blob: dc6d497bd00386d5f9f4b475521ddc46856d0b5f [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13// * Assumes values are constant unless proven otherwise
14// * Assumes BasicBlocks are dead unless proven otherwise
15// * Proves values to be constant, and replaces them with constants
16// * Proves conditional branches to be unconditional
17//
18// Notice that:
19// * This pass has a habit of making definitions be dead. It is a good idea
20// to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "sccp"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/IPO.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Instructions.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/ConstantFolding.h"
Dan Gohman856193b2008-06-20 01:15:44 +000032#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000033#include "llvm/Transforms/Utils/Local.h"
34#include "llvm/Support/CallSite.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/InstVisitor.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/STLExtras.h"
43#include <algorithm>
Dan Gohman249ddbf2008-03-21 23:51:57 +000044#include <map>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000045using namespace llvm;
46
47STATISTIC(NumInstRemoved, "Number of instructions removed");
48STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
49
Nick Lewyckybbdfc9c2008-03-08 07:48:41 +000050STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000051STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
52STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
53STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
54
55namespace {
56/// LatticeVal class - This class represents the different lattice values that
57/// an LLVM value may occupy. It is a simple class with value semantics.
58///
59class VISIBILITY_HIDDEN LatticeVal {
60 enum {
61 /// undefined - This LLVM Value has no known value yet.
62 undefined,
63
64 /// constant - This LLVM Value has a specific constant value.
65 constant,
66
67 /// forcedconstant - This LLVM Value was thought to be undef until
68 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
69 /// with another (different) constant, it goes to overdefined, instead of
70 /// asserting.
71 forcedconstant,
72
73 /// overdefined - This instruction is not known to be constant, and we know
74 /// it has a value.
75 overdefined
76 } LatticeValue; // The current lattice position
77
78 Constant *ConstantVal; // If Constant value, the current value
79public:
80 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
81
82 // markOverdefined - Return true if this is a new status to be in...
83 inline bool markOverdefined() {
84 if (LatticeValue != overdefined) {
85 LatticeValue = overdefined;
86 return true;
87 }
88 return false;
89 }
90
91 // markConstant - Return true if this is a new status for us.
92 inline bool markConstant(Constant *V) {
93 if (LatticeValue != constant) {
94 if (LatticeValue == undefined) {
95 LatticeValue = constant;
96 assert(V && "Marking constant with NULL");
97 ConstantVal = V;
98 } else {
99 assert(LatticeValue == forcedconstant &&
100 "Cannot move from overdefined to constant!");
101 // Stay at forcedconstant if the constant is the same.
102 if (V == ConstantVal) return false;
103
104 // Otherwise, we go to overdefined. Assumptions made based on the
105 // forced value are possibly wrong. Assuming this is another constant
106 // could expose a contradiction.
107 LatticeValue = overdefined;
108 }
109 return true;
110 } else {
111 assert(ConstantVal == V && "Marking constant with different value");
112 }
113 return false;
114 }
115
116 inline void markForcedConstant(Constant *V) {
117 assert(LatticeValue == undefined && "Can't force a defined value!");
118 LatticeValue = forcedconstant;
119 ConstantVal = V;
120 }
121
122 inline bool isUndefined() const { return LatticeValue == undefined; }
123 inline bool isConstant() const {
124 return LatticeValue == constant || LatticeValue == forcedconstant;
125 }
126 inline bool isOverdefined() const { return LatticeValue == overdefined; }
127
128 inline Constant *getConstant() const {
129 assert(isConstant() && "Cannot get the constant of a non-constant!");
130 return ConstantVal;
131 }
132};
133
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000134//===----------------------------------------------------------------------===//
135//
136/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
137/// Constant Propagation.
138///
139class SCCPSolver : public InstVisitor<SCCPSolver> {
140 SmallSet<BasicBlock*, 16> BBExecutable;// The basic blocks that are executable
141 std::map<Value*, LatticeVal> ValueState; // The state each value is in.
142
143 /// GlobalValue - If we are tracking any values for the contents of a global
144 /// variable, we keep a mapping from the constant accessor to the element of
145 /// the global, to the currently known value. If the value becomes
146 /// overdefined, it's entry is simply removed from this map.
147 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
148
Devang Pateladd320d2008-03-11 05:46:42 +0000149 /// TrackedRetVals - If we are tracking arguments into and the return
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000150 /// value out of a function, it will have an entry in this map, indicating
151 /// what the known return value for the function is.
Devang Pateladd320d2008-03-11 05:46:42 +0000152 DenseMap<Function*, LatticeVal> TrackedRetVals;
153
154 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
155 /// that return multiple values.
Chris Lattnercd73be02008-04-23 05:38:20 +0000156 std::map<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000157
158 // The reason for two worklists is that overdefined is the lowest state
159 // on the lattice, and moving things to overdefined as fast as possible
160 // makes SCCP converge much faster.
161 // By having a separate worklist, we accomplish this because everything
162 // possibly overdefined will become overdefined at the soonest possible
163 // point.
164 std::vector<Value*> OverdefinedInstWorkList;
165 std::vector<Value*> InstWorkList;
166
167
168 std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list
169
170 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
171 /// overdefined, despite the fact that the PHI node is overdefined.
172 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
173
174 /// KnownFeasibleEdges - Entries in this set are edges which have already had
175 /// PHI nodes retriggered.
176 typedef std::pair<BasicBlock*,BasicBlock*> Edge;
177 std::set<Edge> KnownFeasibleEdges;
178public:
179
180 /// MarkBlockExecutable - This method can be used by clients to mark all of
181 /// the blocks that are known to be intrinsically live in the processed unit.
182 void MarkBlockExecutable(BasicBlock *BB) {
Chris Lattner56bf9a92008-05-11 01:55:59 +0000183 DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000184 BBExecutable.insert(BB); // Basic block is executable!
185 BBWorkList.push_back(BB); // Add the block to the work list!
186 }
187
188 /// TrackValueOfGlobalVariable - Clients can use this method to
189 /// inform the SCCPSolver that it should track loads and stores to the
190 /// specified global variable if it can. This is only legal to call if
191 /// performing Interprocedural SCCP.
192 void TrackValueOfGlobalVariable(GlobalVariable *GV) {
193 const Type *ElTy = GV->getType()->getElementType();
194 if (ElTy->isFirstClassType()) {
195 LatticeVal &IV = TrackedGlobals[GV];
196 if (!isa<UndefValue>(GV->getInitializer()))
197 IV.markConstant(GV->getInitializer());
198 }
199 }
200
201 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
202 /// and out of the specified function (which cannot have its address taken),
203 /// this method must be called.
204 void AddTrackedFunction(Function *F) {
205 assert(F->hasInternalLinkage() && "Can only track internal functions!");
206 // Add an entry, F -> undef.
Devang Pateladd320d2008-03-11 05:46:42 +0000207 if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
208 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
Chris Lattnercd73be02008-04-23 05:38:20 +0000209 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
210 LatticeVal()));
211 } else
212 TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000213 }
214
215 /// Solve - Solve for constants and executable blocks.
216 ///
217 void Solve();
218
219 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
220 /// that branches on undef values cannot reach any of their successors.
221 /// However, this is not a safe assumption. After we solve dataflow, this
222 /// method should be use to handle this. If this returns true, the solver
223 /// should be rerun.
224 bool ResolvedUndefsIn(Function &F);
225
226 /// getExecutableBlocks - Once we have solved for constants, return the set of
227 /// blocks that is known to be executable.
228 SmallSet<BasicBlock*, 16> &getExecutableBlocks() {
229 return BBExecutable;
230 }
231
232 /// getValueMapping - Once we have solved for constants, return the mapping of
233 /// LLVM values to LatticeVals.
234 std::map<Value*, LatticeVal> &getValueMapping() {
235 return ValueState;
236 }
237
Devang Pateladd320d2008-03-11 05:46:42 +0000238 /// getTrackedRetVals - Get the inferred return value map.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000239 ///
Devang Pateladd320d2008-03-11 05:46:42 +0000240 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
241 return TrackedRetVals;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242 }
243
244 /// getTrackedGlobals - Get and return the set of inferred initializers for
245 /// global variables.
246 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
247 return TrackedGlobals;
248 }
249
250 inline void markOverdefined(Value *V) {
251 markOverdefined(ValueState[V], V);
252 }
253
254private:
255 // markConstant - Make a value be marked as "constant". If the value
256 // is not already a constant, add it to the instruction work list so that
257 // the users of the instruction are updated later.
