blob: 8c5e1369dedf1f7658154574587722f4e27e366d [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman089efff2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000013//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include "llvm/Transforms/Utils/Local.h"
46#include "llvm/Support/CallSite.h"
Nick Lewycky0185bbf2008-02-03 16:33:09 +000047#include "llvm/Support/ConstantRange.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000048#include "llvm/Support/Debug.h"
49#include "llvm/Support/GetElementPtrTypeIterator.h"
50#include "llvm/Support/InstVisitor.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/PatternMatch.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/ADT/DenseMap.h"
55#include "llvm/ADT/SmallVector.h"
56#include "llvm/ADT/SmallPtrSet.h"
57#include "llvm/ADT/Statistic.h"
58#include "llvm/ADT/STLExtras.h"
59#include <algorithm>
Edwin Töröka0e6fce2008-04-20 08:33:11 +000060#include <climits>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000061#include <sstream>
62using namespace llvm;
63using namespace llvm::PatternMatch;
64
65STATISTIC(NumCombined , "Number of insts combined");
66STATISTIC(NumConstProp, "Number of constant folds");
67STATISTIC(NumDeadInst , "Number of dead inst eliminated");
68STATISTIC(NumDeadStore, "Number of dead stores eliminated");
69STATISTIC(NumSunkInst , "Number of instructions sunk");
70
71namespace {
72 class VISIBILITY_HIDDEN InstCombiner
73 : public FunctionPass,
74 public InstVisitor<InstCombiner, Instruction*> {
75 // Worklist of all of the instructions that need to be simplified.
76 std::vector<Instruction*> Worklist;
77 DenseMap<Instruction*, unsigned> WorklistMap;
78 TargetData *TD;
79 bool MustPreserveLCSSA;
80 public:
81 static char ID; // Pass identification, replacement for typeid
82 InstCombiner() : FunctionPass((intptr_t)&ID) {}
83
84 /// AddToWorkList - Add the specified instruction to the worklist if it
85 /// isn't already in it.
86 void AddToWorkList(Instruction *I) {
87 if (WorklistMap.insert(std::make_pair(I, Worklist.size())))
88 Worklist.push_back(I);
89 }
90
91 // RemoveFromWorkList - remove I from the worklist if it exists.
92 void RemoveFromWorkList(Instruction *I) {
93 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
94 if (It == WorklistMap.end()) return; // Not in worklist.
95
96 // Don't bother moving everything down, just null out the slot.
97 Worklist[It->second] = 0;
98
99 WorklistMap.erase(It);
100 }
101
102 Instruction *RemoveOneFromWorkList() {
103 Instruction *I = Worklist.back();
104 Worklist.pop_back();
105 WorklistMap.erase(I);
106 return I;
107 }
108
109
110 /// AddUsersToWorkList - When an instruction is simplified, add all users of
111 /// the instruction to the work lists because they might get more simplified
112 /// now.
113 ///
114 void AddUsersToWorkList(Value &I) {
115 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
116 UI != UE; ++UI)
117 AddToWorkList(cast<Instruction>(*UI));
118 }
119
120 /// AddUsesToWorkList - When an instruction is simplified, add operands to
121 /// the work lists because they might get more simplified now.
122 ///
123 void AddUsesToWorkList(Instruction &I) {
124 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
125 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
126 AddToWorkList(Op);
127 }
128
129 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
130 /// dead. Add all of its operands to the worklist, turning them into
131 /// undef's to reduce the number of uses of those instructions.
132 ///
133 /// Return the specified operand before it is turned into an undef.
134 ///
135 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
136 Value *R = I.getOperand(op);
137
138 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
139 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
140 AddToWorkList(Op);
141 // Set the operand to undef to drop the use.
142 I.setOperand(i, UndefValue::get(Op->getType()));
143 }
144
145 return R;
146 }
147
148 public:
149 virtual bool runOnFunction(Function &F);
150
151 bool DoOneIteration(Function &F, unsigned ItNum);
152
153 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
154 AU.addRequired<TargetData>();
155 AU.addPreservedID(LCSSAID);
156 AU.setPreservesCFG();
157 }
158
159 TargetData &getTargetData() const { return *TD; }
160
161 // Visitation implementation - Implement instruction combining for different
162 // instruction types. The semantics are as follows:
163 // Return Value:
164 // null - No change was made
165 // I - Change was made, I is still valid, I may be dead though
166 // otherwise - Change was made, replace I with returned instruction
167 //
168 Instruction *visitAdd(BinaryOperator &I);
169 Instruction *visitSub(BinaryOperator &I);
170 Instruction *visitMul(BinaryOperator &I);
171 Instruction *visitURem(BinaryOperator &I);
172 Instruction *visitSRem(BinaryOperator &I);
173 Instruction *visitFRem(BinaryOperator &I);
174 Instruction *commonRemTransforms(BinaryOperator &I);
175 Instruction *commonIRemTransforms(BinaryOperator &I);
176 Instruction *commonDivTransforms(BinaryOperator &I);
177 Instruction *commonIDivTransforms(BinaryOperator &I);
178 Instruction *visitUDiv(BinaryOperator &I);
179 Instruction *visitSDiv(BinaryOperator &I);
180 Instruction *visitFDiv(BinaryOperator &I);
181 Instruction *visitAnd(BinaryOperator &I);
182 Instruction *visitOr (BinaryOperator &I);
183 Instruction *visitXor(BinaryOperator &I);
184 Instruction *visitShl(BinaryOperator &I);
185 Instruction *visitAShr(BinaryOperator &I);
186 Instruction *visitLShr(BinaryOperator &I);
187 Instruction *commonShiftTransforms(BinaryOperator &I);
188 Instruction *visitFCmpInst(FCmpInst &I);
189 Instruction *visitICmpInst(ICmpInst &I);
190 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
191 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
192 Instruction *LHS,
193 ConstantInt *RHS);
194 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
195 ConstantInt *DivRHS);
196
197 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
198 ICmpInst::Predicate Cond, Instruction &I);
199 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
200 BinaryOperator &I);
201 Instruction *commonCastTransforms(CastInst &CI);
202 Instruction *commonIntCastTransforms(CastInst &CI);
203 Instruction *commonPointerCastTransforms(CastInst &CI);
204 Instruction *visitTrunc(TruncInst &CI);
205 Instruction *visitZExt(ZExtInst &CI);
206 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerdf7e8402008-01-27 05:29:54 +0000207 Instruction *visitFPTrunc(FPTruncInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000208 Instruction *visitFPExt(CastInst &CI);
209 Instruction *visitFPToUI(CastInst &CI);
210 Instruction *visitFPToSI(CastInst &CI);
211 Instruction *visitUIToFP(CastInst &CI);
212 Instruction *visitSIToFP(CastInst &CI);
213 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattner7c1626482008-01-08 07:23:51 +0000214 Instruction *visitIntToPtr(IntToPtrInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000215 Instruction *visitBitCast(BitCastInst &CI);
216 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
217 Instruction *FI);
218 Instruction *visitSelectInst(SelectInst &CI);
219 Instruction *visitCallInst(CallInst &CI);
220 Instruction *visitInvokeInst(InvokeInst &II);
221 Instruction *visitPHINode(PHINode &PN);
222 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
223 Instruction *visitAllocationInst(AllocationInst &AI);
224 Instruction *visitFreeInst(FreeInst &FI);
225 Instruction *visitLoadInst(LoadInst &LI);
226 Instruction *visitStoreInst(StoreInst &SI);
227 Instruction *visitBranchInst(BranchInst &BI);
228 Instruction *visitSwitchInst(SwitchInst &SI);
229 Instruction *visitInsertElementInst(InsertElementInst &IE);
230 Instruction *visitExtractElementInst(ExtractElementInst &EI);
231 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
232
233 // visitInstruction - Specify what to return for unhandled instructions...
234 Instruction *visitInstruction(Instruction &I) { return 0; }
235
236 private:
237 Instruction *visitCallSite(CallSite CS);
238 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000239 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chenge3779cf2008-03-24 00:21:34 +0000240 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
241 bool DoXform = true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242
243 public:
244 // InsertNewInstBefore - insert an instruction New before instruction Old
245 // in the program. Add the new instruction to the worklist.
246 //
247 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
248 assert(New && New->getParent() == 0 &&
249 "New instruction already inserted into a basic block!");
250 BasicBlock *BB = Old.getParent();
251 BB->getInstList().insert(&Old, New); // Insert inst
252 AddToWorkList(New);
253 return New;
254 }
255
256 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
257 /// This also adds the cast to the worklist. Finally, this returns the
258 /// cast.
259 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
260 Instruction &Pos) {
261 if (V->getType() == Ty) return V;
262
263 if (Constant *CV = dyn_cast<Constant>(V))
264 return ConstantExpr::getCast(opc, CV, Ty);
265
Gabor Greifa645dd32008-05-16 19:29:10 +0000266 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000267 AddToWorkList(C);
268 return C;
269 }
Chris Lattner13c2d6e2008-01-13 22:23:22 +0000270
271 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
272 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
273 }
274
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000275
276 // ReplaceInstUsesWith - This method is to be used when an instruction is
277 // found to be dead, replacable with another preexisting expression. Here
278 // we add all uses of I to the worklist, replace all uses of I with the new
279 // value, then return I, so that the inst combiner will know that I was
280 // modified.
281 //
282 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
283 AddUsersToWorkList(I); // Add all modified instrs to worklist
284 if (&I != V) {
285 I.replaceAllUsesWith(V);
286 return &I;
287 } else {
288 // If we are replacing the instruction with itself, this must be in a
289 // segment of unreachable code, so just clobber the instruction.
290 I.replaceAllUsesWith(UndefValue::get(I.getType()));
291 return &I;
292 }
293 }
294
295 // UpdateValueUsesWith - This method is to be used when an value is
296 // found to be replacable with another preexisting expression or was
297 // updated. Here we add all uses of I to the worklist, replace all uses of
298 // I with the new value (unless the instruction was just updated), then
299 // return true, so that the inst combiner will know that I was modified.
300 //
301 bool UpdateValueUsesWith(Value *Old, Value *New) {
302 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
303 if (Old != New)
304 Old->replaceAllUsesWith(New);
305 if (Instruction *I = dyn_cast<Instruction>(Old))
306 AddToWorkList(I);
307 if (Instruction *I = dyn_cast<Instruction>(New))
308 AddToWorkList(I);
309 return true;
310 }
311
312 // EraseInstFromFunction - When dealing with an instruction that has side
313 // effects or produces a void value, we can't rely on DCE to delete the
314 // instruction. Instead, visit methods should return the value returned by
315 // this function.
316 Instruction *EraseInstFromFunction(Instruction &I) {
317 assert(I.use_empty() && "Cannot erase instruction that is used!");
318 AddUsesToWorkList(I);
319 RemoveFromWorkList(&I);
320 I.eraseFromParent();
321 return 0; // Don't do anything with FI
322 }
323
324 private:
325 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
326 /// InsertBefore instruction. This is specialized a bit to avoid inserting
327 /// casts that are known to not do anything...
328 ///
329 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
330 Value *V, const Type *DestTy,
331 Instruction *InsertBefore);
332
333 /// SimplifyCommutative - This performs a few simplifications for
334 /// commutative operators.
335 bool SimplifyCommutative(BinaryOperator &I);
336
337 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
338 /// most-complex to least-complex order.
339 bool SimplifyCompare(CmpInst &I);
340
341 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
342 /// on the demanded bits.
343 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
344 APInt& KnownZero, APInt& KnownOne,
345 unsigned Depth = 0);
346
347 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
348 uint64_t &UndefElts, unsigned Depth = 0);
349
350 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
351 // PHI node as operand #0, see if we can fold the instruction into the PHI
352 // (which is only possible if all operands to the PHI are constants).
353 Instruction *FoldOpIntoPhi(Instruction &I);
354
355 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
356 // operator and they all are only used by the PHI, PHI together their
357 // inputs, and do the operation once, to the result of the PHI.
358 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
359 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
360
361
362 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
363 ConstantInt *AndRHS, BinaryOperator &TheAnd);
364
365 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
366 bool isSub, Instruction &I);
367 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
368 bool isSigned, bool Inside, Instruction &IB);
369 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
370 Instruction *MatchBSwap(BinaryOperator &I);
371 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000372 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner5af8a912008-04-30 06:39:11 +0000373 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000374
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000375
376 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000377
378 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt& KnownZero,
379 APInt& KnownOne, unsigned Depth = 0);
380 bool MaskedValueIsZero(Value *V, const APInt& Mask, unsigned Depth = 0);
381 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
382 unsigned CastOpc,
383 int &NumCastsRemoved);
384 unsigned GetOrEnforceKnownAlignment(Value *V,
385 unsigned PrefAlign = 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000386 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000387}
388
Dan Gohman089efff2008-05-13 00:00:25 +0000389char InstCombiner::ID = 0;
390static RegisterPass<InstCombiner>
391X("instcombine", "Combine redundant instructions");
392
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393// getComplexity: Assign a complexity or rank value to LLVM Values...
394// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
395static unsigned getComplexity(Value *V) {
396 if (isa<Instruction>(V)) {
397 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
398 return 3;
399 return 4;
400 }
401 if (isa<Argument>(V)) return 3;
402 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
403}
404
405// isOnlyUse - Return true if this instruction will be deleted if we stop using
406// it.
407static bool isOnlyUse(Value *V) {
408 return V->hasOneUse() || isa<Constant>(V);
409}
410
411// getPromotedType - Return the specified type promoted as it would be to pass
412// though a va_arg area...
413static const Type *getPromotedType(const Type *Ty) {
414 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
415 if (ITy->getBitWidth() < 32)
416 return Type::Int32Ty;
417 }
418 return Ty;
419}
420
421/// getBitCastOperand - If the specified operand is a CastInst or a constant
422/// expression bitcast, return the operand value, otherwise return null.
423static Value *getBitCastOperand(Value *V) {
424 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
425 return I->getOperand(0);
426 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
427 if (CE->getOpcode() == Instruction::BitCast)
428 return CE->getOperand(0);
429 return 0;
430}
431
432/// This function is a wrapper around CastInst::isEliminableCastPair. It
433/// simply extracts arguments and returns what that function returns.
434static Instruction::CastOps
435isEliminableCastPair(
436 const CastInst *CI, ///< The first cast instruction
437 unsigned opcode, ///< The opcode of the second cast instruction
438 const Type *DstTy, ///< The target type for the second cast instruction
439 TargetData *TD ///< The target data for pointer size
440) {
441
442 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
443 const Type *MidTy = CI->getType(); // B from above
444
445 // Get the opcodes of the two Cast instructions
446 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
447 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
448
449 return Instruction::CastOps(
450 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
451 DstTy, TD->getIntPtrType()));
452}
453
454/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
455/// in any code being generated. It does not require codegen if V is simple
456/// enough or if the cast can be folded into other casts.
457static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
458 const Type *Ty, TargetData *TD) {
459 if (V->getType() == Ty || isa<Constant>(V)) return false;
460
461 // If this is another cast that can be eliminated, it isn't codegen either.
462 if (const CastInst *CI = dyn_cast<CastInst>(V))
463 if (isEliminableCastPair(CI, opcode, Ty, TD))
464 return false;
465 return true;
466}
467
468/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
469/// InsertBefore instruction. This is specialized a bit to avoid inserting
470/// casts that are known to not do anything...
471///
472Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
473 Value *V, const Type *DestTy,
474 Instruction *InsertBefore) {
475 if (V->getType() == DestTy) return V;
476 if (Constant *C = dyn_cast<Constant>(V))
477 return ConstantExpr::getCast(opcode, C, DestTy);
478
479 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
480}
481
482// SimplifyCommutative - This performs a few simplifications for commutative
483// operators:
484//
485// 1. Order operands such that they are listed from right (least complex) to
486// left (most complex). This puts constants before unary operators before
487// binary operators.
488//
489// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
490// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
491//
492bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
493 bool Changed = false;
494 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
495 Changed = !I.swapOperands();
496
497 if (!I.isAssociative()) return Changed;
498 Instruction::BinaryOps Opcode = I.getOpcode();
499 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
500 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
501 if (isa<Constant>(I.getOperand(1))) {
502 Constant *Folded = ConstantExpr::get(I.getOpcode(),
503 cast<Constant>(I.getOperand(1)),
504 cast<Constant>(Op->getOperand(1)));
505 I.setOperand(0, Op->getOperand(0));
506 I.setOperand(1, Folded);
507 return true;
508 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
509 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
510 isOnlyUse(Op) && isOnlyUse(Op1)) {
511 Constant *C1 = cast<Constant>(Op->getOperand(1));
512 Constant *C2 = cast<Constant>(Op1->getOperand(1));
513
514 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
515 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +0000516 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000517 Op1->getOperand(0),
518 Op1->getName(), &I);
519 AddToWorkList(New);
520 I.setOperand(0, New);
521 I.setOperand(1, Folded);
522 return true;
523 }
524 }
525 return Changed;
526}
527
528/// SimplifyCompare - For a CmpInst this function just orders the operands
529/// so that theyare listed from right (least complex) to left (most complex).
530/// This puts constants before unary operators before binary operators.
531bool InstCombiner::SimplifyCompare(CmpInst &I) {
532 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
533 return false;
534 I.swapOperands();
535 // Compare instructions are not associative so there's nothing else we can do.
536 return true;
537}
538
539// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
540// if the LHS is a constant zero (which is the 'negate' form).
541//
542static inline Value *dyn_castNegVal(Value *V) {
543 if (BinaryOperator::isNeg(V))
544 return BinaryOperator::getNegArgument(V);
545
546 // Constants can be considered to be negated values if they can be folded.
547 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
548 return ConstantExpr::getNeg(C);
549 return 0;
550}
551
552static inline Value *dyn_castNotVal(Value *V) {
553 if (BinaryOperator::isNot(V))
554 return BinaryOperator::getNotArgument(V);
555
556 // Constants can be considered to be not'ed values...
557 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
558 return ConstantInt::get(~C->getValue());
559 return 0;
560}
561
562// dyn_castFoldableMul - If this value is a multiply that can be folded into
563// other computations (because it has a constant operand), return the
564// non-constant operand of the multiply, and set CST to point to the multiplier.
565// Otherwise, return null.
566//
567static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
568 if (V->hasOneUse() && V->getType()->isInteger())
569 if (Instruction *I = dyn_cast<Instruction>(V)) {
570 if (I->getOpcode() == Instruction::Mul)
571 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
572 return I->getOperand(0);
573 if (I->getOpcode() == Instruction::Shl)
574 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
575 // The multiplier is really 1 << CST.
576 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
577 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
578 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
579 return I->getOperand(0);
580 }
581 }
582 return 0;
583}
584
585/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
586/// expression, return it.
587static User *dyn_castGetElementPtr(Value *V) {
588 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
589 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
590 if (CE->getOpcode() == Instruction::GetElementPtr)
591 return cast<User>(V);
592 return false;
593}
594
Dan Gohman2d648bb2008-04-10 18:43:06 +0000595/// getOpcode - If this is an Instruction or a ConstantExpr, return the
596/// opcode value. Otherwise return UserOp1.
597static unsigned getOpcode(User *U) {
598 if (Instruction *I = dyn_cast<Instruction>(U))
599 return I->getOpcode();
600 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U))
601 return CE->getOpcode();
602 // Use UserOp1 to mean there's no opcode.
603 return Instruction::UserOp1;
604}
605
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000606/// AddOne - Add one to a ConstantInt
607static ConstantInt *AddOne(ConstantInt *C) {
608 APInt Val(C->getValue());
609 return ConstantInt::get(++Val);
610}
611/// SubOne - Subtract one from a ConstantInt
612static ConstantInt *SubOne(ConstantInt *C) {
613 APInt Val(C->getValue());
614 return ConstantInt::get(--Val);
615}
616/// Add - Add two ConstantInts together
617static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
618 return ConstantInt::get(C1->getValue() + C2->getValue());
619}
620/// And - Bitwise AND two ConstantInts together
621static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
622 return ConstantInt::get(C1->getValue() & C2->getValue());
623}
624/// Subtract - Subtract one ConstantInt from another
625static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
626 return ConstantInt::get(C1->getValue() - C2->getValue());
627}
628/// Multiply - Multiply two ConstantInts together
629static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
630 return ConstantInt::get(C1->getValue() * C2->getValue());
631}
Nick Lewycky9d798f92008-02-18 22:48:05 +0000632/// MultiplyOverflows - True if the multiply can not be expressed in an int
633/// this size.
634static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
635 uint32_t W = C1->getBitWidth();
636 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
637 if (sign) {
638 LHSExt.sext(W * 2);
639 RHSExt.sext(W * 2);
640 } else {
641 LHSExt.zext(W * 2);
642 RHSExt.zext(W * 2);
643 }
644
645 APInt MulExt = LHSExt * RHSExt;
646
647 if (sign) {
648 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
649 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
650 return MulExt.slt(Min) || MulExt.sgt(Max);
651 } else
652 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
653}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000654
655/// ComputeMaskedBits - Determine which of the bits specified in Mask are
656/// known to be either zero or one and return them in the KnownZero/KnownOne
657/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
658/// processing.
659/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
660/// we cannot optimize based on the assumption that it is zero without changing
661/// it to be an explicit zero. If we don't change it to zero, other code could
662/// optimized based on the contradictory assumption that it is non-zero.
663/// Because instcombine aggressively folds operations with undef args anyway,
664/// this won't lose us code quality.
Dan Gohman2d648bb2008-04-10 18:43:06 +0000665void InstCombiner::ComputeMaskedBits(Value *V, const APInt &Mask,
666 APInt& KnownZero, APInt& KnownOne,
667 unsigned Depth) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000668 assert(V && "No Value?");
669 assert(Depth <= 6 && "Limit Search Depth");
670 uint32_t BitWidth = Mask.getBitWidth();
Dan Gohman2d648bb2008-04-10 18:43:06 +0000671 assert((V->getType()->isInteger() || isa<PointerType>(V->getType())) &&
672 "Not integer or pointer type!");
673 assert((!TD || TD->getTypeSizeInBits(V->getType()) == BitWidth) &&
674 (!isa<IntegerType>(V->getType()) ||
675 V->getType()->getPrimitiveSizeInBits() == BitWidth) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000676 KnownZero.getBitWidth() == BitWidth &&
677 KnownOne.getBitWidth() == BitWidth &&
678 "V, Mask, KnownOne and KnownZero should have same BitWidth");
679 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
680 // We know all of the bits for a constant!
681 KnownOne = CI->getValue() & Mask;
682 KnownZero = ~KnownOne & Mask;
683 return;
684 }
Dan Gohman2d648bb2008-04-10 18:43:06 +0000685 // Null is all-zeros.
686 if (isa<ConstantPointerNull>(V)) {
687 KnownOne.clear();
688 KnownZero = Mask;
689 return;
690 }
691 // The address of an aligned GlobalValue has trailing zeros.
692 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
693 unsigned Align = GV->getAlignment();
694 if (Align == 0 && TD && GV->getType()->getElementType()->isSized())
695 Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
696 if (Align > 0)
697 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
698 CountTrailingZeros_32(Align));
699 else
700 KnownZero.clear();
701 KnownOne.clear();
702 return;
703 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704
Dan Gohmanbec16052008-04-28 17:02:21 +0000705 KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything.
706
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 if (Depth == 6 || Mask == 0)
708 return; // Limit search depth.
709
Dan Gohman2d648bb2008-04-10 18:43:06 +0000710 User *I = dyn_cast<User>(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711 if (!I) return;
712
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000713 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000714 switch (getOpcode(I)) {
715 default: break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000716 case Instruction::And: {
717 // If either the LHS or the RHS are Zero, the result is zero.
718 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
719 APInt Mask2(Mask & ~KnownZero);
720 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
721 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
722 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
723
724 // Output known-1 bits are only known if set in both the LHS & RHS.
725 KnownOne &= KnownOne2;
726 // Output known-0 are known to be clear if zero in either the LHS | RHS.
727 KnownZero |= KnownZero2;
728 return;
729 }
730 case Instruction::Or: {
731 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
732 APInt Mask2(Mask & ~KnownOne);
733 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
734 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
735 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
736
737 // Output known-0 bits are only known if clear in both the LHS & RHS.
738 KnownZero &= KnownZero2;
739 // Output known-1 are known to be set if set in either the LHS | RHS.
740 KnownOne |= KnownOne2;
741 return;
742 }
743 case Instruction::Xor: {
744 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
745 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
746 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
747 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
748
749 // Output known-0 bits are known if clear or set in both the LHS & RHS.
750 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
751 // Output known-1 are known to be set if set in only one of the LHS, RHS.
752 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
753 KnownZero = KnownZeroOut;
754 return;
755 }
Dan Gohman2d648bb2008-04-10 18:43:06 +0000756 case Instruction::Mul: {
757 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
758 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
759 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
760 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
761 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
762
763 // If low bits are zero in either operand, output low known-0 bits.
Dan Gohmanbec16052008-04-28 17:02:21 +0000764 // Also compute a conserative estimate for high known-0 bits.
Dan Gohman2d648bb2008-04-10 18:43:06 +0000765 // More trickiness is possible, but this is sufficient for the
766 // interesting case of alignment computation.
767 KnownOne.clear();
768 unsigned TrailZ = KnownZero.countTrailingOnes() +
769 KnownZero2.countTrailingOnes();
Dan Gohmanbec16052008-04-28 17:02:21 +0000770 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
Dan Gohman4c451852008-05-07 00:35:55 +0000771 KnownZero2.countLeadingOnes(),
772 BitWidth) - BitWidth;
Dan Gohmanbec16052008-04-28 17:02:21 +0000773
Dan Gohman2d648bb2008-04-10 18:43:06 +0000774 TrailZ = std::min(TrailZ, BitWidth);
Dan Gohmanbec16052008-04-28 17:02:21 +0000775 LeadZ = std::min(LeadZ, BitWidth);
776 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
777 APInt::getHighBitsSet(BitWidth, LeadZ);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000778 KnownZero &= Mask;
779 return;
780 }
Dan Gohmanbec16052008-04-28 17:02:21 +0000781 case Instruction::UDiv: {
782 // For the purposes of computing leading zeros we can conservatively
783 // treat a udiv as a logical right shift by the power of 2 known to
Dan Gohman1b9fb1f2008-05-02 21:30:02 +0000784 // be less than the denominator.
Dan Gohmanbec16052008-04-28 17:02:21 +0000785 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
786 ComputeMaskedBits(I->getOperand(0),
787 AllOnes, KnownZero2, KnownOne2, Depth+1);
788 unsigned LeadZ = KnownZero2.countLeadingOnes();
789
790 KnownOne2.clear();
791 KnownZero2.clear();
792 ComputeMaskedBits(I->getOperand(1),
793 AllOnes, KnownZero2, KnownOne2, Depth+1);
Dan Gohman1b9fb1f2008-05-02 21:30:02 +0000794 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
795 if (RHSUnknownLeadingOnes != BitWidth)
796 LeadZ = std::min(BitWidth,
797 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
Dan Gohmanbec16052008-04-28 17:02:21 +0000798
799 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
800 return;
801 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000802 case Instruction::Select:
803 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
804 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
805 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
806 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
807
808 // Only known if known in both the LHS and RHS.
809 KnownOne &= KnownOne2;
810 KnownZero &= KnownZero2;
811 return;
812 case Instruction::FPTrunc:
813 case Instruction::FPExt:
814 case Instruction::FPToUI:
815 case Instruction::FPToSI:
816 case Instruction::SIToFP:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000817 case Instruction::UIToFP:
Dan Gohman2d648bb2008-04-10 18:43:06 +0000818 return; // Can't work with floating point.
819 case Instruction::PtrToInt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000820 case Instruction::IntToPtr:
Dan Gohman2d648bb2008-04-10 18:43:06 +0000821 // We can't handle these if we don't know the pointer size.
822 if (!TD) return;
823 // Fall through and handle them the same as zext/trunc.
824 case Instruction::ZExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000825 case Instruction::Trunc: {
826 // All these have integer operands
Dan Gohman2d648bb2008-04-10 18:43:06 +0000827 const Type *SrcTy = I->getOperand(0)->getType();
828 uint32_t SrcBitWidth = TD ?
829 TD->getTypeSizeInBits(SrcTy) :
830 SrcTy->getPrimitiveSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000831 APInt MaskIn(Mask);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000832 MaskIn.zextOrTrunc(SrcBitWidth);
833 KnownZero.zextOrTrunc(SrcBitWidth);
834 KnownOne.zextOrTrunc(SrcBitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000835 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000836 KnownZero.zextOrTrunc(BitWidth);
837 KnownOne.zextOrTrunc(BitWidth);
838 // Any top bits are known to be zero.
839 if (BitWidth > SrcBitWidth)
840 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000841 return;
842 }
843 case Instruction::BitCast: {
844 const Type *SrcTy = I->getOperand(0)->getType();
Dan Gohman2d648bb2008-04-10 18:43:06 +0000845 if (SrcTy->isInteger() || isa<PointerType>(SrcTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000846 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
847 return;
848 }
849 break;
850 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000851 case Instruction::SExt: {
852 // Compute the bits in the result that are not present in the input.
853 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
854 uint32_t SrcBitWidth = SrcTy->getBitWidth();
855
856 APInt MaskIn(Mask);
857 MaskIn.trunc(SrcBitWidth);
858 KnownZero.trunc(SrcBitWidth);
859 KnownOne.trunc(SrcBitWidth);
860 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
861 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
862 KnownZero.zext(BitWidth);
863 KnownOne.zext(BitWidth);
864
865 // If the sign bit of the input is known set or clear, then we know the
866 // top bits of the result.
867 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
868 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
869 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
870 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
871 return;
872 }
873 case Instruction::Shl:
874 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
875 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
876 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
877 APInt Mask2(Mask.lshr(ShiftAmt));
878 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, Depth+1);
879 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
880 KnownZero <<= ShiftAmt;
881 KnownOne <<= ShiftAmt;
882 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
883 return;
884 }
885 break;
886 case Instruction::LShr:
887 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
888 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
889 // Compute the new bits that are at the top now.
890 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
891
892 // Unsigned shift right.
893 APInt Mask2(Mask.shl(ShiftAmt));
894 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1);
895 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
896 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
897 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
898 // high bits known zero.
899 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
900 return;
901 }
902 break;
903 case Instruction::AShr:
904 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
905 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
906 // Compute the new bits that are at the top now.
907 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
908
909 // Signed shift right.
910 APInt Mask2(Mask.shl(ShiftAmt));
911 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1);
912 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
913 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
914 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
915
916 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
917 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
918 KnownZero |= HighBits;
919 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
920 KnownOne |= HighBits;
921 return;
922 }
923 break;
Dan Gohman2d648bb2008-04-10 18:43:06 +0000924 case Instruction::Sub: {
925 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
926 // We know that the top bits of C-X are clear if X contains less bits
927 // than C (i.e. no wrap-around can happen). For example, 20-X is
928 // positive if we can prove that X is >= 0 and < 16.
929 if (!CLHS->getValue().isNegative()) {
930 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
931 // NLZ can't be BitWidth with no sign bit
932 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Dan Gohmanbec16052008-04-28 17:02:21 +0000933 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
934 Depth+1);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000935
Dan Gohmanbec16052008-04-28 17:02:21 +0000936 // If all of the MaskV bits are known to be zero, then we know the
937 // output top bits are zero, because we now know that the output is
938 // from [0-C].
939 if ((KnownZero2 & MaskV) == MaskV) {
Dan Gohman2d648bb2008-04-10 18:43:06 +0000940 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
941 // Top bits known zero.
942 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
Dan Gohman2d648bb2008-04-10 18:43:06 +0000943 }
Dan Gohman2d648bb2008-04-10 18:43:06 +0000944 }
945 }
946 }
947 // fall through
Duncan Sandse71d4482008-03-21 08:32:17 +0000948 case Instruction::Add: {
Chris Lattner5ee84f82008-03-21 05:19:58 +0000949 // Output known-0 bits are known if clear or set in both the low clear bits
950 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
951 // low 3 bits clear.
Dan Gohmanbec16052008-04-28 17:02:21 +0000952 APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
953 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
954 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
955 unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
956
957 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
958 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
959 KnownZeroOut = std::min(KnownZeroOut,
960 KnownZero2.countTrailingOnes());
961
962 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
Chris Lattner5ee84f82008-03-21 05:19:58 +0000963 return;
Duncan Sandse71d4482008-03-21 08:32:17 +0000964 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +0000965 case Instruction::SRem:
966 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
967 APInt RA = Rem->getValue();
968 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
Dan Gohman5a154a12008-05-06 00:51:48 +0000969 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
Nick Lewyckyc1372c82008-03-06 06:48:30 +0000970 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
971 ComputeMaskedBits(I->getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
972
973 // The sign of a remainder is equal to the sign of the first
974 // operand (zero being positive).
975 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
976 KnownZero2 |= ~LowBits;
977 else if (KnownOne2[BitWidth-1])
978 KnownOne2 |= ~LowBits;
979
980 KnownZero |= KnownZero2 & Mask;
981 KnownOne |= KnownOne2 & Mask;
982
983 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
984 }
985 }
986 break;
Dan Gohmanbec16052008-04-28 17:02:21 +0000987 case Instruction::URem: {
Nick Lewyckyc1372c82008-03-06 06:48:30 +0000988 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
989 APInt RA = Rem->getValue();
Dan Gohman5a154a12008-05-06 00:51:48 +0000990 if (RA.isPowerOf2()) {
991 APInt LowBits = (RA - 1);
Nick Lewyckyc1372c82008-03-06 06:48:30 +0000992 APInt Mask2 = LowBits & Mask;
993 KnownZero |= ~LowBits & Mask;
994 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
995 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
Dan Gohmanbec16052008-04-28 17:02:21 +0000996 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +0000997 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +0000998 }
Dan Gohmanbec16052008-04-28 17:02:21 +0000999
1000 // Since the result is less than or equal to either operand, any leading
1001 // zero bits in either operand must also exist in the result.
1002 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1003 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
1004 Depth+1);
1005 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
1006 Depth+1);
1007
1008 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1009 KnownZero2.countLeadingOnes());
1010 KnownOne.clear();
1011 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001012 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001013 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00001014
1015 case Instruction::Alloca:
1016 case Instruction::Malloc: {
1017 AllocationInst *AI = cast<AllocationInst>(V);
1018 unsigned Align = AI->getAlignment();
1019 if (Align == 0 && TD) {
1020 if (isa<AllocaInst>(AI))
1021 Align = TD->getPrefTypeAlignment(AI->getType()->getElementType());
1022 else if (isa<MallocInst>(AI)) {
1023 // Malloc returns maximally aligned memory.
1024 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
1025 Align =
1026 std::max(Align,
1027 (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
1028 Align =
1029 std::max(Align,
1030 (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
1031 }
1032 }
1033
1034 if (Align > 0)
1035 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
1036 CountTrailingZeros_32(Align));
1037 break;
1038 }
1039 case Instruction::GetElementPtr: {
1040 // Analyze all of the subscripts of this getelementptr instruction
1041 // to determine if we can prove known low zero bits.
1042 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
1043 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1044 ComputeMaskedBits(I->getOperand(0), LocalMask,
1045 LocalKnownZero, LocalKnownOne, Depth+1);
1046 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1047
1048 gep_type_iterator GTI = gep_type_begin(I);
1049 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1050 Value *Index = I->getOperand(i);
1051 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
1052 // Handle struct member offset arithmetic.
1053 if (!TD) return;
1054 const StructLayout *SL = TD->getStructLayout(STy);
1055 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1056 uint64_t Offset = SL->getElementOffset(Idx);
1057 TrailZ = std::min(TrailZ,
1058 CountTrailingZeros_64(Offset));
1059 } else {
1060 // Handle array index arithmetic.
1061 const Type *IndexedTy = GTI.getIndexedType();
1062 if (!IndexedTy->isSized()) return;
1063 unsigned GEPOpiBits = Index->getType()->getPrimitiveSizeInBits();
1064 uint64_t TypeSize = TD ? TD->getABITypeSize(IndexedTy) : 1;
1065 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
1066 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1067 ComputeMaskedBits(Index, LocalMask,
1068 LocalKnownZero, LocalKnownOne, Depth+1);
1069 TrailZ = std::min(TrailZ,
1070 CountTrailingZeros_64(TypeSize) +
1071 LocalKnownZero.countTrailingOnes());
1072 }
1073 }
1074
1075 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
1076 break;
1077 }
1078 case Instruction::PHI: {
1079 PHINode *P = cast<PHINode>(I);
1080 // Handle the case of a simple two-predecessor recurrence PHI.
1081 // There's a lot more that could theoretically be done here, but
1082 // this is sufficient to catch some interesting cases.
1083 if (P->getNumIncomingValues() == 2) {
1084 for (unsigned i = 0; i != 2; ++i) {
1085 Value *L = P->getIncomingValue(i);
1086 Value *R = P->getIncomingValue(!i);
1087 User *LU = dyn_cast<User>(L);
1088 unsigned Opcode = LU ? getOpcode(LU) : (unsigned)Instruction::UserOp1;
1089 // Check for operations that have the property that if
1090 // both their operands have low zero bits, the result
1091 // will have low zero bits.
1092 if (Opcode == Instruction::Add ||
1093 Opcode == Instruction::Sub ||
1094 Opcode == Instruction::And ||
1095 Opcode == Instruction::Or ||
1096 Opcode == Instruction::Mul) {
1097 Value *LL = LU->getOperand(0);
1098 Value *LR = LU->getOperand(1);
1099 // Find a recurrence.
1100 if (LL == I)
1101 L = LR;
1102 else if (LR == I)
1103 L = LL;
1104 else
1105 break;
1106 // Ok, we have a PHI of the form L op= R. Check for low
1107 // zero bits.
1108 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1109 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, Depth+1);
1110 Mask2 = APInt::getLowBitsSet(BitWidth,
1111 KnownZero2.countTrailingOnes());
1112 KnownOne2.clear();
1113 KnownZero2.clear();
1114 ComputeMaskedBits(L, Mask2, KnownZero2, KnownOne2, Depth+1);
1115 KnownZero = Mask &
1116 APInt::getLowBitsSet(BitWidth,
1117 KnownZero2.countTrailingOnes());
1118 break;
1119 }
1120 }
1121 }
1122 break;
1123 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001124 case Instruction::Call:
1125 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1126 switch (II->getIntrinsicID()) {
1127 default: break;
1128 case Intrinsic::ctpop:
1129 case Intrinsic::ctlz:
1130 case Intrinsic::cttz: {
1131 unsigned LowBits = Log2_32(BitWidth)+1;
1132 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1133 break;
1134 }
1135 }
1136 }
1137 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001138 }
1139}
1140
1141/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1142/// this predicate to simplify operations downstream. Mask is known to be zero
1143/// for bits that V cannot have.
Dan Gohman2d648bb2008-04-10 18:43:06 +00001144bool InstCombiner::MaskedValueIsZero(Value *V, const APInt& Mask,
1145 unsigned Depth) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001146 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1147 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
1148 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1149 return (KnownZero & Mask) == Mask;
1150}
1151
1152/// ShrinkDemandedConstant - Check to see if the specified operand of the
1153/// specified instruction is a constant integer. If so, check to see if there
1154/// are any bits set in the constant that are not demanded. If so, shrink the
1155/// constant and return true.
1156static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
1157 APInt Demanded) {
1158 assert(I && "No instruction?");
1159 assert(OpNo < I->getNumOperands() && "Operand index too large");
1160
1161 // If the operand is not a constant integer, nothing to do.
1162 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
1163 if (!OpC) return false;
1164
1165 // If there are no bits set that aren't demanded, nothing to do.
1166 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
1167 if ((~Demanded & OpC->getValue()) == 0)
1168 return false;
1169
1170 // This instruction is producing bits that are not demanded. Shrink the RHS.
1171 Demanded &= OpC->getValue();
1172 I->setOperand(OpNo, ConstantInt::get(Demanded));
1173 return true;
1174}
1175
1176// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
1177// set of known zero and one bits, compute the maximum and minimum values that
1178// could have the specified known zero and known one bits, returning them in
1179// min/max.
1180static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
1181 const APInt& KnownZero,
1182 const APInt& KnownOne,
1183 APInt& Min, APInt& Max) {
1184 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
1185 assert(KnownZero.getBitWidth() == BitWidth &&
1186 KnownOne.getBitWidth() == BitWidth &&
1187 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
1188 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
1189 APInt UnknownBits = ~(KnownZero|KnownOne);
1190
1191 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
1192 // bit if it is unknown.
1193 Min = KnownOne;
1194 Max = KnownOne|UnknownBits;
1195
1196 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
1197 Min.set(BitWidth-1);
1198 Max.clear(BitWidth-1);
1199 }
1200}
1201
1202// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
1203// a set of known zero and one bits, compute the maximum and minimum values that
1204// could have the specified known zero and known one bits, returning them in
1205// min/max.
1206static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +00001207 const APInt &KnownZero,
1208 const APInt &KnownOne,
1209 APInt &Min, APInt &Max) {
1210 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001211 assert(KnownZero.getBitWidth() == BitWidth &&
1212 KnownOne.getBitWidth() == BitWidth &&
1213 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
1214 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
1215 APInt UnknownBits = ~(KnownZero|KnownOne);
1216
1217 // The minimum value is when the unknown bits are all zeros.
1218 Min = KnownOne;
1219 // The maximum value is when the unknown bits are all ones.
1220 Max = KnownOne|UnknownBits;
1221}
1222
1223/// SimplifyDemandedBits - This function attempts to replace V with a simpler
1224/// value based on the demanded bits. When this function is called, it is known
1225/// that only the bits set in DemandedMask of the result of V are ever used
1226/// downstream. Consequently, depending on the mask and V, it may be possible
1227/// to replace V with a constant or one of its operands. In such cases, this
1228/// function does the replacement and returns true. In all other cases, it
1229/// returns false after analyzing the expression and setting KnownOne and known
1230/// to be one in the expression. KnownZero contains all the bits that are known
1231/// to be zero in the expression. These are provided to potentially allow the
1232/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
1233/// the expression. KnownOne and KnownZero always follow the invariant that
1234/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
1235/// the bits in KnownOne and KnownZero may only be accurate for those bits set
1236/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
1237/// and KnownOne must all be the same.
1238bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
1239 APInt& KnownZero, APInt& KnownOne,
1240 unsigned Depth) {
1241 assert(V != 0 && "Null pointer of Value???");
1242 assert(Depth <= 6 && "Limit Search Depth");
1243 uint32_t BitWidth = DemandedMask.getBitWidth();
1244 const IntegerType *VTy = cast<IntegerType>(V->getType());
1245 assert(VTy->getBitWidth() == BitWidth &&
1246 KnownZero.getBitWidth() == BitWidth &&
1247 KnownOne.getBitWidth() == BitWidth &&
1248 "Value *V, DemandedMask, KnownZero and KnownOne \
1249 must have same BitWidth");
1250 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1251 // We know all of the bits for a constant!
1252 KnownOne = CI->getValue() & DemandedMask;
1253 KnownZero = ~KnownOne & DemandedMask;
1254 return false;
1255 }
1256
1257 KnownZero.clear();
1258 KnownOne.clear();
1259 if (!V->hasOneUse()) { // Other users may use these bits.
1260 if (Depth != 0) { // Not at the root.
1261 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
1262 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
1263 return false;
1264 }
1265 // If this is the root being simplified, allow it to have multiple uses,
1266 // just set the DemandedMask to all bits.
1267 DemandedMask = APInt::getAllOnesValue(BitWidth);
1268 } else if (DemandedMask == 0) { // Not demanding any bits from V.
1269 if (V != UndefValue::get(VTy))
1270 return UpdateValueUsesWith(V, UndefValue::get(VTy));
1271 return false;
1272 } else if (Depth == 6) { // Limit search depth.
1273 return false;
1274 }
1275
1276 Instruction *I = dyn_cast<Instruction>(V);
1277 if (!I) return false; // Only analyze instructions.
1278
1279 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1280 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
1281 switch (I->getOpcode()) {
Dan Gohmanbec16052008-04-28 17:02:21 +00001282 default:
1283 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
1284 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001285 case Instruction::And:
1286 // If either the LHS or the RHS are Zero, the result is zero.
1287 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1288 RHSKnownZero, RHSKnownOne, Depth+1))
1289 return true;
1290 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1291 "Bits known to be one AND zero?");
1292
1293 // If something is known zero on the RHS, the bits aren't demanded on the
1294 // LHS.
1295 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
1296 LHSKnownZero, LHSKnownOne, Depth+1))
1297 return true;
1298 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1299 "Bits known to be one AND zero?");
1300
1301 // If all of the demanded bits are known 1 on one side, return the other.
1302 // These bits cannot contribute to the result of the 'and'.
1303 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
1304 (DemandedMask & ~LHSKnownZero))
1305 return UpdateValueUsesWith(I, I->getOperand(0));
1306 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
1307 (DemandedMask & ~RHSKnownZero))
1308 return UpdateValueUsesWith(I, I->getOperand(1));
1309
1310 // If all of the demanded bits in the inputs are known zeros, return zero.
1311 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
1312 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
1313
1314 // If the RHS is a constant, see if we can simplify it.
1315 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
1316 return UpdateValueUsesWith(I, I);
1317
1318 // Output known-1 bits are only known if set in both the LHS & RHS.
1319 RHSKnownOne &= LHSKnownOne;
1320 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1321 RHSKnownZero |= LHSKnownZero;
1322 break;
1323 case Instruction::Or:
1324 // If either the LHS or the RHS are One, the result is One.
1325 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1326 RHSKnownZero, RHSKnownOne, Depth+1))
1327 return true;
1328 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1329 "Bits known to be one AND zero?");
1330 // If something is known one on the RHS, the bits aren't demanded on the
1331 // LHS.
1332 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
1333 LHSKnownZero, LHSKnownOne, Depth+1))
1334 return true;
1335 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1336 "Bits known to be one AND zero?");
1337
1338 // If all of the demanded bits are known zero on one side, return the other.
1339 // These bits cannot contribute to the result of the 'or'.
1340 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
1341 (DemandedMask & ~LHSKnownOne))
1342 return UpdateValueUsesWith(I, I->getOperand(0));
1343 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
1344 (DemandedMask & ~RHSKnownOne))
1345 return UpdateValueUsesWith(I, I->getOperand(1));
1346
1347 // If all of the potentially set bits on one side are known to be set on
1348 // the other side, just use the 'other' side.
1349 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
1350 (DemandedMask & (~RHSKnownZero)))
1351 return UpdateValueUsesWith(I, I->getOperand(0));
1352 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
1353 (DemandedMask & (~LHSKnownZero)))
1354 return UpdateValueUsesWith(I, I->getOperand(1));
1355
1356 // If the RHS is a constant, see if we can simplify it.
1357 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1358 return UpdateValueUsesWith(I, I);
1359
1360 // Output known-0 bits are only known if clear in both the LHS & RHS.
