58 +00002548 if (SI && SI->hasOneUse()) {
Christopher Lamb30f017a2007-12-18 09:34:41 +00002549 Value *TV = SI->getTrueValue();
2550 Value *FV = SI->getFalseValue();
Chris Lattner42790482007-12-20 01:56:58 +00002551 Value *A, *N;
Christopher Lamb30f017a2007-12-18 09:34:41 +00002552
2553 // Can we fold the add into the argument of the select?
2554 // We check both true and false select arguments for a matching subtract.
Chris Lattner42790482007-12-20 01:56:58 +00002555 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Value(A))) &&
2556 A == Other) // Fold the add into the true select value.
Gabor Greif051a9502008-04-06 20:25:17 +00002557 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattner42790482007-12-20 01:56:58 +00002558 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Value(A))) &&
2559 A == Other) // Fold the add into the false select value.
Gabor Greif051a9502008-04-06 20:25:17 +00002560 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb30f017a2007-12-18 09:34:41 +00002561 }
2562 }
Chris Lattner2454a2e2008-01-29 06:52:45 +00002563
2564 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2565 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2566 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2567 return ReplaceInstUsesWith(I, LHS);
Andrew Lenharth16d79552006-09-19 18:24:51 +00002568
Chris Lattner7e708292002-06-25 16:13:24 +00002569 return Changed ? &I : 0;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002570}
2571
Chris Lattner1ba5bcd2003-07-22 21:46:59 +00002572// isSignBit - Return true if the value represented by the constant only has the
2573// highest order bit set.
2574static bool isSignBit(ConstantInt *CI) {
Zhou Sheng4351c642007-04-02 08:20:41 +00002575 uint32_t NumBits = CI->getType()->getPrimitiveSizeInBits();
Reid Spencer5a1e3e12007-03-19 20:58:18 +00002576 return CI->getValue() == APInt::getSignBit(NumBits);
Chris Lattner1ba5bcd2003-07-22 21:46:59 +00002577}
2578
Chris Lattner7e708292002-06-25 16:13:24 +00002579Instruction *InstCombiner::visitSub(BinaryOperator &I) {
Chris Lattner7e708292002-06-25 16:13:24 +00002580 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00002581
Chris Lattner233f7dc2002-08-12 21:17:25 +00002582 if (Op0 == Op1) // sub X, X -> 0
2583 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002584
Chris Lattner233f7dc2002-08-12 21:17:25 +00002585 // If this is a 'B = x-(-A)', change to B = x+A...
Chris Lattner8d969642003-03-10 23:06:50 +00002586 if (Value *V = dyn_castNegVal(Op1))
Chris Lattner48595f12004-06-10 02:07:29 +00002587 return BinaryOperator::createAdd(Op0, V);
Chris Lattnerb35dde12002-05-06 16:49:18 +00002588
Chris Lattnere87597f2004-10-16 18:11:37 +00002589 if (isa<UndefValue>(Op0))
2590 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2591 if (isa<UndefValue>(Op1))
2592 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2593
Chris Lattnerd65460f2003-11-05 01:06:05 +00002594 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2595 // Replace (-1 - A) with (~A)...
Chris Lattnera2881962003-02-18 19:28:33 +00002596 if (C->isAllOnesValue())
2597 return BinaryOperator::createNot(Op1);
Chris Lattner40371712002-05-09 01:29:19 +00002598
Chris Lattnerd65460f2003-11-05 01:06:05 +00002599 // C - ~X == X + (1+C)
Reid Spencer4b828e62005-06-18 17:37:34 +00002600 Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002601 if (match(Op1, m_Not(m_Value(X))))
Reid Spencer7177c3a2007-03-25 05:33:51 +00002602 return BinaryOperator::createAdd(X, AddOne(C));
2603
Chris Lattner76b7a062007-01-15 07:02:54 +00002604 // -(X >>u 31) -> (X >>s 31)
2605 // -(X >>s 31) -> (X >>u 31)
Zhou Sheng302748d2007-03-30 17:20:39 +00002606 if (C->isZero()) {
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00002607 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Reid Spencer3822ff52006-11-08 06:47:33 +00002608 if (SI->getOpcode() == Instruction::LShr) {
Reid Spencerb83eb642006-10-20 07:07:24 +00002609 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
Chris Lattner9c290672004-03-12 23:53:13 +00002610 // Check to see if we are shifting out everything but the sign bit.
Zhou Sheng302748d2007-03-30 17:20:39 +00002611 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
Reid Spencerb83eb642006-10-20 07:07:24 +00002612 SI->getType()->getPrimitiveSizeInBits()-1) {
Reid Spencer3822ff52006-11-08 06:47:33 +00002613 // Ok, the transformation is safe. Insert AShr.
Reid Spencer832254e2007-02-02 02:16:23 +00002614 return BinaryOperator::create(Instruction::AShr,
2615 SI->getOperand(0), CU, SI->getName());
Chris Lattner9c290672004-03-12 23:53:13 +00002616 }
2617 }
Reid Spencer3822ff52006-11-08 06:47:33 +00002618 }
2619 else if (SI->getOpcode() == Instruction::AShr) {
2620 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2621 // Check to see if we are shifting out everything but the sign bit.
Zhou Sheng302748d2007-03-30 17:20:39 +00002622 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
Reid Spencer3822ff52006-11-08 06:47:33 +00002623 SI->getType()->getPrimitiveSizeInBits()-1) {
Reid Spencerc5b206b2006-12-31 05:48:39 +00002624 // Ok, the transformation is safe. Insert LShr.
Reid Spencercc46cdb2007-02-02 14:08:20 +00002625 return BinaryOperator::createLShr(
Reid Spencer832254e2007-02-02 02:16:23 +00002626 SI->getOperand(0), CU, SI->getName());
Reid Spencer3822ff52006-11-08 06:47:33 +00002627 }
2628 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00002629 }
2630 }
Chris Lattnerbfe492b2004-03-13 00:11:49 +00002631 }
Chris Lattner2eefe512004-04-09 19:05:30 +00002632
2633 // Try to fold constant sub into select arguments.
2634 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002635 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00002636 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00002637
2638 if (isa<PHINode>(Op0))
2639 if (Instruction *NV = FoldOpIntoPhi(I))
2640 return NV;
Chris Lattnerd65460f2003-11-05 01:06:05 +00002641 }
2642
Chris Lattner43d84d62005-04-07 16:15:25 +00002643 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2644 if (Op1I->getOpcode() == Instruction::Add &&
Chris Lattner9919e3d2006-12-02 00:13:08 +00002645 !Op0->getType()->isFPOrFPVector()) {
Chris Lattner08954a22005-04-07 16:28:01 +00002646 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Chris Lattner43d84d62005-04-07 16:15:25 +00002647 return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName());
Chris Lattner08954a22005-04-07 16:28:01 +00002648 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Chris Lattner43d84d62005-04-07 16:15:25 +00002649 return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName());
Chris Lattner08954a22005-04-07 16:28:01 +00002650 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2651 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2652 // C1-(X+C2) --> (C1-C2)-X
Reid Spencer7177c3a2007-03-25 05:33:51 +00002653 return BinaryOperator::createSub(Subtract(CI1, CI2),
Chris Lattner08954a22005-04-07 16:28:01 +00002654 Op1I->getOperand(0));
2655 }
Chris Lattner43d84d62005-04-07 16:15:25 +00002656 }
2657
Chris Lattnerfd059242003-10-15 16:48:29 +00002658 if (Op1I->hasOneUse()) {
Chris Lattnera2881962003-02-18 19:28:33 +00002659 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2660 // is not used by anyone else...
2661 //
Chris Lattner0517e722004-02-02 20:09:56 +00002662 if (Op1I->getOpcode() == Instruction::Sub &&
Chris Lattner9919e3d2006-12-02 00:13:08 +00002663 !Op1I->getType()->isFPOrFPVector()) {
Chris Lattnera2881962003-02-18 19:28:33 +00002664 // Swap the two operands of the subexpr...
2665 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2666 Op1I->setOperand(0, IIOp1);
2667 Op1I->setOperand(1, IIOp0);
Misha Brukmanfd939082005-04-21 23:48:37 +00002668
Chris Lattnera2881962003-02-18 19:28:33 +00002669 // Create the new top level add instruction...
Chris Lattner48595f12004-06-10 02:07:29 +00002670 return BinaryOperator::createAdd(Op0, Op1);
Chris Lattnera2881962003-02-18 19:28:33 +00002671 }
2672
2673 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2674 //
2675 if (Op1I->getOpcode() == Instruction::And &&
2676 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2677 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2678
Chris Lattnerf523d062004-06-09 05:08:07 +00002679 Value *NewNot =
2680 InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
Chris Lattner48595f12004-06-10 02:07:29 +00002681 return BinaryOperator::createAnd(Op0, NewNot);
Chris Lattnera2881962003-02-18 19:28:33 +00002682 }
Chris Lattnerad3448c2003-02-18 19:57:07 +00002683
Reid Spencerac5209e2006-10-16 23:08:08 +00002684 // 0 - (X sdiv C) -> (X sdiv -C)
Reid Spencer1628cec2006-10-26 06:15:43 +00002685 if (Op1I->getOpcode() == Instruction::SDiv)
Reid Spencerb83eb642006-10-20 07:07:24 +00002686 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
Zhou Sheng843f07672007-04-19 05:39:12 +00002687 if (CSI->isZero())
Chris Lattner91ccc152004-10-06 15:08:25 +00002688 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Reid Spencer1628cec2006-10-26 06:15:43 +00002689 return BinaryOperator::createSDiv(Op1I->getOperand(0),
Chris Lattner91ccc152004-10-06 15:08:25 +00002690 ConstantExpr::getNeg(DivRHS));
2691
Chris Lattnerad3448c2003-02-18 19:57:07 +00002692 // X - X*C --> X * (1-C)
Reid Spencer4b828e62005-06-18 17:37:34 +00002693 ConstantInt *C2 = 0;
Chris Lattner50af16a2004-11-13 19:50:12 +00002694 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
Reid Spencer7177c3a2007-03-25 05:33:51 +00002695 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Chris Lattner48595f12004-06-10 02:07:29 +00002696 return BinaryOperator::createMul(Op0, CP1);
Chris Lattnerad3448c2003-02-18 19:57:07 +00002697 }
Dan Gohman5d066ff2007-09-17 17:31:57 +00002698
2699 // X - ((X / Y) * Y) --> X % Y
2700 if (Op1I->getOpcode() == Instruction::Mul)
2701 if (Instruction *I = dyn_cast<Instruction>(Op1I->getOperand(0)))
2702 if (Op0 == I->getOperand(0) &&
2703 Op1I->getOperand(1) == I->getOperand(1)) {
2704 if (I->getOpcode() == Instruction::SDiv)
2705 return BinaryOperator::createSRem(Op0, Op1I->getOperand(1));
2706 if (I->getOpcode() == Instruction::UDiv)
2707 return BinaryOperator::createURem(Op0, Op1I->getOperand(1));
2708 }
Chris Lattner40371712002-05-09 01:29:19 +00002709 }
Chris Lattner43d84d62005-04-07 16:15:25 +00002710 }
Chris Lattnera2881962003-02-18 19:28:33 +00002711
Chris Lattner9919e3d2006-12-02 00:13:08 +00002712 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00002713 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Chris Lattner7edc8c22005-04-07 17:14:51 +00002714 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00002715 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2716 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2717 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2718 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
Chris Lattner7edc8c22005-04-07 17:14:51 +00002719 } else if (Op0I->getOpcode() == Instruction::Sub) {
2720 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
2721 return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName());
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00002722 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00002723 }
Misha Brukmanfd939082005-04-21 23:48:37 +00002724
Chris Lattner50af16a2004-11-13 19:50:12 +00002725 ConstantInt *C1;
2726 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
Reid Spencer7177c3a2007-03-25 05:33:51 +00002727 if (X == Op1) // X*C - X --> X * (C-1)
2728 return BinaryOperator::createMul(Op1, SubOne(C1));
Chris Lattnerad3448c2003-02-18 19:57:07 +00002729
Chris Lattner50af16a2004-11-13 19:50:12 +00002730 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2731 if (X == dyn_castFoldableMul(Op1, C2))
Zhou Sheng58d13af2008-02-22 10:00:35 +00002732 return BinaryOperator::createMul(X, Subtract(C1, C2));
Chris Lattner50af16a2004-11-13 19:50:12 +00002733 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00002734 return 0;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002735}
2736
Chris Lattnera0141b92007-07-15 20:42:37 +00002737/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2738/// comparison only checks the sign bit. If it only checks the sign bit, set
2739/// TrueIfSigned if the result of the comparison is true when the input value is
2740/// signed.
2741static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2742 bool &TrueIfSigned) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00002743 switch (pred) {
Chris Lattnera0141b92007-07-15 20:42:37 +00002744 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2745 TrueIfSigned = true;
2746 return RHS->isZero();
Chris Lattnercb7122b2007-07-16 04:15:34 +00002747 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2748 TrueIfSigned = true;
2749 return RHS->isAllOnesValue();
Chris Lattnera0141b92007-07-15 20:42:37 +00002750 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2751 TrueIfSigned = false;
2752 return RHS->isAllOnesValue();
Chris Lattnercb7122b2007-07-16 04:15:34 +00002753 case ICmpInst::ICMP_UGT:
2754 // True if LHS u> RHS and RHS == high-bit-mask - 1
2755 TrueIfSigned = true;
2756 return RHS->getValue() ==
2757 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2758 case ICmpInst::ICMP_UGE:
2759 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2760 TrueIfSigned = true;
2761 return RHS->getValue() ==
2762 APInt::getSignBit(RHS->getType()->getPrimitiveSizeInBits());
Chris Lattnera0141b92007-07-15 20:42:37 +00002763 default:
2764 return false;
Chris Lattner4cb170c2004-02-23 06:38:22 +00002765 }
Chris Lattner4cb170c2004-02-23 06:38:22 +00002766}
2767
Chris Lattner7e708292002-06-25 16:13:24 +00002768Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00002769 bool Changed = SimplifyCommutative(I);
Chris Lattnera2881962003-02-18 19:28:33 +00002770 Value *Op0 = I.getOperand(0);
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002771
Chris Lattnere87597f2004-10-16 18:11:37 +00002772 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2773 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2774
Chris Lattner233f7dc2002-08-12 21:17:25 +00002775 // Simplify mul instructions with a constant RHS...
Chris Lattnera2881962003-02-18 19:28:33 +00002776 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2777 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnere92d2f42003-08-13 04:18:28 +00002778
2779 // ((X << C1)*C2) == (X * (C2 << C1))
Reid Spencer832254e2007-02-02 02:16:23 +00002780 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
Chris Lattnere92d2f42003-08-13 04:18:28 +00002781 if (SI->getOpcode() == Instruction::Shl)
2782 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Chris Lattner48595f12004-06-10 02:07:29 +00002783 return BinaryOperator::createMul(SI->getOperand(0),
2784 ConstantExpr::getShl(CI, ShOp));
Misha Brukmanfd939082005-04-21 23:48:37 +00002785
Zhou Sheng843f07672007-04-19 05:39:12 +00002786 if (CI->isZero())
Chris Lattner515c97c2003-09-11 22:24:54 +00002787 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2788 if (CI->equalsInt(1)) // X * 1 == X
2789 return ReplaceInstUsesWith(I, Op0);
2790 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Chris Lattner0af1fab2003-06-25 17:09:20 +00002791 return BinaryOperator::createNeg(Op0, I.getName());
Chris Lattner6c1ce212002-04-29 22:24:47 +00002792
Zhou Sheng97b52c22007-03-29 01:57:21 +00002793 const APInt& Val = cast<ConstantInt>(CI)->getValue();
Reid Spencerbca0e382007-03-23 20:05:17 +00002794 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Reid Spencercc46cdb2007-02-02 14:08:20 +00002795 return BinaryOperator::createShl(Op0,
Reid Spencerbca0e382007-03-23 20:05:17 +00002796 ConstantInt::get(Op0->getType(), Val.logBase2()));
Chris Lattnerbcd7db52005-08-02 19:16:58 +00002797 }
Robert Bocchino71698282004-07-27 21:02:21 +00002798 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
Chris Lattnera2881962003-02-18 19:28:33 +00002799 if (Op1F->isNullValue())
2800 return ReplaceInstUsesWith(I, Op1);
Chris Lattner6c1ce212002-04-29 22:24:47 +00002801
Chris Lattnera2881962003-02-18 19:28:33 +00002802 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2803 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Dale Johannesen9e3d3ab2007-09-14 22:26:36 +00002804 // We need a better interface for long double here.
2805 if (Op1->getType() == Type::FloatTy || Op1->getType() == Type::DoubleTy)
2806 if (Op1F->isExactlyValue(1.0))
2807 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
Chris Lattnera2881962003-02-18 19:28:33 +00002808 }
Chris Lattnerab51f3f2006-03-04 06:04:02 +00002809
2810 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2811 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
2812 isa<ConstantInt>(Op0I->getOperand(1))) {
2813 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
2814 Instruction *Add = BinaryOperator::createMul(Op0I->getOperand(0),
2815 Op1, "tmp");
2816 InsertNewInstBefore(Add, I);
2817 Value *C1C2 = ConstantExpr::getMul(Op1,
2818 cast<Constant>(Op0I->getOperand(1)));
2819 return BinaryOperator::createAdd(Add, C1C2);
2820
2821 }
Chris Lattner2eefe512004-04-09 19:05:30 +00002822
2823 // Try to fold constant mul into select arguments.
2824 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002825 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00002826 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00002827
2828 if (isa<PHINode>(Op0))
2829 if (Instruction *NV = FoldOpIntoPhi(I))
2830 return NV;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002831 }
2832
Chris Lattnera4f445b2003-03-10 23:23:04 +00002833 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2834 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Chris Lattner48595f12004-06-10 02:07:29 +00002835 return BinaryOperator::createMul(Op0v, Op1v);
Chris Lattnera4f445b2003-03-10 23:23:04 +00002836
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002837 // If one of the operands of the multiply is a cast from a boolean value, then
2838 // we know the bool is either zero or one, so this is a 'masking' multiply.
2839 // See if we can simplify things based on how the boolean was originally
2840 // formed.
2841 CastInst *BoolCast = 0;
Reid Spencerc55b2432006-12-13 18:21:21 +00002842 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(0)))
Reid Spencer4fe16d62007-01-11 18:21:29 +00002843 if (CI->getOperand(0)->getType() == Type::Int1Ty)
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002844 BoolCast = CI;
2845 if (!BoolCast)
Reid Spencerc55b2432006-12-13 18:21:21 +00002846 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
Reid Spencer4fe16d62007-01-11 18:21:29 +00002847 if (CI->getOperand(0)->getType() == Type::Int1Ty)
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002848 BoolCast = CI;
2849 if (BoolCast) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00002850 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002851 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2852 const Type *SCOpTy = SCIOp0->getType();
Chris Lattnera0141b92007-07-15 20:42:37 +00002853 bool TIS = false;
2854
Reid Spencere4d87aa2006-12-23 06:05:41 +00002855 // If the icmp is true iff the sign bit of X is set, then convert this
Chris Lattner4cb170c2004-02-23 06:38:22 +00002856 // multiply into a shift/and combination.
2857 if (isa<ConstantInt>(SCIOp1) &&
Chris Lattnera0141b92007-07-15 20:42:37 +00002858 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2859 TIS) {
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002860 // Shift the X value right to turn it into "all signbits".
Reid Spencer832254e2007-02-02 02:16:23 +00002861 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
Chris Lattner484d3cf2005-04-24 06:59:08 +00002862 SCOpTy->getPrimitiveSizeInBits()-1);
Chris Lattner4cb170c2004-02-23 06:38:22 +00002863 Value *V =
Reid Spencer832254e2007-02-02 02:16:23 +00002864 InsertNewInstBefore(
2865 BinaryOperator::create(Instruction::AShr, SCIOp0, Amt,
Chris Lattner4cb170c2004-02-23 06:38:22 +00002866 BoolCast->getOperand(0)->getName()+
2867 ".mask"), I);
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002868
2869 // If the multiply type is not the same as the source type, sign extend
2870 // or truncate to the multiply type.
Reid Spencer17212df2006-12-12 09:18:51 +00002871 if (I.getType() != V->getType()) {
Zhou Sheng4351c642007-04-02 08:20:41 +00002872 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2873 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
Reid Spencer17212df2006-12-12 09:18:51 +00002874 Instruction::CastOps opcode =
2875 (SrcBits == DstBits ? Instruction::BitCast :
2876 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2877 V = InsertCastBefore(opcode, V, I.getType(), I);
2878 }
Misha Brukmanfd939082005-04-21 23:48:37 +00002879
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002880 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Chris Lattner48595f12004-06-10 02:07:29 +00002881 return BinaryOperator::createAnd(V, OtherOp);
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002882 }
2883 }
2884 }
2885
Chris Lattner7e708292002-06-25 16:13:24 +00002886 return Changed ? &I : 0;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002887}
2888
Reid Spencer1628cec2006-10-26 06:15:43 +00002889/// This function implements the transforms on div instructions that work
2890/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2891/// used by the visitors to those instructions.
2892/// @brief Transforms common to all three div instructions
Reid Spencer3da59db2006-11-27 01:05:10 +00002893Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
Chris Lattner857e8cd2004-12-12 21:48:58 +00002894 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnere87597f2004-10-16 18:11:37 +00002895
Chris Lattner50b2ca42008-02-19 06:12:18 +00002896 // undef / X -> 0 for integer.
2897 // undef / X -> undef for FP (the undef could be a snan).
2898 if (isa<UndefValue>(Op0)) {
2899 if (Op0->getType()->isFPOrFPVector())
2900 return ReplaceInstUsesWith(I, Op0);
Chris Lattner857e8cd2004-12-12 21:48:58 +00002901 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner50b2ca42008-02-19 06:12:18 +00002902 }
Reid Spencer1628cec2006-10-26 06:15:43 +00002903
2904 // X / undef -> undef
Chris Lattner857e8cd2004-12-12 21:48:58 +00002905 if (isa<UndefValue>(Op1))
Reid Spencer1628cec2006-10-26 06:15:43 +00002906 return ReplaceInstUsesWith(I, Op1);
Chris Lattner857e8cd2004-12-12 21:48:58 +00002907
Chris Lattner25feae52008-01-28 00:58:18 +00002908 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2909 // This does not apply for fdiv.
Chris Lattner8e49e082006-09-09 20:26:32 +00002910 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
Chris Lattner25feae52008-01-28 00:58:18 +00002911 // [su]div X, (Cond ? 0 : Y) -> div X, Y. If the div and the select are in
2912 // the same basic block, then we replace the select with Y, and the
2913 // condition of the select with false (if the cond value is in the same BB).
2914 // If the select has uses other than the div, this allows them to be
2915 // simplified also. Note that div X, Y is just as good as div X, 0 (undef)
2916 if (ConstantInt *ST = dyn_cast<ConstantInt>(SI->getOperand(1)))
Chris Lattner8e49e082006-09-09 20:26:32 +00002917 if (ST->isNullValue()) {
2918 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2919 if (CondI && CondI->getParent() == I.getParent())
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002920 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
Chris Lattner8e49e082006-09-09 20:26:32 +00002921 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2922 I.setOperand(1, SI->getOperand(2));
2923 else
2924 UpdateValueUsesWith(SI, SI->getOperand(2));
2925 return &I;
2926 }
Reid Spencer1628cec2006-10-26 06:15:43 +00002927
Chris Lattner25feae52008-01-28 00:58:18 +00002928 // Likewise for: [su]div X, (Cond ? Y : 0) -> div X, Y
2929 if (ConstantInt *ST = dyn_cast<ConstantInt>(SI->getOperand(2)))
Chris Lattner8e49e082006-09-09 20:26:32 +00002930 if (ST->isNullValue()) {
2931 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2932 if (CondI && CondI->getParent() == I.getParent())
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002933 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
Chris Lattner8e49e082006-09-09 20:26:32 +00002934 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2935 I.setOperand(1, SI->getOperand(1));
2936 else
2937 UpdateValueUsesWith(SI, SI->getOperand(1));
2938 return &I;
2939 }
Reid Spencer1628cec2006-10-26 06:15:43 +00002940 }
Chris Lattner8e49e082006-09-09 20:26:32 +00002941
Reid Spencer1628cec2006-10-26 06:15:43 +00002942 return 0;
2943}
Misha Brukmanfd939082005-04-21 23:48:37 +00002944
Reid Spencer1628cec2006-10-26 06:15:43 +00002945/// This function implements the transforms common to both integer division
2946/// instructions (udiv and sdiv). It is called by the visitors to those integer
2947/// division instructions.
2948/// @brief Common integer divide transforms
Reid Spencer3da59db2006-11-27 01:05:10 +00002949Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
Reid Spencer1628cec2006-10-26 06:15:43 +00002950 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2951
2952 if (Instruction *Common = commonDivTransforms(I))
2953 return Common;
2954
2955 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2956 // div X, 1 == X
2957 if (RHS->equalsInt(1))
2958 return ReplaceInstUsesWith(I, Op0);
2959
2960 // (X / C1) / C2 -> X / (C1*C2)
2961 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2962 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2963 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewyckye0cfecf2008-02-18 22:48:05 +00002964 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2965 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2966 else
2967 return BinaryOperator::create(I.getOpcode(), LHS->getOperand(0),
2968 Multiply(RHS, LHSRHS));
Chris Lattnerbf70b832005-04-08 04:03:26 +00002969 }
Reid Spencer1628cec2006-10-26 06:15:43 +00002970
Reid Spencerbca0e382007-03-23 20:05:17 +00002971 if (!RHS->isZero()) { // avoid X udiv 0
Reid Spencer1628cec2006-10-26 06:15:43 +00002972 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2973 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2974 return R;
2975 if (isa<PHINode>(Op0))
2976 if (Instruction *NV = FoldOpIntoPhi(I))
2977 return NV;
2978 }
Chris Lattner8e49e082006-09-09 20:26:32 +00002979 }
Misha Brukmanfd939082005-04-21 23:48:37 +00002980
Chris Lattnera2881962003-02-18 19:28:33 +00002981 // 0 / X == 0, we don't need to preserve faults!
Chris Lattner857e8cd2004-12-12 21:48:58 +00002982 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
Chris Lattnera2881962003-02-18 19:28:33 +00002983 if (LHS->equalsInt(0))
2984 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2985
Reid Spencer1628cec2006-10-26 06:15:43 +00002986 return 0;
2987}
2988
2989Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2990 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2991
2992 // Handle the integer div common cases
2993 if (Instruction *Common = commonIDivTransforms(I))
2994 return Common;
2995
2996 // X udiv C^2 -> X >> C
2997 // Check to see if this is an unsigned division with an exact power of 2,
2998 // if so, convert to a right shift.
2999 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
Reid Spencer6eb0d992007-03-26 23:58:26 +00003000 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Reid Spencerbca0e382007-03-23 20:05:17 +00003001 return BinaryOperator::createLShr(Op0,
Zhou Sheng0fc50952007-03-25 05:01:29 +00003002 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
Reid Spencer1628cec2006-10-26 06:15:43 +00003003 }
3004
3005 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
Reid Spencer832254e2007-02-02 02:16:23 +00003006 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
Reid Spencer1628cec2006-10-26 06:15:43 +00003007 if (RHSI->getOpcode() == Instruction::Shl &&
3008 isa<ConstantInt>(RHSI->getOperand(0))) {
Zhou Sheng3a507fd2007-04-01 17:13:37 +00003009 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
Reid Spencerbca0e382007-03-23 20:05:17 +00003010 if (C1.isPowerOf2()) {
Reid Spencer1628cec2006-10-26 06:15:43 +00003011 Value *N = RHSI->getOperand(1);
Reid Spencer3da59db2006-11-27 01:05:10 +00003012 const Type *NTy = N->getType();
Reid Spencer2ec619a2007-03-23 21:24:59 +00003013 if (uint32_t C2 = C1.logBase2()) {
Reid Spencer1628cec2006-10-26 06:15:43 +00003014 Constant *C2V = ConstantInt::get(NTy, C2);
3015 N = InsertNewInstBefore(BinaryOperator::createAdd(N, C2V, "tmp"), I);
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00003016 }
Reid Spencercc46cdb2007-02-02 14:08:20 +00003017 return BinaryOperator::createLShr(Op0, N);
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00003018 }
3019 }
Chris Lattnerc812e5d2005-11-05 07:40:31 +00003020 }
3021
Reid Spencer1628cec2006-10-26 06:15:43 +00003022 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
3023 // where C1&C2 are powers of two.
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00003024 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Reid Spencer1628cec2006-10-26 06:15:43 +00003025 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00003026 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
Zhou Sheng3a507fd2007-04-01 17:13:37 +00003027 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
Reid Spencerbca0e382007-03-23 20:05:17 +00003028 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00003029 // Compute the shift amounts
Reid Spencerbca0e382007-03-23 20:05:17 +00003030 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00003031 // Construct the "on true" case of the select
3032 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
3033 Instruction *TSI = BinaryOperator::createLShr(
3034 Op0, TC, SI->getName()+".t");
3035 TSI = InsertNewInstBefore(TSI, I);
3036
3037 // Construct the "on false" case of the select
3038 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
3039 Instruction *FSI = BinaryOperator::createLShr(
3040 Op0, FC, SI->getName()+".f");
3041 FSI = InsertNewInstBefore(FSI, I);
Reid Spencer1628cec2006-10-26 06:15:43 +00003042
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00003043 // construct the select instruction and return it.
Gabor Greif051a9502008-04-06 20:25:17 +00003044 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Reid Spencer1628cec2006-10-26 06:15:43 +00003045 }
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00003046 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00003047 return 0;
3048}
3049
Reid Spencer1628cec2006-10-26 06:15:43 +00003050Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
3051 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3052
3053 // Handle the integer div common cases
3054 if (Instruction *Common = commonIDivTransforms(I))
3055 return Common;
3056
3057 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3058 // sdiv X, -1 == -X
3059 if (RHS->isAllOnesValue())
3060 return BinaryOperator::createNeg(Op0);
3061
3062 // -X/C -> X/-C
3063 if (Value *LHSNeg = dyn_castNegVal(Op0))
3064 return BinaryOperator::createSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
3065 }
3066
3067 // If the sign bits of both operands are zero (i.e. we can prove they are
3068 // unsigned inputs), turn this into a udiv.
Chris Lattner42a75512007-01-15 02:27:26 +00003069 if (I.getType()->isInteger()) {
Reid Spencerbca0e382007-03-23 20:05:17 +00003070 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
Reid Spencer1628cec2006-10-26 06:15:43 +00003071 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmancff55092007-11-05 23:16:33 +00003072 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Reid Spencer1628cec2006-10-26 06:15:43 +00003073 return BinaryOperator::createUDiv(Op0, Op1, I.getName());
3074 }
3075 }
3076
3077 return 0;
3078}
3079
3080Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
3081 return commonDivTransforms(I);
3082}
Chris Lattner3f5b8772002-05-06 16:14:14 +00003083
Reid Spencer0a783f72006-11-02 01:53:59 +00003084/// This function implements the transforms on rem instructions that work
3085/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
3086/// is used by the visitors to those instructions.
3087/// @brief Transforms common to all three rem instructions
3088Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
Chris Lattner857e8cd2004-12-12 21:48:58 +00003089 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Reid Spencer0a783f72006-11-02 01:53:59 +00003090
Chris Lattner50b2ca42008-02-19 06:12:18 +00003091 // 0 % X == 0 for integer, we don't need to preserve faults!
Chris Lattner19ccd5c2006-02-28 05:30:45 +00003092 if (Constant *LHS = dyn_cast<Constant>(Op0))
3093 if (LHS->isNullValue())
3094 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3095
Chris Lattner50b2ca42008-02-19 06:12:18 +00003096 if (isa<UndefValue>(Op0)) { // undef % X -> 0
3097 if (I.getType()->isFPOrFPVector())
3098 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Chris Lattner19ccd5c2006-02-28 05:30:45 +00003099 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner50b2ca42008-02-19 06:12:18 +00003100 }
Chris Lattner19ccd5c2006-02-28 05:30:45 +00003101 if (isa<UndefValue>(Op1))
3102 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
Reid Spencer0a783f72006-11-02 01:53:59 +00003103
3104 // Handle cases involving: rem X, (select Cond, Y, Z)
3105 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3106 // rem X, (Cond ? 0 : Y) -> rem X, Y. If the rem and the select are in
3107 // the same basic block, then we replace the select with Y, and the
3108 // condition of the select with false (if the cond value is in the same
3109 // BB). If the select has uses other than the div, this allows them to be
3110 // simplified also.
3111 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
3112 if (ST->isNullValue()) {
3113 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
3114 if (CondI && CondI->getParent() == I.getParent())
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003115 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
Reid Spencer0a783f72006-11-02 01:53:59 +00003116 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
3117 I.setOperand(1, SI->getOperand(2));
3118 else
3119 UpdateValueUsesWith(SI, SI->getOperand(2));
Chris Lattner5b73c082004-07-06 07:01:22 +00003120 return &I;
3121 }
Reid Spencer0a783f72006-11-02 01:53:59 +00003122 // Likewise for: rem X, (Cond ? Y : 0) -> rem X, Y
3123 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
3124 if (ST->isNullValue()) {
3125 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
3126 if (CondI && CondI->getParent() == I.getParent())
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003127 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
Reid Spencer0a783f72006-11-02 01:53:59 +00003128 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
3129 I.setOperand(1, SI->getOperand(1));
3130 else
3131 UpdateValueUsesWith(SI, SI->getOperand(1));
3132 return &I;
3133 }
Chris Lattner11a49f22005-11-05 07:28:37 +00003134 }
Chris Lattner5b73c082004-07-06 07:01:22 +00003135
Reid Spencer0a783f72006-11-02 01:53:59 +00003136 return 0;
3137}
3138
3139/// This function implements the transforms common to both integer remainder
3140/// instructions (urem and srem). It is called by the visitors to those integer
3141/// remainder instructions.
3142/// @brief Common integer remainder transforms
3143Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
3144 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3145
3146 if (Instruction *common = commonRemTransforms(I))
3147 return common;
3148
Chris Lattner857e8cd2004-12-12 21:48:58 +00003149 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner19ccd5c2006-02-28 05:30:45 +00003150 // X % 0 == undef, we don't need to preserve faults!
3151 if (RHS->equalsInt(0))
3152 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
3153
Chris Lattnera2881962003-02-18 19:28:33 +00003154 if (RHS->equalsInt(1)) // X % 1 == 0
3155 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3156
Chris Lattner97943922006-02-28 05:49:21 +00003157 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
3158 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
3159 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3160 return R;
3161 } else if (isa<PHINode>(Op0I)) {
3162 if (Instruction *NV = FoldOpIntoPhi(I))
3163 return NV;
Chris Lattner97943922006-02-28 05:49:21 +00003164 }
Nick Lewyckyc1a2a612008-03-06 06:48:30 +00003165
3166 // See if we can fold away this rem instruction.
3167 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3168 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3169 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3170 KnownZero, KnownOne))
3171 return &I;
Chris Lattner97943922006-02-28 05:49:21 +00003172 }
Chris Lattnera2881962003-02-18 19:28:33 +00003173 }
3174
Reid Spencer0a783f72006-11-02 01:53:59 +00003175 return 0;
3176}
3177
3178Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3179 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3180
3181 if (Instruction *common = commonIRemTransforms(I))
3182 return common;
3183
3184 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3185 // X urem C^2 -> X and C
3186 // Check to see if this is an unsigned remainder with an exact power of 2,
3187 // if so, convert to a bitwise and.
3188 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
Reid Spencerbca0e382007-03-23 20:05:17 +00003189 if (C->getValue().isPowerOf2())
Reid Spencer0a783f72006-11-02 01:53:59 +00003190 return BinaryOperator::createAnd(Op0, SubOne(C));
3191 }
3192
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00003193 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
Reid Spencer0a783f72006-11-02 01:53:59 +00003194 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3195 if (RHSI->getOpcode() == Instruction::Shl &&
3196 isa<ConstantInt>(RHSI->getOperand(0))) {
Zhou Sheng0fc50952007-03-25 05:01:29 +00003197 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00003198 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
3199 Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1,
3200 "tmp"), I);
3201 return BinaryOperator::createAnd(Op0, Add);
3202 }
3203 }
Reid Spencer0a783f72006-11-02 01:53:59 +00003204 }
Chris Lattner8e49e082006-09-09 20:26:32 +00003205
Reid Spencer0a783f72006-11-02 01:53:59 +00003206 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3207 // where C1&C2 are powers of two.
3208 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3209 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3210 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3211 // STO == 0 and SFO == 0 handled above.
Reid Spencerbca0e382007-03-23 20:05:17 +00003212 if ((STO->getValue().isPowerOf2()) &&
3213 (SFO->getValue().isPowerOf2())) {
Reid Spencer0a783f72006-11-02 01:53:59 +00003214 Value *TrueAnd = InsertNewInstBefore(
3215 BinaryOperator::createAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
3216 Value *FalseAnd = InsertNewInstBefore(
3217 BinaryOperator::createAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greif051a9502008-04-06 20:25:17 +00003218 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Reid Spencer0a783f72006-11-02 01:53:59 +00003219 }
3220 }
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00003221 }
3222
Chris Lattner3f5b8772002-05-06 16:14:14 +00003223 return 0;
3224}
3225
Reid Spencer0a783f72006-11-02 01:53:59 +00003226Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3227 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3228
Dan Gohmancff55092007-11-05 23:16:33 +00003229 // Handle the integer rem common cases
Reid Spencer0a783f72006-11-02 01:53:59 +00003230 if (Instruction *common = commonIRemTransforms(I))
3231 return common;
3232
3233 if (Value *RHSNeg = dyn_castNegVal(Op1))
3234 if (!isa<ConstantInt>(RHSNeg) ||
Zhou Sheng0fc50952007-03-25 05:01:29 +00003235 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive()) {
Reid Spencer0a783f72006-11-02 01:53:59 +00003236 // X % -Y -> X % Y
3237 AddUsesToWorkList(I);
3238 I.setOperand(1, RHSNeg);
3239 return &I;
3240 }
3241
Dan Gohmancff55092007-11-05 23:16:33 +00003242 // If the sign bits of both operands are zero (i.e. we can prove they are
Reid Spencer0a783f72006-11-02 01:53:59 +00003243 // unsigned inputs), turn this into a urem.
Dan Gohmancff55092007-11-05 23:16:33 +00003244 if (I.getType()->isInteger()) {
3245 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3246 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3247 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
3248 return BinaryOperator::createURem(Op0, Op1, I.getName());
3249 }
Reid Spencer0a783f72006-11-02 01:53:59 +00003250 }
3251
3252 return 0;
3253}
3254
3255Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
Reid Spencer0a783f72006-11-02 01:53:59 +00003256 return commonRemTransforms(I);
3257}
3258
Chris Lattner8b170942002-08-09 23:47:40 +00003259// isMaxValueMinusOne - return true if this is Max-1
Reid Spencere4d87aa2006-12-23 06:05:41 +00003260static bool isMaxValueMinusOne(const ConstantInt *C, bool isSigned) {
Reid Spencer3a2a9fb2007-03-19 21:10:28 +00003261 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
Chris Lattnera0141b92007-07-15 20:42:37 +00003262 if (!isSigned)
3263 return C->getValue() == APInt::getAllOnesValue(TypeBits) - 1;
3264 return C->getValue() == APInt::getSignedMaxValue(TypeBits)-1;
Chris Lattner8b170942002-08-09 23:47:40 +00003265}
3266
3267// isMinValuePlusOne - return true if this is Min+1
Reid Spencere4d87aa2006-12-23 06:05:41 +00003268static bool isMinValuePlusOne(const ConstantInt *C, bool isSigned) {
Chris Lattnera0141b92007-07-15 20:42:37 +00003269 if (!isSigned)
3270 return C->getValue() == 1; // unsigned
3271
3272 // Calculate 1111111111000000000000
3273 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
3274 return C->getValue() == APInt::getSignedMinValue(TypeBits)+1;
Chris Lattner8b170942002-08-09 23:47:40 +00003275}
3276
Chris Lattner457dd822004-06-09 07:59:58 +00003277// isOneBitSet - Return true if there is exactly one bit set in the specified
3278// constant.
3279static bool isOneBitSet(const ConstantInt *CI) {
Reid Spencer5f6a8952007-03-20 00:16:52 +00003280 return CI->getValue().isPowerOf2();
Chris Lattner457dd822004-06-09 07:59:58 +00003281}
3282
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00003283// isHighOnes - Return true if the constant is of the form 1+0+.
3284// This is the same as lowones(~X).
3285static bool isHighOnes(const ConstantInt *CI) {
Zhou Sheng2cde46c2007-03-20 12:49:06 +00003286 return (~CI->getValue() + 1).isPowerOf2();
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00003287}
3288
Reid Spencere4d87aa2006-12-23 06:05:41 +00003289/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003290/// are carefully arranged to allow folding of expressions such as:
3291///
3292/// (A < B) | (A > B) --> (A != B)
3293///
Reid Spencere4d87aa2006-12-23 06:05:41 +00003294/// Note that this is only valid if the first and second predicates have the
3295/// same sign. Is illegal to do: (A u< B) | (A s> B)
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003296///
Reid Spencere4d87aa2006-12-23 06:05:41 +00003297/// Three bits are used to represent the condition, as follows:
3298/// 0 A > B
3299/// 1 A == B
3300/// 2 A < B
3301///
3302/// <=> Value Definition
3303/// 000 0 Always false
3304/// 001 1 A > B
3305/// 010 2 A == B
3306/// 011 3 A >= B
3307/// 100 4 A < B
3308/// 101 5 A != B
3309/// 110 6 A <= B
3310/// 111 7 Always true
3311///
3312static unsigned getICmpCode(const ICmpInst *ICI) {
3313 switch (ICI->getPredicate()) {
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003314 // False -> 0
Reid Spencere4d87aa2006-12-23 06:05:41 +00003315 case ICmpInst::ICMP_UGT: return 1; // 001
3316 case ICmpInst::ICMP_SGT: return 1; // 001
3317 case ICmpInst::ICMP_EQ: return 2; // 010
3318 case ICmpInst::ICMP_UGE: return 3; // 011
3319 case ICmpInst::ICMP_SGE: return 3; // 011
3320 case ICmpInst::ICMP_ULT: return 4; // 100
3321 case ICmpInst::ICMP_SLT: return 4; // 100
3322 case ICmpInst::ICMP_NE: return 5; // 101
3323 case ICmpInst::ICMP_ULE: return 6; // 110
3324 case ICmpInst::ICMP_SLE: return 6; // 110
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003325 // True -> 7
3326 default:
Reid Spencere4d87aa2006-12-23 06:05:41 +00003327 assert(0 && "Invalid ICmp predicate!");
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003328 return 0;
3329 }
3330}
3331
Reid Spencere4d87aa2006-12-23 06:05:41 +00003332/// getICmpValue - This is the complement of getICmpCode, which turns an
3333/// opcode and two operands into either a constant true or false, or a brand
Dan Gohman5d066ff2007-09-17 17:31:57 +00003334/// new ICmp instruction. The sign is passed in to determine which kind
Reid Spencere4d87aa2006-12-23 06:05:41 +00003335/// of predicate to use in new icmp instructions.
3336static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3337 switch (code) {
3338 default: assert(0 && "Illegal ICmp code!");
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003339 case 0: return ConstantInt::getFalse();
Reid Spencere4d87aa2006-12-23 06:05:41 +00003340 case 1:
3341 if (sign)
3342 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3343 else
3344 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3345 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3346 case 3:
3347 if (sign)
3348 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3349 else
3350 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3351 case 4:
3352 if (sign)
3353 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3354 else
3355 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3356 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3357 case 6:
3358 if (sign)
3359 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3360 else
3361 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003362 case 7: return ConstantInt::getTrue();
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003363 }
3364}
3365
Reid Spencere4d87aa2006-12-23 06:05:41 +00003366static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3367 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
3368 (ICmpInst::isSignedPredicate(p1) &&
3369 (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
3370 (ICmpInst::isSignedPredicate(p2) &&
3371 (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
3372}
3373
3374namespace {
3375// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3376struct FoldICmpLogical {
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003377 InstCombiner &IC;
3378 Value *LHS, *RHS;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003379 ICmpInst::Predicate pred;
3380 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3381 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3382 pred(ICI->getPredicate()) {}
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003383 bool shouldApply(Value *V) const {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003384 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3385 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00003386 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3387 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003388 return false;
3389 }
Reid Spencere4d87aa2006-12-23 06:05:41 +00003390 Instruction *apply(Instruction &Log) const {
3391 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3392 if (ICI->getOperand(0) != LHS) {
3393 assert(ICI->getOperand(1) == LHS);
3394 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003395 }
3396
Chris Lattnerbc1dbfc2007-03-13 14:27:42 +00003397 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
Reid Spencere4d87aa2006-12-23 06:05:41 +00003398 unsigned LHSCode = getICmpCode(ICI);
Chris Lattnerbc1dbfc2007-03-13 14:27:42 +00003399 unsigned RHSCode = getICmpCode(RHSICI);
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003400 unsigned Code;
3401 switch (Log.getOpcode()) {
3402 case Instruction::And: Code = LHSCode & RHSCode; break;
3403 case Instruction::Or: Code = LHSCode | RHSCode; break;
3404 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
Chris Lattner021c1902003-09-22 20:33:34 +00003405 default: assert(0 && "Illegal logical opcode!"); return 0;
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003406 }
3407
Chris Lattnerbc1dbfc2007-03-13 14:27:42 +00003408 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3409 ICmpInst::isSignedPredicate(ICI->getPredicate());
3410
3411 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003412 if (Instruction *I = dyn_cast<Instruction>(RV))
3413 return I;
3414 // Otherwise, it's a constant boolean value...
3415 return IC.ReplaceInstUsesWith(Log, RV);
3416 }
3417};
Chris Lattnerd23b5ba2006-11-15 04:53:24 +00003418} // end anonymous namespace
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003419
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003420// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3421// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
Reid Spencer832254e2007-02-02 02:16:23 +00003422// guaranteed to be a binary operator.
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003423Instruction *InstCombiner::OptAndOp(Instruction *Op,
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003424 ConstantInt *OpRHS,
3425 ConstantInt *AndRHS,
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003426 BinaryOperator &TheAnd) {
3427 Value *X = Op->getOperand(0);
Chris Lattner76f7fe22004-01-12 19:47:05 +00003428 Constant *Together = 0;
Reid Spencer832254e2007-02-02 02:16:23 +00003429 if (!Op->isShift())
Reid Spencer7177c3a2007-03-25 05:33:51 +00003430 Together = And(AndRHS, OpRHS);
Chris Lattner7c4049c2004-01-12 19:35:11 +00003431
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003432 switch (Op->getOpcode()) {
3433 case Instruction::Xor:
Chris Lattner6e7ba452005-01-01 16:22:27 +00003434 if (Op->hasOneUse()) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003435 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Chris Lattner6934a042007-02-11 01:23:03 +00003436 Instruction *And = BinaryOperator::createAnd(X, AndRHS);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003437 InsertNewInstBefore(And, TheAnd);
Chris Lattner6934a042007-02-11 01:23:03 +00003438 And->takeName(Op);
Chris Lattner48595f12004-06-10 02:07:29 +00003439 return BinaryOperator::createXor(And, Together);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003440 }
3441 break;
3442 case Instruction::Or:
Chris Lattner6e7ba452005-01-01 16:22:27 +00003443 if (Together == AndRHS) // (X | C) & C --> C
3444 return ReplaceInstUsesWith(TheAnd, AndRHS);
Misha Brukmanfd939082005-04-21 23:48:37 +00003445
Chris Lattner6e7ba452005-01-01 16:22:27 +00003446 if (Op->hasOneUse() && Together != OpRHS) {
3447 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Chris Lattner6934a042007-02-11 01:23:03 +00003448 Instruction *Or = BinaryOperator::createOr(X, Together);
Chris Lattner6e7ba452005-01-01 16:22:27 +00003449 InsertNewInstBefore(Or, TheAnd);
Chris Lattner6934a042007-02-11 01:23:03 +00003450 Or->takeName(Op);
Chris Lattner6e7ba452005-01-01 16:22:27 +00003451 return BinaryOperator::createAnd(Or, AndRHS);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003452 }
3453 break;
3454 case Instruction::Add:
Chris Lattnerfd059242003-10-15 16:48:29 +00003455 if (Op->hasOneUse()) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003456 // Adding a one to a single bit bit-field should be turned into an XOR
3457 // of the bit. First thing to check is to see if this AND is with a
3458 // single bit constant.
Zhou Sheng3a507fd2007-04-01 17:13:37 +00003459 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003460
3461 // If there is only one bit set...
Chris Lattner457dd822004-06-09 07:59:58 +00003462 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003463 // Ok, at this point, we know that we are masking the result of the
3464 // ADD down to exactly one bit. If the constant we are adding has
3465 // no bits set below this bit, then we can eliminate the ADD.
Zhou Sheng3a507fd2007-04-01 17:13:37 +00003466 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
Misha Brukmanfd939082005-04-21 23:48:37 +00003467
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003468 // Check to see if any bits below the one bit set in AndRHSV are set.
3469 if ((AddRHS & (AndRHSV-1)) == 0) {
3470 // If not, the only thing that can effect the output of the AND is
3471 // the bit specified by AndRHSV. If that bit is set, the effect of
3472 // the XOR is to toggle the bit. If it is clear, then the ADD has
3473 // no effect.
3474 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3475 TheAnd.setOperand(0, X);
3476 return &TheAnd;
3477 } else {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003478 // Pull the XOR out of the AND.
Chris Lattner6934a042007-02-11 01:23:03 +00003479 Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003480 InsertNewInstBefore(NewAnd, TheAnd);
Chris Lattner6934a042007-02-11 01:23:03 +00003481 NewAnd->takeName(Op);
Chris Lattner48595f12004-06-10 02:07:29 +00003482 return BinaryOperator::createXor(NewAnd, AndRHS);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003483 }
3484 }
3485 }
3486 }
3487 break;
Chris Lattner62a355c2003-09-19 19:05:02 +00003488
3489 case Instruction::Shl: {
3490 // We know that the AND will not produce any of the bits shifted in, so if
3491 // the anded constant includes them, clear them now!
3492 //
Zhou Sheng290bec52007-03-29 08:15:12 +00003493 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00003494 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
Zhou Sheng290bec52007-03-29 08:15:12 +00003495 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3496 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
Misha Brukmanfd939082005-04-21 23:48:37 +00003497
Zhou Sheng290bec52007-03-29 08:15:12 +00003498 if (CI->getValue() == ShlMask) {
3499 // Masking out bits that the shift already masks
Chris Lattner0c967662004-09-24 15:21:34 +00003500 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3501 } else if (CI != AndRHS) { // Reducing bits set in and.
Chris Lattner62a355c2003-09-19 19:05:02 +00003502 TheAnd.setOperand(1, CI);
3503 return &TheAnd;
3504 }
3505 break;
Misha Brukmanfd939082005-04-21 23:48:37 +00003506 }
Reid Spencer3822ff52006-11-08 06:47:33 +00003507 case Instruction::LShr:
3508 {
Chris Lattner62a355c2003-09-19 19:05:02 +00003509 // We know that the AND will not produce any of the bits shifted in, so if
3510 // the anded constant includes them, clear them now! This only applies to
3511 // unsigned shifts, because a signed shr may bring in set bits!
3512 //
Zhou Sheng290bec52007-03-29 08:15:12 +00003513 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00003514 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
Zhou Sheng290bec52007-03-29 08:15:12 +00003515 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3516 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
Chris Lattner0c967662004-09-24 15:21:34 +00003517
Zhou Sheng290bec52007-03-29 08:15:12 +00003518 if (CI->getValue() == ShrMask) {
3519 // Masking out bits that the shift already masks.
Reid Spencer3822ff52006-11-08 06:47:33 +00003520 return ReplaceInstUsesWith(TheAnd, Op);
3521 } else if (CI != AndRHS) {
3522 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3523 return &TheAnd;
3524 }
3525 break;
3526 }
3527 case Instruction::AShr:
3528 // Signed shr.
3529 // See if this is shifting in some sign extension, then masking it out
3530 // with an and.
3531 if (Op->hasOneUse()) {
Zhou Sheng290bec52007-03-29 08:15:12 +00003532 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00003533 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
Zhou Sheng290bec52007-03-29 08:15:12 +00003534 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3535 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
Reid Spencer7eb76382006-12-13 17:19:09 +00003536 if (C == AndRHS) { // Masking out bits shifted in.
Reid Spencer17212df2006-12-12 09:18:51 +00003537 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
Reid Spencer3822ff52006-11-08 06:47:33 +00003538 // Make the argument unsigned.
3539 Value *ShVal = Op->getOperand(0);
Reid Spencer832254e2007-02-02 02:16:23 +00003540 ShVal = InsertNewInstBefore(
Reid Spencercc46cdb2007-02-02 14:08:20 +00003541 BinaryOperator::createLShr(ShVal, OpRHS,
Reid Spencer832254e2007-02-02 02:16:23 +00003542 Op->getName()), TheAnd);
Reid Spencer7eb76382006-12-13 17:19:09 +00003543 return BinaryOperator::createAnd(ShVal, AndRHS, TheAnd.getName());
Chris Lattner0c967662004-09-24 15:21:34 +00003544 }
Chris Lattner62a355c2003-09-19 19:05:02 +00003545 }
3546 break;
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003547 }
3548 return 0;
3549}
3550
Chris Lattner8b170942002-08-09 23:47:40 +00003551
Chris Lattnera96879a2004-09-29 17:40:11 +00003552/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3553/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
Reid Spencere4d87aa2006-12-23 06:05:41 +00003554/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3555/// whether to treat the V, Lo and HI as signed or not. IB is the location to
Chris Lattnera96879a2004-09-29 17:40:11 +00003556/// insert new instructions.
3557Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
Reid Spencere4d87aa2006-12-23 06:05:41 +00003558 bool isSigned, bool Inside,
3559 Instruction &IB) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003560 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
Reid Spencer579dca12007-01-12 04:24:46 +00003561 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
Chris Lattnera96879a2004-09-29 17:40:11 +00003562 "Lo is not <= Hi in range emission code!");
Reid Spencere4d87aa2006-12-23 06:05:41 +00003563
Chris Lattnera96879a2004-09-29 17:40:11 +00003564 if (Inside) {
3565 if (Lo == Hi) // Trivially false.
Reid Spencere4d87aa2006-12-23 06:05:41 +00003566 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
Misha Brukmanfd939082005-04-21 23:48:37 +00003567
Reid Spencere4d87aa2006-12-23 06:05:41 +00003568 // V >= Min && V < Hi --> V < Hi
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003569 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
Reid Spencere4e40032007-03-21 23:19:50 +00003570 ICmpInst::Predicate pred = (isSigned ?
Reid Spencere4d87aa2006-12-23 06:05:41 +00003571 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3572 return new ICmpInst(pred, V, Hi);
3573 }
3574
3575 // Emit V-Lo <u Hi-Lo
3576 Constant *NegLo = ConstantExpr::getNeg(Lo);
3577 Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
Chris Lattnera96879a2004-09-29 17:40:11 +00003578 InsertNewInstBefore(Add, IB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003579 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3580 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
Chris Lattnera96879a2004-09-29 17:40:11 +00003581 }
3582
3583 if (Lo == Hi) // Trivially true.
Reid Spencere4d87aa2006-12-23 06:05:41 +00003584 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
Chris Lattnera96879a2004-09-29 17:40:11 +00003585
Reid Spencere4e40032007-03-21 23:19:50 +00003586 // V < Min || V >= Hi -> V > Hi-1
Chris Lattnera96879a2004-09-29 17:40:11 +00003587 Hi = SubOne(cast<ConstantInt>(Hi));
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003588 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003589 ICmpInst::Predicate pred = (isSigned ?