258 //
259 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
260 if (IV.markConstant(C)) {
261 DOUT << "markConstant: " << *C << ": " << *V;
262 InstWorkList.push_back(V);
263 }
264 }
265
266 inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
267 IV.markForcedConstant(C);
268 DOUT << "markForcedConstant: " << *C << ": " << *V;
269 InstWorkList.push_back(V);
270 }
271
272 inline void markConstant(Value *V, Constant *C) {
273 markConstant(ValueState[V], V, C);
274 }
275
276 // markOverdefined - Make a value be marked as "overdefined". If the
277 // value is not already overdefined, add it to the overdefined instruction
278 // work list so that the users of the instruction are updated later.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000279 inline void markOverdefined(LatticeVal &IV, Value *V) {
280 if (IV.markOverdefined()) {
281 DEBUG(DOUT << "markOverdefined: ";
282 if (Function *F = dyn_cast<Function>(V))
283 DOUT << "Function '" << F->getName() << "'\n";
284 else
285 DOUT << *V);
286 // Only instructions go on the work list
287 OverdefinedInstWorkList.push_back(V);
288 }
289 }
290
291 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
292 if (IV.isOverdefined() || MergeWithV.isUndefined())
293 return; // Noop.
294 if (MergeWithV.isOverdefined())
295 markOverdefined(IV, V);
296 else if (IV.isUndefined())
297 markConstant(IV, V, MergeWithV.getConstant());
298 else if (IV.getConstant() != MergeWithV.getConstant())
299 markOverdefined(IV, V);
300 }
301
302 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
303 return mergeInValue(ValueState[V], V, MergeWithV);
304 }
305
306
307 // getValueState - Return the LatticeVal object that corresponds to the value.
308 // This function is necessary because not all values should start out in the
309 // underdefined state... Argument's should be overdefined, and
310 // constants should be marked as constants. If a value is not known to be an
311 // Instruction object, then use this accessor to get its value from the map.
312 //
313 inline LatticeVal &getValueState(Value *V) {
314 std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
315 if (I != ValueState.end()) return I->second; // Common case, in the map
316
317 if (Constant *C = dyn_cast<Constant>(V)) {
318 if (isa<UndefValue>(V)) {
319 // Nothing to do, remain undefined.
320 } else {
321 LatticeVal &LV = ValueState[C];
322 LV.markConstant(C); // Constants are constant
323 return LV;
324 }
325 }
326 // All others are underdefined by default...
327 return ValueState[V];
328 }
329
330 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
331 // work list if it is not already executable...
332 //
333 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
334 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
335 return; // This edge is already known to be executable!
336
337 if (BBExecutable.count(Dest)) {
Chris Lattner56bf9a92008-05-11 01:55:59 +0000338 DOUT << "Marking Edge Executable: " << Source->getNameStart()
339 << " -> " << Dest->getNameStart() << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000340
341 // The destination is already executable, but we just made an edge
342 // feasible that wasn't before. Revisit the PHI nodes in the block
343 // because they have potentially new operands.
344 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
345 visitPHINode(*cast<PHINode>(I));
346
347 } else {
348 MarkBlockExecutable(Dest);
349 }
350 }
351
352 // getFeasibleSuccessors - Return a vector of booleans to indicate which
353 // successors are reachable from a given terminator instruction.
354 //
355 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
356
357 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
358 // block to the 'To' basic block is currently feasible...
359 //
360 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
361
362 // OperandChangedState - This method is invoked on all of the users of an
363 // instruction that was just changed state somehow.... Based on this
364 // information, we need to update the specified user of this instruction.
365 //
366 void OperandChangedState(User *U) {
367 // Only instructions use other variable values!
368 Instruction &I = cast<Instruction>(*U);
369 if (BBExecutable.count(I.getParent())) // Inst is executable?
370 visit(I);
371 }
372
373private:
374 friend class InstVisitor<SCCPSolver>;
375
376 // visit implementations - Something changed in this instruction... Either an
377 // operand made a transition, or the instruction is newly executable. Change
378 // the value type of I to reflect these changes if appropriate.
379 //
380 void visitPHINode(PHINode &I);
381
382 // Terminators
383 void visitReturnInst(ReturnInst &I);
384 void visitTerminatorInst(TerminatorInst &TI);
385
386 void visitCastInst(CastInst &I);
Devang Pateladd320d2008-03-11 05:46:42 +0000387 void visitGetResultInst(GetResultInst &GRI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000388 void visitSelectInst(SelectInst &I);
389 void visitBinaryOperator(Instruction &I);
390 void visitCmpInst(CmpInst &I);
391 void visitExtractElementInst(ExtractElementInst &I);
392 void visitInsertElementInst(InsertElementInst &I);
393 void visitShuffleVectorInst(ShuffleVectorInst &I);
Dan Gohman856193b2008-06-20 01:15:44 +0000394 void visitExtractValueInst(ExtractValueInst &EVI);
395 void visitInsertValueInst(InsertValueInst &IVI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000396
397 // Instructions that cannot be folded away...
398 void visitStoreInst (Instruction &I);
399 void visitLoadInst (LoadInst &I);
400 void visitGetElementPtrInst(GetElementPtrInst &I);
401 void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); }
402 void visitInvokeInst (InvokeInst &II) {
403 visitCallSite(CallSite::get(&II));
404 visitTerminatorInst(II);
405 }
406 void visitCallSite (CallSite CS);
407 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ }
408 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
409 void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
410 void visitVANextInst (Instruction &I) { markOverdefined(&I); }
411 void visitVAArgInst (Instruction &I) { markOverdefined(&I); }
412 void visitFreeInst (Instruction &I) { /*returns void*/ }
413
414 void visitInstruction(Instruction &I) {
415 // If a new instruction is added to LLVM that we don't handle...
416 cerr << "SCCP: Don't know how to handle: " << I;
417 markOverdefined(&I); // Just in case
418 }
419};
420
Duncan Sands40f67972007-07-20 08:56:21 +0000421} // end anonymous namespace
422
423
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000424// getFeasibleSuccessors - Return a vector of booleans to indicate which
425// successors are reachable from a given terminator instruction.
426//
427void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
428 SmallVector<bool, 16> &Succs) {
429 Succs.resize(TI.getNumSuccessors());
430 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
431 if (BI->isUnconditional()) {
432 Succs[0] = true;
433 } else {
434 LatticeVal &BCValue = getValueState(BI->getCondition());
435 if (BCValue.isOverdefined() ||
436 (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
437 // Overdefined condition variables, and branches on unfoldable constant
438 // conditions, mean the branch could go either way.
439 Succs[0] = Succs[1] = true;
440 } else if (BCValue.isConstant()) {
441 // Constant condition variables mean the branch can only go a single way
442 Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true;
443 }
444 }
445 } else if (isa<InvokeInst>(&TI)) {
446 // Invoke instructions successors are always executable.
447 Succs[0] = Succs[1] = true;
448 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
449 LatticeVal &SCValue = getValueState(SI->getCondition());
450 if (SCValue.isOverdefined() || // Overdefined condition?
451 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
452 // All destinations are executable!
453 Succs.assign(TI.getNumSuccessors(), true);
Chris Lattner81335532008-05-10 23:56:54 +0000454 } else if (SCValue.isConstant())
455 Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000456 } else {
457 assert(0 && "SCCP: Don't know how to handle this terminator!");
458 }
459}
460
461
462// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
463// block to the 'To' basic block is currently feasible...
464//
465bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
466 assert(BBExecutable.count(To) && "Dest should always be alive!");
467
468 // Make sure the source basic block is executable!!
469 if (!BBExecutable.count(From)) return false;
470
471 // Check to make sure this edge itself is actually feasible now...
472 TerminatorInst *TI = From->getTerminator();
473 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
474 if (BI->isUnconditional())
475 return true;
476 else {
477 LatticeVal &BCValue = getValueState(BI->getCondition());
478 if (BCValue.isOverdefined()) {
479 // Overdefined condition variables mean the branch could go either way.
480 return true;
481 } else if (BCValue.isConstant()) {
482 // Not branching on an evaluatable constant?
483 if (!isa<ConstantInt>(BCValue.getConstant())) return true;
484
485 // Constant condition variables mean the branch can only go a single way
486 return BI->getSuccessor(BCValue.getConstant() ==
487 ConstantInt::getFalse()) == To;
488 }
489 return false;
490 }
491 } else if (isa<InvokeInst>(TI)) {
492 // Invoke instructions successors are always executable.
493 return true;
494 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
495 LatticeVal &SCValue = getValueState(SI->getCondition());
496 if (SCValue.isOverdefined()) { // Overdefined condition?
497 // All destinations are executable!