1361 RHSKnownZero &= LHSKnownZero;
1362 // Output known-1 are known to be set if set in either the LHS | RHS.
1363 RHSKnownOne |= LHSKnownOne;
1364 break;
1365 case Instruction::Xor: {
1366 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1367 RHSKnownZero, RHSKnownOne, Depth+1))
1368 return true;
1369 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1370 "Bits known to be one AND zero?");
1371 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1372 LHSKnownZero, LHSKnownOne, Depth+1))
1373 return true;
1374 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1375 "Bits known to be one AND zero?");
1376
1377 // If all of the demanded bits are known zero on one side, return the other.
1378 // These bits cannot contribute to the result of the 'xor'.
1379 if ((DemandedMask & RHSKnownZero) == DemandedMask)
1380 return UpdateValueUsesWith(I, I->getOperand(0));
1381 if ((DemandedMask & LHSKnownZero) == DemandedMask)
1382 return UpdateValueUsesWith(I, I->getOperand(1));
1383
1384 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1385 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
1386 (RHSKnownOne & LHSKnownOne);
1387 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1388 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
1389 (RHSKnownOne & LHSKnownZero);
1390
1391 // If all of the demanded bits are known to be zero on one side or the
1392 // other, turn this into an *inclusive* or.
1393 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1394 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
1395 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00001396 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001397 I->getName());
1398 InsertNewInstBefore(Or, *I);
1399 return UpdateValueUsesWith(I, Or);
1400 }
1401
1402 // If all of the demanded bits on one side are known, and all of the set
1403 // bits on that side are also known to be set on the other side, turn this
1404 // into an AND, as we know the bits will be cleared.
1405 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1406 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
1407 // all known
1408 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
1409 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
1410 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +00001411 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001412 InsertNewInstBefore(And, *I);
1413 return UpdateValueUsesWith(I, And);
1414 }
1415 }
1416
1417 // If the RHS is a constant, see if we can simplify it.
1418 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
1419 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1420 return UpdateValueUsesWith(I, I);
1421
1422 RHSKnownZero = KnownZeroOut;
1423 RHSKnownOne = KnownOneOut;
1424 break;
1425 }
1426 case Instruction::Select:
1427 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
1428 RHSKnownZero, RHSKnownOne, Depth+1))
1429 return true;
1430 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1431 LHSKnownZero, LHSKnownOne, Depth+1))
1432 return true;
1433 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1434 "Bits known to be one AND zero?");
1435 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1436 "Bits known to be one AND zero?");
1437
1438 // If the operands are constants, see if we can simplify them.
1439 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1440 return UpdateValueUsesWith(I, I);
1441 if (ShrinkDemandedConstant(I, 2, DemandedMask))
1442 return UpdateValueUsesWith(I, I);
1443
1444 // Only known if known in both the LHS and RHS.
1445 RHSKnownOne &= LHSKnownOne;
1446 RHSKnownZero &= LHSKnownZero;
1447 break;
1448 case Instruction::Trunc: {
1449 uint32_t truncBf =
1450 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
1451 DemandedMask.zext(truncBf);
1452 RHSKnownZero.zext(truncBf);
1453 RHSKnownOne.zext(truncBf);
1454 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1455 RHSKnownZero, RHSKnownOne, Depth+1))
1456 return true;
1457 DemandedMask.trunc(BitWidth);
1458 RHSKnownZero.trunc(BitWidth);
1459 RHSKnownOne.trunc(BitWidth);
1460 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1461 "Bits known to be one AND zero?");
1462 break;
1463 }
1464 case Instruction::BitCast:
1465 if (!I->getOperand(0)->getType()->isInteger())
1466 return false;
1467
1468 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1469 RHSKnownZero, RHSKnownOne, Depth+1))
1470 return true;
1471 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1472 "Bits known to be one AND zero?");
1473 break;
1474 case Instruction::ZExt: {
1475 // Compute the bits in the result that are not present in the input.
1476 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1477 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1478
1479 DemandedMask.trunc(SrcBitWidth);
1480 RHSKnownZero.trunc(SrcBitWidth);
1481 RHSKnownOne.trunc(SrcBitWidth);
1482 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1483 RHSKnownZero, RHSKnownOne, Depth+1))
1484 return true;
1485 DemandedMask.zext(BitWidth);
1486 RHSKnownZero.zext(BitWidth);
1487 RHSKnownOne.zext(BitWidth);
1488 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1489 "Bits known to be one AND zero?");
1490 // The top bits are known to be zero.
1491 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1492 break;
1493 }
1494 case Instruction::SExt: {
1495 // Compute the bits in the result that are not present in the input.
1496 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1497 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1498
1499 APInt InputDemandedBits = DemandedMask &
1500 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1501
1502 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1503 // If any of the sign extended bits are demanded, we know that the sign
1504 // bit is demanded.
1505 if ((NewBits & DemandedMask) != 0)
1506 InputDemandedBits.set(SrcBitWidth-1);
1507
1508 InputDemandedBits.trunc(SrcBitWidth);
1509 RHSKnownZero.trunc(SrcBitWidth);
1510 RHSKnownOne.trunc(SrcBitWidth);
1511 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1512 RHSKnownZero, RHSKnownOne, Depth+1))
1513 return true;
1514 InputDemandedBits.zext(BitWidth);
1515 RHSKnownZero.zext(BitWidth);
1516 RHSKnownOne.zext(BitWidth);
1517 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1518 "Bits known to be one AND zero?");
1519
1520 // If the sign bit of the input is known set or clear, then we know the
1521 // top bits of the result.
1522
1523 // If the input sign bit is known zero, or if the NewBits are not demanded
1524 // convert this into a zero extension.
1525 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1526 {
1527 // Convert to ZExt cast
1528 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1529 return UpdateValueUsesWith(I, NewCast);
1530 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1531 RHSKnownOne |= NewBits;
1532 }
1533 break;
1534 }
1535 case Instruction::Add: {
1536 // Figure out what the input bits are. If the top bits of the and result
1537 // are not demanded, then the add doesn't demand them from its input
1538 // either.
1539 uint32_t NLZ = DemandedMask.countLeadingZeros();
1540
1541 // If there is a constant on the RHS, there are a variety of xformations
1542 // we can do.
1543 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1544 // If null, this should be simplified elsewhere. Some of the xforms here
1545 // won't work if the RHS is zero.
1546 if (RHS->isZero())
1547 break;
1548
1549 // If the top bit of the output is demanded, demand everything from the
1550 // input. Otherwise, we demand all the input bits except NLZ top bits.
1551 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1552
1553 // Find information about known zero/one bits in the input.
1554 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1555 LHSKnownZero, LHSKnownOne, Depth+1))
1556 return true;
1557
1558 // If the RHS of the add has bits set that can't affect the input, reduce
1559 // the constant.
1560 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1561 return UpdateValueUsesWith(I, I);
1562
1563 // Avoid excess work.
1564 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1565 break;
1566
1567 // Turn it into OR if input bits are zero.
1568 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1569 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00001570 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001571 I->getName());
1572 InsertNewInstBefore(Or, *I);
1573 return UpdateValueUsesWith(I, Or);
1574 }
1575
1576 // We can say something about the output known-zero and known-one bits,
1577 // depending on potential carries from the input constant and the
1578 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1579 // bits set and the RHS constant is 0x01001, then we know we have a known
1580 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1581
1582 // To compute this, we first compute the potential carry bits. These are
1583 // the bits which may be modified. I'm not aware of a better way to do
1584 // this scan.
1585 const APInt& RHSVal = RHS->getValue();
1586 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1587
1588 // Now that we know which bits have carries, compute the known-1/0 sets.
1589
1590 // Bits are known one if they are known zero in one operand and one in the
1591 // other, and there is no input carry.
1592 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1593 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1594
1595 // Bits are known zero if they are known zero in both operands and there
1596 // is no input carry.
1597 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1598 } else {
1599 // If the high-bits of this ADD are not demanded, then it does not demand
1600 // the high bits of its LHS or RHS.
1601 if (DemandedMask[BitWidth-1] == 0) {
1602 // Right fill the mask of bits for this ADD to demand the most
1603 // significant bit and all those below it.
1604 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1605 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1606 LHSKnownZero, LHSKnownOne, Depth+1))
1607 return true;
1608 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1609 LHSKnownZero, LHSKnownOne, Depth+1))
1610 return true;
1611 }
1612 }
1613 break;
1614 }
1615 case Instruction::Sub:
1616 // If the high-bits of this SUB are not demanded, then it does not demand
1617 // the high bits of its LHS or RHS.
1618 if (DemandedMask[BitWidth-1] == 0) {
1619 // Right fill the mask of bits for this SUB to demand the most
1620 // significant bit and all those below it.
1621 uint32_t NLZ = DemandedMask.countLeadingZeros();
1622 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1623 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1624 LHSKnownZero, LHSKnownOne, Depth+1))
1625 return true;
1626 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1627 LHSKnownZero, LHSKnownOne, Depth+1))
1628 return true;
1629 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001630 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1631 // the known zeros and ones.
1632 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001633 break;
1634 case Instruction::Shl:
1635 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1636 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1637 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1638 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1639 RHSKnownZero, RHSKnownOne, Depth+1))
1640 return true;
1641 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1642 "Bits known to be one AND zero?");
1643 RHSKnownZero <<= ShiftAmt;
1644 RHSKnownOne <<= ShiftAmt;
1645 // low bits known zero.
1646 if (ShiftAmt)
1647 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1648 }
1649 break;
1650 case Instruction::LShr:
1651 // For a logical shift right
1652 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1653 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1654
1655 // Unsigned shift right.
1656 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1657 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1658 RHSKnownZero, RHSKnownOne, Depth+1))
1659 return true;
1660 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1661 "Bits known to be one AND zero?");
1662 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1663 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1664 if (ShiftAmt) {
1665 // Compute the new bits that are at the top now.
1666 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1667 RHSKnownZero |= HighBits; // high bits known zero.
1668 }
1669 }
1670 break;
1671 case Instruction::AShr:
1672 // If this is an arithmetic shift right and only the low-bit is set, we can
1673 // always convert this into a logical shr, even if the shift amount is
1674 // variable. The low bit of the shift cannot be an input sign bit unless
1675 // the shift amount is >= the size of the datatype, which is undefined.
1676 if (DemandedMask == 1) {
1677 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001678 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001679 I->getOperand(0), I->getOperand(1), I->getName());
1680 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1681 return UpdateValueUsesWith(I, NewVal);
1682 }
1683
1684 // If the sign bit is the only bit demanded by this ashr, then there is no
1685 // need to do it, the shift doesn't change the high bit.
1686 if (DemandedMask.isSignBit())
1687 return UpdateValueUsesWith(I, I->getOperand(0));
1688
1689 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1690 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1691
1692 // Signed shift right.
1693 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1694 // If any of the "high bits" are demanded, we should set the sign bit as
1695 // demanded.
1696 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1697 DemandedMaskIn.set(BitWidth-1);
1698 if (SimplifyDemandedBits(I->getOperand(0),
1699 DemandedMaskIn,
1700 RHSKnownZero, RHSKnownOne, Depth+1))
1701 return true;
1702 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1703 "Bits known to be one AND zero?");
1704 // Compute the new bits that are at the top now.
1705 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1706 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1707 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1708
1709 // Handle the sign bits.
1710 APInt SignBit(APInt::getSignBit(BitWidth));
1711 // Adjust to where it is now in the mask.
1712 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1713
1714 // If the input sign bit is known to be zero, or if none of the top bits
1715 // are demanded, turn this into an unsigned shift right.
1716 if (RHSKnownZero[BitWidth-ShiftAmt-1] ||
1717 (HighBits & ~DemandedMask) == HighBits) {
1718 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001719 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001720 I->getOperand(0), SA, I->getName());
1721 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1722 return UpdateValueUsesWith(I, NewVal);
1723 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1724 RHSKnownOne |= HighBits;
1725 }
1726 }
1727 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001728 case Instruction::SRem:
1729 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1730 APInt RA = Rem->getValue();
1731 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
Dan Gohman5a154a12008-05-06 00:51:48 +00001732 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001733 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1734 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1735 LHSKnownZero, LHSKnownOne, Depth+1))
1736 return true;
1737
1738 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1739 LHSKnownZero |= ~LowBits;
1740 else if (LHSKnownOne[BitWidth-1])
1741 LHSKnownOne |= ~LowBits;
1742
1743 KnownZero |= LHSKnownZero & DemandedMask;
1744 KnownOne |= LHSKnownOne & DemandedMask;
1745
1746 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1747 }
1748 }
1749 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001750 case Instruction::URem: {
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001751 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1752 APInt RA = Rem->getValue();
Dan Gohman5a154a12008-05-06 00:51:48 +00001753 if (RA.isPowerOf2()) {
1754 APInt LowBits = (RA - 1);
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001755 APInt Mask2 = LowBits & DemandedMask;
1756 KnownZero |= ~LowBits & DemandedMask;
1757 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1758 KnownZero, KnownOne, Depth+1))
1759 return true;
1760
1761 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
Dan Gohmanbec16052008-04-28 17:02:21 +00001762 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001763 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001764 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001765
1766 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1767 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohman23ea06d2008-05-01 19:13:24 +00001768 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1769 KnownZero2, KnownOne2, Depth+1))
1770 return true;
1771
Dan Gohmanbec16052008-04-28 17:02:21 +00001772 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohman23ea06d2008-05-01 19:13:24 +00001773 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohmanbec16052008-04-28 17:02:21 +00001774 KnownZero2, KnownOne2, Depth+1))
1775 return true;
1776
1777 Leaders = std::max(Leaders,
1778 KnownZero2.countLeadingOnes());
1779 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001780 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001781 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001782 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001783
1784 // If the client is only demanding bits that we know, return the known
1785 // constant.
1786 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1787 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1788 return false;
1789}
1790
1791
1792/// SimplifyDemandedVectorElts - The specified value producecs a vector with
1793/// 64 or fewer elements. DemandedElts contains the set of elements that are
1794/// actually used by the caller. This method analyzes which elements of the
1795/// operand are undef and returns that information in UndefElts.
1796///
1797/// If the information about demanded elements can be used to simplify the
1798/// operation, the operation is simplified, then the resultant value is
1799/// returned. This returns null if no change was made.
1800Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1801 uint64_t &UndefElts,
1802 unsigned Depth) {
1803 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1804 assert(VWidth <= 64 && "Vector too wide to analyze!");
1805 uint64_t EltMask = ~0ULL >> (64-VWidth);
1806 assert(DemandedElts != EltMask && (DemandedElts & ~EltMask) == 0 &&
1807 "Invalid DemandedElts!");
1808
1809 if (isa<UndefValue>(V)) {
1810 // If the entire vector is undefined, just return this info.
1811 UndefElts = EltMask;
1812 return 0;
1813 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1814 UndefElts = EltMask;
1815 return UndefValue::get(V->getType());
1816 }
1817
1818 UndefElts = 0;
1819 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1820 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1821 Constant *Undef = UndefValue::get(EltTy);
1822
1823 std::vector<Constant*> Elts;
1824 for (unsigned i = 0; i != VWidth; ++i)
1825 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1826 Elts.push_back(Undef);
1827 UndefElts |= (1ULL << i);
1828 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1829 Elts.push_back(Undef);
1830 UndefElts |= (1ULL << i);
1831 } else { // Otherwise, defined.
1832 Elts.push_back(CP->getOperand(i));
1833 }
1834
1835 // If we changed the constant, return it.
1836 Constant *NewCP = ConstantVector::get(Elts);
1837 return NewCP != CP ? NewCP : 0;
1838 } else if (isa<ConstantAggregateZero>(V)) {
1839 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1840 // set to undef.
1841 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1842 Constant *Zero = Constant::getNullValue(EltTy);
1843 Constant *Undef = UndefValue::get(EltTy);
1844 std::vector<Constant*> Elts;
1845 for (unsigned i = 0; i != VWidth; ++i)
1846 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1847 UndefElts = DemandedElts ^ EltMask;
1848 return ConstantVector::get(Elts);
1849 }
1850
1851 if (!V->hasOneUse()) { // Other users may use these bits.
1852 if (Depth != 0) { // Not at the root.
1853 // TODO: Just compute the UndefElts information recursively.
1854 return false;
1855 }
1856 return false;
1857 } else if (Depth == 10) { // Limit search depth.
1858 return false;
1859 }
1860
1861 Instruction *I = dyn_cast<Instruction>(V);
1862 if (!I) return false; // Only analyze instructions.
1863
1864 bool MadeChange = false;
1865 uint64_t UndefElts2;
1866 Value *TmpV;
1867 switch (I->getOpcode()) {
1868 default: break;
1869
1870 case Instruction::InsertElement: {
1871 // If this is a variable index, we don't know which element it overwrites.
1872 // demand exactly the same input as we produce.
1873 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1874 if (Idx == 0) {
1875 // Note that we can't propagate undef elt info, because we don't know
1876 // which elt is getting updated.
1877 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1878 UndefElts2, Depth+1);
1879 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1880 break;
1881 }
1882
1883 // If this is inserting an element that isn't demanded, remove this
1884 // insertelement.
1885 unsigned IdxNo = Idx->getZExtValue();
1886 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1887 return AddSoonDeadInstToWorklist(*I, 0);
1888
1889 // Otherwise, the element inserted overwrites whatever was there, so the
1890 // input demanded set is simpler than the output set.
1891 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1892 DemandedElts & ~(1ULL << IdxNo),
1893 UndefElts, Depth+1);
1894 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1895
1896 // The inserted element is defined.
1897 UndefElts |= 1ULL << IdxNo;
1898 break;
1899 }
1900 case Instruction::BitCast: {
1901 // Vector->vector casts only.
1902 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1903 if (!VTy) break;
1904 unsigned InVWidth = VTy->getNumElements();
1905 uint64_t InputDemandedElts = 0;
1906 unsigned Ratio;
1907
1908 if (VWidth == InVWidth) {
1909 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1910 // elements as are demanded of us.
1911 Ratio = 1;
1912 InputDemandedElts = DemandedElts;
1913 } else if (VWidth > InVWidth) {
1914 // Untested so far.
1915 break;
1916
1917 // If there are more elements in the result than there are in the source,
1918 // then an input element is live if any of the corresponding output
1919 // elements are live.
1920 Ratio = VWidth/InVWidth;
1921 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1922 if (DemandedElts & (1ULL << OutIdx))
1923 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1924 }
1925 } else {
1926 // Untested so far.
1927 break;
1928
1929 // If there are more elements in the source than there are in the result,
1930 // then an input element is live if the corresponding output element is
1931 // live.
1932 Ratio = InVWidth/VWidth;
1933 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1934 if (DemandedElts & (1ULL << InIdx/Ratio))
1935 InputDemandedElts |= 1ULL << InIdx;
1936 }
1937
1938 // div/rem demand all inputs, because they don't want divide by zero.
1939 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1940 UndefElts2, Depth+1);
1941 if (TmpV) {
1942 I->setOperand(0, TmpV);
1943 MadeChange = true;
1944 }
1945
1946 UndefElts = UndefElts2;
1947 if (VWidth > InVWidth) {
1948 assert(0 && "Unimp");
1949 // If there are more elements in the result than there are in the source,
1950 // then an output element is undef if the corresponding input element is
1951 // undef.
1952 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1953 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1954 UndefElts |= 1ULL << OutIdx;
1955 } else if (VWidth < InVWidth) {
1956 assert(0 && "Unimp");
1957 // If there are more elements in the source than there are in the result,
1958 // then a result element is undef if all of the corresponding input
1959 // elements are undef.
1960 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1961 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1962 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1963 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1964 }
1965 break;
1966 }
1967 case Instruction::And:
1968 case Instruction::Or:
1969 case Instruction::Xor:
1970 case Instruction::Add:
1971 case Instruction::Sub:
1972 case Instruction::Mul:
1973 // div/rem demand all inputs, because they don't want divide by zero.
1974 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1975 UndefElts, Depth+1);
1976 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1977 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1978 UndefElts2, Depth+1);
1979 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1980
1981 // Output elements are undefined if both are undefined. Consider things
1982 // like undef&0. The result is known zero, not undef.
1983 UndefElts &= UndefElts2;
1984 break;
1985
1986 case Instruction::Call: {
1987 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1988 if (!II) break;
1989 switch (II->getIntrinsicID()) {
1990 default: break;
1991
1992 // Binary vector operations that work column-wise. A dest element is a
1993 // function of the corresponding input elements from the two inputs.
1994 case Intrinsic::x86_sse_sub_ss:
1995 case Intrinsic::x86_sse_mul_ss:
1996 case Intrinsic::x86_sse_min_ss:
1997 case Intrinsic::x86_sse_max_ss:
1998 case Intrinsic::x86_sse2_sub_sd:
1999 case Intrinsic::x86_sse2_mul_sd:
2000 case Intrinsic::x86_sse2_min_sd:
2001 case Intrinsic::x86_sse2_max_sd:
2002 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
2003 UndefElts, Depth+1);
2004 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
2005 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
2006 UndefElts2, Depth+1);
2007 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
2008
2009 // If only the low elt is demanded and this is a scalarizable intrinsic,
2010 // scalarize it now.
2011 if (DemandedElts == 1) {
2012 switch (II->getIntrinsicID()) {
2013 default: break;
2014 case Intrinsic::x86_sse_sub_ss:
2015 case Intrinsic::x86_sse_mul_ss:
2016 case Intrinsic::x86_sse2_sub_sd:
2017 case Intrinsic::x86_sse2_mul_sd:
2018 // TODO: Lower MIN/MAX/ABS/etc
2019 Value *LHS = II->getOperand(1);
2020 Value *RHS = II->getOperand(2);
2021 // Extract the element as scalars.
2022 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
2023 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
2024
2025 switch (II->getIntrinsicID()) {
2026 default: assert(0 && "Case stmts out of sync!");
2027 case Intrinsic::x86_sse_sub_ss:
2028 case Intrinsic::x86_sse2_sub_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00002029 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002030 II->getName()), *II);
2031 break;
2032 case Intrinsic::x86_sse_mul_ss:
2033 case Intrinsic::x86_sse2_mul_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00002034 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002035 II->getName()), *II);
2036 break;
2037 }
2038
2039 Instruction *New =
Gabor Greifd6da1d02008-04-06 20:25:17 +00002040 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
2041 II->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002042 InsertNewInstBefore(New, *II);
2043 AddSoonDeadInstToWorklist(*II, 0);
2044 return New;
2045 }
2046 }
2047
2048 // Output elements are undefined if both are undefined. Consider things
2049 // like undef&0. The result is known zero, not undef.
2050 UndefElts &= UndefElts2;
2051 break;
2052 }
2053 break;
2054 }
2055 }
2056 return MadeChange ? I : 0;
2057}
2058
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002059/// AssociativeOpt - Perform an optimization on an associative operator. This
2060/// function is designed to check a chain of associative operators for a
2061/// potential to apply a certain optimization. Since the optimization may be
2062/// applicable if the expression was reassociated, this checks the chain, then
2063/// reassociates the expression as necessary to expose the optimization
2064/// opportunity. This makes use of a special Functor, which must define
2065/// 'shouldApply' and 'apply' methods.
2066///
2067template<typename Functor>
2068Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
2069 unsigned Opcode = Root.getOpcode();
2070 Value *LHS = Root.getOperand(0);
2071
2072 // Quick check, see if the immediate LHS matches...
2073 if (F.shouldApply(LHS))
2074 return F.apply(Root);
2075
2076 // Otherwise, if the LHS is not of the same opcode as the root, return.
2077 Instruction *LHSI = dyn_cast<Instruction>(LHS);
2078 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
2079 // Should we apply this transform to the RHS?
2080 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
2081
2082 // If not to the RHS, check to see if we should apply to the LHS...
2083 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
2084 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
2085 ShouldApply = true;
2086 }
2087
2088 // If the functor wants to apply the optimization to the RHS of LHSI,
2089 // reassociate the expression from ((? op A) op B) to (? op (A op B))
2090 if (ShouldApply) {
2091 BasicBlock *BB = Root.getParent();
2092
2093 // Now all of the instructions are in the current basic block, go ahead
2094 // and perform the reassociation.
2095 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
2096
2097 // First move the selected RHS to the LHS of the root...
2098 Root.setOperand(0, LHSI->getOperand(1));
2099
2100 // Make what used to be the LHS of the root be the user of the root...
2101 Value *ExtraOperand = TmpLHSI->getOperand(1);
2102 if (&Root == TmpLHSI) {
2103 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
2104 return 0;
2105 }
2106 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
2107 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
2108 TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
2109 BasicBlock::iterator ARI = &Root; ++ARI;
2110 BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root
2111 ARI = Root;
2112
2113 // Now propagate the ExtraOperand down the chain of instructions until we
2114 // get to LHSI.
2115 while (TmpLHSI != LHSI) {
2116 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
2117 // Move the instruction to immediately before the chain we are
2118 // constructing to avoid breaking dominance properties.
2119 NextLHSI->getParent()->getInstList().remove(NextLHSI);
2120 BB->getInstList().insert(ARI, NextLHSI);
2121 ARI = NextLHSI;
2122
2123 Value *NextOp = NextLHSI->getOperand(1);
2124 NextLHSI->setOperand(1, ExtraOperand);
2125 TmpLHSI = NextLHSI;
2126 ExtraOperand = NextOp;
2127 }
2128
2129 // Now that the instructions are reassociated, have the functor perform
2130 // the transformation...
2131 return F.apply(Root);
2132 }
2133
2134 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
2135 }
2136 return 0;
2137}
2138
Dan Gohman089efff2008-05-13 00:00:25 +00002139namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002140
2141// AddRHS - Implements: X + X --> X << 1
2142struct AddRHS {
2143 Value *RHS;
2144 AddRHS(Value *rhs) : RHS(rhs) {}
2145 bool shouldApply(Value *LHS) const { return LHS == RHS; }
2146 Instruction *apply(BinaryOperator &Add) const {
Gabor Greifa645dd32008-05-16 19:29:10 +00002147 return BinaryOperator::CreateShl(Add.getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002148 ConstantInt::get(Add.getType(), 1));
2149 }
2150};
2151
2152// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
2153// iff C1&C2 == 0
2154struct AddMaskingAnd {
2155 Constant *C2;
2156 AddMaskingAnd(Constant *c) : C2(c) {}
2157 bool shouldApply(Value *LHS) const {
2158 ConstantInt *C1;
2159 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
2160 ConstantExpr::getAnd(C1, C2)->isNullValue();
2161 }
2162 Instruction *apply(BinaryOperator &Add) const {
Gabor Greifa645dd32008-05-16 19:29:10 +00002163 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002164 }
2165};
2166
Dan Gohman089efff2008-05-13 00:00:25 +00002167}
2168
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002169static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
2170 InstCombiner *IC) {
2171 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
2172 if (Constant *SOC = dyn_cast<Constant>(SO))
2173 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
2174
Gabor Greifa645dd32008-05-16 19:29:10 +00002175 return IC->InsertNewInstBefore(CastInst::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002176 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
2177 }
2178
2179 // Figure out if the constant is the left or the right argument.
2180 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
2181 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
2182
2183 if (Constant *SOC = dyn_cast<Constant>(SO)) {
2184 if (ConstIsRHS)
2185 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
2186 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
2187 }
2188
2189 Value *Op0 = SO, *Op1 = ConstOperand;
2190 if (!ConstIsRHS)
2191 std::swap(Op0, Op1);
2192 Instruction *New;
2193 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00002194 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002195 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00002196 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002197 SO->getName()+".cmp");
2198 else {
2199 assert(0 && "Unknown binary instruction type!");
2200 abort();
2201 }
2202 return IC->InsertNewInstBefore(New, I);
2203}
2204
2205// FoldOpIntoSelect - Given an instruction with a select as one operand and a
2206// constant as the other operand, try to fold the binary operator into the
2207// select arguments. This also works for Cast instructions, which obviously do
2208// not have a second operand.
2209static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
2210 InstCombiner *IC) {
2211 // Don't modify shared select instructions
2212 if (!SI->hasOneUse()) return 0;
2213 Value *TV = SI->getOperand(1);
2214 Value *FV = SI->getOperand(2);
2215
2216 if (isa<Constant>(TV) || isa<Constant>(FV)) {
2217 // Bool selects with constant operands can be folded to logical ops.
2218 if (SI->getType() == Type::Int1Ty) return 0;
2219
2220 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
2221 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
2222
Gabor Greifd6da1d02008-04-06 20:25:17 +00002223 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
2224 SelectFalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002225 }
2226 return 0;
2227}
2228
2229
2230/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
2231/// node as operand #0, see if we can fold the instruction into the PHI (which
2232/// is only possible if all operands to the PHI are constants).
2233Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
2234 PHINode *PN = cast<PHINode>(I.getOperand(0));
2235 unsigned NumPHIValues = PN->getNumIncomingValues();
2236 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
2237
2238 // Check to see if all of the operands of the PHI are constants. If there is
2239 // one non-constant value, remember the BB it is. If there is more than one
2240 // or if *it* is a PHI, bail out.
2241 BasicBlock *NonConstBB = 0;
2242 for (unsigned i = 0; i != NumPHIValues; ++i)
2243 if (!isa<Constant>(PN->getIncomingValue(i))) {
2244 if (NonConstBB) return 0; // More than one non-const value.
2245 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
2246 NonConstBB = PN->getIncomingBlock(i);
2247
2248 // If the incoming non-constant value is in I's block, we have an infinite
2249 // loop.
2250 if (NonConstBB == I.getParent())
2251 return 0;
2252 }
2253
2254 // If there is exactly one non-constant value, we can insert a copy of the
2255 // operation in that block. However, if this is a critical edge, we would be
2256 // inserting the computation one some other paths (e.g. inside a loop). Only
2257 // do this if the pred block is unconditionally branching into the phi block.
2258 if (NonConstBB) {
2259 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
2260 if (!BI || !BI->isUnconditional()) return 0;
2261 }
2262
2263 // Okay, we can do the transformation: create the new PHI node.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002264 PHINode *NewPN = PHINode::Create(I.getType(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002265 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
2266 InsertNewInstBefore(NewPN, *PN);
2267 NewPN->takeName(PN);
2268
2269 // Next, add all of the operands to the PHI.
2270 if (I.getNumOperands() == 2) {
2271 Constant *C = cast<Constant>(I.getOperand(1));
2272 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00002273 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002274 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
2275 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2276 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
2277 else
2278 InV = ConstantExpr::get(I.getOpcode(), InC, C);
2279 } else {
2280 assert(PN->getIncomingBlock(i) == NonConstBB);
2281 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00002282 InV = BinaryOperator::Create(BO->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002283 PN->getIncomingValue(i), C, "phitmp",
2284 NonConstBB->getTerminator());
2285 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00002286 InV = CmpInst::Create(CI->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002287 CI->getPredicate(),
2288 PN->getIncomingValue(i), C, "phitmp",
2289 NonConstBB->getTerminator());
2290 else
2291 assert(0 && "Unknown binop!");
2292
2293 AddToWorkList(cast<Instruction>(InV));
2294 }
2295 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
2296 }
2297 } else {
2298 CastInst *CI = cast<CastInst>(&I);
2299 const Type *RetTy = CI->getType();
2300 for (unsigned i = 0; i != NumPHIValues; ++i) {
2301 Value *InV;
2302 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
2303 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
2304 } else {
2305 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greifa645dd32008-05-16 19:29:10 +00002306 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002307 I.getType(), "phitmp",
2308 NonConstBB->getTerminator());
2309 AddToWorkList(cast<Instruction>(InV));
2310 }
2311 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
2312 }
2313 }
2314 return ReplaceInstUsesWith(I, NewPN);
2315}
2316
Chris Lattner55476162008-01-29 06:52:45 +00002317
2318/// CannotBeNegativeZero - Return true if we can prove that the specified FP
2319/// value is never equal to -0.0.
2320///
2321/// Note that this function will need to be revisited when we support nondefault
2322/// rounding modes!
2323///
2324static bool CannotBeNegativeZero(const Value *V) {
2325 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2326 return !CFP->getValueAPF().isNegZero();
2327
2328 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2329 if (const Instruction *I = dyn_cast<Instruction>(V)) {
2330 if (I->getOpcode() == Instruction::Add &&
2331 isa<ConstantFP>(I->getOperand(1)) &&
2332 cast<ConstantFP>(I->getOperand(1))->isNullValue())
2333 return true;
2334
2335 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2336 if (II->getIntrinsicID() == Intrinsic::sqrt)
2337 return CannotBeNegativeZero(II->getOperand(1));
2338
2339 if (const CallInst *CI = dyn_cast<CallInst>(I))
2340 if (const Function *F = CI->getCalledFunction()) {
2341 if (F->isDeclaration()) {
2342 switch (F->getNameLen()) {
2343 case 3: // abs(x) != -0.0
2344 if (!strcmp(F->getNameStart(), "abs")) return true;
2345 break;
2346 case 4: // abs[lf](x) != -0.0
2347 if (!strcmp(F->getNameStart(), "absf")) return true;
2348 if (!strcmp(F->getNameStart(), "absl")) return true;
2349 break;
2350 }
2351 }
2352 }
2353 }
2354
2355 return false;
2356}
2357
2358
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002359Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
2360 bool Changed = SimplifyCommutative(I);
2361 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2362
2363 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2364 // X + undef -> undef
2365 if (isa<UndefValue>(RHS))
2366 return ReplaceInstUsesWith(I, RHS);
2367
2368 // X + 0 --> X
2369 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
2370 if (RHSC->isNullValue())
2371 return ReplaceInstUsesWith(I, LHS);
2372 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00002373 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
2374 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002375 return ReplaceInstUsesWith(I, LHS);
2376 }
2377
2378 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
2379 // X + (signbit) --> X ^ signbit
2380 const APInt& Val = CI->getValue();
2381 uint32_t BitWidth = Val.getBitWidth();
2382 if (Val == APInt::getSignBit(BitWidth))
Gabor Greifa645dd32008-05-16 19:29:10 +00002383 return BinaryOperator::CreateXor(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002384
2385 // See if SimplifyDemandedBits can simplify this. This handles stuff like
2386 // (X & 254)+1 -> (X&254)|1
2387 if (!isa<VectorType>(I.getType())) {
2388 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2389 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2390 KnownZero, KnownOne))
2391 return &I;
2392 }
2393 }
2394
2395 if (isa<PHINode>(LHS))
2396 if (Instruction *NV = FoldOpIntoPhi(I))
2397 return NV;
2398
2399 ConstantInt *XorRHS = 0;
2400 Value *XorLHS = 0;
2401 if (isa<ConstantInt>(RHSC) &&
2402 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2403 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
2404 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2405
2406 uint32_t Size = TySizeBits / 2;
2407 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2408 APInt CFF80Val(-C0080Val);
2409 do {
2410 if (TySizeBits > Size) {
2411 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2412 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2413 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2414 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2415 // This is a sign extend if the top bits are known zero.
2416 if (!MaskedValueIsZero(XorLHS,
2417 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2418 Size = 0; // Not a sign ext, but can't be any others either.
2419 break;
2420 }
2421 }
2422 Size >>= 1;
2423 C0080Val = APIntOps::lshr(C0080Val, Size);
2424 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2425 } while (Size >= 1);
2426
2427 // FIXME: This shouldn't be necessary. When the backends can handle types
2428 // with funny bit widths then this whole cascade of if statements should
2429 // be removed. It is just here to get the size of the "middle" type back
2430 // up to something that the back ends can handle.
2431 const Type *MiddleType = 0;
2432 switch (Size) {
2433 default: break;
2434 case 32: MiddleType = Type::Int32Ty; break;
2435 case 16: MiddleType = Type::Int16Ty; break;
2436 case 8: MiddleType = Type::Int8Ty; break;
2437 }
2438 if (MiddleType) {
2439 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2440 InsertNewInstBefore(NewTrunc, I);
2441 return new SExtInst(NewTrunc, I.getType(), I.getName());
2442 }
2443 }
2444 }
2445
2446 // X + X --> X << 1
2447 if (I.getType()->isInteger() && I.getType() != Type::Int1Ty) {
2448 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2449
2450 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2451 if (RHSI->getOpcode() == Instruction::Sub)
2452 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2453 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2454 }
2455 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2456 if (LHSI->getOpcode() == Instruction::Sub)
2457 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2458 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2459 }
2460 }
2461
2462 // -A + B --> B - A
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002463 // -A + -B --> -(A + B)
2464 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattner322a9192008-02-18 17:50:16 +00002465 if (LHS->getType()->isIntOrIntVector()) {
2466 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002467 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattner322a9192008-02-18 17:50:16 +00002468 InsertNewInstBefore(NewAdd, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002469 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattner322a9192008-02-18 17:50:16 +00002470 }
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002471 }
2472
Gabor Greifa645dd32008-05-16 19:29:10 +00002473 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002474 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002475
2476 // A + -B --> A - B
2477 if (!isa<Constant>(RHS))
2478 if (Value *V = dyn_castNegVal(RHS))
Gabor Greifa645dd32008-05-16 19:29:10 +00002479 return BinaryOperator::CreateSub(LHS, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002480
2481
2482 ConstantInt *C2;
2483 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2484 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002485 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002486
2487 // X*C1 + X*C2 --> X * (C1+C2)
2488 ConstantInt *C1;
2489 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002490 return BinaryOperator::CreateMul(X, Add(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002491 }
2492
2493 // X + X*C --> X * (C+1)
2494 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greifa645dd32008-05-16 19:29:10 +00002495 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002496
2497 // X + ~X --> -1 since ~X = -X-1
2498 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2499 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2500
2501
2502 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2503 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2504 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2505 return R;
2506
Nick Lewycky83598a72008-02-03 07:42:09 +00002507 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky5d03b512008-02-03 08:19:11 +00002508 if (I.getType()->isIntOrIntVector()) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002509 Value *W, *X, *Y, *Z;
2510 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2511 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2512 if (W != Y) {
2513 if (W == Z) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002514 std::swap(Y, Z);
Nick Lewycky83598a72008-02-03 07:42:09 +00002515 } else if (Y == X) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002516 std::swap(W, X);
2517 } else if (X == Z) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002518 std::swap(Y, Z);
2519 std::swap(W, X);
2520 }
2521 }
2522
2523 if (W == Y) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002524 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewycky83598a72008-02-03 07:42:09 +00002525 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002526 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewycky83598a72008-02-03 07:42:09 +00002527 }
2528 }
2529 }
2530
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002531 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2532 Value *X = 0;
2533 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002534 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002535
2536 // (X & FF00) + xx00 -> (X+xx00) & FF00
2537 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2538 Constant *Anded = And(CRHS, C2);
2539 if (Anded == CRHS) {
2540 // See if all bits from the first bit set in the Add RHS up are included
2541 // in the mask. First, get the rightmost bit.
2542 const APInt& AddRHSV = CRHS->getValue();
2543
2544 // Form a mask of all bits from the lowest bit added through the top.
2545 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2546
2547 // See if the and mask includes all of these bits.
2548 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2549
2550 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2551 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greifa645dd32008-05-16 19:29:10 +00002552 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002553 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002554 return BinaryOperator::CreateAnd(NewAdd, C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002555 }
2556 }
2557 }
2558
2559 // Try to fold constant add into select arguments.
2560 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2561 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2562 return R;
2563 }
2564
2565 // add (cast *A to intptrtype) B ->
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002566 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002567 {
2568 CastInst *CI = dyn_cast<CastInst>(LHS);
2569 Value *Other = RHS;
2570 if (!CI) {
2571 CI = dyn_cast<CastInst>(RHS);
2572 Other = LHS;
2573 }
2574 if (CI && CI->getType()->isSized() &&
2575 (CI->getType()->getPrimitiveSizeInBits() ==
2576 TD->getIntPtrType()->getPrimitiveSizeInBits())
2577 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002578 unsigned AS =
2579 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00002580 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2581 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002582 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002583 return new PtrToIntInst(I2, CI->getType());
2584 }
2585 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002586
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002587 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002588 {
2589 SelectInst *SI = dyn_cast<SelectInst>(LHS);
2590 Value *Other = RHS;
2591 if (!SI) {
2592 SI = dyn_cast<SelectInst>(RHS);
2593 Other = LHS;
2594 }
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002595 if (SI && SI->hasOneUse()) {
Christopher Lamb244ec282007-12-18 09:34:41 +00002596 Value *TV = SI->getTrueValue();
2597 Value *FV = SI->getFalseValue();
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002598 Value *A, *N;
Christopher Lamb244ec282007-12-18 09:34:41 +00002599
2600 // Can we fold the add into the argument of the select?
2601 // We check both true and false select arguments for a matching subtract.
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002602 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Value(A))) &&
2603 A == Other) // Fold the add into the true select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002604 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002605 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Value(A))) &&
2606 A == Other) // Fold the add into the false select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002607 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb244ec282007-12-18 09:34:41 +00002608 }
2609 }
Chris Lattner55476162008-01-29 06:52:45 +00002610
2611 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2612 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2613 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2614 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002615
2616 return Changed ? &I : 0;
2617}
2618
2619// isSignBit - Return true if the value represented by the constant only has the
2620// highest order bit set.
2621static bool isSignBit(ConstantInt *CI) {
2622 uint32_t NumBits = CI->getType()->getPrimitiveSizeInBits();
2623 return CI->getValue() == APInt::getSignBit(NumBits);
2624}
2625
2626Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2627 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2628
2629 if (Op0 == Op1) // sub X, X -> 0
2630 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2631
2632 // If this is a 'B = x-(-A)', change to B = x+A...
2633 if (Value *V = dyn_castNegVal(Op1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002634 return BinaryOperator::CreateAdd(Op0, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002635
2636 if (isa<UndefValue>(Op0))
2637 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2638 if (isa<UndefValue>(Op1))
2639 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2640
2641 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2642 // Replace (-1 - A) with (~A)...
2643 if (C->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002644 return BinaryOperator::CreateNot(Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002645
2646 // C - ~X == X + (1+C)
2647 Value *X = 0;
2648 if (match(Op1, m_Not(m_Value(X))))
Gabor Greifa645dd32008-05-16 19:29:10 +00002649 return BinaryOperator::CreateAdd(X, AddOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002650
2651 // -(X >>u 31) -> (X >>s 31)
2652 // -(X >>s 31) -> (X >>u 31)
2653 if (C->isZero()) {
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002654 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002655 if (SI->getOpcode() == Instruction::LShr) {
2656 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2657 // Check to see if we are shifting out everything but the sign bit.
2658 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2659 SI->getType()->getPrimitiveSizeInBits()-1) {
2660 // Ok, the transformation is safe. Insert AShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002661 return BinaryOperator::Create(Instruction::AShr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002662 SI->getOperand(0), CU, SI->getName());
2663 }
2664 }
2665 }
2666 else if (SI->getOpcode() == Instruction::AShr) {
2667 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2668 // Check to see if we are shifting out everything but the sign bit.
2669 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2670 SI->getType()->getPrimitiveSizeInBits()-1) {
2671 // Ok, the transformation is safe. Insert LShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002672 return BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002673 SI->getOperand(0), CU, SI->getName());
2674 }
2675 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002676 }
2677 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002678 }
2679
2680 // Try to fold constant sub into select arguments.
2681 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2682 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2683 return R;
2684
2685 if (isa<PHINode>(Op0))
2686 if (Instruction *NV = FoldOpIntoPhi(I))
2687 return NV;
2688 }
2689
2690 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2691 if (Op1I->getOpcode() == Instruction::Add &&
2692 !Op0->getType()->isFPOrFPVector()) {
2693 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002694 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002695 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002696 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002697 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2698 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2699 // C1-(X+C2) --> (C1-C2)-X
Gabor Greifa645dd32008-05-16 19:29:10 +00002700 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002701 Op1I->getOperand(0));
2702 }
2703 }
2704
2705 if (Op1I->hasOneUse()) {
2706 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2707 // is not used by anyone else...
2708 //
2709 if (Op1I->getOpcode() == Instruction::Sub &&
2710 !Op1I->getType()->isFPOrFPVector()) {
2711 // Swap the two operands of the subexpr...
2712 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2713 Op1I->setOperand(0, IIOp1);
2714 Op1I->setOperand(1, IIOp0);
2715
2716 // Create the new top level add instruction...
Gabor Greifa645dd32008-05-16 19:29:10 +00002717 return BinaryOperator::CreateAdd(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002718 }
2719
2720 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2721 //
2722 if (Op1I->getOpcode() == Instruction::And &&
2723 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2724 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2725
2726 Value *NewNot =
Gabor Greifa645dd32008-05-16 19:29:10 +00002727 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2728 return BinaryOperator::CreateAnd(Op0, NewNot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002729 }
2730
2731 // 0 - (X sdiv C) -> (X sdiv -C)
2732 if (Op1I->getOpcode() == Instruction::SDiv)
2733 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2734 if (CSI->isZero())
2735 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002736 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002737 ConstantExpr::getNeg(DivRHS));
2738
2739 // X - X*C --> X * (1-C)
2740 ConstantInt *C2 = 0;
2741 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2742 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002743 return BinaryOperator::CreateMul(Op0, CP1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002744 }
Dan Gohmanda338742007-09-17 17:31:57 +00002745
2746 // X - ((X / Y) * Y) --> X % Y
2747 if (Op1I->getOpcode() == Instruction::Mul)
2748 if (Instruction *I = dyn_cast<Instruction>(Op1I->getOperand(0)))
2749 if (Op0 == I->getOperand(0) &&
2750 Op1I->getOperand(1) == I->getOperand(1)) {
2751 if (I->getOpcode() == Instruction::SDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002752 return BinaryOperator::CreateSRem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002753 if (I->getOpcode() == Instruction::UDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002754 return BinaryOperator::CreateURem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002755 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002756 }
2757 }
2758
2759 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002760 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002761 if (Op0I->getOpcode() == Instruction::Add) {
2762 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2763 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2764 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2765 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2766 } else if (Op0I->getOpcode() == Instruction::Sub) {
2767 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002768 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002769 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002770 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002771
2772 ConstantInt *C1;
2773 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2774 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002775 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002776
2777 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2778 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greifa645dd32008-05-16 19:29:10 +00002779 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002780 }
2781 return 0;
2782}
2783
2784/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2785/// comparison only checks the sign bit. If it only checks the sign bit, set
2786/// TrueIfSigned if the result of the comparison is true when the input value is
2787/// signed.
