blob: 6305073101856e70beff5cd7fbed260706d1e33f [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/ADT/StringExtras.h"
Duncan Sandsd8455ca2007-07-27 20:02:49 +000037#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038using namespace llvm;
39
40X86TargetLowering::X86TargetLowering(TargetMachine &TM)
41 : TargetLowering(TM) {
42 Subtarget = &TM.getSubtarget<X86Subtarget>();
Dale Johannesene0e0fd02007-09-23 14:52:20 +000043 X86ScalarSSEf64 = Subtarget->hasSSE2();
44 X86ScalarSSEf32 = Subtarget->hasSSE1();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000045 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
46
47 RegInfo = TM.getRegisterInfo();
48
49 // Set up the TargetLowering object.
50
51 // X86 is weird, it always uses i8 for shift amounts and setcc results.
52 setShiftAmountType(MVT::i8);
53 setSetCCResultType(MVT::i8);
54 setSetCCResultContents(ZeroOrOneSetCCResult);
55 setSchedulingPreference(SchedulingForRegPressure);
56 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
57 setStackPointerRegisterToSaveRestore(X86StackPtr);
58
59 if (Subtarget->isTargetDarwin()) {
60 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
61 setUseUnderscoreSetJmp(false);
62 setUseUnderscoreLongJmp(false);
63 } else if (Subtarget->isTargetMingw()) {
64 // MS runtime is weird: it exports _setjmp, but longjmp!
65 setUseUnderscoreSetJmp(true);
66 setUseUnderscoreLongJmp(false);
67 } else {
68 setUseUnderscoreSetJmp(true);
69 setUseUnderscoreLongJmp(true);
70 }
71
72 // Set up the register classes.
73 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
74 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
75 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
76 if (Subtarget->is64Bit())
77 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
78
79 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
80
81 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
82 // operation.
83 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
84 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
85 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
86
87 if (Subtarget->is64Bit()) {
88 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
89 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
90 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +000091 if (X86ScalarSSEf64)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000092 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
93 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
94 else
95 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
96 }
97
98 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
99 // this operation.
100 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
101 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
102 // SSE has no i16 to fp conversion, only i32
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000103 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000105 // f32 and f64 cases are Legal, f80 case is not
106 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
107 } else {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000108 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
109 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
110 }
111
Dale Johannesen958b08b2007-09-19 23:55:34 +0000112 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
113 // are Legal, f80 is custom lowered.
114 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
115 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116
117 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
118 // this operation.
119 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
120 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
121
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000122 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000124 // f32 and f64 cases are Legal, f80 case is not
125 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 } else {
127 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
128 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
129 }
130
131 // Handle FP_TO_UINT by promoting the destination to a larger signed
132 // conversion.
133 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
134 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
135 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
136
137 if (Subtarget->is64Bit()) {
138 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
139 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
140 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000141 if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000142 // Expand FP_TO_UINT into a select.
143 // FIXME: We would like to use a Custom expander here eventually to do
144 // the optimal thing for SSE vs. the default expansion in the legalizer.
145 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
146 else
147 // With SSE3 we can use fisttpll to convert to a signed i64.
148 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
149 }
150
151 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000152 if (!X86ScalarSSEf64) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000153 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
154 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
155 }
156
Dan Gohman242a5ba2007-09-25 18:23:27 +0000157 // Divide and remainder are lowered to use div or idiv in legalize in
158 // order to expose the intermediate computations to trivial CSE. This is
159 // most noticeable when both x/y and x%y are being computed; they can be
160 // done with a single div or idiv.
161 setOperationAction(ISD::SDIV , MVT::i8 , Custom);
162 setOperationAction(ISD::UDIV , MVT::i8 , Custom);
163 setOperationAction(ISD::SREM , MVT::i8 , Custom);
164 setOperationAction(ISD::UREM , MVT::i8 , Custom);
165 setOperationAction(ISD::SDIV , MVT::i16 , Custom);
166 setOperationAction(ISD::UDIV , MVT::i16 , Custom);
167 setOperationAction(ISD::SREM , MVT::i16 , Custom);
168 setOperationAction(ISD::UREM , MVT::i16 , Custom);
169 setOperationAction(ISD::SDIV , MVT::i32 , Custom);
170 setOperationAction(ISD::UDIV , MVT::i32 , Custom);
171 setOperationAction(ISD::SREM , MVT::i32 , Custom);
172 setOperationAction(ISD::UREM , MVT::i32 , Custom);
173 setOperationAction(ISD::SDIV , MVT::i64 , Custom);
174 setOperationAction(ISD::UDIV , MVT::i64 , Custom);
175 setOperationAction(ISD::SREM , MVT::i64 , Custom);
176 setOperationAction(ISD::UREM , MVT::i64 , Custom);
177
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000178 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
179 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
180 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
181 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
182 setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
183 if (Subtarget->is64Bit())
Christopher Lamb0a7c8662007-08-10 21:48:46 +0000184 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
186 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
188 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
189 setOperationAction(ISD::FREM , MVT::f64 , Expand);
190
191 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
192 setOperationAction(ISD::CTTZ , MVT::i8 , Expand);
193 setOperationAction(ISD::CTLZ , MVT::i8 , Expand);
194 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
195 setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
196 setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
197 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
198 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
199 setOperationAction(ISD::CTLZ , MVT::i32 , Expand);
200 if (Subtarget->is64Bit()) {
201 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
202 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
203 setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
204 }
205
206 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
207 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
208
209 // These should be promoted to a larger select which is supported.
210 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
211 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
212 // X86 wants to expand cmov itself.
213 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
214 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
215 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
216 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000217 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000218 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
219 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
220 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
221 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
222 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000223 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224 if (Subtarget->is64Bit()) {
225 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
226 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
227 }
228 // X86 ret instruction may pop stack.
229 setOperationAction(ISD::RET , MVT::Other, Custom);
230 if (!Subtarget->is64Bit())
231 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
232
233 // Darwin ABI issue.
234 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
235 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
236 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
237 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
238 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
239 if (Subtarget->is64Bit()) {
240 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
241 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
242 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
243 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
244 }
245 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
246 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
247 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
248 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
249 // X86 wants to expand memset / memcpy itself.