498 return true;
499 } else if (SCValue.isConstant()) {
500 Constant *CPV = SCValue.getConstant();
501 if (!isa<ConstantInt>(CPV))
502 return true; // not a foldable constant?
503
504 // Make sure to skip the "default value" which isn't a value
505 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
506 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
507 return SI->getSuccessor(i) == To;
508
509 // Constant value not equal to any of the branches... must execute
510 // default branch then...
511 return SI->getDefaultDest() == To;
512 }
513 return false;
514 } else {
515 cerr << "Unknown terminator instruction: " << *TI;
516 abort();
517 }
518}
519
520// visit Implementations - Something changed in this instruction... Either an
521// operand made a transition, or the instruction is newly executable. Change
522// the value type of I to reflect these changes if appropriate. This method
523// makes sure to do the following actions:
524//
525// 1. If a phi node merges two constants in, and has conflicting value coming
526// from different branches, or if the PHI node merges in an overdefined
527// value, then the PHI node becomes overdefined.
528// 2. If a phi node merges only constants in, and they all agree on value, the
529// PHI node becomes a constant value equal to that.
530// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
531// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
532// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
533// 6. If a conditional branch has a value that is constant, make the selected
534// destination executable
535// 7. If a conditional branch has a value that is overdefined, make all
536// successors executable.
537//
538void SCCPSolver::visitPHINode(PHINode &PN) {
539 LatticeVal &PNIV = getValueState(&PN);
540 if (PNIV.isOverdefined()) {
541 // There may be instructions using this PHI node that are not overdefined
542 // themselves. If so, make sure that they know that the PHI node operand
543 // changed.
544 std::multimap<PHINode*, Instruction*>::iterator I, E;
545 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
546 if (I != E) {
547 SmallVector<Instruction*, 16> Users;
548 for (; I != E; ++I) Users.push_back(I->second);
549 while (!Users.empty()) {
550 visit(Users.back());
551 Users.pop_back();
552 }
553 }
554 return; // Quick exit
555 }
556
557 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
558 // and slow us down a lot. Just mark them overdefined.
559 if (PN.getNumIncomingValues() > 64) {
560 markOverdefined(PNIV, &PN);
561 return;
562 }
563
564 // Look at all of the executable operands of the PHI node. If any of them
565 // are overdefined, the PHI becomes overdefined as well. If they are all
566 // constant, and they agree with each other, the PHI becomes the identical
567 // constant. If they are constant and don't agree, the PHI is overdefined.
568 // If there are no executable operands, the PHI remains undefined.
569 //
570 Constant *OperandVal = 0;
571 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
572 LatticeVal &IV = getValueState(PN.getIncomingValue(i));
573 if (IV.isUndefined()) continue; // Doesn't influence PHI node.
574
575 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
576 if (IV.isOverdefined()) { // PHI node becomes overdefined!
577 markOverdefined(PNIV, &PN);
578 return;
579 }
580
581 if (OperandVal == 0) { // Grab the first value...
582 OperandVal = IV.getConstant();
583 } else { // Another value is being merged in!
584 // There is already a reachable operand. If we conflict with it,
585 // then the PHI node becomes overdefined. If we agree with it, we
586 // can continue on.
587
588 // Check to see if there are two different constants merging...
589 if (IV.getConstant() != OperandVal) {
590 // Yes there is. This means the PHI node is not constant.
591 // You must be overdefined poor PHI.
592 //
593 markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined
594 return; // I'm done analyzing you
595 }
596 }
597 }
598 }
599
600 // If we exited the loop, this means that the PHI node only has constant
601 // arguments that agree with each other(and OperandVal is the constant) or
602 // OperandVal is null because there are no defined incoming arguments. If
603 // this is the case, the PHI remains undefined.
604 //
605 if (OperandVal)
606 markConstant(PNIV, &PN, OperandVal); // Acquire operand value
607}
608
609void SCCPSolver::visitReturnInst(ReturnInst &I) {
610 if (I.getNumOperands() == 0) return; // Ret void
611
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000612 Function *F = I.getParent()->getParent();
Devang Pateladd320d2008-03-11 05:46:42 +0000613 // If we are tracking the return value of this function, merge it in.
614 if (!F->hasInternalLinkage())
615 return;
616
Chris Lattnercd73be02008-04-23 05:38:20 +0000617 if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000618 DenseMap<Function*, LatticeVal>::iterator TFRVI =
Devang Pateladd320d2008-03-11 05:46:42 +0000619 TrackedRetVals.find(F);
620 if (TFRVI != TrackedRetVals.end() &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000621 !TFRVI->second.isOverdefined()) {
622 LatticeVal &IV = getValueState(I.getOperand(0));
623 mergeInValue(TFRVI->second, F, IV);
Devang Pateladd320d2008-03-11 05:46:42 +0000624 return;
625 }
626 }
627
Chris Lattnercd73be02008-04-23 05:38:20 +0000628 // Handle functions that return multiple values.
629 if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
630 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
631 std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
632 It = TrackedMultipleRetVals.find(std::make_pair(F, i));
633 if (It == TrackedMultipleRetVals.end()) break;
634 mergeInValue(It->second, F, getValueState(I.getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000635 }
Dan Gohman856193b2008-06-20 01:15:44 +0000636 } else if (!TrackedMultipleRetVals.empty() &&
637 I.getNumOperands() == 1 &&
638 isa<StructType>(I.getOperand(0)->getType())) {
639 for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
640 i != e; ++i) {
641 std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
642 It = TrackedMultipleRetVals.find(std::make_pair(F, i));
643 if (It == TrackedMultipleRetVals.end()) break;
644 Value *Val = FindInsertedValue(I.getOperand(0), i);
645 mergeInValue(It->second, F, getValueState(Val));
646 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000647 }
648}
649
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000650void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
651 SmallVector<bool, 16> SuccFeasible;
652 getFeasibleSuccessors(TI, SuccFeasible);
653
654 BasicBlock *BB = TI.getParent();
655
656 // Mark all feasible successors executable...
657 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
658 if (SuccFeasible[i])
659 markEdgeExecutable(BB, TI.getSuccessor(i));
660}
661
662void SCCPSolver::visitCastInst(CastInst &I) {
663 Value *V = I.getOperand(0);
664 LatticeVal &VState = getValueState(V);
665 if (VState.isOverdefined()) // Inherit overdefinedness of operand
666 markOverdefined(&I);
667 else if (VState.isConstant()) // Propagate constant value
668 markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
669 VState.getConstant(), I.getType()));
670}
671
Devang Pateladd320d2008-03-11 05:46:42 +0000672void SCCPSolver::visitGetResultInst(GetResultInst &GRI) {
Devang Pateladd320d2008-03-11 05:46:42 +0000673 Value *Aggr = GRI.getOperand(0);
Chris Lattnercd73be02008-04-23 05:38:20 +0000674
675 // If the operand to the getresult is an undef, the result is undef.
676 if (isa<UndefValue>(Aggr))
677 return;
678
679 Function *F;
Devang Patelfbb201d2008-04-09 15:58:24 +0000680 if (CallInst *CI = dyn_cast<CallInst>(Aggr))
Devang Pateladd320d2008-03-11 05:46:42 +0000681 F = CI->getCalledFunction();
Chris Lattnercd73be02008-04-23 05:38:20 +0000682 else
683 F = cast<InvokeInst>(Aggr)->getCalledFunction();
Devang Pateladd320d2008-03-11 05:46:42 +0000684
Chris Lattnercd73be02008-04-23 05:38:20 +0000685 // TODO: If IPSCCP resolves the callee of this function, we could propagate a
686 // result back!
687 if (F == 0 || TrackedMultipleRetVals.empty()) {
688 markOverdefined(&GRI);
Devang Patelfbb201d2008-04-09 15:58:24 +0000689 return;
Devang Pateladd320d2008-03-11 05:46:42 +0000690 }
Chris Lattnercd73be02008-04-23 05:38:20 +0000691
692 // See if we are tracking the result of the callee.
693 std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
694 It = TrackedMultipleRetVals.find(std::make_pair(F, GRI.getIndex()));
695
696 // If not tracking this function (for example, it is a declaration) just move
697 // to overdefined.
698 if (It == TrackedMultipleRetVals.end()) {
699 markOverdefined(&GRI);
700 return;
701 }
702
703 // Otherwise, the value will be merged in here as a result of CallSite
704 // handling.
Devang Pateladd320d2008-03-11 05:46:42 +0000705}
706
Dan Gohman856193b2008-06-20 01:15:44 +0000707void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
708 Value *Aggr = EVI.getOperand(0);
709
710 // If the operand to the getresult is an undef, the result is undef.