2788static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2789 bool &TrueIfSigned) {
2790 switch (pred) {
2791 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2792 TrueIfSigned = true;
2793 return RHS->isZero();
2794 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2795 TrueIfSigned = true;
2796 return RHS->isAllOnesValue();
2797 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2798 TrueIfSigned = false;
2799 return RHS->isAllOnesValue();
2800 case ICmpInst::ICMP_UGT:
2801 // True if LHS u> RHS and RHS == high-bit-mask - 1
2802 TrueIfSigned = true;
2803 return RHS->getValue() ==
2804 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2805 case ICmpInst::ICMP_UGE:
2806 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2807 TrueIfSigned = true;
2808 return RHS->getValue() ==
2809 APInt::getSignBit(RHS->getType()->getPrimitiveSizeInBits());
2810 default:
2811 return false;
2812 }
2813}
2814
2815Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2816 bool Changed = SimplifyCommutative(I);
2817 Value *Op0 = I.getOperand(0);
2818
2819 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2820 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2821
2822 // Simplify mul instructions with a constant RHS...
2823 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2824 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2825
2826 // ((X << C1)*C2) == (X * (C2 << C1))
2827 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2828 if (SI->getOpcode() == Instruction::Shl)
2829 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002830 return BinaryOperator::CreateMul(SI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002831 ConstantExpr::getShl(CI, ShOp));
2832
2833 if (CI->isZero())
2834 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2835 if (CI->equalsInt(1)) // X * 1 == X
2836 return ReplaceInstUsesWith(I, Op0);
2837 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002838 return BinaryOperator::CreateNeg(Op0, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002839
2840 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2841 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greifa645dd32008-05-16 19:29:10 +00002842 return BinaryOperator::CreateShl(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002843 ConstantInt::get(Op0->getType(), Val.logBase2()));
2844 }
2845 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2846 if (Op1F->isNullValue())
2847 return ReplaceInstUsesWith(I, Op1);
2848
2849 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2850 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Dale Johannesen2fc20782007-09-14 22:26:36 +00002851 // We need a better interface for long double here.
2852 if (Op1->getType() == Type::FloatTy || Op1->getType() == Type::DoubleTy)
2853 if (Op1F->isExactlyValue(1.0))
2854 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002855 }
2856
2857 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2858 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner58194082008-05-18 04:11:26 +00002859 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002860 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greifa645dd32008-05-16 19:29:10 +00002861 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002862 Op1, "tmp");
2863 InsertNewInstBefore(Add, I);
2864 Value *C1C2 = ConstantExpr::getMul(Op1,
2865 cast<Constant>(Op0I->getOperand(1)));
Gabor Greifa645dd32008-05-16 19:29:10 +00002866 return BinaryOperator::CreateAdd(Add, C1C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002867
2868 }
2869
2870 // Try to fold constant mul into select arguments.
2871 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2872 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2873 return R;
2874
2875 if (isa<PHINode>(Op0))
2876 if (Instruction *NV = FoldOpIntoPhi(I))
2877 return NV;
2878 }
2879
2880 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2881 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002882 return BinaryOperator::CreateMul(Op0v, Op1v);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002883
2884 // If one of the operands of the multiply is a cast from a boolean value, then
2885 // we know the bool is either zero or one, so this is a 'masking' multiply.
2886 // See if we can simplify things based on how the boolean was originally
2887 // formed.
2888 CastInst *BoolCast = 0;
2889 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(0)))
2890 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2891 BoolCast = CI;
2892 if (!BoolCast)
2893 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2894 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2895 BoolCast = CI;
2896 if (BoolCast) {
2897 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2898 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2899 const Type *SCOpTy = SCIOp0->getType();
2900 bool TIS = false;
2901
2902 // If the icmp is true iff the sign bit of X is set, then convert this
2903 // multiply into a shift/and combination.
2904 if (isa<ConstantInt>(SCIOp1) &&
2905 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2906 TIS) {
2907 // Shift the X value right to turn it into "all signbits".
2908 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2909 SCOpTy->getPrimitiveSizeInBits()-1);
2910 Value *V =
2911 InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002912 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002913 BoolCast->getOperand(0)->getName()+
2914 ".mask"), I);
2915
2916 // If the multiply type is not the same as the source type, sign extend
2917 // or truncate to the multiply type.
2918 if (I.getType() != V->getType()) {
2919 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2920 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2921 Instruction::CastOps opcode =
2922 (SrcBits == DstBits ? Instruction::BitCast :
2923 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2924 V = InsertCastBefore(opcode, V, I.getType(), I);
2925 }
2926
2927 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greifa645dd32008-05-16 19:29:10 +00002928 return BinaryOperator::CreateAnd(V, OtherOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002929 }
2930 }
2931 }
2932
2933 return Changed ? &I : 0;
2934}
2935
2936/// This function implements the transforms on div instructions that work
2937/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2938/// used by the visitors to those instructions.
2939/// @brief Transforms common to all three div instructions
2940Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2941 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2942
Chris Lattner653ef3c2008-02-19 06:12:18 +00002943 // undef / X -> 0 for integer.
2944 // undef / X -> undef for FP (the undef could be a snan).
2945 if (isa<UndefValue>(Op0)) {
2946 if (Op0->getType()->isFPOrFPVector())
2947 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002948 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002949 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002950
2951 // X / undef -> undef
2952 if (isa<UndefValue>(Op1))
2953 return ReplaceInstUsesWith(I, Op1);
2954
Chris Lattner5be238b2008-01-28 00:58:18 +00002955 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2956 // This does not apply for fdiv.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002957 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
Chris Lattner5be238b2008-01-28 00:58:18 +00002958 // [su]div X, (Cond ? 0 : Y) -> div X, Y. If the div and the select are in
2959 // the same basic block, then we replace the select with Y, and the
2960 // condition of the select with false (if the cond value is in the same BB).
2961 // If the select has uses other than the div, this allows them to be
2962 // simplified also. Note that div X, Y is just as good as div X, 0 (undef)
2963 if (ConstantInt *ST = dyn_cast<ConstantInt>(SI->getOperand(1)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002964 if (ST->isNullValue()) {
2965 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2966 if (CondI && CondI->getParent() == I.getParent())
2967 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
2968 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2969 I.setOperand(1, SI->getOperand(2));
2970 else
2971 UpdateValueUsesWith(SI, SI->getOperand(2));
2972 return &I;
2973 }
2974
Chris Lattner5be238b2008-01-28 00:58:18 +00002975 // Likewise for: [su]div X, (Cond ? Y : 0) -> div X, Y
2976 if (ConstantInt *ST = dyn_cast<ConstantInt>(SI->getOperand(2)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002977 if (ST->isNullValue()) {
2978 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2979 if (CondI && CondI->getParent() == I.getParent())
2980 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
2981 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2982 I.setOperand(1, SI->getOperand(1));
2983 else
2984 UpdateValueUsesWith(SI, SI->getOperand(1));
2985 return &I;
2986 }
2987 }
2988
2989 return 0;
2990}
2991
2992/// This function implements the transforms common to both integer division
2993/// instructions (udiv and sdiv). It is called by the visitors to those integer
2994/// division instructions.
2995/// @brief Common integer divide transforms
2996Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2997 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2998
Chris Lattnercefb36c2008-05-16 02:59:42 +00002999 // (sdiv X, X) --> 1 (udiv X, X) --> 1
3000 if (Op0 == Op1)
3001 return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 1));
3002
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003003 if (Instruction *Common = commonDivTransforms(I))
3004 return Common;
3005
3006 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3007 // div X, 1 == X
3008 if (RHS->equalsInt(1))
3009 return ReplaceInstUsesWith(I, Op0);
3010
3011 // (X / C1) / C2 -> X / (C1*C2)
3012 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
3013 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
3014 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewycky9d798f92008-02-18 22:48:05 +00003015 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
3016 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3017 else
Gabor Greifa645dd32008-05-16 19:29:10 +00003018 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewycky9d798f92008-02-18 22:48:05 +00003019 Multiply(RHS, LHSRHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003020 }
3021
3022 if (!RHS->isZero()) { // avoid X udiv 0
3023 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3024 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3025 return R;
3026 if (isa<PHINode>(Op0))
3027 if (Instruction *NV = FoldOpIntoPhi(I))
3028 return NV;
3029 }
3030 }
3031
3032 // 0 / X == 0, we don't need to preserve faults!
3033 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
3034 if (LHS->equalsInt(0))
3035 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3036
3037 return 0;
3038}
3039
3040Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
3041 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3042
3043 // Handle the integer div common cases
3044 if (Instruction *Common = commonIDivTransforms(I))
3045 return Common;
3046
3047 // X udiv C^2 -> X >> C
3048 // Check to see if this is an unsigned division with an exact power of 2,
3049 // if so, convert to a right shift.
3050 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
3051 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greifa645dd32008-05-16 19:29:10 +00003052 return BinaryOperator::CreateLShr(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003053 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
3054 }
3055
3056 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
3057 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
3058 if (RHSI->getOpcode() == Instruction::Shl &&
3059 isa<ConstantInt>(RHSI->getOperand(0))) {
3060 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
3061 if (C1.isPowerOf2()) {
3062 Value *N = RHSI->getOperand(1);
3063 const Type *NTy = N->getType();
3064 if (uint32_t C2 = C1.logBase2()) {
3065 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00003066 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003067 }
Gabor Greifa645dd32008-05-16 19:29:10 +00003068 return BinaryOperator::CreateLShr(Op0, N);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003069 }
3070 }
3071 }
3072
3073 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
3074 // where C1&C2 are powers of two.
3075 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
3076 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3077 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3078 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
3079 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
3080 // Compute the shift amounts
3081 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
3082 // Construct the "on true" case of the select
3083 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00003084 Instruction *TSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003085 Op0, TC, SI->getName()+".t");
3086 TSI = InsertNewInstBefore(TSI, I);
3087
3088 // Construct the "on false" case of the select
3089 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00003090 Instruction *FSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003091 Op0, FC, SI->getName()+".f");
3092 FSI = InsertNewInstBefore(FSI, I);
3093
3094 // construct the select instruction and return it.
Gabor Greifd6da1d02008-04-06 20:25:17 +00003095 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003096 }
3097 }
3098 return 0;
3099}
3100
3101Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
3102 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3103
3104 // Handle the integer div common cases
3105 if (Instruction *Common = commonIDivTransforms(I))
3106 return Common;
3107
3108 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3109 // sdiv X, -1 == -X
3110 if (RHS->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00003111 return BinaryOperator::CreateNeg(Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003112
3113 // -X/C -> X/-C
3114 if (Value *LHSNeg = dyn_castNegVal(Op0))
Gabor Greifa645dd32008-05-16 19:29:10 +00003115 return BinaryOperator::CreateSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003116 }
3117
3118 // If the sign bits of both operands are zero (i.e. we can prove they are
3119 // unsigned inputs), turn this into a udiv.
3120 if (I.getType()->isInteger()) {
3121 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3122 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00003123 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00003124 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003125 }
3126 }
3127
3128 return 0;
3129}
3130
3131Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
3132 return commonDivTransforms(I);
3133}
3134
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003135/// This function implements the transforms on rem instructions that work
3136/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
3137/// is used by the visitors to those instructions.
3138/// @brief Transforms common to all three rem instructions
3139Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
3140 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3141
Chris Lattner653ef3c2008-02-19 06:12:18 +00003142 // 0 % X == 0 for integer, we don't need to preserve faults!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003143 if (Constant *LHS = dyn_cast<Constant>(Op0))
3144 if (LHS->isNullValue())
3145 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3146
Chris Lattner653ef3c2008-02-19 06:12:18 +00003147 if (isa<UndefValue>(Op0)) { // undef % X -> 0
3148 if (I.getType()->isFPOrFPVector())
3149 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003150 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00003151 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003152 if (isa<UndefValue>(Op1))
3153 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
3154
3155 // Handle cases involving: rem X, (select Cond, Y, Z)
3156 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3157 // rem X, (Cond ? 0 : Y) -> rem X, Y. If the rem and the select are in
3158 // the same basic block, then we replace the select with Y, and the
3159 // condition of the select with false (if the cond value is in the same
3160 // BB). If the select has uses other than the div, this allows them to be
3161 // simplified also.
3162 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
3163 if (ST->isNullValue()) {
3164 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
3165 if (CondI && CondI->getParent() == I.getParent())
3166 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
3167 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
3168 I.setOperand(1, SI->getOperand(2));
3169 else
3170 UpdateValueUsesWith(SI, SI->getOperand(2));
3171 return &I;
3172 }
3173 // Likewise for: rem X, (Cond ? Y : 0) -> rem X, Y
3174 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
3175 if (ST->isNullValue()) {
3176 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
3177 if (CondI && CondI->getParent() == I.getParent())
3178 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
3179 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
3180 I.setOperand(1, SI->getOperand(1));
3181 else
3182 UpdateValueUsesWith(SI, SI->getOperand(1));
3183 return &I;
3184 }
3185 }
3186
3187 return 0;
3188}
3189
3190/// This function implements the transforms common to both integer remainder
3191/// instructions (urem and srem). It is called by the visitors to those integer
3192/// remainder instructions.
3193/// @brief Common integer remainder transforms
3194Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
3195 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3196
3197 if (Instruction *common = commonRemTransforms(I))
3198 return common;
3199
3200 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3201 // X % 0 == undef, we don't need to preserve faults!
3202 if (RHS->equalsInt(0))
3203 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
3204
3205 if (RHS->equalsInt(1)) // X % 1 == 0
3206 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3207
3208 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
3209 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
3210 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3211 return R;
3212 } else if (isa<PHINode>(Op0I)) {
3213 if (Instruction *NV = FoldOpIntoPhi(I))
3214 return NV;
3215 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00003216
3217 // See if we can fold away this rem instruction.
3218 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3219 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3220 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3221 KnownZero, KnownOne))
3222 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003223 }
3224 }
3225
3226 return 0;
3227}
3228
3229Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3230 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3231
3232 if (Instruction *common = commonIRemTransforms(I))
3233 return common;
3234
3235 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3236 // X urem C^2 -> X and C
3237 // Check to see if this is an unsigned remainder with an exact power of 2,
3238 // if so, convert to a bitwise and.
3239 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3240 if (C->getValue().isPowerOf2())
Gabor Greifa645dd32008-05-16 19:29:10 +00003241 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003242 }
3243
3244 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
3245 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3246 if (RHSI->getOpcode() == Instruction::Shl &&
3247 isa<ConstantInt>(RHSI->getOperand(0))) {
3248 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
3249 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00003250 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003251 "tmp"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003252 return BinaryOperator::CreateAnd(Op0, Add);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003253 }
3254 }
3255 }
3256
3257 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3258 // where C1&C2 are powers of two.
3259 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3260 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3261 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3262 // STO == 0 and SFO == 0 handled above.
3263 if ((STO->getValue().isPowerOf2()) &&
3264 (SFO->getValue().isPowerOf2())) {
3265 Value *TrueAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003266 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003267 Value *FalseAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003268 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00003269 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003270 }
3271 }
3272 }
3273
3274 return 0;
3275}
3276
3277Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3278 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3279
Dan Gohmandb3dd962007-11-05 23:16:33 +00003280 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003281 if (Instruction *common = commonIRemTransforms(I))
3282 return common;
3283
3284 if (Value *RHSNeg = dyn_castNegVal(Op1))
3285 if (!isa<ConstantInt>(RHSNeg) ||
3286 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive()) {
3287 // X % -Y -> X % Y
3288 AddUsesToWorkList(I);
3289 I.setOperand(1, RHSNeg);
3290 return &I;
3291 }
3292
Dan Gohmandb3dd962007-11-05 23:16:33 +00003293 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003294 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00003295 if (I.getType()->isInteger()) {
3296 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3297 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3298 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00003299 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmandb3dd962007-11-05 23:16:33 +00003300 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003301 }
3302
3303 return 0;
3304}
3305
3306Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3307 return commonRemTransforms(I);
3308}
3309
3310// isMaxValueMinusOne - return true if this is Max-1
3311static bool isMaxValueMinusOne(const ConstantInt *C, bool isSigned) {
3312 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
3313 if (!isSigned)
3314 return C->getValue() == APInt::getAllOnesValue(TypeBits) - 1;
3315 return C->getValue() == APInt::getSignedMaxValue(TypeBits)-1;
3316}
3317
3318// isMinValuePlusOne - return true if this is Min+1
3319static bool isMinValuePlusOne(const ConstantInt *C, bool isSigned) {
3320 if (!isSigned)
3321 return C->getValue() == 1; // unsigned
3322
3323 // Calculate 1111111111000000000000
3324 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
3325 return C->getValue() == APInt::getSignedMinValue(TypeBits)+1;
3326}
3327
3328// isOneBitSet - Return true if there is exactly one bit set in the specified
3329// constant.
3330static bool isOneBitSet(const ConstantInt *CI) {
3331 return CI->getValue().isPowerOf2();
3332}
3333
3334// isHighOnes - Return true if the constant is of the form 1+0+.
3335// This is the same as lowones(~X).
3336static bool isHighOnes(const ConstantInt *CI) {
3337 return (~CI->getValue() + 1).isPowerOf2();
3338}
3339
3340/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3341/// are carefully arranged to allow folding of expressions such as:
3342///
3343/// (A < B) | (A > B) --> (A != B)
3344///
3345/// Note that this is only valid if the first and second predicates have the
3346/// same sign. Is illegal to do: (A u< B) | (A s> B)
3347///
3348/// Three bits are used to represent the condition, as follows:
3349/// 0 A > B
3350/// 1 A == B
3351/// 2 A < B
3352///
3353/// <=> Value Definition
3354/// 000 0 Always false
3355/// 001 1 A > B
3356/// 010 2 A == B
3357/// 011 3 A >= B
3358/// 100 4 A < B
3359/// 101 5 A != B
3360/// 110 6 A <= B
3361/// 111 7 Always true
3362///
3363static unsigned getICmpCode(const ICmpInst *ICI) {
3364 switch (ICI->getPredicate()) {
3365 // False -> 0
3366 case ICmpInst::ICMP_UGT: return 1; // 001
3367 case ICmpInst::ICMP_SGT: return 1; // 001
3368 case ICmpInst::ICMP_EQ: return 2; // 010
3369 case ICmpInst::ICMP_UGE: return 3; // 011
3370 case ICmpInst::ICMP_SGE: return 3; // 011
3371 case ICmpInst::ICMP_ULT: return 4; // 100
3372 case ICmpInst::ICMP_SLT: return 4; // 100
3373 case ICmpInst::ICMP_NE: return 5; // 101
3374 case ICmpInst::ICMP_ULE: return 6; // 110
3375 case ICmpInst::ICMP_SLE: return 6; // 110
3376 // True -> 7
3377 default:
3378 assert(0 && "Invalid ICmp predicate!");
3379 return 0;
3380 }
3381}
3382
3383/// getICmpValue - This is the complement of getICmpCode, which turns an
3384/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00003385/// new ICmp instruction. The sign is passed in to determine which kind
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003386/// of predicate to use in new icmp instructions.
3387static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3388 switch (code) {
3389 default: assert(0 && "Illegal ICmp code!");
3390 case 0: return ConstantInt::getFalse();
3391 case 1:
3392 if (sign)
3393 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3394 else
3395 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3396 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3397 case 3:
3398 if (sign)
3399 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3400 else
3401 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3402 case 4:
3403 if (sign)
3404 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3405 else
3406 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3407 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3408 case 6:
3409 if (sign)
3410 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3411 else
3412 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3413 case 7: return ConstantInt::getTrue();
3414 }
3415}
3416
3417static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3418 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
3419 (ICmpInst::isSignedPredicate(p1) &&
3420 (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
3421 (ICmpInst::isSignedPredicate(p2) &&
3422 (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
3423}
3424
3425namespace {
3426// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3427struct FoldICmpLogical {
3428 InstCombiner &IC;
3429 Value *LHS, *RHS;
3430 ICmpInst::Predicate pred;
3431 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3432 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3433 pred(ICI->getPredicate()) {}
3434 bool shouldApply(Value *V) const {
3435 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3436 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003437 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3438 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003439 return false;
3440 }
3441 Instruction *apply(Instruction &Log) const {
3442 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3443 if (ICI->getOperand(0) != LHS) {
3444 assert(ICI->getOperand(1) == LHS);
3445 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3446 }
3447
3448 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3449 unsigned LHSCode = getICmpCode(ICI);
3450 unsigned RHSCode = getICmpCode(RHSICI);
3451 unsigned Code;
3452 switch (Log.getOpcode()) {
3453 case Instruction::And: Code = LHSCode & RHSCode; break;
3454 case Instruction::Or: Code = LHSCode | RHSCode; break;
3455 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3456 default: assert(0 && "Illegal logical opcode!"); return 0;
3457 }
3458
3459 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3460 ICmpInst::isSignedPredicate(ICI->getPredicate());
3461
3462 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3463 if (Instruction *I = dyn_cast<Instruction>(RV))
3464 return I;
3465 // Otherwise, it's a constant boolean value...
3466 return IC.ReplaceInstUsesWith(Log, RV);
3467 }
3468};
3469} // end anonymous namespace
3470
3471// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3472// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3473// guaranteed to be a binary operator.
3474Instruction *InstCombiner::OptAndOp(Instruction *Op,
3475 ConstantInt *OpRHS,
3476 ConstantInt *AndRHS,
3477 BinaryOperator &TheAnd) {
3478 Value *X = Op->getOperand(0);
3479 Constant *Together = 0;
3480 if (!Op->isShift())
3481 Together = And(AndRHS, OpRHS);
3482
3483 switch (Op->getOpcode()) {
3484 case Instruction::Xor:
3485 if (Op->hasOneUse()) {
3486 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greifa645dd32008-05-16 19:29:10 +00003487 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003488 InsertNewInstBefore(And, TheAnd);
3489 And->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003490 return BinaryOperator::CreateXor(And, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003491 }
3492 break;
3493 case Instruction::Or:
3494 if (Together == AndRHS) // (X | C) & C --> C
3495 return ReplaceInstUsesWith(TheAnd, AndRHS);
3496
3497 if (Op->hasOneUse() && Together != OpRHS) {
3498 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greifa645dd32008-05-16 19:29:10 +00003499 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003500 InsertNewInstBefore(Or, TheAnd);
3501 Or->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003502 return BinaryOperator::CreateAnd(Or, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003503 }
3504 break;
3505 case Instruction::Add:
3506 if (Op->hasOneUse()) {
3507 // Adding a one to a single bit bit-field should be turned into an XOR
3508 // of the bit. First thing to check is to see if this AND is with a
3509 // single bit constant.
3510 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3511
3512 // If there is only one bit set...
3513 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3514 // Ok, at this point, we know that we are masking the result of the
3515 // ADD down to exactly one bit. If the constant we are adding has
3516 // no bits set below this bit, then we can eliminate the ADD.
3517 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3518
3519 // Check to see if any bits below the one bit set in AndRHSV are set.
3520 if ((AddRHS & (AndRHSV-1)) == 0) {
3521 // If not, the only thing that can effect the output of the AND is
3522 // the bit specified by AndRHSV. If that bit is set, the effect of
3523 // the XOR is to toggle the bit. If it is clear, then the ADD has
3524 // no effect.
3525 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3526 TheAnd.setOperand(0, X);
3527 return &TheAnd;
3528 } else {
3529 // Pull the XOR out of the AND.
Gabor Greifa645dd32008-05-16 19:29:10 +00003530 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003531 InsertNewInstBefore(NewAnd, TheAnd);
3532 NewAnd->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003533 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003534 }
3535 }
3536 }
3537 }
3538 break;
3539
3540 case Instruction::Shl: {
3541 // We know that the AND will not produce any of the bits shifted in, so if
3542 // the anded constant includes them, clear them now!
3543 //
3544 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3545 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3546 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3547 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3548
3549 if (CI->getValue() == ShlMask) {
3550 // Masking out bits that the shift already masks
3551 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3552 } else if (CI != AndRHS) { // Reducing bits set in and.
3553 TheAnd.setOperand(1, CI);
3554 return &TheAnd;
3555 }
3556 break;
3557 }
3558 case Instruction::LShr:
3559 {
3560 // We know that the AND will not produce any of the bits shifted in, so if
3561 // the anded constant includes them, clear them now! This only applies to
3562 // unsigned shifts, because a signed shr may bring in set bits!
3563 //
3564 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3565 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3566 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3567 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3568
3569 if (CI->getValue() == ShrMask) {
3570 // Masking out bits that the shift already masks.
3571 return ReplaceInstUsesWith(TheAnd, Op);
3572 } else if (CI != AndRHS) {
3573 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3574 return &TheAnd;
3575 }
3576 break;
3577 }
3578 case Instruction::AShr:
3579 // Signed shr.
3580 // See if this is shifting in some sign extension, then masking it out
3581 // with an and.
3582 if (Op->hasOneUse()) {
3583 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3584 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3585 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3586 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3587 if (C == AndRHS) { // Masking out bits shifted in.
3588 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3589 // Make the argument unsigned.
3590 Value *ShVal = Op->getOperand(0);
3591 ShVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003592 BinaryOperator::CreateLShr(ShVal, OpRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003593 Op->getName()), TheAnd);
Gabor Greifa645dd32008-05-16 19:29:10 +00003594 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003595 }
3596 }
3597 break;
3598 }
3599 return 0;
3600}
3601
3602
3603/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3604/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3605/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3606/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3607/// insert new instructions.
3608Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3609 bool isSigned, bool Inside,
3610 Instruction &IB) {
3611 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3612 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3613 "Lo is not <= Hi in range emission code!");
3614
3615 if (Inside) {
3616 if (Lo == Hi) // Trivially false.
3617 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3618
3619 // V >= Min && V < Hi --> V < Hi
3620 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3621 ICmpInst::Predicate pred = (isSigned ?
3622 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3623 return new ICmpInst(pred, V, Hi);
3624 }
3625
3626 // Emit V-Lo <u Hi-Lo
3627 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greifa645dd32008-05-16 19:29:10 +00003628 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003629 InsertNewInstBefore(Add, IB);
3630 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3631 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3632 }
3633
3634 if (Lo == Hi) // Trivially true.
3635 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3636
3637 // V < Min || V >= Hi -> V > Hi-1
3638 Hi = SubOne(cast<ConstantInt>(Hi));
3639 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3640 ICmpInst::Predicate pred = (isSigned ?
3641 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3642 return new ICmpInst(pred, V, Hi);
3643 }
3644
3645 // Emit V-Lo >u Hi-1-Lo
3646 // Note that Hi has already had one subtracted from it, above.
3647 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greifa645dd32008-05-16 19:29:10 +00003648 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003649 InsertNewInstBefore(Add, IB);
3650 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3651 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3652}
3653
3654// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3655// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3656// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3657// not, since all 1s are not contiguous.
3658static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3659 const APInt& V = Val->getValue();
3660 uint32_t BitWidth = Val->getType()->getBitWidth();
3661 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3662
3663 // look for the first zero bit after the run of ones
3664 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3665 // look for the first non-zero bit
3666 ME = V.getActiveBits();
3667 return true;
3668}
3669
3670/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3671/// where isSub determines whether the operator is a sub. If we can fold one of
3672/// the following xforms:
3673///
3674/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3675/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3676/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3677///
3678/// return (A +/- B).
3679///
3680Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3681 ConstantInt *Mask, bool isSub,
3682 Instruction &I) {
3683 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3684 if (!LHSI || LHSI->getNumOperands() != 2 ||
3685 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3686
3687 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3688
3689 switch (LHSI->getOpcode()) {
3690 default: return 0;
3691 case Instruction::And:
3692 if (And(N, Mask) == Mask) {
3693 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3694 if ((Mask->getValue().countLeadingZeros() +
3695 Mask->getValue().countPopulation()) ==
3696 Mask->getValue().getBitWidth())
3697 break;
3698
3699 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3700 // part, we don't need any explicit masks to take them out of A. If that
3701 // is all N is, ignore it.
3702 uint32_t MB = 0, ME = 0;
3703 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3704 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3705 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3706 if (MaskedValueIsZero(RHS, Mask))
3707 break;
3708 }
3709 }
3710 return 0;
3711 case Instruction::Or:
3712 case Instruction::Xor:
3713 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3714 if ((Mask->getValue().countLeadingZeros() +
3715 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3716 && And(N, Mask)->isZero())
3717 break;
3718 return 0;
3719 }
3720
3721 Instruction *New;
3722 if (isSub)
Gabor Greifa645dd32008-05-16 19:29:10 +00003723 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003724 else
Gabor Greifa645dd32008-05-16 19:29:10 +00003725 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003726 return InsertNewInstBefore(New, I);
3727}
3728
3729Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3730 bool Changed = SimplifyCommutative(I);
3731 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3732
3733 if (isa<UndefValue>(Op1)) // X & undef -> 0
3734 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3735
3736 // and X, X = X
3737 if (Op0 == Op1)
3738 return ReplaceInstUsesWith(I, Op1);
3739
3740 // See if we can simplify any instructions used by the instruction whose sole
3741 // purpose is to compute bits we don't care about.
3742 if (!isa<VectorType>(I.getType())) {
3743 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3744 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3745 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3746 KnownZero, KnownOne))
3747 return &I;
3748 } else {
3749 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3750 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3751 return ReplaceInstUsesWith(I, I.getOperand(0));
3752 } else if (isa<ConstantAggregateZero>(Op1)) {
3753 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3754 }
3755 }
3756
3757 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3758 const APInt& AndRHSMask = AndRHS->getValue();
3759 APInt NotAndRHS(~AndRHSMask);
3760
3761 // Optimize a variety of ((val OP C1) & C2) combinations...
3762 if (isa<BinaryOperator>(Op0)) {
3763 Instruction *Op0I = cast<Instruction>(Op0);
3764 Value *Op0LHS = Op0I->getOperand(0);
3765 Value *Op0RHS = Op0I->getOperand(1);
3766 switch (Op0I->getOpcode()) {
3767 case Instruction::Xor:
3768 case Instruction::Or:
3769 // If the mask is only needed on one incoming arm, push it up.
3770 if (Op0I->hasOneUse()) {
3771 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3772 // Not masking anything out for the LHS, move to RHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003773 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003774 Op0RHS->getName()+".masked");
3775 InsertNewInstBefore(NewRHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003776 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003777 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3778 }
3779 if (!isa<Constant>(Op0RHS) &&
3780 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3781 // Not masking anything out for the RHS, move to LHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003782 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003783 Op0LHS->getName()+".masked");
3784 InsertNewInstBefore(NewLHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003785 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003786 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3787 }
3788 }
3789
3790 break;
3791 case Instruction::Add:
3792 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3793 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3794 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3795 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003796 return BinaryOperator::CreateAnd(V, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003797 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003798 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003799 break;
3800
3801 case Instruction::Sub:
3802 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3803 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3804 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3805 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003806 return BinaryOperator::CreateAnd(V, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003807 break;
3808 }
3809
3810 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3811 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3812 return Res;
3813 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3814 // If this is an integer truncation or change from signed-to-unsigned, and
3815 // if the source is an and/or with immediate, transform it. This
3816 // frequently occurs for bitfield accesses.
3817 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3818 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3819 CastOp->getNumOperands() == 2)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003820 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003821 if (CastOp->getOpcode() == Instruction::And) {
3822 // Change: and (cast (and X, C1) to T), C2
3823 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3824 // This will fold the two constants together, which may allow
3825 // other simplifications.
Gabor Greifa645dd32008-05-16 19:29:10 +00003826 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003827 CastOp->getOperand(0), I.getType(),
3828 CastOp->getName()+".shrunk");
3829 NewCast = InsertNewInstBefore(NewCast, I);
3830 // trunc_or_bitcast(C1)&C2
3831 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3832 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greifa645dd32008-05-16 19:29:10 +00003833 return BinaryOperator::CreateAnd(NewCast, C3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003834 } else if (CastOp->getOpcode() == Instruction::Or) {
3835 // Change: and (cast (or X, C1) to T), C2
3836 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3837 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3838 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3839 return ReplaceInstUsesWith(I, AndRHS);
3840 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003841 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003842 }
3843 }
3844
3845 // Try to fold constant and into select arguments.
3846 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3847 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3848 return R;
3849 if (isa<PHINode>(Op0))
3850 if (Instruction *NV = FoldOpIntoPhi(I))
3851 return NV;
3852 }
3853
3854 Value *Op0NotVal = dyn_castNotVal(Op0);
3855 Value *Op1NotVal = dyn_castNotVal(Op1);
3856
3857 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3858 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3859
3860 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3861 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003862 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003863 I.getName()+".demorgan");
3864 InsertNewInstBefore(Or, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003865 return BinaryOperator::CreateNot(Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003866 }
3867
3868 {
3869 Value *A = 0, *B = 0, *C = 0, *D = 0;
3870 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3871 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3872 return ReplaceInstUsesWith(I, Op1);
3873
3874 // (A|B) & ~(A&B) -> A^B
3875 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3876 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003877 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003878 }
3879 }
3880
3881 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3882 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3883 return ReplaceInstUsesWith(I, Op0);
3884
3885 // ~(A&B) & (A|B) -> A^B
3886 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3887 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003888 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003889 }
3890 }
3891
3892 if (Op0->hasOneUse() &&
3893 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3894 if (A == Op1) { // (A^B)&A -> A&(A^B)
3895 I.swapOperands(); // Simplify below
3896 std::swap(Op0, Op1);
3897 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3898 cast<BinaryOperator>(Op0)->swapOperands();
3899 I.swapOperands(); // Simplify below
3900 std::swap(Op0, Op1);
3901 }
3902 }
3903 if (Op1->hasOneUse() &&
3904 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3905 if (B == Op0) { // B&(A^B) -> B&(B^A)
3906 cast<BinaryOperator>(Op1)->swapOperands();
3907 std::swap(A, B);
3908 }
3909 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greifa645dd32008-05-16 19:29:10 +00003910 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003911 InsertNewInstBefore(NotB, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003912 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003913 }
3914 }
3915 }
3916
3917 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3918 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3919 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3920 return R;
3921
3922 Value *LHSVal, *RHSVal;
3923 ConstantInt *LHSCst, *RHSCst;
3924 ICmpInst::Predicate LHSCC, RHSCC;
3925 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
3926 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
3927 if (LHSVal == RHSVal && // Found (X icmp C1) & (X icmp C2)
3928 // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
3929 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
3930 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
3931 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
Chris Lattner205ad1d2007-11-22 23:47:13 +00003932 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
3933
3934 // Don't try to fold ICMP_SLT + ICMP_ULT.
3935 (ICmpInst::isEquality(LHSCC) || ICmpInst::isEquality(RHSCC) ||
3936 ICmpInst::isSignedPredicate(LHSCC) ==
3937 ICmpInst::isSignedPredicate(RHSCC))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003938 // Ensure that the larger constant is on the RHS.
Chris Lattnerda628ca2008-01-13 20:59:02 +00003939 ICmpInst::Predicate GT;
3940 if (ICmpInst::isSignedPredicate(LHSCC) ||
3941 (ICmpInst::isEquality(LHSCC) &&
3942 ICmpInst::isSignedPredicate(RHSCC)))
3943 GT = ICmpInst::ICMP_SGT;
3944 else
3945 GT = ICmpInst::ICMP_UGT;
3946
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003947 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
3948 ICmpInst *LHS = cast<ICmpInst>(Op0);
3949 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
3950 std::swap(LHS, RHS);
3951 std::swap(LHSCst, RHSCst);
3952 std::swap(LHSCC, RHSCC);
3953 }
3954
3955 // At this point, we know we have have two icmp instructions
3956 // comparing a value against two constants and and'ing the result
3957 // together. Because of the above check, we know that we only have
3958 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3959 // (from the FoldICmpLogical check above), that the two constants
3960 // are not equal and that the larger constant is on the RHS
3961 assert(LHSCst != RHSCst && "Compares not folded above?");
3962
3963 switch (LHSCC) {
3964 default: assert(0 && "Unknown integer condition code!");
3965 case ICmpInst::ICMP_EQ:
3966 switch (RHSCC) {
3967 default: assert(0 && "Unknown integer condition code!");
3968 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3969 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3970 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3971 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3972 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3973 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3974 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3975 return ReplaceInstUsesWith(I, LHS);
3976 }
3977 case ICmpInst::ICMP_NE:
3978 switch (RHSCC) {
3979 default: assert(0 && "Unknown integer condition code!");
3980 case ICmpInst::ICMP_ULT:
3981 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3982 return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
3983 break; // (X != 13 & X u< 15) -> no change
3984 case ICmpInst::ICMP_SLT:
3985 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3986 return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
3987 break; // (X != 13 & X s< 15) -> no change
3988 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3989 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3990 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3991 return ReplaceInstUsesWith(I, RHS);
3992 case ICmpInst::ICMP_NE:
3993 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3994 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Gabor Greifa645dd32008-05-16 19:29:10 +00003995 Instruction *Add = BinaryOperator::CreateAdd(LHSVal, AddCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003996 LHSVal->getName()+".off");
3997 InsertNewInstBefore(Add, I);
3998 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3999 ConstantInt::get(Add->getType(), 1));
4000 }
4001 break; // (X != 13 & X != 15) -> no change
4002 }
4003 break;
4004 case ICmpInst::ICMP_ULT:
4005 switch (RHSCC) {
4006 default: assert(0 && "Unknown integer condition code!");
4007 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
4008 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
4009 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4010 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
4011 break;
4012 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
4013 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
4014 return ReplaceInstUsesWith(I, LHS);
4015 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
4016 break;
4017 }
4018 break;
4019 case ICmpInst::ICMP_SLT:
4020 switch (RHSCC) {
4021 default: assert(0 && "Unknown integer condition code!");
4022 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
4023 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
4024 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4025 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
4026 break;
4027 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
4028 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
4029 return ReplaceInstUsesWith(I, LHS);
4030 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
4031 break;
4032 }
4033 break;
4034 case ICmpInst::ICMP_UGT:
4035 switch (RHSCC) {
4036 default: assert(0 && "Unknown integer condition code!");
4037 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X > 13
4038 return ReplaceInstUsesWith(I, LHS);
4039 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
4040 return ReplaceInstUsesWith(I, RHS);
4041 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
4042 break;
4043 case ICmpInst::ICMP_NE:
4044 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
4045 return new ICmpInst(LHSCC, LHSVal, RHSCst);
4046 break; // (X u> 13 & X != 15) -> no change
4047 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) <u 1
4048 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false,
4049 true, I);
4050 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
4051 break;
4052 }
4053 break;
4054 case ICmpInst::ICMP_SGT:
4055 switch (RHSCC) {
4056 default: assert(0 && "Unknown integer condition code!");
Chris Lattnerab0fc252007-11-16 06:04:17 +00004057 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004058 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
4059 return ReplaceInstUsesWith(I, RHS);
4060 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
4061 break;
4062 case ICmpInst::ICMP_NE:
4063 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
4064 return new ICmpInst(LHSCC, LHSVal, RHSCst);
4065 break; // (X s> 13 & X != 15) -> no change
4066 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1
4067 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true,
4068 true, I);
4069 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
4070 break;
4071 }
4072 break;
4073 }
4074 }
4075 }
4076
4077 // fold (and (cast A), (cast B)) -> (cast (and A, B))
4078 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
4079 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4080 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
4081 const Type *SrcTy = Op0C->getOperand(0)->getType();
4082 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4083 // Only do this if the casts both really cause code to be generated.
4084 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4085 I.getType(), TD) &&
4086 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4087 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004088 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004089 Op1C->getOperand(0),
4090 I.getName());
4091 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004092 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004093 }
4094 }
4095
4096 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
4097 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4098 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4099 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4100 SI0->getOperand(1) == SI1->getOperand(1) &&
4101 (SI0->hasOneUse() || SI1->hasOneUse())) {
4102 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004103 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004104 SI1->getOperand(0),
4105 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004106 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004107 SI1->getOperand(1));
4108 }
4109 }
4110
Chris Lattner91882432007-10-24 05:38:08 +00004111 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
4112 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4113 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4114 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
4115 RHS->getPredicate() == FCmpInst::FCMP_ORD)
4116 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4117 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4118 // If either of the constants are nans, then the whole thing returns
4119 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004120 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004121 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4122 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
4123 RHS->getOperand(0));
4124 }
4125 }
4126 }
4127
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004128 return Changed ? &I : 0;
4129}
4130
4131/// CollectBSwapParts - Look to see if the specified value defines a single byte
4132/// in the result. If it does, and if the specified byte hasn't been filled in
4133/// yet, fill it in and return false.
4134static bool CollectBSwapParts(Value *V, SmallVector<Value*, 8> &ByteValues) {
4135 Instruction *I = dyn_cast<Instruction>(V);
4136 if (I == 0) return true;
4137
4138 // If this is an or instruction, it is an inner node of the bswap.
4139 if (I->getOpcode() == Instruction::Or)
4140 return CollectBSwapParts(I->getOperand(0), ByteValues) ||
4141 CollectBSwapParts(I->getOperand(1), ByteValues);
4142
4143 uint32_t BitWidth = I->getType()->getPrimitiveSizeInBits();
4144 // If this is a shift by a constant int, and it is "24", then its operand
4145 // defines a byte. We only handle unsigned types here.
4146 if (I->isShift() && isa<ConstantInt>(I->getOperand(1))) {
4147 // Not shifting the entire input by N-1 bytes?
4148 if (cast<ConstantInt>(I->getOperand(1))->getLimitedValue(BitWidth) !=
4149 8*(ByteValues.size()-1))
4150 return true;
4151
4152 unsigned DestNo;
4153 if (I->getOpcode() == Instruction::Shl) {
4154 // X << 24 defines the top byte with the lowest of the input bytes.
4155 DestNo = ByteValues.size()-1;
4156 } else {
4157 // X >>u 24 defines the low byte with the highest of the input bytes.
4158 DestNo = 0;
4159 }
4160
4161 // If the destination byte value is already defined, the values are or'd
4162 // together, which isn't a bswap (unless it's an or of the same bits).
4163 if (ByteValues[DestNo] && ByteValues[DestNo] != I->getOperand(0))
4164 return true;
4165 ByteValues[DestNo] = I->getOperand(0);
4166 return false;
4167 }
4168
4169 // Otherwise, we can only handle and(shift X, imm), imm). Bail out of if we
4170 // don't have this.
4171 Value *Shift = 0, *ShiftLHS = 0;
4172 ConstantInt *AndAmt = 0, *ShiftAmt = 0;
4173 if (!match(I, m_And(m_Value(Shift), m_ConstantInt(AndAmt))) ||
4174 !match(Shift, m_Shift(m_Value(ShiftLHS), m_ConstantInt(ShiftAmt))))
4175 return true;
4176 Instruction *SI = cast<Instruction>(Shift);
4177
4178 // Make sure that the shift amount is by a multiple of 8 and isn't too big.
4179 if (ShiftAmt->getLimitedValue(BitWidth) & 7 ||
4180 ShiftAmt->getLimitedValue(BitWidth) > 8*ByteValues.size())
4181 return true;
4182
4183 // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc.
4184 unsigned DestByte;
4185 if (AndAmt->getValue().getActiveBits() > 64)
4186 return true;
4187 uint64_t AndAmtVal = AndAmt->getZExtValue();
4188 for (DestByte = 0; DestByte != ByteValues.size(); ++DestByte)
4189 if (AndAmtVal == uint64_t(0xFF) << 8*DestByte)
4190 break;
4191 // Unknown mask for bswap.
4192 if (DestByte == ByteValues.size()) return true;
4193
4194 unsigned ShiftBytes = ShiftAmt->getZExtValue()/8;
4195 unsigned SrcByte;
4196 if (SI->getOpcode() == Instruction::Shl)
4197 SrcByte = DestByte - ShiftBytes;
4198 else
4199 SrcByte = DestByte + ShiftBytes;
4200
4201 // If the SrcByte isn't a bswapped value from the DestByte, reject it.
4202 if (SrcByte != ByteValues.size()-DestByte-1)
4203 return true;
4204
4205 // If the destination byte value is already defined, the values are or'd
4206 // together, which isn't a bswap (unless it's an or of the same bits).
4207 if (ByteValues[DestByte] && ByteValues[DestByte] != SI->getOperand(0))
4208 return true;
4209 ByteValues[DestByte] = SI->getOperand(0);
4210 return false;
4211}
4212
4213/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4214/// If so, insert the new bswap intrinsic and return it.
4215Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
4216 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
4217 if (!ITy || ITy->getBitWidth() % 16)
4218 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4219
4220 /// ByteValues - For each byte of the result, we keep track of which value
4221 /// defines each byte.
4222 SmallVector<Value*, 8> ByteValues;
4223 ByteValues.resize(ITy->getBitWidth()/8);
4224
4225 // Try to find all the pieces corresponding to the bswap.
4226 if (CollectBSwapParts(I.getOperand(0), ByteValues) ||
4227 CollectBSwapParts(I.getOperand(1), ByteValues))
4228 return 0;
4229
4230 // Check to see if all of the bytes come from the same value.
4231 Value *V = ByteValues[0];
4232 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4233
4234 // Check to make sure that all of the bytes come from the same value.
4235 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4236 if (ByteValues[i] != V)
4237 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00004238 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004239 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00004240 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +00004241 return CallInst::Create(F, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004242}
4243
4244
4245Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4246 bool Changed = SimplifyCommutative(I);
4247 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4248
4249 if (isa<UndefValue>(Op1)) // X | undef -> -1
4250 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4251
4252 // or X, X = X
4253 if (Op0 == Op1)
4254 return ReplaceInstUsesWith(I, Op0);
4255
4256 // See if we can simplify any instructions used by the instruction whose sole
4257 // purpose is to compute bits we don't care about.
4258 if (!isa<VectorType>(I.getType())) {
4259 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4260 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4261 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4262 KnownZero, KnownOne))
4263 return &I;
4264 } else if (isa<ConstantAggregateZero>(Op1)) {
4265 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4266 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4267 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4268 return ReplaceInstUsesWith(I, I.getOperand(1));
4269 }
4270
4271
4272
4273 // or X, -1 == -1
4274 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4275 ConstantInt *C1 = 0; Value *X = 0;
4276 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4277 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004278 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004279 InsertNewInstBefore(Or, I);
4280 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004281 return BinaryOperator::CreateAnd(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004282 ConstantInt::get(RHS->getValue() | C1->getValue()));
4283 }
4284
4285 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4286 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004287 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004288 InsertNewInstBefore(Or, I);
4289 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004290 return BinaryOperator::CreateXor(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004291 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
4292 }
4293
4294 // Try to fold constant and into select arguments.
4295 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4296 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4297 return R;
4298 if (isa<PHINode>(Op0))
4299 if (Instruction *NV = FoldOpIntoPhi(I))
4300 return NV;
4301 }
4302
4303 Value *A = 0, *B = 0;
4304 ConstantInt *C1 = 0, *C2 = 0;
4305
4306 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4307 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4308 return ReplaceInstUsesWith(I, Op1);
4309 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4310 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4311 return ReplaceInstUsesWith(I, Op0);
4312
4313 // (A | B) | C and A | (B | C) -> bswap if possible.
