blob: 466136dea7d6c5810df2746a4041d84198a8f4b5 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Owen Anderson and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops by placing phi nodes at the end of the loops for
11// all values that are live across the loop boundary. For example, it turns
12// the left into the right code:
13//
14// for (...) for (...)
15// if (c) if (c)
16// X1 = ... X1 = ...
17// else else
18// X2 = ... X2 = ...
19// X3 = phi(X1, X2) X3 = phi(X1, X2)
20// ... = X3 + 4 X4 = phi(X3)
21// ... = X4 + 4
22//
23// This is still valid LLVM; the extra phi nodes are purely redundant, and will
24// be trivially eliminated by InstCombine. The major benefit of this
25// transformation is that it makes many other loop optimizations, such as
26// LoopUnswitching, simpler.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "lcssa"
31#include "llvm/Transforms/Scalar.h"
32#include "llvm/Constants.h"
33#include "llvm/Pass.h"
34#include "llvm/Function.h"
35#include "llvm/Instructions.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Analysis/LoopPass.h"
40#include "llvm/Analysis/ScalarEvolution.h"
41#include "llvm/Support/CFG.h"
42#include "llvm/Support/Compiler.h"
43#include <algorithm>
44#include <map>
45using namespace llvm;
46
47STATISTIC(NumLCSSA, "Number of live out of a loop variables");
48
49namespace {
50 struct VISIBILITY_HIDDEN LCSSA : public LoopPass {
51 static char ID; // Pass identification, replacement for typeid
52 LCSSA() : LoopPass((intptr_t)&ID) {}
53
54 // Cached analysis information for the current function.
55 LoopInfo *LI;
56 DominatorTree *DT;
57 std::vector<BasicBlock*> LoopBlocks;
58
59 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
60
61 void ProcessInstruction(Instruction* Instr,
62 const std::vector<BasicBlock*>& exitBlocks);
63
64 /// This transformation requires natural loop information & requires that
65 /// loop preheaders be inserted into the CFG. It maintains both of these,
66 /// as well as the CFG. It also requires dominator information.
67 ///
68 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
69 AU.setPreservesCFG();
70 AU.addRequiredID(LoopSimplifyID);
71 AU.addPreservedID(LoopSimplifyID);
72 AU.addRequired<LoopInfo>();
73 AU.addPreserved<LoopInfo>();
74 AU.addRequired<DominatorTree>();
75 AU.addPreserved<ScalarEvolution>();
Devang Patel48d15802007-07-30 20:23:45 +000076 AU.addPreserved<DominatorTree>();
77
78 // Request DominanceFrontier now, even though LCSSA does
79 // not use it. This allows Pass Manager to schedule Dominance
80 // Frontier early enough such that one LPPassManager can handle
81 // multiple loop transformation passes.
82 AU.addRequired<DominanceFrontier>();
83 AU.addPreserved<DominanceFrontier>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084 }
85 private:
86 void getLoopValuesUsedOutsideLoop(Loop *L,
87 SetVector<Instruction*> &AffectedValues);
88
89 Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
90 std::map<DomTreeNode*, Value*> &Phis);
91
92 /// inLoop - returns true if the given block is within the current loop
93 const bool inLoop(BasicBlock* B) {
94 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
95 }
96 };
97
98 char LCSSA::ID = 0;
99 RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
100}
101
102LoopPass *llvm::createLCSSAPass() { return new LCSSA(); }
103const PassInfo *llvm::LCSSAID = X.getPassInfo();
104
105/// runOnFunction - Process all loops in the function, inner-most out.
106bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) {
107
108 LI = &LPM.getAnalysis<LoopInfo>();
109 DT = &getAnalysis<DominatorTree>();
110
111 // Speed up queries by creating a sorted list of blocks
112 LoopBlocks.clear();
113 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
114 std::sort(LoopBlocks.begin(), LoopBlocks.end());
115
116 SetVector<Instruction*> AffectedValues;
117 getLoopValuesUsedOutsideLoop(L, AffectedValues);
118
119 // If no values are affected, we can save a lot of work, since we know that
120 // nothing will be changed.
121 if (AffectedValues.empty())
122 return false;
123
124 std::vector<BasicBlock*> exitBlocks;
125 L->getExitBlocks(exitBlocks);
126
127
128 // Iterate over all affected values for this loop and insert Phi nodes
129 // for them in the appropriate exit blocks
130
131 for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
132 E = AffectedValues.end(); I != E; ++I)
133 ProcessInstruction(*I, exitBlocks);
134
135 assert(L->isLCSSAForm());
136
137 return true;
138}
139
140/// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
141/// eliminate all out-of-loop uses.