250 setOperationAction(ISD::MEMSET , MVT::Other, Custom);
251 setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
252
Dan Gohman21442852007-09-25 15:10:49 +0000253 // Use the default ISD::LOCATION expansion.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000254 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000255 // FIXME - use subtarget debug flags
256 if (!Subtarget->isTargetDarwin() &&
257 !Subtarget->isTargetELF() &&
258 !Subtarget->isTargetCygMing())
259 setOperationAction(ISD::LABEL, MVT::Other, Expand);
260
261 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
262 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
263 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
264 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
265 if (Subtarget->is64Bit()) {
266 // FIXME: Verify
267 setExceptionPointerRegister(X86::RAX);
268 setExceptionSelectorRegister(X86::RDX);
269 } else {
270 setExceptionPointerRegister(X86::EAX);
271 setExceptionSelectorRegister(X86::EDX);
272 }
Anton Korobeynikov23ca9c52007-09-03 00:36:06 +0000273 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274
Duncan Sands7407a9f2007-09-11 14:10:23 +0000275 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000276
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000277 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
278 setOperationAction(ISD::VASTART , MVT::Other, Custom);
279 setOperationAction(ISD::VAARG , MVT::Other, Expand);
280 setOperationAction(ISD::VAEND , MVT::Other, Expand);
281 if (Subtarget->is64Bit())
282 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
283 else
284 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
285
286 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
287 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
288 if (Subtarget->is64Bit())
289 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
290 if (Subtarget->isTargetCygMing())
291 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
292 else
293 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
294
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000295 if (X86ScalarSSEf64) {
296 // f32 and f64 use SSE.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000297 // Set up the FP register classes.
298 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
299 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
300
301 // Use ANDPD to simulate FABS.
302 setOperationAction(ISD::FABS , MVT::f64, Custom);
303 setOperationAction(ISD::FABS , MVT::f32, Custom);
304
305 // Use XORP to simulate FNEG.
306 setOperationAction(ISD::FNEG , MVT::f64, Custom);
307 setOperationAction(ISD::FNEG , MVT::f32, Custom);
308
309 // Use ANDPD and ORPD to simulate FCOPYSIGN.
310 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
311 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
312
313 // We don't support sin/cos/fmod
314 setOperationAction(ISD::FSIN , MVT::f64, Expand);
315 setOperationAction(ISD::FCOS , MVT::f64, Expand);
316 setOperationAction(ISD::FREM , MVT::f64, Expand);
317 setOperationAction(ISD::FSIN , MVT::f32, Expand);
318 setOperationAction(ISD::FCOS , MVT::f32, Expand);
319 setOperationAction(ISD::FREM , MVT::f32, Expand);
320
321 // Expand FP immediates into loads from the stack, except for the special
322 // cases we handle.
323 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
324 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000325 addLegalFPImmediate(APFloat(+0.0)); // xorpd
326 addLegalFPImmediate(APFloat(+0.0f)); // xorps
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000327
328 // Conversions to long double (in X87) go through memory.
329 setConvertAction(MVT::f32, MVT::f80, Expand);
330 setConvertAction(MVT::f64, MVT::f80, Expand);
331
332 // Conversions from long double (in X87) go through memory.
333 setConvertAction(MVT::f80, MVT::f32, Expand);
334 setConvertAction(MVT::f80, MVT::f64, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000335 } else if (X86ScalarSSEf32) {
336 // Use SSE for f32, x87 for f64.
337 // Set up the FP register classes.
338 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
339 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
340
341 // Use ANDPS to simulate FABS.
342 setOperationAction(ISD::FABS , MVT::f32, Custom);
343
344 // Use XORP to simulate FNEG.
345 setOperationAction(ISD::FNEG , MVT::f32, Custom);
346
347 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
348
349 // Use ANDPS and ORPS to simulate FCOPYSIGN.
350 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
351 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
352
353 // We don't support sin/cos/fmod
354 setOperationAction(ISD::FSIN , MVT::f32, Expand);
355 setOperationAction(ISD::FCOS , MVT::f32, Expand);
356 setOperationAction(ISD::FREM , MVT::f32, Expand);
357
358 // Expand FP immediates into loads from the stack, except for the special
359 // cases we handle.
360 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
361 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
362 addLegalFPImmediate(APFloat(+0.0f)); // xorps
363 addLegalFPImmediate(APFloat(+0.0)); // FLD0
364 addLegalFPImmediate(APFloat(+1.0)); // FLD1
365 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
366 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
367
368 // SSE->x87 conversions go through memory.
369 setConvertAction(MVT::f32, MVT::f64, Expand);
370 setConvertAction(MVT::f32, MVT::f80, Expand);
371
372 // x87->SSE truncations need to go through memory.
373 setConvertAction(MVT::f80, MVT::f32, Expand);
374 setConvertAction(MVT::f64, MVT::f32, Expand);
375 // And x87->x87 truncations also.
376 setConvertAction(MVT::f80, MVT::f64, Expand);
377
378 if (!UnsafeFPMath) {
379 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
380 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
381 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000382 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000383 // f32 and f64 in x87.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000384 // Set up the FP register classes.
385 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
386 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
387
388 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
389 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
390 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
391 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000392
393 // Floating truncations need to go through memory.
394 setConvertAction(MVT::f80, MVT::f32, Expand);
395 setConvertAction(MVT::f64, MVT::f32, Expand);
396 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000397
398 if (!UnsafeFPMath) {
399 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
400 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
401 }
402
403 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
404 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000405 addLegalFPImmediate(APFloat(+0.0)); // FLD0
406 addLegalFPImmediate(APFloat(+1.0)); // FLD1
407 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
408 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000409 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
410 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
411 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
412 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000413 }
414
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000415 // Long double always uses X87.
416 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000417 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
418 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
419 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
Dale Johannesen7f1076b2007-09-26 21:10:55 +0000420 if (!UnsafeFPMath) {
421 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
422 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
423 }
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000424
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000425 // First set operation action for all vector types to expand. Then we
426 // will selectively turn on ones that can be effectively codegen'd.