4314 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4315 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4316 match(Op1, m_Or(m_Value(), m_Value())) ||
4317 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4318 match(Op1, m_Shift(m_Value(), m_Value())))) {
4319 if (Instruction *BSwap = MatchBSwap(I))
4320 return BSwap;
4321 }
4322
4323 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4324 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4325 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004326 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004327 InsertNewInstBefore(NOr, I);
4328 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004329 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004330 }
4331
4332 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4333 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4334 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004335 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004336 InsertNewInstBefore(NOr, I);
4337 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004338 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004339 }
4340
4341 // (A & C)|(B & D)
4342 Value *C = 0, *D = 0;
4343 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4344 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4345 Value *V1 = 0, *V2 = 0, *V3 = 0;
4346 C1 = dyn_cast<ConstantInt>(C);
4347 C2 = dyn_cast<ConstantInt>(D);
4348 if (C1 && C2) { // (A & C1)|(B & C2)
4349 // If we have: ((V + N) & C1) | (V & C2)
4350 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4351 // replace with V+N.
4352 if (C1->getValue() == ~C2->getValue()) {
4353 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4354 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4355 // Add commutes, try both ways.
4356 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4357 return ReplaceInstUsesWith(I, A);
4358 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4359 return ReplaceInstUsesWith(I, A);
4360 }
4361 // Or commutes, try both ways.
4362 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4363 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4364 // Add commutes, try both ways.
4365 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4366 return ReplaceInstUsesWith(I, B);
4367 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4368 return ReplaceInstUsesWith(I, B);
4369 }
4370 }
4371 V1 = 0; V2 = 0; V3 = 0;
4372 }
4373
4374 // Check to see if we have any common things being and'ed. If so, find the
4375 // terms for V1 & (V2|V3).
4376 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4377 if (A == B) // (A & C)|(A & D) == A & (C|D)
4378 V1 = A, V2 = C, V3 = D;
4379 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4380 V1 = A, V2 = B, V3 = C;
4381 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4382 V1 = C, V2 = A, V3 = D;
4383 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4384 V1 = C, V2 = A, V3 = B;
4385
4386 if (V1) {
4387 Value *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00004388 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4389 return BinaryOperator::CreateAnd(V1, Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004390 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004391 }
4392 }
4393
4394 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4395 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4396 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4397 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4398 SI0->getOperand(1) == SI1->getOperand(1) &&
4399 (SI0->hasOneUse() || SI1->hasOneUse())) {
4400 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004401 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004402 SI1->getOperand(0),
4403 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004404 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004405 SI1->getOperand(1));
4406 }
4407 }
4408
4409 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4410 if (A == Op1) // ~A | A == -1
4411 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4412 } else {
4413 A = 0;
4414 }
4415 // Note, A is still live here!
4416 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4417 if (Op0 == B)
4418 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4419
4420 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4421 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004422 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004423 I.getName()+".demorgan"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004424 return BinaryOperator::CreateNot(And);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004425 }
4426 }
4427
4428 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4429 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4430 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4431 return R;
4432
4433 Value *LHSVal, *RHSVal;
4434 ConstantInt *LHSCst, *RHSCst;
4435 ICmpInst::Predicate LHSCC, RHSCC;
4436 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
4437 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
4438 if (LHSVal == RHSVal && // Found (X icmp C1) | (X icmp C2)
4439 // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
4440 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
4441 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
4442 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
4443 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
4444 // We can't fold (ugt x, C) | (sgt x, C2).
4445 PredicatesFoldable(LHSCC, RHSCC)) {
4446 // Ensure that the larger constant is on the RHS.
4447 ICmpInst *LHS = cast<ICmpInst>(Op0);
4448 bool NeedsSwap;
4449 if (ICmpInst::isSignedPredicate(LHSCC))
4450 NeedsSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4451 else
4452 NeedsSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4453
4454 if (NeedsSwap) {
4455 std::swap(LHS, RHS);
4456 std::swap(LHSCst, RHSCst);
4457 std::swap(LHSCC, RHSCC);
4458 }
4459
4460 // At this point, we know we have have two icmp instructions
4461 // comparing a value against two constants and or'ing the result
4462 // together. Because of the above check, we know that we only have
4463 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4464 // FoldICmpLogical check above), that the two constants are not
4465 // equal.
4466 assert(LHSCst != RHSCst && "Compares not folded above?");
4467
4468 switch (LHSCC) {
4469 default: assert(0 && "Unknown integer condition code!");
4470 case ICmpInst::ICMP_EQ:
4471 switch (RHSCC) {
4472 default: assert(0 && "Unknown integer condition code!");
4473 case ICmpInst::ICMP_EQ:
4474 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
4475 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Gabor Greifa645dd32008-05-16 19:29:10 +00004476 Instruction *Add = BinaryOperator::CreateAdd(LHSVal, AddCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004477 LHSVal->getName()+".off");
4478 InsertNewInstBefore(Add, I);
4479 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4480 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4481 }
4482 break; // (X == 13 | X == 15) -> no change
4483 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4484 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4485 break;
4486 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4487 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4488 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4489 return ReplaceInstUsesWith(I, RHS);
4490 }
4491 break;
4492 case ICmpInst::ICMP_NE:
4493 switch (RHSCC) {
4494 default: assert(0 && "Unknown integer condition code!");
4495 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4496 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4497 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4498 return ReplaceInstUsesWith(I, LHS);
4499 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4500 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4501 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4502 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4503 }
4504 break;
4505 case ICmpInst::ICMP_ULT:
4506 switch (RHSCC) {
4507 default: assert(0 && "Unknown integer condition code!");
4508 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4509 break;
4510 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) ->(X-13) u> 2
Chris Lattner26376862007-11-01 02:18:41 +00004511 // If RHSCst is [us]MAXINT, it is always false. Not handling
4512 // this can cause overflow.
4513 if (RHSCst->isMaxValue(false))
4514 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004515 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false,
4516 false, I);
4517 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4518 break;
4519 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4520 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4521 return ReplaceInstUsesWith(I, RHS);
4522 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4523 break;
4524 }
4525 break;
4526 case ICmpInst::ICMP_SLT:
4527 switch (RHSCC) {
4528 default: assert(0 && "Unknown integer condition code!");
4529 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4530 break;
4531 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) ->(X-13) s> 2
Chris Lattner26376862007-11-01 02:18:41 +00004532 // If RHSCst is [us]MAXINT, it is always false. Not handling
4533 // this can cause overflow.
4534 if (RHSCst->isMaxValue(true))
4535 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004536 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true,
4537 false, I);
4538 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4539 break;
4540 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4541 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4542 return ReplaceInstUsesWith(I, RHS);
4543 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4544 break;
4545 }
4546 break;
4547 case ICmpInst::ICMP_UGT:
4548 switch (RHSCC) {
4549 default: assert(0 && "Unknown integer condition code!");
4550 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4551 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4552 return ReplaceInstUsesWith(I, LHS);
4553 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4554 break;
4555 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4556 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4557 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4558 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4559 break;
4560 }
4561 break;
4562 case ICmpInst::ICMP_SGT:
4563 switch (RHSCC) {
4564 default: assert(0 && "Unknown integer condition code!");
4565 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4566 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4567 return ReplaceInstUsesWith(I, LHS);
4568 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4569 break;
4570 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4571 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4572 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4573 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4574 break;
4575 }
4576 break;
4577 }
4578 }
4579 }
4580
4581 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004582 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004583 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4584 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chenge3779cf2008-03-24 00:21:34 +00004585 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4586 !isa<ICmpInst>(Op1C->getOperand(0))) {
4587 const Type *SrcTy = Op0C->getOperand(0)->getType();
4588 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4589 // Only do this if the casts both really cause code to be
4590 // generated.
4591 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4592 I.getType(), TD) &&
4593 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4594 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004595 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chenge3779cf2008-03-24 00:21:34 +00004596 Op1C->getOperand(0),
4597 I.getName());
4598 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004599 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chenge3779cf2008-03-24 00:21:34 +00004600 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004601 }
4602 }
Chris Lattner91882432007-10-24 05:38:08 +00004603 }
4604
4605
4606 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4607 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4608 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4609 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattnerbe9e63e2008-02-29 06:09:11 +00004610 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
4611 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType())
Chris Lattner91882432007-10-24 05:38:08 +00004612 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4613 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4614 // If either of the constants are nans, then the whole thing returns
4615 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004616 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004617 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4618
4619 // Otherwise, no need to compare the two constants, compare the
4620 // rest.
4621 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4622 RHS->getOperand(0));
4623 }
4624 }
4625 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004626
4627 return Changed ? &I : 0;
4628}
4629
Dan Gohman089efff2008-05-13 00:00:25 +00004630namespace {
4631
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004632// XorSelf - Implements: X ^ X --> 0
4633struct XorSelf {
4634 Value *RHS;
4635 XorSelf(Value *rhs) : RHS(rhs) {}
4636 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4637 Instruction *apply(BinaryOperator &Xor) const {
4638 return &Xor;
4639 }
4640};
4641
Dan Gohman089efff2008-05-13 00:00:25 +00004642}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004643
4644Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4645 bool Changed = SimplifyCommutative(I);
4646 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4647
Evan Chenge5cd8032008-03-25 20:07:13 +00004648 if (isa<UndefValue>(Op1)) {
4649 if (isa<UndefValue>(Op0))
4650 // Handle undef ^ undef -> 0 special case. This is a common
4651 // idiom (misuse).
4652 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004653 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chenge5cd8032008-03-25 20:07:13 +00004654 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004655
4656 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4657 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004658 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004659 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4660 }
4661
4662 // See if we can simplify any instructions used by the instruction whose sole
4663 // purpose is to compute bits we don't care about.
4664 if (!isa<VectorType>(I.getType())) {
4665 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4666 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4667 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4668 KnownZero, KnownOne))
4669 return &I;
4670 } else if (isa<ConstantAggregateZero>(Op1)) {
4671 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4672 }
4673
4674 // Is this a ~ operation?
4675 if (Value *NotOp = dyn_castNotVal(&I)) {
4676 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4677 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4678 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4679 if (Op0I->getOpcode() == Instruction::And ||
4680 Op0I->getOpcode() == Instruction::Or) {
4681 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4682 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4683 Instruction *NotY =
Gabor Greifa645dd32008-05-16 19:29:10 +00004684 BinaryOperator::CreateNot(Op0I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004685 Op0I->getOperand(1)->getName()+".not");
4686 InsertNewInstBefore(NotY, I);
4687 if (Op0I->getOpcode() == Instruction::And)
Gabor Greifa645dd32008-05-16 19:29:10 +00004688 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004689 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004690 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004691 }
4692 }
4693 }
4694 }
4695
4696
4697 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004698 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4699 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4700 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004701 return new ICmpInst(ICI->getInversePredicate(),
4702 ICI->getOperand(0), ICI->getOperand(1));
4703
Nick Lewycky1405e922007-08-06 20:04:16 +00004704 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4705 return new FCmpInst(FCI->getInversePredicate(),
4706 FCI->getOperand(0), FCI->getOperand(1));
4707 }
4708
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004709 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4710 // ~(c-X) == X-c-1 == X+(-c-1)
4711 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4712 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4713 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4714 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4715 ConstantInt::get(I.getType(), 1));
Gabor Greifa645dd32008-05-16 19:29:10 +00004716 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004717 }
4718
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004719 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004720 if (Op0I->getOpcode() == Instruction::Add) {
4721 // ~(X-c) --> (-c-1)-X
4722 if (RHS->isAllOnesValue()) {
4723 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00004724 return BinaryOperator::CreateSub(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004725 ConstantExpr::getSub(NegOp0CI,
4726 ConstantInt::get(I.getType(), 1)),
4727 Op0I->getOperand(0));
4728 } else if (RHS->getValue().isSignBit()) {
4729 // (X + C) ^ signbit -> (X + C + signbit)
4730 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00004731 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004732
4733 }
4734 } else if (Op0I->getOpcode() == Instruction::Or) {
4735 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4736 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4737 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4738 // Anything in both C1 and C2 is known to be zero, remove it from
4739 // NewRHS.
4740 Constant *CommonBits = And(Op0CI, RHS);
4741 NewRHS = ConstantExpr::getAnd(NewRHS,
4742 ConstantExpr::getNot(CommonBits));
4743 AddToWorkList(Op0I);
4744 I.setOperand(0, Op0I->getOperand(0));
4745 I.setOperand(1, NewRHS);
4746 return &I;
4747 }
4748 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004749 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004750 }
4751
4752 // Try to fold constant and into select arguments.
4753 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4754 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4755 return R;
4756 if (isa<PHINode>(Op0))
4757 if (Instruction *NV = FoldOpIntoPhi(I))
4758 return NV;
4759 }
4760
4761 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4762 if (X == Op1)
4763 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4764
4765 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4766 if (X == Op0)
4767 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4768
4769
4770 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4771 if (Op1I) {
4772 Value *A, *B;
4773 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4774 if (A == Op0) { // B^(B|A) == (A|B)^B
4775 Op1I->swapOperands();
4776 I.swapOperands();
4777 std::swap(Op0, Op1);
4778 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4779 I.swapOperands(); // Simplified below.
4780 std::swap(Op0, Op1);
4781 }
4782 } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
4783 if (Op0 == A) // A^(A^B) == B
4784 return ReplaceInstUsesWith(I, B);
4785 else if (Op0 == B) // A^(B^A) == B
4786 return ReplaceInstUsesWith(I, A);
4787 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4788 if (A == Op0) { // A^(A&B) -> A^(B&A)
4789 Op1I->swapOperands();
4790 std::swap(A, B);
4791 }
4792 if (B == Op0) { // A^(B&A) -> (B&A)^A
4793 I.swapOperands(); // Simplified below.
4794 std::swap(Op0, Op1);
4795 }
4796 }
4797 }
4798
4799 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4800 if (Op0I) {
4801 Value *A, *B;
4802 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4803 if (A == Op1) // (B|A)^B == (A|B)^B
4804 std::swap(A, B);
4805 if (B == Op1) { // (A|B)^B == A & ~B
4806 Instruction *NotB =
Gabor Greifa645dd32008-05-16 19:29:10 +00004807 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
4808 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004809 }
4810 } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
4811 if (Op1 == A) // (A^B)^A == B
4812 return ReplaceInstUsesWith(I, B);
4813 else if (Op1 == B) // (B^A)^A == B
4814 return ReplaceInstUsesWith(I, A);
4815 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4816 if (A == Op1) // (A&B)^A -> (B&A)^A
4817 std::swap(A, B);
4818 if (B == Op1 && // (B&A)^A == ~B & A
4819 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
4820 Instruction *N =
Gabor Greifa645dd32008-05-16 19:29:10 +00004821 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
4822 return BinaryOperator::CreateAnd(N, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004823 }
4824 }
4825 }
4826
4827 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4828 if (Op0I && Op1I && Op0I->isShift() &&
4829 Op0I->getOpcode() == Op1I->getOpcode() &&
4830 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4831 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4832 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004833 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004834 Op1I->getOperand(0),
4835 Op0I->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004836 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004837 Op1I->getOperand(1));
4838 }
4839
4840 if (Op0I && Op1I) {
4841 Value *A, *B, *C, *D;
4842 // (A & B)^(A | B) -> A ^ B
4843 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4844 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4845 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004846 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004847 }
4848 // (A | B)^(A & B) -> A ^ B
4849 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4850 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4851 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004852 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004853 }
4854
4855 // (A & B)^(C & D)
4856 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4857 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4858 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4859 // (X & Y)^(X & Y) -> (Y^Z) & X
4860 Value *X = 0, *Y = 0, *Z = 0;
4861 if (A == C)
4862 X = A, Y = B, Z = D;
4863 else if (A == D)
4864 X = A, Y = B, Z = C;
4865 else if (B == C)
4866 X = B, Y = A, Z = D;
4867 else if (B == D)
4868 X = B, Y = A, Z = C;
4869
4870 if (X) {
4871 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004872 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
4873 return BinaryOperator::CreateAnd(NewOp, X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004874 }
4875 }
4876 }
4877
4878 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4879 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4880 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4881 return R;
4882
4883 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004884 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004885 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4886 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4887 const Type *SrcTy = Op0C->getOperand(0)->getType();
4888 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4889 // Only do this if the casts both really cause code to be generated.
4890 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4891 I.getType(), TD) &&
4892 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4893 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004894 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004895 Op1C->getOperand(0),
4896 I.getName());
4897 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004898 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004899 }
4900 }
Chris Lattner91882432007-10-24 05:38:08 +00004901 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004902 return Changed ? &I : 0;
4903}
4904
4905/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4906/// overflowed for this type.
4907static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4908 ConstantInt *In2, bool IsSigned = false) {
4909 Result = cast<ConstantInt>(Add(In1, In2));
4910
4911 if (IsSigned)
4912 if (In2->getValue().isNegative())
4913 return Result->getValue().sgt(In1->getValue());
4914 else
4915 return Result->getValue().slt(In1->getValue());
4916 else
4917 return Result->getValue().ult(In1->getValue());
4918}
4919
4920/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
4921/// code necessary to compute the offset from the base pointer (without adding
4922/// in the base pointer). Return the result as a signed integer of intptr size.
4923static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
4924 TargetData &TD = IC.getTargetData();
4925 gep_type_iterator GTI = gep_type_begin(GEP);
4926 const Type *IntPtrTy = TD.getIntPtrType();
4927 Value *Result = Constant::getNullValue(IntPtrTy);
4928
4929 // Build a mask for high order bits.
Chris Lattnereba75862008-04-22 02:53:33 +00004930 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004931 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
4932
4933 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
4934 Value *Op = GEP->getOperand(i);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00004935 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004936 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
4937 if (OpC->isZero()) continue;
4938
4939 // Handle a struct index, which adds its field offset to the pointer.
4940 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
4941 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
4942
4943 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
4944 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
4945 else
4946 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00004947 BinaryOperator::CreateAdd(Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004948 ConstantInt::get(IntPtrTy, Size),
4949 GEP->getName()+".offs"), I);
4950 continue;
4951 }
4952
4953 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4954 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
4955 Scale = ConstantExpr::getMul(OC, Scale);
4956 if (Constant *RC = dyn_cast<Constant>(Result))
4957 Result = ConstantExpr::getAdd(RC, Scale);
4958 else {
4959 // Emit an add instruction.
4960 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00004961 BinaryOperator::CreateAdd(Result, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004962 GEP->getName()+".offs"), I);
4963 }
4964 continue;
4965 }
4966 // Convert to correct type.
4967 if (Op->getType() != IntPtrTy) {
4968 if (Constant *OpC = dyn_cast<Constant>(Op))
4969 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
4970 else
4971 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
4972 Op->getName()+".c"), I);
4973 }
4974 if (Size != 1) {
4975 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4976 if (Constant *OpC = dyn_cast<Constant>(Op))
4977 Op = ConstantExpr::getMul(OpC, Scale);
4978 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greifa645dd32008-05-16 19:29:10 +00004979 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004980 GEP->getName()+".idx"), I);
4981 }
4982
4983 // Emit an add instruction.
4984 if (isa<Constant>(Op) && isa<Constant>(Result))
4985 Result = ConstantExpr::getAdd(cast<Constant>(Op),
4986 cast<Constant>(Result));
4987 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004988 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004989 GEP->getName()+".offs"), I);
4990 }
4991 return Result;
4992}
4993
Chris Lattnereba75862008-04-22 02:53:33 +00004994
4995/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
4996/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
4997/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
4998/// complex, and scales are involved. The above expression would also be legal
4999/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
5000/// later form is less amenable to optimization though, and we are allowed to
5001/// generate the first by knowing that pointer arithmetic doesn't overflow.
5002///
5003/// If we can't emit an optimized form for this expression, this returns null.
5004///
5005static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
5006 InstCombiner &IC) {
Chris Lattnereba75862008-04-22 02:53:33 +00005007 TargetData &TD = IC.getTargetData();
5008 gep_type_iterator GTI = gep_type_begin(GEP);
5009
5010 // Check to see if this gep only has a single variable index. If so, and if
5011 // any constant indices are a multiple of its scale, then we can compute this
5012 // in terms of the scale of the variable index. For example, if the GEP
5013 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5014 // because the expression will cross zero at the same point.
5015 unsigned i, e = GEP->getNumOperands();
5016 int64_t Offset = 0;
5017 for (i = 1; i != e; ++i, ++GTI) {
5018 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5019 // Compute the aggregate offset of constant indices.
5020 if (CI->isZero()) continue;
5021
5022 // Handle a struct index, which adds its field offset to the pointer.
5023 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5024 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5025 } else {
5026 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5027 Offset += Size*CI->getSExtValue();
5028 }
5029 } else {
5030 // Found our variable index.
5031 break;
5032 }
5033 }
5034
5035 // If there are no variable indices, we must have a constant offset, just
5036 // evaluate it the general way.
5037 if (i == e) return 0;
5038
5039 Value *VariableIdx = GEP->getOperand(i);
5040 // Determine the scale factor of the variable element. For example, this is
5041 // 4 if the variable index is into an array of i32.
5042 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
5043
5044 // Verify that there are no other variable indices. If so, emit the hard way.
5045 for (++i, ++GTI; i != e; ++i, ++GTI) {
5046 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5047 if (!CI) return 0;
5048
5049 // Compute the aggregate offset of constant indices.
5050 if (CI->isZero()) continue;
5051
5052 // Handle a struct index, which adds its field offset to the pointer.
5053 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5054 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5055 } else {
5056 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5057 Offset += Size*CI->getSExtValue();
5058 }
5059 }
5060
5061 // Okay, we know we have a single variable index, which must be a
5062 // pointer/array/vector index. If there is no offset, life is simple, return
5063 // the index.
5064 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5065 if (Offset == 0) {
5066 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5067 // we don't need to bother extending: the extension won't affect where the
5068 // computation crosses zero.
5069 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5070 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5071 VariableIdx->getNameStart(), &I);
5072 return VariableIdx;
5073 }
5074
5075 // Otherwise, there is an index. The computation we will do will be modulo
5076 // the pointer size, so get it.
5077 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5078
5079 Offset &= PtrSizeMask;
5080 VariableScale &= PtrSizeMask;
5081
5082 // To do this transformation, any constant index must be a multiple of the
5083 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5084 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5085 // multiple of the variable scale.
5086 int64_t NewOffs = Offset / (int64_t)VariableScale;
5087 if (Offset != NewOffs*(int64_t)VariableScale)
5088 return 0;
5089
5090 // Okay, we can do this evaluation. Start by converting the index to intptr.
5091 const Type *IntPtrTy = TD.getIntPtrType();
5092 if (VariableIdx->getType() != IntPtrTy)
Gabor Greifa645dd32008-05-16 19:29:10 +00005093 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattnereba75862008-04-22 02:53:33 +00005094 true /*SExt*/,
5095 VariableIdx->getNameStart(), &I);
5096 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greifa645dd32008-05-16 19:29:10 +00005097 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattnereba75862008-04-22 02:53:33 +00005098}
5099
5100
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005101/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5102/// else. At this point we know that the GEP is on the LHS of the comparison.
5103Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5104 ICmpInst::Predicate Cond,
5105 Instruction &I) {
5106 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
5107
Chris Lattnereba75862008-04-22 02:53:33 +00005108 // Look through bitcasts.
5109 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5110 RHS = BCI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005111
5112 Value *PtrBase = GEPLHS->getOperand(0);
5113 if (PtrBase == RHS) {
Chris Lattneraf97d022008-02-05 04:45:32 +00005114 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattnereba75862008-04-22 02:53:33 +00005115 // This transformation (ignoring the base and scales) is valid because we
5116 // know pointers can't overflow. See if we can output an optimized form.
5117 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5118
5119 // If not, synthesize the offset the hard way.
5120 if (Offset == 0)
5121 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattneraf97d022008-02-05 04:45:32 +00005122 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5123 Constant::getNullValue(Offset->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005124 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
5125 // If the base pointers are different, but the indices are the same, just
5126 // compare the base pointer.
5127 if (PtrBase != GEPRHS->getOperand(0)) {
5128 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
5129 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
5130 GEPRHS->getOperand(0)->getType();
5131 if (IndicesTheSame)
5132 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5133 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5134 IndicesTheSame = false;
5135 break;
5136 }
5137
5138 // If all indices are the same, just compare the base pointers.
5139 if (IndicesTheSame)
5140 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5141 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
5142
5143 // Otherwise, the base pointers are different and the indices are
5144 // different, bail out.
5145 return 0;
5146 }
5147
5148 // If one of the GEPs has all zero indices, recurse.
5149 bool AllZeros = true;
5150 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5151 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5152 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5153 AllZeros = false;
5154 break;
5155 }
5156 if (AllZeros)
5157 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5158 ICmpInst::getSwappedPredicate(Cond), I);
5159
5160 // If the other GEP has all zero indices, recurse.
5161 AllZeros = true;
5162 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5163 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5164 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5165 AllZeros = false;
5166 break;
5167 }
5168 if (AllZeros)
5169 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
5170
5171 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5172 // If the GEPs only differ by one index, compare it.
5173 unsigned NumDifferences = 0; // Keep track of # differences.
5174 unsigned DiffOperand = 0; // The operand that differs.
5175 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5176 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5177 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5178 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
5179 // Irreconcilable differences.
5180 NumDifferences = 2;
5181 break;
5182 } else {
5183 if (NumDifferences++) break;
5184 DiffOperand = i;
5185 }
5186 }
5187
5188 if (NumDifferences == 0) // SAME GEP?
5189 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00005190 ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005191 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky2de09a92007-09-06 02:40:25 +00005192
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005193 else if (NumDifferences == 1) {
5194 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5195 Value *RHSV = GEPRHS->getOperand(DiffOperand);
5196 // Make sure we do a signed comparison here.
5197 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
5198 }
5199 }
5200
5201 // Only lower this if the icmp is the only user of the GEP or if we expect
5202 // the result to fold to a constant!
5203 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5204 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5205 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5206 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5207 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5208 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5209 }
5210 }
5211 return 0;
5212}
5213
5214Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5215 bool Changed = SimplifyCompare(I);
5216 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5217
5218 // Fold trivial predicates.
5219 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
5220 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
5221 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
5222 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5223
5224 // Simplify 'fcmp pred X, X'
5225 if (Op0 == Op1) {
5226 switch (I.getPredicate()) {
5227 default: assert(0 && "Unknown predicate!");
5228 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5229 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5230 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
5231 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5232 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5233 case FCmpInst::FCMP_OLT: // True if ordered and less than
5234 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
5235 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5236
5237 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5238 case FCmpInst::FCMP_ULT: // True if unordered or less than
5239 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5240 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5241 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5242 I.setPredicate(FCmpInst::FCMP_UNO);
5243 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5244 return &I;
5245
5246 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5247 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5248 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5249 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5250 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5251 I.setPredicate(FCmpInst::FCMP_ORD);
5252 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5253 return &I;
5254 }
5255 }
5256
5257 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5258 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5259
5260 // Handle fcmp with constant RHS
5261 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5262 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5263 switch (LHSI->getOpcode()) {
5264 case Instruction::PHI:
5265 if (Instruction *NV = FoldOpIntoPhi(I))
5266 return NV;
5267 break;
5268 case Instruction::Select:
5269 // If either operand of the select is a constant, we can fold the
5270 // comparison into the select arms, which will cause one to be
5271 // constant folded and the select turned into a bitwise or.
5272 Value *Op1 = 0, *Op2 = 0;
5273 if (LHSI->hasOneUse()) {
5274 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5275 // Fold the known value into the constant operand.
5276 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5277 // Insert a new FCmp of the other select operand.
5278 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5279 LHSI->getOperand(2), RHSC,
5280 I.getName()), I);
5281 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5282 // Fold the known value into the constant operand.
5283 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5284 // Insert a new FCmp of the other select operand.
5285 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5286 LHSI->getOperand(1), RHSC,
5287 I.getName()), I);
5288 }
5289 }
5290
5291 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005292 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005293 break;
5294 }
5295 }
5296
5297 return Changed ? &I : 0;
5298}
5299
5300Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5301 bool Changed = SimplifyCompare(I);
5302 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5303 const Type *Ty = Op0->getType();
5304
5305 // icmp X, X
5306 if (Op0 == Op1)
5307 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005308 I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005309
5310 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5311 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lambf78cd322007-12-18 21:32:20 +00005312
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005313 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5314 // addresses never equal each other! We already know that Op0 != Op1.
5315 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5316 isa<ConstantPointerNull>(Op0)) &&
5317 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5318 isa<ConstantPointerNull>(Op1)))
5319 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005320 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005321
5322 // icmp's with boolean values can always be turned into bitwise operations
5323 if (Ty == Type::Int1Ty) {
5324 switch (I.getPredicate()) {
5325 default: assert(0 && "Invalid icmp instruction!");
5326 case ICmpInst::ICMP_EQ: { // icmp eq bool %A, %B -> ~(A^B)
Gabor Greifa645dd32008-05-16 19:29:10 +00005327 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005328 InsertNewInstBefore(Xor, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005329 return BinaryOperator::CreateNot(Xor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005330 }
5331 case ICmpInst::ICMP_NE: // icmp eq bool %A, %B -> A^B
Gabor Greifa645dd32008-05-16 19:29:10 +00005332 return BinaryOperator::CreateXor(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005333
5334 case ICmpInst::ICMP_UGT:
5335 case ICmpInst::ICMP_SGT:
5336 std::swap(Op0, Op1); // Change icmp gt -> icmp lt
5337 // FALL THROUGH
5338 case ICmpInst::ICMP_ULT:
5339 case ICmpInst::ICMP_SLT: { // icmp lt bool A, B -> ~X & Y
Gabor Greifa645dd32008-05-16 19:29:10 +00005340 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005341 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005342 return BinaryOperator::CreateAnd(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005343 }
5344 case ICmpInst::ICMP_UGE:
5345 case ICmpInst::ICMP_SGE:
5346 std::swap(Op0, Op1); // Change icmp ge -> icmp le
5347 // FALL THROUGH
5348 case ICmpInst::ICMP_ULE:
5349 case ICmpInst::ICMP_SLE: { // icmp le bool %A, %B -> ~A | B
Gabor Greifa645dd32008-05-16 19:29:10 +00005350 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005351 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005352 return BinaryOperator::CreateOr(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005353 }
5354 }
5355 }
5356
5357 // See if we are doing a comparison between a constant and an instruction that
5358 // can be folded into the comparison.
5359 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Christopher Lambfa6b3102007-12-20 07:21:11 +00005360 Value *A, *B;
5361
Chris Lattnerbe6c54a2008-01-05 01:18:20 +00005362 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5363 if (I.isEquality() && CI->isNullValue() &&
5364 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5365 // (icmp cond A B) if cond is equality
5366 return new ICmpInst(I.getPredicate(), A, B);
Owen Anderson42f61ed2007-12-28 07:42:12 +00005367 }
Christopher Lambfa6b3102007-12-20 07:21:11 +00005368
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005369 switch (I.getPredicate()) {
5370 default: break;
5371 case ICmpInst::ICMP_ULT: // A <u MIN -> FALSE
5372 if (CI->isMinValue(false))
5373 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5374 if (CI->isMaxValue(false)) // A <u MAX -> A != MAX
5375 return new ICmpInst(ICmpInst::ICMP_NE, Op0,Op1);
5376 if (isMinValuePlusOne(CI,false)) // A <u MIN+1 -> A == MIN
5377 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5378 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5379 if (CI->isMinValue(true))
5380 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5381 ConstantInt::getAllOnesValue(Op0->getType()));
5382
5383 break;
5384
5385 case ICmpInst::ICMP_SLT:
5386 if (CI->isMinValue(true)) // A <s MIN -> FALSE
5387 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5388 if (CI->isMaxValue(true)) // A <s MAX -> A != MAX
5389 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5390 if (isMinValuePlusOne(CI,true)) // A <s MIN+1 -> A == MIN
5391 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5392 break;
5393
5394 case ICmpInst::ICMP_UGT:
5395 if (CI->isMaxValue(false)) // A >u MAX -> FALSE
5396 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5397 if (CI->isMinValue(false)) // A >u MIN -> A != MIN
5398 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5399 if (isMaxValueMinusOne(CI, false)) // A >u MAX-1 -> A == MAX
5400 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5401
5402 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5403 if (CI->isMaxValue(true))
5404 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5405 ConstantInt::getNullValue(Op0->getType()));
5406 break;
5407
5408 case ICmpInst::ICMP_SGT:
5409 if (CI->isMaxValue(true)) // A >s MAX -> FALSE
5410 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5411 if (CI->isMinValue(true)) // A >s MIN -> A != MIN
5412 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5413 if (isMaxValueMinusOne(CI, true)) // A >s MAX-1 -> A == MAX
5414 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5415 break;
5416
5417 case ICmpInst::ICMP_ULE:
5418 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5419 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5420 if (CI->isMinValue(false)) // A <=u MIN -> A == MIN
5421 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5422 if (isMaxValueMinusOne(CI,false)) // A <=u MAX-1 -> A != MAX
5423 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
5424 break;
5425
5426 case ICmpInst::ICMP_SLE:
5427 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5428 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5429 if (CI->isMinValue(true)) // A <=s MIN -> A == MIN
5430 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5431 if (isMaxValueMinusOne(CI,true)) // A <=s MAX-1 -> A != MAX
5432 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
5433 break;
5434
5435 case ICmpInst::ICMP_UGE:
5436 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5437 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5438 if (CI->isMaxValue(false)) // A >=u MAX -> A == MAX
5439 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5440 if (isMinValuePlusOne(CI,false)) // A >=u MIN-1 -> A != MIN
5441 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
5442 break;
5443
5444 case ICmpInst::ICMP_SGE:
5445 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5446 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5447 if (CI->isMaxValue(true)) // A >=s MAX -> A == MAX
5448 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5449 if (isMinValuePlusOne(CI,true)) // A >=s MIN-1 -> A != MIN
5450 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
5451 break;
5452 }
5453
5454 // If we still have a icmp le or icmp ge instruction, turn it into the
5455 // appropriate icmp lt or icmp gt instruction. Since the border cases have
5456 // already been handled above, this requires little checking.
5457 //
5458 switch (I.getPredicate()) {
5459 default: break;
5460 case ICmpInst::ICMP_ULE:
5461 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5462 case ICmpInst::ICMP_SLE:
5463 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5464 case ICmpInst::ICMP_UGE:
5465 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5466 case ICmpInst::ICMP_SGE:
5467 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5468 }
5469
5470 // See if we can fold the comparison based on bits known to be zero or one
5471 // in the input. If this comparison is a normal comparison, it demands all
5472 // bits, if it is a sign bit comparison, it only demands the sign bit.
5473
5474 bool UnusedBit;
5475 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5476
5477 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5478 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5479 if (SimplifyDemandedBits(Op0,
5480 isSignBit ? APInt::getSignBit(BitWidth)
5481 : APInt::getAllOnesValue(BitWidth),
5482 KnownZero, KnownOne, 0))
5483 return &I;
5484
5485 // Given the known and unknown bits, compute a range that the LHS could be
5486 // in.
5487 if ((KnownOne | KnownZero) != 0) {
5488 // Compute the Min, Max and RHS values based on the known bits. For the
5489 // EQ and NE we use unsigned values.
5490 APInt Min(BitWidth, 0), Max(BitWidth, 0);
5491 const APInt& RHSVal = CI->getValue();
5492 if (ICmpInst::isSignedPredicate(I.getPredicate())) {
5493 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min,
5494 Max);
5495 } else {
5496 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min,
5497 Max);
5498 }
5499 switch (I.getPredicate()) { // LE/GE have been folded already.
5500 default: assert(0 && "Unknown icmp opcode!");
5501 case ICmpInst::ICMP_EQ:
5502 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5503 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5504 break;
5505 case ICmpInst::ICMP_NE:
5506 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5507 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5508 break;
5509 case ICmpInst::ICMP_ULT:
5510 if (Max.ult(RHSVal))
5511 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5512 if (Min.uge(RHSVal))
5513 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5514 break;
5515 case ICmpInst::ICMP_UGT:
5516 if (Min.ugt(RHSVal))
5517 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5518 if (Max.ule(RHSVal))
5519 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5520 break;
5521 case ICmpInst::ICMP_SLT:
5522 if (Max.slt(RHSVal))
5523 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5524 if (Min.sgt(RHSVal))
5525 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5526 break;
5527 case ICmpInst::ICMP_SGT:
5528 if (Min.sgt(RHSVal))
5529 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5530 if (Max.sle(RHSVal))
5531 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5532 break;
5533 }
5534 }
5535
5536 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5537 // instruction, see if that instruction also has constants so that the
5538 // instruction can be folded into the icmp
5539 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5540 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5541 return Res;
5542 }
5543
5544 // Handle icmp with constant (but not simple integer constant) RHS
5545 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5546 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5547 switch (LHSI->getOpcode()) {
5548 case Instruction::GetElementPtr:
5549 if (RHSC->isNullValue()) {
5550 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5551 bool isAllZeros = true;
5552 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5553 if (!isa<Constant>(LHSI->getOperand(i)) ||
5554 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5555 isAllZeros = false;
5556 break;
5557 }
5558 if (isAllZeros)
5559 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5560 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5561 }
5562 break;
5563
5564 case Instruction::PHI:
5565 if (Instruction *NV = FoldOpIntoPhi(I))
5566 return NV;
5567 break;
5568 case Instruction::Select: {
5569 // If either operand of the select is a constant, we can fold the
5570 // comparison into the select arms, which will cause one to be
5571 // constant folded and the select turned into a bitwise or.
5572 Value *Op1 = 0, *Op2 = 0;
5573 if (LHSI->hasOneUse()) {
5574 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5575 // Fold the known value into the constant operand.
5576 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5577 // Insert a new ICmp of the other select operand.
5578 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5579 LHSI->getOperand(2), RHSC,
5580 I.getName()), I);
5581 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5582 // Fold the known value into the constant operand.
5583 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5584 // Insert a new ICmp of the other select operand.
5585 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5586 LHSI->getOperand(1), RHSC,
5587 I.getName()), I);
5588 }
5589 }
5590
5591 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005592 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005593 break;
5594 }
5595 case Instruction::Malloc:
5596 // If we have (malloc != null), and if the malloc has a single use, we
5597 // can assume it is successful and remove the malloc.
5598 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5599 AddToWorkList(LHSI);
5600 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005601 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005602 }
5603 break;
5604 }
5605 }
5606
5607 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5608 if (User *GEP = dyn_castGetElementPtr(Op0))
5609 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
5610 return NI;
5611 if (User *GEP = dyn_castGetElementPtr(Op1))
5612 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
5613 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5614 return NI;
5615
5616 // Test to see if the operands of the icmp are casted versions of other
5617 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5618 // now.
5619 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
5620 if (isa<PointerType>(Op0->getType()) &&
5621 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
5622 // We keep moving the cast from the left operand over to the right
5623 // operand, where it can often be eliminated completely.
5624 Op0 = CI->getOperand(0);
5625
5626 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5627 // so eliminate it as well.
5628 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
5629 Op1 = CI2->getOperand(0);
5630
5631 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005632 if (Op0->getType() != Op1->getType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005633 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
5634 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
5635 } else {
5636 // Otherwise, cast the RHS right before the icmp
Chris Lattner13c2d6e2008-01-13 22:23:22 +00005637 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005638 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005639 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005640 return new ICmpInst(I.getPredicate(), Op0, Op1);
5641 }
5642 }
5643
5644 if (isa<CastInst>(Op0)) {
5645 // Handle the special case of: icmp (cast bool to X), <cst>
5646 // This comes up when you have code like
5647 // int X = A < B;
5648 // if (X) ...
5649 // For generality, we handle any zero-extension of any operand comparison
5650 // with a constant or another cast from the same type.
5651 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
5652 if (Instruction *R = visitICmpInstWithCastAndCast(I))
5653 return R;
5654 }
5655
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005656 // ~x < ~y --> y < x
5657 { Value *A, *B;
5658 if (match(Op0, m_Not(m_Value(A))) &&
5659 match(Op1, m_Not(m_Value(B))))
5660 return new ICmpInst(I.getPredicate(), B, A);
5661 }
5662
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005663 if (I.isEquality()) {
5664 Value *A, *B, *C, *D;
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005665
5666 // -x == -y --> x == y
5667 if (match(Op0, m_Neg(m_Value(A))) &&
5668 match(Op1, m_Neg(m_Value(B))))
5669 return new ICmpInst(I.getPredicate(), A, B);
5670
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005671 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
5672 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
5673 Value *OtherVal = A == Op1 ? B : A;
5674 return new ICmpInst(I.getPredicate(), OtherVal,
5675 Constant::getNullValue(A->getType()));
5676 }
5677
5678 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
5679 // A^c1 == C^c2 --> A == C^(c1^c2)
5680 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
5681 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
5682 if (Op1->hasOneUse()) {
5683 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00005684 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005685 return new ICmpInst(I.getPredicate(), A,
5686 InsertNewInstBefore(Xor, I));
5687 }
5688
5689 // A^B == A^D -> B == D
5690 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
5691 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
5692 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
5693 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
5694 }
5695 }
5696
5697 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
5698 (A == Op0 || B == Op0)) {
5699 // A == (A^B) -> B == 0
5700 Value *OtherVal = A == Op0 ? B : A;
5701 return new ICmpInst(I.getPredicate(), OtherVal,
5702 Constant::getNullValue(A->getType()));
5703 }
5704 if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
5705 // (A-B) == A -> B == 0
5706 return new ICmpInst(I.getPredicate(), B,
5707 Constant::getNullValue(B->getType()));
5708 }
5709 if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
5710 // A == (A-B) -> B == 0
5711 return new ICmpInst(I.getPredicate(), B,
5712 Constant::getNullValue(B->getType()));
5713 }
5714
5715 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5716 if (Op0->hasOneUse() && Op1->hasOneUse() &&
5717 match(Op0, m_And(m_Value(A), m_Value(B))) &&
5718 match(Op1, m_And(m_Value(C), m_Value(D)))) {
5719 Value *X = 0, *Y = 0, *Z = 0;
5720
5721 if (A == C) {
5722 X = B; Y = D; Z = A;
5723 } else if (A == D) {
5724 X = B; Y = C; Z = A;
5725 } else if (B == C) {
5726 X = A; Y = D; Z = B;
5727 } else if (B == D) {
5728 X = A; Y = C; Z = B;
5729 }
5730
5731 if (X) { // Build (X^Y) & Z
Gabor Greifa645dd32008-05-16 19:29:10 +00005732 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
5733 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005734 I.setOperand(0, Op1);
5735 I.setOperand(1, Constant::getNullValue(Op1->getType()));
5736 return &I;
5737 }
5738 }
5739 }
5740 return Changed ? &I : 0;
5741}
5742
5743
5744/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
5745/// and CmpRHS are both known to be integer constants.
5746Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
5747 ConstantInt *DivRHS) {
5748 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
5749 const APInt &CmpRHSV = CmpRHS->getValue();
5750
5751 // FIXME: If the operand types don't match the type of the divide
5752 // then don't attempt this transform. The code below doesn't have the
5753 // logic to deal with a signed divide and an unsigned compare (and
5754 // vice versa). This is because (x /s C1) <s C2 produces different
5755 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
5756 // (x /u C1) <u C2. Simply casting the operands and result won't
5757 // work. :( The if statement below tests that condition and bails
5758 // if it finds it.
5759 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
5760 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
5761 return 0;
5762 if (DivRHS->isZero())
5763 return 0; // The ProdOV computation fails on divide by zero.
5764
5765 // Compute Prod = CI * DivRHS. We are essentially solving an equation
5766 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
5767 // C2 (CI). By solving for X we can turn this into a range check
5768 // instead of computing a divide.
5769 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
5770
5771 // Determine if the product overflows by seeing if the product is
5772 // not equal to the divide. Make sure we do the same kind of divide
5773 // as in the LHS instruction that we're folding.
5774 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
5775 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
5776
5777 // Get the ICmp opcode
5778 ICmpInst::Predicate Pred = ICI.getPredicate();
5779
5780 // Figure out the interval that is being checked. For example, a comparison
5781 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
5782 // Compute this interval based on the constants involved and the signedness of
5783 // the compare/divide. This computes a half-open interval, keeping track of
5784 // whether either value in the interval overflows. After analysis each
5785 // overflow variable is set to 0 if it's corresponding bound variable is valid
5786 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
5787 int LoOverflow = 0, HiOverflow = 0;
5788 ConstantInt *LoBound = 0, *HiBound = 0;
5789
5790
5791 if (!DivIsSigned) { // udiv
5792 // e.g. X/5 op 3 --> [15, 20)
5793 LoBound = Prod;
5794 HiOverflow = LoOverflow = ProdOV;
5795 if (!HiOverflow)
5796 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman5dceed12008-02-13 22:09:18 +00005797 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005798 if (CmpRHSV == 0) { // (X / pos) op 0
5799 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
5800 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
5801 HiBound = DivRHS;
Dan Gohman5dceed12008-02-13 22:09:18 +00005802 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005803 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
5804 HiOverflow = LoOverflow = ProdOV;
5805 if (!HiOverflow)
5806 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
5807 } else { // (X / pos) op neg
5808 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
5809 Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
5810 LoOverflow = AddWithOverflow(LoBound, Prod,
5811 cast<ConstantInt>(DivRHSH), true) ? -1 : 0;
5812 HiBound = AddOne(Prod);
5813 HiOverflow = ProdOV ? -1 : 0;
5814 }
Dan Gohman5dceed12008-02-13 22:09:18 +00005815 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005816 if (CmpRHSV == 0) { // (X / neg) op 0
5817 // e.g. X/-5 op 0 --> [-4, 5)
5818 LoBound = AddOne(DivRHS);
5819 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
5820 if (HiBound == DivRHS) { // -INTMIN = INTMIN
5821 HiOverflow = 1; // [INTMIN+1, overflow)
5822 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
5823 }
Dan Gohman5dceed12008-02-13 22:09:18 +00005824 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005825 // e.g. X/-5 op 3 --> [-19, -14)
5826 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
5827 if (!LoOverflow)
5828 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS), true) ?-1:0;
5829 HiBound = AddOne(Prod);
5830 } else { // (X / neg) op neg
5831 // e.g. X/-5 op -3 --> [15, 20)
5832 LoBound = Prod;
5833 LoOverflow = HiOverflow = ProdOV ? 1 : 0;
5834 HiBound = Subtract(Prod, DivRHS);
5835 }
5836
5837 // Dividing by a negative swaps the condition. LT <-> GT
5838 Pred = ICmpInst::getSwappedPredicate(Pred);
5839 }
5840
5841 Value *X = DivI->getOperand(0);
5842 switch (Pred) {
5843 default: assert(0 && "Unhandled icmp opcode!");
5844 case ICmpInst::ICMP_EQ:
5845 if (LoOverflow && HiOverflow)
5846 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5847 else if (HiOverflow)
5848 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5849 ICmpInst::ICMP_UGE, X, LoBound);
5850 else if (LoOverflow)
5851 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5852 ICmpInst::ICMP_ULT, X, HiBound);
5853 else
5854 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
5855 case ICmpInst::ICMP_NE:
5856 if (LoOverflow && HiOverflow)
5857 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5858 else if (HiOverflow)
5859 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5860 ICmpInst::ICMP_ULT, X, LoBound);
5861 else if (LoOverflow)
5862 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5863 ICmpInst::ICMP_UGE, X, HiBound);
5864 else
5865 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
5866 case ICmpInst::ICMP_ULT:
5867 case ICmpInst::ICMP_SLT:
5868 if (LoOverflow == +1) // Low bound is greater than input range.