711 if (isa<UndefValue>(Aggr))
712 return;
713
714 // Currently only handle single-index extractvalues.
715 if (EVI.getNumIndices() != 1) {
716 markOverdefined(&EVI);
717 return;
718 }
719
720 Function *F = 0;
721 if (CallInst *CI = dyn_cast<CallInst>(Aggr))
722 F = CI->getCalledFunction();
723 else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
724 F = II->getCalledFunction();
725
726 // TODO: If IPSCCP resolves the callee of this function, we could propagate a
727 // result back!
728 if (F == 0 || TrackedMultipleRetVals.empty()) {
729 markOverdefined(&EVI);
730 return;
731 }
732
733 // See if we are tracking the result of the callee.
734 std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
735 It = TrackedMultipleRetVals.find(std::make_pair(F, *EVI.idx_begin()));
736
737 // If not tracking this function (for example, it is a declaration) just move
738 // to overdefined.
739 if (It == TrackedMultipleRetVals.end()) {
740 markOverdefined(&EVI);
741 return;
742 }
743
744 // Otherwise, the value will be merged in here as a result of CallSite
745 // handling.
746}
747
748void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
749 Value *Aggr = IVI.getOperand(0);
750 Value *Val = IVI.getOperand(1);
751
752 // If the operand to the getresult is an undef, the result is undef.
753 if (isa<UndefValue>(Aggr))
754 return;
755
756 // Currently only handle single-index insertvalues.
757 if (IVI.getNumIndices() != 1) {
758 markOverdefined(&IVI);
759 return;
760 }
761
762 // See if we are tracking the result of the callee.
763 Function *F = IVI.getParent()->getParent();
764 std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
765 It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
766
767 // Merge in the inserted member value.
768 if (It != TrackedMultipleRetVals.end())
769 mergeInValue(It->second, F, getValueState(Val));
770
771 // Mark the aggregate result of the IVI overdefined; any tracking that we do will
772 // be done on the individual member values.
773 markOverdefined(&IVI);
774}
775
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000776void SCCPSolver::visitSelectInst(SelectInst &I) {
777 LatticeVal &CondValue = getValueState(I.getCondition());
778 if (CondValue.isUndefined())
779 return;
780 if (CondValue.isConstant()) {
781 if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
782 mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
783 : I.getFalseValue()));
784 return;
785 }
786 }
787
788 // Otherwise, the condition is overdefined or a constant we can't evaluate.
789 // See if we can produce something better than overdefined based on the T/F
790 // value.
791 LatticeVal &TVal = getValueState(I.getTrueValue());
792 LatticeVal &FVal = getValueState(I.getFalseValue());
793
794 // select ?, C, C -> C.
795 if (TVal.isConstant() && FVal.isConstant() &&
796 TVal.getConstant() == FVal.getConstant()) {
797 markConstant(&I, FVal.getConstant());
798 return;
799 }
800
801 if (TVal.isUndefined()) { // select ?, undef, X -> X.
802 mergeInValue(&I, FVal);
803 } else if (FVal.isUndefined()) { // select ?, X, undef -> X.
804 mergeInValue(&I, TVal);
805 } else {
806 markOverdefined(&I);
807 }
808}
809
810// Handle BinaryOperators and Shift Instructions...
811void SCCPSolver::visitBinaryOperator(Instruction &I) {
812 LatticeVal &IV = ValueState[&I];
813 if (IV.isOverdefined()) return;
814
815 LatticeVal &V1State = getValueState(I.getOperand(0));
816 LatticeVal &V2State = getValueState(I.getOperand(1));
817
818 if (V1State.isOverdefined() || V2State.isOverdefined()) {
819 // If this is an AND or OR with 0 or -1, it doesn't matter that the other
820 // operand is overdefined.
821 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
822 LatticeVal *NonOverdefVal = 0;
823 if (!V1State.isOverdefined()) {
824 NonOverdefVal = &V1State;
825 } else if (!V2State.isOverdefined()) {
826 NonOverdefVal = &V2State;
827 }
828
829 if (NonOverdefVal) {
830 if (NonOverdefVal->isUndefined()) {
831 // Could annihilate value.
832 if (I.getOpcode() == Instruction::And)
833 markConstant(IV, &I, Constant::getNullValue(I.getType()));
834 else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
835 markConstant(IV, &I, ConstantVector::getAllOnesValue(PT));
836 else
837 markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType()));
838 return;
839 } else {
840 if (I.getOpcode() == Instruction::And) {
841 if (NonOverdefVal->getConstant()->isNullValue()) {
842 markConstant(IV, &I, NonOverdefVal->getConstant());
843 return; // X and 0 = 0
844 }
845 } else {
846 if (ConstantInt *CI =
847 dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
848 if (CI->isAllOnesValue()) {
849 markConstant(IV, &I, NonOverdefVal->getConstant());
850 return; // X or -1 = -1
851 }
852 }
853 }
854 }
855 }
856
857
858 // If both operands are PHI nodes, it is possible that this instruction has
859 // a constant value, despite the fact that the PHI node doesn't. Check for
860 // this condition now.
861 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
862 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
863 if (PN1->getParent() == PN2->getParent()) {
864 // Since the two PHI nodes are in the same basic block, they must have
865 // entries for the same predecessors. Walk the predecessor list, and
866 // if all of the incoming values are constants, and the result of
867 // evaluating this expression with all incoming value pairs is the
868 // same, then this expression is a constant even though the PHI node
869 // is not a constant!
870 LatticeVal Result;
871 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
872 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
873 BasicBlock *InBlock = PN1->getIncomingBlock(i);
874 LatticeVal &In2 =
875 getValueState(PN2->getIncomingValueForBlock(InBlock));
876
877 if (In1.isOverdefined() || In2.isOverdefined()) {
878 Result.markOverdefined();
879 break; // Cannot fold this operation over the PHI nodes!
880 } else if (In1.isConstant() && In2.isConstant()) {
881 Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
882 In2.getConstant());
883 if (Result.isUndefined())
884 Result.markConstant(V);
885 else if (Result.isConstant() && Result.getConstant() != V) {
886 Result.markOverdefined();
887 break;
888 }
889 }
890 }
891
892 // If we found a constant value here, then we know the instruction is
893 // constant despite the fact that the PHI nodes are overdefined.
894 if (Result.isConstant()) {
895 markConstant(IV, &I, Result.getConstant());
896 // Remember that this instruction is virtually using the PHI node
897 // operands.
898 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
899 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
900 return;
901 } else if (Result.isUndefined()) {
902 return;
903 }
904
905 // Okay, this really is overdefined now. Since we might have
906 // speculatively thought that this was not overdefined before, and
907 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
908 // make sure to clean out any entries that we put there, for
909 // efficiency.
910 std::multimap<PHINode*, Instruction*>::iterator It, E;
911 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
912 while (It != E) {
913 if (It->second == &I) {
914 UsersOfOverdefinedPHIs.erase(It++);
915 } else
916 ++It;
917 }
918 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
919 while (It != E) {
920 if (It->second == &I) {
921 UsersOfOverdefinedPHIs.erase(It++);
922 } else
923 ++It;
924 }
925 }
926
927 markOverdefined(IV, &I);
928 } else if (V1State.isConstant() && V2State.isConstant()) {
929 markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
930 V2State.getConstant()));
931 }
932}
933
934// Handle ICmpInst instruction...
935void SCCPSolver::visitCmpInst(CmpInst &I) {
936 LatticeVal &IV = ValueState[&I];
937 if (IV.isOverdefined()) return;
938
939 LatticeVal &V1State = getValueState(I.getOperand(0));
940 LatticeVal &V2State = getValueState(I.getOperand(1));
941
942 if (V1State.isOverdefined() || V2State.isOverdefined()) {
943 // If both operands are PHI nodes, it is possible that this instruction has
944 // a constant value, despite the fact that the PHI node doesn't. Check for
945 // this condition now.
946 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
947 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
948 if (PN1->getParent() == PN2->getParent()) {
949 // Since the two PHI nodes are in the same basic block, they must have
950 // entries for the same predecessors. Walk the predecessor list, and
951 // if all of the incoming values are constants, and the result of
952 // evaluating this expression with all incoming value pairs is the
953 // same, then this expression is a constant even though the PHI node
954 // is not a constant!
955 LatticeVal Result;
956 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
957 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
958 BasicBlock *InBlock = PN1->getIncomingBlock(i);
959 LatticeVal &In2 =
960 getValueState(PN2->getIncomingValueForBlock(InBlock));
961
962 if (In1.isOverdefined() || In2.isOverdefined()) {
963 Result.markOverdefined();
964 break; // Cannot fold this operation over the PHI nodes!