427 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
428 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
429 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
430 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
431 setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
432 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
433 setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
434 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
435 setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
436 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
437 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
438 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
439 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
440 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
441 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
442 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
443 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
444 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
445 setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
446 setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
447 setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
448 setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
449 setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
450 setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
451 setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
452 }
453
454 if (Subtarget->hasMMX()) {
455 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
456 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
457 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
458 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
459
460 // FIXME: add MMX packed arithmetics
461
462 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
463 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
464 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
465 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
466
467 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
468 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
469 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
470
471 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
472 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
473
474 setOperationAction(ISD::AND, MVT::v8i8, Promote);
475 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
476 setOperationAction(ISD::AND, MVT::v4i16, Promote);
477 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
478 setOperationAction(ISD::AND, MVT::v2i32, Promote);
479 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
480 setOperationAction(ISD::AND, MVT::v1i64, Legal);
481
482 setOperationAction(ISD::OR, MVT::v8i8, Promote);
483 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
484 setOperationAction(ISD::OR, MVT::v4i16, Promote);
485 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
486 setOperationAction(ISD::OR, MVT::v2i32, Promote);
487 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
488 setOperationAction(ISD::OR, MVT::v1i64, Legal);
489
490 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
491 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
492 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
493 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
494 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
495 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
496 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
497
498 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
499 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
500 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
501 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
502 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
503 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
504 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
505
506 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
507 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
508 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
509 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
510
511 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
512 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
513 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
514 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
515
516 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
517 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
518 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Custom);
519 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
520 }
521
522 if (Subtarget->hasSSE1()) {
523 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
524
525 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
526 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
527 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
528 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
529 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
530 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000531 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
532 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
533 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
534 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
535 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
536 }
537
538 if (Subtarget->hasSSE2()) {
539 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
540 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
541 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
542 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
543 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
544
545 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
546 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
547 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
548 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
549 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
550 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
551 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
552 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
553 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
554 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
555 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
556 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
557 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
558 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
559 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000560
561 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
562 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
563 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
564 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
565 // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
566 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
567
568 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
569 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
570 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom);
571 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom);
572 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom);
573 }
574 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
575 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
576 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
577 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
578 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
579 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
580
581 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
582 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
583 setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote);
584 AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64);
585 setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote);
586 AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64);
587 setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote);
588 AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64);
589 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote);
590 AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64);
591 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
592 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
593 }
594
595 // Custom lower v2i64 and v2f64 selects.
596 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
597 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
598 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
599 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
600 }
601
602 // We want to custom lower some of our intrinsics.
603 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
604
605 // We have target-specific dag combine patterns for the following nodes:
606 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
607 setTargetDAGCombine(ISD::SELECT);
608
609 computeRegisterProperties();
610
611 // FIXME: These should be based on subtarget info. Plus, the values should
612 // be smaller when we are in optimizing for size mode.
613 maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
614 maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
615 maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
616 allowUnalignedMemoryAccesses = true; // x86 supports it!
617}
618
619
620//===----------------------------------------------------------------------===//
621// Return Value Calling Convention Implementation
622//===----------------------------------------------------------------------===//
623
624#include "X86GenCallingConv.inc"
625
626/// LowerRET - Lower an ISD::RET node.
627SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
628 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
629
630 SmallVector<CCValAssign, 16> RVLocs;
631 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
632 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
633 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
634 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
635
636
637 // If this is the first return lowered for this function, add the regs to the
638 // liveout set for the function.
639 if (DAG.getMachineFunction().liveout_empty()) {
640 for (unsigned i = 0; i != RVLocs.size(); ++i)
641 if (RVLocs[i].isRegLoc())
642 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
643 }
644
645 SDOperand Chain = Op.getOperand(0);
646 SDOperand Flag;
647
648 // Copy the result values into the output registers.
649 if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
650 RVLocs[0].getLocReg() != X86::ST0) {
651 for (unsigned i = 0; i != RVLocs.size(); ++i) {
652 CCValAssign &VA = RVLocs[i];
653 assert(VA.isRegLoc() && "Can only return in registers!");
654 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
655 Flag);
656 Flag = Chain.getValue(1);
657 }
658 } else {
659 // We need to handle a destination of ST0 specially, because it isn't really
660 // a register.
661 SDOperand Value = Op.getOperand(1);
662
663 // If this is an FP return with ScalarSSE, we need to move the value from
664 // an XMM register onto the fp-stack.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000665 if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
666 (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000667 SDOperand MemLoc;
668
669 // If this is a load into a scalarsse value, don't store the loaded value
670 // back to the stack, only to reload it: just replace the scalar-sse load.
671 if (ISD::isNON_EXTLoad(Value.Val) &&
672 (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
673 Chain = Value.getOperand(0);
674 MemLoc = Value.getOperand(1);
675 } else {
676 // Spill the value to memory and reload it into top of stack.
677 unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
678 MachineFunction &MF = DAG.getMachineFunction();
679 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
680 MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
681 Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
682 }
683 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
684 SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
685 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
686 Chain = Value.getValue(1);
687 }
688
689 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
690 SDOperand Ops[] = { Chain, Value };
691 Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
692 Flag = Chain.getValue(1);
693 }
694
695 SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
696 if (Flag.Val)
697 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
698 else
699 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
700}
701
702
703/// LowerCallResult - Lower the result values of an ISD::CALL into the
704/// appropriate copies out of appropriate physical registers. This assumes that
705/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
706/// being lowered. The returns a SDNode with the same number of values as the
707/// ISD::CALL.
708SDNode *X86TargetLowering::
709LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
710 unsigned CallingConv, SelectionDAG &DAG) {
711
712 // Assign locations to each value returned by this call.
713 SmallVector<CCValAssign, 16> RVLocs;
714 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
715 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
716 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
717
718
719 SmallVector<SDOperand, 8> ResultVals;
720
721 // Copy all of the result registers out of their specified physreg.
722 if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
723 for (unsigned i = 0; i != RVLocs.size(); ++i) {
724 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
725 RVLocs[i].getValVT(), InFlag).getValue(1);
726 InFlag = Chain.getValue(2);
727 ResultVals.push_back(Chain.getValue(0));
728 }
729 } else {
730 // Copies from the FP stack are special, as ST0 isn't a valid register
731 // before the fp stackifier runs.
732
733 // Copy ST0 into an RFP register with FP_GET_RESULT.
734 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
735 SDOperand GROps[] = { Chain, InFlag };
736 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
737 Chain = RetVal.getValue(1);
738 InFlag = RetVal.getValue(2);
739
740 // If we are using ScalarSSE, store ST(0) to the stack and reload it into
741 // an XMM register.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000742 if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
743 (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000744 // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
745 // shouldn't be necessary except that RFP cannot be live across
746 // multiple blocks. When stackifier is fixed, they can be uncoupled.
747 MachineFunction &MF = DAG.getMachineFunction();
748 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
749 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
750 SDOperand Ops[] = {
751 Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
752 };
753 Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
754 RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
755 Chain = RetVal.getValue(1);
756 }
757 ResultVals.push_back(RetVal);
758 }
759
760 // Merge everything together with a MERGE_VALUES node.