5869 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5870 if (LoOverflow == -1) // Low bound is less than input range.
5871 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5872 return new ICmpInst(Pred, X, LoBound);
5873 case ICmpInst::ICMP_UGT:
5874 case ICmpInst::ICMP_SGT:
5875 if (HiOverflow == +1) // High bound greater than input range.
5876 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5877 else if (HiOverflow == -1) // High bound less than input range.
5878 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5879 if (Pred == ICmpInst::ICMP_UGT)
5880 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
5881 else
5882 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
5883 }
5884}
5885
5886
5887/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
5888///
5889Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
5890 Instruction *LHSI,
5891 ConstantInt *RHS) {
5892 const APInt &RHSV = RHS->getValue();
5893
5894 switch (LHSI->getOpcode()) {
5895 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
5896 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
5897 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
5898 // fold the xor.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005899 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
5900 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005901 Value *CompareVal = LHSI->getOperand(0);
5902
5903 // If the sign bit of the XorCST is not set, there is no change to
5904 // the operation, just stop using the Xor.
5905 if (!XorCST->getValue().isNegative()) {
5906 ICI.setOperand(0, CompareVal);
5907 AddToWorkList(LHSI);
5908 return &ICI;
5909 }
5910
5911 // Was the old condition true if the operand is positive?
5912 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
5913
5914 // If so, the new one isn't.
5915 isTrueIfPositive ^= true;
5916
5917 if (isTrueIfPositive)
5918 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
5919 else
5920 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
5921 }
5922 }
5923 break;
5924 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
5925 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
5926 LHSI->getOperand(0)->hasOneUse()) {
5927 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
5928
5929 // If the LHS is an AND of a truncating cast, we can widen the
5930 // and/compare to be the input width without changing the value
5931 // produced, eliminating a cast.
5932 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
5933 // We can do this transformation if either the AND constant does not
5934 // have its sign bit set or if it is an equality comparison.
5935 // Extending a relational comparison when we're checking the sign
5936 // bit would not work.
5937 if (Cast->hasOneUse() &&
Anton Korobeynikov6a4a9332008-02-20 12:07:57 +00005938 (ICI.isEquality() ||
5939 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005940 uint32_t BitWidth =
5941 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
5942 APInt NewCST = AndCST->getValue();
5943 NewCST.zext(BitWidth);
5944 APInt NewCI = RHSV;
5945 NewCI.zext(BitWidth);
5946 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00005947 BinaryOperator::CreateAnd(Cast->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005948 ConstantInt::get(NewCST),LHSI->getName());
5949 InsertNewInstBefore(NewAnd, ICI);
5950 return new ICmpInst(ICI.getPredicate(), NewAnd,
5951 ConstantInt::get(NewCI));
5952 }
5953 }
5954
5955 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
5956 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
5957 // happens a LOT in code produced by the C front-end, for bitfield
5958 // access.
5959 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
5960 if (Shift && !Shift->isShift())
5961 Shift = 0;
5962
5963 ConstantInt *ShAmt;
5964 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
5965 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
5966 const Type *AndTy = AndCST->getType(); // Type of the and.
5967
5968 // We can fold this as long as we can't shift unknown bits
5969 // into the mask. This can only happen with signed shift
5970 // rights, as they sign-extend.
5971 if (ShAmt) {
5972 bool CanFold = Shift->isLogicalShift();
5973 if (!CanFold) {
5974 // To test for the bad case of the signed shr, see if any
5975 // of the bits shifted in could be tested after the mask.
5976 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
5977 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
5978
5979 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
5980 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
5981 AndCST->getValue()) == 0)
5982 CanFold = true;
5983 }
5984
5985 if (CanFold) {
5986 Constant *NewCst;
5987 if (Shift->getOpcode() == Instruction::Shl)
5988 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
5989 else
5990 NewCst = ConstantExpr::getShl(RHS, ShAmt);
5991
5992 // Check to see if we are shifting out any of the bits being
5993 // compared.
5994 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
5995 // If we shifted bits out, the fold is not going to work out.
5996 // As a special case, check to see if this means that the
5997 // result is always true or false now.
5998 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
5999 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6000 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6001 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6002 } else {
6003 ICI.setOperand(1, NewCst);
6004 Constant *NewAndCST;
6005 if (Shift->getOpcode() == Instruction::Shl)
6006 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6007 else
6008 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6009 LHSI->setOperand(1, NewAndCST);
6010 LHSI->setOperand(0, Shift->getOperand(0));
6011 AddToWorkList(Shift); // Shift is dead.
6012 AddUsesToWorkList(ICI);
6013 return &ICI;
6014 }
6015 }
6016 }
6017
6018 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6019 // preferable because it allows the C<<Y expression to be hoisted out
6020 // of a loop if Y is invariant and X is not.
6021 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6022 ICI.isEquality() && !Shift->isArithmeticShift() &&
6023 isa<Instruction>(Shift->getOperand(0))) {
6024 // Compute C << Y.
6025 Value *NS;
6026 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006027 NS = BinaryOperator::CreateShl(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006028 Shift->getOperand(1), "tmp");
6029 } else {
6030 // Insert a logical shift.
Gabor Greifa645dd32008-05-16 19:29:10 +00006031 NS = BinaryOperator::CreateLShr(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006032 Shift->getOperand(1), "tmp");
6033 }
6034 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6035
6036 // Compute X & (C << Y).
6037 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006038 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006039 InsertNewInstBefore(NewAnd, ICI);
6040
6041 ICI.setOperand(0, NewAnd);
6042 return &ICI;
6043 }
6044 }
6045 break;
6046
6047 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6048 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6049 if (!ShAmt) break;
6050
6051 uint32_t TypeBits = RHSV.getBitWidth();
6052
6053 // Check that the shift amount is in range. If not, don't perform
6054 // undefined shifts. When the shift is visited it will be
6055 // simplified.
6056 if (ShAmt->uge(TypeBits))
6057 break;
6058
6059 if (ICI.isEquality()) {
6060 // If we are comparing against bits always shifted out, the
6061 // comparison cannot succeed.
6062 Constant *Comp =
6063 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6064 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6065 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6066 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6067 return ReplaceInstUsesWith(ICI, Cst);
6068 }
6069
6070 if (LHSI->hasOneUse()) {
6071 // Otherwise strength reduce the shift into an and.
6072 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6073 Constant *Mask =
6074 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
6075
6076 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006077 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006078 Mask, LHSI->getName()+".mask");
6079 Value *And = InsertNewInstBefore(AndI, ICI);
6080 return new ICmpInst(ICI.getPredicate(), And,
6081 ConstantInt::get(RHSV.lshr(ShAmtVal)));
6082 }
6083 }
6084
6085 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6086 bool TrueIfSigned = false;
6087 if (LHSI->hasOneUse() &&
6088 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6089 // (X << 31) <s 0 --> (X&1) != 0
6090 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6091 (TypeBits-ShAmt->getZExtValue()-1));
6092 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006093 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006094 Mask, LHSI->getName()+".mask");
6095 Value *And = InsertNewInstBefore(AndI, ICI);
6096
6097 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6098 And, Constant::getNullValue(And->getType()));
6099 }
6100 break;
6101 }
6102
6103 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6104 case Instruction::AShr: {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006105 // Only handle equality comparisons of shift-by-constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006106 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner5ee84f82008-03-21 05:19:58 +00006107 if (!ShAmt || !ICI.isEquality()) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006108
Chris Lattner5ee84f82008-03-21 05:19:58 +00006109 // Check that the shift amount is in range. If not, don't perform
6110 // undefined shifts. When the shift is visited it will be
6111 // simplified.
6112 uint32_t TypeBits = RHSV.getBitWidth();
6113 if (ShAmt->uge(TypeBits))
6114 break;
6115
6116 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006117
Chris Lattner5ee84f82008-03-21 05:19:58 +00006118 // If we are comparing against bits always shifted out, the
6119 // comparison cannot succeed.
6120 APInt Comp = RHSV << ShAmtVal;
6121 if (LHSI->getOpcode() == Instruction::LShr)
6122 Comp = Comp.lshr(ShAmtVal);
6123 else
6124 Comp = Comp.ashr(ShAmtVal);
6125
6126 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6127 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6128 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6129 return ReplaceInstUsesWith(ICI, Cst);
6130 }
6131
6132 // Otherwise, check to see if the bits shifted out are known to be zero.
6133 // If so, we can compare against the unshifted value:
6134 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengfb9292a2008-04-23 00:38:06 +00006135 if (LHSI->hasOneUse() &&
6136 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006137 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6138 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6139 ConstantExpr::getShl(RHS, ShAmt));
6140 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006141
Evan Chengfb9292a2008-04-23 00:38:06 +00006142 if (LHSI->hasOneUse()) {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006143 // Otherwise strength reduce the shift into an and.
6144 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6145 Constant *Mask = ConstantInt::get(Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006146
Chris Lattner5ee84f82008-03-21 05:19:58 +00006147 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006148 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006149 Mask, LHSI->getName()+".mask");
6150 Value *And = InsertNewInstBefore(AndI, ICI);
6151 return new ICmpInst(ICI.getPredicate(), And,
6152 ConstantExpr::getShl(RHS, ShAmt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006153 }
6154 break;
6155 }
6156
6157 case Instruction::SDiv:
6158 case Instruction::UDiv:
6159 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6160 // Fold this div into the comparison, producing a range check.
6161 // Determine, based on the divide type, what the range is being
6162 // checked. If there is an overflow on the low or high side, remember
6163 // it, otherwise compute the range [low, hi) bounding the new value.
6164 // See: InsertRangeTest above for the kinds of replacements possible.
6165 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6166 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6167 DivRHS))
6168 return R;
6169 break;
Nick Lewycky0185bbf2008-02-03 16:33:09 +00006170
6171 case Instruction::Add:
6172 // Fold: icmp pred (add, X, C1), C2
6173
6174 if (!ICI.isEquality()) {
6175 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6176 if (!LHSC) break;
6177 const APInt &LHSV = LHSC->getValue();
6178
6179 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6180 .subtract(LHSV);
6181
6182 if (ICI.isSignedPredicate()) {
6183 if (CR.getLower().isSignBit()) {
6184 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6185 ConstantInt::get(CR.getUpper()));
6186 } else if (CR.getUpper().isSignBit()) {
6187 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6188 ConstantInt::get(CR.getLower()));
6189 }
6190 } else {
6191 if (CR.getLower().isMinValue()) {
6192 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6193 ConstantInt::get(CR.getUpper()));
6194 } else if (CR.getUpper().isMinValue()) {
6195 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6196 ConstantInt::get(CR.getLower()));
6197 }
6198 }
6199 }
6200 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006201 }
6202
6203 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6204 if (ICI.isEquality()) {
6205 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6206
6207 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6208 // the second operand is a constant, simplify a bit.
6209 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6210 switch (BO->getOpcode()) {
6211 case Instruction::SRem:
6212 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6213 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6214 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6215 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6216 Instruction *NewRem =
Gabor Greifa645dd32008-05-16 19:29:10 +00006217 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006218 BO->getName());
6219 InsertNewInstBefore(NewRem, ICI);
6220 return new ICmpInst(ICI.getPredicate(), NewRem,
6221 Constant::getNullValue(BO->getType()));
6222 }
6223 }
6224 break;
6225 case Instruction::Add:
6226 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6227 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6228 if (BO->hasOneUse())
6229 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6230 Subtract(RHS, BOp1C));
6231 } else if (RHSV == 0) {
6232 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6233 // efficiently invertible, or if the add has just this one use.
6234 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6235
6236 if (Value *NegVal = dyn_castNegVal(BOp1))
6237 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6238 else if (Value *NegVal = dyn_castNegVal(BOp0))
6239 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6240 else if (BO->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006241 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006242 InsertNewInstBefore(Neg, ICI);
6243 Neg->takeName(BO);
6244 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6245 }
6246 }
6247 break;
6248 case Instruction::Xor:
6249 // For the xor case, we can xor two constants together, eliminating
6250 // the explicit xor.
6251 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6252 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6253 ConstantExpr::getXor(RHS, BOC));
6254
6255 // FALLTHROUGH
6256 case Instruction::Sub:
6257 // Replace (([sub|xor] A, B) != 0) with (A != B)
6258 if (RHSV == 0)
6259 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6260 BO->getOperand(1));
6261 break;
6262
6263 case Instruction::Or:
6264 // If bits are being or'd in that are not present in the constant we
6265 // are comparing against, then the comparison could never succeed!
6266 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6267 Constant *NotCI = ConstantExpr::getNot(RHS);
6268 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6269 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6270 isICMP_NE));
6271 }
6272 break;
6273
6274 case Instruction::And:
6275 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6276 // If bits are being compared against that are and'd out, then the
6277 // comparison can never succeed!
6278 if ((RHSV & ~BOC->getValue()) != 0)
6279 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6280 isICMP_NE));
6281
6282 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6283 if (RHS == BOC && RHSV.isPowerOf2())
6284 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6285 ICmpInst::ICMP_NE, LHSI,
6286 Constant::getNullValue(RHS->getType()));
6287
6288 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
6289 if (isSignBit(BOC)) {
6290 Value *X = BO->getOperand(0);
6291 Constant *Zero = Constant::getNullValue(X->getType());
6292 ICmpInst::Predicate pred = isICMP_NE ?
6293 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6294 return new ICmpInst(pred, X, Zero);
6295 }
6296
6297 // ((X & ~7) == 0) --> X < 8
6298 if (RHSV == 0 && isHighOnes(BOC)) {
6299 Value *X = BO->getOperand(0);
6300 Constant *NegX = ConstantExpr::getNeg(BOC);
6301 ICmpInst::Predicate pred = isICMP_NE ?
6302 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6303 return new ICmpInst(pred, X, NegX);
6304 }
6305 }
6306 default: break;
6307 }
6308 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6309 // Handle icmp {eq|ne} <intrinsic>, intcst.
6310 if (II->getIntrinsicID() == Intrinsic::bswap) {
6311 AddToWorkList(II);
6312 ICI.setOperand(0, II->getOperand(1));
6313 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6314 return &ICI;
6315 }
6316 }
6317 } else { // Not a ICMP_EQ/ICMP_NE
6318 // If the LHS is a cast from an integral value of the same size,
6319 // then since we know the RHS is a constant, try to simlify.
6320 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6321 Value *CastOp = Cast->getOperand(0);
6322 const Type *SrcTy = CastOp->getType();
6323 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6324 if (SrcTy->isInteger() &&
6325 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6326 // If this is an unsigned comparison, try to make the comparison use
6327 // smaller constant values.
6328 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6329 // X u< 128 => X s> -1
6330 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6331 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6332 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6333 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6334 // X u> 127 => X s< 0
6335 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6336 Constant::getNullValue(SrcTy));
6337 }
6338 }
6339 }
6340 }
6341 return 0;
6342}
6343
6344/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6345/// We only handle extending casts so far.
6346///
6347Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6348 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6349 Value *LHSCIOp = LHSCI->getOperand(0);
6350 const Type *SrcTy = LHSCIOp->getType();
6351 const Type *DestTy = LHSCI->getType();
6352 Value *RHSCIOp;
6353
6354 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6355 // integer type is the same size as the pointer type.
6356 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6357 getTargetData().getPointerSizeInBits() ==
6358 cast<IntegerType>(DestTy)->getBitWidth()) {
6359 Value *RHSOp = 0;
6360 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6361 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6362 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6363 RHSOp = RHSC->getOperand(0);
6364 // If the pointer types don't match, insert a bitcast.
6365 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006366 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006367 }
6368
6369 if (RHSOp)
6370 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6371 }
6372
6373 // The code below only handles extension cast instructions, so far.
6374 // Enforce this.
6375 if (LHSCI->getOpcode() != Instruction::ZExt &&
6376 LHSCI->getOpcode() != Instruction::SExt)
6377 return 0;
6378
6379 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6380 bool isSignedCmp = ICI.isSignedPredicate();
6381
6382 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6383 // Not an extension from the same type?
6384 RHSCIOp = CI->getOperand(0);
6385 if (RHSCIOp->getType() != LHSCIOp->getType())
6386 return 0;
6387
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006388 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006389 // and the other is a zext), then we can't handle this.
6390 if (CI->getOpcode() != LHSCI->getOpcode())
6391 return 0;
6392
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006393 // Deal with equality cases early.
6394 if (ICI.isEquality())
6395 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6396
6397 // A signed comparison of sign extended values simplifies into a
6398 // signed comparison.
6399 if (isSignedCmp && isSignedExt)
6400 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6401
6402 // The other three cases all fold into an unsigned comparison.
6403 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006404 }
6405
6406 // If we aren't dealing with a constant on the RHS, exit early
6407 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6408 if (!CI)
6409 return 0;
6410
6411 // Compute the constant that would happen if we truncated to SrcTy then
6412 // reextended to DestTy.
6413 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6414 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6415
6416 // If the re-extended constant didn't change...
6417 if (Res2 == CI) {
6418 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6419 // For example, we might have:
6420 // %A = sext short %X to uint
6421 // %B = icmp ugt uint %A, 1330
6422 // It is incorrect to transform this into
6423 // %B = icmp ugt short %X, 1330
6424 // because %A may have negative value.
6425 //
6426 // However, it is OK if SrcTy is bool (See cast-set.ll testcase)
6427 // OR operation is EQ/NE.
6428 if (isSignedExt == isSignedCmp || SrcTy == Type::Int1Ty || ICI.isEquality())
6429 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
6430 else
6431 return 0;
6432 }
6433
6434 // The re-extended constant changed so the constant cannot be represented
6435 // in the shorter type. Consequently, we cannot emit a simple comparison.
6436
6437 // First, handle some easy cases. We know the result cannot be equal at this
6438 // point so handle the ICI.isEquality() cases
6439 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6440 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6441 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6442 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6443
6444 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6445 // should have been folded away previously and not enter in here.
6446 Value *Result;
6447 if (isSignedCmp) {
6448 // We're performing a signed comparison.
6449 if (cast<ConstantInt>(CI)->getValue().isNegative())
6450 Result = ConstantInt::getFalse(); // X < (small) --> false
6451 else
6452 Result = ConstantInt::getTrue(); // X < (large) --> true
6453 } else {
6454 // We're performing an unsigned comparison.
6455 if (isSignedExt) {
6456 // We're performing an unsigned comp with a sign extended value.
6457 // This is true if the input is >= 0. [aka >s -1]
6458 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6459 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6460 NegOne, ICI.getName()), ICI);
6461 } else {
6462 // Unsigned extend & unsigned compare -> always true.
6463 Result = ConstantInt::getTrue();
6464 }
6465 }
6466
6467 // Finally, return the value computed.
6468 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
6469 ICI.getPredicate() == ICmpInst::ICMP_SLT) {
6470 return ReplaceInstUsesWith(ICI, Result);
6471 } else {
6472 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6473 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6474 "ICmp should be folded!");
6475 if (Constant *CI = dyn_cast<Constant>(Result))
6476 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6477 else
Gabor Greifa645dd32008-05-16 19:29:10 +00006478 return BinaryOperator::CreateNot(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006479 }
6480}
6481
6482Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6483 return commonShiftTransforms(I);
6484}
6485
6486Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6487 return commonShiftTransforms(I);
6488}
6489
6490Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00006491 if (Instruction *R = commonShiftTransforms(I))
6492 return R;
6493
6494 Value *Op0 = I.getOperand(0);
6495
6496 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6497 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6498 if (CSI->isAllOnesValue())
6499 return ReplaceInstUsesWith(I, CSI);
6500
6501 // See if we can turn a signed shr into an unsigned shr.
6502 if (MaskedValueIsZero(Op0,
6503 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greifa645dd32008-05-16 19:29:10 +00006504 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattnere3c504f2007-12-06 01:59:46 +00006505
6506 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006507}
6508
6509Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6510 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6511 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6512
6513 // shl X, 0 == X and shr X, 0 == X
6514 // shl 0, X == 0 and shr 0, X == 0
6515 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6516 Op0 == Constant::getNullValue(Op0->getType()))
6517 return ReplaceInstUsesWith(I, Op0);
6518
6519 if (isa<UndefValue>(Op0)) {
6520 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6521 return ReplaceInstUsesWith(I, Op0);
6522 else // undef << X -> 0, undef >>u X -> 0
6523 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6524 }
6525 if (isa<UndefValue>(Op1)) {
6526 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6527 return ReplaceInstUsesWith(I, Op0);
6528 else // X << undef, X >>u undef -> 0
6529 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6530 }
6531
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006532 // Try to fold constant and into select arguments.
6533 if (isa<Constant>(Op0))
6534 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
6535 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6536 return R;
6537
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006538 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
6539 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6540 return Res;
6541 return 0;
6542}
6543
6544Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
6545 BinaryOperator &I) {
6546 bool isLeftShift = I.getOpcode() == Instruction::Shl;
6547
6548 // See if we can simplify any instructions used by the instruction whose sole
6549 // purpose is to compute bits we don't care about.
6550 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6551 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6552 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
6553 KnownZero, KnownOne))
6554 return &I;
6555
6556 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6557 // of a signed value.
6558 //
6559 if (Op1->uge(TypeBits)) {
6560 if (I.getOpcode() != Instruction::AShr)
6561 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6562 else {
6563 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
6564 return &I;
6565 }
6566 }
6567
6568 // ((X*C1) << C2) == (X * (C1 << C2))
6569 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
6570 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
6571 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00006572 return BinaryOperator::CreateMul(BO->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006573 ConstantExpr::getShl(BOOp, Op1));
6574
6575 // Try to fold constant and into select arguments.
6576 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
6577 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6578 return R;
6579 if (isa<PHINode>(Op0))
6580 if (Instruction *NV = FoldOpIntoPhi(I))
6581 return NV;
6582
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006583 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
6584 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
6585 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
6586 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
6587 // place. Don't try to do this transformation in this case. Also, we
6588 // require that the input operand is a shift-by-constant so that we have
6589 // confidence that the shifts will get folded together. We could do this
6590 // xform in more cases, but it is unlikely to be profitable.
6591 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
6592 isa<ConstantInt>(TrOp->getOperand(1))) {
6593 // Okay, we'll do this xform. Make the shift of shift.
6594 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00006595 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006596 I.getName());
6597 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
6598
6599 // For logical shifts, the truncation has the effect of making the high
6600 // part of the register be zeros. Emulate this by inserting an AND to
6601 // clear the top bits as needed. This 'and' will usually be zapped by
6602 // other xforms later if dead.
6603 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
6604 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
6605 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
6606
6607 // The mask we constructed says what the trunc would do if occurring
6608 // between the shifts. We want to know the effect *after* the second
6609 // shift. We know that it is a logical shift by a constant, so adjust the
6610 // mask as appropriate.
6611 if (I.getOpcode() == Instruction::Shl)
6612 MaskV <<= Op1->getZExtValue();
6613 else {
6614 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
6615 MaskV = MaskV.lshr(Op1->getZExtValue());
6616 }
6617
Gabor Greifa645dd32008-05-16 19:29:10 +00006618 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006619 TI->getName());
6620 InsertNewInstBefore(And, I); // shift1 & 0x00FF
6621
6622 // Return the value truncated to the interesting size.
6623 return new TruncInst(And, I.getType());
6624 }
6625 }
6626
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006627 if (Op0->hasOneUse()) {
6628 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
6629 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6630 Value *V1, *V2;
6631 ConstantInt *CC;
6632 switch (Op0BO->getOpcode()) {
6633 default: break;
6634 case Instruction::Add:
6635 case Instruction::And:
6636 case Instruction::Or:
6637 case Instruction::Xor: {
6638 // These operators commute.
6639 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
6640 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
6641 match(Op0BO->getOperand(1),
6642 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006643 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006644 Op0BO->getOperand(0), Op1,
6645 Op0BO->getName());
6646 InsertNewInstBefore(YS, I); // (Y << C)
6647 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00006648 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006649 Op0BO->getOperand(1)->getName());
6650 InsertNewInstBefore(X, I); // (X + (Y << C))
6651 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00006652 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006653 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6654 }
6655
6656 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
6657 Value *Op0BOOp1 = Op0BO->getOperand(1);
6658 if (isLeftShift && Op0BOOp1->hasOneUse() &&
6659 match(Op0BOOp1,
6660 m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
6661 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
6662 V2 == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006663 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006664 Op0BO->getOperand(0), Op1,
6665 Op0BO->getName());
6666 InsertNewInstBefore(YS, I); // (Y << C)
6667 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00006668 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006669 V1->getName()+".mask");
6670 InsertNewInstBefore(XM, I); // X & (CC << C)
6671
Gabor Greifa645dd32008-05-16 19:29:10 +00006672 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006673 }
6674 }
6675
6676 // FALL THROUGH.
6677 case Instruction::Sub: {
6678 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6679 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6680 match(Op0BO->getOperand(0),
6681 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006682 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006683 Op0BO->getOperand(1), Op1,
6684 Op0BO->getName());
6685 InsertNewInstBefore(YS, I); // (Y << C)
6686 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00006687 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006688 Op0BO->getOperand(0)->getName());
6689 InsertNewInstBefore(X, I); // (X + (Y << C))
6690 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00006691 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006692 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6693 }
6694
6695 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
6696 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6697 match(Op0BO->getOperand(0),
6698 m_And(m_Shr(m_Value(V1), m_Value(V2)),
6699 m_ConstantInt(CC))) && V2 == Op1 &&
6700 cast<BinaryOperator>(Op0BO->getOperand(0))
6701 ->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006702 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006703 Op0BO->getOperand(1), Op1,
6704 Op0BO->getName());
6705 InsertNewInstBefore(YS, I); // (Y << C)
6706 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00006707 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006708 V1->getName()+".mask");
6709 InsertNewInstBefore(XM, I); // X & (CC << C)
6710
Gabor Greifa645dd32008-05-16 19:29:10 +00006711 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006712 }
6713
6714 break;
6715 }
6716 }
6717
6718
6719 // If the operand is an bitwise operator with a constant RHS, and the
6720 // shift is the only use, we can pull it out of the shift.
6721 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
6722 bool isValid = true; // Valid only for And, Or, Xor
6723 bool highBitSet = false; // Transform if high bit of constant set?
6724
6725 switch (Op0BO->getOpcode()) {
6726 default: isValid = false; break; // Do not perform transform!
6727 case Instruction::Add:
6728 isValid = isLeftShift;
6729 break;
6730 case Instruction::Or:
6731 case Instruction::Xor:
6732 highBitSet = false;
6733 break;
6734 case Instruction::And:
6735 highBitSet = true;
6736 break;
6737 }
6738
6739 // If this is a signed shift right, and the high bit is modified
6740 // by the logical operation, do not perform the transformation.
6741 // The highBitSet boolean indicates the value of the high bit of
6742 // the constant which would cause it to be modified for this
6743 // operation.
6744 //
Chris Lattner15b76e32007-12-06 06:25:04 +00006745 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006746 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006747
6748 if (isValid) {
6749 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
6750
6751 Instruction *NewShift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006752 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006753 InsertNewInstBefore(NewShift, I);
6754 NewShift->takeName(Op0BO);
6755
Gabor Greifa645dd32008-05-16 19:29:10 +00006756 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006757 NewRHS);
6758 }
6759 }
6760 }
6761 }
6762
6763 // Find out if this is a shift of a shift by a constant.
6764 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
6765 if (ShiftOp && !ShiftOp->isShift())
6766 ShiftOp = 0;
6767
6768 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
6769 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
6770 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
6771 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
6772 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
6773 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
6774 Value *X = ShiftOp->getOperand(0);
6775
6776 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
6777 if (AmtSum > TypeBits)
6778 AmtSum = TypeBits;
6779
6780 const IntegerType *Ty = cast<IntegerType>(I.getType());
6781
6782 // Check for (X << c1) << c2 and (X >> c1) >> c2
6783 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006784 return BinaryOperator::Create(I.getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006785 ConstantInt::get(Ty, AmtSum));
6786 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
6787 I.getOpcode() == Instruction::AShr) {
6788 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greifa645dd32008-05-16 19:29:10 +00006789 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006790 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
6791 I.getOpcode() == Instruction::LShr) {
6792 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
6793 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006794 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006795 InsertNewInstBefore(Shift, I);
6796
6797 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00006798 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006799 }
6800
6801 // Okay, if we get here, one shift must be left, and the other shift must be
6802 // right. See if the amounts are equal.
6803 if (ShiftAmt1 == ShiftAmt2) {
6804 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
6805 if (I.getOpcode() == Instruction::Shl) {
6806 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00006807 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006808 }
6809 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
6810 if (I.getOpcode() == Instruction::LShr) {
6811 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00006812 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006813 }
6814 // We can simplify ((X << C) >>s C) into a trunc + sext.
6815 // NOTE: we could do this for any C, but that would make 'unusual' integer
6816 // types. For now, just stick to ones well-supported by the code
6817 // generators.
6818 const Type *SExtType = 0;
6819 switch (Ty->getBitWidth() - ShiftAmt1) {
6820 case 1 :
6821 case 8 :
6822 case 16 :
6823 case 32 :
6824 case 64 :
6825 case 128:
6826 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
6827 break;
6828 default: break;
6829 }
6830 if (SExtType) {
6831 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
6832 InsertNewInstBefore(NewTrunc, I);
6833 return new SExtInst(NewTrunc, Ty);
6834 }
6835 // Otherwise, we can't handle it yet.
6836 } else if (ShiftAmt1 < ShiftAmt2) {
6837 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
6838
6839 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
6840 if (I.getOpcode() == Instruction::Shl) {
6841 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6842 ShiftOp->getOpcode() == Instruction::AShr);
6843 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006844 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006845 InsertNewInstBefore(Shift, I);
6846
6847 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00006848 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006849 }
6850
6851 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
6852 if (I.getOpcode() == Instruction::LShr) {
6853 assert(ShiftOp->getOpcode() == Instruction::Shl);
6854 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006855 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006856 InsertNewInstBefore(Shift, I);
6857
6858 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00006859 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006860 }
6861
6862 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
6863 } else {
6864 assert(ShiftAmt2 < ShiftAmt1);
6865 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
6866
6867 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
6868 if (I.getOpcode() == Instruction::Shl) {
6869 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6870 ShiftOp->getOpcode() == Instruction::AShr);
6871 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006872 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006873 ConstantInt::get(Ty, ShiftDiff));
6874 InsertNewInstBefore(Shift, I);
6875
6876 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00006877 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006878 }
6879
6880 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
6881 if (I.getOpcode() == Instruction::LShr) {
6882 assert(ShiftOp->getOpcode() == Instruction::Shl);
6883 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006884 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006885 InsertNewInstBefore(Shift, I);
6886
6887 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00006888 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006889 }
6890
6891 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
6892 }
6893 }
6894 return 0;
6895}
6896
6897
6898/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
6899/// expression. If so, decompose it, returning some value X, such that Val is
6900/// X*Scale+Offset.
6901///
6902static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
6903 int &Offset) {
6904 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
6905 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
6906 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00006907 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006908 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00006909 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
6910 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
6911 if (I->getOpcode() == Instruction::Shl) {
6912 // This is a value scaled by '1 << the shift amt'.
6913 Scale = 1U << RHS->getZExtValue();
6914 Offset = 0;
6915 return I->getOperand(0);
6916 } else if (I->getOpcode() == Instruction::Mul) {
6917 // This value is scaled by 'RHS'.
6918 Scale = RHS->getZExtValue();
6919 Offset = 0;
6920 return I->getOperand(0);
6921 } else if (I->getOpcode() == Instruction::Add) {
6922 // We have X+C. Check to see if we really have (X*C2)+C1,
6923 // where C1 is divisible by C2.
6924 unsigned SubScale;
6925 Value *SubVal =
6926 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
6927 Offset += RHS->getZExtValue();
6928 Scale = SubScale;
6929 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006930 }
6931 }
6932 }
6933
6934 // Otherwise, we can't look past this.
6935 Scale = 1;
6936 Offset = 0;
6937 return Val;
6938}
6939
6940
6941/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
6942/// try to eliminate the cast by moving the type information into the alloc.
6943Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
6944 AllocationInst &AI) {
6945 const PointerType *PTy = cast<PointerType>(CI.getType());
6946
6947 // Remove any uses of AI that are dead.
6948 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
6949
6950 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
6951 Instruction *User = cast<Instruction>(*UI++);
6952 if (isInstructionTriviallyDead(User)) {
6953 while (UI != E && *UI == User)
6954 ++UI; // If this instruction uses AI more than once, don't break UI.
6955
6956 ++NumDeadInst;
6957 DOUT << "IC: DCE: " << *User;
6958 EraseInstFromFunction(*User);
6959 }
6960 }
6961
6962 // Get the type really allocated and the type casted to.
6963 const Type *AllocElTy = AI.getAllocatedType();
6964 const Type *CastElTy = PTy->getElementType();
6965 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
6966
6967 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
6968 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
6969 if (CastElTyAlign < AllocElTyAlign) return 0;
6970
6971 // If the allocation has multiple uses, only promote it if we are strictly
6972 // increasing the alignment of the resultant allocation. If we keep it the
6973 // same, we open the door to infinite loops of various kinds.
6974 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
6975
Duncan Sandsf99fdc62007-11-01 20:53:16 +00006976 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
6977 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006978 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
6979
6980 // See if we can satisfy the modulus by pulling a scale out of the array
6981 // size argument.
6982 unsigned ArraySizeScale;
6983 int ArrayOffset;
6984 Value *NumElements = // See if the array size is a decomposable linear expr.
6985 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
6986
6987 // If we can now satisfy the modulus, by using a non-1 scale, we really can
6988 // do the xform.
6989 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
6990 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
6991
6992 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
6993 Value *Amt = 0;
6994 if (Scale == 1) {
6995 Amt = NumElements;
6996 } else {
6997 // If the allocation size is constant, form a constant mul expression
6998 Amt = ConstantInt::get(Type::Int32Ty, Scale);
6999 if (isa<ConstantInt>(NumElements))
7000 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
7001 // otherwise multiply the amount and the number of elements
7002 else if (Scale != 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007003 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007004 Amt = InsertNewInstBefore(Tmp, AI);
7005 }
7006 }
7007
7008 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7009 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greifa645dd32008-05-16 19:29:10 +00007010 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007011 Amt = InsertNewInstBefore(Tmp, AI);
7012 }
7013
7014 AllocationInst *New;
7015 if (isa<MallocInst>(AI))
7016 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
7017 else
7018 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
7019 InsertNewInstBefore(New, AI);
7020 New->takeName(&AI);
7021
7022 // If the allocation has multiple uses, insert a cast and change all things
7023 // that used it to use the new cast. This will also hack on CI, but it will
7024 // die soon.
7025 if (!AI.hasOneUse()) {
7026 AddUsesToWorkList(AI);
7027 // New is the allocation instruction, pointer typed. AI is the original
7028 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7029 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
7030 InsertNewInstBefore(NewCast, AI);
7031 AI.replaceAllUsesWith(NewCast);
7032 }
7033 return ReplaceInstUsesWith(CI, New);
7034}
7035
7036/// CanEvaluateInDifferentType - Return true if we can take the specified value
7037/// and return it as type Ty without inserting any new casts and without
7038/// changing the computed value. This is used by code that tries to decide
7039/// whether promoting or shrinking integer operations to wider or smaller types
7040/// will allow us to eliminate a truncate or extend.
7041///
7042/// This is a truncation operation if Ty is smaller than V->getType(), or an
7043/// extension operation if Ty is larger.
Dan Gohman2d648bb2008-04-10 18:43:06 +00007044bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7045 unsigned CastOpc,
7046 int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007047 // We can always evaluate constants in another type.
7048 if (isa<ConstantInt>(V))
7049 return true;
7050
7051 Instruction *I = dyn_cast<Instruction>(V);
7052 if (!I) return false;
7053
7054 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
7055
Chris Lattneref70bb82007-08-02 06:11:14 +00007056 // If this is an extension or truncate, we can often eliminate it.
7057 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7058 // If this is a cast from the destination type, we can trivially eliminate
7059 // it, and this will remove a cast overall.
7060 if (I->getOperand(0)->getType() == Ty) {
7061 // If the first operand is itself a cast, and is eliminable, do not count
7062 // this as an eliminable cast. We would prefer to eliminate those two
7063 // casts first.
7064 if (!isa<CastInst>(I->getOperand(0)))
7065 ++NumCastsRemoved;
7066 return true;
7067 }
7068 }
7069
7070 // We can't extend or shrink something that has multiple uses: doing so would
7071 // require duplicating the instruction in general, which isn't profitable.
7072 if (!I->hasOneUse()) return false;
7073
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007074 switch (I->getOpcode()) {
7075 case Instruction::Add:
7076 case Instruction::Sub:
7077 case Instruction::And:
7078 case Instruction::Or:
7079 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007080 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00007081 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7082 NumCastsRemoved) &&
7083 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7084 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007085
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007086 case Instruction::Mul:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007087 // A multiply can be truncated by truncating its operands.
7088 return Ty->getBitWidth() < OrigTy->getBitWidth() &&
7089 CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7090 NumCastsRemoved) &&
7091 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7092 NumCastsRemoved);
7093
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007094 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007095 // If we are truncating the result of this SHL, and if it's a shift of a
7096 // constant amount, we can always perform a SHL in a smaller type.
7097 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7098 uint32_t BitWidth = Ty->getBitWidth();
7099 if (BitWidth < OrigTy->getBitWidth() &&
7100 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00007101 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7102 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007103 }
7104 break;
7105 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007106 // If this is a truncate of a logical shr, we can truncate it to a smaller
7107 // lshr iff we know that the bits we would otherwise be shifting in are
7108 // already zeros.
7109 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7110 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7111 uint32_t BitWidth = Ty->getBitWidth();
7112 if (BitWidth < OrigBitWidth &&
7113 MaskedValueIsZero(I->getOperand(0),
7114 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7115 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00007116 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7117 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007118 }
7119 }
7120 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007121 case Instruction::ZExt:
7122 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00007123 case Instruction::Trunc:
7124 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00007125 // can safely replace it. Note that replacing it does not reduce the number
7126 // of casts in the input.
7127 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007128 return true;
Chris Lattner2799b2f2007-09-10 23:46:29 +00007129
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007130 break;
7131 default:
7132 // TODO: Can handle more cases here.
7133 break;
7134 }
7135
7136 return false;
7137}
7138
7139/// EvaluateInDifferentType - Given an expression that
7140/// CanEvaluateInDifferentType returns true for, actually insert the code to
7141/// evaluate the expression.
7142Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7143 bool isSigned) {
7144 if (Constant *C = dyn_cast<Constant>(V))
7145 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7146
7147 // Otherwise, it must be an instruction.
7148 Instruction *I = cast<Instruction>(V);
7149 Instruction *Res = 0;
7150 switch (I->getOpcode()) {
7151 case Instruction::Add:
7152 case Instruction::Sub:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007153 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007154 case Instruction::And:
7155 case Instruction::Or:
7156 case Instruction::Xor:
7157 case Instruction::AShr:
7158 case Instruction::LShr:
7159 case Instruction::Shl: {
7160 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7161 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Gabor Greifa645dd32008-05-16 19:29:10 +00007162 Res = BinaryOperator::Create((Instruction::BinaryOps)I->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007163 LHS, RHS, I->getName());
7164 break;
7165 }
7166 case Instruction::Trunc:
7167 case Instruction::ZExt:
7168 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007169 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00007170 // just return the source. There's no need to insert it because it is not
7171 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007172 if (I->getOperand(0)->getType() == Ty)
7173 return I->getOperand(0);
7174
Chris Lattneref70bb82007-08-02 06:11:14 +00007175 // Otherwise, must be the same type of case, so just reinsert a new one.
Gabor Greifa645dd32008-05-16 19:29:10 +00007176 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattneref70bb82007-08-02 06:11:14 +00007177 Ty, I->getName());
7178 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007179 default:
7180 // TODO: Can handle more cases here.
7181 assert(0 && "Unreachable!");
7182 break;
7183 }
7184
7185 return InsertNewInstBefore(Res, *I);
7186}
7187
7188/// @brief Implement the transforms common to all CastInst visitors.
7189Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7190 Value *Src = CI.getOperand(0);
7191
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007192 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7193 // eliminate it now.
7194 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7195 if (Instruction::CastOps opc =
7196 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7197 // The first cast (CSrc) is eliminable so we need to fix up or replace
7198 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greifa645dd32008-05-16 19:29:10 +00007199 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007200 }
7201 }
7202
7203 // If we are casting a select then fold the cast into the select
7204 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7205 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7206 return NV;
7207
7208 // If we are casting a PHI then fold the cast into the PHI
7209 if (isa<PHINode>(Src))
7210 if (Instruction *NV = FoldOpIntoPhi(CI))
7211 return NV;
7212
7213 return 0;
7214}
7215
7216/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7217Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7218 Value *Src = CI.getOperand(0);
7219
7220 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7221 // If casting the result of a getelementptr instruction with no offset, turn
7222 // this into a cast of the original pointer!
7223 if (GEP->hasAllZeroIndices()) {
7224 // Changing the cast operand is usually not a good idea but it is safe
7225 // here because the pointer operand is being replaced with another
7226 // pointer operand so the opcode doesn't need to change.
7227 AddToWorkList(GEP);
7228 CI.setOperand(0, GEP->getOperand(0));
7229 return &CI;
7230 }
7231
7232 // If the GEP has a single use, and the base pointer is a bitcast, and the
7233 // GEP computes a constant offset, see if we can convert these three
7234 // instructions into fewer. This typically happens with unions and other
7235 // non-type-safe code.
7236 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7237 if (GEP->hasAllConstantIndices()) {
7238 // We are guaranteed to get a constant from EmitGEPOffset.
7239 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7240 int64_t Offset = OffsetV->getSExtValue();
7241
7242 // Get the base pointer input of the bitcast, and the type it points to.
7243 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7244 const Type *GEPIdxTy =
7245 cast<PointerType>(OrigBase->getType())->getElementType();
7246 if (GEPIdxTy->isSized()) {
7247 SmallVector<Value*, 8> NewIndices;
7248
7249 // Start with the index over the outer type. Note that the type size
7250 // might be zero (even if the offset isn't zero) if the indexed type
7251 // is something like [0 x {int, int}]
7252 const Type *IntPtrTy = TD->getIntPtrType();
7253 int64_t FirstIdx = 0;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007254 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007255 FirstIdx = Offset/TySize;
7256 Offset %= TySize;
7257
7258 // Handle silly modulus not returning values values [0..TySize).
7259 if (Offset < 0) {
7260 --FirstIdx;
7261 Offset += TySize;
7262 assert(Offset >= 0);
7263 }
7264 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
7265 }
7266
7267 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7268
7269 // Index into the types. If we fail, set OrigBase to null.
7270 while (Offset) {
7271 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7272 const StructLayout *SL = TD->getStructLayout(STy);
7273 if (Offset < (int64_t)SL->getSizeInBytes()) {
7274 unsigned Elt = SL->getElementContainingOffset(Offset);
7275 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7276
7277 Offset -= SL->getElementOffset(Elt);
7278 GEPIdxTy = STy->getElementType(Elt);
7279 } else {
7280 // Otherwise, we can't index into this, bail out.
7281 Offset = 0;
7282 OrigBase = 0;
7283 }
7284 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7285 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007286 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007287 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7288 Offset %= EltSize;
7289 } else {
7290 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7291 }
7292 GEPIdxTy = STy->getElementType();
7293 } else {
7294 // Otherwise, we can't index into this, bail out.
7295 Offset = 0;
7296 OrigBase = 0;
7297 }
7298 }
7299 if (OrigBase) {
7300 // If we were able to index down into an element, create the GEP
7301 // and bitcast the result. This eliminates one bitcast, potentially
7302 // two.
Gabor Greifd6da1d02008-04-06 20:25:17 +00007303 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7304 NewIndices.begin(),
7305 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007306 InsertNewInstBefore(NGEP, CI);
7307 NGEP->takeName(GEP);
7308
7309 if (isa<BitCastInst>(CI))
7310 return new BitCastInst(NGEP, CI.getType());
7311 assert(isa<PtrToIntInst>(CI));
7312 return new PtrToIntInst(NGEP, CI.getType());
7313 }
7314 }
7315 }
7316 }
7317 }
7318
7319 return commonCastTransforms(CI);
7320}
7321
7322
7323
7324/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7325/// integer types. This function implements the common transforms for all those
7326/// cases.
7327/// @brief Implement the transforms common to CastInst with integer operands
7328Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7329 if (Instruction *Result = commonCastTransforms(CI))
7330 return Result;
7331
7332 Value *Src = CI.getOperand(0);
7333 const Type *SrcTy = Src->getType();
7334 const Type *DestTy = CI.getType();
7335 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7336 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7337
7338 // See if we can simplify any instructions used by the LHS whose sole
7339 // purpose is to compute bits we don't care about.
7340 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7341 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7342 KnownZero, KnownOne))
7343 return &CI;
7344
7345 // If the source isn't an instruction or has more than one use then we
7346 // can't do anything more.
7347 Instruction *SrcI = dyn_cast<Instruction>(Src);
7348 if (!SrcI || !Src->hasOneUse())
7349 return 0;
7350
7351 // Attempt to propagate the cast into the instruction for int->int casts.
7352 int NumCastsRemoved = 0;
7353 if (!isa<BitCastInst>(CI) &&
7354 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00007355 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007356 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00007357 // eliminates the cast, so it is always a win. If this is a zero-extension,
7358 // we need to do an AND to maintain the clear top-part of the computation,
7359 // so we require that the input have eliminated at least one cast. If this
7360 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007361 // require that two casts have been eliminated.
7362 bool DoXForm;
7363 switch (CI.getOpcode()) {
7364 default:
7365 // All the others use floating point so we shouldn't actually
7366 // get here because of the check above.
7367 assert(0 && "Unknown cast type");
7368 case Instruction::Trunc:
7369 DoXForm = true;
7370 break;
7371 case Instruction::ZExt:
7372 DoXForm = NumCastsRemoved >= 1;
7373 break;
7374 case Instruction::SExt:
7375 DoXForm = NumCastsRemoved >= 2;
7376 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007377 }
7378
7379 if (DoXForm) {
7380 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7381 CI.getOpcode() == Instruction::SExt);
7382 assert(Res->getType() == DestTy);
7383 switch (CI.getOpcode()) {
7384 default: assert(0 && "Unknown cast type!");
7385 case Instruction::Trunc:
7386 case Instruction::BitCast:
7387 // Just replace this cast with the result.