965 } else if (In1.isConstant() && In2.isConstant()) {
966 Constant *V = ConstantExpr::getCompare(I.getPredicate(),
967 In1.getConstant(),
968 In2.getConstant());
969 if (Result.isUndefined())
970 Result.markConstant(V);
971 else if (Result.isConstant() && Result.getConstant() != V) {
972 Result.markOverdefined();
973 break;
974 }
975 }
976 }
977
978 // If we found a constant value here, then we know the instruction is
979 // constant despite the fact that the PHI nodes are overdefined.
980 if (Result.isConstant()) {
981 markConstant(IV, &I, Result.getConstant());
982 // Remember that this instruction is virtually using the PHI node
983 // operands.
984 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
985 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
986 return;
987 } else if (Result.isUndefined()) {
988 return;
989 }
990
991 // Okay, this really is overdefined now. Since we might have
992 // speculatively thought that this was not overdefined before, and
993 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
994 // make sure to clean out any entries that we put there, for
995 // efficiency.
996 std::multimap<PHINode*, Instruction*>::iterator It, E;
997 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
998 while (It != E) {
999 if (It->second == &I) {
1000 UsersOfOverdefinedPHIs.erase(It++);
1001 } else
1002 ++It;
1003 }
1004 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
1005 while (It != E) {
1006 if (It->second == &I) {
1007 UsersOfOverdefinedPHIs.erase(It++);
1008 } else
1009 ++It;
1010 }
1011 }
1012
1013 markOverdefined(IV, &I);
1014 } else if (V1State.isConstant() && V2State.isConstant()) {
1015 markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
1016 V1State.getConstant(),
1017 V2State.getConstant()));
1018 }
1019}
1020
1021void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1022 // FIXME : SCCP does not handle vectors properly.
1023 markOverdefined(&I);
1024 return;
1025
1026#if 0
1027 LatticeVal &ValState = getValueState(I.getOperand(0));
1028 LatticeVal &IdxState = getValueState(I.getOperand(1));
1029
1030 if (ValState.isOverdefined() || IdxState.isOverdefined())
1031 markOverdefined(&I);
1032 else if(ValState.isConstant() && IdxState.isConstant())
1033 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1034 IdxState.getConstant()));
1035#endif
1036}
1037
1038void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1039 // FIXME : SCCP does not handle vectors properly.
1040 markOverdefined(&I);
1041 return;
1042#if 0
1043 LatticeVal &ValState = getValueState(I.getOperand(0));
1044 LatticeVal &EltState = getValueState(I.getOperand(1));
1045 LatticeVal &IdxState = getValueState(I.getOperand(2));
1046
1047 if (ValState.isOverdefined() || EltState.isOverdefined() ||
1048 IdxState.isOverdefined())
1049 markOverdefined(&I);
1050 else if(ValState.isConstant() && EltState.isConstant() &&
1051 IdxState.isConstant())
1052 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1053 EltState.getConstant(),
1054 IdxState.getConstant()));
1055 else if (ValState.isUndefined() && EltState.isConstant() &&
1056 IdxState.isConstant())
1057 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1058 EltState.getConstant(),
1059 IdxState.getConstant()));
1060#endif
1061}
1062
1063void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1064 // FIXME : SCCP does not handle vectors properly.
1065 markOverdefined(&I);
1066 return;
1067#if 0
1068 LatticeVal &V1State = getValueState(I.getOperand(0));
1069 LatticeVal &V2State = getValueState(I.getOperand(1));
1070 LatticeVal &MaskState = getValueState(I.getOperand(2));
1071
1072 if (MaskState.isUndefined() ||
1073 (V1State.isUndefined() && V2State.isUndefined()))
1074 return; // Undefined output if mask or both inputs undefined.
1075
1076 if (V1State.isOverdefined() || V2State.isOverdefined() ||
1077 MaskState.isOverdefined()) {
1078 markOverdefined(&I);
1079 } else {
1080 // A mix of constant/undef inputs.
1081 Constant *V1 = V1State.isConstant() ?
1082 V1State.getConstant() : UndefValue::get(I.getType());
1083 Constant *V2 = V2State.isConstant() ?
1084 V2State.getConstant() : UndefValue::get(I.getType());
1085 Constant *Mask = MaskState.isConstant() ?
1086 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1087 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1088 }
1089#endif
1090}
1091
1092// Handle getelementptr instructions... if all operands are constants then we
1093// can turn this into a getelementptr ConstantExpr.
1094//
1095void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1096 LatticeVal &IV = ValueState[&I];
1097 if (IV.isOverdefined()) return;
1098
1099 SmallVector<Constant*, 8> Operands;
1100 Operands.reserve(I.getNumOperands());
1101
1102 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1103 LatticeVal &State = getValueState(I.getOperand(i));
1104 if (State.isUndefined())
1105 return; // Operands are not resolved yet...
1106 else if (State.isOverdefined()) {
1107 markOverdefined(IV, &I);
1108 return;
1109 }
1110 assert(State.isConstant() && "Unknown state!");
1111 Operands.push_back(State.getConstant());
1112 }
1113
1114 Constant *Ptr = Operands[0];
1115 Operands.erase(Operands.begin()); // Erase the pointer from idx list...
1116
1117 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
1118 Operands.size()));
1119}
1120
1121void SCCPSolver::visitStoreInst(Instruction &SI) {
1122 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1123 return;
1124 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1125 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1126 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1127
1128 // Get the value we are storing into the global.
1129 LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1130
1131 mergeInValue(I->second, GV, PtrVal);
1132 if (I->second.isOverdefined())
1133 TrackedGlobals.erase(I); // No need to keep tracking this!
1134}
1135
1136
1137// Handle load instructions. If the operand is a constant pointer to a constant
1138// global, we can replace the load with the loaded constant value!
1139void SCCPSolver::visitLoadInst(LoadInst &I) {
1140 LatticeVal &IV = ValueState[&I];
1141 if (IV.isOverdefined()) return;
1142
1143 LatticeVal &PtrVal = getValueState(I.getOperand(0));
1144 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet!
1145 if (PtrVal.isConstant() && !I.isVolatile()) {
1146 Value *Ptr = PtrVal.getConstant();
Christopher Lamb2c175392007-12-29 07:56:53 +00001147 // TODO: Consider a target hook for valid address spaces for this xform.
1148 if (isa<ConstantPointerNull>(Ptr) &&
1149 cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001150 // load null -> null
1151 markConstant(IV, &I, Constant::getNullValue(I.getType()));
1152 return;
1153 }
1154
1155 // Transform load (constant global) into the value loaded.
1156 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1157 if (GV->isConstant()) {
1158 if (!GV->isDeclaration()) {
1159 markConstant(IV, &I, GV->getInitializer());
1160 return;
1161 }
1162 } else if (!TrackedGlobals.empty()) {
1163 // If we are tracking this global, merge in the known value for it.
1164 DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1165 TrackedGlobals.find(GV);
1166 if (It != TrackedGlobals.end()) {
1167 mergeInValue(IV, &I, It->second);
1168 return;
1169 }
1170 }
1171 }
1172
1173 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1174 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1175 if (CE->getOpcode() == Instruction::GetElementPtr)
1176 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
1177 if (GV->isConstant() && !GV->isDeclaration())
1178 if (Constant *V =
1179 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
1180 markConstant(IV, &I, V);
1181 return;
1182 }
1183 }
1184
1185 // Otherwise we cannot say for certain what value this load will produce.
1186 // Bail out.
1187 markOverdefined(IV, &I);
1188}
1189
1190void SCCPSolver::visitCallSite(CallSite CS) {
1191 Function *F = CS.getCalledFunction();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001192 Instruction *I = CS.getInstruction();
Chris Lattnercd73be02008-04-23 05:38:20 +00001193
1194 // The common case is that we aren't tracking the callee, either because we
1195 // are not doing interprocedural analysis or the callee is indirect, or is
1196 // external. Handle these cases first.
1197 if (F == 0 || !F->hasInternalLinkage()) {
1198CallOverdefined:
1199 // Void return and not tracking callee, just bail.
1200 if (I->getType() == Type::VoidTy) return;
1201
1202 // Otherwise, if we have a single return value case, and if the function is
1203 // a declaration, maybe we can constant fold it.
1204 if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
1205 canConstantFoldCallTo(F)) {
1206
1207 SmallVector<Constant*, 8> Operands;
1208 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1209 AI != E; ++AI) {
1210 LatticeVal &State = getValueState(*AI);
1211 if (State.isUndefined())
1212 return; // Operands are not resolved yet.