3590 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3591 return new ICmpInst(pred, V, Hi);
3592 }
Reid Spencerb83eb642006-10-20 07:07:24 +00003593
Reid Spencere4e40032007-03-21 23:19:50 +00003594 // Emit V-Lo >u Hi-1-Lo
3595 // Note that Hi has already had one subtracted from it, above.
3596 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Reid Spencere4d87aa2006-12-23 06:05:41 +00003597 Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
Chris Lattnera96879a2004-09-29 17:40:11 +00003598 InsertNewInstBefore(Add, IB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003599 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3600 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
Chris Lattnera96879a2004-09-29 17:40:11 +00003601}
3602
Chris Lattner7203e152005-09-18 07:22:02 +00003603// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3604// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3605// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3606// not, since all 1s are not contiguous.
Zhou Sheng4351c642007-04-02 08:20:41 +00003607static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
Zhou Sheng3a507fd2007-04-01 17:13:37 +00003608 const APInt& V = Val->getValue();
Reid Spencerf2442522007-03-24 00:42:08 +00003609 uint32_t BitWidth = Val->getType()->getBitWidth();
3610 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
Chris Lattner7203e152005-09-18 07:22:02 +00003611
3612 // look for the first zero bit after the run of ones
Reid Spencerf2442522007-03-24 00:42:08 +00003613 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
Chris Lattner7203e152005-09-18 07:22:02 +00003614 // look for the first non-zero bit
Reid Spencerf2442522007-03-24 00:42:08 +00003615 ME = V.getActiveBits();
Chris Lattner7203e152005-09-18 07:22:02 +00003616 return true;
3617}
3618
Chris Lattner7203e152005-09-18 07:22:02 +00003619/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3620/// where isSub determines whether the operator is a sub. If we can fold one of
3621/// the following xforms:
Chris Lattnerc8e77562005-09-18 04:24:45 +00003622///
3623/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3624/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3625/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3626///
3627/// return (A +/- B).
3628///
3629Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003630 ConstantInt *Mask, bool isSub,
Chris Lattnerc8e77562005-09-18 04:24:45 +00003631 Instruction &I) {
3632 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3633 if (!LHSI || LHSI->getNumOperands() != 2 ||
3634 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3635
3636 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3637
3638 switch (LHSI->getOpcode()) {
3639 default: return 0;
3640 case Instruction::And:
Reid Spencer7177c3a2007-03-25 05:33:51 +00003641 if (And(N, Mask) == Mask) {
Chris Lattner7203e152005-09-18 07:22:02 +00003642 // If the AndRHS is a power of two minus one (0+1+), this is simple.
Zhou Sheng00f436c2007-03-24 15:34:37 +00003643 if ((Mask->getValue().countLeadingZeros() +
3644 Mask->getValue().countPopulation()) ==
3645 Mask->getValue().getBitWidth())
Chris Lattner7203e152005-09-18 07:22:02 +00003646 break;
3647
3648 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3649 // part, we don't need any explicit masks to take them out of A. If that
3650 // is all N is, ignore it.
Zhou Sheng4351c642007-04-02 08:20:41 +00003651 uint32_t MB = 0, ME = 0;
Chris Lattner7203e152005-09-18 07:22:02 +00003652 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
Reid Spencerb35ae032007-03-23 18:46:34 +00003653 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
Zhou Sheng290bec52007-03-29 08:15:12 +00003654 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
Chris Lattner3bedbd92006-02-07 07:27:52 +00003655 if (MaskedValueIsZero(RHS, Mask))
Chris Lattner7203e152005-09-18 07:22:02 +00003656 break;
3657 }
3658 }
Chris Lattnerc8e77562005-09-18 04:24:45 +00003659 return 0;
3660 case Instruction::Or:
3661 case Instruction::Xor:
Chris Lattner7203e152005-09-18 07:22:02 +00003662 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
Zhou Sheng00f436c2007-03-24 15:34:37 +00003663 if ((Mask->getValue().countLeadingZeros() +
3664 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
Reid Spencer6eb0d992007-03-26 23:58:26 +00003665 && And(N, Mask)->isZero())
Chris Lattnerc8e77562005-09-18 04:24:45 +00003666 break;
3667 return 0;
3668 }
3669
3670 Instruction *New;
3671 if (isSub)
3672 New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold");
3673 else
3674 New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold");
3675 return InsertNewInstBefore(New, I);
3676}
3677
Chris Lattner7e708292002-06-25 16:13:24 +00003678Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00003679 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00003680 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00003681
Chris Lattnere87597f2004-10-16 18:11:37 +00003682 if (isa<UndefValue>(Op1)) // X & undef -> 0
3683 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3684
Chris Lattner6e7ba452005-01-01 16:22:27 +00003685 // and X, X = X
3686 if (Op0 == Op1)
Chris Lattner233f7dc2002-08-12 21:17:25 +00003687 return ReplaceInstUsesWith(I, Op1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00003688
Chris Lattnerf8c36f52006-02-12 08:02:11 +00003689 // See if we can simplify any instructions used by the instruction whose sole
Chris Lattner9ca96412006-02-08 03:25:32 +00003690 // purpose is to compute bits we don't care about.
Reid Spencer9d6565a2007-02-15 02:26:10 +00003691 if (!isa<VectorType>(I.getType())) {
Reid Spencera03d45f2007-03-22 22:19:58 +00003692 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3693 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3694 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
Chris Lattner696ee0a2007-01-18 22:16:33 +00003695 KnownZero, KnownOne))
Reid Spencer6eb0d992007-03-26 23:58:26 +00003696 return &I;
Chris Lattner696ee0a2007-01-18 22:16:33 +00003697 } else {
Reid Spencer9d6565a2007-02-15 02:26:10 +00003698 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
Chris Lattner041a6c92007-06-15 05:26:55 +00003699 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
Chris Lattner696ee0a2007-01-18 22:16:33 +00003700 return ReplaceInstUsesWith(I, I.getOperand(0));
Chris Lattner041a6c92007-06-15 05:26:55 +00003701 } else if (isa<ConstantAggregateZero>(Op1)) {
3702 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
Chris Lattner696ee0a2007-01-18 22:16:33 +00003703 }
3704 }
Chris Lattner9ca96412006-02-08 03:25:32 +00003705
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003706 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
Zhou Sheng3a507fd2007-04-01 17:13:37 +00003707 const APInt& AndRHSMask = AndRHS->getValue();
3708 APInt NotAndRHS(~AndRHSMask);
Chris Lattner6e7ba452005-01-01 16:22:27 +00003709
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003710 // Optimize a variety of ((val OP C1) & C2) combinations...
Reid Spencer832254e2007-02-02 02:16:23 +00003711 if (isa<BinaryOperator>(Op0)) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003712 Instruction *Op0I = cast<Instruction>(Op0);
Chris Lattner6e7ba452005-01-01 16:22:27 +00003713 Value *Op0LHS = Op0I->getOperand(0);
3714 Value *Op0RHS = Op0I->getOperand(1);
3715 switch (Op0I->getOpcode()) {
3716 case Instruction::Xor:
3717 case Instruction::Or:
Chris Lattnerad1e3022005-01-23 20:26:55 +00003718 // If the mask is only needed on one incoming arm, push it up.
3719 if (Op0I->hasOneUse()) {
3720 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3721 // Not masking anything out for the LHS, move to RHS.
3722 Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS,
3723 Op0RHS->getName()+".masked");
3724 InsertNewInstBefore(NewRHS, I);
3725 return BinaryOperator::create(
3726 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
Misha Brukmanfd939082005-04-21 23:48:37 +00003727 }
Chris Lattner3bedbd92006-02-07 07:27:52 +00003728 if (!isa<Constant>(Op0RHS) &&
Chris Lattnerad1e3022005-01-23 20:26:55 +00003729 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3730 // Not masking anything out for the RHS, move to LHS.
3731 Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS,
3732 Op0LHS->getName()+".masked");
3733 InsertNewInstBefore(NewLHS, I);
3734 return BinaryOperator::create(
3735 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3736 }
3737 }
3738
Chris Lattner6e7ba452005-01-01 16:22:27 +00003739 break;
Chris Lattnerc8e77562005-09-18 04:24:45 +00003740 case Instruction::Add:
Chris Lattner7203e152005-09-18 07:22:02 +00003741 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3742 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3743 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3744 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
3745 return BinaryOperator::createAnd(V, AndRHS);
3746 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
3747 return BinaryOperator::createAnd(V, AndRHS); // Add commutes
Chris Lattnerc8e77562005-09-18 04:24:45 +00003748 break;
3749
3750 case Instruction::Sub:
Chris Lattner7203e152005-09-18 07:22:02 +00003751 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3752 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3753 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3754 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
3755 return BinaryOperator::createAnd(V, AndRHS);
Chris Lattnerc8e77562005-09-18 04:24:45 +00003756 break;
Chris Lattner6e7ba452005-01-01 16:22:27 +00003757 }
3758
Chris Lattner58403262003-07-23 19:25:52 +00003759 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
Chris Lattner6e7ba452005-01-01 16:22:27 +00003760 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003761 return Res;
Chris Lattner6e7ba452005-01-01 16:22:27 +00003762 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
Chris Lattner2b83af22005-08-07 07:03:10 +00003763 // If this is an integer truncation or change from signed-to-unsigned, and
3764 // if the source is an and/or with immediate, transform it. This
3765 // frequently occurs for bitfield accesses.
3766 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
Reid Spencer3da59db2006-11-27 01:05:10 +00003767 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
Chris Lattner2b83af22005-08-07 07:03:10 +00003768 CastOp->getNumOperands() == 2)
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00003769 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Chris Lattner2b83af22005-08-07 07:03:10 +00003770 if (CastOp->getOpcode() == Instruction::And) {
3771 // Change: and (cast (and X, C1) to T), C2
Reid Spencer3da59db2006-11-27 01:05:10 +00003772 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3773 // This will fold the two constants together, which may allow
3774 // other simplifications.
Reid Spencerd977d862006-12-12 23:36:14 +00003775 Instruction *NewCast = CastInst::createTruncOrBitCast(
3776 CastOp->getOperand(0), I.getType(),
3777 CastOp->getName()+".shrunk");
Chris Lattner2b83af22005-08-07 07:03:10 +00003778 NewCast = InsertNewInstBefore(NewCast, I);
Reid Spencer3da59db2006-11-27 01:05:10 +00003779 // trunc_or_bitcast(C1)&C2
Reid Spencerd977d862006-12-12 23:36:14 +00003780 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
Reid Spencer3da59db2006-11-27 01:05:10 +00003781 C3 = ConstantExpr::getAnd(C3, AndRHS);
Chris Lattner2b83af22005-08-07 07:03:10 +00003782 return BinaryOperator::createAnd(NewCast, C3);
3783 } else if (CastOp->getOpcode() == Instruction::Or) {
3784 // Change: and (cast (or X, C1) to T), C2
3785 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
Chris Lattnerbb4e7b22006-12-12 19:11:20 +00003786 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
Chris Lattner2b83af22005-08-07 07:03:10 +00003787 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3788 return ReplaceInstUsesWith(I, AndRHS);
3789 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00003790 }
Chris Lattner2b83af22005-08-07 07:03:10 +00003791 }
Chris Lattner06782f82003-07-23 19:36:21 +00003792 }
Chris Lattner2eefe512004-04-09 19:05:30 +00003793
3794 // Try to fold constant and into select arguments.
3795 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00003796 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00003797 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00003798 if (isa<PHINode>(Op0))
3799 if (Instruction *NV = FoldOpIntoPhi(I))
3800 return NV;
Chris Lattnerc6a8aff2003-07-23 17:57:01 +00003801 }
3802
Chris Lattner8d969642003-03-10 23:06:50 +00003803 Value *Op0NotVal = dyn_castNotVal(Op0);
3804 Value *Op1NotVal = dyn_castNotVal(Op1);
Chris Lattnera2881962003-02-18 19:28:33 +00003805
Chris Lattner5b62aa72004-06-18 06:07:51 +00003806 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3807 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3808
Misha Brukmancb6267b2004-07-30 12:50:08 +00003809 // (~A & ~B) == (~(A | B)) - De Morgan's Law
Chris Lattner8d969642003-03-10 23:06:50 +00003810 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Chris Lattner48595f12004-06-10 02:07:29 +00003811 Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
3812 I.getName()+".demorgan");
Chris Lattnerc6a8aff2003-07-23 17:57:01 +00003813 InsertNewInstBefore(Or, I);
Chris Lattnera2881962003-02-18 19:28:33 +00003814 return BinaryOperator::createNot(Or);
3815 }
Chris Lattner2082ad92006-02-13 23:07:23 +00003816
3817 {
Chris Lattner003b6202007-06-15 05:58:24 +00003818 Value *A = 0, *B = 0, *C = 0, *D = 0;
3819 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
Chris Lattner2082ad92006-02-13 23:07:23 +00003820 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3821 return ReplaceInstUsesWith(I, Op1);
Chris Lattner003b6202007-06-15 05:58:24 +00003822
3823 // (A|B) & ~(A&B) -> A^B
3824 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3825 if ((A == C && B == D) || (A == D && B == C))
3826 return BinaryOperator::createXor(A, B);
3827 }
3828 }
3829
3830 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
Chris Lattner2082ad92006-02-13 23:07:23 +00003831 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3832 return ReplaceInstUsesWith(I, Op0);
Chris Lattner003b6202007-06-15 05:58:24 +00003833
3834 // ~(A&B) & (A|B) -> A^B
3835 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3836 if ((A == C && B == D) || (A == D && B == C))
3837 return BinaryOperator::createXor(A, B);
3838 }
3839 }
Chris Lattner64daab52006-04-01 08:03:55 +00003840
3841 if (Op0->hasOneUse() &&
3842 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3843 if (A == Op1) { // (A^B)&A -> A&(A^B)
3844 I.swapOperands(); // Simplify below
3845 std::swap(Op0, Op1);
3846 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3847 cast<BinaryOperator>(Op0)->swapOperands();
3848 I.swapOperands(); // Simplify below
3849 std::swap(Op0, Op1);
3850 }
3851 }
3852 if (Op1->hasOneUse() &&
3853 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3854 if (B == Op0) { // B&(A^B) -> B&(B^A)
3855 cast<BinaryOperator>(Op1)->swapOperands();
3856 std::swap(A, B);
3857 }
3858 if (A == Op0) { // A&(A^B) -> A & ~B
3859 Instruction *NotB = BinaryOperator::createNot(B, "tmp");
3860 InsertNewInstBefore(NotB, I);
3861 return BinaryOperator::createAnd(A, NotB);
3862 }
3863 }
Chris Lattner2082ad92006-02-13 23:07:23 +00003864 }
3865
Reid Spencere4d87aa2006-12-23 06:05:41 +00003866 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3867 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3868 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003869 return R;
3870
Chris Lattner955f3312004-09-28 21:48:02 +00003871 Value *LHSVal, *RHSVal;
3872 ConstantInt *LHSCst, *RHSCst;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003873 ICmpInst::Predicate LHSCC, RHSCC;
3874 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
3875 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
3876 if (LHSVal == RHSVal && // Found (X icmp C1) & (X icmp C2)
3877 // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
3878 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
3879 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
3880 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
Chris Lattnereec8b9a2007-11-22 23:47:13 +00003881 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
3882
3883 // Don't try to fold ICMP_SLT + ICMP_ULT.
3884 (ICmpInst::isEquality(LHSCC) || ICmpInst::isEquality(RHSCC) ||
3885 ICmpInst::isSignedPredicate(LHSCC) ==
3886 ICmpInst::isSignedPredicate(RHSCC))) {
Chris Lattner955f3312004-09-28 21:48:02 +00003887 // Ensure that the larger constant is on the RHS.
Chris Lattneree2b7a42008-01-13 20:59:02 +00003888 ICmpInst::Predicate GT;
3889 if (ICmpInst::isSignedPredicate(LHSCC) ||
3890 (ICmpInst::isEquality(LHSCC) &&
3891 ICmpInst::isSignedPredicate(RHSCC)))
3892 GT = ICmpInst::ICMP_SGT;
3893 else
3894 GT = ICmpInst::ICMP_UGT;
3895
Reid Spencere4d87aa2006-12-23 06:05:41 +00003896 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
3897 ICmpInst *LHS = cast<ICmpInst>(Op0);
Reid Spencer579dca12007-01-12 04:24:46 +00003898 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
Chris Lattner955f3312004-09-28 21:48:02 +00003899 std::swap(LHS, RHS);
3900 std::swap(LHSCst, RHSCst);
3901 std::swap(LHSCC, RHSCC);
3902 }
3903
Reid Spencere4d87aa2006-12-23 06:05:41 +00003904 // At this point, we know we have have two icmp instructions
Chris Lattner955f3312004-09-28 21:48:02 +00003905 // comparing a value against two constants and and'ing the result
3906 // together. Because of the above check, we know that we only have
Reid Spencere4d87aa2006-12-23 06:05:41 +00003907 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3908 // (from the FoldICmpLogical check above), that the two constants
3909 // are not equal and that the larger constant is on the RHS
Chris Lattner955f3312004-09-28 21:48:02 +00003910 assert(LHSCst != RHSCst && "Compares not folded above?");
3911
3912 switch (LHSCC) {
3913 default: assert(0 && "Unknown integer condition code!");
Reid Spencere4d87aa2006-12-23 06:05:41 +00003914 case ICmpInst::ICMP_EQ:
Chris Lattner955f3312004-09-28 21:48:02 +00003915 switch (RHSCC) {
3916 default: assert(0 && "Unknown integer condition code!");
Reid Spencere4d87aa2006-12-23 06:05:41 +00003917 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3918 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3919 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003920 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencere4d87aa2006-12-23 06:05:41 +00003921 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3922 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3923 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
Chris Lattner955f3312004-09-28 21:48:02 +00003924 return ReplaceInstUsesWith(I, LHS);
3925 }
Reid Spencere4d87aa2006-12-23 06:05:41 +00003926 case ICmpInst::ICMP_NE:
Chris Lattner955f3312004-09-28 21:48:02 +00003927 switch (RHSCC) {
3928 default: assert(0 && "Unknown integer condition code!");
Reid Spencere4d87aa2006-12-23 06:05:41 +00003929 case ICmpInst::ICMP_ULT:
3930 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3931 return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
3932 break; // (X != 13 & X u< 15) -> no change
3933 case ICmpInst::ICMP_SLT:
3934 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3935 return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
3936 break; // (X != 13 & X s< 15) -> no change
3937 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3938 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3939 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
Chris Lattner955f3312004-09-28 21:48:02 +00003940 return ReplaceInstUsesWith(I, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003941 case ICmpInst::ICMP_NE:
3942 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
Chris Lattner955f3312004-09-28 21:48:02 +00003943 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3944 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
3945 LHSVal->getName()+".off");
3946 InsertNewInstBefore(Add, I);
Chris Lattner424db022007-01-27 23:08:34 +00003947 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3948 ConstantInt::get(Add->getType(), 1));
Chris Lattner955f3312004-09-28 21:48:02 +00003949 }
3950 break; // (X != 13 & X != 15) -> no change
3951 }
3952 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003953 case ICmpInst::ICMP_ULT:
Chris Lattner955f3312004-09-28 21:48:02 +00003954 switch (RHSCC) {
3955 default: assert(0 && "Unknown integer condition code!");
Reid Spencere4d87aa2006-12-23 06:05:41 +00003956 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3957 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003958 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencere4d87aa2006-12-23 06:05:41 +00003959 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3960 break;
3961 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3962 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
Chris Lattner955f3312004-09-28 21:48:02 +00003963 return ReplaceInstUsesWith(I, LHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003964 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3965 break;
Chris Lattner955f3312004-09-28 21:48:02 +00003966 }
Reid Spencere4d87aa2006-12-23 06:05:41 +00003967 break;
3968 case ICmpInst::ICMP_SLT:
Chris Lattner955f3312004-09-28 21:48:02 +00003969 switch (RHSCC) {
3970 default: assert(0 && "Unknown integer condition code!");
Reid Spencere4d87aa2006-12-23 06:05:41 +00003971 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3972 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003973 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencere4d87aa2006-12-23 06:05:41 +00003974 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3975 break;
3976 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3977 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
Chris Lattner955f3312004-09-28 21:48:02 +00003978 return ReplaceInstUsesWith(I, LHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003979 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3980 break;
Chris Lattner955f3312004-09-28 21:48:02 +00003981 }
Reid Spencere4d87aa2006-12-23 06:05:41 +00003982 break;
3983 case ICmpInst::ICMP_UGT:
3984 switch (RHSCC) {
3985 default: assert(0 && "Unknown integer condition code!");
3986 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X > 13
3987 return ReplaceInstUsesWith(I, LHS);
3988 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3989 return ReplaceInstUsesWith(I, RHS);
3990 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3991 break;
3992 case ICmpInst::ICMP_NE:
3993 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3994 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3995 break; // (X u> 13 & X != 15) -> no change
3996 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) <u 1
3997 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false,
3998 true, I);
3999 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
4000 break;
4001 }
4002 break;
4003 case ICmpInst::ICMP_SGT:
4004 switch (RHSCC) {
4005 default: assert(0 && "Unknown integer condition code!");
Chris Lattnera7d1ab02007-11-16 06:04:17 +00004006 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
Reid Spencere4d87aa2006-12-23 06:05:41 +00004007 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
4008 return ReplaceInstUsesWith(I, RHS);
4009 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
4010 break;
4011 case ICmpInst::ICMP_NE:
4012 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
4013 return new ICmpInst(LHSCC, LHSVal, RHSCst);
4014 break; // (X s> 13 & X != 15) -> no change
4015 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1
4016 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true,
4017 true, I);
4018 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
4019 break;
4020 }
4021 break;
Chris Lattner955f3312004-09-28 21:48:02 +00004022 }
4023 }
4024 }
4025
Chris Lattner6fc205f2006-05-05 06:39:07 +00004026 // fold (and (cast A), (cast B)) -> (cast (and A, B))
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004027 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
4028 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4029 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
4030 const Type *SrcTy = Op0C->getOperand(0)->getType();
Chris Lattner42a75512007-01-15 02:27:26 +00004031 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004032 // Only do this if the casts both really cause code to be generated.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004033 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4034 I.getType(), TD) &&
4035 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4036 I.getType(), TD)) {
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004037 Instruction *NewOp = BinaryOperator::createAnd(Op0C->getOperand(0),
4038 Op1C->getOperand(0),
4039 I.getName());
4040 InsertNewInstBefore(NewOp, I);
4041 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4042 }
Chris Lattner6fc205f2006-05-05 06:39:07 +00004043 }
Chris Lattnere511b742006-11-14 07:46:50 +00004044
4045 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
Reid Spencer832254e2007-02-02 02:16:23 +00004046 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4047 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4048 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
Chris Lattnere511b742006-11-14 07:46:50 +00004049 SI0->getOperand(1) == SI1->getOperand(1) &&
4050 (SI0->hasOneUse() || SI1->hasOneUse())) {
4051 Instruction *NewOp =
4052 InsertNewInstBefore(BinaryOperator::createAnd(SI0->getOperand(0),
4053 SI1->getOperand(0),
4054 SI0->getName()), I);
Reid Spencer832254e2007-02-02 02:16:23 +00004055 return BinaryOperator::create(SI1->getOpcode(), NewOp,
4056 SI1->getOperand(1));
Chris Lattnere511b742006-11-14 07:46:50 +00004057 }
Chris Lattner6fc205f2006-05-05 06:39:07 +00004058 }
4059
Chris Lattner99c65742007-10-24 05:38:08 +00004060 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
4061 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4062 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4063 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
4064 RHS->getPredicate() == FCmpInst::FCMP_ORD)
4065 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4066 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4067 // If either of the constants are nans, then the whole thing returns
4068 // false.
Chris Lattnerbe3e3482007-10-24 18:54:45 +00004069 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner99c65742007-10-24 05:38:08 +00004070 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4071 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
4072 RHS->getOperand(0));
4073 }
4074 }
4075 }
4076
Chris Lattner7e708292002-06-25 16:13:24 +00004077 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00004078}
4079
Chris Lattnerafe91a52006-06-15 19:07:26 +00004080/// CollectBSwapParts - Look to see if the specified value defines a single byte
4081/// in the result. If it does, and if the specified byte hasn't been filled in
4082/// yet, fill it in and return false.
Chris Lattner535014f2007-02-15 22:52:10 +00004083static bool CollectBSwapParts(Value *V, SmallVector<Value*, 8> &ByteValues) {
Chris Lattnerafe91a52006-06-15 19:07:26 +00004084 Instruction *I = dyn_cast<Instruction>(V);
4085 if (I == 0) return true;
4086
4087 // If this is an or instruction, it is an inner node of the bswap.
4088 if (I->getOpcode() == Instruction::Or)
4089 return CollectBSwapParts(I->getOperand(0), ByteValues) ||
4090 CollectBSwapParts(I->getOperand(1), ByteValues);
4091
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00004092 uint32_t BitWidth = I->getType()->getPrimitiveSizeInBits();
Chris Lattnerafe91a52006-06-15 19:07:26 +00004093 // If this is a shift by a constant int, and it is "24", then its operand
4094 // defines a byte. We only handle unsigned types here.
Reid Spencer832254e2007-02-02 02:16:23 +00004095 if (I->isShift() && isa<ConstantInt>(I->getOperand(1))) {
Chris Lattnerafe91a52006-06-15 19:07:26 +00004096 // Not shifting the entire input by N-1 bytes?
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00004097 if (cast<ConstantInt>(I->getOperand(1))->getLimitedValue(BitWidth) !=
Chris Lattnerafe91a52006-06-15 19:07:26 +00004098 8*(ByteValues.size()-1))
4099 return true;
4100
4101 unsigned DestNo;
4102 if (I->getOpcode() == Instruction::Shl) {
4103 // X << 24 defines the top byte with the lowest of the input bytes.
4104 DestNo = ByteValues.size()-1;
4105 } else {
4106 // X >>u 24 defines the low byte with the highest of the input bytes.
4107 DestNo = 0;
4108 }
4109
4110 // If the destination byte value is already defined, the values are or'd
4111 // together, which isn't a bswap (unless it's an or of the same bits).
4112 if (ByteValues[DestNo] && ByteValues[DestNo] != I->getOperand(0))
4113 return true;
4114 ByteValues[DestNo] = I->getOperand(0);
4115 return false;
4116 }
4117
4118 // Otherwise, we can only handle and(shift X, imm), imm). Bail out of if we
4119 // don't have this.
4120 Value *Shift = 0, *ShiftLHS = 0;
4121 ConstantInt *AndAmt = 0, *ShiftAmt = 0;
4122 if (!match(I, m_And(m_Value(Shift), m_ConstantInt(AndAmt))) ||
4123 !match(Shift, m_Shift(m_Value(ShiftLHS), m_ConstantInt(ShiftAmt))))
4124 return true;
4125 Instruction *SI = cast<Instruction>(Shift);
4126
4127 // Make sure that the shift amount is by a multiple of 8 and isn't too big.
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00004128 if (ShiftAmt->getLimitedValue(BitWidth) & 7 ||
4129 ShiftAmt->getLimitedValue(BitWidth) > 8*ByteValues.size())
Chris Lattnerafe91a52006-06-15 19:07:26 +00004130 return true;
4131
4132 // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc.
4133 unsigned DestByte;
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00004134 if (AndAmt->getValue().getActiveBits() > 64)
4135 return true;
4136 uint64_t AndAmtVal = AndAmt->getZExtValue();
Chris Lattnerafe91a52006-06-15 19:07:26 +00004137 for (DestByte = 0; DestByte != ByteValues.size(); ++DestByte)
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00004138 if (AndAmtVal == uint64_t(0xFF) << 8*DestByte)
Chris Lattnerafe91a52006-06-15 19:07:26 +00004139 break;
4140 // Unknown mask for bswap.
4141 if (DestByte == ByteValues.size()) return true;
4142
Reid Spencerb83eb642006-10-20 07:07:24 +00004143 unsigned ShiftBytes = ShiftAmt->getZExtValue()/8;
Chris Lattnerafe91a52006-06-15 19:07:26 +00004144 unsigned SrcByte;
4145 if (SI->getOpcode() == Instruction::Shl)
4146 SrcByte = DestByte - ShiftBytes;
4147 else
4148 SrcByte = DestByte + ShiftBytes;
4149
4150 // If the SrcByte isn't a bswapped value from the DestByte, reject it.
4151 if (SrcByte != ByteValues.size()-DestByte-1)
4152 return true;
4153
4154 // If the destination byte value is already defined, the values are or'd
4155 // together, which isn't a bswap (unless it's an or of the same bits).
4156 if (ByteValues[DestByte] && ByteValues[DestByte] != SI->getOperand(0))
4157 return true;
4158 ByteValues[DestByte] = SI->getOperand(0);
4159 return false;
4160}
4161
4162/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4163/// If so, insert the new bswap intrinsic and return it.
4164Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
Chris Lattner55fc8c42007-04-01 20:57:36 +00004165 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
4166 if (!ITy || ITy->getBitWidth() % 16)
4167 return 0; // Can only bswap pairs of bytes. Can't do vectors.
Chris Lattnerafe91a52006-06-15 19:07:26 +00004168
4169 /// ByteValues - For each byte of the result, we keep track of which value
4170 /// defines each byte.
Chris Lattner535014f2007-02-15 22:52:10 +00004171 SmallVector<Value*, 8> ByteValues;
Chris Lattner55fc8c42007-04-01 20:57:36 +00004172 ByteValues.resize(ITy->getBitWidth()/8);
Chris Lattnerafe91a52006-06-15 19:07:26 +00004173
4174 // Try to find all the pieces corresponding to the bswap.
4175 if (CollectBSwapParts(I.getOperand(0), ByteValues) ||
4176 CollectBSwapParts(I.getOperand(1), ByteValues))
4177 return 0;
4178
4179 // Check to see if all of the bytes come from the same value.
4180 Value *V = ByteValues[0];
4181 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4182
4183 // Check to make sure that all of the bytes come from the same value.
4184 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4185 if (ByteValues[i] != V)
4186 return 0;
Chandler Carruth69940402007-08-04 01:51:18 +00004187 const Type *Tys[] = { ITy };
Chris Lattnerafe91a52006-06-15 19:07:26 +00004188 Module *M = I.getParent()->getParent()->getParent();
Chandler Carruth69940402007-08-04 01:51:18 +00004189 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greif051a9502008-04-06 20:25:17 +00004190 return CallInst::Create(F, V);
Chris Lattnerafe91a52006-06-15 19:07:26 +00004191}
4192
4193
Chris Lattner7e708292002-06-25 16:13:24 +00004194Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00004195 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00004196 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00004197
Chris Lattner42593e62007-03-24 23:56:43 +00004198 if (isa<UndefValue>(Op1)) // X | undef -> -1
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004199 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattnere87597f2004-10-16 18:11:37 +00004200
Chris Lattnerf8c36f52006-02-12 08:02:11 +00004201 // or X, X = X
4202 if (Op0 == Op1)
Chris Lattner233f7dc2002-08-12 21:17:25 +00004203 return ReplaceInstUsesWith(I, Op0);
Chris Lattner3f5b8772002-05-06 16:14:14 +00004204
Chris Lattnerf8c36f52006-02-12 08:02:11 +00004205 // See if we can simplify any instructions used by the instruction whose sole
4206 // purpose is to compute bits we don't care about.
Chris Lattner42593e62007-03-24 23:56:43 +00004207 if (!isa<VectorType>(I.getType())) {
4208 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4209 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4210 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4211 KnownZero, KnownOne))
4212 return &I;
Chris Lattner041a6c92007-06-15 05:26:55 +00004213 } else if (isa<ConstantAggregateZero>(Op1)) {
4214 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4215 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4216 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4217 return ReplaceInstUsesWith(I, I.getOperand(1));
Chris Lattner42593e62007-03-24 23:56:43 +00004218 }
Chris Lattner041a6c92007-06-15 05:26:55 +00004219
4220
Chris Lattnerf8c36f52006-02-12 08:02:11 +00004221
Chris Lattner3f5b8772002-05-06 16:14:14 +00004222 // or X, -1 == -1
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004223 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner4f637d42006-01-06 17:59:59 +00004224 ConstantInt *C1 = 0; Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004225 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4226 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Chris Lattner6934a042007-02-11 01:23:03 +00004227 Instruction *Or = BinaryOperator::createOr(X, RHS);
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004228 InsertNewInstBefore(Or, I);
Chris Lattner6934a042007-02-11 01:23:03 +00004229 Or->takeName(Op0);
Zhou Sheng4a1822a2007-04-02 13:45:30 +00004230 return BinaryOperator::createAnd(Or,
4231 ConstantInt::get(RHS->getValue() | C1->getValue()));
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004232 }
Chris Lattnerad44ebf2003-07-23 18:29:44 +00004233
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004234 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4235 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Chris Lattner6934a042007-02-11 01:23:03 +00004236 Instruction *Or = BinaryOperator::createOr(X, RHS);
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004237 InsertNewInstBefore(Or, I);
Chris Lattner6934a042007-02-11 01:23:03 +00004238 Or->takeName(Op0);
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004239 return BinaryOperator::createXor(Or,
Zhou Sheng4a1822a2007-04-02 13:45:30 +00004240 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
Chris Lattnerad44ebf2003-07-23 18:29:44 +00004241 }
Chris Lattner2eefe512004-04-09 19:05:30 +00004242
4243 // Try to fold constant and into select arguments.
4244 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00004245 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00004246 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00004247 if (isa<PHINode>(Op0))
4248 if (Instruction *NV = FoldOpIntoPhi(I))
4249 return NV;
Chris Lattnerad44ebf2003-07-23 18:29:44 +00004250 }
4251
Chris Lattner4f637d42006-01-06 17:59:59 +00004252 Value *A = 0, *B = 0;
4253 ConstantInt *C1 = 0, *C2 = 0;
Chris Lattnerf4d4c872005-05-07 23:49:08 +00004254
4255 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4256 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4257 return ReplaceInstUsesWith(I, Op1);
4258 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4259 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4260 return ReplaceInstUsesWith(I, Op0);
4261
Chris Lattner6423d4c2006-07-10 20:25:24 +00004262 // (A | B) | C and A | (B | C) -> bswap if possible.
4263 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
Chris Lattnerafe91a52006-06-15 19:07:26 +00004264 if (match(Op0, m_Or(m_Value(), m_Value())) ||
Chris Lattner6423d4c2006-07-10 20:25:24 +00004265 match(Op1, m_Or(m_Value(), m_Value())) ||
4266 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4267 match(Op1, m_Shift(m_Value(), m_Value())))) {
Chris Lattnerafe91a52006-06-15 19:07:26 +00004268 if (Instruction *BSwap = MatchBSwap(I))
4269 return BSwap;
4270 }
4271
Chris Lattner6e4c6492005-05-09 04:58:36 +00004272 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4273 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Reid Spencera03d45f2007-03-22 22:19:58 +00004274 MaskedValueIsZero(Op1, C1->getValue())) {
Chris Lattner6934a042007-02-11 01:23:03 +00004275 Instruction *NOr = BinaryOperator::createOr(A, Op1);
4276 InsertNewInstBefore(NOr, I);
4277 NOr->takeName(Op0);
4278 return BinaryOperator::createXor(NOr, C1);
Chris Lattner6e4c6492005-05-09 04:58:36 +00004279 }
4280
4281 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4282 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Reid Spencera03d45f2007-03-22 22:19:58 +00004283 MaskedValueIsZero(Op0, C1->getValue())) {
Chris Lattner6934a042007-02-11 01:23:03 +00004284 Instruction *NOr = BinaryOperator::createOr(A, Op0);
4285 InsertNewInstBefore(NOr, I);
4286 NOr->takeName(Op0);
4287 return BinaryOperator::createXor(NOr, C1);
Chris Lattner6e4c6492005-05-09 04:58:36 +00004288 }
4289
Chris Lattnerc5e7ea42007-04-08 07:47:01 +00004290 // (A & C)|(B & D)
Chris Lattner2384d7b2007-06-19 05:43:49 +00004291 Value *C = 0, *D = 0;
Chris Lattnerc5e7ea42007-04-08 07:47:01 +00004292 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4293 match(Op1, m_And(m_Value(B), m_Value(D)))) {
Chris Lattner6cae0e02007-04-08 07:55:22 +00004294 Value *V1 = 0, *V2 = 0, *V3 = 0;
4295 C1 = dyn_cast<ConstantInt>(C);
4296 C2 = dyn_cast<ConstantInt>(D);
4297 if (C1 && C2) { // (A & C1)|(B & C2)
4298 // If we have: ((V + N) & C1) | (V & C2)
4299 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4300 // replace with V+N.
4301 if (C1->getValue() == ~C2->getValue()) {
4302 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4303 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4304 // Add commutes, try both ways.
4305 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4306 return ReplaceInstUsesWith(I, A);
4307 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4308 return ReplaceInstUsesWith(I, A);
4309 }
4310 // Or commutes, try both ways.
4311 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4312 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4313 // Add commutes, try both ways.
4314 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4315 return ReplaceInstUsesWith(I, B);
4316 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4317 return ReplaceInstUsesWith(I, B);
4318 }
4319 }
Chris Lattner044e5332007-04-08 08:01:49 +00004320 V1 = 0; V2 = 0; V3 = 0;
Chris Lattner6cae0e02007-04-08 07:55:22 +00004321 }
4322
Chris Lattnerc5e7ea42007-04-08 07:47:01 +00004323 // Check to see if we have any common things being and'ed. If so, find the
4324 // terms for V1 & (V2|V3).
Chris Lattnerc5e7ea42007-04-08 07:47:01 +00004325 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4326 if (A == B) // (A & C)|(A & D) == A & (C|D)
4327 V1 = A, V2 = C, V3 = D;
4328 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4329 V1 = A, V2 = B, V3 = C;
4330 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4331 V1 = C, V2 = A, V3 = D;
4332 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4333 V1 = C, V2 = A, V3 = B;
4334
4335 if (V1) {
4336 Value *Or =
4337 InsertNewInstBefore(BinaryOperator::createOr(V2, V3, "tmp"), I);
4338 return BinaryOperator::createAnd(V1, Or);
Chris Lattner0b7c0bf2005-09-18 06:02:59 +00004339 }
Chris Lattnerc5e7ea42007-04-08 07:47:01 +00004340 }
Chris Lattnere9bed7d2005-09-18 03:42:07 +00004341 }
Chris Lattnere511b742006-11-14 07:46:50 +00004342
4343 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
Reid Spencer832254e2007-02-02 02:16:23 +00004344 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4345 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4346 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
Chris Lattnere511b742006-11-14 07:46:50 +00004347 SI0->getOperand(1) == SI1->getOperand(1) &&
4348 (SI0->hasOneUse() || SI1->hasOneUse())) {
4349 Instruction *NewOp =
4350 InsertNewInstBefore(BinaryOperator::createOr(SI0->getOperand(0),
4351 SI1->getOperand(0),
4352 SI0->getName()), I);
Reid Spencer832254e2007-02-02 02:16:23 +00004353 return BinaryOperator::create(SI1->getOpcode(), NewOp,
4354 SI1->getOperand(1));
Chris Lattnere511b742006-11-14 07:46:50 +00004355 }
4356 }
Chris Lattner67ca7682003-08-12 19:11:07 +00004357
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004358 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4359 if (A == Op1) // ~A | A == -1
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004360 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004361 } else {
4362 A = 0;
4363 }
Chris Lattnerf4d4c872005-05-07 23:49:08 +00004364 // Note, A is still live here!
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004365 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4366 if (Op0 == B)
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004367 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattnera27231a2003-03-10 23:13:59 +00004368
Misha Brukmancb6267b2004-07-30 12:50:08 +00004369 // (~A | ~B) == (~(A & B)) - De Morgan's Law
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004370 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
4371 Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
4372 I.getName()+".demorgan"), I);
4373 return BinaryOperator::createNot(And);
4374 }
Chris Lattnera27231a2003-03-10 23:13:59 +00004375 }
Chris Lattnera2881962003-02-18 19:28:33 +00004376
Reid Spencere4d87aa2006-12-23 06:05:41 +00004377 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4378 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4379 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
Chris Lattneraa9c1f12003-08-13 20:16:26 +00004380 return R;
4381
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004382 Value *LHSVal, *RHSVal;
4383 ConstantInt *LHSCst, *RHSCst;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004384 ICmpInst::Predicate LHSCC, RHSCC;
4385 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
4386 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
4387 if (LHSVal == RHSVal && // Found (X icmp C1) | (X icmp C2)
4388 // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
4389 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
4390 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
4391 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
Chris Lattner88858872007-05-11 05:55:56 +00004392 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
4393 // We can't fold (ugt x, C) | (sgt x, C2).
4394 PredicatesFoldable(LHSCC, RHSCC)) {
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004395 // Ensure that the larger constant is on the RHS.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004396 ICmpInst *LHS = cast<ICmpInst>(Op0);
Chris Lattner88858872007-05-11 05:55:56 +00004397 bool NeedsSwap;
4398 if (ICmpInst::isSignedPredicate(LHSCC))
Chris Lattner3aea1bd2007-05-11 16:58:45 +00004399 NeedsSwap = LHSCst->getValue().sgt(RHSCst->getValue());
Chris Lattner88858872007-05-11 05:55:56 +00004400 else
Chris Lattner3aea1bd2007-05-11 16:58:45 +00004401 NeedsSwap = LHSCst->getValue().ugt(RHSCst->getValue());
Chris Lattner88858872007-05-11 05:55:56 +00004402
4403 if (NeedsSwap) {
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004404 std::swap(LHS, RHS);
4405 std::swap(LHSCst, RHSCst);
4406 std::swap(LHSCC, RHSCC);
4407 }
4408
Reid Spencere4d87aa2006-12-23 06:05:41 +00004409 // At this point, we know we have have two icmp instructions
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004410 // comparing a value against two constants and or'ing the result
4411 // together. Because of the above check, we know that we only have
Reid Spencere4d87aa2006-12-23 06:05:41 +00004412 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4413 // FoldICmpLogical check above), that the two constants are not
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004414 // equal.
4415 assert(LHSCst != RHSCst && "Compares not folded above?");
4416
4417 switch (LHSCC) {
4418 default: assert(0 && "Unknown integer condition code!");
Reid Spencere4d87aa2006-12-23 06:05:41 +00004419 case ICmpInst::ICMP_EQ:
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004420 switch (RHSCC) {
4421 default: assert(0 && "Unknown integer condition code!");
Reid Spencere4d87aa2006-12-23 06:05:41 +00004422 case ICmpInst::ICMP_EQ:
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004423 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
4424 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4425 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
4426 LHSVal->getName()+".off");
4427 InsertNewInstBefore(Add, I);
Zhou Sheng4a1822a2007-04-02 13:45:30 +00004428 AddCST = Subtract(AddOne(RHSCst), LHSCst);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004429 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004430 }
Reid Spencere4d87aa2006-12-23 06:05:41 +00004431 break; // (X == 13 | X == 15) -> no change
4432 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4433 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
Chris Lattner240d6f42005-04-19 06:04:18 +00004434 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004435 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4436 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4437 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004438 return ReplaceInstUsesWith(I, RHS);
4439 }
4440 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004441 case ICmpInst::ICMP_NE:
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004442 switch (RHSCC) {
4443 default: assert(0 && "Unknown integer condition code!");
Reid Spencere4d87aa2006-12-23 06:05:41 +00004444 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4445 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4446 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004447 return ReplaceInstUsesWith(I, LHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004448 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4449 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4450 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004451 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004452 }
4453 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004454 case ICmpInst::ICMP_ULT:
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004455 switch (RHSCC) {
4456 default: assert(0 && "Unknown integer condition code!");
Reid Spencere4d87aa2006-12-23 06:05:41 +00004457 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004458 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004459 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) ->(X-13) u> 2
Chris Lattner74e012a2007-11-01 02:18:41 +00004460 // If RHSCst is [us]MAXINT, it is always false. Not handling
4461 // this can cause overflow.
4462 if (RHSCst->isMaxValue(false))
4463 return ReplaceInstUsesWith(I, LHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004464 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false,
4465 false, I);
4466 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4467 break;
4468 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4469 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004470 return ReplaceInstUsesWith(I, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004471 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4472 break;
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004473 }
4474 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004475 case ICmpInst::ICMP_SLT:
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004476 switch (RHSCC) {
4477 default: assert(0 && "Unknown integer condition code!");
Reid Spencere4d87aa2006-12-23 06:05:41 +00004478 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4479 break;
4480 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) ->(X-13) s> 2
Chris Lattner74e012a2007-11-01 02:18:41 +00004481 // If RHSCst is [us]MAXINT, it is always false. Not handling
4482 // this can cause overflow.
4483 if (RHSCst->isMaxValue(true))
4484 return ReplaceInstUsesWith(I, LHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004485 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true,
4486 false, I);
4487 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4488 break;
4489 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4490 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4491 return ReplaceInstUsesWith(I, RHS);
4492 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4493 break;
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004494 }
Reid Spencere4d87aa2006-12-23 06:05:41 +00004495 break;
4496 case ICmpInst::ICMP_UGT:
4497 switch (RHSCC) {
4498 default: assert(0 && "Unknown integer condition code!");
4499 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4500 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4501 return ReplaceInstUsesWith(I, LHS);
4502 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4503 break;
4504 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4505 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004506 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencere4d87aa2006-12-23 06:05:41 +00004507 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4508 break;
4509 }
4510 break;
4511 case ICmpInst::ICMP_SGT:
4512 switch (RHSCC) {
4513 default: assert(0 && "Unknown integer condition code!");
4514 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4515 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4516 return ReplaceInstUsesWith(I, LHS);
4517 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4518 break;
4519 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4520 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004521 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencere4d87aa2006-12-23 06:05:41 +00004522 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4523 break;
4524 }
4525 break;
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004526 }
4527 }
4528 }
Chris Lattner6fc205f2006-05-05 06:39:07 +00004529
4530 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner99c65742007-10-24 05:38:08 +00004531 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Chris Lattner6fc205f2006-05-05 06:39:07 +00004532 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004533 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chengb98a10e2008-03-24 00:21:34 +00004534 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4535 !isa<ICmpInst>(Op1C->getOperand(0))) {
4536 const Type *SrcTy = Op0C->getOperand(0)->getType();
4537 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4538 // Only do this if the casts both really cause code to be
4539 // generated.
4540 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4541 I.getType(), TD) &&
4542 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4543 I.getType(), TD)) {
4544 Instruction *NewOp = BinaryOperator::createOr(Op0C->getOperand(0),
4545 Op1C->getOperand(0),
4546 I.getName());
4547 InsertNewInstBefore(NewOp, I);
4548 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4549 }
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004550 }
Chris Lattner6fc205f2006-05-05 06:39:07 +00004551 }
Chris Lattner99c65742007-10-24 05:38:08 +00004552 }
4553
4554
4555 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4556 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4557 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4558 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattner5ebd9362008-02-29 06:09:11 +00004559 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
4560 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType())
Chris Lattner99c65742007-10-24 05:38:08 +00004561 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4562 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4563 // If either of the constants are nans, then the whole thing returns
4564 // true.
Chris Lattnerbe3e3482007-10-24 18:54:45 +00004565 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner99c65742007-10-24 05:38:08 +00004566 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4567
4568 // Otherwise, no need to compare the two constants, compare the
4569 // rest.
4570 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4571 RHS->getOperand(0));
4572 }
4573 }
4574 }
Chris Lattnere9bed7d2005-09-18 03:42:07 +00004575
Chris Lattner7e708292002-06-25 16:13:24 +00004576 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00004577}
4578
Chris Lattnerc317d392004-02-16 01:20:27 +00004579// XorSelf - Implements: X ^ X --> 0
4580struct XorSelf {
4581 Value *RHS;
4582 XorSelf(Value *rhs) : RHS(rhs) {}
4583 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4584 Instruction *apply(BinaryOperator &Xor) const {
4585 return &Xor;
4586 }
4587};
Chris Lattner3f5b8772002-05-06 16:14:14 +00004588
4589
Chris Lattner7e708292002-06-25 16:13:24 +00004590Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00004591 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00004592 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00004593
Evan Chengd34af782008-03-25 20:07:13 +00004594 if (isa<UndefValue>(Op1)) {
4595 if (isa<UndefValue>(Op0))
4596 // Handle undef ^ undef -> 0 special case. This is a common
4597 // idiom (misuse).
4598 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnere87597f2004-10-16 18:11:37 +00004599 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chengd34af782008-03-25 20:07:13 +00004600 }
Chris Lattnere87597f2004-10-16 18:11:37 +00004601
Chris Lattnerc317d392004-02-16 01:20:27 +00004602 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4603 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnera9ff5eb2007-08-05 08:47:58 +00004604 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Chris Lattner233f7dc2002-08-12 21:17:25 +00004605 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerc317d392004-02-16 01:20:27 +00004606 }
Chris Lattnerf8c36f52006-02-12 08:02:11 +00004607
4608 // See if we can simplify any instructions used by the instruction whose sole
4609 // purpose is to compute bits we don't care about.
Reid Spencera03d45f2007-03-22 22:19:58 +00004610 if (!isa<VectorType>(I.getType())) {
4611 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4612 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4613 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4614 KnownZero, KnownOne))
4615 return &I;
Chris Lattner041a6c92007-06-15 05:26:55 +00004616 } else if (isa<ConstantAggregateZero>(Op1)) {
4617 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
Reid Spencera03d45f2007-03-22 22:19:58 +00004618 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00004619
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004620 // Is this a ~ operation?
4621 if (Value *NotOp = dyn_castNotVal(&I)) {
4622 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4623 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4624 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4625 if (Op0I->getOpcode() == Instruction::And ||
4626 Op0I->getOpcode() == Instruction::Or) {
4627 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4628 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4629 Instruction *NotY =
4630 BinaryOperator::createNot(Op0I->getOperand(1),
4631 Op0I->getOperand(1)->getName()+".not");
4632 InsertNewInstBefore(NotY, I);
4633 if (Op0I->getOpcode() == Instruction::And)
4634 return BinaryOperator::createOr(Op0NotVal, NotY);
4635 else
4636 return BinaryOperator::createAnd(Op0NotVal, NotY);
4637 }
4638 }
4639 }
4640 }
4641
4642
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004643 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewyckyf947b3e2007-08-06 20:04:16 +00004644 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4645 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4646 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004647 return new ICmpInst(ICI->getInversePredicate(),
4648 ICI->getOperand(0), ICI->getOperand(1));
Chris Lattnerad5b4fb2003-11-04 23:50:51 +00004649
Nick Lewyckyf947b3e2007-08-06 20:04:16 +00004650 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4651 return new FCmpInst(FCI->getInversePredicate(),
4652 FCI->getOperand(0), FCI->getOperand(1));
4653 }
4654
Reid Spencere4d87aa2006-12-23 06:05:41 +00004655 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Chris Lattnerd65460f2003-11-05 01:06:05 +00004656 // ~(c-X) == X-c-1 == X+(-c-1)
Chris Lattner7c4049c2004-01-12 19:35:11 +00004657 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4658 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
Chris Lattner48595f12004-06-10 02:07:29 +00004659 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4660 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
Chris Lattner7c4049c2004-01-12 19:35:11 +00004661 ConstantInt::get(I.getType(), 1));
Chris Lattner48595f12004-06-10 02:07:29 +00004662 return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
Chris Lattner7c4049c2004-01-12 19:35:11 +00004663 }
Chris Lattner5c6e2db2007-04-02 05:36:22 +00004664
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00004665 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Chris Lattnerf8c36f52006-02-12 08:02:11 +00004666 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner689d24b2003-11-04 23:37:10 +00004667 // ~(X-c) --> (-c-1)-X
Chris Lattner7c4049c2004-01-12 19:35:11 +00004668 if (RHS->isAllOnesValue()) {
Chris Lattner48595f12004-06-10 02:07:29 +00004669 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
4670 return BinaryOperator::createSub(
4671 ConstantExpr::getSub(NegOp0CI,
Chris Lattner7c4049c2004-01-12 19:35:11 +00004672 ConstantInt::get(I.getType(), 1)),
Chris Lattner689d24b2003-11-04 23:37:10 +00004673 Op0I->getOperand(0));
Chris Lattneracf4e072007-04-02 05:42:22 +00004674 } else if (RHS->getValue().isSignBit()) {
Chris Lattner5c6e2db2007-04-02 05:36:22 +00004675 // (X + C) ^ signbit -> (X + C + signbit)
4676 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
4677 return BinaryOperator::createAdd(Op0I->getOperand(0), C);
Chris Lattnercd1d6d52007-04-02 05:48:58 +00004678
Chris Lattner7c4049c2004-01-12 19:35:11 +00004679 }
Chris Lattner02bd1b32006-02-26 19:57:54 +00004680 } else if (Op0I->getOpcode() == Instruction::Or) {
4681 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
Reid Spencera03d45f2007-03-22 22:19:58 +00004682 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
Chris Lattner02bd1b32006-02-26 19:57:54 +00004683 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4684 // Anything in both C1 and C2 is known to be zero, remove it from
4685 // NewRHS.
Zhou Sheng4a1822a2007-04-02 13:45:30 +00004686 Constant *CommonBits = And(Op0CI, RHS);
Chris Lattner02bd1b32006-02-26 19:57:54 +00004687 NewRHS = ConstantExpr::getAnd(NewRHS,
4688 ConstantExpr::getNot(CommonBits));
Chris Lattnerdbab3862007-03-02 21:28:56 +00004689 AddToWorkList(Op0I);
Chris Lattner02bd1b32006-02-26 19:57:54 +00004690 I.setOperand(0, Op0I->getOperand(0));
4691 I.setOperand(1, NewRHS);
4692 return &I;
4693 }
Chris Lattnereca0c5c2003-07-23 21:37:07 +00004694 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00004695 }
Chris Lattner05bd1b22002-08-20 18:24:26 +00004696 }
Chris Lattner2eefe512004-04-09 19:05:30 +00004697
4698 // Try to fold constant and into select arguments.
4699 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00004700 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00004701 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00004702 if (isa<PHINode>(Op0))
4703 if (Instruction *NV = FoldOpIntoPhi(I))
4704 return NV;
Chris Lattner3f5b8772002-05-06 16:14:14 +00004705 }
4706
Chris Lattner8d969642003-03-10 23:06:50 +00004707 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
Chris Lattnera2881962003-02-18 19:28:33 +00004708 if (X == Op1)
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004709 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattnera2881962003-02-18 19:28:33 +00004710
Chris Lattner8d969642003-03-10 23:06:50 +00004711 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
Chris Lattnera2881962003-02-18 19:28:33 +00004712 if (X == Op0)
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004713 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattnera2881962003-02-18 19:28:33 +00004714
Chris Lattner318bf792007-03-18 22:51:34 +00004715
4716 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4717 if (Op1I) {
4718 Value *A, *B;
4719 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4720 if (A == Op0) { // B^(B|A) == (A|B)^B
Chris Lattner64daab52006-04-01 08:03:55 +00004721 Op1I->swapOperands();
Chris Lattnercb40a372003-03-10 18:24:17 +00004722 I.swapOperands();
4723 std::swap(Op0, Op1);
Chris Lattner318bf792007-03-18 22:51:34 +00004724 } else if (B == Op0) { // B^(A|B) == (A|B)^B
Chris Lattner64daab52006-04-01 08:03:55 +00004725 I.swapOperands(); // Simplified below.
Chris Lattnercb40a372003-03-10 18:24:17 +00004726 std::swap(Op0, Op1);
Misha Brukmanfd939082005-04-21 23:48:37 +00004727 }
Chris Lattner318bf792007-03-18 22:51:34 +00004728 } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
4729 if (Op0 == A) // A^(A^B) == B
4730 return ReplaceInstUsesWith(I, B);
4731 else if (Op0 == B) // A^(B^A) == B
4732 return ReplaceInstUsesWith(I, A);
4733 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
Chris Lattner6abbdf92007-04-01 05:36:37 +00004734 if (A == Op0) { // A^(A&B) -> A^(B&A)
Chris Lattner64daab52006-04-01 08:03:55 +00004735 Op1I->swapOperands();
Chris Lattner6abbdf92007-04-01 05:36:37 +00004736 std::swap(A, B);
4737 }
Chris Lattner318bf792007-03-18 22:51:34 +00004738 if (B == Op0) { // A^(B&A) -> (B&A)^A
Chris Lattner64daab52006-04-01 08:03:55 +00004739 I.swapOperands(); // Simplified below.