7388 return ReplaceInstUsesWith(CI, Res);
7389 case Instruction::ZExt: {
7390 // We need to emit an AND to clear the high bits.
7391 assert(SrcBitSize < DestBitSize && "Not a zext?");
7392 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7393 SrcBitSize));
Gabor Greifa645dd32008-05-16 19:29:10 +00007394 return BinaryOperator::CreateAnd(Res, C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007395 }
7396 case Instruction::SExt:
7397 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greifa645dd32008-05-16 19:29:10 +00007398 return CastInst::Create(Instruction::SExt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007399 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7400 CI), DestTy);
7401 }
7402 }
7403 }
7404
7405 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7406 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7407
7408 switch (SrcI->getOpcode()) {
7409 case Instruction::Add:
7410 case Instruction::Mul:
7411 case Instruction::And:
7412 case Instruction::Or:
7413 case Instruction::Xor:
7414 // If we are discarding information, rewrite.
7415 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7416 // Don't insert two casts if they cannot be eliminated. We allow
7417 // two casts to be inserted if the sizes are the same. This could
7418 // only be converting signedness, which is a noop.
7419 if (DestBitSize == SrcBitSize ||
7420 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7421 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7422 Instruction::CastOps opcode = CI.getOpcode();
7423 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7424 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007425 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007426 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7427 }
7428 }
7429
7430 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7431 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7432 SrcI->getOpcode() == Instruction::Xor &&
7433 Op1 == ConstantInt::getTrue() &&
7434 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
7435 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007436 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007437 }
7438 break;
7439 case Instruction::SDiv:
7440 case Instruction::UDiv:
7441 case Instruction::SRem:
7442 case Instruction::URem:
7443 // If we are just changing the sign, rewrite.
7444 if (DestBitSize == SrcBitSize) {
7445 // Don't insert two casts if they cannot be eliminated. We allow
7446 // two casts to be inserted if the sizes are the same. This could
7447 // only be converting signedness, which is a noop.
7448 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7449 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7450 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
7451 Op0, DestTy, SrcI);
7452 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
7453 Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007454 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007455 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7456 }
7457 }
7458 break;
7459
7460 case Instruction::Shl:
7461 // Allow changing the sign of the source operand. Do not allow
7462 // changing the size of the shift, UNLESS the shift amount is a
7463 // constant. We must not change variable sized shifts to a smaller
7464 // size, because it is undefined to shift more bits out than exist
7465 // in the value.
7466 if (DestBitSize == SrcBitSize ||
7467 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7468 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7469 Instruction::BitCast : Instruction::Trunc);
7470 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7471 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007472 return BinaryOperator::CreateShl(Op0c, Op1c);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007473 }
7474 break;
7475 case Instruction::AShr:
7476 // If this is a signed shr, and if all bits shifted in are about to be
7477 // truncated off, turn it into an unsigned shr to allow greater
7478 // simplifications.
7479 if (DestBitSize < SrcBitSize &&
7480 isa<ConstantInt>(Op1)) {
7481 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
7482 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7483 // Insert the new logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00007484 return BinaryOperator::CreateLShr(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007485 }
7486 }
7487 break;
7488 }
7489 return 0;
7490}
7491
7492Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
7493 if (Instruction *Result = commonIntCastTransforms(CI))
7494 return Result;
7495
7496 Value *Src = CI.getOperand(0);
7497 const Type *Ty = CI.getType();
7498 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7499 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
7500
7501 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7502 switch (SrcI->getOpcode()) {
7503 default: break;
7504 case Instruction::LShr:
7505 // We can shrink lshr to something smaller if we know the bits shifted in
7506 // are already zeros.
7507 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
7508 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
7509
7510 // Get a mask for the bits shifting in.
7511 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
7512 Value* SrcIOp0 = SrcI->getOperand(0);
7513 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
7514 if (ShAmt >= DestBitWidth) // All zeros.
7515 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7516
7517 // Okay, we can shrink this. Truncate the input, then return a new
7518 // shift.
7519 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7520 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7521 Ty, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007522 return BinaryOperator::CreateLShr(V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007523 }
7524 } else { // This is a variable shr.
7525
7526 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7527 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7528 // loop-invariant and CSE'd.
7529 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
7530 Value *One = ConstantInt::get(SrcI->getType(), 1);
7531
7532 Value *V = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00007533 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007534 "tmp"), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007535 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007536 SrcI->getOperand(0),
7537 "tmp"), CI);
7538 Value *Zero = Constant::getNullValue(V->getType());
7539 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
7540 }
7541 }
7542 break;
7543 }
7544 }
7545
7546 return 0;
7547}
7548
Evan Chenge3779cf2008-03-24 00:21:34 +00007549/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
7550/// in order to eliminate the icmp.
7551Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
7552 bool DoXform) {
7553 // If we are just checking for a icmp eq of a single bit and zext'ing it
7554 // to an integer, then shift the bit to the appropriate place and then
7555 // cast to integer to avoid the comparison.
7556 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7557 const APInt &Op1CV = Op1C->getValue();
7558
7559 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
7560 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
7561 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7562 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
7563 if (!DoXform) return ICI;
7564
7565 Value *In = ICI->getOperand(0);
7566 Value *Sh = ConstantInt::get(In->getType(),
7567 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007568 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chenge3779cf2008-03-24 00:21:34 +00007569 In->getName()+".lobit"),
7570 CI);
7571 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00007572 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chenge3779cf2008-03-24 00:21:34 +00007573 false/*ZExt*/, "tmp", &CI);
7574
7575 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
7576 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007577 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chenge3779cf2008-03-24 00:21:34 +00007578 In->getName()+".not"),
7579 CI);
7580 }
7581
7582 return ReplaceInstUsesWith(CI, In);
7583 }
7584
7585
7586
7587 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
7588 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7589 // zext (X == 1) to i32 --> X iff X has only the low bit set.
7590 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
7591 // zext (X != 0) to i32 --> X iff X has only the low bit set.
7592 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
7593 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
7594 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7595 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
7596 // This only works for EQ and NE
7597 ICI->isEquality()) {
7598 // If Op1C some other power of two, convert:
7599 uint32_t BitWidth = Op1C->getType()->getBitWidth();
7600 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
7601 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
7602 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
7603
7604 APInt KnownZeroMask(~KnownZero);
7605 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
7606 if (!DoXform) return ICI;
7607
7608 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
7609 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
7610 // (X&4) == 2 --> false
7611 // (X&4) != 2 --> true
7612 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
7613 Res = ConstantExpr::getZExt(Res, CI.getType());
7614 return ReplaceInstUsesWith(CI, Res);
7615 }
7616
7617 uint32_t ShiftAmt = KnownZeroMask.logBase2();
7618 Value *In = ICI->getOperand(0);
7619 if (ShiftAmt) {
7620 // Perform a logical shr by shiftamt.
7621 // Insert the shift to put the result in the low bit.
Gabor Greifa645dd32008-05-16 19:29:10 +00007622 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chenge3779cf2008-03-24 00:21:34 +00007623 ConstantInt::get(In->getType(), ShiftAmt),
7624 In->getName()+".lobit"), CI);
7625 }
7626
7627 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
7628 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007629 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chenge3779cf2008-03-24 00:21:34 +00007630 InsertNewInstBefore(cast<Instruction>(In), CI);
7631 }
7632
7633 if (CI.getType() == In->getType())
7634 return ReplaceInstUsesWith(CI, In);
7635 else
Gabor Greifa645dd32008-05-16 19:29:10 +00007636 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chenge3779cf2008-03-24 00:21:34 +00007637 }
7638 }
7639 }
7640
7641 return 0;
7642}
7643
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007644Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
7645 // If one of the common conversion will work ..
7646 if (Instruction *Result = commonIntCastTransforms(CI))
7647 return Result;
7648
7649 Value *Src = CI.getOperand(0);
7650
7651 // If this is a cast of a cast
7652 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7653 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
7654 // types and if the sizes are just right we can convert this into a logical
7655 // 'and' which will be much cheaper than the pair of casts.
7656 if (isa<TruncInst>(CSrc)) {
7657 // Get the sizes of the types involved
7658 Value *A = CSrc->getOperand(0);
7659 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
7660 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
7661 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
7662 // If we're actually extending zero bits and the trunc is a no-op
7663 if (MidSize < DstSize && SrcSize == DstSize) {
7664 // Replace both of the casts with an And of the type mask.
7665 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
7666 Constant *AndConst = ConstantInt::get(AndValue);
7667 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +00007668 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007669 // Unfortunately, if the type changed, we need to cast it back.
7670 if (And->getType() != CI.getType()) {
7671 And->setName(CSrc->getName()+".mask");
7672 InsertNewInstBefore(And, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007673 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007674 }
7675 return And;
7676 }
7677 }
7678 }
7679
Evan Chenge3779cf2008-03-24 00:21:34 +00007680 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
7681 return transformZExtICmp(ICI, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007682
Evan Chenge3779cf2008-03-24 00:21:34 +00007683 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
7684 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
7685 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
7686 // of the (zext icmp) will be transformed.
7687 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
7688 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
7689 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
7690 (transformZExtICmp(LHS, CI, false) ||
7691 transformZExtICmp(RHS, CI, false))) {
7692 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
7693 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007694 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007695 }
Evan Chenge3779cf2008-03-24 00:21:34 +00007696 }
7697
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007698 return 0;
7699}
7700
7701Instruction *InstCombiner::visitSExt(SExtInst &CI) {
7702 if (Instruction *I = commonIntCastTransforms(CI))
7703 return I;
7704
7705 Value *Src = CI.getOperand(0);
7706
7707 // sext (x <s 0) -> ashr x, 31 -> all ones if signed
7708 // sext (x >s -1) -> ashr x, 31 -> all ones if not signed
7709 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) {
7710 // If we are just checking for a icmp eq of a single bit and zext'ing it
7711 // to an integer, then shift the bit to the appropriate place and then
7712 // cast to integer to avoid the comparison.
7713 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7714 const APInt &Op1CV = Op1C->getValue();
7715
7716 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
7717 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
7718 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7719 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){
7720 Value *In = ICI->getOperand(0);
7721 Value *Sh = ConstantInt::get(In->getType(),
7722 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007723 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007724 In->getName()+".lobit"),
7725 CI);
7726 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00007727 In = CastInst::CreateIntegerCast(In, CI.getType(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007728 true/*SExt*/, "tmp", &CI);
7729
7730 if (ICI->getPredicate() == ICmpInst::ICMP_SGT)
Gabor Greifa645dd32008-05-16 19:29:10 +00007731 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007732 In->getName()+".not"), CI);
7733
7734 return ReplaceInstUsesWith(CI, In);
7735 }
7736 }
7737 }
7738
7739 return 0;
7740}
7741
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007742/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
7743/// in the specified FP type without changing its value.
Chris Lattner5e0610f2008-04-20 00:41:09 +00007744static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007745 APFloat F = CFP->getValueAPF();
7746 if (F.convert(Sem, APFloat::rmNearestTiesToEven) == APFloat::opOK)
Chris Lattner5e0610f2008-04-20 00:41:09 +00007747 return ConstantFP::get(F);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007748 return 0;
7749}
7750
7751/// LookThroughFPExtensions - If this is an fp extension instruction, look
7752/// through it until we get the source value.
7753static Value *LookThroughFPExtensions(Value *V) {
7754 if (Instruction *I = dyn_cast<Instruction>(V))
7755 if (I->getOpcode() == Instruction::FPExt)
7756 return LookThroughFPExtensions(I->getOperand(0));
7757
7758 // If this value is a constant, return the constant in the smallest FP type
7759 // that can accurately represent it. This allows us to turn
7760 // (float)((double)X+2.0) into x+2.0f.
7761 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
7762 if (CFP->getType() == Type::PPC_FP128Ty)
7763 return V; // No constant folding of this.
7764 // See if the value can be truncated to float and then reextended.
Chris Lattner5e0610f2008-04-20 00:41:09 +00007765 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007766 return V;
7767 if (CFP->getType() == Type::DoubleTy)
7768 return V; // Won't shrink.
Chris Lattner5e0610f2008-04-20 00:41:09 +00007769 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007770 return V;
7771 // Don't try to shrink to various long double types.
7772 }
7773
7774 return V;
7775}
7776
7777Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
7778 if (Instruction *I = commonCastTransforms(CI))
7779 return I;
7780
7781 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
7782 // smaller than the destination type, we can eliminate the truncate by doing
7783 // the add as the smaller type. This applies to add/sub/mul/div as well as
7784 // many builtins (sqrt, etc).
7785 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
7786 if (OpI && OpI->hasOneUse()) {
7787 switch (OpI->getOpcode()) {
7788 default: break;
7789 case Instruction::Add:
7790 case Instruction::Sub:
7791 case Instruction::Mul:
7792 case Instruction::FDiv:
7793 case Instruction::FRem:
7794 const Type *SrcTy = OpI->getType();
7795 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
7796 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
7797 if (LHSTrunc->getType() != SrcTy &&
7798 RHSTrunc->getType() != SrcTy) {
7799 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
7800 // If the source types were both smaller than the destination type of
7801 // the cast, do this xform.
7802 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
7803 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
7804 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
7805 CI.getType(), CI);
7806 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
7807 CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007808 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007809 }
7810 }
7811 break;
7812 }
7813 }
7814 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007815}
7816
7817Instruction *InstCombiner::visitFPExt(CastInst &CI) {
7818 return commonCastTransforms(CI);
7819}
7820
7821Instruction *InstCombiner::visitFPToUI(CastInst &CI) {
7822 return commonCastTransforms(CI);
7823}
7824
7825Instruction *InstCombiner::visitFPToSI(CastInst &CI) {
7826 return commonCastTransforms(CI);
7827}
7828
7829Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
7830 return commonCastTransforms(CI);
7831}
7832
7833Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
7834 return commonCastTransforms(CI);
7835}
7836
7837Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
7838 return commonPointerCastTransforms(CI);
7839}
7840
Chris Lattner7c1626482008-01-08 07:23:51 +00007841Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
7842 if (Instruction *I = commonCastTransforms(CI))
7843 return I;
7844
7845 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
7846 if (!DestPointee->isSized()) return 0;
7847
7848 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
7849 ConstantInt *Cst;
7850 Value *X;
7851 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
7852 m_ConstantInt(Cst)))) {
7853 // If the source and destination operands have the same type, see if this
7854 // is a single-index GEP.
7855 if (X->getType() == CI.getType()) {
7856 // Get the size of the pointee type.
Bill Wendling9594af02008-03-14 05:12:19 +00007857 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00007858
7859 // Convert the constant to intptr type.
7860 APInt Offset = Cst->getValue();
7861 Offset.sextOrTrunc(TD->getPointerSizeInBits());
7862
7863 // If Offset is evenly divisible by Size, we can do this xform.
7864 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
7865 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greifd6da1d02008-04-06 20:25:17 +00007866 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattner7c1626482008-01-08 07:23:51 +00007867 }
7868 }
7869 // TODO: Could handle other cases, e.g. where add is indexing into field of
7870 // struct etc.
7871 } else if (CI.getOperand(0)->hasOneUse() &&
7872 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
7873 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
7874 // "inttoptr+GEP" instead of "add+intptr".
7875
7876 // Get the size of the pointee type.
7877 uint64_t Size = TD->getABITypeSize(DestPointee);
7878
7879 // Convert the constant to intptr type.
7880 APInt Offset = Cst->getValue();
7881 Offset.sextOrTrunc(TD->getPointerSizeInBits());
7882
7883 // If Offset is evenly divisible by Size, we can do this xform.
7884 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
7885 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
7886
7887 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
7888 "tmp"), CI);
Gabor Greifd6da1d02008-04-06 20:25:17 +00007889 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattner7c1626482008-01-08 07:23:51 +00007890 }
7891 }
7892 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007893}
7894
7895Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
7896 // If the operands are integer typed then apply the integer transforms,
7897 // otherwise just apply the common ones.
7898 Value *Src = CI.getOperand(0);
7899 const Type *SrcTy = Src->getType();
7900 const Type *DestTy = CI.getType();
7901
7902 if (SrcTy->isInteger() && DestTy->isInteger()) {
7903 if (Instruction *Result = commonIntCastTransforms(CI))
7904 return Result;
7905 } else if (isa<PointerType>(SrcTy)) {
7906 if (Instruction *I = commonPointerCastTransforms(CI))
7907 return I;
7908 } else {
7909 if (Instruction *Result = commonCastTransforms(CI))
7910 return Result;
7911 }
7912
7913
7914 // Get rid of casts from one type to the same type. These are useless and can
7915 // be replaced by the operand.
7916 if (DestTy == Src->getType())
7917 return ReplaceInstUsesWith(CI, Src);
7918
7919 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
7920 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
7921 const Type *DstElTy = DstPTy->getElementType();
7922 const Type *SrcElTy = SrcPTy->getElementType();
7923
Nate Begemandf5b3612008-03-31 00:22:16 +00007924 // If the address spaces don't match, don't eliminate the bitcast, which is
7925 // required for changing types.
7926 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
7927 return 0;
7928
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007929 // If we are casting a malloc or alloca to a pointer to a type of the same
7930 // size, rewrite the allocation instruction to allocate the "right" type.
7931 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
7932 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
7933 return V;
7934
7935 // If the source and destination are pointers, and this cast is equivalent
7936 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
7937 // This can enhance SROA and other transforms that want type-safe pointers.
7938 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
7939 unsigned NumZeros = 0;
7940 while (SrcElTy != DstElTy &&
7941 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
7942 SrcElTy->getNumContainedTypes() /* not "{}" */) {
7943 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
7944 ++NumZeros;
7945 }
7946
7947 // If we found a path from the src to dest, create the getelementptr now.
7948 if (SrcElTy == DstElTy) {
7949 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greifd6da1d02008-04-06 20:25:17 +00007950 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
7951 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007952 }
7953 }
7954
7955 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
7956 if (SVI->hasOneUse()) {
7957 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
7958 // a bitconvert to a vector with the same # elts.
7959 if (isa<VectorType>(DestTy) &&
7960 cast<VectorType>(DestTy)->getNumElements() ==
7961 SVI->getType()->getNumElements()) {
7962 CastInst *Tmp;
7963 // If either of the operands is a cast from CI.getType(), then
7964 // evaluating the shuffle in the casted destination's type will allow
7965 // us to eliminate at least one cast.
7966 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
7967 Tmp->getOperand(0)->getType() == DestTy) ||
7968 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
7969 Tmp->getOperand(0)->getType() == DestTy)) {
7970 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
7971 SVI->getOperand(0), DestTy, &CI);
7972 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
7973 SVI->getOperand(1), DestTy, &CI);
7974 // Return a new shuffle vector. Use the same element ID's, as we
7975 // know the vector types match #elts.
7976 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
7977 }
7978 }
7979 }
7980 }
7981 return 0;
7982}
7983
7984/// GetSelectFoldableOperands - We want to turn code that looks like this:
7985/// %C = or %A, %B
7986/// %D = select %cond, %C, %A
7987/// into:
7988/// %C = select %cond, %B, 0
7989/// %D = or %A, %C
7990///
7991/// Assuming that the specified instruction is an operand to the select, return
7992/// a bitmask indicating which operands of this instruction are foldable if they
7993/// equal the other incoming value of the select.
7994///
7995static unsigned GetSelectFoldableOperands(Instruction *I) {
7996 switch (I->getOpcode()) {
7997 case Instruction::Add:
7998 case Instruction::Mul:
7999 case Instruction::And:
8000 case Instruction::Or:
8001 case Instruction::Xor:
8002 return 3; // Can fold through either operand.
8003 case Instruction::Sub: // Can only fold on the amount subtracted.
8004 case Instruction::Shl: // Can only fold on the shift amount.
8005 case Instruction::LShr:
8006 case Instruction::AShr:
8007 return 1;
8008 default:
8009 return 0; // Cannot fold
8010 }
8011}
8012
8013/// GetSelectFoldableConstant - For the same transformation as the previous
8014/// function, return the identity constant that goes into the select.
8015static Constant *GetSelectFoldableConstant(Instruction *I) {
8016 switch (I->getOpcode()) {
8017 default: assert(0 && "This cannot happen!"); abort();
8018 case Instruction::Add:
8019 case Instruction::Sub:
8020 case Instruction::Or:
8021 case Instruction::Xor:
8022 case Instruction::Shl:
8023 case Instruction::LShr:
8024 case Instruction::AShr:
8025 return Constant::getNullValue(I->getType());
8026 case Instruction::And:
8027 return Constant::getAllOnesValue(I->getType());
8028 case Instruction::Mul:
8029 return ConstantInt::get(I->getType(), 1);
8030 }
8031}
8032
8033/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8034/// have the same opcode and only one use each. Try to simplify this.
8035Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8036 Instruction *FI) {
8037 if (TI->getNumOperands() == 1) {
8038 // If this is a non-volatile load or a cast from the same type,
8039 // merge.
8040 if (TI->isCast()) {
8041 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8042 return 0;
8043 } else {
8044 return 0; // unknown unary op.
8045 }
8046
8047 // Fold this by inserting a select from the input values.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008048 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8049 FI->getOperand(0), SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008050 InsertNewInstBefore(NewSI, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008051 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008052 TI->getType());
8053 }
8054
8055 // Only handle binary operators here.
8056 if (!isa<BinaryOperator>(TI))
8057 return 0;
8058
8059 // Figure out if the operations have any operands in common.
8060 Value *MatchOp, *OtherOpT, *OtherOpF;
8061 bool MatchIsOpZero;
8062 if (TI->getOperand(0) == FI->getOperand(0)) {
8063 MatchOp = TI->getOperand(0);
8064 OtherOpT = TI->getOperand(1);
8065 OtherOpF = FI->getOperand(1);
8066 MatchIsOpZero = true;
8067 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8068 MatchOp = TI->getOperand(1);
8069 OtherOpT = TI->getOperand(0);
8070 OtherOpF = FI->getOperand(0);
8071 MatchIsOpZero = false;
8072 } else if (!TI->isCommutative()) {
8073 return 0;
8074 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8075 MatchOp = TI->getOperand(0);
8076 OtherOpT = TI->getOperand(1);
8077 OtherOpF = FI->getOperand(0);
8078 MatchIsOpZero = true;
8079 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8080 MatchOp = TI->getOperand(1);
8081 OtherOpT = TI->getOperand(0);
8082 OtherOpF = FI->getOperand(1);
8083 MatchIsOpZero = true;
8084 } else {
8085 return 0;
8086 }
8087
8088 // If we reach here, they do have operations in common.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008089 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8090 OtherOpF, SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008091 InsertNewInstBefore(NewSI, SI);
8092
8093 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8094 if (MatchIsOpZero)
Gabor Greifa645dd32008-05-16 19:29:10 +00008095 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008096 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008097 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008098 }
8099 assert(0 && "Shouldn't get here");
8100 return 0;
8101}
8102
8103Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8104 Value *CondVal = SI.getCondition();
8105 Value *TrueVal = SI.getTrueValue();
8106 Value *FalseVal = SI.getFalseValue();
8107
8108 // select true, X, Y -> X
8109 // select false, X, Y -> Y
8110 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8111 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8112
8113 // select C, X, X -> X
8114 if (TrueVal == FalseVal)
8115 return ReplaceInstUsesWith(SI, TrueVal);
8116
8117 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8118 return ReplaceInstUsesWith(SI, FalseVal);
8119 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8120 return ReplaceInstUsesWith(SI, TrueVal);
8121 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8122 if (isa<Constant>(TrueVal))
8123 return ReplaceInstUsesWith(SI, TrueVal);
8124 else
8125 return ReplaceInstUsesWith(SI, FalseVal);
8126 }
8127
8128 if (SI.getType() == Type::Int1Ty) {
8129 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8130 if (C->getZExtValue()) {
8131 // Change: A = select B, true, C --> A = or B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008132 return BinaryOperator::CreateOr(CondVal, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008133 } else {
8134 // Change: A = select B, false, C --> A = and !B, C
8135 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008136 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008137 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008138 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008139 }
8140 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8141 if (C->getZExtValue() == false) {
8142 // Change: A = select B, C, false --> A = and B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008143 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008144 } else {
8145 // Change: A = select B, C, true --> A = or !B, C
8146 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008147 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008148 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008149 return BinaryOperator::CreateOr(NotCond, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008150 }
8151 }
Chris Lattner53f85a72007-11-25 21:27:53 +00008152
8153 // select a, b, a -> a&b
8154 // select a, a, b -> a|b
8155 if (CondVal == TrueVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008156 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner53f85a72007-11-25 21:27:53 +00008157 else if (CondVal == FalseVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008158 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008159 }
8160
8161 // Selecting between two integer constants?
8162 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8163 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8164 // select C, 1, 0 -> zext C to int
8165 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00008166 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008167 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8168 // select C, 0, 1 -> zext !C to int
8169 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008170 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008171 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008172 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008173 }
8174
8175 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
8176
8177 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8178
8179 // (x <s 0) ? -1 : 0 -> ashr x, 31
8180 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8181 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8182 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8183 // The comparison constant and the result are not neccessarily the
8184 // same width. Make an all-ones value by inserting a AShr.
8185 Value *X = IC->getOperand(0);
8186 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8187 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008188 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008189 ShAmt, "ones");
8190 InsertNewInstBefore(SRA, SI);
8191
8192 // Finally, convert to the type of the select RHS. We figure out
8193 // if this requires a SExt, Trunc or BitCast based on the sizes.
8194 Instruction::CastOps opc = Instruction::BitCast;
8195 uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
8196 uint32_t SISize = SI.getType()->getPrimitiveSizeInBits();
8197 if (SRASize < SISize)
8198 opc = Instruction::SExt;
8199 else if (SRASize > SISize)
8200 opc = Instruction::Trunc;
Gabor Greifa645dd32008-05-16 19:29:10 +00008201 return CastInst::Create(opc, SRA, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008202 }
8203 }
8204
8205
8206 // If one of the constants is zero (we know they can't both be) and we
8207 // have an icmp instruction with zero, and we have an 'and' with the
8208 // non-constant value, eliminate this whole mess. This corresponds to
8209 // cases like this: ((X & 27) ? 27 : 0)
8210 if (TrueValC->isZero() || FalseValC->isZero())
8211 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8212 cast<Constant>(IC->getOperand(1))->isNullValue())
8213 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8214 if (ICA->getOpcode() == Instruction::And &&
8215 isa<ConstantInt>(ICA->getOperand(1)) &&
8216 (ICA->getOperand(1) == TrueValC ||
8217 ICA->getOperand(1) == FalseValC) &&
8218 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8219 // Okay, now we know that everything is set up, we just don't
8220 // know whether we have a icmp_ne or icmp_eq and whether the
8221 // true or false val is the zero.
8222 bool ShouldNotVal = !TrueValC->isZero();
8223 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8224 Value *V = ICA;
8225 if (ShouldNotVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008226 V = InsertNewInstBefore(BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008227 Instruction::Xor, V, ICA->getOperand(1)), SI);
8228 return ReplaceInstUsesWith(SI, V);
8229 }
8230 }
8231 }
8232
8233 // See if we are selecting two values based on a comparison of the two values.
8234 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8235 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8236 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008237 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8238 // This is not safe in general for floating point:
8239 // consider X== -0, Y== +0.
8240 // It becomes safe if either operand is a nonzero constant.
8241 ConstantFP *CFPt, *CFPf;
8242 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8243 !CFPt->getValueAPF().isZero()) ||
8244 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8245 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008246 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008247 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008248 // Transform (X != Y) ? X : Y -> X
8249 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8250 return ReplaceInstUsesWith(SI, TrueVal);
8251 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8252
8253 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8254 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008255 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8256 // This is not safe in general for floating point:
8257 // consider X== -0, Y== +0.
8258 // It becomes safe if either operand is a nonzero constant.
8259 ConstantFP *CFPt, *CFPf;
8260 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8261 !CFPt->getValueAPF().isZero()) ||
8262 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8263 !CFPf->getValueAPF().isZero()))
8264 return ReplaceInstUsesWith(SI, FalseVal);
8265 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008266 // Transform (X != Y) ? Y : X -> Y
8267 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8268 return ReplaceInstUsesWith(SI, TrueVal);
8269 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8270 }
8271 }
8272
8273 // See if we are selecting two values based on a comparison of the two values.
8274 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) {
8275 if (ICI->getOperand(0) == TrueVal && ICI->getOperand(1) == FalseVal) {
8276 // Transform (X == Y) ? X : Y -> Y
8277 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
8278 return ReplaceInstUsesWith(SI, FalseVal);
8279 // Transform (X != Y) ? X : Y -> X
8280 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
8281 return ReplaceInstUsesWith(SI, TrueVal);
8282 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8283
8284 } else if (ICI->getOperand(0) == FalseVal && ICI->getOperand(1) == TrueVal){
8285 // Transform (X == Y) ? Y : X -> X
8286 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
8287 return ReplaceInstUsesWith(SI, FalseVal);
8288 // Transform (X != Y) ? Y : X -> Y
8289 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
8290 return ReplaceInstUsesWith(SI, TrueVal);
8291 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8292 }
8293 }
8294
8295 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8296 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8297 if (TI->hasOneUse() && FI->hasOneUse()) {
8298 Instruction *AddOp = 0, *SubOp = 0;
8299
8300 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8301 if (TI->getOpcode() == FI->getOpcode())
8302 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8303 return IV;
8304
8305 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8306 // even legal for FP.
8307 if (TI->getOpcode() == Instruction::Sub &&
8308 FI->getOpcode() == Instruction::Add) {
8309 AddOp = FI; SubOp = TI;
8310 } else if (FI->getOpcode() == Instruction::Sub &&
8311 TI->getOpcode() == Instruction::Add) {
8312 AddOp = TI; SubOp = FI;
8313 }
8314
8315 if (AddOp) {
8316 Value *OtherAddOp = 0;
8317 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8318 OtherAddOp = AddOp->getOperand(1);
8319 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8320 OtherAddOp = AddOp->getOperand(0);
8321 }
8322
8323 if (OtherAddOp) {
8324 // So at this point we know we have (Y -> OtherAddOp):
8325 // select C, (add X, Y), (sub X, Z)
8326 Value *NegVal; // Compute -Z
8327 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8328 NegVal = ConstantExpr::getNeg(C);
8329 } else {
8330 NegVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008331 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008332 }
8333
8334 Value *NewTrueOp = OtherAddOp;
8335 Value *NewFalseOp = NegVal;
8336 if (AddOp != TI)
8337 std::swap(NewTrueOp, NewFalseOp);
8338 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008339 SelectInst::Create(CondVal, NewTrueOp,
8340 NewFalseOp, SI.getName() + ".p");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008341
8342 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008343 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008344 }
8345 }
8346 }
8347
8348 // See if we can fold the select into one of our operands.
8349 if (SI.getType()->isInteger()) {
8350 // See the comment above GetSelectFoldableOperands for a description of the
8351 // transformation we are doing here.
8352 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8353 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8354 !isa<Constant>(FalseVal))
8355 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8356 unsigned OpToFold = 0;
8357 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
8358 OpToFold = 1;
8359 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
8360 OpToFold = 2;
8361 }
8362
8363 if (OpToFold) {
8364 Constant *C = GetSelectFoldableConstant(TVI);
8365 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008366 SelectInst::Create(SI.getCondition(),
8367 TVI->getOperand(2-OpToFold), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008368 InsertNewInstBefore(NewSel, SI);
8369 NewSel->takeName(TVI);
8370 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008371 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008372 else {
8373 assert(0 && "Unknown instruction!!");
8374 }
8375 }
8376 }
8377
8378 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
8379 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
8380 !isa<Constant>(TrueVal))
8381 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
8382 unsigned OpToFold = 0;
8383 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
8384 OpToFold = 1;
8385 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
8386 OpToFold = 2;
8387 }
8388
8389 if (OpToFold) {
8390 Constant *C = GetSelectFoldableConstant(FVI);
8391 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008392 SelectInst::Create(SI.getCondition(), C,
8393 FVI->getOperand(2-OpToFold));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008394 InsertNewInstBefore(NewSel, SI);
8395 NewSel->takeName(FVI);
8396 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008397 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008398 else
8399 assert(0 && "Unknown instruction!!");
8400 }
8401 }
8402 }
8403
8404 if (BinaryOperator::isNot(CondVal)) {
8405 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
8406 SI.setOperand(1, FalseVal);
8407 SI.setOperand(2, TrueVal);
8408 return &SI;
8409 }
8410
8411 return 0;
8412}
8413
Dan Gohman2d648bb2008-04-10 18:43:06 +00008414/// EnforceKnownAlignment - If the specified pointer points to an object that
8415/// we control, modify the object's alignment to PrefAlign. This isn't
8416/// often possible though. If alignment is important, a more reliable approach
8417/// is to simply align all global variables and allocation instructions to
8418/// their preferred alignment from the beginning.
8419///
8420static unsigned EnforceKnownAlignment(Value *V,
8421 unsigned Align, unsigned PrefAlign) {
Chris Lattner47cf3452007-08-09 19:05:49 +00008422
Dan Gohman2d648bb2008-04-10 18:43:06 +00008423 User *U = dyn_cast<User>(V);
8424 if (!U) return Align;
8425
8426 switch (getOpcode(U)) {
8427 default: break;
8428 case Instruction::BitCast:
8429 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
8430 case Instruction::GetElementPtr: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008431 // If all indexes are zero, it is just the alignment of the base pointer.
8432 bool AllZeroOperands = true;
Dan Gohman2d648bb2008-04-10 18:43:06 +00008433 for (unsigned i = 1, e = U->getNumOperands(); i != e; ++i)
8434 if (!isa<Constant>(U->getOperand(i)) ||
8435 !cast<Constant>(U->getOperand(i))->isNullValue()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008436 AllZeroOperands = false;
8437 break;
8438 }
Chris Lattner47cf3452007-08-09 19:05:49 +00008439
8440 if (AllZeroOperands) {
8441 // Treat this like a bitcast.
Dan Gohman2d648bb2008-04-10 18:43:06 +00008442 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattner47cf3452007-08-09 19:05:49 +00008443 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008444 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008445 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008446 }
8447
8448 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
8449 // If there is a large requested alignment and we can, bump up the alignment
8450 // of the global.
8451 if (!GV->isDeclaration()) {
8452 GV->setAlignment(PrefAlign);
8453 Align = PrefAlign;
8454 }
8455 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
8456 // If there is a requested alignment and if this is an alloca, round up. We
8457 // don't do this for malloc, because some systems can't respect the request.
8458 if (isa<AllocaInst>(AI)) {
8459 AI->setAlignment(PrefAlign);
8460 Align = PrefAlign;
8461 }
8462 }
8463
8464 return Align;
8465}
8466
8467/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
8468/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
8469/// and it is more than the alignment of the ultimate object, see if we can
8470/// increase the alignment of the ultimate object, making this check succeed.
8471unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
8472 unsigned PrefAlign) {
8473 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
8474 sizeof(PrefAlign) * CHAR_BIT;
8475 APInt Mask = APInt::getAllOnesValue(BitWidth);
8476 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8477 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
8478 unsigned TrailZ = KnownZero.countTrailingOnes();
8479 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
8480
8481 if (PrefAlign > Align)
8482 Align = EnforceKnownAlignment(V, Align, PrefAlign);
8483
8484 // We don't need to make any adjustment.
8485 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008486}
8487
Chris Lattner00ae5132008-01-13 23:50:23 +00008488Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00008489 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
8490 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattner00ae5132008-01-13 23:50:23 +00008491 unsigned MinAlign = std::min(DstAlign, SrcAlign);
8492 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
8493
8494 if (CopyAlign < MinAlign) {
8495 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
8496 return MI;
8497 }
8498
8499 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
8500 // load/store.
8501 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
8502 if (MemOpLength == 0) return 0;
8503
Chris Lattnerc669fb62008-01-14 00:28:35 +00008504 // Source and destination pointer types are always "i8*" for intrinsic. See
8505 // if the size is something we can handle with a single primitive load/store.
8506 // A single load+store correctly handles overlapping memory in the memmove
8507 // case.
Chris Lattner00ae5132008-01-13 23:50:23 +00008508 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner5af8a912008-04-30 06:39:11 +00008509 if (Size == 0) return MI; // Delete this mem transfer.
8510
8511 if (Size > 8 || (Size&(Size-1)))
Chris Lattnerc669fb62008-01-14 00:28:35 +00008512 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattner00ae5132008-01-13 23:50:23 +00008513
Chris Lattnerc669fb62008-01-14 00:28:35 +00008514 // Use an integer load+store unless we can find something better.
Chris Lattner00ae5132008-01-13 23:50:23 +00008515 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattnerc669fb62008-01-14 00:28:35 +00008516
8517 // Memcpy forces the use of i8* for the source and destination. That means
8518 // that if you're using memcpy to move one double around, you'll get a cast
8519 // from double* to i8*. We'd much rather use a double load+store rather than
8520 // an i64 load+store, here because this improves the odds that the source or
8521 // dest address will be promotable. See if we can find a better type than the
8522 // integer datatype.
8523 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
8524 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
8525 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
8526 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
8527 // down through these levels if so.
8528 while (!SrcETy->isFirstClassType()) {
8529 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
8530 if (STy->getNumElements() == 1)
8531 SrcETy = STy->getElementType(0);
8532 else
8533 break;
8534 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
8535 if (ATy->getNumElements() == 1)
8536 SrcETy = ATy->getElementType();
8537 else
8538 break;
8539 } else
8540 break;
8541 }
8542
8543 if (SrcETy->isFirstClassType())
8544 NewPtrTy = PointerType::getUnqual(SrcETy);
8545 }
8546 }
8547
8548
Chris Lattner00ae5132008-01-13 23:50:23 +00008549 // If the memcpy/memmove provides better alignment info than we can
8550 // infer, use it.
8551 SrcAlign = std::max(SrcAlign, CopyAlign);
8552 DstAlign = std::max(DstAlign, CopyAlign);
8553
8554 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
8555 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattnerc669fb62008-01-14 00:28:35 +00008556 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
8557 InsertNewInstBefore(L, *MI);
8558 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
8559
8560 // Set the size of the copy to 0, it will be deleted on the next iteration.
8561 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
8562 return MI;
Chris Lattner00ae5132008-01-13 23:50:23 +00008563}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008564
Chris Lattner5af8a912008-04-30 06:39:11 +00008565Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
8566 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
8567 if (MI->getAlignment()->getZExtValue() < Alignment) {
8568 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
8569 return MI;
8570 }
8571
8572 // Extract the length and alignment and fill if they are constant.
8573 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
8574 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
8575 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
8576 return 0;
8577 uint64_t Len = LenC->getZExtValue();
8578 Alignment = MI->getAlignment()->getZExtValue();
8579
8580 // If the length is zero, this is a no-op
8581 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
8582
8583 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
8584 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
8585 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
8586
8587 Value *Dest = MI->getDest();
8588 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
8589
8590 // Alignment 0 is identity for alignment 1 for memset, but not store.
8591 if (Alignment == 0) Alignment = 1;
8592
8593 // Extract the fill value and store.
8594 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
8595 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
8596 Alignment), *MI);
8597
8598 // Set the size of the copy to 0, it will be deleted on the next iteration.
8599 MI->setLength(Constant::getNullValue(LenC->getType()));
8600 return MI;
8601 }
8602
8603 return 0;
8604}
8605
8606
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008607/// visitCallInst - CallInst simplification. This mostly only handles folding
8608/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
8609/// the heavy lifting.
8610///
8611Instruction *InstCombiner::visitCallInst(CallInst &CI) {
8612 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
8613 if (!II) return visitCallSite(&CI);
8614
8615 // Intrinsics cannot occur in an invoke, so handle them here instead of in
8616 // visitCallSite.
8617 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
8618 bool Changed = false;
8619
8620 // memmove/cpy/set of zero bytes is a noop.
8621 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
8622 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
8623
8624 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
8625 if (CI->getZExtValue() == 1) {
8626 // Replace the instruction with just byte operations. We would
8627 // transform other cases to loads/stores, but we don't know if
8628 // alignment is sufficient.
8629 }
8630 }
8631
8632 // If we have a memmove and the source operation is a constant global,
8633 // then the source and dest pointers can't alias, so we can change this
8634 // into a call to memcpy.
Chris Lattner00ae5132008-01-13 23:50:23 +00008635 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008636 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
8637 if (GVSrc->isConstant()) {
8638 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00008639 Intrinsic::ID MemCpyID;
8640 if (CI.getOperand(3)->getType() == Type::Int32Ty)
8641 MemCpyID = Intrinsic::memcpy_i32;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008642 else
Chris Lattner13c2d6e2008-01-13 22:23:22 +00008643 MemCpyID = Intrinsic::memcpy_i64;
8644 CI.setOperand(0, Intrinsic::getDeclaration(M, MemCpyID));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008645 Changed = true;
8646 }
8647 }
8648
8649 // If we can determine a pointer alignment that is bigger than currently
8650 // set, update the alignment.
8651 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner00ae5132008-01-13 23:50:23 +00008652 if (Instruction *I = SimplifyMemTransfer(MI))
8653 return I;
Chris Lattner5af8a912008-04-30 06:39:11 +00008654 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
8655 if (Instruction *I = SimplifyMemSet(MSI))
8656 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008657 }
8658
8659 if (Changed) return II;
8660 } else {
8661 switch (II->getIntrinsicID()) {
8662 default: break;
8663 case Intrinsic::ppc_altivec_lvx:
8664 case Intrinsic::ppc_altivec_lvxl:
8665 case Intrinsic::x86_sse_loadu_ps:
8666 case Intrinsic::x86_sse2_loadu_pd:
8667 case Intrinsic::x86_sse2_loadu_dq:
8668 // Turn PPC lvx -> load if the pointer is known aligned.
8669 // Turn X86 loadups -> load if the pointer is known aligned.
Dan Gohman2d648bb2008-04-10 18:43:06 +00008670 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
Chris Lattner13c2d6e2008-01-13 22:23:22 +00008671 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
8672 PointerType::getUnqual(II->getType()),
8673 CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008674 return new LoadInst(Ptr);
8675 }
8676 break;
8677 case Intrinsic::ppc_altivec_stvx:
8678 case Intrinsic::ppc_altivec_stvxl:
8679 // Turn stvx -> store if the pointer is known aligned.
Dan Gohman2d648bb2008-04-10 18:43:06 +00008680 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00008681 const Type *OpPtrTy =
8682 PointerType::getUnqual(II->getOperand(1)->getType());
Chris Lattner13c2d6e2008-01-13 22:23:22 +00008683 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008684 return new StoreInst(II->getOperand(1), Ptr);
8685 }
8686 break;
8687 case Intrinsic::x86_sse_storeu_ps:
8688 case Intrinsic::x86_sse2_storeu_pd:
8689 case Intrinsic::x86_sse2_storeu_dq:
8690 case Intrinsic::x86_sse2_storel_dq:
8691 // Turn X86 storeu -> store if the pointer is known aligned.
Dan Gohman2d648bb2008-04-10 18:43:06 +00008692 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00008693 const Type *OpPtrTy =
8694 PointerType::getUnqual(II->getOperand(2)->getType());
Chris Lattner13c2d6e2008-01-13 22:23:22 +00008695 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008696 return new StoreInst(II->getOperand(2), Ptr);
8697 }
8698 break;
8699
8700 case Intrinsic::x86_sse_cvttss2si: {
8701 // These intrinsics only demands the 0th element of its input vector. If
8702 // we can simplify the input based on that, do so now.
8703 uint64_t UndefElts;
8704 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
8705 UndefElts)) {
8706 II->setOperand(1, V);
8707 return II;
8708 }
8709 break;
8710 }
8711
8712 case Intrinsic::ppc_altivec_vperm:
8713 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
8714 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
8715 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
8716
8717 // Check that all of the elements are integer constants or undefs.
8718 bool AllEltsOk = true;
8719 for (unsigned i = 0; i != 16; ++i) {
8720 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
8721 !isa<UndefValue>(Mask->getOperand(i))) {
8722 AllEltsOk = false;
8723 break;
8724 }
8725 }
8726
8727 if (AllEltsOk) {
8728 // Cast the input vectors to byte vectors.
Chris Lattner13c2d6e2008-01-13 22:23:22 +00008729 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
8730 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008731 Value *Result = UndefValue::get(Op0->getType());
8732
8733 // Only extract each element once.
8734 Value *ExtractedElts[32];
8735 memset(ExtractedElts, 0, sizeof(ExtractedElts));
8736
8737 for (unsigned i = 0; i != 16; ++i) {
8738 if (isa<UndefValue>(Mask->getOperand(i)))
8739 continue;
8740 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
8741 Idx &= 31; // Match the hardware behavior.
8742
8743 if (ExtractedElts[Idx] == 0) {
8744 Instruction *Elt =
8745 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
8746 InsertNewInstBefore(Elt, CI);
8747 ExtractedElts[Idx] = Elt;
8748 }
8749
8750 // Insert this value into the result vector.
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008751 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
8752 i, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008753 InsertNewInstBefore(cast<Instruction>(Result), CI);
8754 }
Gabor Greifa645dd32008-05-16 19:29:10 +00008755 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008756 }
8757 }
8758 break;
8759
8760 case Intrinsic::stackrestore: {
8761 // If the save is right next to the restore, remove the restore. This can
8762 // happen when variable allocas are DCE'd.
8763 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
8764 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
8765 BasicBlock::iterator BI = SS;
8766 if (&*++BI == II)
8767 return EraseInstFromFunction(CI);
8768 }
8769 }
8770
Chris Lattner416d91c2008-02-18 06:12:38 +00008771 // Scan down this block to see if there is another stack restore in the
8772 // same block without an intervening call/alloca.
8773 BasicBlock::iterator BI = II;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008774 TerminatorInst *TI = II->getParent()->getTerminator();
Chris Lattner416d91c2008-02-18 06:12:38 +00008775 bool CannotRemove = false;
8776 for (++BI; &*BI != TI; ++BI) {
8777 if (isa<AllocaInst>(BI)) {
8778 CannotRemove = true;
8779 break;
8780 }
8781 if (isa<CallInst>(BI)) {
8782 if (!isa<IntrinsicInst>(BI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008783 CannotRemove = true;
8784 break;
8785 }
Chris Lattner416d91c2008-02-18 06:12:38 +00008786 // If there is a stackrestore below this one, remove this one.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008787 return EraseInstFromFunction(CI);
Chris Lattner416d91c2008-02-18 06:12:38 +00008788 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008789 }
Chris Lattner416d91c2008-02-18 06:12:38 +00008790
8791 // If the stack restore is in a return/unwind block and if there are no
8792 // allocas or calls between the restore and the return, nuke the restore.