1213 else if (State.isOverdefined()) {
1214 markOverdefined(I);
1215 return;
1216 }
1217 assert(State.isConstant() && "Unknown state!");
1218 Operands.push_back(State.getConstant());
1219 }
1220
1221 // If we can constant fold this, mark the result of the call as a
1222 // constant.
1223 if (Constant *C = ConstantFoldCall(F, &Operands[0], Operands.size())) {
1224 markConstant(I, C);
1225 return;
1226 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001227 }
Chris Lattnercd73be02008-04-23 05:38:20 +00001228
1229 // Otherwise, we don't know anything about this call, mark it overdefined.
1230 markOverdefined(I);
1231 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001232 }
1233
Chris Lattnercd73be02008-04-23 05:38:20 +00001234 // If this is a single/zero retval case, see if we're tracking the function.
Dan Gohman856193b2008-06-20 01:15:44 +00001235 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1236 if (TFRVI != TrackedRetVals.end()) {
Chris Lattnercd73be02008-04-23 05:38:20 +00001237 // If so, propagate the return value of the callee into this call result.
1238 mergeInValue(I, TFRVI->second);
Dan Gohman856193b2008-06-20 01:15:44 +00001239 } else if (isa<StructType>(I->getType())) {
Chris Lattnercd73be02008-04-23 05:38:20 +00001240 // Check to see if we're tracking this callee, if not, handle it in the
1241 // common path above.
1242 std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
1243 TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
1244 if (TMRVI == TrackedMultipleRetVals.end())
1245 goto CallOverdefined;
1246
1247 // If we are tracking this callee, propagate the return values of the call
Dan Gohman856193b2008-06-20 01:15:44 +00001248 // into this call site. We do this by walking all the uses. Single-index
1249 // ExtractValueInst uses can be tracked; anything more complicated is
1250 // currently handled conservatively.
Chris Lattnercd73be02008-04-23 05:38:20 +00001251 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1252 UI != E; ++UI) {
Dan Gohman856193b2008-06-20 01:15:44 +00001253 if (GetResultInst *GRI = dyn_cast<GetResultInst>(*UI)) {
1254 mergeInValue(GRI,
1255 TrackedMultipleRetVals[std::make_pair(F, GRI->getIndex())]);
1256 continue;
1257 }
1258 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
1259 if (EVI->getNumIndices() == 1) {
1260 mergeInValue(EVI,
1261 TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
1262 continue;
1263 }
1264 }
1265 // The aggregate value is used in a way not handled here. Assume nothing.
1266 markOverdefined(*UI);
Chris Lattnercd73be02008-04-23 05:38:20 +00001267 }
Dan Gohman856193b2008-06-20 01:15:44 +00001268 } else {
1269 // Otherwise we're not tracking this callee, so handle it in the
1270 // common path above.
1271 goto CallOverdefined;
Chris Lattnercd73be02008-04-23 05:38:20 +00001272 }
1273
1274 // Finally, if this is the first call to the function hit, mark its entry
1275 // block executable.
1276 if (!BBExecutable.count(F->begin()))
1277 MarkBlockExecutable(F->begin());
1278
1279 // Propagate information from this call site into the callee.
1280 CallSite::arg_iterator CAI = CS.arg_begin();
1281 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1282 AI != E; ++AI, ++CAI) {
1283 LatticeVal &IV = ValueState[AI];
1284 if (!IV.isOverdefined())
1285 mergeInValue(IV, AI, getValueState(*CAI));
1286 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001287}
1288
1289
1290void SCCPSolver::Solve() {
1291 // Process the work lists until they are empty!
1292 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1293 !OverdefinedInstWorkList.empty()) {
1294 // Process the instruction work list...
1295 while (!OverdefinedInstWorkList.empty()) {
1296 Value *I = OverdefinedInstWorkList.back();
1297 OverdefinedInstWorkList.pop_back();
1298
1299 DOUT << "\nPopped off OI-WL: " << *I;
1300
1301 // "I" got into the work list because it either made the transition from
1302 // bottom to constant
1303 //
1304 // Anything on this worklist that is overdefined need not be visited
1305 // since all of its users will have already been marked as overdefined
1306 // Update all of the users of this instruction's value...
1307 //
1308 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1309 UI != E; ++UI)
1310 OperandChangedState(*UI);
1311 }
1312 // Process the instruction work list...
1313 while (!InstWorkList.empty()) {
1314 Value *I = InstWorkList.back();
1315 InstWorkList.pop_back();
1316
1317 DOUT << "\nPopped off I-WL: " << *I;
1318
1319 // "I" got into the work list because it either made the transition from
1320 // bottom to constant
1321 //
1322 // Anything on this worklist that is overdefined need not be visited
1323 // since all of its users will have already been marked as overdefined.
1324 // Update all of the users of this instruction's value...
1325 //
1326 if (!getValueState(I).isOverdefined())
1327 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1328 UI != E; ++UI)
1329 OperandChangedState(*UI);
1330 }
1331
1332 // Process the basic block work list...
1333 while (!BBWorkList.empty()) {
1334 BasicBlock *BB = BBWorkList.back();
1335 BBWorkList.pop_back();
1336
1337 DOUT << "\nPopped off BBWL: " << *BB;
1338
1339 // Notify all instructions in this basic block that they are newly
1340 // executable.
1341 visit(BB);
1342 }
1343 }
1344}
1345
1346/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1347/// that branches on undef values cannot reach any of their successors.
1348/// However, this is not a safe assumption. After we solve dataflow, this
1349/// method should be use to handle this. If this returns true, the solver
1350/// should be rerun.
1351///
1352/// This method handles this by finding an unresolved branch and marking it one
1353/// of the edges from the block as being feasible, even though the condition
1354/// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1355/// CFG and only slightly pessimizes the analysis results (by marking one,
1356/// potentially infeasible, edge feasible). This cannot usefully modify the
1357/// constraints on the condition of the branch, as that would impact other users
1358/// of the value.
1359///
1360/// This scan also checks for values that use undefs, whose results are actually
1361/// defined. For example, 'zext i8 undef to i32' should produce all zeros
1362/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1363/// even if X isn't defined.
1364bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1365 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1366 if (!BBExecutable.count(BB))
1367 continue;
1368
1369 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1370 // Look for instructions which produce undef values.
1371 if (I->getType() == Type::VoidTy) continue;
1372
1373 LatticeVal &LV = getValueState(I);
1374 if (!LV.isUndefined()) continue;
1375
1376 // Get the lattice values of the first two operands for use below.
1377 LatticeVal &Op0LV = getValueState(I->getOperand(0));
1378 LatticeVal Op1LV;
1379 if (I->getNumOperands() == 2) {
1380 // If this is a two-operand instruction, and if both operands are
1381 // undefs, the result stays undef.
1382 Op1LV = getValueState(I->getOperand(1));
1383 if (Op0LV.isUndefined() && Op1LV.isUndefined())
1384 continue;
1385 }
1386
1387 // If this is an instructions whose result is defined even if the input is
1388 // not fully defined, propagate the information.
1389 const Type *ITy = I->getType();
1390 switch (I->getOpcode()) {
1391 default: break; // Leave the instruction as an undef.
1392 case Instruction::ZExt:
1393 // After a zero extend, we know the top part is zero. SExt doesn't have
1394 // to be handled here, because we don't know whether the top part is 1's
1395 // or 0's.
1396 assert(Op0LV.isUndefined());
1397 markForcedConstant(LV, I, Constant::getNullValue(ITy));
1398 return true;
1399 case Instruction::Mul:
1400 case Instruction::And:
1401 // undef * X -> 0. X could be zero.
1402 // undef & X -> 0. X could be zero.
1403 markForcedConstant(LV, I, Constant::getNullValue(ITy));
1404 return true;
1405
1406 case Instruction::Or:
1407 // undef | X -> -1. X could be -1.
1408 if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
1409 markForcedConstant(LV, I, ConstantVector::getAllOnesValue(PTy));
1410 else
1411 markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy));
1412 return true;
1413
1414 case Instruction::SDiv:
1415 case Instruction::UDiv:
1416 case Instruction::SRem:
1417 case Instruction::URem:
1418 // X / undef -> undef. No change.
1419 // X % undef -> undef. No change.
1420 if (Op1LV.isUndefined()) break;
1421
1422 // undef / X -> 0. X could be maxint.
1423 // undef % X -> 0. X could be 1.