761 ResultVals.push_back(Chain);
762 return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
763 &ResultVals[0], ResultVals.size()).Val;
764}
765
766
767//===----------------------------------------------------------------------===//
768// C & StdCall Calling Convention implementation
769//===----------------------------------------------------------------------===//
770// StdCall calling convention seems to be standard for many Windows' API
771// routines and around. It differs from C calling convention just a little:
772// callee should clean up the stack, not caller. Symbols should be also
773// decorated in some fancy way :) It doesn't support any vector arguments.
774
775/// AddLiveIn - This helper function adds the specified physical register to the
776/// MachineFunction as a live in value. It also creates a corresponding virtual
777/// register for it.
778static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
779 const TargetRegisterClass *RC) {
780 assert(RC->contains(PReg) && "Not the correct regclass!");
781 unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
782 MF.addLiveIn(PReg, VReg);
783 return VReg;
784}
785
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000786SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
787 const CCValAssign &VA,
788 MachineFrameInfo *MFI,
789 SDOperand Root, unsigned i) {
790 // Create the nodes corresponding to a load from this parameter slot.
791 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
792 VA.getLocMemOffset());
793 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
794
795 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
796
797 if (Flags & ISD::ParamFlags::ByVal)
798 return FIN;
799 else
800 return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
801}
802
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000803SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
804 bool isStdCall) {
805 unsigned NumArgs = Op.Val->getNumValues() - 1;
806 MachineFunction &MF = DAG.getMachineFunction();
807 MachineFrameInfo *MFI = MF.getFrameInfo();
808 SDOperand Root = Op.getOperand(0);
809 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
810
811 // Assign locations to all of the incoming arguments.
812 SmallVector<CCValAssign, 16> ArgLocs;
813 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
814 getTargetMachine(), ArgLocs);
815 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
816
817 SmallVector<SDOperand, 8> ArgValues;
818 unsigned LastVal = ~0U;
819 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
820 CCValAssign &VA = ArgLocs[i];
821 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
822 // places.
823 assert(VA.getValNo() != LastVal &&
824 "Don't support value assigned to multiple locs yet");
825 LastVal = VA.getValNo();
826
827 if (VA.isRegLoc()) {
828 MVT::ValueType RegVT = VA.getLocVT();
829 TargetRegisterClass *RC;
830 if (RegVT == MVT::i32)
831 RC = X86::GR32RegisterClass;
832 else {
833 assert(MVT::isVector(RegVT));
834 RC = X86::VR128RegisterClass;
835 }
836
837 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
838 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
839
840 // If this is an 8 or 16-bit value, it is really passed promoted to 32
841 // bits. Insert an assert[sz]ext to capture this, then truncate to the
842 // right size.
843 if (VA.getLocInfo() == CCValAssign::SExt)
844 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
845 DAG.getValueType(VA.getValVT()));
846 else if (VA.getLocInfo() == CCValAssign::ZExt)
847 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
848 DAG.getValueType(VA.getValVT()));
849
850 if (VA.getLocInfo() != CCValAssign::Full)
851 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
852
853 ArgValues.push_back(ArgValue);
854 } else {
855 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000856 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000857 }
858 }
859
860 unsigned StackSize = CCInfo.getNextStackOffset();
861
862 ArgValues.push_back(Root);
863
864 // If the function takes variable number of arguments, make a frame index for
865 // the start of the first vararg value... for expansion of llvm.va_start.
866 if (isVarArg)
867 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
868
869 if (isStdCall && !isVarArg) {
870 BytesToPopOnReturn = StackSize; // Callee pops everything..
871 BytesCallerReserves = 0;
872 } else {
873 BytesToPopOnReturn = 0; // Callee pops nothing.
874
875 // If this is an sret function, the return should pop the hidden pointer.
876 if (NumArgs &&
877 (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
878 ISD::ParamFlags::StructReturn))
879 BytesToPopOnReturn = 4;
880
881 BytesCallerReserves = StackSize;
882 }
Anton Korobeynikove844e472007-08-15 17:12:32 +0000883
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000884 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000885
Anton Korobeynikove844e472007-08-15 17:12:32 +0000886 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
887 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000888
889 // Return the new list of results.
890 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
891 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
892}
893
894SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
895 unsigned CC) {
896 SDOperand Chain = Op.getOperand(0);
897 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
898 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
899 SDOperand Callee = Op.getOperand(4);
900 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
901
902 // Analyze operands of the call, assigning locations to each operand.
903 SmallVector<CCValAssign, 16> ArgLocs;
904 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
905 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
906
907 // Get a count of how many bytes are to be pushed on the stack.
908 unsigned NumBytes = CCInfo.getNextStackOffset();
909
910 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
911
912 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
913 SmallVector<SDOperand, 8> MemOpChains;
914
915 SDOperand StackPtr;
916
917 // Walk the register/memloc assignments, inserting copies/loads.
918 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
919 CCValAssign &VA = ArgLocs[i];
920 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
921
922 // Promote the value if needed.
923 switch (VA.getLocInfo()) {
924 default: assert(0 && "Unknown loc info!");
925 case CCValAssign::Full: break;
926 case CCValAssign::SExt:
927 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
928 break;
929 case CCValAssign::ZExt:
930 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
931 break;
932 case CCValAssign::AExt:
933 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
934 break;
935 }
936
937 if (VA.isRegLoc()) {
938 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
939 } else {
940 assert(VA.isMemLoc());
941 if (StackPtr.Val == 0)
942 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +0000943
944 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
945 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000946 }
947 }
948
949 // If the first argument is an sret pointer, remember it.
950 bool isSRet = NumOps &&
951 (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
952 ISD::ParamFlags::StructReturn);
953
954 if (!MemOpChains.empty())
955 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
956 &MemOpChains[0], MemOpChains.size());
957
958 // Build a sequence of copy-to-reg nodes chained together with token chain
959 // and flag operands which copy the outgoing args into registers.
960 SDOperand InFlag;
961 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
962 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
963 InFlag);
964 InFlag = Chain.getValue(1);
965 }
966
967 // ELF / PIC requires GOT in the EBX register before function calls via PLT
968 // GOT pointer.