8793 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
8794 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008795 break;
8796 }
8797 }
8798 }
8799
8800 return visitCallSite(II);
8801}
8802
8803// InvokeInst simplification
8804//
8805Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
8806 return visitCallSite(&II);
8807}
8808
Dale Johannesen96021832008-04-25 21:16:07 +00008809/// isSafeToEliminateVarargsCast - If this cast does not affect the value
8810/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen35615462008-04-23 18:34:37 +00008811static bool isSafeToEliminateVarargsCast(const CallSite CS,
8812 const CastInst * const CI,
8813 const TargetData * const TD,
8814 const int ix) {
8815 if (!CI->isLosslessCast())
8816 return false;
8817
8818 // The size of ByVal arguments is derived from the type, so we
8819 // can't change to a type with a different size. If the size were
8820 // passed explicitly we could avoid this check.
8821 if (!CS.paramHasAttr(ix, ParamAttr::ByVal))
8822 return true;
8823
8824 const Type* SrcTy =
8825 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
8826 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
8827 if (!SrcTy->isSized() || !DstTy->isSized())
8828 return false;
8829 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
8830 return false;
8831 return true;
8832}
8833
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008834// visitCallSite - Improvements for call and invoke instructions.
8835//
8836Instruction *InstCombiner::visitCallSite(CallSite CS) {
8837 bool Changed = false;
8838
8839 // If the callee is a constexpr cast of a function, attempt to move the cast
8840 // to the arguments of the call/invoke.
8841 if (transformConstExprCastCall(CS)) return 0;
8842
8843 Value *Callee = CS.getCalledValue();
8844
8845 if (Function *CalleeF = dyn_cast<Function>(Callee))
8846 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
8847 Instruction *OldCall = CS.getInstruction();
8848 // If the call and callee calling conventions don't match, this call must
8849 // be unreachable, as the call is undefined.
8850 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00008851 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
8852 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008853 if (!OldCall->use_empty())
8854 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
8855 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
8856 return EraseInstFromFunction(*OldCall);
8857 return 0;
8858 }
8859
8860 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
8861 // This instruction is not reachable, just remove it. We insert a store to
8862 // undef so that we know that this code is not reachable, despite the fact
8863 // that we can't modify the CFG here.
8864 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00008865 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008866 CS.getInstruction());
8867
8868 if (!CS.getInstruction()->use_empty())
8869 CS.getInstruction()->
8870 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
8871
8872 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
8873 // Don't break the CFG, insert a dummy cond branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008874 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
8875 ConstantInt::getTrue(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008876 }
8877 return EraseInstFromFunction(*CS.getInstruction());
8878 }
8879
Duncan Sands74833f22007-09-17 10:26:40 +00008880 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
8881 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
8882 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
8883 return transformCallThroughTrampoline(CS);
8884
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008885 const PointerType *PTy = cast<PointerType>(Callee->getType());
8886 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
8887 if (FTy->isVarArg()) {
Dale Johannesen502336c2008-04-23 01:03:05 +00008888 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008889 // See if we can optimize any arguments passed through the varargs area of
8890 // the call.
8891 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen35615462008-04-23 18:34:37 +00008892 E = CS.arg_end(); I != E; ++I, ++ix) {
8893 CastInst *CI = dyn_cast<CastInst>(*I);
8894 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
8895 *I = CI->getOperand(0);
8896 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008897 }
Dale Johannesen35615462008-04-23 18:34:37 +00008898 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008899 }
8900
Duncan Sands2937e352007-12-19 21:13:37 +00008901 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00008902 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sands2937e352007-12-19 21:13:37 +00008903 CS.setDoesNotThrow();
Duncan Sands7868f3c2007-12-16 15:51:49 +00008904 Changed = true;
8905 }
8906
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008907 return Changed ? CS.getInstruction() : 0;
8908}
8909
8910// transformConstExprCastCall - If the callee is a constexpr cast of a function,
8911// attempt to move the cast to the arguments of the call/invoke.
8912//
8913bool InstCombiner::transformConstExprCastCall(CallSite CS) {
8914 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
8915 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
8916 if (CE->getOpcode() != Instruction::BitCast ||
8917 !isa<Function>(CE->getOperand(0)))
8918 return false;
8919 Function *Callee = cast<Function>(CE->getOperand(0));
8920 Instruction *Caller = CS.getInstruction();
Chris Lattner1c8733e2008-03-12 17:45:29 +00008921 const PAListPtr &CallerPAL = CS.getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008922
8923 // Okay, this is a cast from a function to a different type. Unless doing so
8924 // would cause a type conversion of one of our arguments, change this call to
8925 // be a direct call with arguments casted to the appropriate types.
8926 //
8927 const FunctionType *FT = Callee->getFunctionType();
8928 const Type *OldRetTy = Caller->getType();
8929
Devang Pateld091d322008-03-11 18:04:06 +00008930 if (isa<StructType>(FT->getReturnType()))
8931 return false; // TODO: Handle multiple return values.
8932
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008933 // Check to see if we are changing the return type...
8934 if (OldRetTy != FT->getReturnType()) {
Bill Wendlingd9644a42008-05-14 22:45:20 +00008935 if (Callee->isDeclaration() &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008936 // Conversion is ok if changing from pointer to int of same size.
8937 !(isa<PointerType>(FT->getReturnType()) &&
8938 TD->getIntPtrType() == OldRetTy))
8939 return false; // Cannot transform this return value.
8940
Duncan Sands5c489582008-01-06 10:12:28 +00008941 if (!Caller->use_empty() &&
Duncan Sands5c489582008-01-06 10:12:28 +00008942 // void -> non-void is handled specially
Duncan Sands4ced1f82008-01-13 08:02:44 +00008943 FT->getReturnType() != Type::VoidTy &&
8944 !CastInst::isCastable(FT->getReturnType(), OldRetTy))
Duncan Sands5c489582008-01-06 10:12:28 +00008945 return false; // Cannot transform this return value.
8946
Chris Lattner1c8733e2008-03-12 17:45:29 +00008947 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
8948 ParameterAttributes RAttrs = CallerPAL.getParamAttrs(0);
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00008949 if (RAttrs & ParamAttr::typeIncompatible(FT->getReturnType()))
8950 return false; // Attribute not compatible with transformed value.
8951 }
Duncan Sandsc849e662008-01-06 18:27:01 +00008952
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008953 // If the callsite is an invoke instruction, and the return value is used by
8954 // a PHI node in a successor, we cannot change the return type of the call
8955 // because there is no place to put the cast instruction (without breaking
8956 // the critical edge). Bail out in this case.
8957 if (!Caller->use_empty())
8958 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
8959 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
8960 UI != E; ++UI)
8961 if (PHINode *PN = dyn_cast<PHINode>(*UI))
8962 if (PN->getParent() == II->getNormalDest() ||
8963 PN->getParent() == II->getUnwindDest())
8964 return false;
8965 }
8966
8967 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
8968 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
8969
8970 CallSite::arg_iterator AI = CS.arg_begin();
8971 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
8972 const Type *ParamTy = FT->getParamType(i);
8973 const Type *ActTy = (*AI)->getType();
Duncan Sands5c489582008-01-06 10:12:28 +00008974
8975 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsc849e662008-01-06 18:27:01 +00008976 return false; // Cannot transform this parameter value.
8977
Chris Lattner1c8733e2008-03-12 17:45:29 +00008978 if (CallerPAL.getParamAttrs(i + 1) & ParamAttr::typeIncompatible(ParamTy))
8979 return false; // Attribute not compatible with transformed value.
Duncan Sands5c489582008-01-06 10:12:28 +00008980
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008981 ConstantInt *c = dyn_cast<ConstantInt>(*AI);
Duncan Sands5c489582008-01-06 10:12:28 +00008982 // Some conversions are safe even if we do not have a body.
8983 // Either we can cast directly, or we can upconvert the argument
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008984 bool isConvertible = ActTy == ParamTy ||
8985 (isa<PointerType>(ParamTy) && isa<PointerType>(ActTy)) ||
8986 (ParamTy->isInteger() && ActTy->isInteger() &&
8987 ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()) ||
8988 (c && ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()
8989 && c->getValue().isStrictlyPositive());
8990 if (Callee->isDeclaration() && !isConvertible) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008991 }
8992
8993 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
8994 Callee->isDeclaration())
Chris Lattner1c8733e2008-03-12 17:45:29 +00008995 return false; // Do not delete arguments unless we have a function body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008996
Chris Lattner1c8733e2008-03-12 17:45:29 +00008997 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
8998 !CallerPAL.isEmpty())
Duncan Sandsc849e662008-01-06 18:27:01 +00008999 // In this case we have more arguments than the new function type, but we
Duncan Sands4ced1f82008-01-13 08:02:44 +00009000 // won't be dropping them. Check that these extra arguments have attributes
9001 // that are compatible with being a vararg call argument.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009002 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
9003 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sands4ced1f82008-01-13 08:02:44 +00009004 break;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009005 ParameterAttributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Duncan Sands4ced1f82008-01-13 08:02:44 +00009006 if (PAttrs & ParamAttr::VarArgsIncompatible)
9007 return false;
9008 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009009
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009010 // Okay, we decided that this is a safe thing to do: go ahead and start
9011 // inserting cast instructions as necessary...
9012 std::vector<Value*> Args;
9013 Args.reserve(NumActualArgs);
Chris Lattner1c8733e2008-03-12 17:45:29 +00009014 SmallVector<ParamAttrsWithIndex, 8> attrVec;
Duncan Sandsc849e662008-01-06 18:27:01 +00009015 attrVec.reserve(NumCommonArgs);
9016
9017 // Get any return attributes.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009018 ParameterAttributes RAttrs = CallerPAL.getParamAttrs(0);
Duncan Sandsc849e662008-01-06 18:27:01 +00009019
9020 // If the return value is not being used, the type may not be compatible
9021 // with the existing attributes. Wipe out any problematic attributes.
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00009022 RAttrs &= ~ParamAttr::typeIncompatible(FT->getReturnType());
Duncan Sandsc849e662008-01-06 18:27:01 +00009023
9024 // Add the new return attributes.
9025 if (RAttrs)
9026 attrVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009027
9028 AI = CS.arg_begin();
9029 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9030 const Type *ParamTy = FT->getParamType(i);
9031 if ((*AI)->getType() == ParamTy) {
9032 Args.push_back(*AI);
9033 } else {
9034 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
9035 false, ParamTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009036 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009037 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
9038 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009039
9040 // Add any parameter attributes.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009041 if (ParameterAttributes PAttrs = CallerPAL.getParamAttrs(i + 1))
Duncan Sandsc849e662008-01-06 18:27:01 +00009042 attrVec.push_back(ParamAttrsWithIndex::get(i + 1, PAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009043 }
9044
9045 // If the function takes more arguments than the call was taking, add them
9046 // now...
9047 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9048 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9049
9050 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009051 if (FT->getNumParams() < NumActualArgs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009052 if (!FT->isVarArg()) {
9053 cerr << "WARNING: While resolving call to function '"
9054 << Callee->getName() << "' arguments were dropped!\n";
9055 } else {
9056 // Add all of the arguments in their promoted form to the arg list...
9057 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9058 const Type *PTy = getPromotedType((*AI)->getType());
9059 if (PTy != (*AI)->getType()) {
9060 // Must promote to pass through va_arg area!
9061 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9062 PTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009063 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009064 InsertNewInstBefore(Cast, *Caller);
9065 Args.push_back(Cast);
9066 } else {
9067 Args.push_back(*AI);
9068 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009069
Duncan Sands4ced1f82008-01-13 08:02:44 +00009070 // Add any parameter attributes.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009071 if (ParameterAttributes PAttrs = CallerPAL.getParamAttrs(i + 1))
Duncan Sands4ced1f82008-01-13 08:02:44 +00009072 attrVec.push_back(ParamAttrsWithIndex::get(i + 1, PAttrs));
9073 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009074 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009075 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009076
9077 if (FT->getReturnType() == Type::VoidTy)
9078 Caller->setName(""); // Void type should not have a name.
9079
Chris Lattner1c8733e2008-03-12 17:45:29 +00009080 const PAListPtr &NewCallerPAL = PAListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsc849e662008-01-06 18:27:01 +00009081
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009082 Instruction *NC;
9083 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009084 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009085 Args.begin(), Args.end(),
9086 Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00009087 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Duncan Sandsc849e662008-01-06 18:27:01 +00009088 cast<InvokeInst>(NC)->setParamAttrs(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009089 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009090 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9091 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009092 CallInst *CI = cast<CallInst>(Caller);
9093 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009094 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009095 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Duncan Sandsc849e662008-01-06 18:27:01 +00009096 cast<CallInst>(NC)->setParamAttrs(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009097 }
9098
9099 // Insert a cast of the return type as necessary.
9100 Value *NV = NC;
Duncan Sands5c489582008-01-06 10:12:28 +00009101 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009102 if (NV->getType() != Type::VoidTy) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009103 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sands5c489582008-01-06 10:12:28 +00009104 OldRetTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009105 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009106
9107 // If this is an invoke instruction, we should insert it after the first
9108 // non-phi, instruction in the normal successor block.
9109 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
9110 BasicBlock::iterator I = II->getNormalDest()->begin();
9111 while (isa<PHINode>(I)) ++I;
9112 InsertNewInstBefore(NC, *I);
9113 } else {
9114 // Otherwise, it's a call, just insert cast right after the call instr
9115 InsertNewInstBefore(NC, *Caller);
9116 }
9117 AddUsersToWorkList(*Caller);
9118 } else {
9119 NV = UndefValue::get(Caller->getType());
9120 }
9121 }
9122
9123 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9124 Caller->replaceAllUsesWith(NV);
9125 Caller->eraseFromParent();
9126 RemoveFromWorkList(Caller);
9127 return true;
9128}
9129
Duncan Sands74833f22007-09-17 10:26:40 +00009130// transformCallThroughTrampoline - Turn a call to a function created by the
9131// init_trampoline intrinsic into a direct call to the underlying function.
9132//
9133Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9134 Value *Callee = CS.getCalledValue();
9135 const PointerType *PTy = cast<PointerType>(Callee->getType());
9136 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Chris Lattner1c8733e2008-03-12 17:45:29 +00009137 const PAListPtr &Attrs = CS.getParamAttrs();
Duncan Sands48b81112008-01-14 19:52:09 +00009138
9139 // If the call already has the 'nest' attribute somewhere then give up -
9140 // otherwise 'nest' would occur twice after splicing in the chain.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009141 if (Attrs.hasAttrSomewhere(ParamAttr::Nest))
Duncan Sands48b81112008-01-14 19:52:09 +00009142 return 0;
Duncan Sands74833f22007-09-17 10:26:40 +00009143
9144 IntrinsicInst *Tramp =
9145 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9146
Anton Korobeynikov48fc88f2008-05-07 22:54:15 +00009147 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sands74833f22007-09-17 10:26:40 +00009148 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9149 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9150
Chris Lattner1c8733e2008-03-12 17:45:29 +00009151 const PAListPtr &NestAttrs = NestF->getParamAttrs();
9152 if (!NestAttrs.isEmpty()) {
Duncan Sands74833f22007-09-17 10:26:40 +00009153 unsigned NestIdx = 1;
9154 const Type *NestTy = 0;
Dale Johannesenf4666f52008-02-19 21:38:47 +00009155 ParameterAttributes NestAttr = ParamAttr::None;
Duncan Sands74833f22007-09-17 10:26:40 +00009156
9157 // Look for a parameter marked with the 'nest' attribute.
9158 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9159 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Chris Lattner1c8733e2008-03-12 17:45:29 +00009160 if (NestAttrs.paramHasAttr(NestIdx, ParamAttr::Nest)) {
Duncan Sands74833f22007-09-17 10:26:40 +00009161 // Record the parameter type and any other attributes.
9162 NestTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009163 NestAttr = NestAttrs.getParamAttrs(NestIdx);
Duncan Sands74833f22007-09-17 10:26:40 +00009164 break;
9165 }
9166
9167 if (NestTy) {
9168 Instruction *Caller = CS.getInstruction();
9169 std::vector<Value*> NewArgs;
9170 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9171
Chris Lattner1c8733e2008-03-12 17:45:29 +00009172 SmallVector<ParamAttrsWithIndex, 8> NewAttrs;
9173 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sands48b81112008-01-14 19:52:09 +00009174
Duncan Sands74833f22007-09-17 10:26:40 +00009175 // Insert the nest argument into the call argument list, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009176 // mean appending it. Likewise for attributes.
9177
9178 // Add any function result attributes.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009179 if (ParameterAttributes Attr = Attrs.getParamAttrs(0))
9180 NewAttrs.push_back(ParamAttrsWithIndex::get(0, Attr));
Duncan Sands48b81112008-01-14 19:52:09 +00009181
Duncan Sands74833f22007-09-17 10:26:40 +00009182 {
9183 unsigned Idx = 1;
9184 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9185 do {
9186 if (Idx == NestIdx) {
Duncan Sands48b81112008-01-14 19:52:09 +00009187 // Add the chain argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009188 Value *NestVal = Tramp->getOperand(3);
9189 if (NestVal->getType() != NestTy)
9190 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9191 NewArgs.push_back(NestVal);
Duncan Sands48b81112008-01-14 19:52:09 +00009192 NewAttrs.push_back(ParamAttrsWithIndex::get(NestIdx, NestAttr));
Duncan Sands74833f22007-09-17 10:26:40 +00009193 }
9194
9195 if (I == E)
9196 break;
9197
Duncan Sands48b81112008-01-14 19:52:09 +00009198 // Add the original argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009199 NewArgs.push_back(*I);
Chris Lattner1c8733e2008-03-12 17:45:29 +00009200 if (ParameterAttributes Attr = Attrs.getParamAttrs(Idx))
Duncan Sands48b81112008-01-14 19:52:09 +00009201 NewAttrs.push_back
9202 (ParamAttrsWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sands74833f22007-09-17 10:26:40 +00009203
9204 ++Idx, ++I;
9205 } while (1);
9206 }
9207
9208 // The trampoline may have been bitcast to a bogus type (FTy).
9209 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sands48b81112008-01-14 19:52:09 +00009210 // with the chain parameter inserted.
Duncan Sands74833f22007-09-17 10:26:40 +00009211
Duncan Sands74833f22007-09-17 10:26:40 +00009212 std::vector<const Type*> NewTypes;
Duncan Sands74833f22007-09-17 10:26:40 +00009213 NewTypes.reserve(FTy->getNumParams()+1);
9214
Duncan Sands74833f22007-09-17 10:26:40 +00009215 // Insert the chain's type into the list of parameter types, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009216 // mean appending it.
Duncan Sands74833f22007-09-17 10:26:40 +00009217 {
9218 unsigned Idx = 1;
9219 FunctionType::param_iterator I = FTy->param_begin(),
9220 E = FTy->param_end();
9221
9222 do {
Duncan Sands48b81112008-01-14 19:52:09 +00009223 if (Idx == NestIdx)
9224 // Add the chain's type.
Duncan Sands74833f22007-09-17 10:26:40 +00009225 NewTypes.push_back(NestTy);
Duncan Sands74833f22007-09-17 10:26:40 +00009226
9227 if (I == E)
9228 break;
9229
Duncan Sands48b81112008-01-14 19:52:09 +00009230 // Add the original type.
Duncan Sands74833f22007-09-17 10:26:40 +00009231 NewTypes.push_back(*I);
Duncan Sands74833f22007-09-17 10:26:40 +00009232
9233 ++Idx, ++I;
9234 } while (1);
9235 }
9236
9237 // Replace the trampoline call with a direct call. Let the generic
9238 // code sort out any function type mismatches.
9239 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009240 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00009241 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9242 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Chris Lattner1c8733e2008-03-12 17:45:29 +00009243 const PAListPtr &NewPAL = PAListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sands74833f22007-09-17 10:26:40 +00009244
9245 Instruction *NewCaller;
9246 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009247 NewCaller = InvokeInst::Create(NewCallee,
9248 II->getNormalDest(), II->getUnwindDest(),
9249 NewArgs.begin(), NewArgs.end(),
9250 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009251 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009252 cast<InvokeInst>(NewCaller)->setParamAttrs(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009253 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009254 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9255 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009256 if (cast<CallInst>(Caller)->isTailCall())
9257 cast<CallInst>(NewCaller)->setTailCall();
9258 cast<CallInst>(NewCaller)->
9259 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009260 cast<CallInst>(NewCaller)->setParamAttrs(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009261 }
9262 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9263 Caller->replaceAllUsesWith(NewCaller);
9264 Caller->eraseFromParent();
9265 RemoveFromWorkList(Caller);
9266 return 0;
9267 }
9268 }
9269
9270 // Replace the trampoline call with a direct call. Since there is no 'nest'
9271 // parameter, there is no need to adjust the argument list. Let the generic
9272 // code sort out any function type mismatches.
9273 Constant *NewCallee =
9274 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9275 CS.setCalledFunction(NewCallee);
9276 return CS.getInstruction();
9277}
9278
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009279/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9280/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9281/// and a single binop.
9282Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9283 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9284 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
9285 isa<CmpInst>(FirstInst));
9286 unsigned Opc = FirstInst->getOpcode();
9287 Value *LHSVal = FirstInst->getOperand(0);
9288 Value *RHSVal = FirstInst->getOperand(1);
9289
9290 const Type *LHSType = LHSVal->getType();
9291 const Type *RHSType = RHSVal->getType();
9292
9293 // Scan to see if all operands are the same opcode, all have one use, and all
9294 // kill their operands (i.e. the operands have one use).
9295 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
9296 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9297 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9298 // Verify type of the LHS matches so we don't fold cmp's of different
9299 // types or GEP's with different index types.
9300 I->getOperand(0)->getType() != LHSType ||
9301 I->getOperand(1)->getType() != RHSType)
9302 return 0;
9303
9304 // If they are CmpInst instructions, check their predicates
9305 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9306 if (cast<CmpInst>(I)->getPredicate() !=
9307 cast<CmpInst>(FirstInst)->getPredicate())
9308 return 0;
9309
9310 // Keep track of which operand needs a phi node.
9311 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9312 if (I->getOperand(1) != RHSVal) RHSVal = 0;
9313 }
9314
9315 // Otherwise, this is safe to transform, determine if it is profitable.
9316
9317 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
9318 // Indexes are often folded into load/store instructions, so we don't want to
9319 // hide them behind a phi.
9320 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
9321 return 0;
9322
9323 Value *InLHS = FirstInst->getOperand(0);
9324 Value *InRHS = FirstInst->getOperand(1);
9325 PHINode *NewLHS = 0, *NewRHS = 0;
9326 if (LHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009327 NewLHS = PHINode::Create(LHSType,
9328 FirstInst->getOperand(0)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009329 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9330 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
9331 InsertNewInstBefore(NewLHS, PN);
9332 LHSVal = NewLHS;
9333 }
9334
9335 if (RHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009336 NewRHS = PHINode::Create(RHSType,
9337 FirstInst->getOperand(1)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009338 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9339 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
9340 InsertNewInstBefore(NewRHS, PN);
9341 RHSVal = NewRHS;
9342 }
9343
9344 // Add all operands to the new PHIs.
9345 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9346 if (NewLHS) {
9347 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9348 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
9349 }
9350 if (NewRHS) {
9351 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
9352 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
9353 }
9354 }
9355
9356 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009357 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009358 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009359 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009360 RHSVal);
9361 else {
9362 assert(isa<GetElementPtrInst>(FirstInst));
Gabor Greifd6da1d02008-04-06 20:25:17 +00009363 return GetElementPtrInst::Create(LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009364 }
9365}
9366
9367/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
9368/// of the block that defines it. This means that it must be obvious the value
9369/// of the load is not changed from the point of the load to the end of the
9370/// block it is in.
9371///
9372/// Finally, it is safe, but not profitable, to sink a load targetting a
9373/// non-address-taken alloca. Doing so will cause us to not promote the alloca
9374/// to a register.
9375static bool isSafeToSinkLoad(LoadInst *L) {
9376 BasicBlock::iterator BBI = L, E = L->getParent()->end();
9377
9378 for (++BBI; BBI != E; ++BBI)
9379 if (BBI->mayWriteToMemory())
9380 return false;
9381
9382 // Check for non-address taken alloca. If not address-taken already, it isn't
9383 // profitable to do this xform.
9384 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
9385 bool isAddressTaken = false;
9386 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
9387 UI != E; ++UI) {
9388 if (isa<LoadInst>(UI)) continue;
9389 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
9390 // If storing TO the alloca, then the address isn't taken.
9391 if (SI->getOperand(1) == AI) continue;
9392 }
9393 isAddressTaken = true;
9394 break;
9395 }
9396
9397 if (!isAddressTaken)
9398 return false;
9399 }
9400
9401 return true;
9402}
9403
9404
9405// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
9406// operator and they all are only used by the PHI, PHI together their
9407// inputs, and do the operation once, to the result of the PHI.
9408Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
9409 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9410
9411 // Scan the instruction, looking for input operations that can be folded away.
9412 // If all input operands to the phi are the same instruction (e.g. a cast from
9413 // the same type or "+42") we can pull the operation through the PHI, reducing
9414 // code size and simplifying code.
9415 Constant *ConstantOp = 0;
9416 const Type *CastSrcTy = 0;
9417 bool isVolatile = false;
9418 if (isa<CastInst>(FirstInst)) {
9419 CastSrcTy = FirstInst->getOperand(0)->getType();
9420 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
9421 // Can fold binop, compare or shift here if the RHS is a constant,
9422 // otherwise call FoldPHIArgBinOpIntoPHI.
9423 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
9424 if (ConstantOp == 0)
9425 return FoldPHIArgBinOpIntoPHI(PN);
9426 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
9427 isVolatile = LI->isVolatile();
9428 // We can't sink the load if the loaded value could be modified between the
9429 // load and the PHI.
9430 if (LI->getParent() != PN.getIncomingBlock(0) ||
9431 !isSafeToSinkLoad(LI))
9432 return 0;
9433 } else if (isa<GetElementPtrInst>(FirstInst)) {
9434 if (FirstInst->getNumOperands() == 2)
9435 return FoldPHIArgBinOpIntoPHI(PN);
9436 // Can't handle general GEPs yet.
9437 return 0;
9438 } else {
9439 return 0; // Cannot fold this operation.
9440 }
9441
9442 // Check to see if all arguments are the same operation.
9443 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9444 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
9445 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
9446 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
9447 return 0;
9448 if (CastSrcTy) {
9449 if (I->getOperand(0)->getType() != CastSrcTy)
9450 return 0; // Cast operation must match.
9451 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
9452 // We can't sink the load if the loaded value could be modified between
9453 // the load and the PHI.
9454 if (LI->isVolatile() != isVolatile ||
9455 LI->getParent() != PN.getIncomingBlock(i) ||
9456 !isSafeToSinkLoad(LI))
9457 return 0;
Chris Lattnerf7867012008-04-29 17:28:22 +00009458
9459 // If the PHI is volatile and its block has multiple successors, sinking
9460 // it would remove a load of the volatile value from the path through the
9461 // other successor.
9462 if (isVolatile &&
9463 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
9464 return 0;
9465
9466
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009467 } else if (I->getOperand(1) != ConstantOp) {
9468 return 0;
9469 }
9470 }
9471
9472 // Okay, they are all the same operation. Create a new PHI node of the
9473 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009474 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
9475 PN.getName()+".in");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009476 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
9477
9478 Value *InVal = FirstInst->getOperand(0);
9479 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
9480
9481 // Add all operands to the new PHI.
9482 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9483 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9484 if (NewInVal != InVal)
9485 InVal = 0;
9486 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
9487 }
9488
9489 Value *PhiVal;
9490 if (InVal) {
9491 // The new PHI unions all of the same values together. This is really
9492 // common, so we handle it intelligently here for compile-time speed.
9493 PhiVal = InVal;
9494 delete NewPN;
9495 } else {
9496 InsertNewInstBefore(NewPN, PN);
9497 PhiVal = NewPN;
9498 }
9499
9500 // Insert and return the new operation.
9501 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009502 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattnerfc984e92008-04-29 17:13:43 +00009503 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009504 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +00009505 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009506 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009507 PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +00009508 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
9509
9510 // If this was a volatile load that we are merging, make sure to loop through
9511 // and mark all the input loads as non-volatile. If we don't do this, we will
9512 // insert a new volatile load and the old ones will not be deletable.
9513 if (isVolatile)
9514 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
9515 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
9516
9517 return new LoadInst(PhiVal, "", isVolatile);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009518}
9519
9520/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
9521/// that is dead.
9522static bool DeadPHICycle(PHINode *PN,
9523 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
9524 if (PN->use_empty()) return true;
9525 if (!PN->hasOneUse()) return false;
9526
9527 // Remember this node, and if we find the cycle, return.
9528 if (!PotentiallyDeadPHIs.insert(PN))
9529 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +00009530
9531 // Don't scan crazily complex things.
9532 if (PotentiallyDeadPHIs.size() == 16)
9533 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009534
9535 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
9536 return DeadPHICycle(PU, PotentiallyDeadPHIs);
9537
9538 return false;
9539}
9540
Chris Lattner27b695d2007-11-06 21:52:06 +00009541/// PHIsEqualValue - Return true if this phi node is always equal to
9542/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
9543/// z = some value; x = phi (y, z); y = phi (x, z)
9544static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
9545 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
9546 // See if we already saw this PHI node.
9547 if (!ValueEqualPHIs.insert(PN))
9548 return true;
9549
9550 // Don't scan crazily complex things.
9551 if (ValueEqualPHIs.size() == 16)
9552 return false;
9553
9554 // Scan the operands to see if they are either phi nodes or are equal to
9555 // the value.
9556 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9557 Value *Op = PN->getIncomingValue(i);
9558 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
9559 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
9560 return false;
9561 } else if (Op != NonPhiInVal)
9562 return false;
9563 }
9564
9565 return true;
9566}
9567
9568
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009569// PHINode simplification
9570//
9571Instruction *InstCombiner::visitPHINode(PHINode &PN) {
9572 // If LCSSA is around, don't mess with Phi nodes
9573 if (MustPreserveLCSSA) return 0;
9574
9575 if (Value *V = PN.hasConstantValue())
9576 return ReplaceInstUsesWith(PN, V);
9577
9578 // If all PHI operands are the same operation, pull them through the PHI,
9579 // reducing code size.
9580 if (isa<Instruction>(PN.getIncomingValue(0)) &&
9581 PN.getIncomingValue(0)->hasOneUse())
9582 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
9583 return Result;
9584
9585 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
9586 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
9587 // PHI)... break the cycle.
9588 if (PN.hasOneUse()) {
9589 Instruction *PHIUser = cast<Instruction>(PN.use_back());
9590 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
9591 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
9592 PotentiallyDeadPHIs.insert(&PN);
9593 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
9594 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
9595 }
9596
9597 // If this phi has a single use, and if that use just computes a value for
9598 // the next iteration of a loop, delete the phi. This occurs with unused
9599 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
9600 // common case here is good because the only other things that catch this
9601 // are induction variable analysis (sometimes) and ADCE, which is only run
9602 // late.
9603 if (PHIUser->hasOneUse() &&
9604 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
9605 PHIUser->use_back() == &PN) {
9606 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
9607 }
9608 }
9609
Chris Lattner27b695d2007-11-06 21:52:06 +00009610 // We sometimes end up with phi cycles that non-obviously end up being the
9611 // same value, for example:
9612 // z = some value; x = phi (y, z); y = phi (x, z)
9613 // where the phi nodes don't necessarily need to be in the same block. Do a
9614 // quick check to see if the PHI node only contains a single non-phi value, if
9615 // so, scan to see if the phi cycle is actually equal to that value.
9616 {
9617 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
9618 // Scan for the first non-phi operand.
9619 while (InValNo != NumOperandVals &&
9620 isa<PHINode>(PN.getIncomingValue(InValNo)))
9621 ++InValNo;
9622
9623 if (InValNo != NumOperandVals) {
9624 Value *NonPhiInVal = PN.getOperand(InValNo);
9625
9626 // Scan the rest of the operands to see if there are any conflicts, if so
9627 // there is no need to recursively scan other phis.
9628 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
9629 Value *OpVal = PN.getIncomingValue(InValNo);
9630 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
9631 break;
9632 }
9633
9634 // If we scanned over all operands, then we have one unique value plus
9635 // phi values. Scan PHI nodes to see if they all merge in each other or
9636 // the value.
9637 if (InValNo == NumOperandVals) {
9638 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
9639 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
9640 return ReplaceInstUsesWith(PN, NonPhiInVal);
9641 }
9642 }
9643 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009644 return 0;
9645}
9646
9647static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
9648 Instruction *InsertPoint,
9649 InstCombiner *IC) {
9650 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
9651 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
9652 // We must cast correctly to the pointer type. Ensure that we
9653 // sign extend the integer value if it is smaller as this is
9654 // used for address computation.
9655 Instruction::CastOps opcode =
9656 (VTySize < PtrSize ? Instruction::SExt :
9657 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
9658 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
9659}
9660
9661
9662Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
9663 Value *PtrOp = GEP.getOperand(0);
9664 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
9665 // If so, eliminate the noop.
9666 if (GEP.getNumOperands() == 1)
9667 return ReplaceInstUsesWith(GEP, PtrOp);
9668
9669 if (isa<UndefValue>(GEP.getOperand(0)))
9670 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
9671
9672 bool HasZeroPointerIndex = false;
9673 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
9674 HasZeroPointerIndex = C->isNullValue();
9675
9676 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
9677 return ReplaceInstUsesWith(GEP, PtrOp);
9678
9679 // Eliminate unneeded casts for indices.
9680 bool MadeChange = false;
9681
9682 gep_type_iterator GTI = gep_type_begin(GEP);
9683 for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI) {
9684 if (isa<SequentialType>(*GTI)) {
9685 if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
9686 if (CI->getOpcode() == Instruction::ZExt ||
9687 CI->getOpcode() == Instruction::SExt) {
9688 const Type *SrcTy = CI->getOperand(0)->getType();
9689 // We can eliminate a cast from i32 to i64 iff the target
9690 // is a 32-bit pointer target.
9691 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
9692 MadeChange = true;
9693 GEP.setOperand(i, CI->getOperand(0));
9694 }
9695 }
9696 }
9697 // If we are using a wider index than needed for this platform, shrink it
9698 // to what we need. If the incoming value needs a cast instruction,
9699 // insert it. This explicit cast can make subsequent optimizations more
9700 // obvious.
9701 Value *Op = GEP.getOperand(i);
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009702 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009703 if (Constant *C = dyn_cast<Constant>(Op)) {
9704 GEP.setOperand(i, ConstantExpr::getTrunc(C, TD->getIntPtrType()));
9705 MadeChange = true;
9706 } else {
9707 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
9708 GEP);
9709 GEP.setOperand(i, Op);
9710 MadeChange = true;
9711 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009712 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009713 }
9714 }
9715 if (MadeChange) return &GEP;
9716
9717 // If this GEP instruction doesn't move the pointer, and if the input operand
9718 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
9719 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +00009720 if (GEP.hasAllZeroIndices()) {
9721 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
9722 // If the bitcast is of an allocation, and the allocation will be
9723 // converted to match the type of the cast, don't touch this.
9724 if (isa<AllocationInst>(BCI->getOperand(0))) {
9725 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +00009726 if (Instruction *I = visitBitCast(*BCI)) {
9727 if (I != BCI) {
9728 I->takeName(BCI);
9729 BCI->getParent()->getInstList().insert(BCI, I);
9730 ReplaceInstUsesWith(*BCI, I);
9731 }
Chris Lattnerc59171a2007-10-12 05:30:59 +00009732 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +00009733 }
Chris Lattnerc59171a2007-10-12 05:30:59 +00009734 }
9735 return new BitCastInst(BCI->getOperand(0), GEP.getType());
9736 }
9737 }
9738
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009739 // Combine Indices - If the source pointer to this getelementptr instruction
9740 // is a getelementptr instruction, combine the indices of the two
9741 // getelementptr instructions into a single instruction.
9742 //
9743 SmallVector<Value*, 8> SrcGEPOperands;
9744 if (User *Src = dyn_castGetElementPtr(PtrOp))
9745 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
9746
9747 if (!SrcGEPOperands.empty()) {
9748 // Note that if our source is a gep chain itself that we wait for that
9749 // chain to be resolved before we perform this transformation. This
9750 // avoids us creating a TON of code in some cases.
9751 //
9752 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
9753 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
9754 return 0; // Wait until our source is folded to completion.
9755
9756 SmallVector<Value*, 8> Indices;
9757
9758 // Find out whether the last index in the source GEP is a sequential idx.
9759 bool EndsWithSequential = false;
9760 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
9761 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
9762 EndsWithSequential = !isa<StructType>(*I);
9763
9764 // Can we combine the two pointer arithmetics offsets?
9765 if (EndsWithSequential) {
9766 // Replace: gep (gep %P, long B), long A, ...
9767 // With: T = long A+B; gep %P, T, ...
9768 //
9769 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
9770 if (SO1 == Constant::getNullValue(SO1->getType())) {
9771 Sum = GO1;
9772 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
9773 Sum = SO1;
9774 } else {
9775 // If they aren't the same type, convert both to an integer of the
9776 // target's pointer size.
9777 if (SO1->getType() != GO1->getType()) {
9778 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
9779 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
9780 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
9781 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
9782 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009783 unsigned PS = TD->getPointerSizeInBits();
9784 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009785 // Convert GO1 to SO1's type.
9786 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
9787
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009788 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009789 // Convert SO1 to GO1's type.
9790 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
9791 } else {
9792 const Type *PT = TD->getIntPtrType();
9793 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
9794 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
9795 }
9796 }
9797 }
9798 if (isa<Constant>(SO1) && isa<Constant>(GO1))
9799 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
9800 else {
Gabor Greifa645dd32008-05-16 19:29:10 +00009801 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009802 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
9803 }
9804 }
9805
9806 // Recycle the GEP we already have if possible.
9807 if (SrcGEPOperands.size() == 2) {
9808 GEP.setOperand(0, SrcGEPOperands[0]);
9809 GEP.setOperand(1, Sum);
9810 return &GEP;
9811 } else {
9812 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
9813 SrcGEPOperands.end()-1);
9814 Indices.push_back(Sum);
9815 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
9816 }
9817 } else if (isa<Constant>(*GEP.idx_begin()) &&
9818 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
9819 SrcGEPOperands.size() != 1) {
9820 // Otherwise we can do the fold if the first index of the GEP is a zero
9821 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
9822 SrcGEPOperands.end());
9823 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
9824 }
9825
9826 if (!Indices.empty())
Gabor Greifd6da1d02008-04-06 20:25:17 +00009827 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
9828 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009829
9830 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
9831 // GEP of global variable. If all of the indices for this GEP are
9832 // constants, we can promote this to a constexpr instead of an instruction.
9833
9834 // Scan for nonconstants...
9835 SmallVector<Constant*, 8> Indices;
9836 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
9837 for (; I != E && isa<Constant>(*I); ++I)
9838 Indices.push_back(cast<Constant>(*I));
9839
9840 if (I == E) { // If they are all constants...
9841 Constant *CE = ConstantExpr::getGetElementPtr(GV,
9842 &Indices[0],Indices.size());
9843
9844 // Replace all uses of the GEP with the new constexpr...
9845 return ReplaceInstUsesWith(GEP, CE);
9846 }
9847 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
9848 if (!isa<PointerType>(X->getType())) {
9849 // Not interesting. Source pointer must be a cast from pointer.
9850 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009851 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
9852 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009853 //
9854 // This occurs when the program declares an array extern like "int X[];"
9855 //
9856 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
9857 const PointerType *XTy = cast<PointerType>(X->getType());
9858 if (const ArrayType *XATy =
9859 dyn_cast<ArrayType>(XTy->getElementType()))
9860 if (const ArrayType *CATy =
9861 dyn_cast<ArrayType>(CPTy->getElementType()))
9862 if (CATy->getElementType() == XATy->getElementType()) {
9863 // At this point, we know that the cast source type is a pointer
9864 // to an array of the same type as the destination pointer
9865 // array. Because the array type is never stepped over (there
9866 // is a leading zero) we can fold the cast into this GEP.
9867 GEP.setOperand(0, X);
9868 return &GEP;
9869 }
9870 } else if (GEP.getNumOperands() == 2) {
9871 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009872 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
9873 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009874 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
9875 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
9876 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009877 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
9878 TD->getABITypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +00009879 Value *Idx[2];
9880 Idx[0] = Constant::getNullValue(Type::Int32Ty);
9881 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009882 Value *V = InsertNewInstBefore(
Gabor Greifd6da1d02008-04-06 20:25:17 +00009883 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009884 // V and GEP are both pointer types --> BitCast
9885 return new BitCastInst(V, GEP.getType());
9886 }
9887
9888 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009889 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009890 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009891 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009892
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009893 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009894 uint64_t ArrayEltSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009895 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009896
9897 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
9898 // allow either a mul, shift, or constant here.
9899 Value *NewIdx = 0;
9900 ConstantInt *Scale = 0;
9901 if (ArrayEltSize == 1) {
9902 NewIdx = GEP.getOperand(1);
9903 Scale = ConstantInt::get(NewIdx->getType(), 1);
9904 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
9905 NewIdx = ConstantInt::get(CI->getType(), 1);
9906 Scale = CI;
9907 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
9908 if (Inst->getOpcode() == Instruction::Shl &&
9909 isa<ConstantInt>(Inst->getOperand(1))) {
9910 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
9911 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
9912 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
9913 NewIdx = Inst->getOperand(0);
9914 } else if (Inst->getOpcode() == Instruction::Mul &&
9915 isa<ConstantInt>(Inst->getOperand(1))) {
9916 Scale = cast<ConstantInt>(Inst->getOperand(1));
9917 NewIdx = Inst->getOperand(0);
9918 }
9919 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009920
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009921 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009922 // out, perform the transformation. Note, we don't know whether Scale is
9923 // signed or not. We'll use unsigned version of division/modulo
9924 // operation after making sure Scale doesn't have the sign bit set.
9925 if (Scale && Scale->getSExtValue() >= 0LL &&
9926 Scale->getZExtValue() % ArrayEltSize == 0) {
9927 Scale = ConstantInt::get(Scale->getType(),
9928 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009929 if (Scale->getZExtValue() != 1) {
9930 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009931 false /*ZExt*/);
Gabor Greifa645dd32008-05-16 19:29:10 +00009932 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009933 NewIdx = InsertNewInstBefore(Sc, GEP);
9934 }
9935
9936 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +00009937 Value *Idx[2];
9938 Idx[0] = Constant::getNullValue(Type::Int32Ty);
9939 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009940 Instruction *NewGEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +00009941 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009942 NewGEP = InsertNewInstBefore(NewGEP, GEP);
9943 // The NewGEP must be pointer typed, so must the old one -> BitCast
9944 return new BitCastInst(NewGEP, GEP.getType());
9945 }
9946 }
9947 }
9948 }
9949
9950 return 0;
9951}
9952
9953Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
9954 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009955 if (AI.isArrayAllocation()) { // Check C != 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009956 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
9957 const Type *NewTy =
9958 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
9959 AllocationInst *New = 0;
9960
9961 // Create and insert the replacement instruction...
9962 if (isa<MallocInst>(AI))
9963 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
9964 else {
9965 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
9966 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
9967 }
9968
9969 InsertNewInstBefore(New, AI);
9970
9971 // Scan to the end of the allocation instructions, to skip over a block of
9972 // allocas if possible...
9973 //
9974 BasicBlock::iterator It = New;
9975 while (isa<AllocationInst>(*It)) ++It;
9976
9977 // Now that I is pointing to the first non-allocation-inst in the block,
9978 // insert our getelementptr instruction...
9979 //
9980 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +00009981 Value *Idx[2];
9982 Idx[0] = NullIdx;
9983 Idx[1] = NullIdx;
Gabor Greifd6da1d02008-04-06 20:25:17 +00009984 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
9985 New->getName()+".sub", It);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009986
9987 // Now make everything use the getelementptr instead of the original
9988 // allocation.
9989 return ReplaceInstUsesWith(AI, V);
9990 } else if (isa<UndefValue>(AI.getArraySize())) {
9991 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
9992 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009993 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009994
9995 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
9996 // Note that we only do this for alloca's, because malloc should allocate and
9997 // return a unique pointer, even for a zero byte allocation.
9998 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009999 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010000 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10001
10002 return 0;
10003}
10004
10005Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
10006 Value *Op = FI.getOperand(0);
10007
10008 // free undef -> unreachable.
10009 if (isa<UndefValue>(Op)) {
10010 // Insert a new store to null because we cannot modify the CFG here.
10011 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +000010012 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010013 return EraseInstFromFunction(FI);
10014 }
10015
10016 // If we have 'free null' delete the instruction. This can happen in stl code
10017 // when lots of inlining happens.
10018 if (isa<ConstantPointerNull>(Op))
10019 return EraseInstFromFunction(FI);
10020
10021 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10022 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10023 FI.setOperand(0, CI->getOperand(0));
10024 return &FI;
10025 }
10026
10027 // Change free (gep X, 0,0,0,0) into free(X)
10028 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10029 if (GEPI->hasAllZeroIndices()) {
10030 AddToWorkList(GEPI);
10031 FI.setOperand(0, GEPI->getOperand(0));
10032 return &FI;
10033 }
10034 }
10035
10036 // Change free(malloc) into nothing, if the malloc has a single use.
10037 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10038 if (MI->hasOneUse()) {
10039 EraseInstFromFunction(FI);
10040 return EraseInstFromFunction(*MI);
10041 }
10042
10043 return 0;
10044}
10045
10046
10047/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +000010048static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling44a36ea2008-02-26 10:53:30 +000010049 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010050 User *CI = cast<User>(LI.getOperand(0));
10051 Value *CastOp = CI->getOperand(0);
10052
Devang Patela0f8ea82007-10-18 19:52:32 +000010053 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10054 // Instead of loading constant c string, use corresponding integer value
10055 // directly if string length is small enough.
10056 const std::string &Str = CE->getOperand(0)->getStringValue();
10057 if (!Str.empty()) {
10058 unsigned len = Str.length();
10059 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10060 unsigned numBits = Ty->getPrimitiveSizeInBits();
10061 // Replace LI with immediate integer store.
10062 if ((numBits >> 3) == len + 1) {
Bill Wendling44a36ea2008-02-26 10:53:30 +000010063 APInt StrVal(numBits, 0);
10064 APInt SingleChar(numBits, 0);
10065 if (TD->isLittleEndian()) {
10066 for (signed i = len-1; i >= 0; i--) {
10067 SingleChar = (uint64_t) Str[i];
10068 StrVal = (StrVal << 8) | SingleChar;
10069 }
10070 } else {
10071 for (unsigned i = 0; i < len; i++) {
10072 SingleChar = (uint64_t) Str[i];
10073 StrVal = (StrVal << 8) | SingleChar;
10074 }
10075 // Append NULL at the end.
10076 SingleChar = 0;
10077 StrVal = (StrVal << 8) | SingleChar;
10078 }
10079 Value *NL = ConstantInt::get(StrVal);
10080 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patela0f8ea82007-10-18 19:52:32 +000010081 }
10082 }
10083 }
10084
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010085 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10086 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10087 const Type *SrcPTy = SrcTy->getElementType();
10088
10089 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
10090 isa<VectorType>(DestPTy)) {
10091 // If the source is an array, the code below will not succeed. Check to
10092 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10093 // constants.