142void LCSSA::ProcessInstruction(Instruction *Instr,
143 const std::vector<BasicBlock*>& exitBlocks) {
144 ++NumLCSSA; // We are applying the transformation
145
146 // Keep track of the blocks that have the value available already.
147 std::map<DomTreeNode*, Value*> Phis;
148
149 DomTreeNode *InstrNode = DT->getNode(Instr->getParent());
150
151 // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
152 // add them to the Phi's map.
153 for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(),
154 BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
155 BasicBlock *BB = *BBI;
156 DomTreeNode *ExitBBNode = DT->getNode(BB);
157 Value *&Phi = Phis[ExitBBNode];
158 if (!Phi && DT->dominates(InstrNode, ExitBBNode)) {
159 PHINode *PN = new PHINode(Instr->getType(), Instr->getName()+".lcssa",
160 BB->begin());
161 PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
162
163 // Remember that this phi makes the value alive in this block.
164 Phi = PN;
165
166 // Add inputs from inside the loop for this PHI.
167 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
168 PN->addIncoming(Instr, *PI);
169 }
170 }
171
172
173 // Record all uses of Instr outside the loop. We need to rewrite these. The
174 // LCSSA phis won't be included because they use the value in the loop.
175 for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
176 UI != E;) {
177 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
178 if (PHINode *P = dyn_cast<PHINode>(*UI)) {
179 unsigned OperandNo = UI.getOperandNo();
180 UserBB = P->getIncomingBlock(OperandNo/2);
181 }
182
183 // If the user is in the loop, don't rewrite it!
184 if (UserBB == Instr->getParent() || inLoop(UserBB)) {
185 ++UI;
186 continue;
187 }
188
189 // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
190 // inserting PHI nodes into join points where needed.
191 Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
192
193 // Preincrement the iterator to avoid invalidating it when we change the
194 // value.
195 Use &U = UI.getUse();
196 ++UI;
197 U.set(Val);
198 }
199}
200
201/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
202/// are used by instructions outside of it.
203void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
204 SetVector<Instruction*> &AffectedValues) {
205 // FIXME: For large loops, we may be able to avoid a lot of use-scanning
206 // by using dominance information. In particular, if a block does not
207 // dominate any of the loop exits, then none of the values defined in the
208 // block could be used outside the loop.
209 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
210 BB != E; ++BB) {
211 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
212 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
213 ++UI) {
214 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
215 if (PHINode* p = dyn_cast<PHINode>(*UI)) {
216 unsigned OperandNo = UI.getOperandNo();
217 UserBB = p->getIncomingBlock(OperandNo/2);
218 }
219
220 if (*BB != UserBB && !inLoop(UserBB)) {
221 AffectedValues.insert(I);
222 break;
223 }
224 }
225 }
226}
227
228/// GetValueForBlock - Get the value to use within the specified basic block.
229/// available values are in Phis.
230Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
231 std::map<DomTreeNode*, Value*> &Phis) {
232 // If there is no dominator info for this BB, it is unreachable.
233 if (BB == 0)
234 return UndefValue::get(OrigInst->getType());
235
236 // If we have already computed this value, return the previously computed val.
237 Value *&V = Phis[BB];
238 if (V) return V;
239
240 DomTreeNode *IDom = BB->getIDom();
241
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242 // Otherwise, there are two cases: we either have to insert a PHI node or we
243 // don't. We need to insert a PHI node if this block is not dominated by one
244 // of the exit nodes from the loop (the loop could have multiple exits, and
245 // though the value defined *inside* the loop dominated all its uses, each
246 // exit by itself may not dominate all the uses).
247 //
248 // The simplest way to check for this condition is by checking to see if the
249 // idom is in the loop. If so, we *know* that none of the exit blocks
250 // dominate this block. Note that we *know* that the block defining the
251 // original instruction is in the idom chain, because if it weren't, then the
252 // original value didn't dominate this use.
253 if (!inLoop(IDom->getBlock())) {
254 // Idom is not in the loop, we must still be "below" the exit block and must
255 // be fully dominated by the value live in the idom.
256 return V = GetValueForBlock(IDom, OrigInst, Phis);
257 }
258
259 BasicBlock *BBN = BB->getBlock();
260
261 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so
262 // now, then get values to fill in the incoming values for the PHI.
263 PHINode *PN = new PHINode(OrigInst->getType(), OrigInst->getName()+".lcssa",
264 BBN->begin());
265 PN->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN)));
266 V = PN;
267
268 // Fill in the incoming values for the block.
269 for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI)
270 PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
271 return PN;
272}
273