4740 std::swap(Op0, Op1);
4741 }
Chris Lattner26ca7e12004-02-16 03:54:20 +00004742 }
Chris Lattner318bf792007-03-18 22:51:34 +00004743 }
4744
4745 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4746 if (Op0I) {
4747 Value *A, *B;
4748 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4749 if (A == Op1) // (B|A)^B == (A|B)^B
4750 std::swap(A, B);
4751 if (B == Op1) { // (A|B)^B == A & ~B
4752 Instruction *NotB =
4753 InsertNewInstBefore(BinaryOperator::createNot(Op1, "tmp"), I);
4754 return BinaryOperator::createAnd(A, NotB);
Chris Lattnercb40a372003-03-10 18:24:17 +00004755 }
Chris Lattner318bf792007-03-18 22:51:34 +00004756 } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
4757 if (Op1 == A) // (A^B)^A == B
4758 return ReplaceInstUsesWith(I, B);
4759 else if (Op1 == B) // (B^A)^A == B
4760 return ReplaceInstUsesWith(I, A);
4761 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4762 if (A == Op1) // (A&B)^A -> (B&A)^A
4763 std::swap(A, B);
4764 if (B == Op1 && // (B&A)^A == ~B & A
Chris Lattnerae1ab392006-04-01 22:05:01 +00004765 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
Chris Lattner318bf792007-03-18 22:51:34 +00004766 Instruction *N =
4767 InsertNewInstBefore(BinaryOperator::createNot(A, "tmp"), I);
Chris Lattner64daab52006-04-01 08:03:55 +00004768 return BinaryOperator::createAnd(N, Op1);
4769 }
Chris Lattnercb40a372003-03-10 18:24:17 +00004770 }
Chris Lattner318bf792007-03-18 22:51:34 +00004771 }
4772
4773 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4774 if (Op0I && Op1I && Op0I->isShift() &&
4775 Op0I->getOpcode() == Op1I->getOpcode() &&
4776 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4777 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4778 Instruction *NewOp =
4779 InsertNewInstBefore(BinaryOperator::createXor(Op0I->getOperand(0),
4780 Op1I->getOperand(0),
4781 Op0I->getName()), I);
4782 return BinaryOperator::create(Op1I->getOpcode(), NewOp,
4783 Op1I->getOperand(1));
4784 }
4785
4786 if (Op0I && Op1I) {
4787 Value *A, *B, *C, *D;
4788 // (A & B)^(A | B) -> A ^ B
4789 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4790 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4791 if ((A == C && B == D) || (A == D && B == C))
4792 return BinaryOperator::createXor(A, B);
4793 }
4794 // (A | B)^(A & B) -> A ^ B
4795 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4796 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4797 if ((A == C && B == D) || (A == D && B == C))
4798 return BinaryOperator::createXor(A, B);
4799 }
4800
4801 // (A & B)^(C & D)
4802 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4803 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4804 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4805 // (X & Y)^(X & Y) -> (Y^Z) & X
4806 Value *X = 0, *Y = 0, *Z = 0;
4807 if (A == C)
4808 X = A, Y = B, Z = D;
4809 else if (A == D)
4810 X = A, Y = B, Z = C;
4811 else if (B == C)
4812 X = B, Y = A, Z = D;
4813 else if (B == D)
4814 X = B, Y = A, Z = C;
4815
4816 if (X) {
4817 Instruction *NewOp =
4818 InsertNewInstBefore(BinaryOperator::createXor(Y, Z, Op0->getName()), I);
4819 return BinaryOperator::createAnd(NewOp, X);
4820 }
4821 }
4822 }
4823
Reid Spencere4d87aa2006-12-23 06:05:41 +00004824 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4825 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4826 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
Chris Lattneraa9c1f12003-08-13 20:16:26 +00004827 return R;
4828
Chris Lattner6fc205f2006-05-05 06:39:07 +00004829 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner99c65742007-10-24 05:38:08 +00004830 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Chris Lattner6fc205f2006-05-05 06:39:07 +00004831 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004832 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4833 const Type *SrcTy = Op0C->getOperand(0)->getType();
Chris Lattner42a75512007-01-15 02:27:26 +00004834 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004835 // Only do this if the casts both really cause code to be generated.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004836 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4837 I.getType(), TD) &&
4838 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4839 I.getType(), TD)) {
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004840 Instruction *NewOp = BinaryOperator::createXor(Op0C->getOperand(0),
4841 Op1C->getOperand(0),
4842 I.getName());
4843 InsertNewInstBefore(NewOp, I);
4844 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4845 }
Chris Lattner6fc205f2006-05-05 06:39:07 +00004846 }
Chris Lattner99c65742007-10-24 05:38:08 +00004847 }
Chris Lattner7e708292002-06-25 16:13:24 +00004848 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00004849}
4850
Chris Lattnera96879a2004-09-29 17:40:11 +00004851/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4852/// overflowed for this type.
4853static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
Reid Spencere4e40032007-03-21 23:19:50 +00004854 ConstantInt *In2, bool IsSigned = false) {
Zhou Sheng4a1822a2007-04-02 13:45:30 +00004855 Result = cast<ConstantInt>(Add(In1, In2));
Chris Lattnera96879a2004-09-29 17:40:11 +00004856
Reid Spencere4e40032007-03-21 23:19:50 +00004857 if (IsSigned)
4858 if (In2->getValue().isNegative())
4859 return Result->getValue().sgt(In1->getValue());
4860 else
4861 return Result->getValue().slt(In1->getValue());
4862 else
4863 return Result->getValue().ult(In1->getValue());
Chris Lattnera96879a2004-09-29 17:40:11 +00004864}
4865
Chris Lattner574da9b2005-01-13 20:14:25 +00004866/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
4867/// code necessary to compute the offset from the base pointer (without adding
4868/// in the base pointer). Return the result as a signed integer of intptr size.
4869static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
4870 TargetData &TD = IC.getTargetData();
4871 gep_type_iterator GTI = gep_type_begin(GEP);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004872 const Type *IntPtrTy = TD.getIntPtrType();
4873 Value *Result = Constant::getNullValue(IntPtrTy);
Chris Lattner574da9b2005-01-13 20:14:25 +00004874
4875 // Build a mask for high order bits.
Chris Lattner10c0d912008-04-22 02:53:33 +00004876 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Chris Lattnere62f0212007-04-28 04:52:43 +00004877 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
Chris Lattner574da9b2005-01-13 20:14:25 +00004878
Chris Lattner574da9b2005-01-13 20:14:25 +00004879 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
4880 Value *Op = GEP->getOperand(i);
Duncan Sands514ab342007-11-01 20:53:16 +00004881 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Chris Lattnere62f0212007-04-28 04:52:43 +00004882 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
4883 if (OpC->isZero()) continue;
4884
4885 // Handle a struct index, which adds its field offset to the pointer.
4886 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
4887 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
4888
4889 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
4890 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
Chris Lattner9bc14642007-04-28 00:57:34 +00004891 else
Chris Lattnere62f0212007-04-28 04:52:43 +00004892 Result = IC.InsertNewInstBefore(
4893 BinaryOperator::createAdd(Result,
4894 ConstantInt::get(IntPtrTy, Size),
4895 GEP->getName()+".offs"), I);
4896 continue;
Chris Lattner9bc14642007-04-28 00:57:34 +00004897 }
Chris Lattnere62f0212007-04-28 04:52:43 +00004898
4899 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4900 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
4901 Scale = ConstantExpr::getMul(OC, Scale);
4902 if (Constant *RC = dyn_cast<Constant>(Result))
4903 Result = ConstantExpr::getAdd(RC, Scale);
4904 else {
4905 // Emit an add instruction.
4906 Result = IC.InsertNewInstBefore(
4907 BinaryOperator::createAdd(Result, Scale,
4908 GEP->getName()+".offs"), I);
Chris Lattner9bc14642007-04-28 00:57:34 +00004909 }
Chris Lattnere62f0212007-04-28 04:52:43 +00004910 continue;
Chris Lattner574da9b2005-01-13 20:14:25 +00004911 }
Chris Lattnere62f0212007-04-28 04:52:43 +00004912 // Convert to correct type.
4913 if (Op->getType() != IntPtrTy) {
4914 if (Constant *OpC = dyn_cast<Constant>(Op))
4915 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
4916 else
4917 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
4918 Op->getName()+".c"), I);
4919 }
4920 if (Size != 1) {
4921 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4922 if (Constant *OpC = dyn_cast<Constant>(Op))
4923 Op = ConstantExpr::getMul(OpC, Scale);
4924 else // We'll let instcombine(mul) convert this to a shl if possible.
4925 Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale,
4926 GEP->getName()+".idx"), I);
4927 }
4928
4929 // Emit an add instruction.
4930 if (isa<Constant>(Op) && isa<Constant>(Result))
4931 Result = ConstantExpr::getAdd(cast<Constant>(Op),
4932 cast<Constant>(Result));
4933 else
4934 Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result,
4935 GEP->getName()+".offs"), I);
Chris Lattner574da9b2005-01-13 20:14:25 +00004936 }
4937 return Result;
4938}
4939
Chris Lattner10c0d912008-04-22 02:53:33 +00004940
4941/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
4942/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
4943/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
4944/// complex, and scales are involved. The above expression would also be legal
4945/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
4946/// later form is less amenable to optimization though, and we are allowed to
4947/// generate the first by knowing that pointer arithmetic doesn't overflow.
4948///
4949/// If we can't emit an optimized form for this expression, this returns null.
4950///
4951static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
4952 InstCombiner &IC) {
Chris Lattner10c0d912008-04-22 02:53:33 +00004953 TargetData &TD = IC.getTargetData();
4954 gep_type_iterator GTI = gep_type_begin(GEP);
4955
4956 // Check to see if this gep only has a single variable index. If so, and if
4957 // any constant indices are a multiple of its scale, then we can compute this
4958 // in terms of the scale of the variable index. For example, if the GEP
4959 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
4960 // because the expression will cross zero at the same point.
4961 unsigned i, e = GEP->getNumOperands();
4962 int64_t Offset = 0;
4963 for (i = 1; i != e; ++i, ++GTI) {
4964 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4965 // Compute the aggregate offset of constant indices.
4966 if (CI->isZero()) continue;
4967
4968 // Handle a struct index, which adds its field offset to the pointer.
4969 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
4970 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
4971 } else {
4972 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
4973 Offset += Size*CI->getSExtValue();
4974 }
4975 } else {
4976 // Found our variable index.
4977 break;
4978 }
4979 }
4980
4981 // If there are no variable indices, we must have a constant offset, just
4982 // evaluate it the general way.
4983 if (i == e) return 0;
4984
4985 Value *VariableIdx = GEP->getOperand(i);
4986 // Determine the scale factor of the variable element. For example, this is
4987 // 4 if the variable index is into an array of i32.
4988 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
4989
4990 // Verify that there are no other variable indices. If so, emit the hard way.
4991 for (++i, ++GTI; i != e; ++i, ++GTI) {
4992 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
4993 if (!CI) return 0;
4994
4995 // Compute the aggregate offset of constant indices.
4996 if (CI->isZero()) continue;
4997
4998 // Handle a struct index, which adds its field offset to the pointer.
4999 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5000 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5001 } else {
5002 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5003 Offset += Size*CI->getSExtValue();
5004 }
5005 }
5006
5007 // Okay, we know we have a single variable index, which must be a
5008 // pointer/array/vector index. If there is no offset, life is simple, return
5009 // the index.
5010 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5011 if (Offset == 0) {
5012 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5013 // we don't need to bother extending: the extension won't affect where the
5014 // computation crosses zero.
5015 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5016 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5017 VariableIdx->getNameStart(), &I);
5018 return VariableIdx;
5019 }
5020
5021 // Otherwise, there is an index. The computation we will do will be modulo
5022 // the pointer size, so get it.
5023 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5024
5025 Offset &= PtrSizeMask;
5026 VariableScale &= PtrSizeMask;
5027
5028 // To do this transformation, any constant index must be a multiple of the
5029 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5030 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5031 // multiple of the variable scale.
5032 int64_t NewOffs = Offset / (int64_t)VariableScale;
5033 if (Offset != NewOffs*(int64_t)VariableScale)
5034 return 0;
5035
5036 // Okay, we can do this evaluation. Start by converting the index to intptr.
5037 const Type *IntPtrTy = TD.getIntPtrType();
5038 if (VariableIdx->getType() != IntPtrTy)
5039 VariableIdx = CastInst::createIntegerCast(VariableIdx, IntPtrTy,
5040 true /*SExt*/,
5041 VariableIdx->getNameStart(), &I);
5042 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
5043 return BinaryOperator::createAdd(VariableIdx, OffsetVal, "offset", &I);
5044}
5045
5046
Reid Spencere4d87aa2006-12-23 06:05:41 +00005047/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
Chris Lattner574da9b2005-01-13 20:14:25 +00005048/// else. At this point we know that the GEP is on the LHS of the comparison.
Reid Spencere4d87aa2006-12-23 06:05:41 +00005049Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5050 ICmpInst::Predicate Cond,
5051 Instruction &I) {
Chris Lattner574da9b2005-01-13 20:14:25 +00005052 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
Chris Lattnere9d782b2005-01-13 22:25:21 +00005053
Chris Lattner10c0d912008-04-22 02:53:33 +00005054 // Look through bitcasts.
5055 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5056 RHS = BCI->getOperand(0);
Chris Lattnere9d782b2005-01-13 22:25:21 +00005057
Chris Lattner574da9b2005-01-13 20:14:25 +00005058 Value *PtrBase = GEPLHS->getOperand(0);
5059 if (PtrBase == RHS) {
Chris Lattner7c95deb2008-02-05 04:45:32 +00005060 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattner10c0d912008-04-22 02:53:33 +00005061 // This transformation (ignoring the base and scales) is valid because we
5062 // know pointers can't overflow. See if we can output an optimized form.
5063 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5064
5065 // If not, synthesize the offset the hard way.
5066 if (Offset == 0)
5067 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattner7c95deb2008-02-05 04:45:32 +00005068 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5069 Constant::getNullValue(Offset->getType()));
Chris Lattner574da9b2005-01-13 20:14:25 +00005070 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
Chris Lattnera70b66d2005-04-25 20:17:30 +00005071 // If the base pointers are different, but the indices are the same, just
5072 // compare the base pointer.
5073 if (PtrBase != GEPRHS->getOperand(0)) {
5074 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
Jeff Cohen00b168892005-07-27 06:12:32 +00005075 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
Chris Lattner93b94a62005-04-26 14:40:41 +00005076 GEPRHS->getOperand(0)->getType();
Chris Lattnera70b66d2005-04-25 20:17:30 +00005077 if (IndicesTheSame)
5078 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5079 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5080 IndicesTheSame = false;
5081 break;
5082 }
5083
5084 // If all indices are the same, just compare the base pointers.
5085 if (IndicesTheSame)
Reid Spencere4d87aa2006-12-23 06:05:41 +00005086 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5087 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
Chris Lattnera70b66d2005-04-25 20:17:30 +00005088
5089 // Otherwise, the base pointers are different and the indices are
5090 // different, bail out.
Chris Lattner574da9b2005-01-13 20:14:25 +00005091 return 0;
Chris Lattnera70b66d2005-04-25 20:17:30 +00005092 }
Chris Lattner574da9b2005-01-13 20:14:25 +00005093
Chris Lattnere9d782b2005-01-13 22:25:21 +00005094 // If one of the GEPs has all zero indices, recurse.
5095 bool AllZeros = true;
5096 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5097 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5098 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5099 AllZeros = false;
5100 break;
5101 }
5102 if (AllZeros)
Reid Spencere4d87aa2006-12-23 06:05:41 +00005103 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5104 ICmpInst::getSwappedPredicate(Cond), I);
Chris Lattner4401c9c2005-01-14 00:20:05 +00005105
5106 // If the other GEP has all zero indices, recurse.
Chris Lattnere9d782b2005-01-13 22:25:21 +00005107 AllZeros = true;
5108 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5109 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5110 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5111 AllZeros = false;
5112 break;
5113 }
5114 if (AllZeros)
Reid Spencere4d87aa2006-12-23 06:05:41 +00005115 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
Chris Lattnere9d782b2005-01-13 22:25:21 +00005116
Chris Lattner4401c9c2005-01-14 00:20:05 +00005117 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5118 // If the GEPs only differ by one index, compare it.
5119 unsigned NumDifferences = 0; // Keep track of # differences.
5120 unsigned DiffOperand = 0; // The operand that differs.
5121 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5122 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
Chris Lattner484d3cf2005-04-24 06:59:08 +00005123 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5124 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
Chris Lattner45f57b82005-01-21 23:06:49 +00005125 // Irreconcilable differences.
Chris Lattner4401c9c2005-01-14 00:20:05 +00005126 NumDifferences = 2;
5127 break;
5128 } else {
5129 if (NumDifferences++) break;
5130 DiffOperand = i;
5131 }
5132 }
5133
5134 if (NumDifferences == 0) // SAME GEP?
5135 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky455e1762007-09-06 02:40:25 +00005136 ConstantInt::get(Type::Int1Ty,
5137 isTrueWhenEqual(Cond)));
5138
Chris Lattner4401c9c2005-01-14 00:20:05 +00005139 else if (NumDifferences == 1) {
Chris Lattner45f57b82005-01-21 23:06:49 +00005140 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5141 Value *RHSV = GEPRHS->getOperand(DiffOperand);
Reid Spencere4d87aa2006-12-23 06:05:41 +00005142 // Make sure we do a signed comparison here.
5143 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
Chris Lattner4401c9c2005-01-14 00:20:05 +00005144 }
5145 }
5146
Reid Spencere4d87aa2006-12-23 06:05:41 +00005147 // Only lower this if the icmp is the only user of the GEP or if we expect
Chris Lattner574da9b2005-01-13 20:14:25 +00005148 // the result to fold to a constant!
5149 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5150 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5151 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5152 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5153 Value *R = EmitGEPOffset(GEPRHS, I, *this);
Reid Spencere4d87aa2006-12-23 06:05:41 +00005154 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
Chris Lattner574da9b2005-01-13 20:14:25 +00005155 }
5156 }
5157 return 0;
5158}
5159
Reid Spencere4d87aa2006-12-23 06:05:41 +00005160Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5161 bool Changed = SimplifyCompare(I);
Chris Lattner8b170942002-08-09 23:47:40 +00005162 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00005163
Chris Lattner58e97462007-01-14 19:42:17 +00005164 // Fold trivial predicates.
5165 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
5166 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
5167 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
5168 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5169
5170 // Simplify 'fcmp pred X, X'
5171 if (Op0 == Op1) {
5172 switch (I.getPredicate()) {
5173 default: assert(0 && "Unknown predicate!");
5174 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5175 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5176 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
5177 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5178 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5179 case FCmpInst::FCMP_OLT: // True if ordered and less than
5180 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
5181 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5182
5183 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5184 case FCmpInst::FCMP_ULT: // True if unordered or less than
5185 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5186 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5187 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5188 I.setPredicate(FCmpInst::FCMP_UNO);
5189 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5190 return &I;
5191
5192 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5193 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5194 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5195 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5196 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5197 I.setPredicate(FCmpInst::FCMP_ORD);
5198 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5199 return &I;
5200 }
5201 }
5202
Reid Spencere4d87aa2006-12-23 06:05:41 +00005203 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
Reid Spencer4fe16d62007-01-11 18:21:29 +00005204 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Chris Lattnere87597f2004-10-16 18:11:37 +00005205
Reid Spencere4d87aa2006-12-23 06:05:41 +00005206 // Handle fcmp with constant RHS
5207 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5208 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5209 switch (LHSI->getOpcode()) {
5210 case Instruction::PHI:
5211 if (Instruction *NV = FoldOpIntoPhi(I))
5212 return NV;
5213 break;
5214 case Instruction::Select:
5215 // If either operand of the select is a constant, we can fold the
5216 // comparison into the select arms, which will cause one to be
5217 // constant folded and the select turned into a bitwise or.
5218 Value *Op1 = 0, *Op2 = 0;
5219 if (LHSI->hasOneUse()) {
5220 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5221 // Fold the known value into the constant operand.
5222 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5223 // Insert a new FCmp of the other select operand.
5224 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5225 LHSI->getOperand(2), RHSC,
5226 I.getName()), I);
5227 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5228 // Fold the known value into the constant operand.
5229 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5230 // Insert a new FCmp of the other select operand.
5231 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5232 LHSI->getOperand(1), RHSC,
5233 I.getName()), I);
5234 }
5235 }
5236
5237 if (Op1)
Gabor Greif051a9502008-04-06 20:25:17 +00005238 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Reid Spencere4d87aa2006-12-23 06:05:41 +00005239 break;
5240 }
5241 }
5242
5243 return Changed ? &I : 0;
5244}
5245
5246Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5247 bool Changed = SimplifyCompare(I);
5248 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5249 const Type *Ty = Op0->getType();
5250
5251 // icmp X, X
5252 if (Op0 == Op1)
Reid Spencer579dca12007-01-12 04:24:46 +00005253 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5254 isTrueWhenEqual(I)));
Reid Spencere4d87aa2006-12-23 06:05:41 +00005255
5256 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
Reid Spencer4fe16d62007-01-11 18:21:29 +00005257 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lamb7a0678c2007-12-18 21:32:20 +00005258
Reid Spencere4d87aa2006-12-23 06:05:41 +00005259 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
Chris Lattner711b3402004-11-14 07:33:16 +00005260 // addresses never equal each other! We already know that Op0 != Op1.
Misha Brukmanfd939082005-04-21 23:48:37 +00005261 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5262 isa<ConstantPointerNull>(Op0)) &&
5263 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
Chris Lattner711b3402004-11-14 07:33:16 +00005264 isa<ConstantPointerNull>(Op1)))
Reid Spencer579dca12007-01-12 04:24:46 +00005265 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5266 !isTrueWhenEqual(I)));
Chris Lattner8b170942002-08-09 23:47:40 +00005267
Reid Spencere4d87aa2006-12-23 06:05:41 +00005268 // icmp's with boolean values can always be turned into bitwise operations
Reid Spencer4fe16d62007-01-11 18:21:29 +00005269 if (Ty == Type::Int1Ty) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00005270 switch (I.getPredicate()) {
5271 default: assert(0 && "Invalid icmp instruction!");
5272 case ICmpInst::ICMP_EQ: { // icmp eq bool %A, %B -> ~(A^B)
Chris Lattner48595f12004-06-10 02:07:29 +00005273 Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
Chris Lattner8b170942002-08-09 23:47:40 +00005274 InsertNewInstBefore(Xor, I);
Chris Lattnerde90b762003-11-03 04:25:02 +00005275 return BinaryOperator::createNot(Xor);
Chris Lattner8b170942002-08-09 23:47:40 +00005276 }
Reid Spencere4d87aa2006-12-23 06:05:41 +00005277 case ICmpInst::ICMP_NE: // icmp eq bool %A, %B -> A^B
Chris Lattner5dbef222004-08-11 00:50:51 +00005278 return BinaryOperator::createXor(Op0, Op1);
Chris Lattner8b170942002-08-09 23:47:40 +00005279
Reid Spencere4d87aa2006-12-23 06:05:41 +00005280 case ICmpInst::ICMP_UGT:
5281 case ICmpInst::ICMP_SGT:
5282 std::swap(Op0, Op1); // Change icmp gt -> icmp lt
Chris Lattner5dbef222004-08-11 00:50:51 +00005283 // FALL THROUGH
Reid Spencere4d87aa2006-12-23 06:05:41 +00005284 case ICmpInst::ICMP_ULT:
5285 case ICmpInst::ICMP_SLT: { // icmp lt bool A, B -> ~X & Y
Chris Lattner5dbef222004-08-11 00:50:51 +00005286 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
5287 InsertNewInstBefore(Not, I);
5288 return BinaryOperator::createAnd(Not, Op1);
5289 }
Reid Spencere4d87aa2006-12-23 06:05:41 +00005290 case ICmpInst::ICMP_UGE:
5291 case ICmpInst::ICMP_SGE:
5292 std::swap(Op0, Op1); // Change icmp ge -> icmp le
Chris Lattner5dbef222004-08-11 00:50:51 +00005293 // FALL THROUGH
Reid Spencere4d87aa2006-12-23 06:05:41 +00005294 case ICmpInst::ICMP_ULE:
5295 case ICmpInst::ICMP_SLE: { // icmp le bool %A, %B -> ~A | B
Chris Lattner5dbef222004-08-11 00:50:51 +00005296 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
5297 InsertNewInstBefore(Not, I);
5298 return BinaryOperator::createOr(Not, Op1);
5299 }
5300 }
Chris Lattner8b170942002-08-09 23:47:40 +00005301 }
5302
Chris Lattner2be51ae2004-06-09 04:24:29 +00005303 // See if we are doing a comparison between a constant and an instruction that
5304 // can be folded into the comparison.
Chris Lattner8b170942002-08-09 23:47:40 +00005305 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Christopher Lamb103e1a32007-12-20 07:21:11 +00005306 Value *A, *B;
5307
Chris Lattnerb6566012008-01-05 01:18:20 +00005308 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5309 if (I.isEquality() && CI->isNullValue() &&
5310 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5311 // (icmp cond A B) if cond is equality
5312 return new ICmpInst(I.getPredicate(), A, B);
Owen Andersonf5783f82007-12-28 07:42:12 +00005313 }
Christopher Lamb103e1a32007-12-20 07:21:11 +00005314
Reid Spencere4d87aa2006-12-23 06:05:41 +00005315 switch (I.getPredicate()) {
5316 default: break;
5317 case ICmpInst::ICMP_ULT: // A <u MIN -> FALSE
5318 if (CI->isMinValue(false))
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005319 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencere4d87aa2006-12-23 06:05:41 +00005320 if (CI->isMaxValue(false)) // A <u MAX -> A != MAX
5321 return new ICmpInst(ICmpInst::ICMP_NE, Op0,Op1);
5322 if (isMinValuePlusOne(CI,false)) // A <u MIN+1 -> A == MIN
5323 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
Chris Lattnerba417832007-04-11 06:12:58 +00005324 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5325 if (CI->isMinValue(true))
5326 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5327 ConstantInt::getAllOnesValue(Op0->getType()));
5328
Reid Spencere4d87aa2006-12-23 06:05:41 +00005329 break;
Chris Lattnera96879a2004-09-29 17:40:11 +00005330
Reid Spencere4d87aa2006-12-23 06:05:41 +00005331 case ICmpInst::ICMP_SLT:
5332 if (CI->isMinValue(true)) // A <s MIN -> FALSE
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005333 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencere4d87aa2006-12-23 06:05:41 +00005334 if (CI->isMaxValue(true)) // A <s MAX -> A != MAX
5335 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5336 if (isMinValuePlusOne(CI,true)) // A <s MIN+1 -> A == MIN
5337 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5338 break;
5339
5340 case ICmpInst::ICMP_UGT:
5341 if (CI->isMaxValue(false)) // A >u MAX -> FALSE
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005342 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencere4d87aa2006-12-23 06:05:41 +00005343 if (CI->isMinValue(false)) // A >u MIN -> A != MIN
5344 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5345 if (isMaxValueMinusOne(CI, false)) // A >u MAX-1 -> A == MAX
5346 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
Chris Lattnerba417832007-04-11 06:12:58 +00005347
5348 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5349 if (CI->isMaxValue(true))
5350 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5351 ConstantInt::getNullValue(Op0->getType()));
Reid Spencere4d87aa2006-12-23 06:05:41 +00005352 break;
5353
5354 case ICmpInst::ICMP_SGT:
5355 if (CI->isMaxValue(true)) // A >s MAX -> FALSE
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005356 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencere4d87aa2006-12-23 06:05:41 +00005357 if (CI->isMinValue(true)) // A >s MIN -> A != MIN
5358 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5359 if (isMaxValueMinusOne(CI, true)) // A >s MAX-1 -> A == MAX
5360 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5361 break;
5362
5363 case ICmpInst::ICMP_ULE:
5364 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005365 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencere4d87aa2006-12-23 06:05:41 +00005366 if (CI->isMinValue(false)) // A <=u MIN -> A == MIN
5367 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5368 if (isMaxValueMinusOne(CI,false)) // A <=u MAX-1 -> A != MAX
5369 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
5370 break;
Chris Lattnera96879a2004-09-29 17:40:11 +00005371
Reid Spencere4d87aa2006-12-23 06:05:41 +00005372 case ICmpInst::ICMP_SLE:
5373 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005374 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencere4d87aa2006-12-23 06:05:41 +00005375 if (CI->isMinValue(true)) // A <=s MIN -> A == MIN
5376 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5377 if (isMaxValueMinusOne(CI,true)) // A <=s MAX-1 -> A != MAX
5378 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
5379 break;
Chris Lattnera96879a2004-09-29 17:40:11 +00005380
Reid Spencere4d87aa2006-12-23 06:05:41 +00005381 case ICmpInst::ICMP_UGE:
5382 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005383 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencere4d87aa2006-12-23 06:05:41 +00005384 if (CI->isMaxValue(false)) // A >=u MAX -> A == MAX
5385 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5386 if (isMinValuePlusOne(CI,false)) // A >=u MIN-1 -> A != MIN
5387 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
5388 break;
5389
5390 case ICmpInst::ICMP_SGE:
5391 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005392 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencere4d87aa2006-12-23 06:05:41 +00005393 if (CI->isMaxValue(true)) // A >=s MAX -> A == MAX
5394 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5395 if (isMinValuePlusOne(CI,true)) // A >=s MIN-1 -> A != MIN
5396 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
5397 break;
Chris Lattnera96879a2004-09-29 17:40:11 +00005398 }
5399
Reid Spencere4d87aa2006-12-23 06:05:41 +00005400 // If we still have a icmp le or icmp ge instruction, turn it into the
5401 // appropriate icmp lt or icmp gt instruction. Since the border cases have
Chris Lattnera96879a2004-09-29 17:40:11 +00005402 // already been handled above, this requires little checking.
5403 //
Reid Spencer2149a9d2007-03-25 19:55:33 +00005404 switch (I.getPredicate()) {
Chris Lattner4241e4d2007-07-15 20:54:51 +00005405 default: break;
5406 case ICmpInst::ICMP_ULE:
5407 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5408 case ICmpInst::ICMP_SLE:
5409 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5410 case ICmpInst::ICMP_UGE:
5411 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5412 case ICmpInst::ICMP_SGE:
5413 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
Reid Spencer2149a9d2007-03-25 19:55:33 +00005414 }
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00005415
5416 // See if we can fold the comparison based on bits known to be zero or one
Chris Lattner4241e4d2007-07-15 20:54:51 +00005417 // in the input. If this comparison is a normal comparison, it demands all
5418 // bits, if it is a sign bit comparison, it only demands the sign bit.
5419
5420 bool UnusedBit;
5421 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5422
Reid Spencer0460fb32007-03-22 20:36:03 +00005423 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5424 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Chris Lattner4241e4d2007-07-15 20:54:51 +00005425 if (SimplifyDemandedBits(Op0,
5426 isSignBit ? APInt::getSignBit(BitWidth)
5427 : APInt::getAllOnesValue(BitWidth),
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00005428 KnownZero, KnownOne, 0))
5429 return &I;
5430
5431 // Given the known and unknown bits, compute a range that the LHS could be
5432 // in.
Reid Spencer0460fb32007-03-22 20:36:03 +00005433 if ((KnownOne | KnownZero) != 0) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00005434 // Compute the Min, Max and RHS values based on the known bits. For the
5435 // EQ and NE we use unsigned values.
Zhou Sheng3a507fd2007-04-01 17:13:37 +00005436 APInt Min(BitWidth, 0), Max(BitWidth, 0);
5437 const APInt& RHSVal = CI->getValue();
Reid Spencere4d87aa2006-12-23 06:05:41 +00005438 if (ICmpInst::isSignedPredicate(I.getPredicate())) {
Reid Spencer0460fb32007-03-22 20:36:03 +00005439 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min,
5440 Max);
Reid Spencere4d87aa2006-12-23 06:05:41 +00005441 } else {
Reid Spencer0460fb32007-03-22 20:36:03 +00005442 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min,
5443 Max);
Reid Spencere4d87aa2006-12-23 06:05:41 +00005444 }
5445 switch (I.getPredicate()) { // LE/GE have been folded already.
5446 default: assert(0 && "Unknown icmp opcode!");
5447 case ICmpInst::ICMP_EQ:
Reid Spencer0460fb32007-03-22 20:36:03 +00005448 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005449 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencere4d87aa2006-12-23 06:05:41 +00005450 break;
5451 case ICmpInst::ICMP_NE:
Reid Spencer0460fb32007-03-22 20:36:03 +00005452 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005453 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencere4d87aa2006-12-23 06:05:41 +00005454 break;
5455 case ICmpInst::ICMP_ULT:
Reid Spencer0460fb32007-03-22 20:36:03 +00005456 if (Max.ult(RHSVal))
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005457 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner81973ef2007-04-09 23:52:13 +00005458 if (Min.uge(RHSVal))
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005459 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencere4d87aa2006-12-23 06:05:41 +00005460 break;
5461 case ICmpInst::ICMP_UGT:
Reid Spencer0460fb32007-03-22 20:36:03 +00005462 if (Min.ugt(RHSVal))
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005463 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner81973ef2007-04-09 23:52:13 +00005464 if (Max.ule(RHSVal))
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005465 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencere4d87aa2006-12-23 06:05:41 +00005466 break;
5467 case ICmpInst::ICMP_SLT:
Reid Spencer0460fb32007-03-22 20:36:03 +00005468 if (Max.slt(RHSVal))
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005469 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer0460fb32007-03-22 20:36:03 +00005470 if (Min.sgt(RHSVal))
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005471 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencere4d87aa2006-12-23 06:05:41 +00005472 break;
5473 case ICmpInst::ICMP_SGT:
Reid Spencer0460fb32007-03-22 20:36:03 +00005474 if (Min.sgt(RHSVal))
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005475 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner81973ef2007-04-09 23:52:13 +00005476 if (Max.sle(RHSVal))
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005477 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencere4d87aa2006-12-23 06:05:41 +00005478 break;
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00005479 }
5480 }
5481
Reid Spencere4d87aa2006-12-23 06:05:41 +00005482 // Since the RHS is a ConstantInt (CI), if the left hand side is an
Reid Spencer1628cec2006-10-26 06:15:43 +00005483 // instruction, see if that instruction also has constants so that the
Reid Spencere4d87aa2006-12-23 06:05:41 +00005484 // instruction can be folded into the icmp
Chris Lattner3c6a0d42004-05-25 06:32:08 +00005485 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
Chris Lattner01deb9d2007-04-03 17:43:25 +00005486 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5487 return Res;
Chris Lattner3f5b8772002-05-06 16:14:14 +00005488 }
5489
Chris Lattner01deb9d2007-04-03 17:43:25 +00005490 // Handle icmp with constant (but not simple integer constant) RHS
Chris Lattner6970b662005-04-23 15:31:55 +00005491 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5492 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5493 switch (LHSI->getOpcode()) {
Chris Lattner9fb25db2005-05-01 04:42:15 +00005494 case Instruction::GetElementPtr:
5495 if (RHSC->isNullValue()) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00005496 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
Chris Lattner9fb25db2005-05-01 04:42:15 +00005497 bool isAllZeros = true;
5498 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5499 if (!isa<Constant>(LHSI->getOperand(i)) ||
5500 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5501 isAllZeros = false;
5502 break;
5503 }
5504 if (isAllZeros)
Reid Spencere4d87aa2006-12-23 06:05:41 +00005505 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
Chris Lattner9fb25db2005-05-01 04:42:15 +00005506 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5507 }
5508 break;
5509
Chris Lattner6970b662005-04-23 15:31:55 +00005510 case Instruction::PHI:
5511 if (Instruction *NV = FoldOpIntoPhi(I))
5512 return NV;
5513 break;
Chris Lattner4802d902007-04-06 18:57:34 +00005514 case Instruction::Select: {
Chris Lattner6970b662005-04-23 15:31:55 +00005515 // If either operand of the select is a constant, we can fold the
5516 // comparison into the select arms, which will cause one to be
5517 // constant folded and the select turned into a bitwise or.
5518 Value *Op1 = 0, *Op2 = 0;
5519 if (LHSI->hasOneUse()) {
5520 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5521 // Fold the known value into the constant operand.
Reid Spencere4d87aa2006-12-23 06:05:41 +00005522 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5523 // Insert a new ICmp of the other select operand.
5524 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5525 LHSI->getOperand(2), RHSC,
5526 I.getName()), I);
Chris Lattner6970b662005-04-23 15:31:55 +00005527 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5528 // Fold the known value into the constant operand.
Reid Spencere4d87aa2006-12-23 06:05:41 +00005529 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5530 // Insert a new ICmp of the other select operand.
5531 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5532 LHSI->getOperand(1), RHSC,
5533 I.getName()), I);
Chris Lattner6970b662005-04-23 15:31:55 +00005534 }
5535 }
Jeff Cohen9d809302005-04-23 21:38:35 +00005536
Chris Lattner6970b662005-04-23 15:31:55 +00005537 if (Op1)
Gabor Greif051a9502008-04-06 20:25:17 +00005538 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Chris Lattner6970b662005-04-23 15:31:55 +00005539 break;
5540 }
Chris Lattner4802d902007-04-06 18:57:34 +00005541 case Instruction::Malloc:
5542 // If we have (malloc != null), and if the malloc has a single use, we
5543 // can assume it is successful and remove the malloc.
5544 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5545 AddToWorkList(LHSI);
5546 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5547 !isTrueWhenEqual(I)));
5548 }
5549 break;
5550 }
Chris Lattner6970b662005-04-23 15:31:55 +00005551 }
5552
Reid Spencere4d87aa2006-12-23 06:05:41 +00005553 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
Chris Lattner574da9b2005-01-13 20:14:25 +00005554 if (User *GEP = dyn_castGetElementPtr(Op0))
Reid Spencere4d87aa2006-12-23 06:05:41 +00005555 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
Chris Lattner574da9b2005-01-13 20:14:25 +00005556 return NI;
5557 if (User *GEP = dyn_castGetElementPtr(Op1))
Reid Spencere4d87aa2006-12-23 06:05:41 +00005558 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
5559 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
Chris Lattner574da9b2005-01-13 20:14:25 +00005560 return NI;
5561
Reid Spencere4d87aa2006-12-23 06:05:41 +00005562 // Test to see if the operands of the icmp are casted versions of other
Chris Lattner57d86372007-01-06 01:45:59 +00005563 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5564 // now.
5565 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
5566 if (isa<PointerType>(Op0->getType()) &&
5567 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
Chris Lattnerde90b762003-11-03 04:25:02 +00005568 // We keep moving the cast from the left operand over to the right
5569 // operand, where it can often be eliminated completely.
Chris Lattner57d86372007-01-06 01:45:59 +00005570 Op0 = CI->getOperand(0);
Misha Brukmanfd939082005-04-21 23:48:37 +00005571
Chris Lattner57d86372007-01-06 01:45:59 +00005572 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5573 // so eliminate it as well.
5574 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
5575 Op1 = CI2->getOperand(0);
Misha Brukmanfd939082005-04-21 23:48:37 +00005576
Chris Lattnerde90b762003-11-03 04:25:02 +00005577 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00005578 if (Op0->getType() != Op1->getType()) {
Chris Lattnerde90b762003-11-03 04:25:02 +00005579 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
Reid Spencerd977d862006-12-12 23:36:14 +00005580 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
Chris Lattnerde90b762003-11-03 04:25:02 +00005581 } else {
Reid Spencere4d87aa2006-12-23 06:05:41 +00005582 // Otherwise, cast the RHS right before the icmp
Chris Lattner6d0339d2008-01-13 22:23:22 +00005583 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Chris Lattnerde90b762003-11-03 04:25:02 +00005584 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00005585 }
Reid Spencere4d87aa2006-12-23 06:05:41 +00005586 return new ICmpInst(I.getPredicate(), Op0, Op1);
Chris Lattnerde90b762003-11-03 04:25:02 +00005587 }
Chris Lattner57d86372007-01-06 01:45:59 +00005588 }
5589
5590 if (isa<CastInst>(Op0)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00005591 // Handle the special case of: icmp (cast bool to X), <cst>
Chris Lattner68708052003-11-03 05:17:03 +00005592 // This comes up when you have code like
5593 // int X = A < B;
5594 // if (X) ...
5595 // For generality, we handle any zero-extension of any operand comparison
Chris Lattner484d3cf2005-04-24 06:59:08 +00005596 // with a constant or another cast from the same type.
5597 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
Reid Spencere4d87aa2006-12-23 06:05:41 +00005598 if (Instruction *R = visitICmpInstWithCastAndCast(I))
Chris Lattner484d3cf2005-04-24 06:59:08 +00005599 return R;
Chris Lattner68708052003-11-03 05:17:03 +00005600 }
Chris Lattner26ab9a92006-02-27 01:44:11 +00005601
Chris Lattner65b72ba2006-09-18 04:22:48 +00005602 if (I.isEquality()) {
Chris Lattner4f0e33d2007-01-05 03:04:57 +00005603 Value *A, *B, *C, *D;
5604 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
5605 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
5606 Value *OtherVal = A == Op1 ? B : A;
5607 return new ICmpInst(I.getPredicate(), OtherVal,
5608 Constant::getNullValue(A->getType()));
5609 }
5610
5611 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
5612 // A^c1 == C^c2 --> A == C^(c1^c2)
5613 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
5614 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
5615 if (Op1->hasOneUse()) {
Zhou Sheng4a1822a2007-04-02 13:45:30 +00005616 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
Chris Lattner4f0e33d2007-01-05 03:04:57 +00005617 Instruction *Xor = BinaryOperator::createXor(C, NC, "tmp");
5618 return new ICmpInst(I.getPredicate(), A,
5619 InsertNewInstBefore(Xor, I));
5620 }
5621
5622 // A^B == A^D -> B == D
5623 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
5624 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
5625 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
5626 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
5627 }
5628 }
5629
5630 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
5631 (A == Op0 || B == Op0)) {
Chris Lattner26ab9a92006-02-27 01:44:11 +00005632 // A == (A^B) -> B == 0
5633 Value *OtherVal = A == Op0 ? B : A;
Reid Spencere4d87aa2006-12-23 06:05:41 +00005634 return new ICmpInst(I.getPredicate(), OtherVal,
5635 Constant::getNullValue(A->getType()));
Chris Lattner4f0e33d2007-01-05 03:04:57 +00005636 }
5637 if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
Chris Lattner26ab9a92006-02-27 01:44:11 +00005638 // (A-B) == A -> B == 0
Reid Spencere4d87aa2006-12-23 06:05:41 +00005639 return new ICmpInst(I.getPredicate(), B,
5640 Constant::getNullValue(B->getType()));
Chris Lattner4f0e33d2007-01-05 03:04:57 +00005641 }
5642 if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
Chris Lattner26ab9a92006-02-27 01:44:11 +00005643 // A == (A-B) -> B == 0
Reid Spencere4d87aa2006-12-23 06:05:41 +00005644 return new ICmpInst(I.getPredicate(), B,
5645 Constant::getNullValue(B->getType()));
Chris Lattner26ab9a92006-02-27 01:44:11 +00005646 }
Chris Lattner9c2328e2006-11-14 06:06:06 +00005647
Chris Lattner9c2328e2006-11-14 06:06:06 +00005648 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5649 if (Op0->hasOneUse() && Op1->hasOneUse() &&
5650 match(Op0, m_And(m_Value(A), m_Value(B))) &&
5651 match(Op1, m_And(m_Value(C), m_Value(D)))) {
5652 Value *X = 0, *Y = 0, *Z = 0;
5653
5654 if (A == C) {
5655 X = B; Y = D; Z = A;
5656 } else if (A == D) {
5657 X = B; Y = C; Z = A;
5658 } else if (B == C) {
5659 X = A; Y = D; Z = B;
5660 } else if (B == D) {
5661 X = A; Y = C; Z = B;
5662 }
5663
5664 if (X) { // Build (X^Y) & Z
5665 Op1 = InsertNewInstBefore(BinaryOperator::createXor(X, Y, "tmp"), I);
5666 Op1 = InsertNewInstBefore(BinaryOperator::createAnd(Op1, Z, "tmp"), I);
5667 I.setOperand(0, Op1);
5668 I.setOperand(1, Constant::getNullValue(Op1->getType()));
5669 return &I;
5670 }
5671 }
Chris Lattner26ab9a92006-02-27 01:44:11 +00005672 }
Chris Lattner7e708292002-06-25 16:13:24 +00005673 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00005674}
5675
Chris Lattner562ef782007-06-20 23:46:26 +00005676
5677/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
5678/// and CmpRHS are both known to be integer constants.
5679Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
5680 ConstantInt *DivRHS) {
5681 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
5682 const APInt &CmpRHSV = CmpRHS->getValue();
5683
5684 // FIXME: If the operand types don't match the type of the divide
5685 // then don't attempt this transform. The code below doesn't have the
5686 // logic to deal with a signed divide and an unsigned compare (and
5687 // vice versa). This is because (x /s C1) <s C2 produces different
5688 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
5689 // (x /u C1) <u C2. Simply casting the operands and result won't
5690 // work. :( The if statement below tests that condition and bails
5691 // if it finds it.
5692 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
5693 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
5694 return 0;
5695 if (DivRHS->isZero())
Chris Lattner1dbfd482007-06-21 18:11:19 +00005696 return 0; // The ProdOV computation fails on divide by zero.
Chris Lattner562ef782007-06-20 23:46:26 +00005697
5698 // Compute Prod = CI * DivRHS. We are essentially solving an equation
5699 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
5700 // C2 (CI). By solving for X we can turn this into a range check
5701 // instead of computing a divide.
5702 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
5703
5704 // Determine if the product overflows by seeing if the product is
5705 // not equal to the divide. Make sure we do the same kind of divide
5706 // as in the LHS instruction that we're folding.
5707 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
5708 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
5709
5710 // Get the ICmp opcode
Chris Lattner1dbfd482007-06-21 18:11:19 +00005711 ICmpInst::Predicate Pred = ICI.getPredicate();
Chris Lattner562ef782007-06-20 23:46:26 +00005712
Chris Lattner1dbfd482007-06-21 18:11:19 +00005713 // Figure out the interval that is being checked. For example, a comparison
5714 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
5715 // Compute this interval based on the constants involved and the signedness of
5716 // the compare/divide. This computes a half-open interval, keeping track of
5717 // whether either value in the interval overflows. After analysis each
5718 // overflow variable is set to 0 if it's corresponding bound variable is valid
5719 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
5720 int LoOverflow = 0, HiOverflow = 0;
5721 ConstantInt *LoBound = 0, *HiBound = 0;
5722
5723
Chris Lattner562ef782007-06-20 23:46:26 +00005724 if (!DivIsSigned) { // udiv
Chris Lattner1dbfd482007-06-21 18:11:19 +00005725 // e.g. X/5 op 3 --> [15, 20)
Chris Lattner562ef782007-06-20 23:46:26 +00005726 LoBound = Prod;
Chris Lattner1dbfd482007-06-21 18:11:19 +00005727 HiOverflow = LoOverflow = ProdOV;
5728 if (!HiOverflow)
5729 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman76491272008-02-13 22:09:18 +00005730 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Chris Lattner562ef782007-06-20 23:46:26 +00005731 if (CmpRHSV == 0) { // (X / pos) op 0
Chris Lattner1dbfd482007-06-21 18:11:19 +00005732 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
Chris Lattner562ef782007-06-20 23:46:26 +00005733 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
5734 HiBound = DivRHS;
Dan Gohman76491272008-02-13 22:09:18 +00005735 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Chris Lattner1dbfd482007-06-21 18:11:19 +00005736 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
5737 HiOverflow = LoOverflow = ProdOV;
5738 if (!HiOverflow)
5739 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
Chris Lattner562ef782007-06-20 23:46:26 +00005740 } else { // (X / pos) op neg
Chris Lattner1dbfd482007-06-21 18:11:19 +00005741 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
Chris Lattner562ef782007-06-20 23:46:26 +00005742 Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
5743 LoOverflow = AddWithOverflow(LoBound, Prod,
Chris Lattner1dbfd482007-06-21 18:11:19 +00005744 cast<ConstantInt>(DivRHSH), true) ? -1 : 0;
Chris Lattner562ef782007-06-20 23:46:26 +00005745 HiBound = AddOne(Prod);
Chris Lattner1dbfd482007-06-21 18:11:19 +00005746 HiOverflow = ProdOV ? -1 : 0;
Chris Lattner562ef782007-06-20 23:46:26 +00005747 }
Dan Gohman76491272008-02-13 22:09:18 +00005748 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Chris Lattner562ef782007-06-20 23:46:26 +00005749 if (CmpRHSV == 0) { // (X / neg) op 0
Chris Lattner1dbfd482007-06-21 18:11:19 +00005750 // e.g. X/-5 op 0 --> [-4, 5)
Chris Lattner562ef782007-06-20 23:46:26 +00005751 LoBound = AddOne(DivRHS);
5752 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
Chris Lattner1dbfd482007-06-21 18:11:19 +00005753 if (HiBound == DivRHS) { // -INTMIN = INTMIN
5754 HiOverflow = 1; // [INTMIN+1, overflow)
5755 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
5756 }
Dan Gohman76491272008-02-13 22:09:18 +00005757 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Chris Lattner1dbfd482007-06-21 18:11:19 +00005758 // e.g. X/-5 op 3 --> [-19, -14)
5759 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
Chris Lattner562ef782007-06-20 23:46:26 +00005760 if (!LoOverflow)
Chris Lattner1dbfd482007-06-21 18:11:19 +00005761 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS), true) ?-1:0;
Chris Lattner562ef782007-06-20 23:46:26 +00005762 HiBound = AddOne(Prod);
5763 } else { // (X / neg) op neg
Chris Lattner1dbfd482007-06-21 18:11:19 +00005764 // e.g. X/-5 op -3 --> [15, 20)
Chris Lattner562ef782007-06-20 23:46:26 +00005765 LoBound = Prod;
Chris Lattner1dbfd482007-06-21 18:11:19 +00005766 LoOverflow = HiOverflow = ProdOV ? 1 : 0;
Chris Lattner562ef782007-06-20 23:46:26 +00005767 HiBound = Subtract(Prod, DivRHS);
5768 }
5769
Chris Lattner1dbfd482007-06-21 18:11:19 +00005770 // Dividing by a negative swaps the condition. LT <-> GT
5771 Pred = ICmpInst::getSwappedPredicate(Pred);
Chris Lattner562ef782007-06-20 23:46:26 +00005772 }
5773
5774 Value *X = DivI->getOperand(0);
Chris Lattner1dbfd482007-06-21 18:11:19 +00005775 switch (Pred) {
Chris Lattner562ef782007-06-20 23:46:26 +00005776 default: assert(0 && "Unhandled icmp opcode!");
5777 case ICmpInst::ICMP_EQ:
5778 if (LoOverflow && HiOverflow)
5779 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5780 else if (HiOverflow)
Chris Lattner1dbfd482007-06-21 18:11:19 +00005781 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
Chris Lattner562ef782007-06-20 23:46:26 +00005782 ICmpInst::ICMP_UGE, X, LoBound);
5783 else if (LoOverflow)
5784 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5785 ICmpInst::ICMP_ULT, X, HiBound);
5786 else
Chris Lattner1dbfd482007-06-21 18:11:19 +00005787 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
Chris Lattner562ef782007-06-20 23:46:26 +00005788 case ICmpInst::ICMP_NE:
5789 if (LoOverflow && HiOverflow)
5790 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5791 else if (HiOverflow)
Chris Lattner1dbfd482007-06-21 18:11:19 +00005792 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
Chris Lattner562ef782007-06-20 23:46:26 +00005793 ICmpInst::ICMP_ULT, X, LoBound);
5794 else if (LoOverflow)
5795 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5796 ICmpInst::ICMP_UGE, X, HiBound);
5797 else
Chris Lattner1dbfd482007-06-21 18:11:19 +00005798 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
Chris Lattner562ef782007-06-20 23:46:26 +00005799 case ICmpInst::ICMP_ULT:
5800 case ICmpInst::ICMP_SLT:
Chris Lattner1dbfd482007-06-21 18:11:19 +00005801 if (LoOverflow == +1) // Low bound is greater than input range.
5802 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5803 if (LoOverflow == -1) // Low bound is less than input range.
Chris Lattner562ef782007-06-20 23:46:26 +00005804 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
Chris Lattner1dbfd482007-06-21 18:11:19 +00005805 return new ICmpInst(Pred, X, LoBound);
Chris Lattner562ef782007-06-20 23:46:26 +00005806 case ICmpInst::ICMP_UGT:
5807 case ICmpInst::ICMP_SGT:
Chris Lattner1dbfd482007-06-21 18:11:19 +00005808 if (HiOverflow == +1) // High bound greater than input range.
Chris Lattner562ef782007-06-20 23:46:26 +00005809 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
Chris Lattner1dbfd482007-06-21 18:11:19 +00005810 else if (HiOverflow == -1) // High bound less than input range.
5811 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5812 if (Pred == ICmpInst::ICMP_UGT)
Chris Lattner562ef782007-06-20 23:46:26 +00005813 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
5814 else
5815 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
5816 }
5817}
5818
5819
Chris Lattner01deb9d2007-04-03 17:43:25 +00005820/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
5821///
5822Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
5823 Instruction *LHSI,
5824 ConstantInt *RHS) {
5825 const APInt &RHSV = RHS->getValue();
5826
5827 switch (LHSI->getOpcode()) {
Duncan Sands0091bf22007-04-04 06:42:45 +00005828 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
Chris Lattner01deb9d2007-04-03 17:43:25 +00005829 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
5830 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
5831 // fold the xor.
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00005832 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
5833 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Chris Lattner01deb9d2007-04-03 17:43:25 +00005834 Value *CompareVal = LHSI->getOperand(0);
5835
5836 // If the sign bit of the XorCST is not set, there is no change to
5837 // the operation, just stop using the Xor.
5838 if (!XorCST->getValue().isNegative()) {
5839 ICI.setOperand(0, CompareVal);
5840 AddToWorkList(LHSI);
5841 return &ICI;
5842 }
5843
5844 // Was the old condition true if the operand is positive?
5845 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
5846
5847 // If so, the new one isn't.
5848 isTrueIfPositive ^= true;
5849
5850 if (isTrueIfPositive)
5851 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
5852 else
5853 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
5854 }
5855 }
5856 break;
5857 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
5858 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
5859 LHSI->getOperand(0)->hasOneUse()) {
5860 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
5861
5862 // If the LHS is an AND of a truncating cast, we can widen the
5863 // and/compare to be the input width without changing the value
5864 // produced, eliminating a cast.
5865 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
5866 // We can do this transformation if either the AND constant does not
5867 // have its sign bit set or if it is an equality comparison.
5868 // Extending a relational comparison when we're checking the sign
5869 // bit would not work.
5870 if (Cast->hasOneUse() &&
Anton Korobeynikov4aefd6b2008-02-20 12:07:57 +00005871 (ICI.isEquality() ||
5872 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Chris Lattner01deb9d2007-04-03 17:43:25 +00005873 uint32_t BitWidth =
5874 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
5875 APInt NewCST = AndCST->getValue();
5876 NewCST.zext(BitWidth);
5877 APInt NewCI = RHSV;
5878 NewCI.zext(BitWidth);
5879 Instruction *NewAnd =
5880 BinaryOperator::createAnd(Cast->getOperand(0),
5881 ConstantInt::get(NewCST),LHSI->getName());
5882 InsertNewInstBefore(NewAnd, ICI);
5883 return new ICmpInst(ICI.getPredicate(), NewAnd,
5884 ConstantInt::get(NewCI));
5885 }
5886 }
5887
5888 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
5889 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
5890 // happens a LOT in code produced by the C front-end, for bitfield
5891 // access.