969 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
970 Subtarget->isPICStyleGOT()) {
971 Chain = DAG.getCopyToReg(Chain, X86::EBX,
972 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
973 InFlag);
974 InFlag = Chain.getValue(1);
975 }
976
977 // If the callee is a GlobalAddress node (quite common, every direct call is)
978 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
979 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
980 // We should use extra load for direct calls to dllimported functions in
981 // non-JIT mode.
982 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
983 getTargetMachine(), true))
984 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
985 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
986 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
987
988 // Returns a chain & a flag for retval copy to use.
989 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
990 SmallVector<SDOperand, 8> Ops;
991 Ops.push_back(Chain);
992 Ops.push_back(Callee);
993
994 // Add argument registers to the end of the list so that they are known live
995 // into the call.
996 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
997 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
998 RegsToPass[i].second.getValueType()));
999
1000 // Add an implicit use GOT pointer in EBX.
1001 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1002 Subtarget->isPICStyleGOT())
1003 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1004
1005 if (InFlag.Val)
1006 Ops.push_back(InFlag);
1007
1008 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1009 NodeTys, &Ops[0], Ops.size());
1010 InFlag = Chain.getValue(1);
1011
1012 // Create the CALLSEQ_END node.
1013 unsigned NumBytesForCalleeToPush = 0;
1014
1015 if (CC == CallingConv::X86_StdCall) {
1016 if (isVarArg)
1017 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1018 else
1019 NumBytesForCalleeToPush = NumBytes;
1020 } else {
1021 // If this is is a call to a struct-return function, the callee
1022 // pops the hidden struct pointer, so we have to push it back.
1023 // This is common for Darwin/X86, Linux & Mingw32 targets.
1024 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1025 }
1026
1027 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1028 Ops.clear();
1029 Ops.push_back(Chain);
1030 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1031 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
1032 Ops.push_back(InFlag);
1033 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1034 InFlag = Chain.getValue(1);
1035
1036 // Handle result values, copying them out of physregs into vregs that we
1037 // return.
1038 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1039}
1040
1041
1042//===----------------------------------------------------------------------===//
1043// FastCall Calling Convention implementation
1044//===----------------------------------------------------------------------===//
1045//
1046// The X86 'fastcall' calling convention passes up to two integer arguments in
1047// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1048// and requires that the callee pop its arguments off the stack (allowing proper
1049// tail calls), and has the same return value conventions as C calling convs.
1050//
1051// This calling convention always arranges for the callee pop value to be 8n+4
1052// bytes, which is needed for tail recursion elimination and stack alignment
1053// reasons.
1054SDOperand
1055X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1056 MachineFunction &MF = DAG.getMachineFunction();
1057 MachineFrameInfo *MFI = MF.getFrameInfo();
1058 SDOperand Root = Op.getOperand(0);
1059 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1060
1061 // Assign locations to all of the incoming arguments.
1062 SmallVector<CCValAssign, 16> ArgLocs;
1063 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1064 getTargetMachine(), ArgLocs);
1065 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
1066
1067 SmallVector<SDOperand, 8> ArgValues;
1068 unsigned LastVal = ~0U;
1069 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1070 CCValAssign &VA = ArgLocs[i];
1071 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1072 // places.
1073 assert(VA.getValNo() != LastVal &&
1074 "Don't support value assigned to multiple locs yet");
1075 LastVal = VA.getValNo();
1076
1077 if (VA.isRegLoc()) {
1078 MVT::ValueType RegVT = VA.getLocVT();
1079 TargetRegisterClass *RC;
1080 if (RegVT == MVT::i32)
1081 RC = X86::GR32RegisterClass;
1082 else {
1083 assert(MVT::isVector(RegVT));
1084 RC = X86::VR128RegisterClass;
1085 }
1086
1087 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1088 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1089
1090 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1091 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1092 // right size.
1093 if (VA.getLocInfo() == CCValAssign::SExt)
1094 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1095 DAG.getValueType(VA.getValVT()));
1096 else if (VA.getLocInfo() == CCValAssign::ZExt)
1097 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1098 DAG.getValueType(VA.getValVT()));
1099
1100 if (VA.getLocInfo() != CCValAssign::Full)
1101 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1102
1103 ArgValues.push_back(ArgValue);
1104 } else {
1105 assert(VA.isMemLoc());
Rafael Espindolab53ef122007-09-21 14:55:38 +00001106 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001107 }
1108 }
1109
1110 ArgValues.push_back(Root);
1111
1112 unsigned StackSize = CCInfo.getNextStackOffset();
1113
1114 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1115 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1116 // arguments and the arguments after the retaddr has been pushed are aligned.
1117 if ((StackSize & 7) == 0)
1118 StackSize += 4;
1119 }
1120
1121 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1122 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001123 BytesToPopOnReturn = StackSize; // Callee pops all stack arguments.
1124 BytesCallerReserves = 0;
1125
Anton Korobeynikove844e472007-08-15 17:12:32 +00001126 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1127 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001128
1129 // Return the new list of results.
1130 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1131 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1132}
1133
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001134SDOperand
1135X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1136 const SDOperand &StackPtr,
1137 const CCValAssign &VA,
1138 SDOperand Chain,
1139 SDOperand Arg) {
1140 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1141 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1142 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1143 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1144 if (Flags & ISD::ParamFlags::ByVal) {
1145 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1146 ISD::ParamFlags::ByValAlignOffs);
1147
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001148 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1149 ISD::ParamFlags::ByValSizeOffs;
1150
1151 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1152 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1153
1154 return DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff, Arg, SizeNode,
1155 AlignNode);
1156 } else {
1157 return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1158 }
1159}
1160
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001161SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1162 unsigned CC) {
1163 SDOperand Chain = Op.getOperand(0);
1164 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1165 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1166 SDOperand Callee = Op.getOperand(4);
1167
1168 // Analyze operands of the call, assigning locations to each operand.
1169 SmallVector<CCValAssign, 16> ArgLocs;
1170 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1171 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1172
1173 // Get a count of how many bytes are to be pushed on the stack.
1174 unsigned NumBytes = CCInfo.getNextStackOffset();
1175
1176 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1177 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1178 // arguments and the arguments after the retaddr has been pushed are aligned.
1179 if ((NumBytes & 7) == 0)
1180 NumBytes += 4;
1181 }
1182
1183 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1184
1185 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1186 SmallVector<SDOperand, 8> MemOpChains;
1187
1188 SDOperand StackPtr;
1189
1190 // Walk the register/memloc assignments, inserting copies/loads.