10094 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10095 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10096 if (ASrcTy->getNumElements() != 0) {
10097 Value *Idxs[2];
10098 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10099 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10100 SrcTy = cast<PointerType>(CastOp->getType());
10101 SrcPTy = SrcTy->getElementType();
10102 }
10103
10104 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
10105 isa<VectorType>(SrcPTy)) &&
10106 // Do not allow turning this into a load of an integer, which is then
10107 // casted to a pointer, this pessimizes pointer analysis a lot.
10108 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
10109 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10110 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10111
10112 // Okay, we are casting from one integer or pointer type to another of
10113 // the same size. Instead of casting the pointer before the load, cast
10114 // the result of the loaded value.
10115 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10116 CI->getName(),
10117 LI.isVolatile()),LI);
10118 // Now cast the result of the load.
10119 return new BitCastInst(NewLoad, LI.getType());
10120 }
10121 }
10122 }
10123 return 0;
10124}
10125
10126/// isSafeToLoadUnconditionally - Return true if we know that executing a load
10127/// from this value cannot trap. If it is not obviously safe to load from the
10128/// specified pointer, we do a quick local scan of the basic block containing
10129/// ScanFrom, to determine if the address is already accessed.
10130static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010131 // If it is an alloca it is always safe to load from.
10132 if (isa<AllocaInst>(V)) return true;
10133
Duncan Sandse40a94a2007-09-19 10:25:38 +000010134 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010135 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +000010136 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010137 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010138
10139 // Otherwise, be a little bit agressive by scanning the local block where we
10140 // want to check to see if the pointer is already being loaded or stored
10141 // from/to. If so, the previous load or store would have already trapped,
10142 // so there is no harm doing an extra load (also, CSE will later eliminate
10143 // the load entirely).
10144 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10145
10146 while (BBI != E) {
10147 --BBI;
10148
10149 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10150 if (LI->getOperand(0) == V) return true;
10151 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
10152 if (SI->getOperand(1) == V) return true;
10153
10154 }
10155 return false;
10156}
10157
Chris Lattner0270a112007-08-11 18:48:48 +000010158/// GetUnderlyingObject - Trace through a series of getelementptrs and bitcasts
10159/// until we find the underlying object a pointer is referring to or something
10160/// we don't understand. Note that the returned pointer may be offset from the
10161/// input, because we ignore GEP indices.
10162static Value *GetUnderlyingObject(Value *Ptr) {
10163 while (1) {
10164 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
10165 if (CE->getOpcode() == Instruction::BitCast ||
10166 CE->getOpcode() == Instruction::GetElementPtr)
10167 Ptr = CE->getOperand(0);
10168 else
10169 return Ptr;
10170 } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr)) {
10171 Ptr = BCI->getOperand(0);
10172 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
10173 Ptr = GEP->getOperand(0);
10174 } else {
10175 return Ptr;
10176 }
10177 }
10178}
10179
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010180Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10181 Value *Op = LI.getOperand(0);
10182
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010183 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010184 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10185 if (KnownAlign >
10186 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10187 LI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010188 LI.setAlignment(KnownAlign);
10189
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010190 // load (cast X) --> cast (load X) iff safe
10191 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +000010192 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010193 return Res;
10194
10195 // None of the following transforms are legal for volatile loads.
10196 if (LI.isVolatile()) return 0;
10197
10198 if (&LI.getParent()->front() != &LI) {
10199 BasicBlock::iterator BBI = &LI; --BBI;
10200 // If the instruction immediately before this is a store to the same
10201 // address, do a simple form of store->load forwarding.
10202 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
10203 if (SI->getOperand(1) == LI.getOperand(0))
10204 return ReplaceInstUsesWith(LI, SI->getOperand(0));
10205 if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
10206 if (LIB->getOperand(0) == LI.getOperand(0))
10207 return ReplaceInstUsesWith(LI, LIB);
10208 }
10209
Christopher Lamb2c175392007-12-29 07:56:53 +000010210 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10211 const Value *GEPI0 = GEPI->getOperand(0);
10212 // TODO: Consider a target hook for valid address spaces for this xform.
10213 if (isa<ConstantPointerNull>(GEPI0) &&
10214 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010215 // Insert a new store to null instruction before the load to indicate
10216 // that this code is not reachable. We do this instead of inserting
10217 // an unreachable instruction directly because we cannot modify the
10218 // CFG.
10219 new StoreInst(UndefValue::get(LI.getType()),
10220 Constant::getNullValue(Op->getType()), &LI);
10221 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10222 }
Christopher Lamb2c175392007-12-29 07:56:53 +000010223 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010224
10225 if (Constant *C = dyn_cast<Constant>(Op)) {
10226 // load null/undef -> undef
Christopher Lamb2c175392007-12-29 07:56:53 +000010227 // TODO: Consider a target hook for valid address spaces for this xform.
10228 if (isa<UndefValue>(C) || (C->isNullValue() &&
10229 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010230 // Insert a new store to null instruction before the load to indicate that
10231 // this code is not reachable. We do this instead of inserting an
10232 // unreachable instruction directly because we cannot modify the CFG.
10233 new StoreInst(UndefValue::get(LI.getType()),
10234 Constant::getNullValue(Op->getType()), &LI);
10235 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10236 }
10237
10238 // Instcombine load (constant global) into the value loaded.
10239 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
10240 if (GV->isConstant() && !GV->isDeclaration())
10241 return ReplaceInstUsesWith(LI, GV->getInitializer());
10242
10243 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010244 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010245 if (CE->getOpcode() == Instruction::GetElementPtr) {
10246 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
10247 if (GV->isConstant() && !GV->isDeclaration())
10248 if (Constant *V =
10249 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
10250 return ReplaceInstUsesWith(LI, V);
10251 if (CE->getOperand(0)->isNullValue()) {
10252 // Insert a new store to null instruction before the load to indicate
10253 // that this code is not reachable. We do this instead of inserting
10254 // an unreachable instruction directly because we cannot modify the
10255 // CFG.
10256 new StoreInst(UndefValue::get(LI.getType()),
10257 Constant::getNullValue(Op->getType()), &LI);
10258 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10259 }
10260
10261 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010262 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010263 return Res;
10264 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010265 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010266 }
Chris Lattner0270a112007-08-11 18:48:48 +000010267
10268 // If this load comes from anywhere in a constant global, and if the global
10269 // is all undef or zero, we know what it loads.
10270 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Op))) {
10271 if (GV->isConstant() && GV->hasInitializer()) {
10272 if (GV->getInitializer()->isNullValue())
10273 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10274 else if (isa<UndefValue>(GV->getInitializer()))
10275 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10276 }
10277 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010278
10279 if (Op->hasOneUse()) {
10280 // Change select and PHI nodes to select values instead of addresses: this
10281 // helps alias analysis out a lot, allows many others simplifications, and
10282 // exposes redundancy in the code.
10283 //
10284 // Note that we cannot do the transformation unless we know that the
10285 // introduced loads cannot trap! Something like this is valid as long as
10286 // the condition is always false: load (select bool %C, int* null, int* %G),
10287 // but it would not be valid if we transformed it to load from null
10288 // unconditionally.
10289 //
10290 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
10291 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
10292 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
10293 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
10294 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
10295 SI->getOperand(1)->getName()+".val"), LI);
10296 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
10297 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +000010298 return SelectInst::Create(SI->getCondition(), V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010299 }
10300
10301 // load (select (cond, null, P)) -> load P
10302 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
10303 if (C->isNullValue()) {
10304 LI.setOperand(0, SI->getOperand(2));
10305 return &LI;
10306 }
10307
10308 // load (select (cond, P, null)) -> load P
10309 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
10310 if (C->isNullValue()) {
10311 LI.setOperand(0, SI->getOperand(1));
10312 return &LI;
10313 }
10314 }
10315 }
10316 return 0;
10317}
10318
10319/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
10320/// when possible.
10321static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
10322 User *CI = cast<User>(SI.getOperand(1));
10323 Value *CastOp = CI->getOperand(0);
10324
10325 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10326 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10327 const Type *SrcPTy = SrcTy->getElementType();
10328
10329 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
10330 // If the source is an array, the code below will not succeed. Check to
10331 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10332 // constants.
10333 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10334 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10335 if (ASrcTy->getNumElements() != 0) {
10336 Value* Idxs[2];
10337 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10338 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10339 SrcTy = cast<PointerType>(CastOp->getType());
10340 SrcPTy = SrcTy->getElementType();
10341 }
10342
10343 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
10344 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10345 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10346
10347 // Okay, we are casting from one integer or pointer type to another of
10348 // the same size. Instead of casting the pointer before
10349 // the store, cast the value to be stored.
10350 Value *NewCast;
10351 Value *SIOp0 = SI.getOperand(0);
10352 Instruction::CastOps opcode = Instruction::BitCast;
10353 const Type* CastSrcTy = SIOp0->getType();
10354 const Type* CastDstTy = SrcPTy;
10355 if (isa<PointerType>(CastDstTy)) {
10356 if (CastSrcTy->isInteger())
10357 opcode = Instruction::IntToPtr;
10358 } else if (isa<IntegerType>(CastDstTy)) {
10359 if (isa<PointerType>(SIOp0->getType()))
10360 opcode = Instruction::PtrToInt;
10361 }
10362 if (Constant *C = dyn_cast<Constant>(SIOp0))
10363 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
10364 else
10365 NewCast = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +000010366 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010367 SI);
10368 return new StoreInst(NewCast, CastOp);
10369 }
10370 }
10371 }
10372 return 0;
10373}
10374
10375Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
10376 Value *Val = SI.getOperand(0);
10377 Value *Ptr = SI.getOperand(1);
10378
10379 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
10380 EraseInstFromFunction(SI);
10381 ++NumCombined;
10382 return 0;
10383 }
10384
10385 // If the RHS is an alloca with a single use, zapify the store, making the
10386 // alloca dead.
Chris Lattnera02bacc2008-04-29 04:58:38 +000010387 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010388 if (isa<AllocaInst>(Ptr)) {
10389 EraseInstFromFunction(SI);
10390 ++NumCombined;
10391 return 0;
10392 }
10393
10394 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
10395 if (isa<AllocaInst>(GEP->getOperand(0)) &&
10396 GEP->getOperand(0)->hasOneUse()) {
10397 EraseInstFromFunction(SI);
10398 ++NumCombined;
10399 return 0;
10400 }
10401 }
10402
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010403 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010404 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
10405 if (KnownAlign >
10406 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
10407 SI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010408 SI.setAlignment(KnownAlign);
10409
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010410 // Do really simple DSE, to catch cases where there are several consequtive
10411 // stores to the same location, separated by a few arithmetic operations. This
10412 // situation often occurs with bitfield accesses.
10413 BasicBlock::iterator BBI = &SI;
10414 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
10415 --ScanInsts) {
10416 --BBI;
10417
10418 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
10419 // Prev store isn't volatile, and stores to the same location?
10420 if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
10421 ++NumDeadStore;
10422 ++BBI;
10423 EraseInstFromFunction(*PrevSI);
10424 continue;
10425 }
10426 break;
10427 }
10428
10429 // If this is a load, we have to stop. However, if the loaded value is from
10430 // the pointer we're loading and is producing the pointer we're storing,
10431 // then *this* store is dead (X = load P; store X -> P).
10432 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Chris Lattner24905f72007-09-07 05:33:03 +000010433 if (LI == Val && LI->getOperand(0) == Ptr && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010434 EraseInstFromFunction(SI);
10435 ++NumCombined;
10436 return 0;
10437 }
10438 // Otherwise, this is a load from some other location. Stores before it
10439 // may not be dead.
10440 break;
10441 }
10442
10443 // Don't skip over loads or things that can modify memory.
Chris Lattner84504282008-05-08 17:20:30 +000010444 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010445 break;
10446 }
10447
10448
10449 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
10450
10451 // store X, null -> turns into 'unreachable' in SimplifyCFG
10452 if (isa<ConstantPointerNull>(Ptr)) {
10453 if (!isa<UndefValue>(Val)) {
10454 SI.setOperand(0, UndefValue::get(Val->getType()));
10455 if (Instruction *U = dyn_cast<Instruction>(Val))
10456 AddToWorkList(U); // Dropped a use.
10457 ++NumCombined;
10458 }
10459 return 0; // Do not modify these!
10460 }
10461
10462 // store undef, Ptr -> noop
10463 if (isa<UndefValue>(Val)) {
10464 EraseInstFromFunction(SI);
10465 ++NumCombined;
10466 return 0;
10467 }
10468
10469 // If the pointer destination is a cast, see if we can fold the cast into the
10470 // source instead.
10471 if (isa<CastInst>(Ptr))
10472 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
10473 return Res;
10474 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
10475 if (CE->isCast())
10476 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
10477 return Res;
10478
10479
10480 // If this store is the last instruction in the basic block, and if the block
10481 // ends with an unconditional branch, try to move it to the successor block.
10482 BBI = &SI; ++BBI;
10483 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
10484 if (BI->isUnconditional())
10485 if (SimplifyStoreAtEndOfBlock(SI))
10486 return 0; // xform done!
10487
10488 return 0;
10489}
10490
10491/// SimplifyStoreAtEndOfBlock - Turn things like:
10492/// if () { *P = v1; } else { *P = v2 }
10493/// into a phi node with a store in the successor.
10494///
10495/// Simplify things like:
10496/// *P = v1; if () { *P = v2; }
10497/// into a phi node with a store in the successor.
10498///
10499bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
10500 BasicBlock *StoreBB = SI.getParent();
10501
10502 // Check to see if the successor block has exactly two incoming edges. If
10503 // so, see if the other predecessor contains a store to the same location.
10504 // if so, insert a PHI node (if needed) and move the stores down.
10505 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
10506
10507 // Determine whether Dest has exactly two predecessors and, if so, compute
10508 // the other predecessor.
10509 pred_iterator PI = pred_begin(DestBB);
10510 BasicBlock *OtherBB = 0;
10511 if (*PI != StoreBB)
10512 OtherBB = *PI;
10513 ++PI;
10514 if (PI == pred_end(DestBB))
10515 return false;
10516
10517 if (*PI != StoreBB) {
10518 if (OtherBB)
10519 return false;
10520 OtherBB = *PI;
10521 }
10522 if (++PI != pred_end(DestBB))
10523 return false;
10524
10525
10526 // Verify that the other block ends in a branch and is not otherwise empty.
10527 BasicBlock::iterator BBI = OtherBB->getTerminator();
10528 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
10529 if (!OtherBr || BBI == OtherBB->begin())
10530 return false;
10531
10532 // If the other block ends in an unconditional branch, check for the 'if then
10533 // else' case. there is an instruction before the branch.
10534 StoreInst *OtherStore = 0;
10535 if (OtherBr->isUnconditional()) {
10536 // If this isn't a store, or isn't a store to the same location, bail out.
10537 --BBI;
10538 OtherStore = dyn_cast<StoreInst>(BBI);
10539 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
10540 return false;
10541 } else {
10542 // Otherwise, the other block ended with a conditional branch. If one of the
10543 // destinations is StoreBB, then we have the if/then case.
10544 if (OtherBr->getSuccessor(0) != StoreBB &&
10545 OtherBr->getSuccessor(1) != StoreBB)
10546 return false;
10547
10548 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
10549 // if/then triangle. See if there is a store to the same ptr as SI that
10550 // lives in OtherBB.
10551 for (;; --BBI) {
10552 // Check to see if we find the matching store.
10553 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
10554 if (OtherStore->getOperand(1) != SI.getOperand(1))
10555 return false;
10556 break;
10557 }
10558 // If we find something that may be using the stored value, or if we run
10559 // out of instructions, we can't do the xform.
10560 if (isa<LoadInst>(BBI) || BBI->mayWriteToMemory() ||
10561 BBI == OtherBB->begin())
10562 return false;
10563 }
10564
10565 // In order to eliminate the store in OtherBr, we have to
10566 // make sure nothing reads the stored value in StoreBB.
10567 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
10568 // FIXME: This should really be AA driven.
10569 if (isa<LoadInst>(I) || I->mayWriteToMemory())
10570 return false;
10571 }
10572 }
10573
10574 // Insert a PHI node now if we need it.
10575 Value *MergedVal = OtherStore->getOperand(0);
10576 if (MergedVal != SI.getOperand(0)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000010577 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010578 PN->reserveOperandSpace(2);
10579 PN->addIncoming(SI.getOperand(0), SI.getParent());
10580 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
10581 MergedVal = InsertNewInstBefore(PN, DestBB->front());
10582 }
10583
10584 // Advance to a place where it is safe to insert the new store and
10585 // insert it.
10586 BBI = DestBB->begin();
10587 while (isa<PHINode>(BBI)) ++BBI;
10588 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
10589 OtherStore->isVolatile()), *BBI);
10590
10591 // Nuke the old stores.
10592 EraseInstFromFunction(SI);
10593 EraseInstFromFunction(*OtherStore);
10594 ++NumCombined;
10595 return true;
10596}
10597
10598
10599Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
10600 // Change br (not X), label True, label False to: br X, label False, True
10601 Value *X = 0;
10602 BasicBlock *TrueDest;
10603 BasicBlock *FalseDest;
10604 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
10605 !isa<Constant>(X)) {
10606 // Swap Destinations and condition...
10607 BI.setCondition(X);
10608 BI.setSuccessor(0, FalseDest);
10609 BI.setSuccessor(1, TrueDest);
10610 return &BI;
10611 }
10612
10613 // Cannonicalize fcmp_one -> fcmp_oeq
10614 FCmpInst::Predicate FPred; Value *Y;
10615 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
10616 TrueDest, FalseDest)))
10617 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
10618 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
10619 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
10620 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
10621 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
10622 NewSCC->takeName(I);
10623 // Swap Destinations and condition...
10624 BI.setCondition(NewSCC);
10625 BI.setSuccessor(0, FalseDest);
10626 BI.setSuccessor(1, TrueDest);
10627 RemoveFromWorkList(I);
10628 I->eraseFromParent();
10629 AddToWorkList(NewSCC);
10630 return &BI;
10631 }
10632
10633 // Cannonicalize icmp_ne -> icmp_eq
10634 ICmpInst::Predicate IPred;
10635 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
10636 TrueDest, FalseDest)))
10637 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
10638 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
10639 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
10640 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
10641 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
10642 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
10643 NewSCC->takeName(I);
10644 // Swap Destinations and condition...
10645 BI.setCondition(NewSCC);
10646 BI.setSuccessor(0, FalseDest);
10647 BI.setSuccessor(1, TrueDest);
10648 RemoveFromWorkList(I);
10649 I->eraseFromParent();;
10650 AddToWorkList(NewSCC);
10651 return &BI;
10652 }
10653
10654 return 0;
10655}
10656
10657Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
10658 Value *Cond = SI.getCondition();
10659 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
10660 if (I->getOpcode() == Instruction::Add)
10661 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
10662 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
10663 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
10664 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
10665 AddRHS));
10666 SI.setOperand(0, I->getOperand(0));
10667 AddToWorkList(I);
10668 return &SI;
10669 }
10670 }
10671 return 0;
10672}
10673
10674/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
10675/// is to leave as a vector operation.
10676static bool CheapToScalarize(Value *V, bool isConstant) {
10677 if (isa<ConstantAggregateZero>(V))
10678 return true;
10679 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
10680 if (isConstant) return true;
10681 // If all elts are the same, we can extract.
10682 Constant *Op0 = C->getOperand(0);
10683 for (unsigned i = 1; i < C->getNumOperands(); ++i)
10684 if (C->getOperand(i) != Op0)
10685 return false;
10686 return true;
10687 }
10688 Instruction *I = dyn_cast<Instruction>(V);
10689 if (!I) return false;
10690
10691 // Insert element gets simplified to the inserted element or is deleted if
10692 // this is constant idx extract element and its a constant idx insertelt.
10693 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
10694 isa<ConstantInt>(I->getOperand(2)))
10695 return true;
10696 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
10697 return true;
10698 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
10699 if (BO->hasOneUse() &&
10700 (CheapToScalarize(BO->getOperand(0), isConstant) ||
10701 CheapToScalarize(BO->getOperand(1), isConstant)))
10702 return true;
10703 if (CmpInst *CI = dyn_cast<CmpInst>(I))
10704 if (CI->hasOneUse() &&
10705 (CheapToScalarize(CI->getOperand(0), isConstant) ||
10706 CheapToScalarize(CI->getOperand(1), isConstant)))
10707 return true;
10708
10709 return false;
10710}
10711
10712/// Read and decode a shufflevector mask.
10713///
10714/// It turns undef elements into values that are larger than the number of
10715/// elements in the input.
10716static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
10717 unsigned NElts = SVI->getType()->getNumElements();
10718 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
10719 return std::vector<unsigned>(NElts, 0);
10720 if (isa<UndefValue>(SVI->getOperand(2)))
10721 return std::vector<unsigned>(NElts, 2*NElts);
10722
10723 std::vector<unsigned> Result;
10724 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
10725 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
10726 if (isa<UndefValue>(CP->getOperand(i)))
10727 Result.push_back(NElts*2); // undef -> 8
10728 else
10729 Result.push_back(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
10730 return Result;
10731}
10732
10733/// FindScalarElement - Given a vector and an element number, see if the scalar
10734/// value is already around as a register, for example if it were inserted then
10735/// extracted from the vector.
10736static Value *FindScalarElement(Value *V, unsigned EltNo) {
10737 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
10738 const VectorType *PTy = cast<VectorType>(V->getType());
10739 unsigned Width = PTy->getNumElements();
10740 if (EltNo >= Width) // Out of range access.
10741 return UndefValue::get(PTy->getElementType());
10742
10743 if (isa<UndefValue>(V))
10744 return UndefValue::get(PTy->getElementType());
10745 else if (isa<ConstantAggregateZero>(V))
10746 return Constant::getNullValue(PTy->getElementType());
10747 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
10748 return CP->getOperand(EltNo);
10749 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
10750 // If this is an insert to a variable element, we don't know what it is.
10751 if (!isa<ConstantInt>(III->getOperand(2)))
10752 return 0;
10753 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
10754
10755 // If this is an insert to the element we are looking for, return the
10756 // inserted value.
10757 if (EltNo == IIElt)
10758 return III->getOperand(1);
10759
10760 // Otherwise, the insertelement doesn't modify the value, recurse on its
10761 // vector input.
10762 return FindScalarElement(III->getOperand(0), EltNo);
10763 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
10764 unsigned InEl = getShuffleMask(SVI)[EltNo];
10765 if (InEl < Width)
10766 return FindScalarElement(SVI->getOperand(0), InEl);
10767 else if (InEl < Width*2)
10768 return FindScalarElement(SVI->getOperand(1), InEl - Width);
10769 else
10770 return UndefValue::get(PTy->getElementType());
10771 }
10772
10773 // Otherwise, we don't know.
10774 return 0;
10775}
10776
10777Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
10778
10779 // If vector val is undef, replace extract with scalar undef.
10780 if (isa<UndefValue>(EI.getOperand(0)))
10781 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
10782
10783 // If vector val is constant 0, replace extract with scalar 0.
10784 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
10785 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
10786
10787 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
10788 // If vector val is constant with uniform operands, replace EI
10789 // with that operand
10790 Constant *op0 = C->getOperand(0);
10791 for (unsigned i = 1; i < C->getNumOperands(); ++i)
10792 if (C->getOperand(i) != op0) {
10793 op0 = 0;
10794 break;
10795 }
10796 if (op0)
10797 return ReplaceInstUsesWith(EI, op0);
10798 }
10799
10800 // If extracting a specified index from the vector, see if we can recursively
10801 // find a previously computed scalar that was inserted into the vector.
10802 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
10803 unsigned IndexVal = IdxC->getZExtValue();
10804 unsigned VectorWidth =
10805 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
10806
10807 // If this is extracting an invalid index, turn this into undef, to avoid
10808 // crashing the code below.
10809 if (IndexVal >= VectorWidth)
10810 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
10811
10812 // This instruction only demands the single element from the input vector.
10813 // If the input vector has a single use, simplify it based on this use
10814 // property.
10815 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
10816 uint64_t UndefElts;
10817 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
10818 1 << IndexVal,
10819 UndefElts)) {
10820 EI.setOperand(0, V);
10821 return &EI;
10822 }
10823 }
10824
10825 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
10826 return ReplaceInstUsesWith(EI, Elt);
10827
10828 // If the this extractelement is directly using a bitcast from a vector of
10829 // the same number of elements, see if we can find the source element from
10830 // it. In this case, we will end up needing to bitcast the scalars.
10831 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
10832 if (const VectorType *VT =
10833 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
10834 if (VT->getNumElements() == VectorWidth)
10835 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
10836 return new BitCastInst(Elt, EI.getType());
10837 }
10838 }
10839
10840 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
10841 if (I->hasOneUse()) {
10842 // Push extractelement into predecessor operation if legal and
10843 // profitable to do so
10844 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
10845 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
10846 if (CheapToScalarize(BO, isConstantElt)) {
10847 ExtractElementInst *newEI0 =
10848 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
10849 EI.getName()+".lhs");
10850 ExtractElementInst *newEI1 =
10851 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
10852 EI.getName()+".rhs");
10853 InsertNewInstBefore(newEI0, EI);
10854 InsertNewInstBefore(newEI1, EI);
Gabor Greifa645dd32008-05-16 19:29:10 +000010855 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010856 }
10857 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +000010858 unsigned AS =
10859 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +000010860 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
10861 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb91ea9d2008-05-15 10:04:30 +000010862 GetElementPtrInst *GEP =
10863 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010864 InsertNewInstBefore(GEP, EI);
10865 return new LoadInst(GEP);
10866 }
10867 }
10868 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
10869 // Extracting the inserted element?
10870 if (IE->getOperand(2) == EI.getOperand(1))
10871 return ReplaceInstUsesWith(EI, IE->getOperand(1));
10872 // If the inserted and extracted elements are constants, they must not
10873 // be the same value, extract from the pre-inserted value instead.
10874 if (isa<Constant>(IE->getOperand(2)) &&
10875 isa<Constant>(EI.getOperand(1))) {
10876 AddUsesToWorkList(EI);
10877 EI.setOperand(0, IE->getOperand(0));
10878 return &EI;
10879 }
10880 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
10881 // If this is extracting an element from a shufflevector, figure out where
10882 // it came from and extract from the appropriate input element instead.
10883 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
10884 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
10885 Value *Src;
10886 if (SrcIdx < SVI->getType()->getNumElements())
10887 Src = SVI->getOperand(0);
10888 else if (SrcIdx < SVI->getType()->getNumElements()*2) {
10889 SrcIdx -= SVI->getType()->getNumElements();
10890 Src = SVI->getOperand(1);
10891 } else {
10892 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
10893 }
10894 return new ExtractElementInst(Src, SrcIdx);
10895 }
10896 }
10897 }
10898 return 0;
10899}
10900
10901/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
10902/// elements from either LHS or RHS, return the shuffle mask and true.
10903/// Otherwise, return false.
10904static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
10905 std::vector<Constant*> &Mask) {
10906 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
10907 "Invalid CollectSingleShuffleElements");
10908 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
10909
10910 if (isa<UndefValue>(V)) {
10911 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
10912 return true;
10913 } else if (V == LHS) {
10914 for (unsigned i = 0; i != NumElts; ++i)
10915 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
10916 return true;
10917 } else if (V == RHS) {
10918 for (unsigned i = 0; i != NumElts; ++i)
10919 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
10920 return true;
10921 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
10922 // If this is an insert of an extract from some other vector, include it.
10923 Value *VecOp = IEI->getOperand(0);
10924 Value *ScalarOp = IEI->getOperand(1);
10925 Value *IdxOp = IEI->getOperand(2);
10926
10927 if (!isa<ConstantInt>(IdxOp))
10928 return false;
10929 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
10930
10931 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
10932 // Okay, we can handle this if the vector we are insertinting into is
10933 // transitively ok.
10934 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
10935 // If so, update the mask to reflect the inserted undef.
10936 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
10937 return true;
10938 }
10939 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
10940 if (isa<ConstantInt>(EI->getOperand(1)) &&
10941 EI->getOperand(0)->getType() == V->getType()) {
10942 unsigned ExtractedIdx =
10943 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
10944
10945 // This must be extracting from either LHS or RHS.
10946 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
10947 // Okay, we can handle this if the vector we are insertinting into is
10948 // transitively ok.
10949 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
10950 // If so, update the mask to reflect the inserted value.
10951 if (EI->getOperand(0) == LHS) {
10952 Mask[InsertedIdx & (NumElts-1)] =
10953 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
10954 } else {
10955 assert(EI->getOperand(0) == RHS);
10956 Mask[InsertedIdx & (NumElts-1)] =
10957 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
10958
10959 }
10960 return true;
10961 }
10962 }
10963 }
10964 }
10965 }
10966 // TODO: Handle shufflevector here!
10967
10968 return false;
10969}
10970
10971/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
10972/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
10973/// that computes V and the LHS value of the shuffle.
10974static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
10975 Value *&RHS) {
10976 assert(isa<VectorType>(V->getType()) &&
10977 (RHS == 0 || V->getType() == RHS->getType()) &&
10978 "Invalid shuffle!");
10979 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
10980
10981 if (isa<UndefValue>(V)) {
10982 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
10983 return V;
10984 } else if (isa<ConstantAggregateZero>(V)) {
10985 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
10986 return V;
10987 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
10988 // If this is an insert of an extract from some other vector, include it.
10989 Value *VecOp = IEI->getOperand(0);
10990 Value *ScalarOp = IEI->getOperand(1);
10991 Value *IdxOp = IEI->getOperand(2);
10992
10993 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
10994 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
10995 EI->getOperand(0)->getType() == V->getType()) {
10996 unsigned ExtractedIdx =
10997 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
10998 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
10999
11000 // Either the extracted from or inserted into vector must be RHSVec,
11001 // otherwise we'd end up with a shuffle of three inputs.
11002 if (EI->getOperand(0) == RHS || RHS == 0) {
11003 RHS = EI->getOperand(0);
11004 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
11005 Mask[InsertedIdx & (NumElts-1)] =
11006 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
11007 return V;
11008 }
11009
11010 if (VecOp == RHS) {
11011 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
11012 // Everything but the extracted element is replaced with the RHS.
11013 for (unsigned i = 0; i != NumElts; ++i) {
11014 if (i != InsertedIdx)
11015 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
11016 }
11017 return V;
11018 }
11019
11020 // If this insertelement is a chain that comes from exactly these two
11021 // vectors, return the vector and the effective shuffle.
11022 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11023 return EI->getOperand(0);
11024
11025 }
11026 }
11027 }
11028 // TODO: Handle shufflevector here!
11029
11030 // Otherwise, can't do anything fancy. Return an identity vector.
11031 for (unsigned i = 0; i != NumElts; ++i)
11032 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11033 return V;
11034}
11035
11036Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11037 Value *VecOp = IE.getOperand(0);
11038 Value *ScalarOp = IE.getOperand(1);
11039 Value *IdxOp = IE.getOperand(2);
11040
11041 // Inserting an undef or into an undefined place, remove this.
11042 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11043 ReplaceInstUsesWith(IE, VecOp);
11044
11045 // If the inserted element was extracted from some other vector, and if the
11046 // indexes are constant, try to turn this into a shufflevector operation.
11047 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11048 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11049 EI->getOperand(0)->getType() == IE.getType()) {
11050 unsigned NumVectorElts = IE.getType()->getNumElements();
11051 unsigned ExtractedIdx =
11052 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11053 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11054
11055 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11056 return ReplaceInstUsesWith(IE, VecOp);
11057
11058 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11059 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11060
11061 // If we are extracting a value from a vector, then inserting it right
11062 // back into the same place, just use the input vector.
11063 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11064 return ReplaceInstUsesWith(IE, VecOp);
11065
11066 // We could theoretically do this for ANY input. However, doing so could
11067 // turn chains of insertelement instructions into a chain of shufflevector
11068 // instructions, and right now we do not merge shufflevectors. As such,
11069 // only do this in a situation where it is clear that there is benefit.
11070 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11071 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11072 // the values of VecOp, except then one read from EIOp0.
11073 // Build a new shuffle mask.
11074 std::vector<Constant*> Mask;
11075 if (isa<UndefValue>(VecOp))
11076 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
11077 else {
11078 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
11079 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
11080 NumVectorElts));
11081 }
11082 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11083 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
11084 ConstantVector::get(Mask));
11085 }
11086
11087 // If this insertelement isn't used by some other insertelement, turn it
11088 // (and any insertelements it points to), into one big shuffle.
11089 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11090 std::vector<Constant*> Mask;
11091 Value *RHS = 0;
11092 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11093 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11094 // We now have a shuffle of LHS, RHS, Mask.
11095 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
11096 }
11097 }
11098 }
11099
11100 return 0;
11101}
11102
11103
11104Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11105 Value *LHS = SVI.getOperand(0);
11106 Value *RHS = SVI.getOperand(1);
11107 std::vector<unsigned> Mask = getShuffleMask(&SVI);
11108
11109 bool MadeChange = false;
11110
11111 // Undefined shuffle mask -> undefined value.
11112 if (isa<UndefValue>(SVI.getOperand(2)))
11113 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
11114
11115 // If we have shuffle(x, undef, mask) and any elements of mask refer to
11116 // the undef, change them to undefs.
11117 if (isa<UndefValue>(SVI.getOperand(1))) {
11118 // Scan to see if there are any references to the RHS. If so, replace them
11119 // with undef element refs and set MadeChange to true.
11120 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11121 if (Mask[i] >= e && Mask[i] != 2*e) {
11122 Mask[i] = 2*e;
11123 MadeChange = true;
11124 }
11125 }
11126
11127 if (MadeChange) {
11128 // Remap any references to RHS to use LHS.
11129 std::vector<Constant*> Elts;
11130 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11131 if (Mask[i] == 2*e)
11132 Elts.push_back(UndefValue::get(Type::Int32Ty));
11133 else
11134 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11135 }
11136 SVI.setOperand(2, ConstantVector::get(Elts));
11137 }
11138 }
11139
11140 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11141 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11142 if (LHS == RHS || isa<UndefValue>(LHS)) {
11143 if (isa<UndefValue>(LHS) && LHS == RHS) {
11144 // shuffle(undef,undef,mask) -> undef.
11145 return ReplaceInstUsesWith(SVI, LHS);
11146 }
11147
11148 // Remap any references to RHS to use LHS.
11149 std::vector<Constant*> Elts;
11150 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11151 if (Mask[i] >= 2*e)
11152 Elts.push_back(UndefValue::get(Type::Int32Ty));
11153 else {
11154 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
11155 (Mask[i] < e && isa<UndefValue>(LHS)))
11156 Mask[i] = 2*e; // Turn into undef.
11157 else
11158 Mask[i] &= (e-1); // Force to LHS.
11159 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11160 }
11161 }
11162 SVI.setOperand(0, SVI.getOperand(1));
11163 SVI.setOperand(1, UndefValue::get(RHS->getType()));
11164 SVI.setOperand(2, ConstantVector::get(Elts));
11165 LHS = SVI.getOperand(0);
11166 RHS = SVI.getOperand(1);
11167 MadeChange = true;
11168 }
11169
11170 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
11171 bool isLHSID = true, isRHSID = true;
11172
11173 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11174 if (Mask[i] >= e*2) continue; // Ignore undef values.
11175 // Is this an identity shuffle of the LHS value?
11176 isLHSID &= (Mask[i] == i);
11177
11178 // Is this an identity shuffle of the RHS value?
11179 isRHSID &= (Mask[i]-e == i);
11180 }
11181
11182 // Eliminate identity shuffles.
11183 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
11184 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
11185
11186 // If the LHS is a shufflevector itself, see if we can combine it with this
11187 // one without producing an unusual shuffle. Here we are really conservative:
11188 // we are absolutely afraid of producing a shuffle mask not in the input
11189 // program, because the code gen may not be smart enough to turn a merged
11190 // shuffle into two specific shuffles: it may produce worse code. As such,
11191 // we only merge two shuffles if the result is one of the two input shuffle
11192 // masks. In this case, merging the shuffles just removes one instruction,
11193 // which we know is safe. This is good for things like turning:
11194 // (splat(splat)) -> splat.
11195 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
11196 if (isa<UndefValue>(RHS)) {
11197 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
11198
11199 std::vector<unsigned> NewMask;
11200 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
11201 if (Mask[i] >= 2*e)
11202 NewMask.push_back(2*e);
11203 else
11204 NewMask.push_back(LHSMask[Mask[i]]);
11205
11206 // If the result mask is equal to the src shuffle or this shuffle mask, do
11207 // the replacement.
11208 if (NewMask == LHSMask || NewMask == Mask) {
11209 std::vector<Constant*> Elts;
11210 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
11211 if (NewMask[i] >= e*2) {
11212 Elts.push_back(UndefValue::get(Type::Int32Ty));
11213 } else {
11214 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
11215 }
11216 }
11217 return new ShuffleVectorInst(LHSSVI->getOperand(0),
11218 LHSSVI->getOperand(1),
11219 ConstantVector::get(Elts));
11220 }
11221 }
11222 }
11223
11224 return MadeChange ? &SVI : 0;
11225}
11226
11227
11228
11229
11230/// TryToSinkInstruction - Try to move the specified instruction from its
11231/// current block into the beginning of DestBlock, which can only happen if it's
11232/// safe to move the instruction past all of the instructions between it and the
11233/// end of its block.
11234static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
11235 assert(I->hasOneUse() && "Invariants didn't hold!");
11236
11237 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnercb19a1c2008-05-09 15:07:33 +000011238 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
11239 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011240
11241 // Do not sink alloca instructions out of the entry block.
11242 if (isa<AllocaInst>(I) && I->getParent() ==
11243 &DestBlock->getParent()->getEntryBlock())
11244 return false;
11245
11246 // We can only sink load instructions if there is nothing between the load and
11247 // the end of block that could change the value.
Chris Lattner0db40a62008-05-08 17:37:37 +000011248 if (I->mayReadFromMemory()) {
11249 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011250 Scan != E; ++Scan)
11251 if (Scan->mayWriteToMemory())
11252 return false;
11253 }
11254
11255 BasicBlock::iterator InsertPos = DestBlock->begin();
11256 while (isa<PHINode>(InsertPos)) ++InsertPos;
11257
11258 I->moveBefore(InsertPos);
11259 ++NumSunkInst;
11260 return true;
11261}
11262
11263
11264/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
11265/// all reachable code to the worklist.
11266///
11267/// This has a couple of tricks to make the code faster and more powerful. In
11268/// particular, we constant fold and DCE instructions as we go, to avoid adding
11269/// them to the worklist (this significantly speeds up instcombine on code where
11270/// many instructions are dead or constant). Additionally, if we find a branch
11271/// whose condition is a known constant, we only visit the reachable successors.
11272///
11273static void AddReachableCodeToWorklist(BasicBlock *BB,
11274 SmallPtrSet<BasicBlock*, 64> &Visited,
11275 InstCombiner &IC,
11276 const TargetData *TD) {
11277 std::vector<BasicBlock*> Worklist;
11278 Worklist.push_back(BB);
11279
11280 while (!Worklist.empty()) {
11281 BB = Worklist.back();
11282 Worklist.pop_back();
11283
11284 // We have now visited this block! If we've already been here, ignore it.
11285 if (!Visited.insert(BB)) continue;
11286
11287 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
11288 Instruction *Inst = BBI++;
11289
11290 // DCE instruction if trivially dead.
11291 if (isInstructionTriviallyDead(Inst)) {
11292 ++NumDeadInst;
11293 DOUT << "IC: DCE: " << *Inst;
11294 Inst->eraseFromParent();
11295 continue;
11296 }
11297
11298 // ConstantProp instruction if trivially constant.
11299 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
11300 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
11301 Inst->replaceAllUsesWith(C);
11302 ++NumConstProp;
11303 Inst->eraseFromParent();
11304 continue;
11305 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000011306
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011307 IC.AddToWorkList(Inst);
11308 }
11309
11310 // Recursively visit successors. If this is a branch or switch on a
11311 // constant, only visit the reachable successor.
11312 TerminatorInst *TI = BB->getTerminator();
11313 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
11314 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
11315 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011316 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000011317 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011318 continue;
11319 }
11320 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
11321 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
11322 // See if this is an explicit destination.
11323 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
11324 if (SI->getCaseValue(i) == Cond) {
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011325 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000011326 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011327 continue;
11328 }
11329
11330 // Otherwise it is the default destination.
11331 Worklist.push_back(SI->getSuccessor(0));
11332 continue;
11333 }
11334 }
11335
11336 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
11337 Worklist.push_back(TI->getSuccessor(i));
11338 }
11339}
11340
11341bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
11342 bool Changed = false;
11343 TD = &getAnalysis<TargetData>();
11344
11345 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
11346 << F.getNameStr() << "\n");
11347
11348 {
11349 // Do a depth-first traversal of the function, populate the worklist with
11350 // the reachable instructions. Ignore blocks that are not reachable. Keep
11351 // track of which blocks we visit.
11352 SmallPtrSet<BasicBlock*, 64> Visited;
11353 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
11354
11355 // Do a quick scan over the function. If we find any blocks that are
11356 // unreachable, remove any instructions inside of them. This prevents
11357 // the instcombine code from having to deal with some bad special cases.
11358 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
11359 if (!Visited.count(BB)) {
11360 Instruction *Term = BB->getTerminator();
11361 while (Term != BB->begin()) { // Remove instrs bottom-up
11362 BasicBlock::iterator I = Term; --I;
11363
11364 DOUT << "IC: DCE: " << *I;
11365 ++NumDeadInst;
11366
11367 if (!I->use_empty())
11368 I->replaceAllUsesWith(UndefValue::get(I->getType()));
11369 I->eraseFromParent();
11370 }
11371 }
11372 }
11373
11374 while (!Worklist.empty()) {
11375 Instruction *I = RemoveOneFromWorkList();
11376 if (I == 0) continue; // skip null values.
11377
11378 // Check to see if we can DCE the instruction.
11379 if (isInstructionTriviallyDead(I)) {
11380 // Add operands to the worklist.
11381 if (I->getNumOperands() < 4)
11382 AddUsesToWorkList(*I);
11383 ++NumDeadInst;
11384
11385 DOUT << "IC: DCE: " << *I;
11386
11387 I->eraseFromParent();
11388 RemoveFromWorkList(I);
11389 continue;
11390 }
11391
11392 // Instruction isn't dead, see if we can constant propagate it.
11393 if (Constant *C = ConstantFoldInstruction(I, TD)) {
11394 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
11395
11396 // Add operands to the worklist.
11397 AddUsesToWorkList(*I);
11398 ReplaceInstUsesWith(*I, C);
11399
11400 ++NumConstProp;
11401 I->eraseFromParent();
11402 RemoveFromWorkList(I);
11403 continue;
11404 }
11405
11406 // See if we can trivially sink this instruction to a successor basic block.
Chris Lattner0db40a62008-05-08 17:37:37 +000011407 // FIXME: Remove GetResultInst test when first class support for aggregates
11408 // is implemented.
Devang Patela0a6cae2008-05-03 00:36:30 +000011409 if (I->hasOneUse() && !isa<GetResultInst>(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011410 BasicBlock *BB = I->getParent();
11411 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
11412 if (UserParent != BB) {
11413 bool UserIsSuccessor = false;
11414 // See if the user is one of our successors.
11415 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
11416 if (*SI == UserParent) {
11417 UserIsSuccessor = true;
11418 break;
11419 }
11420
11421 // If the user is one of our immediate successors, and if that successor
11422 // only has us as a predecessors (we'd have to split the critical edge
11423 // otherwise), we can keep going.
11424 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
11425 next(pred_begin(UserParent)) == pred_end(UserParent))
11426 // Okay, the CFG is simple enough, try to sink this instruction.
11427 Changed |= TryToSinkInstruction(I, UserParent);
11428 }
11429 }
11430
11431 // Now that we have an instruction, try combining it to simplify it...
11432#ifndef NDEBUG
11433 std::string OrigI;
11434#endif
11435 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
11436 if (Instruction *Result = visit(*I)) {
11437 ++NumCombined;
11438 // Should we replace the old instruction with a new one?
11439 if (Result != I) {
11440 DOUT << "IC: Old = " << *I
11441 << " New = " << *Result;
11442
11443 // Everything uses the new instruction now.
11444 I->replaceAllUsesWith(Result);
11445
11446 // Push the new instruction and any users onto the worklist.
11447 AddToWorkList(Result);
11448 AddUsersToWorkList(*Result);
11449
11450 // Move the name to the new instruction first.
11451 Result->takeName(I);
11452
11453 // Insert the new instruction into the basic block...
11454 BasicBlock *InstParent = I->getParent();
11455 BasicBlock::iterator InsertPos = I;
11456
11457 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
11458 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
11459 ++InsertPos;
11460
11461 InstParent->getInstList().insert(InsertPos, Result);
11462
11463 // Make sure that we reprocess all operands now that we reduced their
11464 // use counts.
11465 AddUsesToWorkList(*I);
11466
11467 // Instructions can end up on the worklist more than once. Make sure
11468 // we do not process an instruction that has been deleted.
11469 RemoveFromWorkList(I);
11470
11471 // Erase the old instruction.
11472 InstParent->getInstList().erase(I);
11473 } else {
11474#ifndef NDEBUG
11475 DOUT << "IC: Mod = " << OrigI
11476 << " New = " << *I;
11477#endif
11478
11479 // If the instruction was modified, it's possible that it is now dead.
11480 // if so, remove it.
11481 if (isInstructionTriviallyDead(I)) {
11482 // Make sure we process all operands now that we are reducing their
11483 // use counts.
11484 AddUsesToWorkList(*I);
11485
11486 // Instructions may end up in the worklist more than once. Erase all
11487 // occurrences of this instruction.
11488 RemoveFromWorkList(I);
11489 I->eraseFromParent();
11490 } else {
11491 AddToWorkList(I);
11492 AddUsersToWorkList(*I);
11493 }
11494 }
11495 Changed = true;
11496 }
11497 }
11498
11499 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000011500
11501 // Do an explicit clear, this shrinks the map if needed.
11502 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011503 return Changed;
11504}
11505
11506
11507bool InstCombiner::runOnFunction(Function &F) {
11508 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
11509
11510 bool EverMadeChange = false;
11511
11512 // Iterate while there is work to do.
11513 unsigned Iteration = 0;
Bill Wendlingd9644a42008-05-14 22:45:20 +000011514 while (DoOneIteration(F, Iteration++))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011515 EverMadeChange = true;
11516 return EverMadeChange;
11517}
11518
11519FunctionPass *llvm::createInstructionCombiningPass() {
11520 return new InstCombiner();
11521}
11522