5892 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
5893 if (Shift && !Shift->isShift())
5894 Shift = 0;
5895
5896 ConstantInt *ShAmt;
5897 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
5898 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
5899 const Type *AndTy = AndCST->getType(); // Type of the and.
5900
5901 // We can fold this as long as we can't shift unknown bits
5902 // into the mask. This can only happen with signed shift
5903 // rights, as they sign-extend.
5904 if (ShAmt) {
5905 bool CanFold = Shift->isLogicalShift();
5906 if (!CanFold) {
5907 // To test for the bad case of the signed shr, see if any
5908 // of the bits shifted in could be tested after the mask.
5909 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
5910 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
5911
5912 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
5913 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
5914 AndCST->getValue()) == 0)
5915 CanFold = true;
5916 }
5917
5918 if (CanFold) {
5919 Constant *NewCst;
5920 if (Shift->getOpcode() == Instruction::Shl)
5921 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
5922 else
5923 NewCst = ConstantExpr::getShl(RHS, ShAmt);
5924
5925 // Check to see if we are shifting out any of the bits being
5926 // compared.
5927 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
5928 // If we shifted bits out, the fold is not going to work out.
5929 // As a special case, check to see if this means that the
5930 // result is always true or false now.
5931 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
5932 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5933 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
5934 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5935 } else {
5936 ICI.setOperand(1, NewCst);
5937 Constant *NewAndCST;
5938 if (Shift->getOpcode() == Instruction::Shl)
5939 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
5940 else
5941 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
5942 LHSI->setOperand(1, NewAndCST);
5943 LHSI->setOperand(0, Shift->getOperand(0));
5944 AddToWorkList(Shift); // Shift is dead.
5945 AddUsesToWorkList(ICI);
5946 return &ICI;
5947 }
5948 }
5949 }
5950
5951 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
5952 // preferable because it allows the C<<Y expression to be hoisted out
5953 // of a loop if Y is invariant and X is not.
5954 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
5955 ICI.isEquality() && !Shift->isArithmeticShift() &&
5956 isa<Instruction>(Shift->getOperand(0))) {
5957 // Compute C << Y.
5958 Value *NS;
5959 if (Shift->getOpcode() == Instruction::LShr) {
5960 NS = BinaryOperator::createShl(AndCST,
5961 Shift->getOperand(1), "tmp");
5962 } else {
5963 // Insert a logical shift.
5964 NS = BinaryOperator::createLShr(AndCST,
5965 Shift->getOperand(1), "tmp");
5966 }
5967 InsertNewInstBefore(cast<Instruction>(NS), ICI);
5968
5969 // Compute X & (C << Y).
5970 Instruction *NewAnd =
5971 BinaryOperator::createAnd(Shift->getOperand(0), NS, LHSI->getName());
5972 InsertNewInstBefore(NewAnd, ICI);
5973
5974 ICI.setOperand(0, NewAnd);
5975 return &ICI;
5976 }
5977 }
5978 break;
5979
Chris Lattnera0141b92007-07-15 20:42:37 +00005980 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
5981 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
5982 if (!ShAmt) break;
5983
5984 uint32_t TypeBits = RHSV.getBitWidth();
5985
5986 // Check that the shift amount is in range. If not, don't perform
5987 // undefined shifts. When the shift is visited it will be
5988 // simplified.
5989 if (ShAmt->uge(TypeBits))
5990 break;
5991
5992 if (ICI.isEquality()) {
5993 // If we are comparing against bits always shifted out, the
5994 // comparison cannot succeed.
5995 Constant *Comp =
5996 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
5997 if (Comp != RHS) {// Comparing against a bit that we know is zero.
5998 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
5999 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6000 return ReplaceInstUsesWith(ICI, Cst);
6001 }
6002
6003 if (LHSI->hasOneUse()) {
6004 // Otherwise strength reduce the shift into an and.
6005 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6006 Constant *Mask =
6007 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
Chris Lattner01deb9d2007-04-03 17:43:25 +00006008
Chris Lattnera0141b92007-07-15 20:42:37 +00006009 Instruction *AndI =
6010 BinaryOperator::createAnd(LHSI->getOperand(0),
6011 Mask, LHSI->getName()+".mask");
6012 Value *And = InsertNewInstBefore(AndI, ICI);
6013 return new ICmpInst(ICI.getPredicate(), And,
6014 ConstantInt::get(RHSV.lshr(ShAmtVal)));
Chris Lattner01deb9d2007-04-03 17:43:25 +00006015 }
6016 }
Chris Lattnera0141b92007-07-15 20:42:37 +00006017
6018 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6019 bool TrueIfSigned = false;
6020 if (LHSI->hasOneUse() &&
6021 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6022 // (X << 31) <s 0 --> (X&1) != 0
6023 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6024 (TypeBits-ShAmt->getZExtValue()-1));
6025 Instruction *AndI =
6026 BinaryOperator::createAnd(LHSI->getOperand(0),
6027 Mask, LHSI->getName()+".mask");
6028 Value *And = InsertNewInstBefore(AndI, ICI);
6029
6030 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6031 And, Constant::getNullValue(And->getType()));
6032 }
Chris Lattner01deb9d2007-04-03 17:43:25 +00006033 break;
Chris Lattnera0141b92007-07-15 20:42:37 +00006034 }
Chris Lattner01deb9d2007-04-03 17:43:25 +00006035
6036 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
Chris Lattnera0141b92007-07-15 20:42:37 +00006037 case Instruction::AShr: {
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006038 // Only handle equality comparisons of shift-by-constant.
Chris Lattnera0141b92007-07-15 20:42:37 +00006039 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006040 if (!ShAmt || !ICI.isEquality()) break;
Chris Lattnera0141b92007-07-15 20:42:37 +00006041
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006042 // Check that the shift amount is in range. If not, don't perform
6043 // undefined shifts. When the shift is visited it will be
6044 // simplified.
6045 uint32_t TypeBits = RHSV.getBitWidth();
6046 if (ShAmt->uge(TypeBits))
6047 break;
6048
6049 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Chris Lattnera0141b92007-07-15 20:42:37 +00006050
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006051 // If we are comparing against bits always shifted out, the
6052 // comparison cannot succeed.
6053 APInt Comp = RHSV << ShAmtVal;
6054 if (LHSI->getOpcode() == Instruction::LShr)
6055 Comp = Comp.lshr(ShAmtVal);
6056 else
6057 Comp = Comp.ashr(ShAmtVal);
6058
6059 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6060 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6061 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6062 return ReplaceInstUsesWith(ICI, Cst);
6063 }
6064
6065 // Otherwise, check to see if the bits shifted out are known to be zero.
6066 // If so, we can compare against the unshifted value:
6067 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengf30752c2008-04-23 00:38:06 +00006068 if (LHSI->hasOneUse() &&
6069 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006070 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6071 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6072 ConstantExpr::getShl(RHS, ShAmt));
6073 }
Chris Lattnera0141b92007-07-15 20:42:37 +00006074
Evan Chengf30752c2008-04-23 00:38:06 +00006075 if (LHSI->hasOneUse()) {
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006076 // Otherwise strength reduce the shift into an and.
6077 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6078 Constant *Mask = ConstantInt::get(Val);
Chris Lattnera0141b92007-07-15 20:42:37 +00006079
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006080 Instruction *AndI =
6081 BinaryOperator::createAnd(LHSI->getOperand(0),
6082 Mask, LHSI->getName()+".mask");
6083 Value *And = InsertNewInstBefore(AndI, ICI);
6084 return new ICmpInst(ICI.getPredicate(), And,
6085 ConstantExpr::getShl(RHS, ShAmt));
Chris Lattner01deb9d2007-04-03 17:43:25 +00006086 }
6087 break;
Chris Lattnera0141b92007-07-15 20:42:37 +00006088 }
Chris Lattner01deb9d2007-04-03 17:43:25 +00006089
6090 case Instruction::SDiv:
6091 case Instruction::UDiv:
6092 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6093 // Fold this div into the comparison, producing a range check.
6094 // Determine, based on the divide type, what the range is being
6095 // checked. If there is an overflow on the low or high side, remember
6096 // it, otherwise compute the range [low, hi) bounding the new value.
6097 // See: InsertRangeTest above for the kinds of replacements possible.
Chris Lattner562ef782007-06-20 23:46:26 +00006098 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6099 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6100 DivRHS))
6101 return R;
Chris Lattner01deb9d2007-04-03 17:43:25 +00006102 break;
Nick Lewycky5be29202008-02-03 16:33:09 +00006103
6104 case Instruction::Add:
6105 // Fold: icmp pred (add, X, C1), C2
6106
6107 if (!ICI.isEquality()) {
6108 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6109 if (!LHSC) break;
6110 const APInt &LHSV = LHSC->getValue();
6111
6112 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6113 .subtract(LHSV);
6114
6115 if (ICI.isSignedPredicate()) {
6116 if (CR.getLower().isSignBit()) {
6117 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6118 ConstantInt::get(CR.getUpper()));
6119 } else if (CR.getUpper().isSignBit()) {
6120 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6121 ConstantInt::get(CR.getLower()));
6122 }
6123 } else {
6124 if (CR.getLower().isMinValue()) {
6125 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6126 ConstantInt::get(CR.getUpper()));
6127 } else if (CR.getUpper().isMinValue()) {
6128 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6129 ConstantInt::get(CR.getLower()));
6130 }
6131 }
6132 }
6133 break;
Chris Lattner01deb9d2007-04-03 17:43:25 +00006134 }
6135
6136 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6137 if (ICI.isEquality()) {
6138 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6139
6140 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6141 // the second operand is a constant, simplify a bit.
6142 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6143 switch (BO->getOpcode()) {
6144 case Instruction::SRem:
6145 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6146 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6147 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6148 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6149 Instruction *NewRem =
6150 BinaryOperator::createURem(BO->getOperand(0), BO->getOperand(1),
6151 BO->getName());
6152 InsertNewInstBefore(NewRem, ICI);
6153 return new ICmpInst(ICI.getPredicate(), NewRem,
6154 Constant::getNullValue(BO->getType()));
6155 }
6156 }
6157 break;
6158 case Instruction::Add:
6159 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6160 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6161 if (BO->hasOneUse())
6162 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6163 Subtract(RHS, BOp1C));
6164 } else if (RHSV == 0) {
6165 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6166 // efficiently invertible, or if the add has just this one use.
6167 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6168
6169 if (Value *NegVal = dyn_castNegVal(BOp1))
6170 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6171 else if (Value *NegVal = dyn_castNegVal(BOp0))
6172 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6173 else if (BO->hasOneUse()) {
6174 Instruction *Neg = BinaryOperator::createNeg(BOp1);
6175 InsertNewInstBefore(Neg, ICI);
6176 Neg->takeName(BO);
6177 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6178 }
6179 }
6180 break;
6181 case Instruction::Xor:
6182 // For the xor case, we can xor two constants together, eliminating
6183 // the explicit xor.
6184 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6185 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6186 ConstantExpr::getXor(RHS, BOC));
6187
6188 // FALLTHROUGH
6189 case Instruction::Sub:
6190 // Replace (([sub|xor] A, B) != 0) with (A != B)
6191 if (RHSV == 0)
6192 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6193 BO->getOperand(1));
6194 break;
6195
6196 case Instruction::Or:
6197 // If bits are being or'd in that are not present in the constant we
6198 // are comparing against, then the comparison could never succeed!
6199 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6200 Constant *NotCI = ConstantExpr::getNot(RHS);
6201 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6202 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6203 isICMP_NE));
6204 }
6205 break;
6206
6207 case Instruction::And:
6208 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6209 // If bits are being compared against that are and'd out, then the
6210 // comparison can never succeed!
6211 if ((RHSV & ~BOC->getValue()) != 0)
6212 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6213 isICMP_NE));
6214
6215 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6216 if (RHS == BOC && RHSV.isPowerOf2())
6217 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6218 ICmpInst::ICMP_NE, LHSI,
6219 Constant::getNullValue(RHS->getType()));
6220
6221 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
6222 if (isSignBit(BOC)) {
6223 Value *X = BO->getOperand(0);
6224 Constant *Zero = Constant::getNullValue(X->getType());
6225 ICmpInst::Predicate pred = isICMP_NE ?
6226 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6227 return new ICmpInst(pred, X, Zero);
6228 }
6229
6230 // ((X & ~7) == 0) --> X < 8
6231 if (RHSV == 0 && isHighOnes(BOC)) {
6232 Value *X = BO->getOperand(0);
6233 Constant *NegX = ConstantExpr::getNeg(BOC);
6234 ICmpInst::Predicate pred = isICMP_NE ?
6235 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6236 return new ICmpInst(pred, X, NegX);
6237 }
6238 }
6239 default: break;
6240 }
6241 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6242 // Handle icmp {eq|ne} <intrinsic>, intcst.
6243 if (II->getIntrinsicID() == Intrinsic::bswap) {
6244 AddToWorkList(II);
6245 ICI.setOperand(0, II->getOperand(1));
6246 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6247 return &ICI;
6248 }
6249 }
6250 } else { // Not a ICMP_EQ/ICMP_NE
Chris Lattnere34e9a22007-04-14 23:32:02 +00006251 // If the LHS is a cast from an integral value of the same size,
6252 // then since we know the RHS is a constant, try to simlify.
Chris Lattner01deb9d2007-04-03 17:43:25 +00006253 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6254 Value *CastOp = Cast->getOperand(0);
6255 const Type *SrcTy = CastOp->getType();
6256 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6257 if (SrcTy->isInteger() &&
6258 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6259 // If this is an unsigned comparison, try to make the comparison use
6260 // smaller constant values.
6261 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6262 // X u< 128 => X s> -1
6263 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6264 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6265 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6266 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6267 // X u> 127 => X s< 0
6268 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6269 Constant::getNullValue(SrcTy));
6270 }
6271 }
6272 }
6273 }
6274 return 0;
6275}
6276
6277/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6278/// We only handle extending casts so far.
6279///
Reid Spencere4d87aa2006-12-23 06:05:41 +00006280Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6281 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
Reid Spencer3da59db2006-11-27 01:05:10 +00006282 Value *LHSCIOp = LHSCI->getOperand(0);
6283 const Type *SrcTy = LHSCIOp->getType();
Reid Spencere4d87aa2006-12-23 06:05:41 +00006284 const Type *DestTy = LHSCI->getType();
Chris Lattner484d3cf2005-04-24 06:59:08 +00006285 Value *RHSCIOp;
6286
Chris Lattner8c756c12007-05-05 22:41:33 +00006287 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6288 // integer type is the same size as the pointer type.
6289 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6290 getTargetData().getPointerSizeInBits() ==
6291 cast<IntegerType>(DestTy)->getBitWidth()) {
6292 Value *RHSOp = 0;
6293 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
Chris Lattner6f6f5122007-05-06 07:24:03 +00006294 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
Chris Lattner8c756c12007-05-05 22:41:33 +00006295 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6296 RHSOp = RHSC->getOperand(0);
6297 // If the pointer types don't match, insert a bitcast.
6298 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner6d0339d2008-01-13 22:23:22 +00006299 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Chris Lattner8c756c12007-05-05 22:41:33 +00006300 }
6301
6302 if (RHSOp)
6303 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6304 }
6305
6306 // The code below only handles extension cast instructions, so far.
6307 // Enforce this.
Reid Spencere4d87aa2006-12-23 06:05:41 +00006308 if (LHSCI->getOpcode() != Instruction::ZExt &&
6309 LHSCI->getOpcode() != Instruction::SExt)
Chris Lattnerb352fa52005-01-17 03:20:02 +00006310 return 0;
6311
Reid Spencere4d87aa2006-12-23 06:05:41 +00006312 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6313 bool isSignedCmp = ICI.isSignedPredicate();
Chris Lattner484d3cf2005-04-24 06:59:08 +00006314
Reid Spencere4d87aa2006-12-23 06:05:41 +00006315 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
Chris Lattner484d3cf2005-04-24 06:59:08 +00006316 // Not an extension from the same type?
6317 RHSCIOp = CI->getOperand(0);
Reid Spencere4d87aa2006-12-23 06:05:41 +00006318 if (RHSCIOp->getType() != LHSCIOp->getType())
6319 return 0;
Chris Lattnera5c5e772007-01-13 23:11:38 +00006320
Nick Lewycky4189a532008-01-28 03:48:02 +00006321 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Chris Lattnera5c5e772007-01-13 23:11:38 +00006322 // and the other is a zext), then we can't handle this.
6323 if (CI->getOpcode() != LHSCI->getOpcode())
6324 return 0;
6325
Nick Lewycky4189a532008-01-28 03:48:02 +00006326 // Deal with equality cases early.
6327 if (ICI.isEquality())
6328 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6329
6330 // A signed comparison of sign extended values simplifies into a
6331 // signed comparison.
6332 if (isSignedCmp && isSignedExt)
6333 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6334
6335 // The other three cases all fold into an unsigned comparison.
6336 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Reid Spencer6731d5c2004-11-28 21:31:15 +00006337 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00006338
Reid Spencere4d87aa2006-12-23 06:05:41 +00006339 // If we aren't dealing with a constant on the RHS, exit early
6340 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6341 if (!CI)
6342 return 0;
6343
6344 // Compute the constant that would happen if we truncated to SrcTy then
6345 // reextended to DestTy.
6346 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6347 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6348
6349 // If the re-extended constant didn't change...
6350 if (Res2 == CI) {
6351 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6352 // For example, we might have:
6353 // %A = sext short %X to uint
6354 // %B = icmp ugt uint %A, 1330
6355 // It is incorrect to transform this into
6356 // %B = icmp ugt short %X, 1330
6357 // because %A may have negative value.
6358 //
6359 // However, it is OK if SrcTy is bool (See cast-set.ll testcase)
6360 // OR operation is EQ/NE.
Reid Spencer4fe16d62007-01-11 18:21:29 +00006361 if (isSignedExt == isSignedCmp || SrcTy == Type::Int1Ty || ICI.isEquality())
Reid Spencere4d87aa2006-12-23 06:05:41 +00006362 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
6363 else
6364 return 0;
6365 }
6366
6367 // The re-extended constant changed so the constant cannot be represented
6368 // in the shorter type. Consequently, we cannot emit a simple comparison.
6369
6370 // First, handle some easy cases. We know the result cannot be equal at this
6371 // point so handle the ICI.isEquality() cases
6372 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006373 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
Reid Spencere4d87aa2006-12-23 06:05:41 +00006374 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006375 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
Reid Spencere4d87aa2006-12-23 06:05:41 +00006376
6377 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6378 // should have been folded away previously and not enter in here.
6379 Value *Result;
6380 if (isSignedCmp) {
6381 // We're performing a signed comparison.
Reid Spencer0460fb32007-03-22 20:36:03 +00006382 if (cast<ConstantInt>(CI)->getValue().isNegative())
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006383 Result = ConstantInt::getFalse(); // X < (small) --> false
Reid Spencere4d87aa2006-12-23 06:05:41 +00006384 else
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006385 Result = ConstantInt::getTrue(); // X < (large) --> true
Reid Spencere4d87aa2006-12-23 06:05:41 +00006386 } else {
6387 // We're performing an unsigned comparison.
6388 if (isSignedExt) {
6389 // We're performing an unsigned comp with a sign extended value.
6390 // This is true if the input is >= 0. [aka >s -1]
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006391 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
Reid Spencere4d87aa2006-12-23 06:05:41 +00006392 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6393 NegOne, ICI.getName()), ICI);
6394 } else {
6395 // Unsigned extend & unsigned compare -> always true.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006396 Result = ConstantInt::getTrue();
Reid Spencere4d87aa2006-12-23 06:05:41 +00006397 }
6398 }
6399
6400 // Finally, return the value computed.
6401 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
6402 ICI.getPredicate() == ICmpInst::ICMP_SLT) {
6403 return ReplaceInstUsesWith(ICI, Result);
6404 } else {
6405 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6406 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6407 "ICmp should be folded!");
6408 if (Constant *CI = dyn_cast<Constant>(Result))
6409 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6410 else
6411 return BinaryOperator::createNot(Result);
6412 }
Chris Lattner484d3cf2005-04-24 06:59:08 +00006413}
Chris Lattner3f5b8772002-05-06 16:14:14 +00006414
Reid Spencer832254e2007-02-02 02:16:23 +00006415Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6416 return commonShiftTransforms(I);
6417}
6418
6419Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6420 return commonShiftTransforms(I);
6421}
6422
6423Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattner348f6652007-12-06 01:59:46 +00006424 if (Instruction *R = commonShiftTransforms(I))
6425 return R;
6426
6427 Value *Op0 = I.getOperand(0);
6428
6429 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6430 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6431 if (CSI->isAllOnesValue())
6432 return ReplaceInstUsesWith(I, CSI);
6433
6434 // See if we can turn a signed shr into an unsigned shr.
6435 if (MaskedValueIsZero(Op0,
6436 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
6437 return BinaryOperator::createLShr(Op0, I.getOperand(1));
6438
6439 return 0;
Reid Spencer832254e2007-02-02 02:16:23 +00006440}
6441
6442Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6443 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
Chris Lattner7e708292002-06-25 16:13:24 +00006444 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00006445
6446 // shl X, 0 == X and shr X, 0 == X
6447 // shl 0, X == 0 and shr 0, X == 0
Reid Spencer832254e2007-02-02 02:16:23 +00006448 if (Op1 == Constant::getNullValue(Op1->getType()) ||
Chris Lattner233f7dc2002-08-12 21:17:25 +00006449 Op0 == Constant::getNullValue(Op0->getType()))
6450 return ReplaceInstUsesWith(I, Op0);
Chris Lattner8d6bbdb2006-02-12 08:07:37 +00006451
Reid Spencere4d87aa2006-12-23 06:05:41 +00006452 if (isa<UndefValue>(Op0)) {
6453 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
Chris Lattner79a564c2004-10-16 23:28:04 +00006454 return ReplaceInstUsesWith(I, Op0);
Reid Spencere4d87aa2006-12-23 06:05:41 +00006455 else // undef << X -> 0, undef >>u X -> 0
Chris Lattnere87597f2004-10-16 18:11:37 +00006456 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6457 }
6458 if (isa<UndefValue>(Op1)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00006459 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6460 return ReplaceInstUsesWith(I, Op0);
6461 else // X << undef, X >>u undef -> 0
Chris Lattnere87597f2004-10-16 18:11:37 +00006462 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnere87597f2004-10-16 18:11:37 +00006463 }
6464
Chris Lattner2eefe512004-04-09 19:05:30 +00006465 // Try to fold constant and into select arguments.
6466 if (isa<Constant>(Op0))
6467 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner6e7ba452005-01-01 16:22:27 +00006468 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00006469 return R;
6470
Reid Spencerb83eb642006-10-20 07:07:24 +00006471 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
Reid Spencerc5b206b2006-12-31 05:48:39 +00006472 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6473 return Res;
Chris Lattner4d5542c2006-01-06 07:12:35 +00006474 return 0;
6475}
6476
Reid Spencerb83eb642006-10-20 07:07:24 +00006477Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
Reid Spencer832254e2007-02-02 02:16:23 +00006478 BinaryOperator &I) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00006479 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner4d5542c2006-01-06 07:12:35 +00006480
Chris Lattner8d6bbdb2006-02-12 08:07:37 +00006481 // See if we can simplify any instructions used by the instruction whose sole
6482 // purpose is to compute bits we don't care about.
Reid Spencerb35ae032007-03-23 18:46:34 +00006483 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6484 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6485 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
Chris Lattner8d6bbdb2006-02-12 08:07:37 +00006486 KnownZero, KnownOne))
6487 return &I;
6488
Chris Lattner4d5542c2006-01-06 07:12:35 +00006489 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6490 // of a signed value.
6491 //
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00006492 if (Op1->uge(TypeBits)) {
Chris Lattner0737c242007-02-02 05:29:55 +00006493 if (I.getOpcode() != Instruction::AShr)
Chris Lattner4d5542c2006-01-06 07:12:35 +00006494 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6495 else {
Chris Lattner0737c242007-02-02 05:29:55 +00006496 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
Chris Lattner4d5542c2006-01-06 07:12:35 +00006497 return &I;
Chris Lattner8adac752004-02-23 20:30:06 +00006498 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00006499 }
6500
6501 // ((X*C1) << C2) == (X * (C1 << C2))
6502 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
6503 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
6504 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
6505 return BinaryOperator::createMul(BO->getOperand(0),
6506 ConstantExpr::getShl(BOOp, Op1));
6507
6508 // Try to fold constant and into select arguments.
6509 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
6510 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6511 return R;
6512 if (isa<PHINode>(Op0))
6513 if (Instruction *NV = FoldOpIntoPhi(I))
6514 return NV;
6515
Chris Lattner8999dd32007-12-22 09:07:47 +00006516 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
6517 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
6518 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
6519 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
6520 // place. Don't try to do this transformation in this case. Also, we
6521 // require that the input operand is a shift-by-constant so that we have
6522 // confidence that the shifts will get folded together. We could do this
6523 // xform in more cases, but it is unlikely to be profitable.
6524 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
6525 isa<ConstantInt>(TrOp->getOperand(1))) {
6526 // Okay, we'll do this xform. Make the shift of shift.
6527 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
6528 Instruction *NSh = BinaryOperator::create(I.getOpcode(), TrOp, ShAmt,
6529 I.getName());
6530 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
6531
6532 // For logical shifts, the truncation has the effect of making the high
6533 // part of the register be zeros. Emulate this by inserting an AND to
6534 // clear the top bits as needed. This 'and' will usually be zapped by
6535 // other xforms later if dead.
6536 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
6537 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
6538 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
6539
6540 // The mask we constructed says what the trunc would do if occurring
6541 // between the shifts. We want to know the effect *after* the second
6542 // shift. We know that it is a logical shift by a constant, so adjust the
6543 // mask as appropriate.
6544 if (I.getOpcode() == Instruction::Shl)
6545 MaskV <<= Op1->getZExtValue();
6546 else {
6547 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
6548 MaskV = MaskV.lshr(Op1->getZExtValue());
6549 }
6550
6551 Instruction *And = BinaryOperator::createAnd(NSh, ConstantInt::get(MaskV),
6552 TI->getName());
6553 InsertNewInstBefore(And, I); // shift1 & 0x00FF
6554
6555 // Return the value truncated to the interesting size.
6556 return new TruncInst(And, I.getType());
6557 }
6558 }
6559
Chris Lattner4d5542c2006-01-06 07:12:35 +00006560 if (Op0->hasOneUse()) {
Chris Lattner4d5542c2006-01-06 07:12:35 +00006561 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
6562 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6563 Value *V1, *V2;
6564 ConstantInt *CC;
6565 switch (Op0BO->getOpcode()) {
Chris Lattner11021cb2005-09-18 05:12:10 +00006566 default: break;
6567 case Instruction::Add:
6568 case Instruction::And:
6569 case Instruction::Or:
Reid Spencera07cb7d2007-02-02 14:41:37 +00006570 case Instruction::Xor: {
Chris Lattner11021cb2005-09-18 05:12:10 +00006571 // These operators commute.
6572 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner150f12a2005-09-18 06:30:59 +00006573 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
6574 match(Op0BO->getOperand(1),
Chris Lattner4d5542c2006-01-06 07:12:35 +00006575 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Reid Spencercc46cdb2007-02-02 14:08:20 +00006576 Instruction *YS = BinaryOperator::createShl(
Chris Lattner4d5542c2006-01-06 07:12:35 +00006577 Op0BO->getOperand(0), Op1,
Chris Lattner150f12a2005-09-18 06:30:59 +00006578 Op0BO->getName());
6579 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner9a4cacb2006-02-09 07:41:14 +00006580 Instruction *X =
6581 BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
6582 Op0BO->getOperand(1)->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00006583 InsertNewInstBefore(X, I); // (X + (Y << C))
Zhou Sheng302748d2007-03-30 17:20:39 +00006584 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Zhou Sheng90b96812007-03-30 05:45:18 +00006585 return BinaryOperator::createAnd(X, ConstantInt::get(
6586 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
Chris Lattner150f12a2005-09-18 06:30:59 +00006587 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00006588
Chris Lattner150f12a2005-09-18 06:30:59 +00006589 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
Reid Spencera07cb7d2007-02-02 14:41:37 +00006590 Value *Op0BOOp1 = Op0BO->getOperand(1);
Chris Lattner3c698492007-03-05 00:11:19 +00006591 if (isLeftShift && Op0BOOp1->hasOneUse() &&
Reid Spencera07cb7d2007-02-02 14:41:37 +00006592 match(Op0BOOp1,
6593 m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
Chris Lattner3c698492007-03-05 00:11:19 +00006594 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
6595 V2 == Op1) {
Reid Spencercc46cdb2007-02-02 14:08:20 +00006596 Instruction *YS = BinaryOperator::createShl(
Reid Spencer832254e2007-02-02 02:16:23 +00006597 Op0BO->getOperand(0), Op1,
6598 Op0BO->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00006599 InsertNewInstBefore(YS, I); // (Y << C)
6600 Instruction *XM =
Chris Lattner4d5542c2006-01-06 07:12:35 +00006601 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner150f12a2005-09-18 06:30:59 +00006602 V1->getName()+".mask");
6603 InsertNewInstBefore(XM, I); // X & (CC << C)
6604
6605 return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
6606 }
Reid Spencera07cb7d2007-02-02 14:41:37 +00006607 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00006608
Reid Spencera07cb7d2007-02-02 14:41:37 +00006609 // FALL THROUGH.
6610 case Instruction::Sub: {
Chris Lattner11021cb2005-09-18 05:12:10 +00006611 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner150f12a2005-09-18 06:30:59 +00006612 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6613 match(Op0BO->getOperand(0),
Chris Lattner4d5542c2006-01-06 07:12:35 +00006614 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Reid Spencercc46cdb2007-02-02 14:08:20 +00006615 Instruction *YS = BinaryOperator::createShl(
Reid Spencer832254e2007-02-02 02:16:23 +00006616 Op0BO->getOperand(1), Op1,
6617 Op0BO->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00006618 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner9a4cacb2006-02-09 07:41:14 +00006619 Instruction *X =
Chris Lattner13d4ab42006-05-31 21:14:00 +00006620 BinaryOperator::create(Op0BO->getOpcode(), V1, YS,
Chris Lattner9a4cacb2006-02-09 07:41:14 +00006621 Op0BO->getOperand(0)->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00006622 InsertNewInstBefore(X, I); // (X + (Y << C))
Zhou Sheng302748d2007-03-30 17:20:39 +00006623 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Zhou Sheng90b96812007-03-30 05:45:18 +00006624 return BinaryOperator::createAnd(X, ConstantInt::get(
6625 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
Chris Lattner150f12a2005-09-18 06:30:59 +00006626 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00006627
Chris Lattner13d4ab42006-05-31 21:14:00 +00006628 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
Chris Lattner150f12a2005-09-18 06:30:59 +00006629 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6630 match(Op0BO->getOperand(0),
6631 m_And(m_Shr(m_Value(V1), m_Value(V2)),
Chris Lattner4d5542c2006-01-06 07:12:35 +00006632 m_ConstantInt(CC))) && V2 == Op1 &&
Chris Lattner9a4cacb2006-02-09 07:41:14 +00006633 cast<BinaryOperator>(Op0BO->getOperand(0))
6634 ->getOperand(0)->hasOneUse()) {
Reid Spencercc46cdb2007-02-02 14:08:20 +00006635 Instruction *YS = BinaryOperator::createShl(
Reid Spencer832254e2007-02-02 02:16:23 +00006636 Op0BO->getOperand(1), Op1,
6637 Op0BO->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00006638 InsertNewInstBefore(YS, I); // (Y << C)
6639 Instruction *XM =
Chris Lattner4d5542c2006-01-06 07:12:35 +00006640 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner150f12a2005-09-18 06:30:59 +00006641 V1->getName()+".mask");
6642 InsertNewInstBefore(XM, I); // X & (CC << C)
6643
Chris Lattner13d4ab42006-05-31 21:14:00 +00006644 return BinaryOperator::create(Op0BO->getOpcode(), XM, YS);
Chris Lattner150f12a2005-09-18 06:30:59 +00006645 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00006646
Chris Lattner11021cb2005-09-18 05:12:10 +00006647 break;
Reid Spencera07cb7d2007-02-02 14:41:37 +00006648 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00006649 }
6650
6651
6652 // If the operand is an bitwise operator with a constant RHS, and the
6653 // shift is the only use, we can pull it out of the shift.
6654 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
6655 bool isValid = true; // Valid only for And, Or, Xor
6656 bool highBitSet = false; // Transform if high bit of constant set?
6657
6658 switch (Op0BO->getOpcode()) {
Chris Lattnerdf17af12003-08-12 21:53:41 +00006659 default: isValid = false; break; // Do not perform transform!
Chris Lattner1f7e1602004-10-08 03:46:20 +00006660 case Instruction::Add:
6661 isValid = isLeftShift;
6662 break;
Chris Lattnerdf17af12003-08-12 21:53:41 +00006663 case Instruction::Or:
6664 case Instruction::Xor:
6665 highBitSet = false;
6666 break;
6667 case Instruction::And:
6668 highBitSet = true;
6669 break;
Chris Lattner4d5542c2006-01-06 07:12:35 +00006670 }
6671
6672 // If this is a signed shift right, and the high bit is modified
6673 // by the logical operation, do not perform the transformation.
6674 // The highBitSet boolean indicates the value of the high bit of
6675 // the constant which would cause it to be modified for this
6676 // operation.
6677 //
Chris Lattnerc95ba442007-12-06 06:25:04 +00006678 if (isValid && I.getOpcode() == Instruction::AShr)
Zhou Shenge9e03f62007-03-28 15:02:20 +00006679 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Chris Lattner4d5542c2006-01-06 07:12:35 +00006680
6681 if (isValid) {
6682 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
6683
6684 Instruction *NewShift =
Chris Lattner6934a042007-02-11 01:23:03 +00006685 BinaryOperator::create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Chris Lattner4d5542c2006-01-06 07:12:35 +00006686 InsertNewInstBefore(NewShift, I);
Chris Lattner6934a042007-02-11 01:23:03 +00006687 NewShift->takeName(Op0BO);
Chris Lattner4d5542c2006-01-06 07:12:35 +00006688
6689 return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
6690 NewRHS);
6691 }
6692 }
6693 }
6694 }
6695
Chris Lattnerad0124c2006-01-06 07:52:12 +00006696 // Find out if this is a shift of a shift by a constant.
Reid Spencer832254e2007-02-02 02:16:23 +00006697 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
6698 if (ShiftOp && !ShiftOp->isShift())
6699 ShiftOp = 0;
Chris Lattnerad0124c2006-01-06 07:52:12 +00006700
Reid Spencerb83eb642006-10-20 07:07:24 +00006701 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
Reid Spencerb83eb642006-10-20 07:07:24 +00006702 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00006703 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
6704 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
Chris Lattnerb87056f2007-02-05 00:57:54 +00006705 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
6706 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
6707 Value *X = ShiftOp->getOperand(0);
Chris Lattnerad0124c2006-01-06 07:52:12 +00006708
Zhou Sheng4351c642007-04-02 08:20:41 +00006709 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
Reid Spencerb35ae032007-03-23 18:46:34 +00006710 if (AmtSum > TypeBits)
6711 AmtSum = TypeBits;
Chris Lattnerb87056f2007-02-05 00:57:54 +00006712
6713 const IntegerType *Ty = cast<IntegerType>(I.getType());
6714
6715 // Check for (X << c1) << c2 and (X >> c1) >> c2
Chris Lattner7f3da2d2007-02-03 23:28:07 +00006716 if (I.getOpcode() == ShiftOp->getOpcode()) {
Chris Lattnerb87056f2007-02-05 00:57:54 +00006717 return BinaryOperator::create(I.getOpcode(), X,
6718 ConstantInt::get(Ty, AmtSum));
6719 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
6720 I.getOpcode() == Instruction::AShr) {
6721 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
6722 return BinaryOperator::createLShr(X, ConstantInt::get(Ty, AmtSum));
6723 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
6724 I.getOpcode() == Instruction::LShr) {
6725 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
6726 Instruction *Shift =
6727 BinaryOperator::createAShr(X, ConstantInt::get(Ty, AmtSum));
6728 InsertNewInstBefore(Shift, I);
6729
Zhou Shenge9e03f62007-03-28 15:02:20 +00006730 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Reid Spencerb35ae032007-03-23 18:46:34 +00006731 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
Chris Lattnerad0124c2006-01-06 07:52:12 +00006732 }
6733
Chris Lattnerb87056f2007-02-05 00:57:54 +00006734 // Okay, if we get here, one shift must be left, and the other shift must be
6735 // right. See if the amounts are equal.
6736 if (ShiftAmt1 == ShiftAmt2) {
6737 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
6738 if (I.getOpcode() == Instruction::Shl) {
Reid Spencer55702aa2007-03-25 21:11:44 +00006739 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Reid Spencerb35ae032007-03-23 18:46:34 +00006740 return BinaryOperator::createAnd(X, ConstantInt::get(Mask));
Chris Lattnerb87056f2007-02-05 00:57:54 +00006741 }
6742 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
6743 if (I.getOpcode() == Instruction::LShr) {
Zhou Sheng3a507fd2007-04-01 17:13:37 +00006744 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Reid Spencerb35ae032007-03-23 18:46:34 +00006745 return BinaryOperator::createAnd(X, ConstantInt::get(Mask));
Chris Lattnerb87056f2007-02-05 00:57:54 +00006746 }
6747 // We can simplify ((X << C) >>s C) into a trunc + sext.
6748 // NOTE: we could do this for any C, but that would make 'unusual' integer
6749 // types. For now, just stick to ones well-supported by the code
6750 // generators.
6751 const Type *SExtType = 0;
6752 switch (Ty->getBitWidth() - ShiftAmt1) {
Zhou Shenge9e03f62007-03-28 15:02:20 +00006753 case 1 :
6754 case 8 :
6755 case 16 :
6756 case 32 :
6757 case 64 :
6758 case 128:
6759 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
6760 break;
Chris Lattnerb87056f2007-02-05 00:57:54 +00006761 default: break;
6762 }
6763 if (SExtType) {
6764 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
6765 InsertNewInstBefore(NewTrunc, I);
6766 return new SExtInst(NewTrunc, Ty);
6767 }
6768 // Otherwise, we can't handle it yet.
6769 } else if (ShiftAmt1 < ShiftAmt2) {
Zhou Sheng4351c642007-04-02 08:20:41 +00006770 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
Chris Lattnerad0124c2006-01-06 07:52:12 +00006771
Chris Lattnerb0b991a2007-02-05 05:57:49 +00006772 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
Chris Lattnerb87056f2007-02-05 00:57:54 +00006773 if (I.getOpcode() == Instruction::Shl) {
6774 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6775 ShiftOp->getOpcode() == Instruction::AShr);
Chris Lattnere8d56c52006-01-07 01:32:28 +00006776 Instruction *Shift =
Chris Lattnerb87056f2007-02-05 00:57:54 +00006777 BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
Chris Lattnere8d56c52006-01-07 01:32:28 +00006778 InsertNewInstBefore(Shift, I);
6779
Reid Spencer55702aa2007-03-25 21:11:44 +00006780 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
6781 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
Chris Lattnerad0124c2006-01-06 07:52:12 +00006782 }
Chris Lattnerb87056f2007-02-05 00:57:54 +00006783
Chris Lattnerb0b991a2007-02-05 05:57:49 +00006784 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
Chris Lattnerb87056f2007-02-05 00:57:54 +00006785 if (I.getOpcode() == Instruction::LShr) {
6786 assert(ShiftOp->getOpcode() == Instruction::Shl);
6787 Instruction *Shift =
6788 BinaryOperator::createLShr(X, ConstantInt::get(Ty, ShiftDiff));
6789 InsertNewInstBefore(Shift, I);
Chris Lattnerad0124c2006-01-06 07:52:12 +00006790
Reid Spencerd5e30f02007-03-26 17:18:58 +00006791 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Reid Spencerb35ae032007-03-23 18:46:34 +00006792 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
Chris Lattner11021cb2005-09-18 05:12:10 +00006793 }
Chris Lattnerb87056f2007-02-05 00:57:54 +00006794
6795 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
6796 } else {
6797 assert(ShiftAmt2 < ShiftAmt1);
Zhou Sheng4351c642007-04-02 08:20:41 +00006798 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
Chris Lattnerb87056f2007-02-05 00:57:54 +00006799
Chris Lattnerb0b991a2007-02-05 05:57:49 +00006800 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
Chris Lattnerb87056f2007-02-05 00:57:54 +00006801 if (I.getOpcode() == Instruction::Shl) {
6802 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6803 ShiftOp->getOpcode() == Instruction::AShr);
6804 Instruction *Shift =
6805 BinaryOperator::create(ShiftOp->getOpcode(), X,
6806 ConstantInt::get(Ty, ShiftDiff));
6807 InsertNewInstBefore(Shift, I);
6808
Reid Spencer55702aa2007-03-25 21:11:44 +00006809 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Reid Spencerb35ae032007-03-23 18:46:34 +00006810 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
Chris Lattnerb87056f2007-02-05 00:57:54 +00006811 }
6812
Chris Lattnerb0b991a2007-02-05 05:57:49 +00006813 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
Chris Lattnerb87056f2007-02-05 00:57:54 +00006814 if (I.getOpcode() == Instruction::LShr) {
6815 assert(ShiftOp->getOpcode() == Instruction::Shl);
6816 Instruction *Shift =
6817 BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
6818 InsertNewInstBefore(Shift, I);
6819
Reid Spencer68d27cf2007-03-26 23:45:51 +00006820 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Reid Spencerb35ae032007-03-23 18:46:34 +00006821 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
Chris Lattnerb87056f2007-02-05 00:57:54 +00006822 }
6823
6824 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
Chris Lattner6e7ba452005-01-01 16:22:27 +00006825 }
Chris Lattnerad0124c2006-01-06 07:52:12 +00006826 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00006827 return 0;
6828}
6829
Chris Lattnera1be5662002-05-02 17:06:02 +00006830
Chris Lattnercfd65102005-10-29 04:36:15 +00006831/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
6832/// expression. If so, decompose it, returning some value X, such that Val is
6833/// X*Scale+Offset.
6834///
6835static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
Jeff Cohen86796be2007-04-04 16:58:57 +00006836 int &Offset) {
Reid Spencerc5b206b2006-12-31 05:48:39 +00006837 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
Reid Spencerb83eb642006-10-20 07:07:24 +00006838 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
Reid Spencerc5b206b2006-12-31 05:48:39 +00006839 Offset = CI->getZExtValue();
Chris Lattner6a94de22007-10-12 05:30:59 +00006840 Scale = 0;
Reid Spencerc5b206b2006-12-31 05:48:39 +00006841 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattner6a94de22007-10-12 05:30:59 +00006842 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
6843 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
6844 if (I->getOpcode() == Instruction::Shl) {
6845 // This is a value scaled by '1 << the shift amt'.
6846 Scale = 1U << RHS->getZExtValue();
6847 Offset = 0;
6848 return I->getOperand(0);
6849 } else if (I->getOpcode() == Instruction::Mul) {
6850 // This value is scaled by 'RHS'.
6851 Scale = RHS->getZExtValue();
6852 Offset = 0;
6853 return I->getOperand(0);
6854 } else if (I->getOpcode() == Instruction::Add) {
6855 // We have X+C. Check to see if we really have (X*C2)+C1,
6856 // where C1 is divisible by C2.
6857 unsigned SubScale;
6858 Value *SubVal =
6859 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
6860 Offset += RHS->getZExtValue();
6861 Scale = SubScale;
6862 return SubVal;
Chris Lattnercfd65102005-10-29 04:36:15 +00006863 }
6864 }
6865 }
6866
6867 // Otherwise, we can't look past this.
6868 Scale = 1;
6869 Offset = 0;
6870 return Val;
6871}
6872
6873
Chris Lattnerb3f83972005-10-24 06:03:58 +00006874/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
6875/// try to eliminate the cast by moving the type information into the alloc.
Chris Lattnerd3e28342007-04-27 17:44:50 +00006876Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
Chris Lattnerb3f83972005-10-24 06:03:58 +00006877 AllocationInst &AI) {
Chris Lattnerd3e28342007-04-27 17:44:50 +00006878 const PointerType *PTy = cast<PointerType>(CI.getType());
Chris Lattnerb3f83972005-10-24 06:03:58 +00006879
Chris Lattnerb53c2382005-10-24 06:22:12 +00006880 // Remove any uses of AI that are dead.
6881 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
Chris Lattner535014f2007-02-15 22:52:10 +00006882
Chris Lattnerb53c2382005-10-24 06:22:12 +00006883 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
6884 Instruction *User = cast<Instruction>(*UI++);
6885 if (isInstructionTriviallyDead(User)) {
6886 while (UI != E && *UI == User)
6887 ++UI; // If this instruction uses AI more than once, don't break UI.
6888
Chris Lattnerb53c2382005-10-24 06:22:12 +00006889 ++NumDeadInst;
Bill Wendlingb7427032006-11-26 09:46:52 +00006890 DOUT << "IC: DCE: " << *User;
Chris Lattnerf22a5c62007-03-02 19:59:19 +00006891 EraseInstFromFunction(*User);
Chris Lattnerb53c2382005-10-24 06:22:12 +00006892 }
6893 }
6894
Chris Lattnerb3f83972005-10-24 06:03:58 +00006895 // Get the type really allocated and the type casted to.
6896 const Type *AllocElTy = AI.getAllocatedType();
6897 const Type *CastElTy = PTy->getElementType();
6898 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
Chris Lattner18e78bb2005-10-24 06:26:18 +00006899
Chris Lattnerd2b7cec2007-02-14 05:52:17 +00006900 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
6901 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
Chris Lattner18e78bb2005-10-24 06:26:18 +00006902 if (CastElTyAlign < AllocElTyAlign) return 0;
6903
Chris Lattner39387a52005-10-24 06:35:18 +00006904 // If the allocation has multiple uses, only promote it if we are strictly
6905 // increasing the alignment of the resultant allocation. If we keep it the
6906 // same, we open the door to infinite loops of various kinds.
6907 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
6908
Duncan Sands514ab342007-11-01 20:53:16 +00006909 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
6910 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Chris Lattner0ddac2a2005-10-27 05:53:56 +00006911 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
Chris Lattner18e78bb2005-10-24 06:26:18 +00006912
Chris Lattner455fcc82005-10-29 03:19:53 +00006913 // See if we can satisfy the modulus by pulling a scale out of the array
6914 // size argument.
Jeff Cohen86796be2007-04-04 16:58:57 +00006915 unsigned ArraySizeScale;
6916 int ArrayOffset;
Chris Lattnercfd65102005-10-29 04:36:15 +00006917 Value *NumElements = // See if the array size is a decomposable linear expr.
6918 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
6919
Chris Lattner455fcc82005-10-29 03:19:53 +00006920 // If we can now satisfy the modulus, by using a non-1 scale, we really can
6921 // do the xform.
Chris Lattnercfd65102005-10-29 04:36:15 +00006922 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
6923 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
Chris Lattner8142b0a2005-10-27 06:12:00 +00006924
Chris Lattner455fcc82005-10-29 03:19:53 +00006925 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
6926 Value *Amt = 0;
6927 if (Scale == 1) {
6928 Amt = NumElements;
6929 } else {
Reid Spencerb83eb642006-10-20 07:07:24 +00006930 // If the allocation size is constant, form a constant mul expression
Reid Spencerc5b206b2006-12-31 05:48:39 +00006931 Amt = ConstantInt::get(Type::Int32Ty, Scale);
6932 if (isa<ConstantInt>(NumElements))
Zhou Sheng4a1822a2007-04-02 13:45:30 +00006933 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
Reid Spencerb83eb642006-10-20 07:07:24 +00006934 // otherwise multiply the amount and the number of elements
Chris Lattner455fcc82005-10-29 03:19:53 +00006935 else if (Scale != 1) {
6936 Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp");
6937 Amt = InsertNewInstBefore(Tmp, AI);
Chris Lattner8142b0a2005-10-27 06:12:00 +00006938 }
Chris Lattner0ddac2a2005-10-27 05:53:56 +00006939 }
6940
Jeff Cohen86796be2007-04-04 16:58:57 +00006941 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
6942 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Chris Lattnercfd65102005-10-29 04:36:15 +00006943 Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp");
6944 Amt = InsertNewInstBefore(Tmp, AI);
6945 }
6946
Chris Lattnerb3f83972005-10-24 06:03:58 +00006947 AllocationInst *New;
6948 if (isa<MallocInst>(AI))
Chris Lattner6934a042007-02-11 01:23:03 +00006949 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
Chris Lattnerb3f83972005-10-24 06:03:58 +00006950 else
Chris Lattner6934a042007-02-11 01:23:03 +00006951 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
Chris Lattnerb3f83972005-10-24 06:03:58 +00006952 InsertNewInstBefore(New, AI);
Chris Lattner6934a042007-02-11 01:23:03 +00006953 New->takeName(&AI);
Chris Lattner39387a52005-10-24 06:35:18 +00006954
6955 // If the allocation has multiple uses, insert a cast and change all things
6956 // that used it to use the new cast. This will also hack on CI, but it will
6957 // die soon.
6958 if (!AI.hasOneUse()) {
6959 AddUsesToWorkList(AI);
Reid Spencer3da59db2006-11-27 01:05:10 +00006960 // New is the allocation instruction, pointer typed. AI is the original
6961 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
6962 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
Chris Lattner39387a52005-10-24 06:35:18 +00006963 InsertNewInstBefore(NewCast, AI);
6964 AI.replaceAllUsesWith(NewCast);
6965 }
Chris Lattnerb3f83972005-10-24 06:03:58 +00006966 return ReplaceInstUsesWith(CI, New);
6967}
6968
Chris Lattner70074e02006-05-13 02:06:03 +00006969/// CanEvaluateInDifferentType - Return true if we can take the specified value
Chris Lattnerc739cd62007-03-03 05:27:34 +00006970/// and return it as type Ty without inserting any new casts and without
6971/// changing the computed value. This is used by code that tries to decide
6972/// whether promoting or shrinking integer operations to wider or smaller types
6973/// will allow us to eliminate a truncate or extend.
6974///
6975/// This is a truncation operation if Ty is smaller than V->getType(), or an
6976/// extension operation if Ty is larger.
Dan Gohmaneee962e2008-04-10 18:43:06 +00006977bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
6978 unsigned CastOpc,
6979 int &NumCastsRemoved) {
Chris Lattnerc739cd62007-03-03 05:27:34 +00006980 // We can always evaluate constants in another type.
6981 if (isa<ConstantInt>(V))
6982 return true;
Chris Lattner70074e02006-05-13 02:06:03 +00006983
6984 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerc739cd62007-03-03 05:27:34 +00006985 if (!I) return false;
6986
6987 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
Chris Lattner70074e02006-05-13 02:06:03 +00006988
Chris Lattner951626b2007-08-02 06:11:14 +00006989 // If this is an extension or truncate, we can often eliminate it.
6990 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6991 // If this is a cast from the destination type, we can trivially eliminate
6992 // it, and this will remove a cast overall.
6993 if (I->getOperand(0)->getType() == Ty) {
6994 // If the first operand is itself a cast, and is eliminable, do not count
6995 // this as an eliminable cast. We would prefer to eliminate those two
6996 // casts first.
6997 if (!isa<CastInst>(I->getOperand(0)))
6998 ++NumCastsRemoved;
6999 return true;
7000 }
7001 }
7002
7003 // We can't extend or shrink something that has multiple uses: doing so would
7004 // require duplicating the instruction in general, which isn't profitable.
7005 if (!I->hasOneUse()) return false;
7006
Chris Lattner70074e02006-05-13 02:06:03 +00007007 switch (I->getOpcode()) {
Chris Lattnerc739cd62007-03-03 05:27:34 +00007008 case Instruction::Add:
7009 case Instruction::Sub:
Chris Lattner70074e02006-05-13 02:06:03 +00007010 case Instruction::And:
7011 case Instruction::Or:
7012 case Instruction::Xor:
7013 // These operators can all arbitrarily be extended or truncated.
Chris Lattner951626b2007-08-02 06:11:14 +00007014 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7015 NumCastsRemoved) &&
7016 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7017 NumCastsRemoved);
Chris Lattnerc739cd62007-03-03 05:27:34 +00007018
Nick Lewyckye6b0c002008-01-22 05:08:48 +00007019 case Instruction::Mul:
Nick Lewyckye6b0c002008-01-22 05:08:48 +00007020 // A multiply can be truncated by truncating its operands.
7021 return Ty->getBitWidth() < OrigTy->getBitWidth() &&
7022 CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7023 NumCastsRemoved) &&
7024 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7025 NumCastsRemoved);
7026
Chris Lattner46b96052006-11-29 07:18:39 +00007027 case Instruction::Shl:
Chris Lattnerc739cd62007-03-03 05:27:34 +00007028 // If we are truncating the result of this SHL, and if it's a shift of a
7029 // constant amount, we can always perform a SHL in a smaller type.
7030 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
Zhou Sheng302748d2007-03-30 17:20:39 +00007031 uint32_t BitWidth = Ty->getBitWidth();
7032 if (BitWidth < OrigTy->getBitWidth() &&
7033 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattner951626b2007-08-02 06:11:14 +00007034 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7035 NumCastsRemoved);
Chris Lattnerc739cd62007-03-03 05:27:34 +00007036 }
7037 break;
7038 case Instruction::LShr:
Chris Lattnerc739cd62007-03-03 05:27:34 +00007039 // If this is a truncate of a logical shr, we can truncate it to a smaller
7040 // lshr iff we know that the bits we would otherwise be shifting in are
7041 // already zeros.
7042 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
Zhou Sheng302748d2007-03-30 17:20:39 +00007043 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7044 uint32_t BitWidth = Ty->getBitWidth();
7045 if (BitWidth < OrigBitWidth &&
Chris Lattnerc739cd62007-03-03 05:27:34 +00007046 MaskedValueIsZero(I->getOperand(0),
Zhou Sheng302748d2007-03-30 17:20:39 +00007047 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7048 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattner951626b2007-08-02 06:11:14 +00007049 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7050 NumCastsRemoved);
Chris Lattnerc739cd62007-03-03 05:27:34 +00007051 }
7052 }
Chris Lattner46b96052006-11-29 07:18:39 +00007053 break;
Reid Spencer3da59db2006-11-27 01:05:10 +00007054 case Instruction::ZExt:
7055 case Instruction::SExt:
Chris Lattner951626b2007-08-02 06:11:14 +00007056 case Instruction::Trunc:
7057 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner5543a852007-08-02 17:23:38 +00007058 // can safely replace it. Note that replacing it does not reduce the number
7059 // of casts in the input.
7060 if (I->getOpcode() == CastOpc)
Chris Lattner70074e02006-05-13 02:06:03 +00007061 return true;
Chris Lattner50d9d772007-09-10 23:46:29 +00007062
Reid Spencer3da59db2006-11-27 01:05:10 +00007063 break;
7064 default:
Chris Lattner70074e02006-05-13 02:06:03 +00007065 // TODO: Can handle more cases here.
7066 break;
7067 }
7068
7069 return false;
7070}
7071
7072/// EvaluateInDifferentType - Given an expression that
7073/// CanEvaluateInDifferentType returns true for, actually insert the code to
7074/// evaluate the expression.
Reid Spencerc55b2432006-12-13 18:21:21 +00007075Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
Chris Lattnerc739cd62007-03-03 05:27:34 +00007076 bool isSigned) {
Chris Lattner70074e02006-05-13 02:06:03 +00007077 if (Constant *C = dyn_cast<Constant>(V))
Reid Spencerc55b2432006-12-13 18:21:21 +00007078 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
Chris Lattner70074e02006-05-13 02:06:03 +00007079
7080 // Otherwise, it must be an instruction.