1191 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1192 CCValAssign &VA = ArgLocs[i];
1193 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1194
1195 // Promote the value if needed.
1196 switch (VA.getLocInfo()) {
1197 default: assert(0 && "Unknown loc info!");
1198 case CCValAssign::Full: break;
1199 case CCValAssign::SExt:
1200 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1201 break;
1202 case CCValAssign::ZExt:
1203 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1204 break;
1205 case CCValAssign::AExt:
1206 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1207 break;
1208 }
1209
1210 if (VA.isRegLoc()) {
1211 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1212 } else {
1213 assert(VA.isMemLoc());
1214 if (StackPtr.Val == 0)
1215 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +00001216
1217 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1218 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001219 }
1220 }
1221
1222 if (!MemOpChains.empty())
1223 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1224 &MemOpChains[0], MemOpChains.size());
1225
1226 // Build a sequence of copy-to-reg nodes chained together with token chain
1227 // and flag operands which copy the outgoing args into registers.
1228 SDOperand InFlag;
1229 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1230 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1231 InFlag);
1232 InFlag = Chain.getValue(1);
1233 }
1234
1235 // If the callee is a GlobalAddress node (quite common, every direct call is)
1236 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1237 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1238 // We should use extra load for direct calls to dllimported functions in
1239 // non-JIT mode.
1240 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1241 getTargetMachine(), true))
1242 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1243 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1244 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1245
1246 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1247 // GOT pointer.
1248 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1249 Subtarget->isPICStyleGOT()) {
1250 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1251 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1252 InFlag);
1253 InFlag = Chain.getValue(1);
1254 }
1255
1256 // Returns a chain & a flag for retval copy to use.
1257 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1258 SmallVector<SDOperand, 8> Ops;
1259 Ops.push_back(Chain);
1260 Ops.push_back(Callee);
1261
1262 // Add argument registers to the end of the list so that they are known live
1263 // into the call.
1264 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1265 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1266 RegsToPass[i].second.getValueType()));
1267
1268 // Add an implicit use GOT pointer in EBX.
1269 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1270 Subtarget->isPICStyleGOT())
1271 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1272
1273 if (InFlag.Val)
1274 Ops.push_back(InFlag);
1275
1276 // FIXME: Do not generate X86ISD::TAILCALL for now.
1277 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1278 NodeTys, &Ops[0], Ops.size());
1279 InFlag = Chain.getValue(1);
1280
1281 // Returns a flag for retval copy to use.
1282 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1283 Ops.clear();
1284 Ops.push_back(Chain);
1285 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1286 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1287 Ops.push_back(InFlag);
1288 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1289 InFlag = Chain.getValue(1);
1290
1291 // Handle result values, copying them out of physregs into vregs that we
1292 // return.
1293 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1294}
1295
1296
1297//===----------------------------------------------------------------------===//
1298// X86-64 C Calling Convention implementation
1299//===----------------------------------------------------------------------===//
1300
1301SDOperand
1302X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1303 MachineFunction &MF = DAG.getMachineFunction();
1304 MachineFrameInfo *MFI = MF.getFrameInfo();
1305 SDOperand Root = Op.getOperand(0);
1306 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1307
1308 static const unsigned GPR64ArgRegs[] = {
1309 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1310 };
1311 static const unsigned XMMArgRegs[] = {
1312 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1313 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1314 };
1315
1316
1317 // Assign locations to all of the incoming arguments.
1318 SmallVector<CCValAssign, 16> ArgLocs;
1319 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1320 getTargetMachine(), ArgLocs);
1321 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1322
1323 SmallVector<SDOperand, 8> ArgValues;
1324 unsigned LastVal = ~0U;
1325 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1326 CCValAssign &VA = ArgLocs[i];
1327 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1328 // places.
1329 assert(VA.getValNo() != LastVal &&
1330 "Don't support value assigned to multiple locs yet");
1331 LastVal = VA.getValNo();
1332
1333 if (VA.isRegLoc()) {
1334 MVT::ValueType RegVT = VA.getLocVT();
1335 TargetRegisterClass *RC;
1336 if (RegVT == MVT::i32)
1337 RC = X86::GR32RegisterClass;
1338 else if (RegVT == MVT::i64)
1339 RC = X86::GR64RegisterClass;
1340 else if (RegVT == MVT::f32)
1341 RC = X86::FR32RegisterClass;
1342 else if (RegVT == MVT::f64)
1343 RC = X86::FR64RegisterClass;
1344 else {
1345 assert(MVT::isVector(RegVT));
1346 if (MVT::getSizeInBits(RegVT) == 64) {
1347 RC = X86::GR64RegisterClass; // MMX values are passed in GPRs.
1348 RegVT = MVT::i64;
1349 } else
1350 RC = X86::VR128RegisterClass;
1351 }
1352
1353 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1354 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1355
1356 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1357 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1358 // right size.
1359 if (VA.getLocInfo() == CCValAssign::SExt)
1360 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1361 DAG.getValueType(VA.getValVT()));
1362 else if (VA.getLocInfo() == CCValAssign::ZExt)
1363 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1364 DAG.getValueType(VA.getValVT()));
1365
1366 if (VA.getLocInfo() != CCValAssign::Full)
1367 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1368
1369 // Handle MMX values passed in GPRs.
1370 if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1371 MVT::getSizeInBits(RegVT) == 64)
1372 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1373
1374 ArgValues.push_back(ArgValue);
1375 } else {
1376 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +00001377 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001378 }
1379 }
1380
1381 unsigned StackSize = CCInfo.getNextStackOffset();
1382
1383 // If the function takes variable number of arguments, make a frame index for
1384 // the start of the first vararg value... for expansion of llvm.va_start.
1385 if (isVarArg) {
1386 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1387 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1388
1389 // For X86-64, if there are vararg parameters that are passed via
1390 // registers, then we must store them to their spots on the stack so they
1391 // may be loaded by deferencing the result of va_next.
1392 VarArgsGPOffset = NumIntRegs * 8;
1393 VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1394 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1395 RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1396
1397 // Store the integer parameter registers.
1398 SmallVector<SDOperand, 8> MemOps;
1399 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1400 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1401 DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1402 for (; NumIntRegs != 6; ++NumIntRegs) {
1403 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1404 X86::GR64RegisterClass);
1405 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1406 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1407 MemOps.push_back(Store);
1408 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1409 DAG.getConstant(8, getPointerTy()));
1410 }
1411
1412 // Now store the XMM (fp + vector) parameter registers.