1424 markForcedConstant(LV, I, Constant::getNullValue(ITy));
1425 return true;
1426
1427 case Instruction::AShr:
1428 // undef >>s X -> undef. No change.
1429 if (Op0LV.isUndefined()) break;
1430
1431 // X >>s undef -> X. X could be 0, X could have the high-bit known set.
1432 if (Op0LV.isConstant())
1433 markForcedConstant(LV, I, Op0LV.getConstant());
1434 else
1435 markOverdefined(LV, I);
1436 return true;
1437 case Instruction::LShr:
1438 case Instruction::Shl:
1439 // undef >> X -> undef. No change.
1440 // undef << X -> undef. No change.
1441 if (Op0LV.isUndefined()) break;
1442
1443 // X >> undef -> 0. X could be 0.
1444 // X << undef -> 0. X could be 0.
1445 markForcedConstant(LV, I, Constant::getNullValue(ITy));
1446 return true;
1447 case Instruction::Select:
1448 // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1449 if (Op0LV.isUndefined()) {
1450 if (!Op1LV.isConstant()) // Pick the constant one if there is any.
1451 Op1LV = getValueState(I->getOperand(2));
1452 } else if (Op1LV.isUndefined()) {
1453 // c ? undef : undef -> undef. No change.
1454 Op1LV = getValueState(I->getOperand(2));
1455 if (Op1LV.isUndefined())
1456 break;
1457 // Otherwise, c ? undef : x -> x.
1458 } else {
1459 // Leave Op1LV as Operand(1)'s LatticeValue.
1460 }
1461
1462 if (Op1LV.isConstant())
1463 markForcedConstant(LV, I, Op1LV.getConstant());
1464 else
1465 markOverdefined(LV, I);
1466 return true;
Chris Lattner9110ac92008-05-24 03:59:33 +00001467 case Instruction::Call:
1468 // If a call has an undef result, it is because it is constant foldable
1469 // but one of the inputs was undef. Just force the result to
1470 // overdefined.
1471 markOverdefined(LV, I);
1472 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001473 }
1474 }
1475
1476 TerminatorInst *TI = BB->getTerminator();
1477 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1478 if (!BI->isConditional()) continue;
1479 if (!getValueState(BI->getCondition()).isUndefined())
1480 continue;
1481 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
Dale Johannesenfb06d0c2008-05-23 01:01:31 +00001482 if (SI->getNumSuccessors()<2) // no cases
1483 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001484 if (!getValueState(SI->getCondition()).isUndefined())
1485 continue;
1486 } else {
1487 continue;
1488 }
1489
Chris Lattner6186e8c2008-01-28 00:32:30 +00001490 // If the edge to the second successor isn't thought to be feasible yet,
1491 // mark it so now. We pick the second one so that this goes to some
1492 // enumerated value in a switch instead of going to the default destination.
1493 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001494 continue;
1495
1496 // Otherwise, it isn't already thought to be feasible. Mark it as such now
1497 // and return. This will make other blocks reachable, which will allow new
1498 // values to be discovered and existing ones to be moved in the lattice.
Chris Lattner6186e8c2008-01-28 00:32:30 +00001499 markEdgeExecutable(BB, TI->getSuccessor(1));
1500
1501 // This must be a conditional branch of switch on undef. At this point,
1502 // force the old terminator to branch to the first successor. This is
1503 // required because we are now influencing the dataflow of the function with
1504 // the assumption that this edge is taken. If we leave the branch condition
1505 // as undef, then further analysis could think the undef went another way
1506 // leading to an inconsistent set of conclusions.
1507 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1508 BI->setCondition(ConstantInt::getFalse());
1509 } else {
1510 SwitchInst *SI = cast<SwitchInst>(TI);
1511 SI->setCondition(SI->getCaseValue(1));
1512 }
1513
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001514 return true;
1515 }
1516
1517 return false;
1518}
1519
1520
1521namespace {
1522 //===--------------------------------------------------------------------===//
1523 //
1524 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1525 /// Sparse Conditional Constant Propagator.
1526 ///
1527 struct VISIBILITY_HIDDEN SCCP : public FunctionPass {
1528 static char ID; // Pass identification, replacement for typeid
1529 SCCP() : FunctionPass((intptr_t)&ID) {}
1530
1531 // runOnFunction - Run the Sparse Conditional Constant Propagation
1532 // algorithm, and return true if the function was modified.
1533 //
1534 bool runOnFunction(Function &F);
1535
1536 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1537 AU.setPreservesCFG();
1538 }
1539 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001540} // end anonymous namespace
1541
Dan Gohman089efff2008-05-13 00:00:25 +00001542char SCCP::ID = 0;
1543static RegisterPass<SCCP>
1544X("sccp", "Sparse Conditional Constant Propagation");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001545
1546// createSCCPPass - This is the public interface to this file...
1547FunctionPass *llvm::createSCCPPass() {
1548 return new SCCP();
1549}
1550
1551
1552// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1553// and return true if the function was modified.
1554//
1555bool SCCP::runOnFunction(Function &F) {
Chris Lattner56bf9a92008-05-11 01:55:59 +00001556 DOUT << "SCCP on function '" << F.getNameStart() << "'\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001557 SCCPSolver Solver;
1558
1559 // Mark the first block of the function as being executable.
1560 Solver.MarkBlockExecutable(F.begin());
1561
1562 // Mark all arguments to the function as being overdefined.
1563 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1564 Solver.markOverdefined(AI);
1565
1566 // Solve for constants.
1567 bool ResolvedUndefs = true;
1568 while (ResolvedUndefs) {
1569 Solver.Solve();
1570 DOUT << "RESOLVING UNDEFs\n";
1571 ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1572 }
1573
1574 bool MadeChanges = false;
1575
1576 // If we decided that there are basic blocks that are dead in this function,
1577 // delete their contents now. Note that we cannot actually delete the blocks,
1578 // as we cannot modify the CFG of the function.
1579 //
1580 SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks();
1581 SmallVector<Instruction*, 32> Insts;
1582 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1583
1584 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1585 if (!ExecutableBBs.count(BB)) {
1586 DOUT << " BasicBlock Dead:" << *BB;
1587 ++NumDeadBlocks;
1588
1589 // Delete the instructions backwards, as it has a reduced likelihood of
1590 // having to update as many def-use and use-def chains.
1591 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1592 I != E; ++I)
1593 Insts.push_back(I);
1594 while (!Insts.empty()) {
1595 Instruction *I = Insts.back();
1596 Insts.pop_back();
1597 if (!I->use_empty())
1598 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1599 BB->getInstList().erase(I);
1600 MadeChanges = true;
1601 ++NumInstRemoved;
1602 }
1603 } else {
1604 // Iterate over all of the instructions in a function, replacing them with
1605 // constants if we have found them to be of constant values.
1606 //
1607 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1608 Instruction *Inst = BI++;
Chris Lattner204cfde2008-04-24 00:19:54 +00001609 if (Inst->getType() == Type::VoidTy ||
1610 isa<StructType>(Inst->getType()) ||
Chris Lattnerb6f89362008-04-24 00:16:28 +00001611 isa<TerminatorInst>(Inst))
1612 continue;
1613
1614 LatticeVal &IV = Values[Inst];
1615 if (!IV.isConstant() && !IV.isUndefined())
1616 continue;
1617
1618 Constant *Const = IV.isConstant()
1619 ? IV.getConstant() : UndefValue::get(Inst->getType());
1620 DOUT << " Constant: " << *Const << " = " << *Inst;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001621
Chris Lattnerb6f89362008-04-24 00:16:28 +00001622 // Replaces all of the uses of a variable with uses of the constant.
1623 Inst->replaceAllUsesWith(Const);
1624
1625 // Delete the instruction.
1626 Inst->eraseFromParent();
1627
1628 // Hey, we just changed something!
1629 MadeChanges = true;
1630 ++NumInstRemoved;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001631 }
1632 }
1633
1634 return MadeChanges;
1635}
1636
1637namespace {
1638 //===--------------------------------------------------------------------===//
1639 //
1640 /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1641 /// Constant Propagation.
1642 ///
1643 struct VISIBILITY_HIDDEN IPSCCP : public ModulePass {
1644 static char ID;
1645 IPSCCP() : ModulePass((intptr_t)&ID) {}
1646 bool runOnModule(Module &M);
1647 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001648} // end anonymous namespace
1649
Dan Gohman089efff2008-05-13 00:00:25 +00001650char IPSCCP::ID = 0;
1651static RegisterPass<IPSCCP>
1652Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1653
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001654// createIPSCCPPass - This is the public interface to this file...