7081 Instruction *I = cast<Instruction>(V);
Chris Lattner01859e82006-05-20 23:14:03 +00007082 Instruction *Res = 0;
Chris Lattner70074e02006-05-13 02:06:03 +00007083 switch (I->getOpcode()) {
Chris Lattnerc739cd62007-03-03 05:27:34 +00007084 case Instruction::Add:
7085 case Instruction::Sub:
Nick Lewyckye6b0c002008-01-22 05:08:48 +00007086 case Instruction::Mul:
Chris Lattner70074e02006-05-13 02:06:03 +00007087 case Instruction::And:
7088 case Instruction::Or:
Chris Lattnerc739cd62007-03-03 05:27:34 +00007089 case Instruction::Xor:
Chris Lattner46b96052006-11-29 07:18:39 +00007090 case Instruction::AShr:
7091 case Instruction::LShr:
7092 case Instruction::Shl: {
Reid Spencerc55b2432006-12-13 18:21:21 +00007093 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
Chris Lattnerc739cd62007-03-03 05:27:34 +00007094 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7095 Res = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(),
7096 LHS, RHS, I->getName());
Chris Lattner46b96052006-11-29 07:18:39 +00007097 break;
7098 }
Reid Spencer3da59db2006-11-27 01:05:10 +00007099 case Instruction::Trunc:
7100 case Instruction::ZExt:
7101 case Instruction::SExt:
Reid Spencer3da59db2006-11-27 01:05:10 +00007102 // If the source type of the cast is the type we're trying for then we can
Chris Lattner951626b2007-08-02 06:11:14 +00007103 // just return the source. There's no need to insert it because it is not
7104 // new.
Chris Lattner70074e02006-05-13 02:06:03 +00007105 if (I->getOperand(0)->getType() == Ty)
7106 return I->getOperand(0);
7107
Chris Lattner951626b2007-08-02 06:11:14 +00007108 // Otherwise, must be the same type of case, so just reinsert a new one.
7109 Res = CastInst::create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
7110 Ty, I->getName());
7111 break;
Reid Spencer3da59db2006-11-27 01:05:10 +00007112 default:
Chris Lattner70074e02006-05-13 02:06:03 +00007113 // TODO: Can handle more cases here.
7114 assert(0 && "Unreachable!");
7115 break;
7116 }
7117
7118 return InsertNewInstBefore(Res, *I);
7119}
7120
Reid Spencer3da59db2006-11-27 01:05:10 +00007121/// @brief Implement the transforms common to all CastInst visitors.
7122Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
Chris Lattner79d35b32003-06-23 21:59:52 +00007123 Value *Src = CI.getOperand(0);
7124
Dan Gohman23d9d272007-05-11 21:10:54 +00007125 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
Reid Spencer3da59db2006-11-27 01:05:10 +00007126 // eliminate it now.
Chris Lattner6e7ba452005-01-01 16:22:27 +00007127 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
Reid Spencer3da59db2006-11-27 01:05:10 +00007128 if (Instruction::CastOps opc =
7129 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7130 // The first cast (CSrc) is eliminable so we need to fix up or replace
7131 // the second cast (CI). CSrc will then have a good chance of being dead.
7132 return CastInst::create(opc, CSrc->getOperand(0), CI.getType());
Chris Lattner8fd217c2002-08-02 20:00:25 +00007133 }
7134 }
Chris Lattnera710ddc2004-05-25 04:29:21 +00007135
Reid Spencer3da59db2006-11-27 01:05:10 +00007136 // If we are casting a select then fold the cast into the select
Chris Lattner6e7ba452005-01-01 16:22:27 +00007137 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7138 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7139 return NV;
Reid Spencer3da59db2006-11-27 01:05:10 +00007140
7141 // If we are casting a PHI then fold the cast into the PHI
Chris Lattner4e998b22004-09-29 05:07:12 +00007142 if (isa<PHINode>(Src))
7143 if (Instruction *NV = FoldOpIntoPhi(CI))
7144 return NV;
Chris Lattner9fb92132006-04-12 18:09:35 +00007145
Reid Spencer3da59db2006-11-27 01:05:10 +00007146 return 0;
7147}
7148
Chris Lattnerd3e28342007-04-27 17:44:50 +00007149/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7150Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7151 Value *Src = CI.getOperand(0);
7152
Chris Lattnerd3e28342007-04-27 17:44:50 +00007153 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
Chris Lattner9bc14642007-04-28 00:57:34 +00007154 // If casting the result of a getelementptr instruction with no offset, turn
7155 // this into a cast of the original pointer!
Chris Lattnerd3e28342007-04-27 17:44:50 +00007156 if (GEP->hasAllZeroIndices()) {
7157 // Changing the cast operand is usually not a good idea but it is safe
7158 // here because the pointer operand is being replaced with another
7159 // pointer operand so the opcode doesn't need to change.
Chris Lattner9bc14642007-04-28 00:57:34 +00007160 AddToWorkList(GEP);
Chris Lattnerd3e28342007-04-27 17:44:50 +00007161 CI.setOperand(0, GEP->getOperand(0));
7162 return &CI;
7163 }
Chris Lattner9bc14642007-04-28 00:57:34 +00007164
7165 // If the GEP has a single use, and the base pointer is a bitcast, and the
7166 // GEP computes a constant offset, see if we can convert these three
7167 // instructions into fewer. This typically happens with unions and other
7168 // non-type-safe code.
7169 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7170 if (GEP->hasAllConstantIndices()) {
7171 // We are guaranteed to get a constant from EmitGEPOffset.
7172 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7173 int64_t Offset = OffsetV->getSExtValue();
7174
7175 // Get the base pointer input of the bitcast, and the type it points to.
7176 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7177 const Type *GEPIdxTy =
7178 cast<PointerType>(OrigBase->getType())->getElementType();
7179 if (GEPIdxTy->isSized()) {
7180 SmallVector<Value*, 8> NewIndices;
7181
Chris Lattnerc42e2262007-05-05 01:59:31 +00007182 // Start with the index over the outer type. Note that the type size
7183 // might be zero (even if the offset isn't zero) if the indexed type
7184 // is something like [0 x {int, int}]
Chris Lattner9bc14642007-04-28 00:57:34 +00007185 const Type *IntPtrTy = TD->getIntPtrType();
Chris Lattnerc42e2262007-05-05 01:59:31 +00007186 int64_t FirstIdx = 0;
Duncan Sands514ab342007-11-01 20:53:16 +00007187 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Chris Lattnerc42e2262007-05-05 01:59:31 +00007188 FirstIdx = Offset/TySize;
7189 Offset %= TySize;
Chris Lattner9bc14642007-04-28 00:57:34 +00007190
Chris Lattnerc42e2262007-05-05 01:59:31 +00007191 // Handle silly modulus not returning values values [0..TySize).
7192 if (Offset < 0) {
7193 --FirstIdx;
7194 Offset += TySize;
7195 assert(Offset >= 0);
7196 }
Chris Lattnerd717c182007-05-05 22:32:24 +00007197 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
Chris Lattner9bc14642007-04-28 00:57:34 +00007198 }
7199
7200 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
Chris Lattner9bc14642007-04-28 00:57:34 +00007201
7202 // Index into the types. If we fail, set OrigBase to null.
7203 while (Offset) {
7204 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7205 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattner6b6aef82007-05-15 00:16:00 +00007206 if (Offset < (int64_t)SL->getSizeInBytes()) {
7207 unsigned Elt = SL->getElementContainingOffset(Offset);
7208 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
Chris Lattner9bc14642007-04-28 00:57:34 +00007209
Chris Lattner6b6aef82007-05-15 00:16:00 +00007210 Offset -= SL->getElementOffset(Elt);
7211 GEPIdxTy = STy->getElementType(Elt);
7212 } else {
7213 // Otherwise, we can't index into this, bail out.
7214 Offset = 0;
7215 OrigBase = 0;
7216 }
Chris Lattner9bc14642007-04-28 00:57:34 +00007217 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7218 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sands514ab342007-11-01 20:53:16 +00007219 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Chris Lattner6b6aef82007-05-15 00:16:00 +00007220 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7221 Offset %= EltSize;
7222 } else {
7223 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7224 }
Chris Lattner9bc14642007-04-28 00:57:34 +00007225 GEPIdxTy = STy->getElementType();
7226 } else {
7227 // Otherwise, we can't index into this, bail out.
7228 Offset = 0;
7229 OrigBase = 0;
7230 }
7231 }
7232 if (OrigBase) {
7233 // If we were able to index down into an element, create the GEP
7234 // and bitcast the result. This eliminates one bitcast, potentially
7235 // two.
Gabor Greif051a9502008-04-06 20:25:17 +00007236 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7237 NewIndices.begin(),
7238 NewIndices.end(), "");
Chris Lattner9bc14642007-04-28 00:57:34 +00007239 InsertNewInstBefore(NGEP, CI);
7240 NGEP->takeName(GEP);
7241
Chris Lattner9bc14642007-04-28 00:57:34 +00007242 if (isa<BitCastInst>(CI))
7243 return new BitCastInst(NGEP, CI.getType());
7244 assert(isa<PtrToIntInst>(CI));
7245 return new PtrToIntInst(NGEP, CI.getType());
7246 }
7247 }
7248 }
7249 }
Chris Lattnerd3e28342007-04-27 17:44:50 +00007250 }
7251
7252 return commonCastTransforms(CI);
7253}
7254
7255
7256
Chris Lattnerc739cd62007-03-03 05:27:34 +00007257/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7258/// integer types. This function implements the common transforms for all those
Reid Spencer3da59db2006-11-27 01:05:10 +00007259/// cases.
7260/// @brief Implement the transforms common to CastInst with integer operands
7261Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7262 if (Instruction *Result = commonCastTransforms(CI))
7263 return Result;
7264
7265 Value *Src = CI.getOperand(0);
7266 const Type *SrcTy = Src->getType();
7267 const Type *DestTy = CI.getType();
Zhou Sheng4351c642007-04-02 08:20:41 +00007268 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7269 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
Reid Spencer3da59db2006-11-27 01:05:10 +00007270
Reid Spencer3da59db2006-11-27 01:05:10 +00007271 // See if we can simplify any instructions used by the LHS whose sole
7272 // purpose is to compute bits we don't care about.
Reid Spencerad6676e2007-03-22 20:56:53 +00007273 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7274 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
Reid Spencer3da59db2006-11-27 01:05:10 +00007275 KnownZero, KnownOne))
7276 return &CI;
7277
7278 // If the source isn't an instruction or has more than one use then we
7279 // can't do anything more.
Reid Spencere4d87aa2006-12-23 06:05:41 +00007280 Instruction *SrcI = dyn_cast<Instruction>(Src);
7281 if (!SrcI || !Src->hasOneUse())
Reid Spencer3da59db2006-11-27 01:05:10 +00007282 return 0;
7283
Chris Lattnerc739cd62007-03-03 05:27:34 +00007284 // Attempt to propagate the cast into the instruction for int->int casts.
Reid Spencer3da59db2006-11-27 01:05:10 +00007285 int NumCastsRemoved = 0;
Chris Lattnerc739cd62007-03-03 05:27:34 +00007286 if (!isa<BitCastInst>(CI) &&
7287 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattner951626b2007-08-02 06:11:14 +00007288 CI.getOpcode(), NumCastsRemoved)) {
Reid Spencer3da59db2006-11-27 01:05:10 +00007289 // If this cast is a truncate, evaluting in a different type always
Chris Lattner951626b2007-08-02 06:11:14 +00007290 // eliminates the cast, so it is always a win. If this is a zero-extension,
7291 // we need to do an AND to maintain the clear top-part of the computation,
7292 // so we require that the input have eliminated at least one cast. If this
7293 // is a sign extension, we insert two new casts (to do the extension) so we
Reid Spencer3da59db2006-11-27 01:05:10 +00007294 // require that two casts have been eliminated.
Chris Lattnerc739cd62007-03-03 05:27:34 +00007295 bool DoXForm;
7296 switch (CI.getOpcode()) {
7297 default:
7298 // All the others use floating point so we shouldn't actually
7299 // get here because of the check above.
7300 assert(0 && "Unknown cast type");
7301 case Instruction::Trunc:
7302 DoXForm = true;
7303 break;
7304 case Instruction::ZExt:
7305 DoXForm = NumCastsRemoved >= 1;
7306 break;
7307 case Instruction::SExt:
7308 DoXForm = NumCastsRemoved >= 2;
7309 break;
Reid Spencer3da59db2006-11-27 01:05:10 +00007310 }
7311
7312 if (DoXForm) {
Reid Spencerc55b2432006-12-13 18:21:21 +00007313 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7314 CI.getOpcode() == Instruction::SExt);
Reid Spencer3da59db2006-11-27 01:05:10 +00007315 assert(Res->getType() == DestTy);
7316 switch (CI.getOpcode()) {
7317 default: assert(0 && "Unknown cast type!");
7318 case Instruction::Trunc:
7319 case Instruction::BitCast:
7320 // Just replace this cast with the result.
7321 return ReplaceInstUsesWith(CI, Res);
7322 case Instruction::ZExt: {
7323 // We need to emit an AND to clear the high bits.
7324 assert(SrcBitSize < DestBitSize && "Not a zext?");
Chris Lattnercd1d6d52007-04-02 05:48:58 +00007325 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7326 SrcBitSize));
Reid Spencer3da59db2006-11-27 01:05:10 +00007327 return BinaryOperator::createAnd(Res, C);
7328 }
7329 case Instruction::SExt:
7330 // We need to emit a cast to truncate, then a cast to sext.
7331 return CastInst::create(Instruction::SExt,
Reid Spencer17212df2006-12-12 09:18:51 +00007332 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7333 CI), DestTy);
Reid Spencer3da59db2006-11-27 01:05:10 +00007334 }
7335 }
7336 }
7337
7338 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7339 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7340
7341 switch (SrcI->getOpcode()) {
7342 case Instruction::Add:
7343 case Instruction::Mul:
7344 case Instruction::And:
7345 case Instruction::Or:
7346 case Instruction::Xor:
Chris Lattner01deb9d2007-04-03 17:43:25 +00007347 // If we are discarding information, rewrite.
Reid Spencer3da59db2006-11-27 01:05:10 +00007348 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7349 // Don't insert two casts if they cannot be eliminated. We allow
7350 // two casts to be inserted if the sizes are the same. This could
7351 // only be converting signedness, which is a noop.
7352 if (DestBitSize == SrcBitSize ||
Reid Spencere4d87aa2006-12-23 06:05:41 +00007353 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7354 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
Reid Spencer7eb76382006-12-13 17:19:09 +00007355 Instruction::CastOps opcode = CI.getOpcode();
Reid Spencer17212df2006-12-12 09:18:51 +00007356 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7357 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
7358 return BinaryOperator::create(
7359 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
Reid Spencer3da59db2006-11-27 01:05:10 +00007360 }
7361 }
7362
7363 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7364 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7365 SrcI->getOpcode() == Instruction::Xor &&
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00007366 Op1 == ConstantInt::getTrue() &&
Reid Spencere4d87aa2006-12-23 06:05:41 +00007367 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
Reid Spencer17212df2006-12-12 09:18:51 +00007368 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
Reid Spencer3da59db2006-11-27 01:05:10 +00007369 return BinaryOperator::createXor(New, ConstantInt::get(CI.getType(), 1));
7370 }
7371 break;
7372 case Instruction::SDiv:
7373 case Instruction::UDiv:
7374 case Instruction::SRem:
7375 case Instruction::URem:
7376 // If we are just changing the sign, rewrite.
7377 if (DestBitSize == SrcBitSize) {
7378 // Don't insert two casts if they cannot be eliminated. We allow
7379 // two casts to be inserted if the sizes are the same. This could
7380 // only be converting signedness, which is a noop.
Reid Spencere4d87aa2006-12-23 06:05:41 +00007381 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7382 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
Reid Spencer17212df2006-12-12 09:18:51 +00007383 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
7384 Op0, DestTy, SrcI);
7385 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
7386 Op1, DestTy, SrcI);
Reid Spencer3da59db2006-11-27 01:05:10 +00007387 return BinaryOperator::create(
7388 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7389 }
7390 }
7391 break;
7392
7393 case Instruction::Shl:
7394 // Allow changing the sign of the source operand. Do not allow
7395 // changing the size of the shift, UNLESS the shift amount is a
7396 // constant. We must not change variable sized shifts to a smaller
7397 // size, because it is undefined to shift more bits out than exist
7398 // in the value.
7399 if (DestBitSize == SrcBitSize ||
7400 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
Reid Spencer17212df2006-12-12 09:18:51 +00007401 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7402 Instruction::BitCast : Instruction::Trunc);
7403 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
Reid Spencer832254e2007-02-02 02:16:23 +00007404 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Reid Spencercc46cdb2007-02-02 14:08:20 +00007405 return BinaryOperator::createShl(Op0c, Op1c);
Reid Spencer3da59db2006-11-27 01:05:10 +00007406 }
7407 break;
7408 case Instruction::AShr:
7409 // If this is a signed shr, and if all bits shifted in are about to be
7410 // truncated off, turn it into an unsigned shr to allow greater
7411 // simplifications.
7412 if (DestBitSize < SrcBitSize &&
7413 isa<ConstantInt>(Op1)) {
Zhou Sheng302748d2007-03-30 17:20:39 +00007414 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
Reid Spencer3da59db2006-11-27 01:05:10 +00007415 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7416 // Insert the new logical shift right.
Reid Spencercc46cdb2007-02-02 14:08:20 +00007417 return BinaryOperator::createLShr(Op0, Op1);
Reid Spencer3da59db2006-11-27 01:05:10 +00007418 }
7419 }
7420 break;
Reid Spencer3da59db2006-11-27 01:05:10 +00007421 }
7422 return 0;
7423}
7424
Chris Lattner8a9f5712007-04-11 06:57:46 +00007425Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007426 if (Instruction *Result = commonIntCastTransforms(CI))
7427 return Result;
7428
7429 Value *Src = CI.getOperand(0);
7430 const Type *Ty = CI.getType();
Zhou Sheng4351c642007-04-02 08:20:41 +00007431 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7432 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007433
7434 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7435 switch (SrcI->getOpcode()) {
7436 default: break;
7437 case Instruction::LShr:
7438 // We can shrink lshr to something smaller if we know the bits shifted in
7439 // are already zeros.
7440 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
Zhou Sheng302748d2007-03-30 17:20:39 +00007441 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007442
7443 // Get a mask for the bits shifting in.
Zhou Shenge82fca02007-03-28 09:19:01 +00007444 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
Reid Spencer17212df2006-12-12 09:18:51 +00007445 Value* SrcIOp0 = SrcI->getOperand(0);
7446 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007447 if (ShAmt >= DestBitWidth) // All zeros.
7448 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7449
7450 // Okay, we can shrink this. Truncate the input, then return a new
7451 // shift.
Reid Spencer832254e2007-02-02 02:16:23 +00007452 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7453 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7454 Ty, CI);
Reid Spencercc46cdb2007-02-02 14:08:20 +00007455 return BinaryOperator::createLShr(V1, V2);
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007456 }
Chris Lattnere13ab2a2006-12-05 01:26:29 +00007457 } else { // This is a variable shr.
7458
7459 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7460 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7461 // loop-invariant and CSE'd.
Reid Spencer4fe16d62007-01-11 18:21:29 +00007462 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
Chris Lattnere13ab2a2006-12-05 01:26:29 +00007463 Value *One = ConstantInt::get(SrcI->getType(), 1);
7464
Reid Spencer832254e2007-02-02 02:16:23 +00007465 Value *V = InsertNewInstBefore(
Reid Spencercc46cdb2007-02-02 14:08:20 +00007466 BinaryOperator::createShl(One, SrcI->getOperand(1),
Reid Spencer832254e2007-02-02 02:16:23 +00007467 "tmp"), CI);
Chris Lattnere13ab2a2006-12-05 01:26:29 +00007468 V = InsertNewInstBefore(BinaryOperator::createAnd(V,
7469 SrcI->getOperand(0),
7470 "tmp"), CI);
7471 Value *Zero = Constant::getNullValue(V->getType());
Reid Spencere4d87aa2006-12-23 06:05:41 +00007472 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
Chris Lattnere13ab2a2006-12-05 01:26:29 +00007473 }
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007474 }
7475 break;
7476 }
7477 }
7478
7479 return 0;
Reid Spencer3da59db2006-11-27 01:05:10 +00007480}
7481
Evan Chengb98a10e2008-03-24 00:21:34 +00007482/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
7483/// in order to eliminate the icmp.
7484Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
7485 bool DoXform) {
7486 // If we are just checking for a icmp eq of a single bit and zext'ing it
7487 // to an integer, then shift the bit to the appropriate place and then
7488 // cast to integer to avoid the comparison.
7489 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7490 const APInt &Op1CV = Op1C->getValue();
7491
7492 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
7493 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
7494 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7495 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
7496 if (!DoXform) return ICI;
7497
7498 Value *In = ICI->getOperand(0);
7499 Value *Sh = ConstantInt::get(In->getType(),
7500 In->getType()->getPrimitiveSizeInBits()-1);
7501 In = InsertNewInstBefore(BinaryOperator::createLShr(In, Sh,
7502 In->getName()+".lobit"),
7503 CI);
7504 if (In->getType() != CI.getType())
7505 In = CastInst::createIntegerCast(In, CI.getType(),
7506 false/*ZExt*/, "tmp", &CI);
7507
7508 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
7509 Constant *One = ConstantInt::get(In->getType(), 1);
7510 In = InsertNewInstBefore(BinaryOperator::createXor(In, One,
7511 In->getName()+".not"),
7512 CI);
7513 }
7514
7515 return ReplaceInstUsesWith(CI, In);
7516 }
7517
7518
7519
7520 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
7521 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7522 // zext (X == 1) to i32 --> X iff X has only the low bit set.
7523 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
7524 // zext (X != 0) to i32 --> X iff X has only the low bit set.
7525 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
7526 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
7527 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7528 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
7529 // This only works for EQ and NE
7530 ICI->isEquality()) {
7531 // If Op1C some other power of two, convert:
7532 uint32_t BitWidth = Op1C->getType()->getBitWidth();
7533 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
7534 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
7535 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
7536
7537 APInt KnownZeroMask(~KnownZero);
7538 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
7539 if (!DoXform) return ICI;
7540
7541 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
7542 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
7543 // (X&4) == 2 --> false
7544 // (X&4) != 2 --> true
7545 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
7546 Res = ConstantExpr::getZExt(Res, CI.getType());
7547 return ReplaceInstUsesWith(CI, Res);
7548 }
7549
7550 uint32_t ShiftAmt = KnownZeroMask.logBase2();
7551 Value *In = ICI->getOperand(0);
7552 if (ShiftAmt) {
7553 // Perform a logical shr by shiftamt.
7554 // Insert the shift to put the result in the low bit.
7555 In = InsertNewInstBefore(BinaryOperator::createLShr(In,
7556 ConstantInt::get(In->getType(), ShiftAmt),
7557 In->getName()+".lobit"), CI);
7558 }
7559
7560 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
7561 Constant *One = ConstantInt::get(In->getType(), 1);
7562 In = BinaryOperator::createXor(In, One, "tmp");
7563 InsertNewInstBefore(cast<Instruction>(In), CI);
7564 }
7565
7566 if (CI.getType() == In->getType())
7567 return ReplaceInstUsesWith(CI, In);
7568 else
7569 return CastInst::createIntegerCast(In, CI.getType(), false/*ZExt*/);
7570 }
7571 }
7572 }
7573
7574 return 0;
7575}
7576
Chris Lattner8a9f5712007-04-11 06:57:46 +00007577Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
Reid Spencer3da59db2006-11-27 01:05:10 +00007578 // If one of the common conversion will work ..
7579 if (Instruction *Result = commonIntCastTransforms(CI))
7580 return Result;
7581
7582 Value *Src = CI.getOperand(0);
7583
7584 // If this is a cast of a cast
7585 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
Reid Spencer3da59db2006-11-27 01:05:10 +00007586 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
7587 // types and if the sizes are just right we can convert this into a logical
7588 // 'and' which will be much cheaper than the pair of casts.
7589 if (isa<TruncInst>(CSrc)) {
7590 // Get the sizes of the types involved
7591 Value *A = CSrc->getOperand(0);
Zhou Sheng4351c642007-04-02 08:20:41 +00007592 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
7593 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
7594 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
Reid Spencer3da59db2006-11-27 01:05:10 +00007595 // If we're actually extending zero bits and the trunc is a no-op
7596 if (MidSize < DstSize && SrcSize == DstSize) {
7597 // Replace both of the casts with an And of the type mask.
Zhou Shenge82fca02007-03-28 09:19:01 +00007598 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
Reid Spencerad6676e2007-03-22 20:56:53 +00007599 Constant *AndConst = ConstantInt::get(AndValue);
Reid Spencer3da59db2006-11-27 01:05:10 +00007600 Instruction *And =
7601 BinaryOperator::createAnd(CSrc->getOperand(0), AndConst);
7602 // Unfortunately, if the type changed, we need to cast it back.
7603 if (And->getType() != CI.getType()) {
7604 And->setName(CSrc->getName()+".mask");
7605 InsertNewInstBefore(And, CI);
Reid Spencerd977d862006-12-12 23:36:14 +00007606 And = CastInst::createIntegerCast(And, CI.getType(), false/*ZExt*/);
Reid Spencer3da59db2006-11-27 01:05:10 +00007607 }
7608 return And;
7609 }
7610 }
7611 }
7612
Evan Chengb98a10e2008-03-24 00:21:34 +00007613 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
7614 return transformZExtICmp(ICI, CI);
Chris Lattnera2e2c9b2007-04-11 06:53:04 +00007615
Evan Chengb98a10e2008-03-24 00:21:34 +00007616 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
7617 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
7618 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
7619 // of the (zext icmp) will be transformed.
7620 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
7621 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
7622 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
7623 (transformZExtICmp(LHS, CI, false) ||
7624 transformZExtICmp(RHS, CI, false))) {
7625 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
7626 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
7627 return BinaryOperator::create(Instruction::Or, LCast, RCast);
Chris Lattner66bc3252007-04-11 05:45:39 +00007628 }
Evan Chengb98a10e2008-03-24 00:21:34 +00007629 }
7630
Reid Spencer3da59db2006-11-27 01:05:10 +00007631 return 0;
7632}
7633
Chris Lattner8a9f5712007-04-11 06:57:46 +00007634Instruction *InstCombiner::visitSExt(SExtInst &CI) {
Chris Lattnerba417832007-04-11 06:12:58 +00007635 if (Instruction *I = commonIntCastTransforms(CI))
7636 return I;
7637
Chris Lattner8a9f5712007-04-11 06:57:46 +00007638 Value *Src = CI.getOperand(0);
7639
7640 // sext (x <s 0) -> ashr x, 31 -> all ones if signed
7641 // sext (x >s -1) -> ashr x, 31 -> all ones if not signed
7642 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) {
7643 // If we are just checking for a icmp eq of a single bit and zext'ing it
7644 // to an integer, then shift the bit to the appropriate place and then
7645 // cast to integer to avoid the comparison.
7646 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7647 const APInt &Op1CV = Op1C->getValue();
7648
7649 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
7650 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
7651 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7652 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){
7653 Value *In = ICI->getOperand(0);
7654 Value *Sh = ConstantInt::get(In->getType(),
7655 In->getType()->getPrimitiveSizeInBits()-1);
7656 In = InsertNewInstBefore(BinaryOperator::createAShr(In, Sh,
Chris Lattnere34e9a22007-04-14 23:32:02 +00007657 In->getName()+".lobit"),
Chris Lattner8a9f5712007-04-11 06:57:46 +00007658 CI);
7659 if (In->getType() != CI.getType())
7660 In = CastInst::createIntegerCast(In, CI.getType(),
7661 true/*SExt*/, "tmp", &CI);
7662
7663 if (ICI->getPredicate() == ICmpInst::ICMP_SGT)
7664 In = InsertNewInstBefore(BinaryOperator::createNot(In,
7665 In->getName()+".not"), CI);
7666
7667 return ReplaceInstUsesWith(CI, In);
7668 }
7669 }
7670 }
7671
Chris Lattnerba417832007-04-11 06:12:58 +00007672 return 0;
Reid Spencer3da59db2006-11-27 01:05:10 +00007673}
7674
Chris Lattnerb7530652008-01-27 05:29:54 +00007675/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
7676/// in the specified FP type without changing its value.
Chris Lattner02a260a2008-04-20 00:41:09 +00007677static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Chris Lattnerb7530652008-01-27 05:29:54 +00007678 APFloat F = CFP->getValueAPF();
7679 if (F.convert(Sem, APFloat::rmNearestTiesToEven) == APFloat::opOK)
Chris Lattner02a260a2008-04-20 00:41:09 +00007680 return ConstantFP::get(F);
Chris Lattnerb7530652008-01-27 05:29:54 +00007681 return 0;
7682}
7683
7684/// LookThroughFPExtensions - If this is an fp extension instruction, look
7685/// through it until we get the source value.
7686static Value *LookThroughFPExtensions(Value *V) {
7687 if (Instruction *I = dyn_cast<Instruction>(V))
7688 if (I->getOpcode() == Instruction::FPExt)
7689 return LookThroughFPExtensions(I->getOperand(0));
7690
7691 // If this value is a constant, return the constant in the smallest FP type
7692 // that can accurately represent it. This allows us to turn
7693 // (float)((double)X+2.0) into x+2.0f.
7694 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
7695 if (CFP->getType() == Type::PPC_FP128Ty)
7696 return V; // No constant folding of this.
7697 // See if the value can be truncated to float and then reextended.
Chris Lattner02a260a2008-04-20 00:41:09 +00007698 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerb7530652008-01-27 05:29:54 +00007699 return V;
7700 if (CFP->getType() == Type::DoubleTy)
7701 return V; // Won't shrink.
Chris Lattner02a260a2008-04-20 00:41:09 +00007702 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerb7530652008-01-27 05:29:54 +00007703 return V;
7704 // Don't try to shrink to various long double types.
7705 }
7706
7707 return V;
7708}
7709
7710Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
7711 if (Instruction *I = commonCastTransforms(CI))
7712 return I;
7713
7714 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
7715 // smaller than the destination type, we can eliminate the truncate by doing
7716 // the add as the smaller type. This applies to add/sub/mul/div as well as
7717 // many builtins (sqrt, etc).
7718 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
7719 if (OpI && OpI->hasOneUse()) {
7720 switch (OpI->getOpcode()) {
7721 default: break;
7722 case Instruction::Add:
7723 case Instruction::Sub:
7724 case Instruction::Mul:
7725 case Instruction::FDiv:
7726 case Instruction::FRem:
7727 const Type *SrcTy = OpI->getType();
7728 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
7729 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
7730 if (LHSTrunc->getType() != SrcTy &&
7731 RHSTrunc->getType() != SrcTy) {
7732 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
7733 // If the source types were both smaller than the destination type of
7734 // the cast, do this xform.
7735 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
7736 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
7737 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
7738 CI.getType(), CI);
7739 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
7740 CI.getType(), CI);
7741 return BinaryOperator::create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
7742 }
7743 }
7744 break;
7745 }
7746 }
7747 return 0;
Reid Spencer3da59db2006-11-27 01:05:10 +00007748}
7749
7750Instruction *InstCombiner::visitFPExt(CastInst &CI) {
7751 return commonCastTransforms(CI);
7752}
7753
7754Instruction *InstCombiner::visitFPToUI(CastInst &CI) {
Reid Spencer44c030a2006-11-30 23:13:36 +00007755 return commonCastTransforms(CI);
Reid Spencer3da59db2006-11-27 01:05:10 +00007756}
7757
7758Instruction *InstCombiner::visitFPToSI(CastInst &CI) {
Reid Spencer44c030a2006-11-30 23:13:36 +00007759 return commonCastTransforms(CI);
Reid Spencer3da59db2006-11-27 01:05:10 +00007760}
7761
7762Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
7763 return commonCastTransforms(CI);
7764}
7765
7766Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
7767 return commonCastTransforms(CI);
7768}
7769
7770Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
Chris Lattnerd3e28342007-04-27 17:44:50 +00007771 return commonPointerCastTransforms(CI);
Reid Spencer3da59db2006-11-27 01:05:10 +00007772}
7773
Chris Lattnerf9d9e452008-01-08 07:23:51 +00007774Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
7775 if (Instruction *I = commonCastTransforms(CI))
7776 return I;
7777
7778 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
7779 if (!DestPointee->isSized()) return 0;
7780
7781 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
7782 ConstantInt *Cst;
7783 Value *X;
7784 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
7785 m_ConstantInt(Cst)))) {
7786 // If the source and destination operands have the same type, see if this
7787 // is a single-index GEP.
7788 if (X->getType() == CI.getType()) {
7789 // Get the size of the pointee type.
Bill Wendlingb9d4f8d2008-03-14 05:12:19 +00007790 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattnerf9d9e452008-01-08 07:23:51 +00007791
7792 // Convert the constant to intptr type.
7793 APInt Offset = Cst->getValue();
7794 Offset.sextOrTrunc(TD->getPointerSizeInBits());
7795
7796 // If Offset is evenly divisible by Size, we can do this xform.
7797 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
7798 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greif051a9502008-04-06 20:25:17 +00007799 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattnerf9d9e452008-01-08 07:23:51 +00007800 }
7801 }
7802 // TODO: Could handle other cases, e.g. where add is indexing into field of
7803 // struct etc.
7804 } else if (CI.getOperand(0)->hasOneUse() &&
7805 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
7806 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
7807 // "inttoptr+GEP" instead of "add+intptr".
7808
7809 // Get the size of the pointee type.
7810 uint64_t Size = TD->getABITypeSize(DestPointee);
7811
7812 // Convert the constant to intptr type.
7813 APInt Offset = Cst->getValue();
7814 Offset.sextOrTrunc(TD->getPointerSizeInBits());
7815
7816 // If Offset is evenly divisible by Size, we can do this xform.
7817 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
7818 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
7819
7820 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
7821 "tmp"), CI);
Gabor Greif051a9502008-04-06 20:25:17 +00007822 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattnerf9d9e452008-01-08 07:23:51 +00007823 }
7824 }
7825 return 0;
Reid Spencer3da59db2006-11-27 01:05:10 +00007826}
7827
Chris Lattnerd3e28342007-04-27 17:44:50 +00007828Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
Reid Spencer3da59db2006-11-27 01:05:10 +00007829 // If the operands are integer typed then apply the integer transforms,
7830 // otherwise just apply the common ones.
7831 Value *Src = CI.getOperand(0);
7832 const Type *SrcTy = Src->getType();
7833 const Type *DestTy = CI.getType();
7834
Chris Lattner42a75512007-01-15 02:27:26 +00007835 if (SrcTy->isInteger() && DestTy->isInteger()) {
Reid Spencer3da59db2006-11-27 01:05:10 +00007836 if (Instruction *Result = commonIntCastTransforms(CI))
7837 return Result;
Chris Lattnerd3e28342007-04-27 17:44:50 +00007838 } else if (isa<PointerType>(SrcTy)) {
7839 if (Instruction *I = commonPointerCastTransforms(CI))
7840 return I;
Reid Spencer3da59db2006-11-27 01:05:10 +00007841 } else {
7842 if (Instruction *Result = commonCastTransforms(CI))
7843 return Result;
7844 }
7845
7846
7847 // Get rid of casts from one type to the same type. These are useless and can
7848 // be replaced by the operand.
7849 if (DestTy == Src->getType())
7850 return ReplaceInstUsesWith(CI, Src);
7851
Reid Spencer3da59db2006-11-27 01:05:10 +00007852 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
Chris Lattnerd3e28342007-04-27 17:44:50 +00007853 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
7854 const Type *DstElTy = DstPTy->getElementType();
7855 const Type *SrcElTy = SrcPTy->getElementType();
7856
Nate Begeman83ad90a2008-03-31 00:22:16 +00007857 // If the address spaces don't match, don't eliminate the bitcast, which is
7858 // required for changing types.
7859 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
7860 return 0;
7861
Chris Lattnerd3e28342007-04-27 17:44:50 +00007862 // If we are casting a malloc or alloca to a pointer to a type of the same
7863 // size, rewrite the allocation instruction to allocate the "right" type.
7864 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
7865 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
7866 return V;
7867
Chris Lattnerd717c182007-05-05 22:32:24 +00007868 // If the source and destination are pointers, and this cast is equivalent
7869 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
Chris Lattnerd3e28342007-04-27 17:44:50 +00007870 // This can enhance SROA and other transforms that want type-safe pointers.
7871 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
7872 unsigned NumZeros = 0;
7873 while (SrcElTy != DstElTy &&
7874 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
7875 SrcElTy->getNumContainedTypes() /* not "{}" */) {
7876 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
7877 ++NumZeros;
7878 }
Chris Lattner4e998b22004-09-29 05:07:12 +00007879
Chris Lattnerd3e28342007-04-27 17:44:50 +00007880 // If we found a path from the src to dest, create the getelementptr now.
7881 if (SrcElTy == DstElTy) {
7882 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greif051a9502008-04-06 20:25:17 +00007883 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
7884 ((Instruction*) NULL));
Chris Lattner9fb92132006-04-12 18:09:35 +00007885 }
Reid Spencer3da59db2006-11-27 01:05:10 +00007886 }
Chris Lattner24c8e382003-07-24 17:35:25 +00007887
Reid Spencer3da59db2006-11-27 01:05:10 +00007888 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
7889 if (SVI->hasOneUse()) {
7890 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
7891 // a bitconvert to a vector with the same # elts.
Reid Spencer9d6565a2007-02-15 02:26:10 +00007892 if (isa<VectorType>(DestTy) &&
7893 cast<VectorType>(DestTy)->getNumElements() ==
Reid Spencer3da59db2006-11-27 01:05:10 +00007894 SVI->getType()->getNumElements()) {
7895 CastInst *Tmp;
7896 // If either of the operands is a cast from CI.getType(), then
7897 // evaluating the shuffle in the casted destination's type will allow
7898 // us to eliminate at least one cast.
7899 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
7900 Tmp->getOperand(0)->getType() == DestTy) ||
7901 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
7902 Tmp->getOperand(0)->getType() == DestTy)) {
Reid Spencer17212df2006-12-12 09:18:51 +00007903 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
7904 SVI->getOperand(0), DestTy, &CI);
7905 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
7906 SVI->getOperand(1), DestTy, &CI);
Reid Spencer3da59db2006-11-27 01:05:10 +00007907 // Return a new shuffle vector. Use the same element ID's, as we
7908 // know the vector types match #elts.
7909 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
Chris Lattner01575b72006-05-25 23:24:33 +00007910 }
7911 }
7912 }
7913 }
Chris Lattnerdd841ae2002-04-18 17:39:14 +00007914 return 0;
Chris Lattner8a2a3112001-12-14 16:52:21 +00007915}
7916
Chris Lattnere576b912004-04-09 23:46:01 +00007917/// GetSelectFoldableOperands - We want to turn code that looks like this:
7918/// %C = or %A, %B
7919/// %D = select %cond, %C, %A
7920/// into:
7921/// %C = select %cond, %B, 0
7922/// %D = or %A, %C
7923///
7924/// Assuming that the specified instruction is an operand to the select, return
7925/// a bitmask indicating which operands of this instruction are foldable if they
7926/// equal the other incoming value of the select.
7927///
7928static unsigned GetSelectFoldableOperands(Instruction *I) {
7929 switch (I->getOpcode()) {
7930 case Instruction::Add:
7931 case Instruction::Mul:
7932 case Instruction::And:
7933 case Instruction::Or:
7934 case Instruction::Xor:
7935 return 3; // Can fold through either operand.
7936 case Instruction::Sub: // Can only fold on the amount subtracted.
7937 case Instruction::Shl: // Can only fold on the shift amount.
Reid Spencer3822ff52006-11-08 06:47:33 +00007938 case Instruction::LShr:
7939 case Instruction::AShr:
Misha Brukmanfd939082005-04-21 23:48:37 +00007940 return 1;
Chris Lattnere576b912004-04-09 23:46:01 +00007941 default:
7942 return 0; // Cannot fold
7943 }
7944}
7945
7946/// GetSelectFoldableConstant - For the same transformation as the previous
7947/// function, return the identity constant that goes into the select.
7948static Constant *GetSelectFoldableConstant(Instruction *I) {
7949 switch (I->getOpcode()) {
7950 default: assert(0 && "This cannot happen!"); abort();
7951 case Instruction::Add:
7952 case Instruction::Sub:
7953 case Instruction::Or:
7954 case Instruction::Xor:
Chris Lattnere576b912004-04-09 23:46:01 +00007955 case Instruction::Shl:
Reid Spencer3822ff52006-11-08 06:47:33 +00007956 case Instruction::LShr:
7957 case Instruction::AShr:
Reid Spencer832254e2007-02-02 02:16:23 +00007958 return Constant::getNullValue(I->getType());
Chris Lattnere576b912004-04-09 23:46:01 +00007959 case Instruction::And:
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00007960 return Constant::getAllOnesValue(I->getType());
Chris Lattnere576b912004-04-09 23:46:01 +00007961 case Instruction::Mul:
7962 return ConstantInt::get(I->getType(), 1);
7963 }
7964}
7965
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00007966/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
7967/// have the same opcode and only one use each. Try to simplify this.
7968Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
7969 Instruction *FI) {
7970 if (TI->getNumOperands() == 1) {
7971 // If this is a non-volatile load or a cast from the same type,
7972 // merge.
Reid Spencer3da59db2006-11-27 01:05:10 +00007973 if (TI->isCast()) {
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00007974 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
7975 return 0;
7976 } else {
7977 return 0; // unknown unary op.
7978 }
Misha Brukmanfd939082005-04-21 23:48:37 +00007979
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00007980 // Fold this by inserting a select from the input values.
Gabor Greif051a9502008-04-06 20:25:17 +00007981 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
7982 FI->getOperand(0), SI.getName()+".v");
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00007983 InsertNewInstBefore(NewSI, SI);
Reid Spencer3da59db2006-11-27 01:05:10 +00007984 return CastInst::create(Instruction::CastOps(TI->getOpcode()), NewSI,
7985 TI->getType());
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00007986 }
7987
Reid Spencer832254e2007-02-02 02:16:23 +00007988 // Only handle binary operators here.
7989 if (!isa<BinaryOperator>(TI))
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00007990 return 0;
7991
7992 // Figure out if the operations have any operands in common.
7993 Value *MatchOp, *OtherOpT, *OtherOpF;
7994 bool MatchIsOpZero;
7995 if (TI->getOperand(0) == FI->getOperand(0)) {
7996 MatchOp = TI->getOperand(0);
7997 OtherOpT = TI->getOperand(1);
7998 OtherOpF = FI->getOperand(1);
7999 MatchIsOpZero = true;
8000 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8001 MatchOp = TI->getOperand(1);
8002 OtherOpT = TI->getOperand(0);
8003 OtherOpF = FI->getOperand(0);
8004 MatchIsOpZero = false;
8005 } else if (!TI->isCommutative()) {
8006 return 0;
8007 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8008 MatchOp = TI->getOperand(0);
8009 OtherOpT = TI->getOperand(1);
8010 OtherOpF = FI->getOperand(0);
8011 MatchIsOpZero = true;
8012 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8013 MatchOp = TI->getOperand(1);
8014 OtherOpT = TI->getOperand(0);
8015 OtherOpF = FI->getOperand(1);
8016 MatchIsOpZero = true;
8017 } else {
8018 return 0;
8019 }
8020
8021 // If we reach here, they do have operations in common.
Gabor Greif051a9502008-04-06 20:25:17 +00008022 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8023 OtherOpF, SI.getName()+".v");
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008024 InsertNewInstBefore(NewSI, SI);
8025
8026 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8027 if (MatchIsOpZero)
8028 return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI);
8029 else
8030 return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp);
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008031 }
Reid Spencera07cb7d2007-02-02 14:41:37 +00008032 assert(0 && "Shouldn't get here");
8033 return 0;
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008034}
8035
Chris Lattner3d69f462004-03-12 05:52:32 +00008036Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Chris Lattnerc32b30a2004-03-30 19:37:13 +00008037 Value *CondVal = SI.getCondition();
8038 Value *TrueVal = SI.getTrueValue();
8039 Value *FalseVal = SI.getFalseValue();
8040
8041 // select true, X, Y -> X
8042 // select false, X, Y -> Y
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00008043 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
Reid Spencer579dca12007-01-12 04:24:46 +00008044 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
Chris Lattnerc32b30a2004-03-30 19:37:13 +00008045
8046 // select C, X, X -> X
8047 if (TrueVal == FalseVal)
8048 return ReplaceInstUsesWith(SI, TrueVal);
8049
Chris Lattnere87597f2004-10-16 18:11:37 +00008050 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8051 return ReplaceInstUsesWith(SI, FalseVal);
8052 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8053 return ReplaceInstUsesWith(SI, TrueVal);
8054 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8055 if (isa<Constant>(TrueVal))
8056 return ReplaceInstUsesWith(SI, TrueVal);
8057 else
8058 return ReplaceInstUsesWith(SI, FalseVal);
8059 }
8060
Reid Spencer4fe16d62007-01-11 18:21:29 +00008061 if (SI.getType() == Type::Int1Ty) {
Reid Spencera54b7cb2007-01-12 07:05:14 +00008062 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
Reid Spencer579dca12007-01-12 04:24:46 +00008063 if (C->getZExtValue()) {
Chris Lattner0c199a72004-04-08 04:43:23 +00008064 // Change: A = select B, true, C --> A = or B, C
Chris Lattner48595f12004-06-10 02:07:29 +00008065 return BinaryOperator::createOr(CondVal, FalseVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00008066 } else {
8067 // Change: A = select B, false, C --> A = and !B, C
8068 Value *NotCond =
8069 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
8070 "not."+CondVal->getName()), SI);
Chris Lattner48595f12004-06-10 02:07:29 +00008071 return BinaryOperator::createAnd(NotCond, FalseVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00008072 }
Reid Spencera54b7cb2007-01-12 07:05:14 +00008073 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
Reid Spencer579dca12007-01-12 04:24:46 +00008074 if (C->getZExtValue() == false) {
Chris Lattner0c199a72004-04-08 04:43:23 +00008075 // Change: A = select B, C, false --> A = and B, C
Chris Lattner48595f12004-06-10 02:07:29 +00008076 return BinaryOperator::createAnd(CondVal, TrueVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00008077 } else {
8078 // Change: A = select B, C, true --> A = or !B, C
8079 Value *NotCond =
8080 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
8081 "not."+CondVal->getName()), SI);
Chris Lattner48595f12004-06-10 02:07:29 +00008082 return BinaryOperator::createOr(NotCond, TrueVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00008083 }
8084 }
Chris Lattnercfa59752007-11-25 21:27:53 +00008085
8086 // select a, b, a -> a&b
8087 // select a, a, b -> a|b
8088 if (CondVal == TrueVal)
8089 return BinaryOperator::createOr(CondVal, FalseVal);
8090 else if (CondVal == FalseVal)
8091 return BinaryOperator::createAnd(CondVal, TrueVal);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00008092 }
Chris Lattner0c199a72004-04-08 04:43:23 +00008093
Chris Lattner2eefe512004-04-09 19:05:30 +00008094 // Selecting between two integer constants?
8095 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8096 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
Chris Lattnerba417832007-04-11 06:12:58 +00008097 // select C, 1, 0 -> zext C to int
Reid Spencer2ec619a2007-03-23 21:24:59 +00008098 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Reid Spencer3da59db2006-11-27 01:05:10 +00008099 return CastInst::create(Instruction::ZExt, CondVal, SI.getType());
Reid Spencer2ec619a2007-03-23 21:24:59 +00008100 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
Chris Lattnerba417832007-04-11 06:12:58 +00008101 // select C, 0, 1 -> zext !C to int
Chris Lattner2eefe512004-04-09 19:05:30 +00008102 Value *NotCond =
8103 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
Chris Lattner82e14fe2004-04-09 18:19:44 +00008104 "not."+CondVal->getName()), SI);
Reid Spencer3da59db2006-11-27 01:05:10 +00008105 return CastInst::create(Instruction::ZExt, NotCond, SI.getType());
Chris Lattner82e14fe2004-04-09 18:19:44 +00008106 }
Chris Lattnerba417832007-04-11 06:12:58 +00008107
8108 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
Chris Lattner457dd822004-06-09 07:59:58 +00008109
Reid Spencere4d87aa2006-12-23 06:05:41 +00008110 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
Chris Lattnerb8456462006-09-20 04:44:59 +00008111
Reid Spencere4d87aa2006-12-23 06:05:41 +00008112 // (x <s 0) ? -1 : 0 -> ashr x, 31
Reid Spencer2ec619a2007-03-23 21:24:59 +00008113 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
Chris Lattnerb8456462006-09-20 04:44:59 +00008114 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
Chris Lattnerba417832007-04-11 06:12:58 +00008115 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
Chris Lattnerb8456462006-09-20 04:44:59 +00008116 // The comparison constant and the result are not neccessarily the
Reid Spencer3da59db2006-11-27 01:05:10 +00008117 // same width. Make an all-ones value by inserting a AShr.
Chris Lattnerb8456462006-09-20 04:44:59 +00008118 Value *X = IC->getOperand(0);
Zhou Sheng4351c642007-04-02 08:20:41 +00008119 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
Reid Spencer832254e2007-02-02 02:16:23 +00008120 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
8121 Instruction *SRA = BinaryOperator::create(Instruction::AShr, X,
8122 ShAmt, "ones");
Chris Lattnerb8456462006-09-20 04:44:59 +00008123 InsertNewInstBefore(SRA, SI);
8124
Reid Spencer3da59db2006-11-27 01:05:10 +00008125 // Finally, convert to the type of the select RHS. We figure out
8126 // if this requires a SExt, Trunc or BitCast based on the sizes.
8127 Instruction::CastOps opc = Instruction::BitCast;
Zhou Sheng4351c642007-04-02 08:20:41 +00008128 uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
8129 uint32_t SISize = SI.getType()->getPrimitiveSizeInBits();
Reid Spencer3da59db2006-11-27 01:05:10 +00008130 if (SRASize < SISize)
8131 opc = Instruction::SExt;
8132 else if (SRASize > SISize)
8133 opc = Instruction::Trunc;
8134 return CastInst::create(opc, SRA, SI.getType());
Chris Lattnerb8456462006-09-20 04:44:59 +00008135 }
8136 }
8137
8138
8139 // If one of the constants is zero (we know they can't both be) and we
Chris Lattnerba417832007-04-11 06:12:58 +00008140 // have an icmp instruction with zero, and we have an 'and' with the
Chris Lattnerb8456462006-09-20 04:44:59 +00008141 // non-constant value, eliminate this whole mess. This corresponds to
8142 // cases like this: ((X & 27) ? 27 : 0)
Reid Spencer2ec619a2007-03-23 21:24:59 +00008143 if (TrueValC->isZero() || FalseValC->isZero())
Chris Lattner65b72ba2006-09-18 04:22:48 +00008144 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
Chris Lattner457dd822004-06-09 07:59:58 +00008145 cast<Constant>(IC->getOperand(1))->isNullValue())
8146 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8147 if (ICA->getOpcode() == Instruction::And &&
Misha Brukmanfd939082005-04-21 23:48:37 +00008148 isa<ConstantInt>(ICA->getOperand(1)) &&
8149 (ICA->getOperand(1) == TrueValC ||
8150 ICA->getOperand(1) == FalseValC) &&
Chris Lattner457dd822004-06-09 07:59:58 +00008151 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8152 // Okay, now we know that everything is set up, we just don't
Reid Spencere4d87aa2006-12-23 06:05:41 +00008153 // know whether we have a icmp_ne or icmp_eq and whether the
8154 // true or false val is the zero.
Reid Spencer2ec619a2007-03-23 21:24:59 +00008155 bool ShouldNotVal = !TrueValC->isZero();
Reid Spencere4d87aa2006-12-23 06:05:41 +00008156 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
Chris Lattner457dd822004-06-09 07:59:58 +00008157 Value *V = ICA;
8158 if (ShouldNotVal)
8159 V = InsertNewInstBefore(BinaryOperator::create(
8160 Instruction::Xor, V, ICA->getOperand(1)), SI);
8161 return ReplaceInstUsesWith(SI, V);
8162 }
Chris Lattnerb8456462006-09-20 04:44:59 +00008163 }
Chris Lattnerc32b30a2004-03-30 19:37:13 +00008164 }
Chris Lattnerd76956d2004-04-10 22:21:27 +00008165
8166 // See if we are selecting two values based on a comparison of the two values.
Reid Spencere4d87aa2006-12-23 06:05:41 +00008167 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8168 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
Chris Lattnerd76956d2004-04-10 22:21:27 +00008169 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen5a2174f2007-10-03 17:45:27 +00008170 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8171 // This is not safe in general for floating point:
8172 // consider X== -0, Y== +0.
8173 // It becomes safe if either operand is a nonzero constant.
8174 ConstantFP *CFPt, *CFPf;
8175 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8176 !CFPt->getValueAPF().isZero()) ||
8177 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8178 !CFPf->getValueAPF().isZero()))
Chris Lattnerd76956d2004-04-10 22:21:27 +00008179 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen5a2174f2007-10-03 17:45:27 +00008180 }
Chris Lattnerd76956d2004-04-10 22:21:27 +00008181 // Transform (X != Y) ? X : Y -> X
Reid Spencere4d87aa2006-12-23 06:05:41 +00008182 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
Chris Lattnerd76956d2004-04-10 22:21:27 +00008183 return ReplaceInstUsesWith(SI, TrueVal);
8184 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8185
Reid Spencere4d87aa2006-12-23 06:05:41 +00008186 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
Chris Lattnerd76956d2004-04-10 22:21:27 +00008187 // Transform (X == Y) ? Y : X -> X
Dale Johannesen5a2174f2007-10-03 17:45:27 +00008188 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8189 // This is not safe in general for floating point:
8190 // consider X== -0, Y== +0.
8191 // It becomes safe if either operand is a nonzero constant.
8192 ConstantFP *CFPt, *CFPf;
8193 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8194 !CFPt->getValueAPF().isZero()) ||
8195 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8196 !CFPf->getValueAPF().isZero()))
8197 return ReplaceInstUsesWith(SI, FalseVal);
8198 }
Chris Lattnerd76956d2004-04-10 22:21:27 +00008199 // Transform (X != Y) ? Y : X -> Y
Reid Spencere4d87aa2006-12-23 06:05:41 +00008200 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8201 return ReplaceInstUsesWith(SI, TrueVal);
8202 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8203 }
8204 }
8205
8206 // See if we are selecting two values based on a comparison of the two values.
8207 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) {
8208 if (ICI->getOperand(0) == TrueVal && ICI->getOperand(1) == FalseVal) {
8209 // Transform (X == Y) ? X : Y -> Y
8210 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
8211 return ReplaceInstUsesWith(SI, FalseVal);
8212 // Transform (X != Y) ? X : Y -> X
8213 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
8214 return ReplaceInstUsesWith(SI, TrueVal);
8215 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8216
8217 } else if (ICI->getOperand(0) == FalseVal && ICI->getOperand(1) == TrueVal){
8218 // Transform (X == Y) ? Y : X -> X
8219 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
8220 return ReplaceInstUsesWith(SI, FalseVal);
8221 // Transform (X != Y) ? Y : X -> Y
8222 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
Chris Lattnerfbede522004-04-11 01:39:19 +00008223 return ReplaceInstUsesWith(SI, TrueVal);
Chris Lattnerd76956d2004-04-10 22:21:27 +00008224 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8225 }
8226 }
Misha Brukmanfd939082005-04-21 23:48:37 +00008227
Chris Lattner87875da2005-01-13 22:52:24 +00008228 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8229 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8230 if (TI->hasOneUse() && FI->hasOneUse()) {
Chris Lattner87875da2005-01-13 22:52:24 +00008231 Instruction *AddOp = 0, *SubOp = 0;
8232
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008233 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8234 if (TI->getOpcode() == FI->getOpcode())
8235 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8236 return IV;
8237
8238 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8239 // even legal for FP.