1413 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1414 DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1415 for (; NumXMMRegs != 8; ++NumXMMRegs) {
1416 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1417 X86::VR128RegisterClass);
1418 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1419 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1420 MemOps.push_back(Store);
1421 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1422 DAG.getConstant(16, getPointerTy()));
1423 }
1424 if (!MemOps.empty())
1425 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1426 &MemOps[0], MemOps.size());
1427 }
1428
1429 ArgValues.push_back(Root);
1430
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001431 BytesToPopOnReturn = 0; // Callee pops nothing.
1432 BytesCallerReserves = StackSize;
1433
Anton Korobeynikove844e472007-08-15 17:12:32 +00001434 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1435 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1436
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001437 // Return the new list of results.
1438 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1439 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1440}
1441
1442SDOperand
1443X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1444 unsigned CC) {
1445 SDOperand Chain = Op.getOperand(0);
1446 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1447 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1448 SDOperand Callee = Op.getOperand(4);
1449
1450 // Analyze operands of the call, assigning locations to each operand.
1451 SmallVector<CCValAssign, 16> ArgLocs;
1452 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1453 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1454
1455 // Get a count of how many bytes are to be pushed on the stack.
1456 unsigned NumBytes = CCInfo.getNextStackOffset();
1457 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1458
1459 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1460 SmallVector<SDOperand, 8> MemOpChains;
1461
1462 SDOperand StackPtr;
1463
1464 // Walk the register/memloc assignments, inserting copies/loads.
1465 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1466 CCValAssign &VA = ArgLocs[i];
1467 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1468
1469 // Promote the value if needed.
1470 switch (VA.getLocInfo()) {
1471 default: assert(0 && "Unknown loc info!");
1472 case CCValAssign::Full: break;
1473 case CCValAssign::SExt:
1474 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1475 break;
1476 case CCValAssign::ZExt:
1477 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1478 break;
1479 case CCValAssign::AExt:
1480 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1481 break;
1482 }
1483
1484 if (VA.isRegLoc()) {
1485 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1486 } else {
1487 assert(VA.isMemLoc());
1488 if (StackPtr.Val == 0)
1489 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00001490
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001491 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1492 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001493 }
1494 }
1495
1496 if (!MemOpChains.empty())
1497 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1498 &MemOpChains[0], MemOpChains.size());
1499
1500 // Build a sequence of copy-to-reg nodes chained together with token chain
1501 // and flag operands which copy the outgoing args into registers.
1502 SDOperand InFlag;
1503 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1504 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1505 InFlag);
1506 InFlag = Chain.getValue(1);
1507 }
1508
1509 if (isVarArg) {
1510 // From AMD64 ABI document:
1511 // For calls that may call functions that use varargs or stdargs
1512 // (prototype-less calls or calls to functions containing ellipsis (...) in
1513 // the declaration) %al is used as hidden argument to specify the number
1514 // of SSE registers used. The contents of %al do not need to match exactly
1515 // the number of registers, but must be an ubound on the number of SSE
1516 // registers used and is in the range 0 - 8 inclusive.
1517
1518 // Count the number of XMM registers allocated.
1519 static const unsigned XMMArgRegs[] = {
1520 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1521 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1522 };
1523 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1524
1525 Chain = DAG.getCopyToReg(Chain, X86::AL,
1526 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1527 InFlag = Chain.getValue(1);
1528 }
1529
1530 // If the callee is a GlobalAddress node (quite common, every direct call is)
1531 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1532 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1533 // We should use extra load for direct calls to dllimported functions in
1534 // non-JIT mode.
1535 if (getTargetMachine().getCodeModel() != CodeModel::Large
1536 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1537 getTargetMachine(), true))
1538 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1539 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1540 if (getTargetMachine().getCodeModel() != CodeModel::Large)
1541 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1542
1543 // Returns a chain & a flag for retval copy to use.
1544 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1545 SmallVector<SDOperand, 8> Ops;
1546 Ops.push_back(Chain);
1547 Ops.push_back(Callee);
1548
1549 // Add argument registers to the end of the list so that they are known live
1550 // into the call.
1551 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1552 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1553 RegsToPass[i].second.getValueType()));
1554
1555 if (InFlag.Val)
1556 Ops.push_back(InFlag);
1557
1558 // FIXME: Do not generate X86ISD::TAILCALL for now.
1559 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1560 NodeTys, &Ops[0], Ops.size());
1561 InFlag = Chain.getValue(1);
1562
1563 // Returns a flag for retval copy to use.
1564 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1565 Ops.clear();
1566 Ops.push_back(Chain);
1567 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1568 Ops.push_back(DAG.getConstant(0, getPointerTy()));
1569 Ops.push_back(InFlag);
1570 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1571 InFlag = Chain.getValue(1);
1572
1573 // Handle result values, copying them out of physregs into vregs that we
1574 // return.
1575 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1576}
1577
1578
1579//===----------------------------------------------------------------------===//
1580// Other Lowering Hooks
1581//===----------------------------------------------------------------------===//
1582
1583
1584SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
Anton Korobeynikove844e472007-08-15 17:12:32 +00001585 MachineFunction &MF = DAG.getMachineFunction();
1586 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1587 int ReturnAddrIndex = FuncInfo->getRAIndex();
1588
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001589 if (ReturnAddrIndex == 0) {
1590 // Set up a frame object for the return address.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001591 if (Subtarget->is64Bit())
1592 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1593 else
1594 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
Anton Korobeynikove844e472007-08-15 17:12:32 +00001595
1596 FuncInfo->setRAIndex(ReturnAddrIndex);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001597 }
1598
1599 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1600}
1601
1602
1603
1604/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1605/// specific condition code. It returns a false if it cannot do a direct
1606/// translation. X86CC is the translated CondCode. LHS/RHS are modified as
1607/// needed.
1608static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1609 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1610 SelectionDAG &DAG) {
1611 X86CC = X86::COND_INVALID;
1612 if (!isFP) {
1613 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1614 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1615 // X > -1 -> X == 0, jump !sign.
1616 RHS = DAG.getConstant(0, RHS.getValueType());
1617 X86CC = X86::COND_NS;
1618 return true;
1619 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1620 // X < 0 -> X == 0, jump on sign.