1655ModulePass *llvm::createIPSCCPPass() {
1656 return new IPSCCP();
1657}
1658
1659
1660static bool AddressIsTaken(GlobalValue *GV) {
1661 // Delete any dead constantexpr klingons.
1662 GV->removeDeadConstantUsers();
1663
1664 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1665 UI != E; ++UI)
1666 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1667 if (SI->getOperand(0) == GV || SI->isVolatile())
1668 return true; // Storing addr of GV.
1669 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1670 // Make sure we are calling the function, not passing the address.
1671 CallSite CS = CallSite::get(cast<Instruction>(*UI));
1672 for (CallSite::arg_iterator AI = CS.arg_begin(),
1673 E = CS.arg_end(); AI != E; ++AI)
1674 if (*AI == GV)
1675 return true;
1676 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1677 if (LI->isVolatile())
1678 return true;
1679 } else {
1680 return true;
1681 }
1682 return false;
1683}
1684
1685bool IPSCCP::runOnModule(Module &M) {
1686 SCCPSolver Solver;
1687
1688 // Loop over all functions, marking arguments to those with their addresses
1689 // taken or that are external as overdefined.
1690 //
1691 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1692 if (!F->hasInternalLinkage() || AddressIsTaken(F)) {
1693 if (!F->isDeclaration())
1694 Solver.MarkBlockExecutable(F->begin());
1695 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1696 AI != E; ++AI)
1697 Solver.markOverdefined(AI);
1698 } else {
1699 Solver.AddTrackedFunction(F);
1700 }
1701
1702 // Loop over global variables. We inform the solver about any internal global
1703 // variables that do not have their 'addresses taken'. If they don't have
1704 // their addresses taken, we can propagate constants through them.
1705 for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1706 G != E; ++G)
1707 if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G))
1708 Solver.TrackValueOfGlobalVariable(G);
1709
1710 // Solve for constants.
1711 bool ResolvedUndefs = true;
1712 while (ResolvedUndefs) {
1713 Solver.Solve();
1714
1715 DOUT << "RESOLVING UNDEFS\n";
1716 ResolvedUndefs = false;
1717 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1718 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1719 }
1720
1721 bool MadeChanges = false;
1722
1723 // Iterate over all of the instructions in the module, replacing them with
1724 // constants if we have found them to be of constant values.
1725 //
1726 SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks();
1727 SmallVector<Instruction*, 32> Insts;
1728 SmallVector<BasicBlock*, 32> BlocksToErase;
1729 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1730
1731 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1732 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1733 AI != E; ++AI)
1734 if (!AI->use_empty()) {
1735 LatticeVal &IV = Values[AI];
1736 if (IV.isConstant() || IV.isUndefined()) {
1737 Constant *CST = IV.isConstant() ?
1738 IV.getConstant() : UndefValue::get(AI->getType());
1739 DOUT << "*** Arg " << *AI << " = " << *CST <<"\n";
1740
1741 // Replaces all of the uses of a variable with uses of the
1742 // constant.
1743 AI->replaceAllUsesWith(CST);
1744 ++IPNumArgsElimed;
1745 }
1746 }
1747
1748 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1749 if (!ExecutableBBs.count(BB)) {
1750 DOUT << " BasicBlock Dead:" << *BB;
1751 ++IPNumDeadBlocks;
1752
1753 // Delete the instructions backwards, as it has a reduced likelihood of
1754 // having to update as many def-use and use-def chains.
1755 TerminatorInst *TI = BB->getTerminator();
1756 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1757 Insts.push_back(I);
1758
1759 while (!Insts.empty()) {
1760 Instruction *I = Insts.back();
1761 Insts.pop_back();
1762 if (!I->use_empty())
1763 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1764 BB->getInstList().erase(I);
1765 MadeChanges = true;
1766 ++IPNumInstRemoved;
1767 }
1768
1769 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1770 BasicBlock *Succ = TI->getSuccessor(i);
Dan Gohman3f7d94b2007-10-03 19:26:29 +00001771 if (!Succ->empty() && isa<PHINode>(Succ->begin()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001772 TI->getSuccessor(i)->removePredecessor(BB);
1773 }
1774 if (!TI->use_empty())
1775 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1776 BB->getInstList().erase(TI);
1777
1778 if (&*BB != &F->front())
1779 BlocksToErase.push_back(BB);
1780 else
1781 new UnreachableInst(BB);
1782
1783 } else {
1784 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1785 Instruction *Inst = BI++;
Chris Lattner50846cf2008-04-24 00:21:50 +00001786 if (Inst->getType() == Type::VoidTy ||
1787 isa<StructType>(Inst->getType()) ||
1788 isa<TerminatorInst>(Inst))
1789 continue;
1790
1791 LatticeVal &IV = Values[Inst];
1792 if (!IV.isConstant() && !IV.isUndefined())
1793 continue;
1794
1795 Constant *Const = IV.isConstant()
1796 ? IV.getConstant() : UndefValue::get(Inst->getType());
1797 DOUT << " Constant: " << *Const << " = " << *Inst;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001798
Chris Lattner50846cf2008-04-24 00:21:50 +00001799 // Replaces all of the uses of a variable with uses of the
1800 // constant.
1801 Inst->replaceAllUsesWith(Const);
1802
1803 // Delete the instruction.
1804 if (!isa<CallInst>(Inst))
1805 Inst->eraseFromParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001806
Chris Lattner50846cf2008-04-24 00:21:50 +00001807 // Hey, we just changed something!
1808 MadeChanges = true;
1809 ++IPNumInstRemoved;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001810 }
1811 }
1812
1813 // Now that all instructions in the function are constant folded, erase dead
1814 // blocks, because we can now use ConstantFoldTerminator to get rid of
1815 // in-edges.
1816 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1817 // If there are any PHI nodes in this successor, drop entries for BB now.
1818 BasicBlock *DeadBB = BlocksToErase[i];
1819 while (!DeadBB->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001820 Instruction *I = cast<Instruction>(DeadBB->use_back());
1821 bool Folded = ConstantFoldTerminator(I->getParent());
1822 if (!Folded) {
1823 // The constant folder may not have been able to fold the terminator
1824 // if this is a branch or switch on undef. Fold it manually as a
1825 // branch to the first successor.
1826 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1827 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1828 "Branch should be foldable!");
1829 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1830 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1831 } else {
1832 assert(0 && "Didn't fold away reference to block!");
1833 }
1834
1835 // Make this an uncond branch to the first successor.
1836 TerminatorInst *TI = I->getParent()->getTerminator();
Gabor Greifd6da1d02008-04-06 20:25:17 +00001837 BranchInst::Create(TI->getSuccessor(0), TI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001838
1839 // Remove entries in successor phi nodes to remove edges.
1840 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1841 TI->getSuccessor(i)->removePredecessor(TI->getParent());
1842
1843 // Remove the old terminator.
1844 TI->eraseFromParent();
1845 }
1846 }
1847
1848 // Finally, delete the basic block.
1849 F->getBasicBlockList().erase(DeadBB);
1850 }
1851 BlocksToErase.clear();
1852 }
1853
1854 // If we inferred constant or undef return values for a function, we replaced
1855 // all call uses with the inferred value. This means we don't need to bother
1856 // actually returning anything from the function. Replace all return
1857 // instructions with return undef.
Devang Pateld04d42b2008-03-11 17:32:05 +00001858 // TODO: Process multiple value ret instructions also.
Devang Pateladd320d2008-03-11 05:46:42 +00001859 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001860 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1861 E = RV.end(); I != E; ++I)
1862 if (!I->second.isOverdefined() &&
1863 I->first->getReturnType() != Type::VoidTy) {
1864 Function *F = I->first;
1865 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1866 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1867 if (!isa<UndefValue>(RI->getOperand(0)))
1868 RI->setOperand(0, UndefValue::get(F->getReturnType()));
1869 }
1870
1871 // If we infered constant or undef values for globals variables, we can delete
1872 // the global and any stores that remain to it.
1873 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1874 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1875 E = TG.end(); I != E; ++I) {
1876 GlobalVariable *GV = I->first;
1877 assert(!I->second.isOverdefined() &&
1878 "Overdefined values should have been taken out of the map!");
Chris Lattner56bf9a92008-05-11 01:55:59 +00001879 DOUT << "Found that GV '" << GV->getNameStart() << "' is constant!\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001880 while (!GV->use_empty()) {
1881 StoreInst *SI = cast<StoreInst>(GV->use_back());
1882 SI->eraseFromParent();
1883 }
1884 M.getGlobalList().erase(GV);
1885 ++IPNumGlobalConst;
1886 }
1887
1888 return MadeChanges;
1889}