Chris Lattner87875da2005-01-13 22:52:24 +00008240 if (TI->getOpcode() == Instruction::Sub &&
8241 FI->getOpcode() == Instruction::Add) {
8242 AddOp = FI; SubOp = TI;
8243 } else if (FI->getOpcode() == Instruction::Sub &&
8244 TI->getOpcode() == Instruction::Add) {
8245 AddOp = TI; SubOp = FI;
8246 }
8247
8248 if (AddOp) {
8249 Value *OtherAddOp = 0;
8250 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8251 OtherAddOp = AddOp->getOperand(1);
8252 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8253 OtherAddOp = AddOp->getOperand(0);
8254 }
8255
8256 if (OtherAddOp) {
Chris Lattner97f37a42006-02-24 18:05:58 +00008257 // So at this point we know we have (Y -> OtherAddOp):
8258 // select C, (add X, Y), (sub X, Z)
8259 Value *NegVal; // Compute -Z
8260 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8261 NegVal = ConstantExpr::getNeg(C);
8262 } else {
8263 NegVal = InsertNewInstBefore(
8264 BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI);
Chris Lattner87875da2005-01-13 22:52:24 +00008265 }
Chris Lattner97f37a42006-02-24 18:05:58 +00008266
8267 Value *NewTrueOp = OtherAddOp;
8268 Value *NewFalseOp = NegVal;
8269 if (AddOp != TI)
8270 std::swap(NewTrueOp, NewFalseOp);
8271 Instruction *NewSel =
Gabor Greif051a9502008-04-06 20:25:17 +00008272 SelectInst::Create(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p");
Chris Lattner97f37a42006-02-24 18:05:58 +00008273
8274 NewSel = InsertNewInstBefore(NewSel, SI);
8275 return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel);
Chris Lattner87875da2005-01-13 22:52:24 +00008276 }
8277 }
8278 }
Misha Brukmanfd939082005-04-21 23:48:37 +00008279
Chris Lattnere576b912004-04-09 23:46:01 +00008280 // See if we can fold the select into one of our operands.
Chris Lattner42a75512007-01-15 02:27:26 +00008281 if (SI.getType()->isInteger()) {
Chris Lattnere576b912004-04-09 23:46:01 +00008282 // See the comment above GetSelectFoldableOperands for a description of the
8283 // transformation we are doing here.
8284 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8285 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8286 !isa<Constant>(FalseVal))
8287 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8288 unsigned OpToFold = 0;
8289 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
8290 OpToFold = 1;
8291 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
8292 OpToFold = 2;
8293 }
8294
8295 if (OpToFold) {
8296 Constant *C = GetSelectFoldableConstant(TVI);
Chris Lattnere576b912004-04-09 23:46:01 +00008297 Instruction *NewSel =
Gabor Greif051a9502008-04-06 20:25:17 +00008298 SelectInst::Create(SI.getCondition(), TVI->getOperand(2-OpToFold), C);
Chris Lattnere576b912004-04-09 23:46:01 +00008299 InsertNewInstBefore(NewSel, SI);
Chris Lattner6934a042007-02-11 01:23:03 +00008300 NewSel->takeName(TVI);
Chris Lattnere576b912004-04-09 23:46:01 +00008301 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
8302 return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
Chris Lattnere576b912004-04-09 23:46:01 +00008303 else {
8304 assert(0 && "Unknown instruction!!");
8305 }
8306 }
8307 }
Chris Lattnera96879a2004-09-29 17:40:11 +00008308
Chris Lattnere576b912004-04-09 23:46:01 +00008309 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
8310 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
8311 !isa<Constant>(TrueVal))
8312 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
8313 unsigned OpToFold = 0;
8314 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
8315 OpToFold = 1;
8316 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
8317 OpToFold = 2;
8318 }
8319
8320 if (OpToFold) {
8321 Constant *C = GetSelectFoldableConstant(FVI);
Chris Lattnere576b912004-04-09 23:46:01 +00008322 Instruction *NewSel =
Gabor Greif051a9502008-04-06 20:25:17 +00008323 SelectInst::Create(SI.getCondition(), C, FVI->getOperand(2-OpToFold));
Chris Lattnere576b912004-04-09 23:46:01 +00008324 InsertNewInstBefore(NewSel, SI);
Chris Lattner6934a042007-02-11 01:23:03 +00008325 NewSel->takeName(FVI);
Chris Lattnere576b912004-04-09 23:46:01 +00008326 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
8327 return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
Reid Spencer832254e2007-02-02 02:16:23 +00008328 else
Chris Lattnere576b912004-04-09 23:46:01 +00008329 assert(0 && "Unknown instruction!!");
Chris Lattnere576b912004-04-09 23:46:01 +00008330 }
8331 }
8332 }
Chris Lattnera1df33c2005-04-24 07:30:14 +00008333
8334 if (BinaryOperator::isNot(CondVal)) {
8335 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
8336 SI.setOperand(1, FalseVal);
8337 SI.setOperand(2, TrueVal);
8338 return &SI;
8339 }
8340
Chris Lattner3d69f462004-03-12 05:52:32 +00008341 return 0;
8342}
8343
Dan Gohmaneee962e2008-04-10 18:43:06 +00008344/// EnforceKnownAlignment - If the specified pointer points to an object that
8345/// we control, modify the object's alignment to PrefAlign. This isn't
8346/// often possible though. If alignment is important, a more reliable approach
8347/// is to simply align all global variables and allocation instructions to
8348/// their preferred alignment from the beginning.
8349///
8350static unsigned EnforceKnownAlignment(Value *V,
8351 unsigned Align, unsigned PrefAlign) {
Chris Lattnerf2369f22007-08-09 19:05:49 +00008352
Dan Gohmaneee962e2008-04-10 18:43:06 +00008353 User *U = dyn_cast<User>(V);
8354 if (!U) return Align;
8355
8356 switch (getOpcode(U)) {
8357 default: break;
8358 case Instruction::BitCast:
8359 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
8360 case Instruction::GetElementPtr: {
Chris Lattner95a959d2006-03-06 20:18:44 +00008361 // If all indexes are zero, it is just the alignment of the base pointer.
8362 bool AllZeroOperands = true;
Dan Gohmaneee962e2008-04-10 18:43:06 +00008363 for (unsigned i = 1, e = U->getNumOperands(); i != e; ++i)
8364 if (!isa<Constant>(U->getOperand(i)) ||
8365 !cast<Constant>(U->getOperand(i))->isNullValue()) {
Chris Lattner95a959d2006-03-06 20:18:44 +00008366 AllZeroOperands = false;
8367 break;
8368 }
Chris Lattnerf2369f22007-08-09 19:05:49 +00008369
8370 if (AllZeroOperands) {
8371 // Treat this like a bitcast.
Dan Gohmaneee962e2008-04-10 18:43:06 +00008372 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattnerf2369f22007-08-09 19:05:49 +00008373 }
Dan Gohmaneee962e2008-04-10 18:43:06 +00008374 break;
Chris Lattner95a959d2006-03-06 20:18:44 +00008375 }
Dan Gohmaneee962e2008-04-10 18:43:06 +00008376 }
8377
8378 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
8379 // If there is a large requested alignment and we can, bump up the alignment
8380 // of the global.
8381 if (!GV->isDeclaration()) {
8382 GV->setAlignment(PrefAlign);
8383 Align = PrefAlign;
8384 }
8385 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
8386 // If there is a requested alignment and if this is an alloca, round up. We
8387 // don't do this for malloc, because some systems can't respect the request.
8388 if (isa<AllocaInst>(AI)) {
8389 AI->setAlignment(PrefAlign);
8390 Align = PrefAlign;
8391 }
8392 }
8393
8394 return Align;
8395}
8396
8397/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
8398/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
8399/// and it is more than the alignment of the ultimate object, see if we can
8400/// increase the alignment of the ultimate object, making this check succeed.
8401unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
8402 unsigned PrefAlign) {
8403 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
8404 sizeof(PrefAlign) * CHAR_BIT;
8405 APInt Mask = APInt::getAllOnesValue(BitWidth);
8406 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8407 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
8408 unsigned TrailZ = KnownZero.countTrailingOnes();
8409 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
8410
8411 if (PrefAlign > Align)
8412 Align = EnforceKnownAlignment(V, Align, PrefAlign);
8413
8414 // We don't need to make any adjustment.
8415 return Align;
Chris Lattner95a959d2006-03-06 20:18:44 +00008416}
8417
Chris Lattnerf497b022008-01-13 23:50:23 +00008418Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohmaneee962e2008-04-10 18:43:06 +00008419 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
8420 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattnerf497b022008-01-13 23:50:23 +00008421 unsigned MinAlign = std::min(DstAlign, SrcAlign);
8422 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
8423
8424 if (CopyAlign < MinAlign) {
8425 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
8426 return MI;
8427 }
8428
8429 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
8430 // load/store.
8431 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
8432 if (MemOpLength == 0) return 0;
8433
Chris Lattner37ac6082008-01-14 00:28:35 +00008434 // Source and destination pointer types are always "i8*" for intrinsic. See
8435 // if the size is something we can handle with a single primitive load/store.
8436 // A single load+store correctly handles overlapping memory in the memmove
8437 // case.
Chris Lattnerf497b022008-01-13 23:50:23 +00008438 unsigned Size = MemOpLength->getZExtValue();
8439 if (Size == 0 || Size > 8 || (Size&(Size-1)))
Chris Lattner37ac6082008-01-14 00:28:35 +00008440 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattnerf497b022008-01-13 23:50:23 +00008441
Chris Lattner37ac6082008-01-14 00:28:35 +00008442 // Use an integer load+store unless we can find something better.
Chris Lattnerf497b022008-01-13 23:50:23 +00008443 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattner37ac6082008-01-14 00:28:35 +00008444
8445 // Memcpy forces the use of i8* for the source and destination. That means
8446 // that if you're using memcpy to move one double around, you'll get a cast
8447 // from double* to i8*. We'd much rather use a double load+store rather than
8448 // an i64 load+store, here because this improves the odds that the source or
8449 // dest address will be promotable. See if we can find a better type than the
8450 // integer datatype.
8451 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
8452 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
8453 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
8454 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
8455 // down through these levels if so.
8456 while (!SrcETy->isFirstClassType()) {
8457 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
8458 if (STy->getNumElements() == 1)
8459 SrcETy = STy->getElementType(0);
8460 else
8461 break;
8462 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
8463 if (ATy->getNumElements() == 1)
8464 SrcETy = ATy->getElementType();
8465 else
8466 break;
8467 } else
8468 break;
8469 }
8470
8471 if (SrcETy->isFirstClassType())
8472 NewPtrTy = PointerType::getUnqual(SrcETy);
8473 }
8474 }
8475
8476
Chris Lattnerf497b022008-01-13 23:50:23 +00008477 // If the memcpy/memmove provides better alignment info than we can
8478 // infer, use it.
8479 SrcAlign = std::max(SrcAlign, CopyAlign);
8480 DstAlign = std::max(DstAlign, CopyAlign);
8481
8482 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
8483 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattner37ac6082008-01-14 00:28:35 +00008484 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
8485 InsertNewInstBefore(L, *MI);
8486 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
8487
8488 // Set the size of the copy to 0, it will be deleted on the next iteration.
8489 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
8490 return MI;
Chris Lattnerf497b022008-01-13 23:50:23 +00008491}
Chris Lattner3d69f462004-03-12 05:52:32 +00008492
Chris Lattner8b0ea312006-01-13 20:11:04 +00008493/// visitCallInst - CallInst simplification. This mostly only handles folding
8494/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
8495/// the heavy lifting.
8496///
Chris Lattner9fe38862003-06-19 17:00:31 +00008497Instruction *InstCombiner::visitCallInst(CallInst &CI) {
Chris Lattner8b0ea312006-01-13 20:11:04 +00008498 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
8499 if (!II) return visitCallSite(&CI);
8500
Chris Lattner7bcc0e72004-02-28 05:22:00 +00008501 // Intrinsics cannot occur in an invoke, so handle them here instead of in
8502 // visitCallSite.
Chris Lattner8b0ea312006-01-13 20:11:04 +00008503 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
Chris Lattner35b9e482004-10-12 04:52:52 +00008504 bool Changed = false;
8505
8506 // memmove/cpy/set of zero bytes is a noop.
8507 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
8508 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
8509
Chris Lattner35b9e482004-10-12 04:52:52 +00008510 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
Reid Spencerb83eb642006-10-20 07:07:24 +00008511 if (CI->getZExtValue() == 1) {
Chris Lattner35b9e482004-10-12 04:52:52 +00008512 // Replace the instruction with just byte operations. We would
8513 // transform other cases to loads/stores, but we don't know if
8514 // alignment is sufficient.
8515 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +00008516 }
8517
Chris Lattner35b9e482004-10-12 04:52:52 +00008518 // If we have a memmove and the source operation is a constant global,
8519 // then the source and dest pointers can't alias, so we can change this
8520 // into a call to memcpy.
Chris Lattnerf497b022008-01-13 23:50:23 +00008521 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Chris Lattner35b9e482004-10-12 04:52:52 +00008522 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
8523 if (GVSrc->isConstant()) {
8524 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner6d0339d2008-01-13 22:23:22 +00008525 Intrinsic::ID MemCpyID;
8526 if (CI.getOperand(3)->getType() == Type::Int32Ty)
8527 MemCpyID = Intrinsic::memcpy_i32;
Chris Lattner21959392006-03-03 01:34:17 +00008528 else
Chris Lattner6d0339d2008-01-13 22:23:22 +00008529 MemCpyID = Intrinsic::memcpy_i64;
8530 CI.setOperand(0, Intrinsic::getDeclaration(M, MemCpyID));
Chris Lattner35b9e482004-10-12 04:52:52 +00008531 Changed = true;
8532 }
Chris Lattner95a959d2006-03-06 20:18:44 +00008533 }
Chris Lattner35b9e482004-10-12 04:52:52 +00008534
Chris Lattner95a959d2006-03-06 20:18:44 +00008535 // If we can determine a pointer alignment that is bigger than currently
8536 // set, update the alignment.
8537 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattnerf497b022008-01-13 23:50:23 +00008538 if (Instruction *I = SimplifyMemTransfer(MI))
8539 return I;
Chris Lattner95a959d2006-03-06 20:18:44 +00008540 } else if (isa<MemSetInst>(MI)) {
Dan Gohmaneee962e2008-04-10 18:43:06 +00008541 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
Reid Spencerb83eb642006-10-20 07:07:24 +00008542 if (MI->getAlignment()->getZExtValue() < Alignment) {
Reid Spencerc5b206b2006-12-31 05:48:39 +00008543 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
Chris Lattner95a959d2006-03-06 20:18:44 +00008544 Changed = true;
8545 }
8546 }
8547
Chris Lattner8b0ea312006-01-13 20:11:04 +00008548 if (Changed) return II;
Chris Lattnera728ddc2006-01-13 21:28:09 +00008549 } else {
8550 switch (II->getIntrinsicID()) {
8551 default: break;
Chris Lattner82ed58f2006-04-02 05:30:25 +00008552 case Intrinsic::ppc_altivec_lvx:
8553 case Intrinsic::ppc_altivec_lvxl:
Chris Lattnerfd6bdf02006-04-17 22:26:56 +00008554 case Intrinsic::x86_sse_loadu_ps:
8555 case Intrinsic::x86_sse2_loadu_pd:
8556 case Intrinsic::x86_sse2_loadu_dq:
8557 // Turn PPC lvx -> load if the pointer is known aligned.
8558 // Turn X86 loadups -> load if the pointer is known aligned.
Dan Gohmaneee962e2008-04-10 18:43:06 +00008559 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
Chris Lattner6d0339d2008-01-13 22:23:22 +00008560 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
8561 PointerType::getUnqual(II->getType()),
8562 CI);
Chris Lattner82ed58f2006-04-02 05:30:25 +00008563 return new LoadInst(Ptr);
8564 }
8565 break;
8566 case Intrinsic::ppc_altivec_stvx:
8567 case Intrinsic::ppc_altivec_stvxl:
8568 // Turn stvx -> store if the pointer is known aligned.
Dan Gohmaneee962e2008-04-10 18:43:06 +00008569 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
Christopher Lamb43ad6b32007-12-17 01:12:55 +00008570 const Type *OpPtrTy =
8571 PointerType::getUnqual(II->getOperand(1)->getType());
Chris Lattner6d0339d2008-01-13 22:23:22 +00008572 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
Chris Lattner82ed58f2006-04-02 05:30:25 +00008573 return new StoreInst(II->getOperand(1), Ptr);
8574 }
8575 break;
Chris Lattnerfd6bdf02006-04-17 22:26:56 +00008576 case Intrinsic::x86_sse_storeu_ps:
8577 case Intrinsic::x86_sse2_storeu_pd:
8578 case Intrinsic::x86_sse2_storeu_dq:
8579 case Intrinsic::x86_sse2_storel_dq:
8580 // Turn X86 storeu -> store if the pointer is known aligned.
Dan Gohmaneee962e2008-04-10 18:43:06 +00008581 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
Christopher Lamb43ad6b32007-12-17 01:12:55 +00008582 const Type *OpPtrTy =
8583 PointerType::getUnqual(II->getOperand(2)->getType());
Chris Lattner6d0339d2008-01-13 22:23:22 +00008584 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
Chris Lattnerfd6bdf02006-04-17 22:26:56 +00008585 return new StoreInst(II->getOperand(2), Ptr);
8586 }
8587 break;
Chris Lattner867b99f2006-10-05 06:55:50 +00008588
8589 case Intrinsic::x86_sse_cvttss2si: {
8590 // These intrinsics only demands the 0th element of its input vector. If
8591 // we can simplify the input based on that, do so now.
8592 uint64_t UndefElts;
8593 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
8594 UndefElts)) {
8595 II->setOperand(1, V);
8596 return II;
8597 }
8598 break;
8599 }
8600
Chris Lattnere2ed0572006-04-06 19:19:17 +00008601 case Intrinsic::ppc_altivec_vperm:
8602 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
Reid Spencer9d6565a2007-02-15 02:26:10 +00008603 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
Chris Lattnere2ed0572006-04-06 19:19:17 +00008604 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
8605
8606 // Check that all of the elements are integer constants or undefs.
8607 bool AllEltsOk = true;
8608 for (unsigned i = 0; i != 16; ++i) {
8609 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
8610 !isa<UndefValue>(Mask->getOperand(i))) {
8611 AllEltsOk = false;
8612 break;
8613 }
8614 }
8615
8616 if (AllEltsOk) {
8617 // Cast the input vectors to byte vectors.
Chris Lattner6d0339d2008-01-13 22:23:22 +00008618 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
8619 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
Chris Lattnere2ed0572006-04-06 19:19:17 +00008620 Value *Result = UndefValue::get(Op0->getType());
8621
8622 // Only extract each element once.
8623 Value *ExtractedElts[32];
8624 memset(ExtractedElts, 0, sizeof(ExtractedElts));
8625
8626 for (unsigned i = 0; i != 16; ++i) {
8627 if (isa<UndefValue>(Mask->getOperand(i)))
8628 continue;
Chris Lattnere34e9a22007-04-14 23:32:02 +00008629 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
Chris Lattnere2ed0572006-04-06 19:19:17 +00008630 Idx &= 31; // Match the hardware behavior.
8631
8632 if (ExtractedElts[Idx] == 0) {
8633 Instruction *Elt =
Chris Lattner867b99f2006-10-05 06:55:50 +00008634 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
Chris Lattnere2ed0572006-04-06 19:19:17 +00008635 InsertNewInstBefore(Elt, CI);
8636 ExtractedElts[Idx] = Elt;
8637 }
8638
8639 // Insert this value into the result vector.
Gabor Greif051a9502008-04-06 20:25:17 +00008640 Result = InsertElementInst::Create(Result, ExtractedElts[Idx], i, "tmp");
Chris Lattnere2ed0572006-04-06 19:19:17 +00008641 InsertNewInstBefore(cast<Instruction>(Result), CI);
8642 }
Reid Spencer3da59db2006-11-27 01:05:10 +00008643 return CastInst::create(Instruction::BitCast, Result, CI.getType());
Chris Lattnere2ed0572006-04-06 19:19:17 +00008644 }
8645 }
8646 break;
8647
Chris Lattnera728ddc2006-01-13 21:28:09 +00008648 case Intrinsic::stackrestore: {
8649 // If the save is right next to the restore, remove the restore. This can
8650 // happen when variable allocas are DCE'd.
8651 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
8652 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
8653 BasicBlock::iterator BI = SS;
8654 if (&*++BI == II)
8655 return EraseInstFromFunction(CI);
8656 }
8657 }
8658
Chris Lattnerbf1d8a72008-02-18 06:12:38 +00008659 // Scan down this block to see if there is another stack restore in the
8660 // same block without an intervening call/alloca.
8661 BasicBlock::iterator BI = II;
Chris Lattnera728ddc2006-01-13 21:28:09 +00008662 TerminatorInst *TI = II->getParent()->getTerminator();
Chris Lattnerbf1d8a72008-02-18 06:12:38 +00008663 bool CannotRemove = false;
8664 for (++BI; &*BI != TI; ++BI) {
8665 if (isa<AllocaInst>(BI)) {
8666 CannotRemove = true;
8667 break;
8668 }
8669 if (isa<CallInst>(BI)) {
8670 if (!isa<IntrinsicInst>(BI)) {
Chris Lattnera728ddc2006-01-13 21:28:09 +00008671 CannotRemove = true;
8672 break;
8673 }
Chris Lattnerbf1d8a72008-02-18 06:12:38 +00008674 // If there is a stackrestore below this one, remove this one.
Chris Lattnera728ddc2006-01-13 21:28:09 +00008675 return EraseInstFromFunction(CI);
Chris Lattnerbf1d8a72008-02-18 06:12:38 +00008676 }
Chris Lattnera728ddc2006-01-13 21:28:09 +00008677 }
Chris Lattnerbf1d8a72008-02-18 06:12:38 +00008678
8679 // If the stack restore is in a return/unwind block and if there are no
8680 // allocas or calls between the restore and the return, nuke the restore.
8681 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
8682 return EraseInstFromFunction(CI);
Chris Lattnera728ddc2006-01-13 21:28:09 +00008683 break;
8684 }
8685 }
Chris Lattner35b9e482004-10-12 04:52:52 +00008686 }
8687
Chris Lattner8b0ea312006-01-13 20:11:04 +00008688 return visitCallSite(II);
Chris Lattner9fe38862003-06-19 17:00:31 +00008689}
8690
8691// InvokeInst simplification
8692//
8693Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
Chris Lattnera44d8a22003-10-07 22:32:43 +00008694 return visitCallSite(&II);
Chris Lattner9fe38862003-06-19 17:00:31 +00008695}
8696
Dale Johannesen1f530a52008-04-23 18:34:37 +00008697// If this cast does not affect the value passed through the varargs
8698// area, we can eliminate the use of the cast.
8699static bool isSafeToEliminateVarargsCast(const CallSite CS,
8700 const CastInst * const CI,
8701 const TargetData * const TD,
8702 const int ix) {
8703 if (!CI->isLosslessCast())
8704 return false;
8705
8706 // The size of ByVal arguments is derived from the type, so we
8707 // can't change to a type with a different size. If the size were
8708 // passed explicitly we could avoid this check.
8709 if (!CS.paramHasAttr(ix, ParamAttr::ByVal))
8710 return true;
8711
8712 const Type* SrcTy =
8713 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
8714 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
8715 if (!SrcTy->isSized() || !DstTy->isSized())
8716 return false;
8717 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
8718 return false;
8719 return true;
8720}
8721
Chris Lattnera44d8a22003-10-07 22:32:43 +00008722// visitCallSite - Improvements for call and invoke instructions.
8723//
8724Instruction *InstCombiner::visitCallSite(CallSite CS) {
Chris Lattner6c266db2003-10-07 22:54:13 +00008725 bool Changed = false;
8726
8727 // If the callee is a constexpr cast of a function, attempt to move the cast
8728 // to the arguments of the call/invoke.
Chris Lattnera44d8a22003-10-07 22:32:43 +00008729 if (transformConstExprCastCall(CS)) return 0;
8730
Chris Lattner6c266db2003-10-07 22:54:13 +00008731 Value *Callee = CS.getCalledValue();
Chris Lattnere87597f2004-10-16 18:11:37 +00008732
Chris Lattner08b22ec2005-05-13 07:09:09 +00008733 if (Function *CalleeF = dyn_cast<Function>(Callee))
8734 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
8735 Instruction *OldCall = CS.getInstruction();
8736 // If the call and callee calling conventions don't match, this call must
8737 // be unreachable, as the call is undefined.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00008738 new StoreInst(ConstantInt::getTrue(),
Christopher Lamb43ad6b32007-12-17 01:12:55 +00008739 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
8740 OldCall);
Chris Lattner08b22ec2005-05-13 07:09:09 +00008741 if (!OldCall->use_empty())
8742 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
8743 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
8744 return EraseInstFromFunction(*OldCall);
8745 return 0;
8746 }
8747
Chris Lattner17be6352004-10-18 02:59:09 +00008748 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
8749 // This instruction is not reachable, just remove it. We insert a store to
8750 // undef so that we know that this code is not reachable, despite the fact
8751 // that we can't modify the CFG here.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00008752 new StoreInst(ConstantInt::getTrue(),
Christopher Lamb43ad6b32007-12-17 01:12:55 +00008753 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Chris Lattner17be6352004-10-18 02:59:09 +00008754 CS.getInstruction());
8755
8756 if (!CS.getInstruction()->use_empty())
8757 CS.getInstruction()->
8758 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
8759
8760 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
8761 // Don't break the CFG, insert a dummy cond branch.
Gabor Greif051a9502008-04-06 20:25:17 +00008762 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
8763 ConstantInt::getTrue(), II);
Chris Lattnere87597f2004-10-16 18:11:37 +00008764 }
Chris Lattner17be6352004-10-18 02:59:09 +00008765 return EraseInstFromFunction(*CS.getInstruction());
8766 }
Chris Lattnere87597f2004-10-16 18:11:37 +00008767
Duncan Sandscdb6d922007-09-17 10:26:40 +00008768 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
8769 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
8770 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
8771 return transformCallThroughTrampoline(CS);
8772
Chris Lattner6c266db2003-10-07 22:54:13 +00008773 const PointerType *PTy = cast<PointerType>(Callee->getType());
8774 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
8775 if (FTy->isVarArg()) {
Dale Johannesen63e7eb42008-04-23 01:03:05 +00008776 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Chris Lattner6c266db2003-10-07 22:54:13 +00008777 // See if we can optimize any arguments passed through the varargs area of
8778 // the call.
8779 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen1f530a52008-04-23 18:34:37 +00008780 E = CS.arg_end(); I != E; ++I, ++ix) {
8781 CastInst *CI = dyn_cast<CastInst>(*I);
8782 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
8783 *I = CI->getOperand(0);
8784 Changed = true;
Chris Lattner6c266db2003-10-07 22:54:13 +00008785 }
Dale Johannesen1f530a52008-04-23 18:34:37 +00008786 }
Chris Lattner6c266db2003-10-07 22:54:13 +00008787 }
Misha Brukmanfd939082005-04-21 23:48:37 +00008788
Duncan Sandsf0c33542007-12-19 21:13:37 +00008789 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sandsece2c042007-12-16 15:51:49 +00008790 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sandsf0c33542007-12-19 21:13:37 +00008791 CS.setDoesNotThrow();
Duncan Sandsece2c042007-12-16 15:51:49 +00008792 Changed = true;
8793 }
8794
Chris Lattner6c266db2003-10-07 22:54:13 +00008795 return Changed ? CS.getInstruction() : 0;
Chris Lattnera44d8a22003-10-07 22:32:43 +00008796}
8797
Chris Lattner9fe38862003-06-19 17:00:31 +00008798// transformConstExprCastCall - If the callee is a constexpr cast of a function,
8799// attempt to move the cast to the arguments of the call/invoke.
8800//
8801bool InstCombiner::transformConstExprCastCall(CallSite CS) {
8802 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
8803 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
Reid Spencer3da59db2006-11-27 01:05:10 +00008804 if (CE->getOpcode() != Instruction::BitCast ||
8805 !isa<Function>(CE->getOperand(0)))
Chris Lattner9fe38862003-06-19 17:00:31 +00008806 return false;
Reid Spencer8863f182004-07-18 00:38:32 +00008807 Function *Callee = cast<Function>(CE->getOperand(0));
Chris Lattner9fe38862003-06-19 17:00:31 +00008808 Instruction *Caller = CS.getInstruction();
Chris Lattner58d74912008-03-12 17:45:29 +00008809 const PAListPtr &CallerPAL = CS.getParamAttrs();
Chris Lattner9fe38862003-06-19 17:00:31 +00008810
8811 // Okay, this is a cast from a function to a different type. Unless doing so
8812 // would cause a type conversion of one of our arguments, change this call to
8813 // be a direct call with arguments casted to the appropriate types.
8814 //
8815 const FunctionType *FT = Callee->getFunctionType();
8816 const Type *OldRetTy = Caller->getType();
8817
Devang Patel75e6f022008-03-11 18:04:06 +00008818 if (isa<StructType>(FT->getReturnType()))
8819 return false; // TODO: Handle multiple return values.
8820
Chris Lattnerf78616b2004-01-14 06:06:08 +00008821 // Check to see if we are changing the return type...
8822 if (OldRetTy != FT->getReturnType()) {
Reid Spencer5cbf9852007-01-30 20:08:39 +00008823 if (Callee->isDeclaration() && !Caller->use_empty() &&
Chris Lattner46013f42007-01-06 19:53:32 +00008824 // Conversion is ok if changing from pointer to int of same size.
8825 !(isa<PointerType>(FT->getReturnType()) &&
8826 TD->getIntPtrType() == OldRetTy))
Chris Lattnerec479922007-01-06 02:09:32 +00008827 return false; // Cannot transform this return value.
Chris Lattnerf78616b2004-01-14 06:06:08 +00008828
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00008829 if (!Caller->use_empty() &&
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00008830 // void -> non-void is handled specially
Duncan Sandse1e520f2008-01-13 08:02:44 +00008831 FT->getReturnType() != Type::VoidTy &&
8832 !CastInst::isCastable(FT->getReturnType(), OldRetTy))
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00008833 return false; // Cannot transform this return value.
8834
Chris Lattner58d74912008-03-12 17:45:29 +00008835 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
8836 ParameterAttributes RAttrs = CallerPAL.getParamAttrs(0);
Duncan Sands6c3470e2008-01-07 17:16:06 +00008837 if (RAttrs & ParamAttr::typeIncompatible(FT->getReturnType()))
8838 return false; // Attribute not compatible with transformed value.
8839 }
Duncan Sandsad9a9e12008-01-06 18:27:01 +00008840
Chris Lattnerf78616b2004-01-14 06:06:08 +00008841 // If the callsite is an invoke instruction, and the return value is used by
8842 // a PHI node in a successor, we cannot change the return type of the call
8843 // because there is no place to put the cast instruction (without breaking
8844 // the critical edge). Bail out in this case.
8845 if (!Caller->use_empty())
8846 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
8847 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
8848 UI != E; ++UI)
8849 if (PHINode *PN = dyn_cast<PHINode>(*UI))
8850 if (PN->getParent() == II->getNormalDest() ||
Chris Lattneraeb2a1d2004-02-08 21:44:31 +00008851 PN->getParent() == II->getUnwindDest())
Chris Lattnerf78616b2004-01-14 06:06:08 +00008852 return false;
8853 }
Chris Lattner9fe38862003-06-19 17:00:31 +00008854
8855 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
8856 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
Misha Brukmanfd939082005-04-21 23:48:37 +00008857
Chris Lattner9fe38862003-06-19 17:00:31 +00008858 CallSite::arg_iterator AI = CS.arg_begin();
8859 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
8860 const Type *ParamTy = FT->getParamType(i);
Andrew Lenharthb8e604c2006-06-28 01:01:52 +00008861 const Type *ActTy = (*AI)->getType();
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00008862
8863 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsad9a9e12008-01-06 18:27:01 +00008864 return false; // Cannot transform this parameter value.
8865
Chris Lattner58d74912008-03-12 17:45:29 +00008866 if (CallerPAL.getParamAttrs(i + 1) & ParamAttr::typeIncompatible(ParamTy))
8867 return false; // Attribute not compatible with transformed value.
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00008868
Reid Spencer3da59db2006-11-27 01:05:10 +00008869 ConstantInt *c = dyn_cast<ConstantInt>(*AI);
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00008870 // Some conversions are safe even if we do not have a body.
8871 // Either we can cast directly, or we can upconvert the argument
Chris Lattnerec479922007-01-06 02:09:32 +00008872 bool isConvertible = ActTy == ParamTy ||
Chris Lattner46013f42007-01-06 19:53:32 +00008873 (isa<PointerType>(ParamTy) && isa<PointerType>(ActTy)) ||
Chris Lattner42a75512007-01-15 02:27:26 +00008874 (ParamTy->isInteger() && ActTy->isInteger() &&
Reid Spencerabaa8ca2007-01-08 16:32:00 +00008875 ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()) ||
8876 (c && ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()
Zhou Sheng0fc50952007-03-25 05:01:29 +00008877 && c->getValue().isStrictlyPositive());
Reid Spencer5cbf9852007-01-30 20:08:39 +00008878 if (Callee->isDeclaration() && !isConvertible) return false;
Chris Lattner9fe38862003-06-19 17:00:31 +00008879 }
8880
8881 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
Reid Spencer5cbf9852007-01-30 20:08:39 +00008882 Callee->isDeclaration())
Chris Lattner58d74912008-03-12 17:45:29 +00008883 return false; // Do not delete arguments unless we have a function body.
Chris Lattner9fe38862003-06-19 17:00:31 +00008884
Chris Lattner58d74912008-03-12 17:45:29 +00008885 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
8886 !CallerPAL.isEmpty())
Duncan Sandsad9a9e12008-01-06 18:27:01 +00008887 // In this case we have more arguments than the new function type, but we
Duncan Sandse1e520f2008-01-13 08:02:44 +00008888 // won't be dropping them. Check that these extra arguments have attributes
8889 // that are compatible with being a vararg call argument.
Chris Lattner58d74912008-03-12 17:45:29 +00008890 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
8891 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sandse1e520f2008-01-13 08:02:44 +00008892 break;
Chris Lattner58d74912008-03-12 17:45:29 +00008893 ParameterAttributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Duncan Sandse1e520f2008-01-13 08:02:44 +00008894 if (PAttrs & ParamAttr::VarArgsIncompatible)
8895 return false;
8896 }
Duncan Sandsad9a9e12008-01-06 18:27:01 +00008897
Chris Lattner9fe38862003-06-19 17:00:31 +00008898 // Okay, we decided that this is a safe thing to do: go ahead and start
8899 // inserting cast instructions as necessary...
8900 std::vector<Value*> Args;
8901 Args.reserve(NumActualArgs);
Chris Lattner58d74912008-03-12 17:45:29 +00008902 SmallVector<ParamAttrsWithIndex, 8> attrVec;
Duncan Sandsad9a9e12008-01-06 18:27:01 +00008903 attrVec.reserve(NumCommonArgs);
8904
8905 // Get any return attributes.
Chris Lattner58d74912008-03-12 17:45:29 +00008906 ParameterAttributes RAttrs = CallerPAL.getParamAttrs(0);
Duncan Sandsad9a9e12008-01-06 18:27:01 +00008907
8908 // If the return value is not being used, the type may not be compatible
8909 // with the existing attributes. Wipe out any problematic attributes.
Duncan Sands6c3470e2008-01-07 17:16:06 +00008910 RAttrs &= ~ParamAttr::typeIncompatible(FT->getReturnType());
Duncan Sandsad9a9e12008-01-06 18:27:01 +00008911
8912 // Add the new return attributes.
8913 if (RAttrs)
8914 attrVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
Chris Lattner9fe38862003-06-19 17:00:31 +00008915
8916 AI = CS.arg_begin();
8917 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
8918 const Type *ParamTy = FT->getParamType(i);
8919 if ((*AI)->getType() == ParamTy) {
8920 Args.push_back(*AI);
8921 } else {
Reid Spencer8a903db2006-12-18 08:47:13 +00008922 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
Reid Spencerc5b206b2006-12-31 05:48:39 +00008923 false, ParamTy, false);
Reid Spencer8a903db2006-12-18 08:47:13 +00008924 CastInst *NewCast = CastInst::create(opcode, *AI, ParamTy, "tmp");
Reid Spencer3da59db2006-11-27 01:05:10 +00008925 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
Chris Lattner9fe38862003-06-19 17:00:31 +00008926 }
Duncan Sandsad9a9e12008-01-06 18:27:01 +00008927
8928 // Add any parameter attributes.
Chris Lattner58d74912008-03-12 17:45:29 +00008929 if (ParameterAttributes PAttrs = CallerPAL.getParamAttrs(i + 1))
Duncan Sandsad9a9e12008-01-06 18:27:01 +00008930 attrVec.push_back(ParamAttrsWithIndex::get(i + 1, PAttrs));
Chris Lattner9fe38862003-06-19 17:00:31 +00008931 }
8932
8933 // If the function takes more arguments than the call was taking, add them
8934 // now...
8935 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
8936 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
8937
8938 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00008939 if (FT->getNumParams() < NumActualArgs) {
Chris Lattner9fe38862003-06-19 17:00:31 +00008940 if (!FT->isVarArg()) {
Bill Wendlinge8156192006-12-07 01:30:32 +00008941 cerr << "WARNING: While resolving call to function '"
8942 << Callee->getName() << "' arguments were dropped!\n";
Chris Lattner9fe38862003-06-19 17:00:31 +00008943 } else {
8944 // Add all of the arguments in their promoted form to the arg list...
8945 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
8946 const Type *PTy = getPromotedType((*AI)->getType());
8947 if (PTy != (*AI)->getType()) {
8948 // Must promote to pass through va_arg area!
Reid Spencerc5b206b2006-12-31 05:48:39 +00008949 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
8950 PTy, false);
Reid Spencer8a903db2006-12-18 08:47:13 +00008951 Instruction *Cast = CastInst::create(opcode, *AI, PTy, "tmp");
Chris Lattner9fe38862003-06-19 17:00:31 +00008952 InsertNewInstBefore(Cast, *Caller);
8953 Args.push_back(Cast);
8954 } else {
8955 Args.push_back(*AI);
8956 }
Duncan Sandsad9a9e12008-01-06 18:27:01 +00008957
Duncan Sandse1e520f2008-01-13 08:02:44 +00008958 // Add any parameter attributes.
Chris Lattner58d74912008-03-12 17:45:29 +00008959 if (ParameterAttributes PAttrs = CallerPAL.getParamAttrs(i + 1))
Duncan Sandse1e520f2008-01-13 08:02:44 +00008960 attrVec.push_back(ParamAttrsWithIndex::get(i + 1, PAttrs));
8961 }
Chris Lattner9fe38862003-06-19 17:00:31 +00008962 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00008963 }
Chris Lattner9fe38862003-06-19 17:00:31 +00008964
8965 if (FT->getReturnType() == Type::VoidTy)
Chris Lattner6934a042007-02-11 01:23:03 +00008966 Caller->setName(""); // Void type should not have a name.
Chris Lattner9fe38862003-06-19 17:00:31 +00008967
Chris Lattner58d74912008-03-12 17:45:29 +00008968 const PAListPtr &NewCallerPAL = PAListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsad9a9e12008-01-06 18:27:01 +00008969
Chris Lattner9fe38862003-06-19 17:00:31 +00008970 Instruction *NC;
8971 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greif051a9502008-04-06 20:25:17 +00008972 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
8973 Args.begin(), Args.end(), Caller->getName(), Caller);
Reid Spencered3fa852007-07-30 19:53:57 +00008974 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Duncan Sandsad9a9e12008-01-06 18:27:01 +00008975 cast<InvokeInst>(NC)->setParamAttrs(NewCallerPAL);
Chris Lattner9fe38862003-06-19 17:00:31 +00008976 } else {
Gabor Greif051a9502008-04-06 20:25:17 +00008977 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
8978 Caller->getName(), Caller);
Duncan Sandsdc024672007-11-27 13:23:08 +00008979 CallInst *CI = cast<CallInst>(Caller);
8980 if (CI->isTailCall())
Chris Lattnera9e92112005-05-06 06:48:21 +00008981 cast<CallInst>(NC)->setTailCall();
Duncan Sandsdc024672007-11-27 13:23:08 +00008982 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Duncan Sandsad9a9e12008-01-06 18:27:01 +00008983 cast<CallInst>(NC)->setParamAttrs(NewCallerPAL);
Chris Lattner9fe38862003-06-19 17:00:31 +00008984 }
8985
Chris Lattner6934a042007-02-11 01:23:03 +00008986 // Insert a cast of the return type as necessary.
Chris Lattner9fe38862003-06-19 17:00:31 +00008987 Value *NV = NC;
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00008988 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Chris Lattner9fe38862003-06-19 17:00:31 +00008989 if (NV->getType() != Type::VoidTy) {
Reid Spencerc5b206b2006-12-31 05:48:39 +00008990 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00008991 OldRetTy, false);
8992 NV = NC = CastInst::create(opcode, NC, OldRetTy, "tmp");
Chris Lattnerbb609042003-10-30 00:46:41 +00008993
8994 // If this is an invoke instruction, we should insert it after the first
8995 // non-phi, instruction in the normal successor block.
8996 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
8997 BasicBlock::iterator I = II->getNormalDest()->begin();
8998 while (isa<PHINode>(I)) ++I;
8999 InsertNewInstBefore(NC, *I);
9000 } else {
9001 // Otherwise, it's a call, just insert cast right after the call instr
9002 InsertNewInstBefore(NC, *Caller);
9003 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +00009004 AddUsersToWorkList(*Caller);
Chris Lattner9fe38862003-06-19 17:00:31 +00009005 } else {
Chris Lattnerc30bda72004-10-17 21:22:38 +00009006 NV = UndefValue::get(Caller->getType());
Chris Lattner9fe38862003-06-19 17:00:31 +00009007 }
9008 }
9009
9010 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9011 Caller->replaceAllUsesWith(NV);
Chris Lattnerf22a5c62007-03-02 19:59:19 +00009012 Caller->eraseFromParent();
Chris Lattnerdbab3862007-03-02 21:28:56 +00009013 RemoveFromWorkList(Caller);
Chris Lattner9fe38862003-06-19 17:00:31 +00009014 return true;
9015}
9016
Duncan Sandscdb6d922007-09-17 10:26:40 +00009017// transformCallThroughTrampoline - Turn a call to a function created by the
9018// init_trampoline intrinsic into a direct call to the underlying function.
9019//
9020Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9021 Value *Callee = CS.getCalledValue();
9022 const PointerType *PTy = cast<PointerType>(Callee->getType());
9023 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Chris Lattner58d74912008-03-12 17:45:29 +00009024 const PAListPtr &Attrs = CS.getParamAttrs();
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009025
9026 // If the call already has the 'nest' attribute somewhere then give up -
9027 // otherwise 'nest' would occur twice after splicing in the chain.
Chris Lattner58d74912008-03-12 17:45:29 +00009028 if (Attrs.hasAttrSomewhere(ParamAttr::Nest))
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009029 return 0;
Duncan Sandscdb6d922007-09-17 10:26:40 +00009030
9031 IntrinsicInst *Tramp =
9032 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9033
9034 Function *NestF =
9035 cast<Function>(IntrinsicInst::StripPointerCasts(Tramp->getOperand(2)));
9036 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9037 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9038
Chris Lattner58d74912008-03-12 17:45:29 +00009039 const PAListPtr &NestAttrs = NestF->getParamAttrs();
9040 if (!NestAttrs.isEmpty()) {
Duncan Sandscdb6d922007-09-17 10:26:40 +00009041 unsigned NestIdx = 1;
9042 const Type *NestTy = 0;
Dale Johannesen0d51e7e2008-02-19 21:38:47 +00009043 ParameterAttributes NestAttr = ParamAttr::None;
Duncan Sandscdb6d922007-09-17 10:26:40 +00009044
9045 // Look for a parameter marked with the 'nest' attribute.
9046 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9047 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Chris Lattner58d74912008-03-12 17:45:29 +00009048 if (NestAttrs.paramHasAttr(NestIdx, ParamAttr::Nest)) {
Duncan Sandscdb6d922007-09-17 10:26:40 +00009049 // Record the parameter type and any other attributes.
9050 NestTy = *I;
Chris Lattner58d74912008-03-12 17:45:29 +00009051 NestAttr = NestAttrs.getParamAttrs(NestIdx);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009052 break;
9053 }
9054
9055 if (NestTy) {
9056 Instruction *Caller = CS.getInstruction();
9057 std::vector<Value*> NewArgs;
9058 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9059
Chris Lattner58d74912008-03-12 17:45:29 +00009060 SmallVector<ParamAttrsWithIndex, 8> NewAttrs;
9061 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009062
Duncan Sandscdb6d922007-09-17 10:26:40 +00009063 // Insert the nest argument into the call argument list, which may
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009064 // mean appending it. Likewise for attributes.
9065
9066 // Add any function result attributes.
Chris Lattner58d74912008-03-12 17:45:29 +00009067 if (ParameterAttributes Attr = Attrs.getParamAttrs(0))
9068 NewAttrs.push_back(ParamAttrsWithIndex::get(0, Attr));
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009069
Duncan Sandscdb6d922007-09-17 10:26:40 +00009070 {
9071 unsigned Idx = 1;
9072 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9073 do {
9074 if (Idx == NestIdx) {
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009075 // Add the chain argument and attributes.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009076 Value *NestVal = Tramp->getOperand(3);
9077 if (NestVal->getType() != NestTy)
9078 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9079 NewArgs.push_back(NestVal);
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009080 NewAttrs.push_back(ParamAttrsWithIndex::get(NestIdx, NestAttr));
Duncan Sandscdb6d922007-09-17 10:26:40 +00009081 }
9082
9083 if (I == E)
9084 break;
9085
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009086 // Add the original argument and attributes.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009087 NewArgs.push_back(*I);
Chris Lattner58d74912008-03-12 17:45:29 +00009088 if (ParameterAttributes Attr = Attrs.getParamAttrs(Idx))
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009089 NewAttrs.push_back
9090 (ParamAttrsWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sandscdb6d922007-09-17 10:26:40 +00009091
9092 ++Idx, ++I;
9093 } while (1);
9094 }
9095
9096 // The trampoline may have been bitcast to a bogus type (FTy).
9097 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009098 // with the chain parameter inserted.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009099
Duncan Sandscdb6d922007-09-17 10:26:40 +00009100 std::vector<const Type*> NewTypes;
Duncan Sandscdb6d922007-09-17 10:26:40 +00009101 NewTypes.reserve(FTy->getNumParams()+1);
9102
Duncan Sandscdb6d922007-09-17 10:26:40 +00009103 // Insert the chain's type into the list of parameter types, which may
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009104 // mean appending it.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009105 {
9106 unsigned Idx = 1;
9107 FunctionType::param_iterator I = FTy->param_begin(),
9108 E = FTy->param_end();
9109
9110 do {
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009111 if (Idx == NestIdx)
9112 // Add the chain's type.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009113 NewTypes.push_back(NestTy);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009114
9115 if (I == E)
9116 break;
9117
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009118 // Add the original type.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009119 NewTypes.push_back(*I);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009120
9121 ++Idx, ++I;
9122 } while (1);
9123 }
9124
9125 // Replace the trampoline call with a direct call. Let the generic
9126 // code sort out any function type mismatches.
9127 FunctionType *NewFTy =
Duncan Sandsdc024672007-11-27 13:23:08 +00009128 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lamb43ad6b32007-12-17 01:12:55 +00009129 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9130 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Chris Lattner58d74912008-03-12 17:45:29 +00009131 const PAListPtr &NewPAL = PAListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sandscdb6d922007-09-17 10:26:40 +00009132
9133 Instruction *NewCaller;
9134 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greif051a9502008-04-06 20:25:17 +00009135 NewCaller = InvokeInst::Create(NewCallee,
9136 II->getNormalDest(), II->getUnwindDest(),
9137 NewArgs.begin(), NewArgs.end(),
9138 Caller->getName(), Caller);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009139 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Duncan Sandsdc024672007-11-27 13:23:08 +00009140 cast<InvokeInst>(NewCaller)->setParamAttrs(NewPAL);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009141 } else {
Gabor Greif051a9502008-04-06 20:25:17 +00009142 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9143 Caller->getName(), Caller);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009144 if (cast<CallInst>(Caller)->isTailCall())
9145 cast<CallInst>(NewCaller)->setTailCall();
9146 cast<CallInst>(NewCaller)->
9147 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Duncan Sandsdc024672007-11-27 13:23:08 +00009148 cast<CallInst>(NewCaller)->setParamAttrs(NewPAL);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009149 }
9150 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9151 Caller->replaceAllUsesWith(NewCaller);
9152 Caller->eraseFromParent();
9153 RemoveFromWorkList(Caller);
9154 return 0;
9155 }
9156 }
9157
9158 // Replace the trampoline call with a direct call. Since there is no 'nest'
9159 // parameter, there is no need to adjust the argument list. Let the generic
9160 // code sort out any function type mismatches.
9161 Constant *NewCallee =
9162 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9163 CS.setCalledFunction(NewCallee);
9164 return CS.getInstruction();
9165}
9166
Chris Lattner7da52b22006-11-01 04:51:18 +00009167/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9168/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9169/// and a single binop.
9170Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9171 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
Reid Spencer832254e2007-02-02 02:16:23 +00009172 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
9173 isa<CmpInst>(FirstInst));
Chris Lattner7da52b22006-11-01 04:51:18 +00009174 unsigned Opc = FirstInst->getOpcode();
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009175 Value *LHSVal = FirstInst->getOperand(0);
9176 Value *RHSVal = FirstInst->getOperand(1);
9177
9178 const Type *LHSType = LHSVal->getType();
9179 const Type *RHSType = RHSVal->getType();
Chris Lattner7da52b22006-11-01 04:51:18 +00009180
9181 // Scan to see if all operands are the same opcode, all have one use, and all
9182 // kill their operands (i.e. the operands have one use).
Chris Lattnera90a24c2006-11-01 04:55:47 +00009183 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
Chris Lattner7da52b22006-11-01 04:51:18 +00009184 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
Chris Lattnera90a24c2006-11-01 04:55:47 +00009185 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
Reid Spencere4d87aa2006-12-23 06:05:41 +00009186 // Verify type of the LHS matches so we don't fold cmp's of different
Chris Lattner9c080502006-11-01 07:43:41 +00009187 // types or GEP's with different index types.
9188 I->getOperand(0)->getType() != LHSType ||
9189 I->getOperand(1)->getType() != RHSType)
Chris Lattner7da52b22006-11-01 04:51:18 +00009190 return 0;
Reid Spencere4d87aa2006-12-23 06:05:41 +00009191
9192 // If they are CmpInst instructions, check their predicates
9193 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9194 if (cast<CmpInst>(I)->getPredicate() !=
9195 cast<CmpInst>(FirstInst)->getPredicate())
9196 return 0;
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009197
9198 // Keep track of which operand needs a phi node.
9199 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9200 if (I->getOperand(1) != RHSVal) RHSVal = 0;
Chris Lattner7da52b22006-11-01 04:51:18 +00009201 }
9202
Chris Lattner53738a42006-11-08 19:42:28 +00009203 // Otherwise, this is safe to transform, determine if it is profitable.
9204
9205 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
9206 // Indexes are often folded into load/store instructions, so we don't want to
9207 // hide them behind a phi.
9208 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
9209 return 0;
9210
Chris Lattner7da52b22006-11-01 04:51:18 +00009211 Value *InLHS = FirstInst->getOperand(0);
Chris Lattner7da52b22006-11-01 04:51:18 +00009212 Value *InRHS = FirstInst->getOperand(1);
Chris Lattner53738a42006-11-08 19:42:28 +00009213 PHINode *NewLHS = 0, *NewRHS = 0;
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009214 if (LHSVal == 0) {
Gabor Greif051a9502008-04-06 20:25:17 +00009215 NewLHS = PHINode::Create(LHSType, FirstInst->getOperand(0)->getName()+".pn");
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009216 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9217 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
Chris Lattner9c080502006-11-01 07:43:41 +00009218 InsertNewInstBefore(NewLHS, PN);
9219 LHSVal = NewLHS;
9220 }
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009221
9222 if (RHSVal == 0) {
Gabor Greif051a9502008-04-06 20:25:17 +00009223 NewRHS = PHINode::Create(RHSType, FirstInst->getOperand(1)->getName()+".pn");
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009224 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9225 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
Chris Lattner9c080502006-11-01 07:43:41 +00009226 InsertNewInstBefore(NewRHS, PN);
9227 RHSVal = NewRHS;
9228 }
9229
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009230 // Add all operands to the new PHIs.
9231 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9232 if (NewLHS) {
9233 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9234 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
9235 }
9236 if (NewRHS) {
9237 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
9238 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
9239 }
9240 }
9241
Chris Lattner7da52b22006-11-01 04:51:18 +00009242 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Chris Lattner9c080502006-11-01 07:43:41 +00009243 return BinaryOperator::create(BinOp->getOpcode(), LHSVal, RHSVal);
Reid Spencere4d87aa2006-12-23 06:05:41 +00009244 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
9245 return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
9246 RHSVal);
Chris Lattner9c080502006-11-01 07:43:41 +00009247 else {
9248 assert(isa<GetElementPtrInst>(FirstInst));
Gabor Greif051a9502008-04-06 20:25:17 +00009249 return GetElementPtrInst::Create(LHSVal, RHSVal);
Chris Lattner9c080502006-11-01 07:43:41 +00009250 }
Chris Lattner7da52b22006-11-01 04:51:18 +00009251}
9252
Chris Lattner76c73142006-11-01 07:13:54 +00009253/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
9254/// of the block that defines it. This means that it must be obvious the value
9255/// of the load is not changed from the point of the load to the end of the
9256/// block it is in.
Chris Lattnerfd905ca2007-02-01 22:30:07 +00009257///
9258/// Finally, it is safe, but not profitable, to sink a load targetting a
9259/// non-address-taken alloca. Doing so will cause us to not promote the alloca
9260/// to a register.
Chris Lattner76c73142006-11-01 07:13:54 +00009261static bool isSafeToSinkLoad(LoadInst *L) {
9262 BasicBlock::iterator BBI = L, E = L->getParent()->end();
9263
9264 for (++BBI; BBI != E; ++BBI)
9265 if (BBI->mayWriteToMemory())
9266 return false;
Chris Lattnerfd905ca2007-02-01 22:30:07 +00009267
9268 // Check for non-address taken alloca. If not address-taken already, it isn't
9269 // profitable to do this xform.
9270 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
9271 bool isAddressTaken = false;
9272 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
9273 UI != E; ++UI) {
9274 if (isa<LoadInst>(UI)) continue;
9275 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
9276 // If storing TO the alloca, then the address isn't taken.
9277 if (SI->getOperand(1) == AI) continue;
9278 }
9279 isAddressTaken = true;
9280 break;
9281 }
9282
9283 if (!isAddressTaken)
9284 return false;
9285 }
9286
Chris Lattner76c73142006-11-01 07:13:54 +00009287 return true;
9288}
9289
Chris Lattner9fe38862003-06-19 17:00:31 +00009290
Chris Lattnerbac32862004-11-14 19:13:23 +00009291// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
9292// operator and they all are only used by the PHI, PHI together their
9293// inputs, and do the operation once, to the result of the PHI.
9294Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
9295 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9296
9297 // Scan the instruction, looking for input operations that can be folded away.
9298 // If all input operands to the phi are the same instruction (e.g. a cast from
9299 // the same type or "+42") we can pull the operation through the PHI, reducing
9300 // code size and simplifying code.
9301 Constant *ConstantOp = 0;
9302 const Type *CastSrcTy = 0;
Chris Lattner76c73142006-11-01 07:13:54 +00009303 bool isVolatile = false;
Chris Lattnerbac32862004-11-14 19:13:23 +00009304 if (isa<CastInst>(FirstInst)) {
9305 CastSrcTy = FirstInst->getOperand(0)->getType();
Reid Spencer832254e2007-02-02 02:16:23 +00009306 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00009307 // Can fold binop, compare or shift here if the RHS is a constant,
9308 // otherwise call FoldPHIArgBinOpIntoPHI.
Chris Lattnerbac32862004-11-14 19:13:23 +00009309 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
Chris Lattner7da52b22006-11-01 04:51:18 +00009310 if (ConstantOp == 0)
9311 return FoldPHIArgBinOpIntoPHI(PN);
Chris Lattner76c73142006-11-01 07:13:54 +00009312 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
9313 isVolatile = LI->isVolatile();
9314 // We can't sink the load if the loaded value could be modified between the
9315 // load and the PHI.
9316 if (LI->getParent() != PN.getIncomingBlock(0) ||
9317 !isSafeToSinkLoad(LI))
9318 return 0;
Chris Lattner9c080502006-11-01 07:43:41 +00009319 } else if (isa<GetElementPtrInst>(FirstInst)) {
Chris Lattner53738a42006-11-08 19:42:28 +00009320 if (FirstInst->getNumOperands() == 2)
Chris Lattner9c080502006-11-01 07:43:41 +00009321 return FoldPHIArgBinOpIntoPHI(PN);
9322 // Can't handle general GEPs yet.
9323 return 0;
Chris Lattnerbac32862004-11-14 19:13:23 +00009324 } else {
9325 return 0; // Cannot fold this operation.
9326 }
9327
9328 // Check to see if all arguments are the same operation.
9329 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9330 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
9331 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
Reid Spencere4d87aa2006-12-23 06:05:41 +00009332 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
Chris Lattnerbac32862004-11-14 19:13:23 +00009333 return 0;
9334 if (CastSrcTy) {
9335 if (I->getOperand(0)->getType() != CastSrcTy)
9336 return 0; // Cast operation must match.
Chris Lattner76c73142006-11-01 07:13:54 +00009337 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00009338 // We can't sink the load if the loaded value could be modified between
9339 // the load and the PHI.
Chris Lattner76c73142006-11-01 07:13:54 +00009340 if (LI->isVolatile() != isVolatile ||
9341 LI->getParent() != PN.getIncomingBlock(i) ||
9342 !isSafeToSinkLoad(LI))
9343 return 0;
Chris Lattnerbac32862004-11-14 19:13:23 +00009344 } else if (I->getOperand(1) != ConstantOp) {
9345 return 0;
9346 }
9347 }
9348
9349 // Okay, they are all the same operation. Create a new PHI node of the
9350 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greif051a9502008-04-06 20:25:17 +00009351 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
9352 PN.getName()+".in");
Chris Lattner55517062005-01-29 00:39:08 +00009353 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
Chris Lattnerb5893442004-11-14 19:29:34 +00009354
9355 Value *InVal = FirstInst->getOperand(0);
9356 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
Chris Lattnerbac32862004-11-14 19:13:23 +00009357
9358 // Add all operands to the new PHI.
Chris Lattnerb5893442004-11-14 19:29:34 +00009359 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9360 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9361 if (NewInVal != InVal)
9362 InVal = 0;
9363 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
9364 }
9365
9366 Value *PhiVal;
9367 if (InVal) {
9368 // The new PHI unions all of the same values together. This is really
9369 // common, so we handle it intelligently here for compile-time speed.
9370 PhiVal = InVal;
9371 delete NewPN;
9372 } else {
9373 InsertNewInstBefore(NewPN, PN);
9374 PhiVal = NewPN;
9375 }
Misha Brukmanfd939082005-04-21 23:48:37 +00009376
Chris Lattnerbac32862004-11-14 19:13:23 +00009377 // Insert and return the new operation.
Reid Spencer3da59db2006-11-27 01:05:10 +00009378 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
9379 return CastInst::create(FirstCI->getOpcode(), PhiVal, PN.getType());
Reid Spencer3ed469c2006-11-02 20:25:50 +00009380 else if (isa<LoadInst>(FirstInst))
Chris Lattner76c73142006-11-01 07:13:54 +00009381 return new LoadInst(PhiVal, "", isVolatile);
Chris Lattnerbac32862004-11-14 19:13:23 +00009382 else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Chris Lattnerb5893442004-11-14 19:29:34 +00009383 return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
Reid Spencere4d87aa2006-12-23 06:05:41 +00009384 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
9385 return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(),
9386 PhiVal, ConstantOp);
Chris Lattnerbac32862004-11-14 19:13:23 +00009387 else
Reid Spencer832254e2007-02-02 02:16:23 +00009388 assert(0 && "Unknown operation");
Jeff Cohenca5183d2007-03-05 00:00:42 +00009389 return 0;
Chris Lattnerbac32862004-11-14 19:13:23 +00009390}
Chris Lattnera1be5662002-05-02 17:06:02 +00009391
Chris Lattnera3fd1c52005-01-17 05:10:15 +00009392/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
9393/// that is dead.
Chris Lattner0e5444b2007-03-26 20:40:50 +00009394static bool DeadPHICycle(PHINode *PN,
9395 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
Chris Lattnera3fd1c52005-01-17 05:10:15 +00009396 if (PN->use_empty()) return true;
9397 if (!PN->hasOneUse()) return false;
9398
9399 // Remember this node, and if we find the cycle, return.
Chris Lattner0e5444b2007-03-26 20:40:50 +00009400 if (!PotentiallyDeadPHIs.insert(PN))
Chris Lattnera3fd1c52005-01-17 05:10:15 +00009401 return true;
Chris Lattner92103de2007-08-28 04:23:55 +00009402
9403 // Don't scan crazily complex things.
9404 if (PotentiallyDeadPHIs.size() == 16)
9405 return false;
Chris Lattnera3fd1c52005-01-17 05:10:15 +00009406
9407 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
9408 return DeadPHICycle(PU, PotentiallyDeadPHIs);
Misha Brukmanfd939082005-04-21 23:48:37 +00009409
Chris Lattnera3fd1c52005-01-17 05:10:15 +00009410 return false;
9411}
9412
Chris Lattnercf5008a2007-11-06 21:52:06 +00009413/// PHIsEqualValue - Return true if this phi node is always equal to
9414/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
9415/// z = some value; x = phi (y, z); y = phi (x, z)
9416static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
9417 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
9418 // See if we already saw this PHI node.
9419 if (!ValueEqualPHIs.insert(PN))
9420 return true;
9421
9422 // Don't scan crazily complex things.
9423 if (ValueEqualPHIs.size() == 16)
9424 return false;
9425
9426 // Scan the operands to see if they are either phi nodes or are equal to
9427 // the value.
9428 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9429 Value *Op = PN->getIncomingValue(i);
9430 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
9431 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
9432 return false;
9433 } else if (Op != NonPhiInVal)
9434 return false;
9435 }
9436
9437 return true;
9438}
9439
9440
Chris Lattner473945d2002-05-06 18:06:38 +00009441// PHINode simplification
9442//
Chris Lattner7e708292002-06-25 16:13:24 +00009443Instruction *InstCombiner::visitPHINode(PHINode &PN) {
Owen Andersonb64ab872006-07-10 22:15:25 +00009444 // If LCSSA is around, don't mess with Phi nodes
Chris Lattnerf964f322007-03-04 04:27:24 +00009445 if (MustPreserveLCSSA) return 0;
Owen Andersond1b78a12006-07-10 19:03:49 +00009446
Owen Anderson7e057142006-07-10 22:03:18 +00009447 if (Value *V = PN.hasConstantValue())
9448 return ReplaceInstUsesWith(PN, V);
9449
Owen Anderson7e057142006-07-10 22:03:18 +00009450 // If all PHI operands are the same operation, pull them through the PHI,
9451 // reducing code size.
9452 if (isa<Instruction>(PN.getIncomingValue(0)) &&
9453 PN.getIncomingValue(0)->hasOneUse())
9454 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
9455 return Result;
9456
9457 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
9458 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
9459 // PHI)... break the cycle.
Chris Lattnerff9f13a2007-01-15 07:30:06 +00009460 if (PN.hasOneUse()) {
9461 Instruction *PHIUser = cast<Instruction>(PN.use_back());
9462 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
Chris Lattner0e5444b2007-03-26 20:40:50 +00009463 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
Owen Anderson7e057142006-07-10 22:03:18 +00009464 PotentiallyDeadPHIs.insert(&PN);
9465 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
9466 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
9467 }
Chris Lattnerff9f13a2007-01-15 07:30:06 +00009468
9469 // If this phi has a single use, and if that use just computes a value for
9470 // the next iteration of a loop, delete the phi. This occurs with unused
9471 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
9472 // common case here is good because the only other things that catch this
9473 // are induction variable analysis (sometimes) and ADCE, which is only run
9474 // late.
9475 if (PHIUser->hasOneUse() &&
9476 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
9477 PHIUser->use_back() == &PN) {
9478 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
9479 }
9480 }
Owen Anderson7e057142006-07-10 22:03:18 +00009481
Chris Lattnercf5008a2007-11-06 21:52:06 +00009482 // We sometimes end up with phi cycles that non-obviously end up being the
9483 // same value, for example:
9484 // z = some value; x = phi (y, z); y = phi (x, z)
9485 // where the phi nodes don't necessarily need to be in the same block. Do a
9486 // quick check to see if the PHI node only contains a single non-phi value, if
9487 // so, scan to see if the phi cycle is actually equal to that value.
9488 {
9489 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
9490 // Scan for the first non-phi operand.
9491 while (InValNo != NumOperandVals &&
9492 isa<PHINode>(PN.getIncomingValue(InValNo)))
9493 ++InValNo;
9494
9495 if (InValNo != NumOperandVals) {
9496 Value *NonPhiInVal = PN.getOperand(InValNo);
9497
9498 // Scan the rest of the operands to see if there are any conflicts, if so
9499 // there is no need to recursively scan other phis.
9500 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
9501 Value *OpVal = PN.getIncomingValue(InValNo);
9502 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
9503 break;
9504 }
9505
9506 // If we scanned over all operands, then we have one unique value plus
9507 // phi values. Scan PHI nodes to see if they all merge in each other or
9508 // the value.
9509 if (InValNo == NumOperandVals) {
9510 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
9511 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
9512 return ReplaceInstUsesWith(PN, NonPhiInVal);
9513 }
9514 }
9515 }
Chris Lattner60921c92003-12-19 05:58:40 +00009516 return 0;
Chris Lattner473945d2002-05-06 18:06:38 +00009517}
9518
Reid Spencer17212df2006-12-12 09:18:51 +00009519static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
9520 Instruction *InsertPoint,
9521 InstCombiner *IC) {
Reid Spencerabaa8ca2007-01-08 16:32:00 +00009522 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
9523 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
Reid Spencer17212df2006-12-12 09:18:51 +00009524 // We must cast correctly to the pointer type. Ensure that we
9525 // sign extend the integer value if it is smaller as this is
9526 // used for address computation.
9527 Instruction::CastOps opcode =
9528 (VTySize < PtrSize ? Instruction::SExt :
9529 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
9530 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
Chris Lattner28977af2004-04-05 01:30:19 +00009531}
9532
Chris Lattnera1be5662002-05-02 17:06:02 +00009533
Chris Lattner7e708292002-06-25 16:13:24 +00009534Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattner620ce142004-05-07 22:09:22 +00009535 Value *PtrOp = GEP.getOperand(0);
Chris Lattner9bc14642007-04-28 00:57:34 +00009536 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
Chris Lattner7e708292002-06-25 16:13:24 +00009537 // If so, eliminate the noop.
Chris Lattnerc6bd1952004-02-22 05:25:17 +00009538 if (GEP.getNumOperands() == 1)
Chris Lattner620ce142004-05-07 22:09:22 +00009539 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattnerc6bd1952004-02-22 05:25:17 +00009540
Chris Lattnere87597f2004-10-16 18:11:37 +00009541 if (isa<UndefValue>(GEP.getOperand(0)))
9542 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
9543
Chris Lattnerc6bd1952004-02-22 05:25:17 +00009544 bool HasZeroPointerIndex = false;
9545 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
9546 HasZeroPointerIndex = C->isNullValue();
9547
9548 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
Chris Lattner620ce142004-05-07 22:09:22 +00009549 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattnera1be5662002-05-02 17:06:02 +00009550
Chris Lattner28977af2004-04-05 01:30:19 +00009551 // Eliminate unneeded casts for indices.
9552 bool MadeChange = false;
Chris Lattnerdb9654e2007-03-25 20:43:09 +00009553
Chris Lattnercb69a4e2004-04-07 18:38:20 +00009554 gep_type_iterator GTI = gep_type_begin(GEP);
Chris Lattnerdb9654e2007-03-25 20:43:09 +00009555 for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI) {
Chris Lattnercb69a4e2004-04-07 18:38:20 +00009556 if (isa<SequentialType>(*GTI)) {
9557 if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
Chris Lattner76b7a062007-01-15 07:02:54 +00009558 if (CI->getOpcode() == Instruction::ZExt ||
9559 CI->getOpcode() == Instruction::SExt) {
9560 const Type *SrcTy = CI->getOperand(0)->getType();
9561 // We can eliminate a cast from i32 to i64 iff the target
9562 // is a 32-bit pointer target.
9563 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
9564 MadeChange = true;
9565 GEP.setOperand(i, CI->getOperand(0));
Chris Lattner28977af2004-04-05 01:30:19 +00009566 }
9567 }
9568 }
Chris Lattnercb69a4e2004-04-07 18:38:20 +00009569 // If we are using a wider index than needed for this platform, shrink it
9570 // to what we need. If the incoming value needs a cast instruction,
9571 // insert it. This explicit cast can make subsequent optimizations more
9572 // obvious.
9573 Value *Op = GEP.getOperand(i);
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00009574 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Chris Lattner4f1134e2004-04-17 18:16:10 +00009575 if (Constant *C = dyn_cast<Constant>(Op)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00009576 GEP.setOperand(i, ConstantExpr::getTrunc(C, TD->getIntPtrType()));
Chris Lattner4f1134e2004-04-17 18:16:10 +00009577 MadeChange = true;
9578 } else {
Reid Spencer17212df2006-12-12 09:18:51 +00009579 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
9580 GEP);
Chris Lattnercb69a4e2004-04-07 18:38:20 +00009581 GEP.setOperand(i, Op);
9582 MadeChange = true;
9583 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00009584 }
Chris Lattner28977af2004-04-05 01:30:19 +00009585 }
Chris Lattnerdb9654e2007-03-25 20:43:09 +00009586 }
Chris Lattner28977af2004-04-05 01:30:19 +00009587 if (MadeChange) return &GEP;
9588
Chris Lattnerdb9654e2007-03-25 20:43:09 +00009589 // If this GEP instruction doesn't move the pointer, and if the input operand
9590 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
9591 // real input to the dest type.
Chris Lattner6a94de22007-10-12 05:30:59 +00009592 if (GEP.hasAllZeroIndices()) {
9593 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
9594 // If the bitcast is of an allocation, and the allocation will be
9595 // converted to match the type of the cast, don't touch this.
9596 if (isa<AllocationInst>(BCI->getOperand(0))) {
9597 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattnera79dd432007-10-12 18:05:47 +00009598 if (Instruction *I = visitBitCast(*BCI)) {
9599 if (I != BCI) {
9600 I->takeName(BCI);
9601 BCI->getParent()->getInstList().insert(BCI, I);
9602 ReplaceInstUsesWith(*BCI, I);
9603 }
Chris Lattner6a94de22007-10-12 05:30:59 +00009604 return &GEP;
Chris Lattnera79dd432007-10-12 18:05:47 +00009605 }
Chris Lattner6a94de22007-10-12 05:30:59 +00009606 }
9607 return new BitCastInst(BCI->getOperand(0), GEP.getType());
9608 }
9609 }
9610
Chris Lattner90ac28c2002-08-02 19:29:35 +00009611 // Combine Indices - If the source pointer to this getelementptr instruction
9612 // is a getelementptr instruction, combine the indices of the two
9613 // getelementptr instructions into a single instruction.
9614 //
Chris Lattner72588fc2007-02-15 22:48:32 +00009615 SmallVector<Value*, 8> SrcGEPOperands;
Chris Lattner574da9b2005-01-13 20:14:25 +00009616 if (User *Src = dyn_castGetElementPtr(PtrOp))
Chris Lattner72588fc2007-02-15 22:48:32 +00009617 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
Chris Lattnerebd985c2004-03-25 22:59:29 +00009618
9619 if (!SrcGEPOperands.empty()) {
Chris Lattner620ce142004-05-07 22:09:22 +00009620 // Note that if our source is a gep chain itself that we wait for that
9621 // chain to be resolved before we perform this transformation. This
9622 // avoids us creating a TON of code in some cases.
9623 //
9624 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
9625 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
9626 return 0; // Wait until our source is folded to completion.
9627
Chris Lattner72588fc2007-02-15 22:48:32 +00009628 SmallVector<Value*, 8> Indices;
Chris Lattner620ce142004-05-07 22:09:22 +00009629
9630 // Find out whether the last index in the source GEP is a sequential idx.
9631 bool EndsWithSequential = false;
9632 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
9633 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
Chris Lattnerbe97b4e2004-05-08 22:41:42 +00009634 EndsWithSequential = !isa<StructType>(*I);
Misha Brukmanfd939082005-04-21 23:48:37 +00009635
Chris Lattner90ac28c2002-08-02 19:29:35 +00009636 // Can we combine the two pointer arithmetics offsets?
Chris Lattner620ce142004-05-07 22:09:22 +00009637 if (EndsWithSequential) {
Chris Lattnerdecd0812003-03-05 22:33:14 +00009638 // Replace: gep (gep %P, long B), long A, ...
9639 // With: T = long A+B; gep %P, T, ...
9640 //
Chris Lattner620ce142004-05-07 22:09:22 +00009641 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
Chris Lattner28977af2004-04-05 01:30:19 +00009642 if (SO1 == Constant::getNullValue(SO1->getType())) {
9643 Sum = GO1;
9644 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
9645 Sum = SO1;
9646 } else {
9647 // If they aren't the same type, convert both to an integer of the
9648 // target's pointer size.
9649 if (SO1->getType() != GO1->getType()) {
9650 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
Reid Spencer17212df2006-12-12 09:18:51 +00009651 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
Chris Lattner28977af2004-04-05 01:30:19 +00009652 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
Reid Spencer17212df2006-12-12 09:18:51 +00009653 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
Chris Lattner28977af2004-04-05 01:30:19 +00009654 } else {
Duncan Sands514ab342007-11-01 20:53:16 +00009655 unsigned PS = TD->getPointerSizeInBits();
9656 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Chris Lattner28977af2004-04-05 01:30:19 +00009657 // Convert GO1 to SO1's type.
Reid Spencer17212df2006-12-12 09:18:51 +00009658 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
Chris Lattner28977af2004-04-05 01:30:19 +00009659
Duncan Sands514ab342007-11-01 20:53:16 +00009660 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Chris Lattner28977af2004-04-05 01:30:19 +00009661 // Convert SO1 to GO1's type.
Reid Spencer17212df2006-12-12 09:18:51 +00009662 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
Chris Lattner28977af2004-04-05 01:30:19 +00009663 } else {
9664 const Type *PT = TD->getIntPtrType();
Reid Spencer17212df2006-12-12 09:18:51 +00009665 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
9666 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
Chris Lattner28977af2004-04-05 01:30:19 +00009667 }
9668 }
9669 }
Chris Lattner620ce142004-05-07 22:09:22 +00009670 if (isa<Constant>(SO1) && isa<Constant>(GO1))
9671 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
9672 else {
Chris Lattner48595f12004-06-10 02:07:29 +00009673 Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
9674 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
Chris Lattner620ce142004-05-07 22:09:22 +00009675 }
Chris Lattner28977af2004-04-05 01:30:19 +00009676 }
Chris Lattner620ce142004-05-07 22:09:22 +00009677
9678 // Recycle the GEP we already have if possible.
9679 if (SrcGEPOperands.size() == 2) {
9680 GEP.setOperand(0, SrcGEPOperands[0]);
9681 GEP.setOperand(1, Sum);
9682 return &GEP;
9683 } else {
9684 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
9685 SrcGEPOperands.end()-1);
9686 Indices.push_back(Sum);
9687 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
9688 }
Misha Brukmanfd939082005-04-21 23:48:37 +00009689 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner28977af2004-04-05 01:30:19 +00009690 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Misha Brukmanfd939082005-04-21 23:48:37 +00009691 SrcGEPOperands.size() != 1) {
Chris Lattner90ac28c2002-08-02 19:29:35 +00009692 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattnerebd985c2004-03-25 22:59:29 +00009693 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
9694 SrcGEPOperands.end());
Chris Lattner90ac28c2002-08-02 19:29:35 +00009695 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
9696 }
9697
9698 if (!Indices.empty())
Gabor Greif051a9502008-04-06 20:25:17 +00009699 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
9700 Indices.end(), GEP.getName());
Chris Lattner9b761232002-08-17 22:21:59 +00009701
Chris Lattner620ce142004-05-07 22:09:22 +00009702 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
Chris Lattner9b761232002-08-17 22:21:59 +00009703 // GEP of global variable. If all of the indices for this GEP are
9704 // constants, we can promote this to a constexpr instead of an instruction.
9705
9706 // Scan for nonconstants...
Chris Lattner55eb1c42007-01-31 04:40:53 +00009707 SmallVector<Constant*, 8> Indices;
Chris Lattner9b761232002-08-17 22:21:59 +00009708 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
9709 for (; I != E && isa<Constant>(*I); ++I)
9710 Indices.push_back(cast<Constant>(*I));
9711
9712 if (I == E) { // If they are all constants...
Chris Lattner55eb1c42007-01-31 04:40:53 +00009713 Constant *CE = ConstantExpr::getGetElementPtr(GV,
9714 &Indices[0],Indices.size());
Chris Lattner9b761232002-08-17 22:21:59 +00009715
9716 // Replace all uses of the GEP with the new constexpr...
9717 return ReplaceInstUsesWith(GEP, CE);
9718 }
Reid Spencer3da59db2006-11-27 01:05:10 +00009719 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
Chris Lattnereed48272005-09-13 00:40:14 +00009720 if (!isa<PointerType>(X->getType())) {
9721 // Not interesting. Source pointer must be a cast from pointer.
9722 } else if (HasZeroPointerIndex) {
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00009723 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
9724 // into : GEP [10 x i8]* X, i32 0, ...
Chris Lattnereed48272005-09-13 00:40:14 +00009725 //
9726 // This occurs when the program declares an array extern like "int X[];"
9727 //
9728 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
9729 const PointerType *XTy = cast<PointerType>(X->getType());
9730 if (const ArrayType *XATy =
9731 dyn_cast<ArrayType>(XTy->getElementType()))
9732 if (const ArrayType *CATy =
9733 dyn_cast<ArrayType>(CPTy->getElementType()))
9734 if (CATy->getElementType() == XATy->getElementType()) {
9735 // At this point, we know that the cast source type is a pointer
9736 // to an array of the same type as the destination pointer
9737 // array. Because the array type is never stepped over (there
9738 // is a leading zero) we can fold the cast into this GEP.
9739 GEP.setOperand(0, X);
9740 return &GEP;
9741 }
9742 } else if (GEP.getNumOperands() == 2) {
9743 // Transform things like:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00009744 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
9745 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Chris Lattnereed48272005-09-13 00:40:14 +00009746 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
9747 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
9748 if (isa<ArrayType>(SrcElTy) &&
Duncan Sands514ab342007-11-01 20:53:16 +00009749 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
9750 TD->getABITypeSize(ResElTy)) {
David Greeneb8f74792007-09-04 15:46:09 +00009751 Value *Idx[2];
9752 Idx[0] = Constant::getNullValue(Type::Int32Ty);
9753 Idx[1] = GEP.getOperand(1);
Chris Lattnereed48272005-09-13 00:40:14 +00009754 Value *V = InsertNewInstBefore(
Gabor Greif051a9502008-04-06 20:25:17 +00009755 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Reid Spencer3da59db2006-11-27 01:05:10 +00009756 // V and GEP are both pointer types --> BitCast
9757 return new BitCastInst(V, GEP.getType());
Chris Lattnerc6bd1952004-02-22 05:25:17 +00009758 }
Chris Lattner7835cdd2005-09-13 18:36:04 +00009759
9760 // Transform things like:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00009761 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Chris Lattner7835cdd2005-09-13 18:36:04 +00009762 // (where tmp = 8*tmp2) into:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00009763 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Chris Lattner7835cdd2005-09-13 18:36:04 +00009764
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00009765 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Chris Lattner7835cdd2005-09-13 18:36:04 +00009766 uint64_t ArrayEltSize =
Duncan Sands514ab342007-11-01 20:53:16 +00009767 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Chris Lattner7835cdd2005-09-13 18:36:04 +00009768
9769 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
9770 // allow either a mul, shift, or constant here.
9771 Value *NewIdx = 0;
9772 ConstantInt *Scale = 0;
9773 if (ArrayEltSize == 1) {
9774 NewIdx = GEP.getOperand(1);
9775 Scale = ConstantInt::get(NewIdx->getType(), 1);
9776 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
Chris Lattner6e2f8432005-09-14 17:32:56 +00009777 NewIdx = ConstantInt::get(CI->getType(), 1);
Chris Lattner7835cdd2005-09-13 18:36:04 +00009778 Scale = CI;
9779 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
9780 if (Inst->getOpcode() == Instruction::Shl &&
9781 isa<ConstantInt>(Inst->getOperand(1))) {
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00009782 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
9783 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
9784 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
Chris Lattner7835cdd2005-09-13 18:36:04 +00009785 NewIdx = Inst->getOperand(0);
9786 } else if (Inst->getOpcode() == Instruction::Mul &&
9787 isa<ConstantInt>(Inst->getOperand(1))) {
9788 Scale = cast<ConstantInt>(Inst->getOperand(1));
9789 NewIdx = Inst->getOperand(0);
9790 }
9791 }
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00009792
Chris Lattner7835cdd2005-09-13 18:36:04 +00009793 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00009794 // out, perform the transformation. Note, we don't know whether Scale is
9795 // signed or not. We'll use unsigned version of division/modulo
9796 // operation after making sure Scale doesn't have the sign bit set.
9797 if (Scale && Scale->getSExtValue() >= 0LL &&
9798 Scale->getZExtValue() % ArrayEltSize == 0) {
9799 Scale = ConstantInt::get(Scale->getType(),
9800 Scale->getZExtValue() / ArrayEltSize);
Reid Spencerb83eb642006-10-20 07:07:24 +00009801 if (Scale->getZExtValue() != 1) {
Reid Spencer17212df2006-12-12 09:18:51 +00009802 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00009803 false /*ZExt*/);
Chris Lattner7835cdd2005-09-13 18:36:04 +00009804 Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale");
9805 NewIdx = InsertNewInstBefore(Sc, GEP);
9806 }
9807
9808 // Insert the new GEP instruction.
David Greeneb8f74792007-09-04 15:46:09 +00009809 Value *Idx[2];
9810 Idx[0] = Constant::getNullValue(Type::Int32Ty);
9811 Idx[1] = NewIdx;
Reid Spencer3da59db2006-11-27 01:05:10 +00009812 Instruction *NewGEP =
Gabor Greif051a9502008-04-06 20:25:17 +00009813 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Reid Spencer3da59db2006-11-27 01:05:10 +00009814 NewGEP = InsertNewInstBefore(NewGEP, GEP);
9815 // The NewGEP must be pointer typed, so must the old one -> BitCast
9816 return new BitCastInst(NewGEP, GEP.getType());
Chris Lattner7835cdd2005-09-13 18:36:04 +00009817 }
9818 }
Chris Lattnerc6bd1952004-02-22 05:25:17 +00009819 }
Chris Lattner8a2a3112001-12-14 16:52:21 +00009820 }
9821
Chris Lattner8a2a3112001-12-14 16:52:21 +00009822 return 0;
9823}
9824
Chris Lattner0864acf2002-11-04 16:18:53 +00009825Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
9826 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00009827 if (AI.isArrayAllocation()) { // Check C != 1
Reid Spencerb83eb642006-10-20 07:07:24 +00009828 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
9829 const Type *NewTy =
9830 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
Chris Lattner0006bd72002-11-09 00:49:43 +00009831 AllocationInst *New = 0;
Chris Lattner0864acf2002-11-04 16:18:53 +00009832
9833 // Create and insert the replacement instruction...
9834 if (isa<MallocInst>(AI))
Nate Begeman14b05292005-11-05 09:21:28 +00009835 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattner0006bd72002-11-09 00:49:43 +00009836 else {
9837 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
Nate Begeman14b05292005-11-05 09:21:28 +00009838 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattner0006bd72002-11-09 00:49:43 +00009839 }
Chris Lattner7c881df2004-03-19 06:08:10 +00009840
9841 InsertNewInstBefore(New, AI);
Misha Brukmanfd939082005-04-21 23:48:37 +00009842
Chris Lattner0864acf2002-11-04 16:18:53 +00009843 // Scan to the end of the allocation instructions, to skip over a block of
9844 // allocas if possible...
9845 //
9846 BasicBlock::iterator It = New;
9847 while (isa<AllocationInst>(*It)) ++It;
9848
9849 // Now that I is pointing to the first non-allocation-inst in the block,
9850 // insert our getelementptr instruction...
9851 //
Reid Spencerc5b206b2006-12-31 05:48:39 +00009852 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greeneb8f74792007-09-04 15:46:09 +00009853 Value *Idx[2];
9854 Idx[0] = NullIdx;
9855 Idx[1] = NullIdx;
Gabor Greif051a9502008-04-06 20:25:17 +00009856 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
9857 New->getName()+".sub", It);
Chris Lattner0864acf2002-11-04 16:18:53 +00009858
9859 // Now make everything use the getelementptr instead of the original
9860 // allocation.
Chris Lattner7c881df2004-03-19 06:08:10 +00009861 return ReplaceInstUsesWith(AI, V);
Chris Lattnere87597f2004-10-16 18:11:37 +00009862 } else if (isa<UndefValue>(AI.getArraySize())) {
9863 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
Chris Lattner0864acf2002-11-04 16:18:53 +00009864 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00009865 }
Chris Lattner7c881df2004-03-19 06:08:10 +00009866
9867 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
9868 // Note that we only do this for alloca's, because malloc should allocate and
9869 // return a unique pointer, even for a zero byte allocation.
Misha Brukmanfd939082005-04-21 23:48:37 +00009870 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sands514ab342007-11-01 20:53:16 +00009871 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Chris Lattner7c881df2004-03-19 06:08:10 +00009872 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
9873
Chris Lattner0864acf2002-11-04 16:18:53 +00009874 return 0;
9875}
9876
Chris Lattner67b1e1b2003-12-07 01:24:23 +00009877Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
9878 Value *Op = FI.getOperand(0);
9879
Chris Lattner17be6352004-10-18 02:59:09 +00009880 // free undef -> unreachable.
9881 if (isa<UndefValue>(Op)) {
9882 // Insert a new store to null because we cannot modify the CFG here.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00009883 new StoreInst(ConstantInt::getTrue(),
Christopher Lamb43ad6b32007-12-17 01:12:55 +00009884 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Chris Lattner17be6352004-10-18 02:59:09 +00009885 return EraseInstFromFunction(FI);
9886 }
Chris Lattner6fe55412007-04-14 00:20:02 +00009887
Chris Lattner6160e852004-02-28 04:57:37 +00009888 // If we have 'free null' delete the instruction. This can happen in stl code
9889 // when lots of inlining happens.
Chris Lattner17be6352004-10-18 02:59:09 +00009890 if (isa<ConstantPointerNull>(Op))
Chris Lattner7bcc0e72004-02-28 05:22:00 +00009891 return EraseInstFromFunction(FI);
Chris Lattner6fe55412007-04-14 00:20:02 +00009892
9893 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
9894 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
9895 FI.setOperand(0, CI->getOperand(0));
9896 return &FI;
9897 }
9898
9899 // Change free (gep X, 0,0,0,0) into free(X)
9900 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
9901 if (GEPI->hasAllZeroIndices()) {
9902 AddToWorkList(GEPI);
9903 FI.setOperand(0, GEPI->getOperand(0));
9904 return &FI;
9905 }
9906 }
9907
9908 // Change free(malloc) into nothing, if the malloc has a single use.
9909 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
9910 if (MI->hasOneUse()) {
9911 EraseInstFromFunction(FI);
9912 return EraseInstFromFunction(*MI);
9913 }
Chris Lattner6160e852004-02-28 04:57:37 +00009914
Chris Lattner67b1e1b2003-12-07 01:24:23 +00009915 return 0;
9916}
9917
9918
Chris Lattnerfcfe33a2005-01-31 05:51:45 +00009919/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patel99db6ad2007-10-18 19:52:32 +00009920static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling587c01d2008-02-26 10:53:30 +00009921 const TargetData *TD) {
Chris Lattnerb89e0712004-07-13 01:49:43 +00009922 User *CI = cast<User>(LI.getOperand(0));
Chris Lattnerf9527852005-01-31 04:50:46 +00009923 Value *CastOp = CI->getOperand(0);
Chris Lattnerb89e0712004-07-13 01:49:43 +00009924
Devang Patel99db6ad2007-10-18 19:52:32 +00009925 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
9926 // Instead of loading constant c string, use corresponding integer value
9927 // directly if string length is small enough.
9928 const std::string &Str = CE->getOperand(0)->getStringValue();
9929 if (!Str.empty()) {
9930 unsigned len = Str.length();
9931 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
9932 unsigned numBits = Ty->getPrimitiveSizeInBits();
9933 // Replace LI with immediate integer store.
9934 if ((numBits >> 3) == len + 1) {
Bill Wendling587c01d2008-02-26 10:53:30 +00009935 APInt StrVal(numBits, 0);
9936 APInt SingleChar(numBits, 0);
9937 if (TD->isLittleEndian()) {
9938 for (signed i = len-1; i >= 0; i--) {
9939 SingleChar = (uint64_t) Str[i];
9940 StrVal = (StrVal << 8) | SingleChar;
9941 }
9942 } else {
9943 for (unsigned i = 0; i < len; i++) {
9944 SingleChar = (uint64_t) Str[i];
9945 StrVal = (StrVal << 8) | SingleChar;
9946 }
9947 // Append NULL at the end.
9948 SingleChar = 0;
9949 StrVal = (StrVal << 8) | SingleChar;
9950 }
9951 Value *NL = ConstantInt::get(StrVal);
9952 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patel99db6ad2007-10-18 19:52:32 +00009953 }
9954 }
9955 }
9956
Chris Lattnerb89e0712004-07-13 01:49:43 +00009957 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
Chris Lattnerf9527852005-01-31 04:50:46 +00009958 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
Chris Lattnerb89e0712004-07-13 01:49:43 +00009959 const Type *SrcPTy = SrcTy->getElementType();
Chris Lattnerf9527852005-01-31 04:50:46 +00009960
Reid Spencer42230162007-01-22 05:51:25 +00009961 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
Reid Spencer9d6565a2007-02-15 02:26:10 +00009962 isa<VectorType>(DestPTy)) {
Chris Lattnerf9527852005-01-31 04:50:46 +00009963 // If the source is an array, the code below will not succeed. Check to
9964 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
9965 // constants.
9966 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
9967 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
9968 if (ASrcTy->getNumElements() != 0) {
Chris Lattner55eb1c42007-01-31 04:40:53 +00009969 Value *Idxs[2];
9970 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
9971 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
Chris Lattnerf9527852005-01-31 04:50:46 +00009972 SrcTy = cast<PointerType>(CastOp->getType());
9973 SrcPTy = SrcTy->getElementType();
9974 }
9975
Reid Spencer42230162007-01-22 05:51:25 +00009976 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
Reid Spencer9d6565a2007-02-15 02:26:10 +00009977 isa<VectorType>(SrcPTy)) &&
Chris Lattnerb1515fe2005-03-29 06:37:47 +00009978 // Do not allow turning this into a load of an integer, which is then
9979 // casted to a pointer, this pessimizes pointer analysis a lot.
9980 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
Reid Spencer42230162007-01-22 05:51:25 +00009981 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
9982 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
Misha Brukmanfd939082005-04-21 23:48:37 +00009983
Chris Lattnerf9527852005-01-31 04:50:46 +00009984 // Okay, we are casting from one integer or pointer type to another of
9985 // the same size. Instead of casting the pointer before the load, cast
9986 // the result of the loaded value.
9987 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
9988 CI->getName(),
9989 LI.isVolatile()),LI);
9990 // Now cast the result of the load.
Reid Spencerd977d862006-12-12 23:36:14 +00009991 return new BitCastInst(NewLoad, LI.getType());
Chris Lattnerf9527852005-01-31 04:50:46 +00009992 }
Chris Lattnerb89e0712004-07-13 01:49:43 +00009993 }
9994 }
9995 return 0;
9996}
9997
Chris Lattnerc10aced2004-09-19 18:43:46 +00009998/// isSafeToLoadUnconditionally - Return true if we know that executing a load
Chris Lattner8a375202004-09-19 19:18:10 +00009999/// from this value cannot trap. If it is not obviously safe to load from the
10000/// specified pointer, we do a quick local scan of the basic block containing
10001/// ScanFrom, to determine if the address is already accessed.
10002static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands892c7e42007-09-19 10:10:31 +000010003 // If it is an alloca it is always safe to load from.
10004 if (isa<AllocaInst>(V)) return true;
10005
Duncan Sands46318cd2007-09-19 10:25:38 +000010006 // If it is a global variable it is mostly safe to load from.
Duncan Sands892c7e42007-09-19 10:10:31 +000010007 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sands46318cd2007-09-19 10:25:38 +000010008 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands892c7e42007-09-19 10:10:31 +000010009 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Chris Lattner8a375202004-09-19 19:18:10 +000010010
10011 // Otherwise, be a little bit agressive by scanning the local block where we
10012 // want to check to see if the pointer is already being loaded or stored
Alkis Evlogimenos7b6ec602004-09-20 06:42:58 +000010013 // from/to. If so, the previous load or store would have already trapped,
10014 // so there is no harm doing an extra load (also, CSE will later eliminate
10015 // the load entirely).
Chris Lattner8a375202004-09-19 19:18:10 +000010016 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10017
Alkis Evlogimenos7b6ec602004-09-20 06:42:58 +000010018 while (BBI != E) {
Chris Lattner8a375202004-09-19 19:18:10 +000010019 --BBI;
10020
10021 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10022 if (LI->getOperand(0) == V) return true;
10023 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
10024 if (SI->getOperand(1) == V) return true;
Misha Brukmanfd939082005-04-21 23:48:37 +000010025
Alkis Evlogimenos7b6ec602004-09-20 06:42:58 +000010026 }
Chris Lattner8a375202004-09-19 19:18:10 +000010027 return false;
Chris Lattnerc10aced2004-09-19 18:43:46 +000010028}
10029
Chris Lattner8d2e8882007-08-11 18:48:48 +000010030/// GetUnderlyingObject - Trace through a series of getelementptrs and bitcasts
10031/// until we find the underlying object a pointer is referring to or something
10032/// we don't understand. Note that the returned pointer may be offset from the
10033/// input, because we ignore GEP indices.
10034static Value *GetUnderlyingObject(Value *Ptr) {
10035 while (1) {
10036 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
10037 if (CE->getOpcode() == Instruction::BitCast ||
10038 CE->getOpcode() == Instruction::GetElementPtr)
10039 Ptr = CE->getOperand(0);
10040 else
10041 return Ptr;
10042 } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr)) {
10043 Ptr = BCI->getOperand(0);
10044 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
10045 Ptr = GEP->getOperand(0);
10046 } else {
10047 return Ptr;
10048 }
10049 }
10050}
10051
Chris Lattner833b8a42003-06-26 05:06:25 +000010052Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10053 Value *Op = LI.getOperand(0);
Chris Lattner5f16a132004-01-12 04:13:56 +000010054
Dan Gohman9941f742007-07-20 16:34:21 +000010055 // Attempt to improve the alignment.
Dan Gohmaneee962e2008-04-10 18:43:06 +000010056 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10057 if (KnownAlign >
10058 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10059 LI.getAlignment()))
Dan Gohman9941f742007-07-20 16:34:21 +000010060 LI.setAlignment(KnownAlign);
10061
Chris Lattner37366c12005-05-01 04:24:53 +000010062 // load (cast X) --> cast (load X) iff safe
Reid Spencer3ed469c2006-11-02 20:25:50 +000010063 if (isa<CastInst>(Op))
Devang Patel99db6ad2007-10-18 19:52:32 +000010064 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Chris Lattner37366c12005-05-01 04:24:53 +000010065 return Res;
10066
10067 // None of the following transforms are legal for volatile loads.
10068 if (LI.isVolatile()) return 0;
Chris Lattner62f254d2005-09-12 22:00:15 +000010069
Chris Lattner62f254d2005-09-12 22:00:15 +000010070 if (&LI.getParent()->front() != &LI) {
10071 BasicBlock::iterator BBI = &LI; --BBI;
Chris Lattner9c1f0fd2005-09-12 22:21:03 +000010072 // If the instruction immediately before this is a store to the same
10073 // address, do a simple form of store->load forwarding.
Chris Lattner62f254d2005-09-12 22:00:15 +000010074 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
10075 if (SI->getOperand(1) == LI.getOperand(0))
10076 return ReplaceInstUsesWith(LI, SI->getOperand(0));
Chris Lattner9c1f0fd2005-09-12 22:21:03 +000010077 if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
10078 if (LIB->getOperand(0) == LI.getOperand(0))
10079 return ReplaceInstUsesWith(LI, LIB);
Chris Lattner62f254d2005-09-12 22:00:15 +000010080 }
Chris Lattner37366c12005-05-01 04:24:53 +000010081
Christopher Lambb15147e2007-12-29 07:56:53 +000010082 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10083 const Value *GEPI0 = GEPI->getOperand(0);
10084 // TODO: Consider a target hook for valid address spaces for this xform.
10085 if (isa<ConstantPointerNull>(GEPI0) &&
10086 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Chris Lattner37366c12005-05-01 04:24:53 +000010087 // Insert a new store to null instruction before the load to indicate
10088 // that this code is not reachable. We do this instead of inserting
10089 // an unreachable instruction directly because we cannot modify the
10090 // CFG.
10091 new StoreInst(UndefValue::get(LI.getType()),
10092 Constant::getNullValue(Op->getType()), &LI);
10093 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10094 }
Christopher Lambb15147e2007-12-29 07:56:53 +000010095 }
Chris Lattner37366c12005-05-01 04:24:53 +000010096
Chris Lattnere87597f2004-10-16 18:11:37 +000010097 if (Constant *C = dyn_cast<Constant>(Op)) {
Chris Lattner37366c12005-05-01 04:24:53 +000010098 // load null/undef -> undef
Christopher Lambb15147e2007-12-29 07:56:53 +000010099 // TODO: Consider a target hook for valid address spaces for this xform.
10100 if (isa<UndefValue>(C) || (C->isNullValue() &&
10101 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Chris Lattner17be6352004-10-18 02:59:09 +000010102 // Insert a new store to null instruction before the load to indicate that
10103 // this code is not reachable. We do this instead of inserting an
10104 // unreachable instruction directly because we cannot modify the CFG.
Chris Lattner37366c12005-05-01 04:24:53 +000010105 new StoreInst(UndefValue::get(LI.getType()),
10106 Constant::getNullValue(Op->getType()), &LI);
Chris Lattnere87597f2004-10-16 18:11:37 +000010107 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
Chris Lattner17be6352004-10-18 02:59:09 +000010108 }
Chris Lattner833b8a42003-06-26 05:06:25 +000010109
Chris Lattnere87597f2004-10-16 18:11:37 +000010110 // Instcombine load (constant global) into the value loaded.
10111 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
Reid Spencer5cbf9852007-01-30 20:08:39 +000010112 if (GV->isConstant() && !GV->isDeclaration())
Chris Lattnere87597f2004-10-16 18:11:37 +000010113 return ReplaceInstUsesWith(LI, GV->getInitializer());
Misha Brukmanfd939082005-04-21 23:48:37 +000010114
Chris Lattnere87597f2004-10-16 18:11:37 +000010115 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov07e6e562008-02-20 11:26:25 +000010116 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Chris Lattnere87597f2004-10-16 18:11:37 +000010117 if (CE->getOpcode() == Instruction::GetElementPtr) {
10118 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
Reid Spencer5cbf9852007-01-30 20:08:39 +000010119 if (GV->isConstant() && !GV->isDeclaration())
Chris Lattner363f2a22005-09-26 05:28:06 +000010120 if (Constant *V =
10121 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
Chris Lattnere87597f2004-10-16 18:11:37 +000010122 return ReplaceInstUsesWith(LI, V);
Chris Lattner37366c12005-05-01 04:24:53 +000010123 if (CE->getOperand(0)->isNullValue()) {
10124 // Insert a new store to null instruction before the load to indicate
10125 // that this code is not reachable. We do this instead of inserting
10126 // an unreachable instruction directly because we cannot modify the
10127 // CFG.
10128 new StoreInst(UndefValue::get(LI.getType()),
10129 Constant::getNullValue(Op->getType()), &LI);
10130 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10131 }
10132
Reid Spencer3da59db2006-11-27 01:05:10 +000010133 } else if (CE->isCast()) {
Devang Patel99db6ad2007-10-18 19:52:32 +000010134 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Chris Lattnere87597f2004-10-16 18:11:37 +000010135 return Res;
10136 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +000010137 }
Chris Lattnere87597f2004-10-16 18:11:37 +000010138 }
Chris Lattner8d2e8882007-08-11 18:48:48 +000010139
10140 // If this load comes from anywhere in a constant global, and if the global
10141 // is all undef or zero, we know what it loads.
10142 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Op))) {
10143 if (GV->isConstant() && GV->hasInitializer()) {
10144 if (GV->getInitializer()->isNullValue())
10145 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10146 else if (isa<UndefValue>(GV->getInitializer()))
10147 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10148 }
10149 }
Chris Lattnerf499eac2004-04-08 20:39:49 +000010150
Chris Lattner37366c12005-05-01 04:24:53 +000010151 if (Op->hasOneUse()) {
Chris Lattnerc10aced2004-09-19 18:43:46 +000010152 // Change select and PHI nodes to select values instead of addresses: this
10153 // helps alias analysis out a lot, allows many others simplifications, and
10154 // exposes redundancy in the code.
10155 //
10156 // Note that we cannot do the transformation unless we know that the
10157 // introduced loads cannot trap! Something like this is valid as long as
10158 // the condition is always false: load (select bool %C, int* null, int* %G),
10159 // but it would not be valid if we transformed it to load from null
10160 // unconditionally.
10161 //
10162 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
10163 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
Chris Lattner8a375202004-09-19 19:18:10 +000010164 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
10165 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
Chris Lattnerc10aced2004-09-19 18:43:46 +000010166 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
Chris Lattner79f0c8e2004-09-20 10:15:10 +000010167 SI->getOperand(1)->getName()+".val"), LI);
Chris Lattnerc10aced2004-09-19 18:43:46 +000010168 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
Chris Lattner79f0c8e2004-09-20 10:15:10 +000010169 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greif051a9502008-04-06 20:25:17 +000010170 return SelectInst::Create(SI->getCondition(), V1, V2);
Chris Lattnerc10aced2004-09-19 18:43:46 +000010171 }
10172
Chris Lattner684fe212004-09-23 15:46:00 +000010173 // load (select (cond, null, P)) -> load P
10174 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
10175 if (C->isNullValue()) {
10176 LI.setOperand(0, SI->getOperand(2));
10177 return &LI;
10178 }
10179
10180 // load (select (cond, P, null)) -> load P
10181 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
10182 if (C->isNullValue()) {
10183 LI.setOperand(0, SI->getOperand(1));
10184 return &LI;
10185 }
Chris Lattnerc10aced2004-09-19 18:43:46 +000010186 }
10187 }
Chris Lattner833b8a42003-06-26 05:06:25 +000010188 return 0;
10189}
10190
Reid Spencer55af2b52007-01-19 21:20:31 +000010191/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010192/// when possible.
10193static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
10194 User *CI = cast<User>(SI.getOperand(1));
10195 Value *CastOp = CI->getOperand(0);
10196
10197 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10198 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10199 const Type *SrcPTy = SrcTy->getElementType();
10200
Reid Spencer42230162007-01-22 05:51:25 +000010201 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010202 // If the source is an array, the code below will not succeed. Check to
10203 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10204 // constants.
10205 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10206 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10207 if (ASrcTy->getNumElements() != 0) {
Chris Lattner55eb1c42007-01-31 04:40:53 +000010208 Value* Idxs[2];
10209 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10210 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010211 SrcTy = cast<PointerType>(CastOp->getType());
10212 SrcPTy = SrcTy->getElementType();
10213 }
10214
Reid Spencer67f827c2007-01-20 23:35:48 +000010215 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
10216 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10217 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010218
10219 // Okay, we are casting from one integer or pointer type to another of
Reid Spencer75153962007-01-18 18:54:33 +000010220 // the same size. Instead of casting the pointer before
10221 // the store, cast the value to be stored.
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010222 Value *NewCast;
Reid Spencerd977d862006-12-12 23:36:14 +000010223 Value *SIOp0 = SI.getOperand(0);
Reid Spencer75153962007-01-18 18:54:33 +000010224 Instruction::CastOps opcode = Instruction::BitCast;
10225 const Type* CastSrcTy = SIOp0->getType();
10226 const Type* CastDstTy = SrcPTy;
10227 if (isa<PointerType>(CastDstTy)) {
10228 if (CastSrcTy->isInteger())
Reid Spencerd977d862006-12-12 23:36:14 +000010229 opcode = Instruction::IntToPtr;
Reid Spencer67f827c2007-01-20 23:35:48 +000010230 } else if (isa<IntegerType>(CastDstTy)) {
Reid Spencerc55b2432006-12-13 18:21:21 +000010231 if (isa<PointerType>(SIOp0->getType()))
Reid Spencerd977d862006-12-12 23:36:14 +000010232 opcode = Instruction::PtrToInt;
10233 }
10234 if (Constant *C = dyn_cast<Constant>(SIOp0))
Reid Spencer75153962007-01-18 18:54:33 +000010235 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010236 else
Reid Spencer3da59db2006-11-27 01:05:10 +000010237 NewCast = IC.InsertNewInstBefore(
Reid Spencer75153962007-01-18 18:54:33 +000010238 CastInst::create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
10239 SI);
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010240 return new StoreInst(NewCast, CastOp);
10241 }
10242 }
10243 }
10244 return 0;
10245}
10246
Chris Lattner2f503e62005-01-31 05:36:43 +000010247Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
10248 Value *Val = SI.getOperand(0);
10249 Value *Ptr = SI.getOperand(1);
10250
10251 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
Chris Lattner9ca96412006-02-08 03:25:32 +000010252 EraseInstFromFunction(SI);
Chris Lattner2f503e62005-01-31 05:36:43 +000010253 ++NumCombined;
10254 return 0;
10255 }
Chris Lattner836692d2007-01-15 06:51:56 +000010256
10257 // If the RHS is an alloca with a single use, zapify the store, making the
10258 // alloca dead.
10259 if (Ptr->hasOneUse()) {
10260 if (isa<AllocaInst>(Ptr)) {
10261 EraseInstFromFunction(SI);
10262 ++NumCombined;
10263 return 0;
10264 }
10265
10266 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
10267 if (isa<AllocaInst>(GEP->getOperand(0)) &&
10268 GEP->getOperand(0)->hasOneUse()) {
10269 EraseInstFromFunction(SI);
10270 ++NumCombined;
10271 return 0;
10272 }
10273 }
Chris Lattner2f503e62005-01-31 05:36:43 +000010274
Dan Gohman9941f742007-07-20 16:34:21 +000010275 // Attempt to improve the alignment.
Dan Gohmaneee962e2008-04-10 18:43:06 +000010276 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
10277 if (KnownAlign >
10278 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
10279 SI.getAlignment()))
Dan Gohman9941f742007-07-20 16:34:21 +000010280 SI.setAlignment(KnownAlign);
10281
Chris Lattner9ca96412006-02-08 03:25:32 +000010282 // Do really simple DSE, to catch cases where there are several consequtive
10283 // stores to the same location, separated by a few arithmetic operations. This
10284 // situation often occurs with bitfield accesses.
10285 BasicBlock::iterator BBI = &SI;
10286 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
10287 --ScanInsts) {
10288 --BBI;
10289
10290 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
10291 // Prev store isn't volatile, and stores to the same location?
10292 if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
10293 ++NumDeadStore;
10294 ++BBI;
10295 EraseInstFromFunction(*PrevSI);
10296 continue;
10297 }
10298 break;
10299 }
10300
Chris Lattnerb4db97f2006-05-26 19:19:20 +000010301 // If this is a load, we have to stop. However, if the loaded value is from
10302 // the pointer we're loading and is producing the pointer we're storing,
10303 // then *this* store is dead (X = load P; store X -> P).
10304 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Chris Lattnera54c7eb2007-09-07 05:33:03 +000010305 if (LI == Val && LI->getOperand(0) == Ptr && !SI.isVolatile()) {
Chris Lattnerb4db97f2006-05-26 19:19:20 +000010306 EraseInstFromFunction(SI);
10307 ++NumCombined;
10308 return 0;
10309 }
10310 // Otherwise, this is a load from some other location. Stores before it
10311 // may not be dead.
10312 break;
10313 }
10314
Chris Lattner9ca96412006-02-08 03:25:32 +000010315 // Don't skip over loads or things that can modify memory.
Chris Lattnerb4db97f2006-05-26 19:19:20 +000010316 if (BBI->mayWriteToMemory())
Chris Lattner9ca96412006-02-08 03:25:32 +000010317 break;
10318 }
10319
10320
10321 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
Chris Lattner2f503e62005-01-31 05:36:43 +000010322
10323 // store X, null -> turns into 'unreachable' in SimplifyCFG
10324 if (isa<ConstantPointerNull>(Ptr)) {
10325 if (!isa<UndefValue>(Val)) {
10326 SI.setOperand(0, UndefValue::get(Val->getType()));
10327 if (Instruction *U = dyn_cast<Instruction>(Val))
Chris Lattnerdbab3862007-03-02 21:28:56 +000010328 AddToWorkList(U); // Dropped a use.
Chris Lattner2f503e62005-01-31 05:36:43 +000010329 ++NumCombined;
10330 }
10331 return 0; // Do not modify these!
10332 }
10333
10334 // store undef, Ptr -> noop
10335 if (isa<UndefValue>(Val)) {
Chris Lattner9ca96412006-02-08 03:25:32 +000010336 EraseInstFromFunction(SI);
Chris Lattner2f503e62005-01-31 05:36:43 +000010337 ++NumCombined;
10338 return 0;
10339 }
10340
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010341 // If the pointer destination is a cast, see if we can fold the cast into the
10342 // source instead.
Reid Spencer3ed469c2006-11-02 20:25:50 +000010343 if (isa<CastInst>(Ptr))
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010344 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
10345 return Res;
10346 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
Reid Spencer3da59db2006-11-27 01:05:10 +000010347 if (CE->isCast())
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010348 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
10349 return Res;
10350
Chris Lattner408902b2005-09-12 23:23:25 +000010351
10352 // If this store is the last instruction in the basic block, and if the block
10353 // ends with an unconditional branch, try to move it to the successor block.
Chris Lattner9ca96412006-02-08 03:25:32 +000010354 BBI = &SI; ++BBI;
Chris Lattner408902b2005-09-12 23:23:25 +000010355 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
Chris Lattner3284d1f2007-04-15 00:07:55 +000010356 if (BI->isUnconditional())
10357 if (SimplifyStoreAtEndOfBlock(SI))
10358 return 0; // xform done!
Chris Lattner408902b2005-09-12 23:23:25 +000010359
Chris Lattner2f503e62005-01-31 05:36:43 +000010360 return 0;
10361}
10362
Chris Lattner3284d1f2007-04-15 00:07:55 +000010363/// SimplifyStoreAtEndOfBlock - Turn things like:
10364/// if () { *P = v1; } else { *P = v2 }
10365/// into a phi node with a store in the successor.
10366///
Chris Lattner31755a02007-04-15 01:02:18 +000010367/// Simplify things like:
10368/// *P = v1; if () { *P = v2; }
10369/// into a phi node with a store in the successor.
10370///
Chris Lattner3284d1f2007-04-15 00:07:55 +000010371bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
10372 BasicBlock *StoreBB = SI.getParent();
10373
10374 // Check to see if the successor block has exactly two incoming edges. If
10375 // so, see if the other predecessor contains a store to the same location.
10376 // if so, insert a PHI node (if needed) and move the stores down.
Chris Lattner31755a02007-04-15 01:02:18 +000010377 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
Chris Lattner3284d1f2007-04-15 00:07:55 +000010378
10379 // Determine whether Dest has exactly two predecessors and, if so, compute
10380 // the other predecessor.
Chris Lattner31755a02007-04-15 01:02:18 +000010381 pred_iterator PI = pred_begin(DestBB);
10382 BasicBlock *OtherBB = 0;
Chris Lattner3284d1f2007-04-15 00:07:55 +000010383 if (*PI != StoreBB)
Chris Lattner31755a02007-04-15 01:02:18 +000010384 OtherBB = *PI;
Chris Lattner3284d1f2007-04-15 00:07:55 +000010385 ++PI;
Chris Lattner31755a02007-04-15 01:02:18 +000010386 if (PI == pred_end(DestBB))
Chris Lattner3284d1f2007-04-15 00:07:55 +000010387 return false;
10388
10389 if (*PI != StoreBB) {
Chris Lattner31755a02007-04-15 01:02:18 +000010390 if (OtherBB)
Chris Lattner3284d1f2007-04-15 00:07:55 +000010391 return false;
Chris Lattner31755a02007-04-15 01:02:18 +000010392 OtherBB = *PI;
Chris Lattner3284d1f2007-04-15 00:07:55 +000010393 }
Chris Lattner31755a02007-04-15 01:02:18 +000010394 if (++PI != pred_end(DestBB))
Chris Lattner3284d1f2007-04-15 00:07:55 +000010395 return false;
10396
10397
Chris Lattner31755a02007-04-15 01:02:18 +000010398 // Verify that the other block ends in a branch and is not otherwise empty.
10399 BasicBlock::iterator BBI = OtherBB->getTerminator();
Chris Lattner3284d1f2007-04-15 00:07:55 +000010400 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
Chris Lattner31755a02007-04-15 01:02:18 +000010401 if (!OtherBr || BBI == OtherBB->begin())
Chris Lattner3284d1f2007-04-15 00:07:55 +000010402 return false;
10403
Chris Lattner31755a02007-04-15 01:02:18 +000010404 // If the other block ends in an unconditional branch, check for the 'if then
10405 // else' case. there is an instruction before the branch.
10406 StoreInst *OtherStore = 0;
10407 if (OtherBr->isUnconditional()) {
10408 // If this isn't a store, or isn't a store to the same location, bail out.
10409 --BBI;
10410 OtherStore = dyn_cast<StoreInst>(BBI);
10411 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
10412 return false;
10413 } else {
Chris Lattnerd717c182007-05-05 22:32:24 +000010414 // Otherwise, the other block ended with a conditional branch. If one of the
Chris Lattner31755a02007-04-15 01:02:18 +000010415 // destinations is StoreBB, then we have the if/then case.
10416 if (OtherBr->getSuccessor(0) != StoreBB &&
10417 OtherBr->getSuccessor(1) != StoreBB)
10418 return false;
10419
10420 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
Chris Lattnerd717c182007-05-05 22:32:24 +000010421 // if/then triangle. See if there is a store to the same ptr as SI that
10422 // lives in OtherBB.
Chris Lattner31755a02007-04-15 01:02:18 +000010423 for (;; --BBI) {
10424 // Check to see if we find the matching store.
10425 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
10426 if (OtherStore->getOperand(1) != SI.getOperand(1))
10427 return false;
10428 break;
10429 }
Chris Lattnerd717c182007-05-05 22:32:24 +000010430 // If we find something that may be using the stored value, or if we run
10431 // out of instructions, we can't do the xform.
Chris Lattner31755a02007-04-15 01:02:18 +000010432 if (isa<LoadInst>(BBI) || BBI->mayWriteToMemory() ||
10433 BBI == OtherBB->begin())
10434 return false;
10435 }
10436
10437 // In order to eliminate the store in OtherBr, we have to
10438 // make sure nothing reads the stored value in StoreBB.
10439 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
10440 // FIXME: This should really be AA driven.
10441 if (isa<LoadInst>(I) || I->mayWriteToMemory())
10442 return false;
10443 }
10444 }
Chris Lattner3284d1f2007-04-15 00:07:55 +000010445
Chris Lattner31755a02007-04-15 01:02:18 +000010446 // Insert a PHI node now if we need it.
Chris Lattner3284d1f2007-04-15 00:07:55 +000010447 Value *MergedVal = OtherStore->getOperand(0);
10448 if (MergedVal != SI.getOperand(0)) {
Gabor Greif051a9502008-04-06 20:25:17 +000010449 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Chris Lattner3284d1f2007-04-15 00:07:55 +000010450 PN->reserveOperandSpace(2);
10451 PN->addIncoming(SI.getOperand(0), SI.getParent());
Chris Lattner31755a02007-04-15 01:02:18 +000010452 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
10453 MergedVal = InsertNewInstBefore(PN, DestBB->front());
Chris Lattner3284d1f2007-04-15 00:07:55 +000010454 }
10455
10456 // Advance to a place where it is safe to insert the new store and
10457 // insert it.
Chris Lattner31755a02007-04-15 01:02:18 +000010458 BBI = DestBB->begin();
Chris Lattner3284d1f2007-04-15 00:07:55 +000010459 while (isa<PHINode>(BBI)) ++BBI;
10460 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
10461 OtherStore->isVolatile()), *BBI);
10462
10463 // Nuke the old stores.
10464 EraseInstFromFunction(SI);
10465 EraseInstFromFunction(*OtherStore);
10466 ++NumCombined;
10467 return true;
10468}
10469
Chris Lattner2f503e62005-01-31 05:36:43 +000010470
Chris Lattnerc4d10eb2003-06-04 04:46:00 +000010471Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
10472 // Change br (not X), label True, label False to: br X, label False, True
Reid Spencer4b828e62005-06-18 17:37:34 +000010473 Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +000010474 BasicBlock *TrueDest;
10475 BasicBlock *FalseDest;
10476 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
10477 !isa<Constant>(X)) {
10478 // Swap Destinations and condition...
10479 BI.setCondition(X);
10480 BI.setSuccessor(0, FalseDest);
10481 BI.setSuccessor(1, TrueDest);
10482 return &BI;
10483 }
10484
Reid Spencere4d87aa2006-12-23 06:05:41 +000010485 // Cannonicalize fcmp_one -> fcmp_oeq
10486 FCmpInst::Predicate FPred; Value *Y;
10487 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
10488 TrueDest, FalseDest)))
10489 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
10490 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
10491 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
Reid Spencere4d87aa2006-12-23 06:05:41 +000010492 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
Chris Lattner6934a042007-02-11 01:23:03 +000010493 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
10494 NewSCC->takeName(I);
Reid Spencere4d87aa2006-12-23 06:05:41 +000010495 // Swap Destinations and condition...
10496 BI.setCondition(NewSCC);
10497 BI.setSuccessor(0, FalseDest);
10498 BI.setSuccessor(1, TrueDest);
Chris Lattnerdbab3862007-03-02 21:28:56 +000010499 RemoveFromWorkList(I);
Chris Lattner6934a042007-02-11 01:23:03 +000010500 I->eraseFromParent();
Chris Lattnerdbab3862007-03-02 21:28:56 +000010501 AddToWorkList(NewSCC);
Reid Spencere4d87aa2006-12-23 06:05:41 +000010502 return &BI;
10503 }
10504
10505 // Cannonicalize icmp_ne -> icmp_eq
10506 ICmpInst::Predicate IPred;
10507 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
10508 TrueDest, FalseDest)))
10509 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
10510 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
10511 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
10512 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
Reid Spencere4d87aa2006-12-23 06:05:41 +000010513 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
Chris Lattner6934a042007-02-11 01:23:03 +000010514 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
10515 NewSCC->takeName(I);
Chris Lattner40f5d702003-06-04 05:10:11 +000010516 // Swap Destinations and condition...
Chris Lattneracd1f0f2004-07-30 07:50:03 +000010517 BI.setCondition(NewSCC);
Chris Lattner40f5d702003-06-04 05:10:11 +000010518 BI.setSuccessor(0, FalseDest);
10519 BI.setSuccessor(1, TrueDest);
Chris Lattnerdbab3862007-03-02 21:28:56 +000010520 RemoveFromWorkList(I);
Chris Lattner6934a042007-02-11 01:23:03 +000010521 I->eraseFromParent();;
Chris Lattnerdbab3862007-03-02 21:28:56 +000010522 AddToWorkList(NewSCC);
Chris Lattner40f5d702003-06-04 05:10:11 +000010523 return &BI;
10524 }
Misha Brukmanfd939082005-04-21 23:48:37 +000010525
Chris Lattnerc4d10eb2003-06-04 04:46:00 +000010526 return 0;
10527}
Chris Lattner0864acf2002-11-04 16:18:53 +000010528
Chris Lattner46238a62004-07-03 00:26:11 +000010529Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
10530 Value *Cond = SI.getCondition();
10531 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
10532 if (I->getOpcode() == Instruction::Add)
10533 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
10534 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
10535 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
Chris Lattnere87597f2004-10-16 18:11:37 +000010536 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
Chris Lattner46238a62004-07-03 00:26:11 +000010537 AddRHS));
10538 SI.setOperand(0, I->getOperand(0));
Chris Lattnerdbab3862007-03-02 21:28:56 +000010539 AddToWorkList(I);
Chris Lattner46238a62004-07-03 00:26:11 +000010540 return &SI;
10541 }
10542 }
10543 return 0;
10544}
10545
Chris Lattner220b0cf2006-03-05 00:22:33 +000010546/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
10547/// is to leave as a vector operation.
10548static bool CheapToScalarize(Value *V, bool isConstant) {
10549 if (isa<ConstantAggregateZero>(V))
10550 return true;
Reid Spencer9d6565a2007-02-15 02:26:10 +000010551 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
Chris Lattner220b0cf2006-03-05 00:22:33 +000010552 if (isConstant) return true;
10553 // If all elts are the same, we can extract.
10554 Constant *Op0 = C->getOperand(0);
10555 for (unsigned i = 1; i < C->getNumOperands(); ++i)
10556 if (C->getOperand(i) != Op0)
10557 return false;
10558 return true;
10559 }
10560 Instruction *I = dyn_cast<Instruction>(V);
10561 if (!I) return false;
10562
10563 // Insert element gets simplified to the inserted element or is deleted if
10564 // this is constant idx extract element and its a constant idx insertelt.
10565 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
10566 isa<ConstantInt>(I->getOperand(2)))
10567 return true;
10568 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
10569 return true;
10570 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
10571 if (BO->hasOneUse() &&
10572 (CheapToScalarize(BO->getOperand(0), isConstant) ||
10573 CheapToScalarize(BO->getOperand(1), isConstant)))
10574 return true;
Reid Spencere4d87aa2006-12-23 06:05:41 +000010575 if (CmpInst *CI = dyn_cast<CmpInst>(I))
10576 if (CI->hasOneUse() &&
10577 (CheapToScalarize(CI->getOperand(0), isConstant) ||
10578 CheapToScalarize(CI->getOperand(1), isConstant)))
10579 return true;
Chris Lattner220b0cf2006-03-05 00:22:33 +000010580
10581 return false;
10582}
10583
Chris Lattnerd2b7cec2007-02-14 05:52:17 +000010584/// Read and decode a shufflevector mask.
10585///
10586/// It turns undef elements into values that are larger than the number of
10587/// elements in the input.
Chris Lattner863bcff2006-05-25 23:48:38 +000010588static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
10589 unsigned NElts = SVI->getType()->getNumElements();
10590 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
10591 return std::vector<unsigned>(NElts, 0);
10592 if (isa<UndefValue>(SVI->getOperand(2)))
10593 return std::vector<unsigned>(NElts, 2*NElts);
10594
10595 std::vector<unsigned> Result;
Reid Spencer9d6565a2007-02-15 02:26:10 +000010596 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Chris Lattner863bcff2006-05-25 23:48:38 +000010597 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
10598 if (isa<UndefValue>(CP->getOperand(i)))
10599 Result.push_back(NElts*2); // undef -> 8
10600 else
Reid Spencerb83eb642006-10-20 07:07:24 +000010601 Result.push_back(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
Chris Lattner863bcff2006-05-25 23:48:38 +000010602 return Result;
10603}
10604
Chris Lattner6e6b0da2006-03-31 23:01:56 +000010605/// FindScalarElement - Given a vector and an element number, see if the scalar
10606/// value is already around as a register, for example if it were inserted then
10607/// extracted from the vector.
10608static Value *FindScalarElement(Value *V, unsigned EltNo) {
Reid Spencer9d6565a2007-02-15 02:26:10 +000010609 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
10610 const VectorType *PTy = cast<VectorType>(V->getType());
Chris Lattner389a6f52006-04-10 23:06:36 +000010611 unsigned Width = PTy->getNumElements();
10612 if (EltNo >= Width) // Out of range access.
Chris Lattner6e6b0da2006-03-31 23:01:56 +000010613 return UndefValue::get(PTy->getElementType());
10614
10615 if (isa<UndefValue>(V))
10616 return UndefValue::get(PTy->getElementType());
10617 else if (isa<ConstantAggregateZero>(V))
10618 return Constant::getNullValue(PTy->getElementType());
Reid Spencer9d6565a2007-02-15 02:26:10 +000010619 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
Chris Lattner6e6b0da2006-03-31 23:01:56 +000010620 return CP->getOperand(EltNo);
10621 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
10622 // If this is an insert to a variable element, we don't know what it is.
Reid Spencerb83eb642006-10-20 07:07:24 +000010623 if (!isa<ConstantInt>(III->getOperand(2)))
10624 return 0;
10625 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
Chris Lattner6e6b0da2006-03-31 23:01:56 +000010626
10627 // If this is an insert to the element we are looking for, return the
10628 // inserted value.
Reid Spencerb83eb642006-10-20 07:07:24 +000010629 if (EltNo == IIElt)
10630 return III->getOperand(1);
Chris Lattner6e6b0da2006-03-31 23:01:56 +000010631
10632 // Otherwise, the insertelement doesn't modify the value, recurse on its
10633 // vector input.
10634 return FindScalarElement(III->getOperand(0), EltNo);
Chris Lattner389a6f52006-04-10 23:06:36 +000010635 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
Chris Lattner863bcff2006-05-25 23:48:38 +000010636 unsigned InEl = getShuffleMask(SVI)[EltNo];
10637 if (InEl < Width)
10638 return FindScalarElement(SVI->getOperand(0), InEl);
10639 else if (InEl < Width*2)
10640 return FindScalarElement(SVI->getOperand(1), InEl - Width);
10641 else
10642 return UndefValue::get(PTy->getElementType());
Chris Lattner6e6b0da2006-03-31 23:01:56 +000010643 }
10644
10645 // Otherwise, we don't know.
10646 return 0;
10647}
10648
Robert Bocchino1d7456d2006-01-13 22:48:06 +000010649Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Chris Lattner6e6b0da2006-03-31 23:01:56 +000010650
Dan Gohman07a96762007-07-16 14:29:03 +000010651 // If vector val is undef, replace extract with scalar undef.
Chris Lattner1f13c882006-03-31 18:25:14 +000010652 if (isa<UndefValue>(EI.getOperand(0)))
10653 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
10654
Dan Gohman07a96762007-07-16 14:29:03 +000010655 // If vector val is constant 0, replace extract with scalar 0.
Chris Lattner1f13c882006-03-31 18:25:14 +000010656 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
10657 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
10658
Reid Spencer9d6565a2007-02-15 02:26:10 +000010659 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Dan Gohman07a96762007-07-16 14:29:03 +000010660 // If vector val is constant with uniform operands, replace EI
Robert Bocchino1d7456d2006-01-13 22:48:06 +000010661 // with that operand
Chris Lattner220b0cf2006-03-05 00:22:33 +000010662 Constant *op0 = C->getOperand(0);
Robert Bocchino1d7456d2006-01-13 22:48:06 +000010663 for (unsigned i = 1; i < C->getNumOperands(); ++i)
Chris Lattner220b0cf2006-03-05 00:22:33 +000010664 if (C->getOperand(i) != op0) {
10665 op0 = 0;
10666 break;
10667 }
10668 if (op0)
10669 return ReplaceInstUsesWith(EI, op0);
Robert Bocchino1d7456d2006-01-13 22:48:06 +000010670 }
Chris Lattner220b0cf2006-03-05 00:22:33 +000010671
Chris Lattner6e6b0da2006-03-31 23:01:56 +000010672 // If extracting a specified index from the vector, see if we can recursively
10673 // find a previously computed scalar that was inserted into the vector.
Reid Spencerb83eb642006-10-20 07:07:24 +000010674 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
Chris Lattner85464092007-04-09 01:37:55 +000010675 unsigned IndexVal = IdxC->getZExtValue();
10676 unsigned VectorWidth =
10677 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
10678
10679 // If this is extracting an invalid index, turn this into undef, to avoid
10680 // crashing the code below.
10681 if (IndexVal >= VectorWidth)
10682 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
10683
Chris Lattner867b99f2006-10-05 06:55:50 +000010684 // This instruction only demands the single element from the input vector.
10685 // If the input vector has a single use, simplify it based on this use
10686 // property.
Chris Lattner85464092007-04-09 01:37:55 +000010687 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
Chris Lattner867b99f2006-10-05 06:55:50 +000010688 uint64_t UndefElts;
10689 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
Reid Spencerb83eb642006-10-20 07:07:24 +000010690 1 << IndexVal,
Chris Lattner867b99f2006-10-05 06:55:50 +000010691 UndefElts)) {
10692 EI.setOperand(0, V);
10693 return &EI;
10694 }
10695 }
10696
Reid Spencerb83eb642006-10-20 07:07:24 +000010697 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
Chris Lattner6e6b0da2006-03-31 23:01:56 +000010698 return ReplaceInstUsesWith(EI, Elt);
Chris Lattnerb7300fa2007-04-14 23:02:14 +000010699
10700 // If the this extractelement is directly using a bitcast from a vector of
10701 // the same number of elements, see if we can find the source element from
10702 // it. In this case, we will end up needing to bitcast the scalars.
10703 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
10704 if (const VectorType *VT =
10705 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
10706 if (VT->getNumElements() == VectorWidth)
10707 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
10708 return new BitCastInst(Elt, EI.getType());
10709 }
Chris Lattner389a6f52006-04-10 23:06:36 +000010710 }
Chris Lattner6e6b0da2006-03-31 23:01:56 +000010711
Chris Lattner73fa49d2006-05-25 22:53:38 +000010712 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
Robert Bocchino1d7456d2006-01-13 22:48:06 +000010713 if (I->hasOneUse()) {
10714 // Push extractelement into predecessor operation if legal and
10715 // profitable to do so
10716 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
Chris Lattner220b0cf2006-03-05 00:22:33 +000010717 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
10718 if (CheapToScalarize(BO, isConstantElt)) {
10719 ExtractElementInst *newEI0 =
10720 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
10721 EI.getName()+".lhs");
10722 ExtractElementInst *newEI1 =
10723 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
10724 EI.getName()+".rhs");
10725 InsertNewInstBefore(newEI0, EI);
10726 InsertNewInstBefore(newEI1, EI);
10727 return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1);
10728 }
Reid Spencer3ed469c2006-11-02 20:25:50 +000010729 } else if (isa<LoadInst>(I)) {
Christopher Lamb43ad6b32007-12-17 01:12:55 +000010730 unsigned AS =
10731 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner6d0339d2008-01-13 22:23:22 +000010732 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
10733 PointerType::get(EI.getType(), AS),EI);
Robert Bocchino1d7456d2006-01-13 22:48:06 +000010734 GetElementPtrInst *GEP =
Gabor Greif051a9502008-04-06 20:25:17 +000010735 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName() + ".gep");
Robert Bocchino1d7456d2006-01-13 22:48:06 +000010736 InsertNewInstBefore(GEP, EI);
10737 return new LoadInst(GEP);
Chris Lattner73fa49d2006-05-25 22:53:38 +000010738 }
10739 }
10740 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
10741 // Extracting the inserted element?
10742 if (IE->getOperand(2) == EI.getOperand(1))
10743 return ReplaceInstUsesWith(EI, IE->getOperand(1));
10744 // If the inserted and extracted elements are constants, they must not
10745 // be the same value, extract from the pre-inserted value instead.
10746 if (isa<Constant>(IE->getOperand(2)) &&
10747 isa<Constant>(EI.getOperand(1))) {
10748 AddUsesToWorkList(EI);
10749 EI.setOperand(0, IE->getOperand(0));
10750 return &EI;
10751 }
10752 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
10753 // If this is extracting an element from a shufflevector, figure out where
10754 // it came from and extract from the appropriate input element instead.
Reid Spencerb83eb642006-10-20 07:07:24 +000010755 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
10756 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
Chris Lattner863bcff2006-05-25 23:48:38 +000010757 Value *Src;
10758 if (SrcIdx < SVI->getType()->getNumElements())
10759 Src = SVI->getOperand(0);
10760 else if (SrcIdx < SVI->getType()->getNumElements()*2) {
10761 SrcIdx -= SVI->getType()->getNumElements();
10762 Src = SVI->getOperand(1);
10763 } else {
10764 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
Chris Lattnerdf084ff2006-03-30 22:02:40 +000010765 }
Chris Lattner867b99f2006-10-05 06:55:50 +000010766 return new ExtractElementInst(Src, SrcIdx);
Robert Bocchino1d7456d2006-01-13 22:48:06 +000010767 }
10768 }
Chris Lattner73fa49d2006-05-25 22:53:38 +000010769 }
Robert Bocchino1d7456d2006-01-13 22:48:06 +000010770 return 0;
10771}
10772
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000010773/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
10774/// elements from either LHS or RHS, return the shuffle mask and true.
10775/// Otherwise, return false.
10776static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
10777 std::vector<Constant*> &Mask) {
10778 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
10779 "Invalid CollectSingleShuffleElements");
Reid Spencer9d6565a2007-02-15 02:26:10 +000010780 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000010781
10782 if (isa<UndefValue>(V)) {
Reid Spencerc5b206b2006-12-31 05:48:39 +000010783 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000010784 return true;
10785 } else if (V == LHS) {
10786 for (unsigned i = 0; i != NumElts; ++i)
Reid Spencerc5b206b2006-12-31 05:48:39 +000010787 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000010788 return true;
10789 } else if (V == RHS) {
10790 for (unsigned i = 0; i != NumElts; ++i)
Reid Spencerc5b206b2006-12-31 05:48:39 +000010791 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000010792 return true;
10793 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
10794 // If this is an insert of an extract from some other vector, include it.
10795 Value *VecOp = IEI->getOperand(0);
10796 Value *ScalarOp = IEI->getOperand(1);
10797 Value *IdxOp = IEI->getOperand(2);
10798
Chris Lattnerd929f062006-04-27 21:14:21 +000010799 if (!isa<ConstantInt>(IdxOp))
10800 return false;
Reid Spencerb83eb642006-10-20 07:07:24 +000010801 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
Chris Lattnerd929f062006-04-27 21:14:21 +000010802
10803 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
10804 // Okay, we can handle this if the vector we are insertinting into is
10805 // transitively ok.
10806 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
10807 // If so, update the mask to reflect the inserted undef.
Reid Spencerc5b206b2006-12-31 05:48:39 +000010808 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
Chris Lattnerd929f062006-04-27 21:14:21 +000010809 return true;
10810 }
10811 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
10812 if (isa<ConstantInt>(EI->getOperand(1)) &&
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000010813 EI->getOperand(0)->getType() == V->getType()) {
10814 unsigned ExtractedIdx =
Reid Spencerb83eb642006-10-20 07:07:24 +000010815 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000010816
10817 // This must be extracting from either LHS or RHS.
10818 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
10819 // Okay, we can handle this if the vector we are insertinting into is
10820 // transitively ok.
10821 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
10822 // If so, update the mask to reflect the inserted value.
10823 if (EI->getOperand(0) == LHS) {
10824 Mask[InsertedIdx & (NumElts-1)] =
Reid Spencerc5b206b2006-12-31 05:48:39 +000010825 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000010826 } else {
10827 assert(EI->getOperand(0) == RHS);
10828 Mask[InsertedIdx & (NumElts-1)] =
Reid Spencerc5b206b2006-12-31 05:48:39 +000010829 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000010830
10831 }
10832 return true;
10833 }
10834 }
10835 }
10836 }
10837 }
10838 // TODO: Handle shufflevector here!
10839
10840 return false;
10841}
10842
10843/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
10844/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
10845/// that computes V and the LHS value of the shuffle.
Chris Lattnerefb47352006-04-15 01:39:45 +000010846static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000010847 Value *&RHS) {
Reid Spencer9d6565a2007-02-15 02:26:10 +000010848 assert(isa<VectorType>(V->getType()) &&
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000010849 (RHS == 0 || V->getType() == RHS->getType()) &&
Chris Lattnerefb47352006-04-15 01:39:45 +000010850 "Invalid shuffle!");
Reid Spencer9d6565a2007-02-15 02:26:10 +000010851 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
Chris Lattnerefb47352006-04-15 01:39:45 +000010852
10853 if (isa<UndefValue>(V)) {
Reid Spencerc5b206b2006-12-31 05:48:39 +000010854 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
Chris Lattnerefb47352006-04-15 01:39:45 +000010855 return V;
10856 } else if (isa<ConstantAggregateZero>(V)) {
Reid Spencerc5b206b2006-12-31 05:48:39 +000010857 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
Chris Lattnerefb47352006-04-15 01:39:45 +000010858 return V;
10859 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
10860 // If this is an insert of an extract from some other vector, include it.
10861 Value *VecOp = IEI->getOperand(0);
10862 Value *ScalarOp = IEI->getOperand(1);
10863 Value *IdxOp = IEI->getOperand(2);
10864
10865 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
10866 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
10867 EI->getOperand(0)->getType() == V->getType()) {
10868 unsigned ExtractedIdx =
Reid Spencerb83eb642006-10-20 07:07:24 +000010869 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
10870 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
Chris Lattnerefb47352006-04-15 01:39:45 +000010871
10872 // Either the extracted from or inserted into vector must be RHSVec,
10873 // otherwise we'd end up with a shuffle of three inputs.
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000010874 if (EI->getOperand(0) == RHS || RHS == 0) {
10875 RHS = EI->getOperand(0);
10876 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Chris Lattnerefb47352006-04-15 01:39:45 +000010877 Mask[InsertedIdx & (NumElts-1)] =
Reid Spencerc5b206b2006-12-31 05:48:39 +000010878 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
Chris Lattnerefb47352006-04-15 01:39:45 +000010879 return V;
10880 }
10881
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000010882 if (VecOp == RHS) {
10883 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
Chris Lattnerefb47352006-04-15 01:39:45 +000010884 // Everything but the extracted element is replaced with the RHS.
10885 for (unsigned i = 0; i != NumElts; ++i) {
10886 if (i != InsertedIdx)
Reid Spencerc5b206b2006-12-31 05:48:39 +000010887 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
Chris Lattnerefb47352006-04-15 01:39:45 +000010888 }
10889 return V;
10890 }
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000010891
10892 // If this insertelement is a chain that comes from exactly these two
10893 // vectors, return the vector and the effective shuffle.
10894 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
10895 return EI->getOperand(0);
10896
Chris Lattnerefb47352006-04-15 01:39:45 +000010897 }
10898 }
10899 }
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000010900 // TODO: Handle shufflevector here!
Chris Lattnerefb47352006-04-15 01:39:45 +000010901
10902 // Otherwise, can't do anything fancy. Return an identity vector.
10903 for (unsigned i = 0; i != NumElts; ++i)
Reid Spencerc5b206b2006-12-31 05:48:39 +000010904 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
Chris Lattnerefb47352006-04-15 01:39:45 +000010905 return V;
10906}
10907
10908Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
10909 Value *VecOp = IE.getOperand(0);
10910 Value *ScalarOp = IE.getOperand(1);
10911 Value *IdxOp = IE.getOperand(2);
10912
Chris Lattner599ded12007-04-09 01:11:16 +000010913 // Inserting an undef or into an undefined place, remove this.
10914 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
10915 ReplaceInstUsesWith(IE, VecOp);
10916
Chris Lattnerefb47352006-04-15 01:39:45 +000010917 // If the inserted element was extracted from some other vector, and if the
10918 // indexes are constant, try to turn this into a shufflevector operation.
10919 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
10920 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
10921 EI->getOperand(0)->getType() == IE.getType()) {
10922 unsigned NumVectorElts = IE.getType()->getNumElements();
Chris Lattnere34e9a22007-04-14 23:32:02 +000010923 unsigned ExtractedIdx =
10924 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
Reid Spencerb83eb642006-10-20 07:07:24 +000010925 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
Chris Lattnerefb47352006-04-15 01:39:45 +000010926
10927 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
10928 return ReplaceInstUsesWith(IE, VecOp);
10929
10930 if (InsertedIdx >= NumVectorElts) // Out of range insert.
10931 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
10932
10933 // If we are extracting a value from a vector, then inserting it right
10934 // back into the same place, just use the input vector.
10935 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
10936 return ReplaceInstUsesWith(IE, VecOp);
10937
10938 // We could theoretically do this for ANY input. However, doing so could
10939 // turn chains of insertelement instructions into a chain of shufflevector
10940 // instructions, and right now we do not merge shufflevectors. As such,
10941 // only do this in a situation where it is clear that there is benefit.
10942 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
10943 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
10944 // the values of VecOp, except then one read from EIOp0.
10945 // Build a new shuffle mask.
10946 std::vector<Constant*> Mask;
10947 if (isa<UndefValue>(VecOp))
Reid Spencerc5b206b2006-12-31 05:48:39 +000010948 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
Chris Lattnerefb47352006-04-15 01:39:45 +000010949 else {
10950 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
Reid Spencerc5b206b2006-12-31 05:48:39 +000010951 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
Chris Lattnerefb47352006-04-15 01:39:45 +000010952 NumVectorElts));
10953 }
Reid Spencerc5b206b2006-12-31 05:48:39 +000010954 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
Chris Lattnerefb47352006-04-15 01:39:45 +000010955 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
Reid Spencer9d6565a2007-02-15 02:26:10 +000010956 ConstantVector::get(Mask));
Chris Lattnerefb47352006-04-15 01:39:45 +000010957 }
10958
10959 // If this insertelement isn't used by some other insertelement, turn it
10960 // (and any insertelements it points to), into one big shuffle.
10961 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
10962 std::vector<Constant*> Mask;
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000010963 Value *RHS = 0;
10964 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
10965 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
10966 // We now have a shuffle of LHS, RHS, Mask.
Reid Spencer9d6565a2007-02-15 02:26:10 +000010967 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
Chris Lattnerefb47352006-04-15 01:39:45 +000010968 }
10969 }
10970 }
10971
10972 return 0;
10973}
10974
10975
Chris Lattnera844fc4c2006-04-10 22:45:52 +000010976Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
10977 Value *LHS = SVI.getOperand(0);
10978 Value *RHS = SVI.getOperand(1);
Chris Lattner863bcff2006-05-25 23:48:38 +000010979 std::vector<unsigned> Mask = getShuffleMask(&SVI);
Chris Lattnera844fc4c2006-04-10 22:45:52 +000010980
10981 bool MadeChange = false;
10982
Chris Lattner867b99f2006-10-05 06:55:50 +000010983 // Undefined shuffle mask -> undefined value.
Chris Lattner863bcff2006-05-25 23:48:38 +000010984 if (isa<UndefValue>(SVI.getOperand(2)))
Chris Lattnera844fc4c2006-04-10 22:45:52 +000010985 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
10986
Chris Lattnere4929dd2007-01-05 07:36:08 +000010987 // If we have shuffle(x, undef, mask) and any elements of mask refer to
Chris Lattnerefb47352006-04-15 01:39:45 +000010988 // the undef, change them to undefs.
Chris Lattnere4929dd2007-01-05 07:36:08 +000010989 if (isa<UndefValue>(SVI.getOperand(1))) {
10990 // Scan to see if there are any references to the RHS. If so, replace them
10991 // with undef element refs and set MadeChange to true.
10992 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
10993 if (Mask[i] >= e && Mask[i] != 2*e) {
10994 Mask[i] = 2*e;
10995 MadeChange = true;
10996 }
10997 }
10998
10999 if (MadeChange) {
11000 // Remap any references to RHS to use LHS.
11001 std::vector<Constant*> Elts;
11002 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11003 if (Mask[i] == 2*e)
11004 Elts.push_back(UndefValue::get(Type::Int32Ty));
11005 else
11006 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11007 }
Reid Spencer9d6565a2007-02-15 02:26:10 +000011008 SVI.setOperand(2, ConstantVector::get(Elts));
Chris Lattnere4929dd2007-01-05 07:36:08 +000011009 }
11010 }
Chris Lattnerefb47352006-04-15 01:39:45 +000011011
Chris Lattner863bcff2006-05-25 23:48:38 +000011012 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11013 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11014 if (LHS == RHS || isa<UndefValue>(LHS)) {
11015 if (isa<UndefValue>(LHS) && LHS == RHS) {
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011016 // shuffle(undef,undef,mask) -> undef.
11017 return ReplaceInstUsesWith(SVI, LHS);
11018 }
11019
Chris Lattner863bcff2006-05-25 23:48:38 +000011020 // Remap any references to RHS to use LHS.
11021 std::vector<Constant*> Elts;
11022 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
Chris Lattner7b2e27922006-05-26 00:29:06 +000011023 if (Mask[i] >= 2*e)
Reid Spencerc5b206b2006-12-31 05:48:39 +000011024 Elts.push_back(UndefValue::get(Type::Int32Ty));
Chris Lattner7b2e27922006-05-26 00:29:06 +000011025 else {
11026 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
11027 (Mask[i] < e && isa<UndefValue>(LHS)))
11028 Mask[i] = 2*e; // Turn into undef.
11029 else
11030 Mask[i] &= (e-1); // Force to LHS.
Reid Spencerc5b206b2006-12-31 05:48:39 +000011031 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
Chris Lattner7b2e27922006-05-26 00:29:06 +000011032 }
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011033 }
Chris Lattner863bcff2006-05-25 23:48:38 +000011034 SVI.setOperand(0, SVI.getOperand(1));
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011035 SVI.setOperand(1, UndefValue::get(RHS->getType()));
Reid Spencer9d6565a2007-02-15 02:26:10 +000011036 SVI.setOperand(2, ConstantVector::get(Elts));
Chris Lattner7b2e27922006-05-26 00:29:06 +000011037 LHS = SVI.getOperand(0);
11038 RHS = SVI.getOperand(1);
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011039 MadeChange = true;
11040 }
11041
Chris Lattner7b2e27922006-05-26 00:29:06 +000011042 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
Chris Lattner863bcff2006-05-25 23:48:38 +000011043 bool isLHSID = true, isRHSID = true;
Chris Lattner706126d2006-04-16 00:03:56 +000011044
Chris Lattner863bcff2006-05-25 23:48:38 +000011045 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11046 if (Mask[i] >= e*2) continue; // Ignore undef values.
11047 // Is this an identity shuffle of the LHS value?
11048 isLHSID &= (Mask[i] == i);
11049
11050 // Is this an identity shuffle of the RHS value?
11051 isRHSID &= (Mask[i]-e == i);
Chris Lattner706126d2006-04-16 00:03:56 +000011052 }
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011053
Chris Lattner863bcff2006-05-25 23:48:38 +000011054 // Eliminate identity shuffles.
11055 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
11056 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011057
Chris Lattner7b2e27922006-05-26 00:29:06 +000011058 // If the LHS is a shufflevector itself, see if we can combine it with this
11059 // one without producing an unusual shuffle. Here we are really conservative:
11060 // we are absolutely afraid of producing a shuffle mask not in the input
11061 // program, because the code gen may not be smart enough to turn a merged
11062 // shuffle into two specific shuffles: it may produce worse code. As such,
11063 // we only merge two shuffles if the result is one of the two input shuffle
11064 // masks. In this case, merging the shuffles just removes one instruction,
11065 // which we know is safe. This is good for things like turning:
11066 // (splat(splat)) -> splat.
11067 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
11068 if (isa<UndefValue>(RHS)) {
11069 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
11070
11071 std::vector<unsigned> NewMask;
11072 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
11073 if (Mask[i] >= 2*e)
11074 NewMask.push_back(2*e);
11075 else
11076 NewMask.push_back(LHSMask[Mask[i]]);
11077
11078 // If the result mask is equal to the src shuffle or this shuffle mask, do
11079 // the replacement.
11080 if (NewMask == LHSMask || NewMask == Mask) {
11081 std::vector<Constant*> Elts;
11082 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
11083 if (NewMask[i] >= e*2) {
Reid Spencerc5b206b2006-12-31 05:48:39 +000011084 Elts.push_back(UndefValue::get(Type::Int32Ty));
Chris Lattner7b2e27922006-05-26 00:29:06 +000011085 } else {
Reid Spencerc5b206b2006-12-31 05:48:39 +000011086 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
Chris Lattner7b2e27922006-05-26 00:29:06 +000011087 }
11088 }
11089 return new ShuffleVectorInst(LHSSVI->getOperand(0),
11090 LHSSVI->getOperand(1),
Reid Spencer9d6565a2007-02-15 02:26:10 +000011091 ConstantVector::get(Elts));
Chris Lattner7b2e27922006-05-26 00:29:06 +000011092 }
11093 }
11094 }
Chris Lattnerc5eff442007-01-30 22:32:46 +000011095
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011096 return MadeChange ? &SVI : 0;
11097}
11098
11099
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011100
Chris Lattnerea1c4542004-12-08 23:43:58 +000011101
11102/// TryToSinkInstruction - Try to move the specified instruction from its
11103/// current block into the beginning of DestBlock, which can only happen if it's
11104/// safe to move the instruction past all of the instructions between it and the
11105/// end of its block.
11106static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
11107 assert(I->hasOneUse() && "Invariants didn't hold!");
11108
Chris Lattner108e9022005-10-27 17:13:11 +000011109 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
11110 if (isa<PHINode>(I) || I->mayWriteToMemory()) return false;
Misha Brukmanfd939082005-04-21 23:48:37 +000011111
Chris Lattnerea1c4542004-12-08 23:43:58 +000011112 // Do not sink alloca instructions out of the entry block.
Dan Gohmanecb7a772007-03-22 16:38:57 +000011113 if (isa<AllocaInst>(I) && I->getParent() ==
11114 &DestBlock->getParent()->getEntryBlock())
Chris Lattnerea1c4542004-12-08 23:43:58 +000011115 return false;
11116
Chris Lattner96a52a62004-12-09 07:14:34 +000011117 // We can only sink load instructions if there is nothing between the load and
11118 // the end of block that could change the value.
11119 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Chris Lattner96a52a62004-12-09 07:14:34 +000011120 for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
11121 Scan != E; ++Scan)
11122 if (Scan->mayWriteToMemory())
11123 return false;
Chris Lattner96a52a62004-12-09 07:14:34 +000011124 }
Chris Lattnerea1c4542004-12-08 23:43:58 +000011125
11126 BasicBlock::iterator InsertPos = DestBlock->begin();
11127 while (isa<PHINode>(InsertPos)) ++InsertPos;
11128
Chris Lattner4bc5f802005-08-08 19:11:57 +000011129 I->moveBefore(InsertPos);
Chris Lattnerea1c4542004-12-08 23:43:58 +000011130 ++NumSunkInst;
11131 return true;
11132}
11133
Chris Lattnerf4f5a772006-05-10 19:00:36 +000011134
11135/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
11136/// all reachable code to the worklist.
11137///
11138/// This has a couple of tricks to make the code faster and more powerful. In
11139/// particular, we constant fold and DCE instructions as we go, to avoid adding
11140/// them to the worklist (this significantly speeds up instcombine on code where
11141/// many instructions are dead or constant). Additionally, if we find a branch
11142/// whose condition is a known constant, we only visit the reachable successors.
11143///
11144static void AddReachableCodeToWorklist(BasicBlock *BB,
Chris Lattner1f87a582007-02-15 19:41:52 +000011145 SmallPtrSet<BasicBlock*, 64> &Visited,
Chris Lattnerdbab3862007-03-02 21:28:56 +000011146 InstCombiner &IC,
Chris Lattner8c8c66a2006-05-11 17:11:52 +000011147 const TargetData *TD) {
Chris Lattner2c7718a2007-03-23 19:17:18 +000011148 std::vector<BasicBlock*> Worklist;
11149 Worklist.push_back(BB);
Chris Lattnerf4f5a772006-05-10 19:00:36 +000011150
Chris Lattner2c7718a2007-03-23 19:17:18 +000011151 while (!Worklist.empty()) {
11152 BB = Worklist.back();
11153 Worklist.pop_back();
11154
11155 // We have now visited this block! If we've already been here, ignore it.
11156 if (!Visited.insert(BB)) continue;
11157
11158 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
11159 Instruction *Inst = BBI++;
Chris Lattnerf4f5a772006-05-10 19:00:36 +000011160
Chris Lattner2c7718a2007-03-23 19:17:18 +000011161 // DCE instruction if trivially dead.
11162 if (isInstructionTriviallyDead(Inst)) {
11163 ++NumDeadInst;
11164 DOUT << "IC: DCE: " << *Inst;
11165 Inst->eraseFromParent();
11166 continue;
11167 }
11168
11169 // ConstantProp instruction if trivially constant.
11170 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
11171 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
11172 Inst->replaceAllUsesWith(C);
11173 ++NumConstProp;
11174 Inst->eraseFromParent();
11175 continue;
11176 }
Chris Lattner3ccc6bc2007-07-20 22:06:41 +000011177
Chris Lattner2c7718a2007-03-23 19:17:18 +000011178 IC.AddToWorkList(Inst);
Chris Lattnerf4f5a772006-05-10 19:00:36 +000011179 }
Chris Lattner2c7718a2007-03-23 19:17:18 +000011180
11181 // Recursively visit successors. If this is a branch or switch on a
11182 // constant, only visit the reachable successor.
Nick Lewycky91436992008-03-09 08:50:23 +000011183 if (BB->getUnwindDest())
11184 Worklist.push_back(BB->getUnwindDest());
Chris Lattner2c7718a2007-03-23 19:17:18 +000011185 TerminatorInst *TI = BB->getTerminator();
11186 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
11187 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
11188 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewycky91436992008-03-09 08:50:23 +000011189 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
11190 if (ReachableBB != BB->getUnwindDest())
11191 Worklist.push_back(ReachableBB);
Chris Lattner2c7718a2007-03-23 19:17:18 +000011192 continue;
11193 }
11194 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
11195 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
11196 // See if this is an explicit destination.
11197 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
11198 if (SI->getCaseValue(i) == Cond) {
Nick Lewycky91436992008-03-09 08:50:23 +000011199 BasicBlock *ReachableBB = SI->getSuccessor(i);
11200 if (ReachableBB != BB->getUnwindDest())
11201 Worklist.push_back(ReachableBB);
Chris Lattner2c7718a2007-03-23 19:17:18 +000011202 continue;
11203 }
11204
11205 // Otherwise it is the default destination.
11206 Worklist.push_back(SI->getSuccessor(0));
11207 continue;
11208 }
11209 }
11210
11211 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
11212 Worklist.push_back(TI->getSuccessor(i));
Chris Lattnerf4f5a772006-05-10 19:00:36 +000011213 }
Chris Lattnerf4f5a772006-05-10 19:00:36 +000011214}
11215
Chris Lattnerec9c3582007-03-03 02:04:50 +000011216bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
Chris Lattnerdd841ae2002-04-18 17:39:14 +000011217 bool Changed = false;
Chris Lattnerbc61e662003-11-02 05:57:39 +000011218 TD = &getAnalysis<TargetData>();
Chris Lattnerec9c3582007-03-03 02:04:50 +000011219
11220 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
11221 << F.getNameStr() << "\n");
Chris Lattner8a2a3112001-12-14 16:52:21 +000011222
Chris Lattnerb3d59702005-07-07 20:40:38 +000011223 {
Chris Lattnerf4f5a772006-05-10 19:00:36 +000011224 // Do a depth-first traversal of the function, populate the worklist with
11225 // the reachable instructions. Ignore blocks that are not reachable. Keep
11226 // track of which blocks we visit.
Chris Lattner1f87a582007-02-15 19:41:52 +000011227 SmallPtrSet<BasicBlock*, 64> Visited;
Chris Lattnerdbab3862007-03-02 21:28:56 +000011228 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
Jeff Cohen00b168892005-07-27 06:12:32 +000011229
Chris Lattnerb3d59702005-07-07 20:40:38 +000011230 // Do a quick scan over the function. If we find any blocks that are
11231 // unreachable, remove any instructions inside of them. This prevents
11232 // the instcombine code from having to deal with some bad special cases.
11233 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
11234 if (!Visited.count(BB)) {
11235 Instruction *Term = BB->getTerminator();
11236 while (Term != BB->begin()) { // Remove instrs bottom-up
11237 BasicBlock::iterator I = Term; --I;
Chris Lattner6ffe5512004-04-27 15:13:33 +000011238
Bill Wendlingb7427032006-11-26 09:46:52 +000011239 DOUT << "IC: DCE: " << *I;
Chris Lattnerb3d59702005-07-07 20:40:38 +000011240 ++NumDeadInst;
11241
11242 if (!I->use_empty())
11243 I->replaceAllUsesWith(UndefValue::get(I->getType()));
11244 I->eraseFromParent();
11245 }
11246 }
11247 }
Chris Lattner8a2a3112001-12-14 16:52:21 +000011248
Chris Lattnerdbab3862007-03-02 21:28:56 +000011249 while (!Worklist.empty()) {
11250 Instruction *I = RemoveOneFromWorkList();
11251 if (I == 0) continue; // skip null values.
Chris Lattner8a2a3112001-12-14 16:52:21 +000011252
Chris Lattner8c8c66a2006-05-11 17:11:52 +000011253 // Check to see if we can DCE the instruction.
Chris Lattner62b14df2002-09-02 04:59:56 +000011254 if (isInstructionTriviallyDead(I)) {
Chris Lattner8c8c66a2006-05-11 17:11:52 +000011255 // Add operands to the worklist.
Chris Lattner4bb7c022003-10-06 17:11:01 +000011256 if (I->getNumOperands() < 4)
Chris Lattner7bcc0e72004-02-28 05:22:00 +000011257 AddUsesToWorkList(*I);
Chris Lattner62b14df2002-09-02 04:59:56 +000011258 ++NumDeadInst;
Chris Lattner4bb7c022003-10-06 17:11:01 +000011259
Bill Wendlingb7427032006-11-26 09:46:52 +000011260 DOUT << "IC: DCE: " << *I;
Chris Lattnerad5fec12005-01-28 19:32:01 +000011261
11262 I->eraseFromParent();
Chris Lattnerdbab3862007-03-02 21:28:56 +000011263 RemoveFromWorkList(I);
Chris Lattner4bb7c022003-10-06 17:11:01 +000011264 continue;
11265 }
Chris Lattner62b14df2002-09-02 04:59:56 +000011266
Chris Lattner8c8c66a2006-05-11 17:11:52 +000011267 // Instruction isn't dead, see if we can constant propagate it.
Chris Lattner0a19ffa2007-01-30 23:16:15 +000011268 if (Constant *C = ConstantFoldInstruction(I, TD)) {
Bill Wendlingb7427032006-11-26 09:46:52 +000011269 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
Chris Lattnerad5fec12005-01-28 19:32:01 +000011270
Chris Lattner8c8c66a2006-05-11 17:11:52 +000011271 // Add operands to the worklist.
Chris Lattner7bcc0e72004-02-28 05:22:00 +000011272 AddUsesToWorkList(*I);
Chris Lattnerc736d562002-12-05 22:41:53 +000011273 ReplaceInstUsesWith(*I, C);
11274
Chris Lattner62b14df2002-09-02 04:59:56 +000011275 ++NumConstProp;
Chris Lattnerf4f5a772006-05-10 19:00:36 +000011276 I->eraseFromParent();
Chris Lattnerdbab3862007-03-02 21:28:56 +000011277 RemoveFromWorkList(I);
Chris Lattner4bb7c022003-10-06 17:11:01 +000011278 continue;
Chris Lattner62b14df2002-09-02 04:59:56 +000011279 }
Chris Lattner4bb7c022003-10-06 17:11:01 +000011280
Chris Lattnerea1c4542004-12-08 23:43:58 +000011281 // See if we can trivially sink this instruction to a successor basic block.
11282 if (I->hasOneUse()) {
11283 BasicBlock *BB = I->getParent();
11284 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
11285 if (UserParent != BB) {
11286 bool UserIsSuccessor = false;
11287 // See if the user is one of our successors.
11288 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
11289 if (*SI == UserParent) {
11290 UserIsSuccessor = true;
11291 break;
11292 }
11293
11294 // If the user is one of our immediate successors, and if that successor
11295 // only has us as a predecessors (we'd have to split the critical edge
11296 // otherwise), we can keep going.
11297 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
11298 next(pred_begin(UserParent)) == pred_end(UserParent))
11299 // Okay, the CFG is simple enough, try to sink this instruction.
11300 Changed |= TryToSinkInstruction(I, UserParent);
11301 }
11302 }
11303
Chris Lattner8a2a3112001-12-14 16:52:21 +000011304 // Now that we have an instruction, try combining it to simplify it...
Reid Spencera9b81012007-03-26 17:44:01 +000011305#ifndef NDEBUG
11306 std::string OrigI;
11307#endif
11308 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
Chris Lattner90ac28c2002-08-02 19:29:35 +000011309 if (Instruction *Result = visit(*I)) {
Chris Lattner3dec1f22002-05-10 15:38:35 +000011310 ++NumCombined;
Chris Lattnerdd841ae2002-04-18 17:39:14 +000011311 // Should we replace the old instruction with a new one?
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +000011312 if (Result != I) {
Bill Wendlingb7427032006-11-26 09:46:52 +000011313 DOUT << "IC: Old = " << *I
11314 << " New = " << *Result;
Chris Lattner0cea42a2004-03-13 23:54:27 +000011315
Chris Lattnerf523d062004-06-09 05:08:07 +000011316 // Everything uses the new instruction now.
11317 I->replaceAllUsesWith(Result);
11318
11319 // Push the new instruction and any users onto the worklist.
Chris Lattnerdbab3862007-03-02 21:28:56 +000011320 AddToWorkList(Result);
Chris Lattnerf523d062004-06-09 05:08:07 +000011321 AddUsersToWorkList(*Result);
Chris Lattner4bb7c022003-10-06 17:11:01 +000011322
Chris Lattner6934a042007-02-11 01:23:03 +000011323 // Move the name to the new instruction first.
11324 Result->takeName(I);
Chris Lattner4bb7c022003-10-06 17:11:01 +000011325
11326 // Insert the new instruction into the basic block...
11327 BasicBlock *InstParent = I->getParent();
Chris Lattnerbac32862004-11-14 19:13:23 +000011328 BasicBlock::iterator InsertPos = I;
11329
11330 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
11331 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
11332 ++InsertPos;
11333
11334 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattner4bb7c022003-10-06 17:11:01 +000011335
Chris Lattner00d51312004-05-01 23:27:23 +000011336 // Make sure that we reprocess all operands now that we reduced their
11337 // use counts.
Chris Lattnerdbab3862007-03-02 21:28:56 +000011338 AddUsesToWorkList(*I);
Chris Lattner216d4d82004-05-01 23:19:52 +000011339
Chris Lattnerf523d062004-06-09 05:08:07 +000011340 // Instructions can end up on the worklist more than once. Make sure
11341 // we do not process an instruction that has been deleted.
Chris Lattnerdbab3862007-03-02 21:28:56 +000011342 RemoveFromWorkList(I);
Chris Lattner4bb7c022003-10-06 17:11:01 +000011343
11344 // Erase the old instruction.
11345 InstParent->getInstList().erase(I);
Chris Lattner7e708292002-06-25 16:13:24 +000011346 } else {
Evan Chengc7baf682007-03-27 16:44:48 +000011347#ifndef NDEBUG
Reid Spencera9b81012007-03-26 17:44:01 +000011348 DOUT << "IC: Mod = " << OrigI
11349 << " New = " << *I;
Evan Chengc7baf682007-03-27 16:44:48 +000011350#endif
Chris Lattner0cea42a2004-03-13 23:54:27 +000011351
Chris Lattner90ac28c2002-08-02 19:29:35 +000011352 // If the instruction was modified, it's possible that it is now dead.
11353 // if so, remove it.
Chris Lattner00d51312004-05-01 23:27:23 +000011354 if (isInstructionTriviallyDead(I)) {
11355 // Make sure we process all operands now that we are reducing their
11356 // use counts.
Chris Lattnerec9c3582007-03-03 02:04:50 +000011357 AddUsesToWorkList(*I);
Misha Brukmanfd939082005-04-21 23:48:37 +000011358
Chris Lattner00d51312004-05-01 23:27:23 +000011359 // Instructions may end up in the worklist more than once. Erase all
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011360 // occurrences of this instruction.
Chris Lattnerdbab3862007-03-02 21:28:56 +000011361 RemoveFromWorkList(I);
Chris Lattner2f503e62005-01-31 05:36:43 +000011362 I->eraseFromParent();
Chris Lattnerf523d062004-06-09 05:08:07 +000011363 } else {
Chris Lattnerec9c3582007-03-03 02:04:50 +000011364 AddToWorkList(I);
11365 AddUsersToWorkList(*I);
Chris Lattner90ac28c2002-08-02 19:29:35 +000011366 }
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +000011367 }
Chris Lattnerdd841ae2002-04-18 17:39:14 +000011368 Changed = true;
Chris Lattner8a2a3112001-12-14 16:52:21 +000011369 }
11370 }
11371
Chris Lattnerec9c3582007-03-03 02:04:50 +000011372 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnera9ff5eb2007-08-05 08:47:58 +000011373
11374 // Do an explicit clear, this shrinks the map if needed.
11375 WorklistMap.clear();
Chris Lattnerdd841ae2002-04-18 17:39:14 +000011376 return Changed;
Chris Lattnerbd0ef772002-02-26 21:46:54 +000011377}
11378
Chris Lattnerec9c3582007-03-03 02:04:50 +000011379
11380bool InstCombiner::runOnFunction(Function &F) {
Chris Lattnerf964f322007-03-04 04:27:24 +000011381 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
11382
Chris Lattnerec9c3582007-03-03 02:04:50 +000011383 bool EverMadeChange = false;
11384
11385 // Iterate while there is work to do.
11386 unsigned Iteration = 0;
11387 while (DoOneIteration(F, Iteration++))
11388 EverMadeChange = true;
11389 return EverMadeChange;
11390}
11391
Brian Gaeke96d4bf72004-07-27 17:43:21 +000011392FunctionPass *llvm::createInstructionCombiningPass() {
Chris Lattnerdd841ae2002-04-18 17:39:14 +000011393 return new InstCombiner();
Chris Lattnerbd0ef772002-02-26 21:46:54 +000011394}
Brian Gaeked0fde302003-11-11 22:41:34 +000011395