1621 X86CC = X86::COND_S;
1622 return true;
Dan Gohman37b34262007-09-17 14:49:27 +00001623 } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1624 // X < 1 -> X <= 0
1625 RHS = DAG.getConstant(0, RHS.getValueType());
1626 X86CC = X86::COND_LE;
1627 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001628 }
1629 }
1630
1631 switch (SetCCOpcode) {
1632 default: break;
1633 case ISD::SETEQ: X86CC = X86::COND_E; break;
1634 case ISD::SETGT: X86CC = X86::COND_G; break;
1635 case ISD::SETGE: X86CC = X86::COND_GE; break;
1636 case ISD::SETLT: X86CC = X86::COND_L; break;
1637 case ISD::SETLE: X86CC = X86::COND_LE; break;
1638 case ISD::SETNE: X86CC = X86::COND_NE; break;
1639 case ISD::SETULT: X86CC = X86::COND_B; break;
1640 case ISD::SETUGT: X86CC = X86::COND_A; break;
1641 case ISD::SETULE: X86CC = X86::COND_BE; break;
1642 case ISD::SETUGE: X86CC = X86::COND_AE; break;
1643 }
1644 } else {
1645 // On a floating point condition, the flags are set as follows:
1646 // ZF PF CF op
1647 // 0 | 0 | 0 | X > Y
1648 // 0 | 0 | 1 | X < Y
1649 // 1 | 0 | 0 | X == Y
1650 // 1 | 1 | 1 | unordered
1651 bool Flip = false;
1652 switch (SetCCOpcode) {
1653 default: break;
1654 case ISD::SETUEQ:
1655 case ISD::SETEQ: X86CC = X86::COND_E; break;
1656 case ISD::SETOLT: Flip = true; // Fallthrough
1657 case ISD::SETOGT:
1658 case ISD::SETGT: X86CC = X86::COND_A; break;
1659 case ISD::SETOLE: Flip = true; // Fallthrough
1660 case ISD::SETOGE:
1661 case ISD::SETGE: X86CC = X86::COND_AE; break;
1662 case ISD::SETUGT: Flip = true; // Fallthrough
1663 case ISD::SETULT:
1664 case ISD::SETLT: X86CC = X86::COND_B; break;
1665 case ISD::SETUGE: Flip = true; // Fallthrough
1666 case ISD::SETULE:
1667 case ISD::SETLE: X86CC = X86::COND_BE; break;
1668 case ISD::SETONE:
1669 case ISD::SETNE: X86CC = X86::COND_NE; break;
1670 case ISD::SETUO: X86CC = X86::COND_P; break;
1671 case ISD::SETO: X86CC = X86::COND_NP; break;
1672 }
1673 if (Flip)
1674 std::swap(LHS, RHS);
1675 }
1676
1677 return X86CC != X86::COND_INVALID;
1678}
1679
1680/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1681/// code. Current x86 isa includes the following FP cmov instructions:
1682/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1683static bool hasFPCMov(unsigned X86CC) {
1684 switch (X86CC) {
1685 default:
1686 return false;
1687 case X86::COND_B:
1688 case X86::COND_BE:
1689 case X86::COND_E:
1690 case X86::COND_P:
1691 case X86::COND_A:
1692 case X86::COND_AE:
1693 case X86::COND_NE:
1694 case X86::COND_NP:
1695 return true;
1696 }
1697}
1698
1699/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
1700/// true if Op is undef or if its value falls within the specified range (L, H].
1701static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1702 if (Op.getOpcode() == ISD::UNDEF)
1703 return true;
1704
1705 unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1706 return (Val >= Low && Val < Hi);
1707}
1708
1709/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
1710/// true if Op is undef or if its value equal to the specified value.
1711static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1712 if (Op.getOpcode() == ISD::UNDEF)
1713 return true;
1714 return cast<ConstantSDNode>(Op)->getValue() == Val;
1715}
1716
1717/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1718/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1719bool X86::isPSHUFDMask(SDNode *N) {
1720 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1721
Dan Gohman7dc19012007-08-02 21:17:01 +00001722 if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001723 return false;
1724
1725 // Check if the value doesn't reference the second vector.
1726 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1727 SDOperand Arg = N->getOperand(i);
1728 if (Arg.getOpcode() == ISD::UNDEF) continue;
1729 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Dan Gohman7dc19012007-08-02 21:17:01 +00001730 if (cast<ConstantSDNode>(Arg)->getValue() >= e)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001731 return false;
1732 }
1733
1734 return true;
1735}
1736
1737/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1738/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1739bool X86::isPSHUFHWMask(SDNode *N) {
1740 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1741
1742 if (N->getNumOperands() != 8)
1743 return false;
1744
1745 // Lower quadword copied in order.
1746 for (unsigned i = 0; i != 4; ++i) {
1747 SDOperand Arg = N->getOperand(i);
1748 if (Arg.getOpcode() == ISD::UNDEF) continue;
1749 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1750 if (cast<ConstantSDNode>(Arg)->getValue() != i)
1751 return false;
1752 }
1753
1754 // Upper quadword shuffled.
1755 for (unsigned i = 4; i != 8; ++i) {
1756 SDOperand Arg = N->getOperand(i);
1757 if (Arg.getOpcode() == ISD::UNDEF) continue;
1758 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1759 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1760 if (Val < 4 || Val > 7)
1761 return false;
1762 }
1763
1764 return true;
1765}
1766
1767/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1768/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1769bool X86::isPSHUFLWMask(SDNode *N) {
1770 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1771
1772 if (N->getNumOperands() != 8)
1773 return false;
1774
1775 // Upper quadword copied in order.
1776 for (unsigned i = 4; i != 8; ++i)
1777 if (!isUndefOrEqual(N->getOperand(i), i))
1778 return false;
1779
1780 // Lower quadword shuffled.
1781 for (unsigned i = 0; i != 4; ++i)
1782 if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1783 return false;
1784
1785 return true;
1786}
1787
1788/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1789/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1790static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1791 if (NumElems != 2 && NumElems != 4) return false;
1792
1793 unsigned Half = NumElems / 2;
1794 for (unsigned i = 0; i < Half; ++i)
1795 if (!isUndefOrInRange(Elems[i], 0, NumElems))
1796 return false;
1797 for (unsigned i = Half; i < NumElems; ++i)
1798 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1799 return false;
1800
1801 return true;
1802}
1803
1804bool X86::isSHUFPMask(SDNode *N) {
1805 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1806 return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1807}
1808
1809/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1810/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1811/// half elements to come from vector 1 (which would equal the dest.) and
1812/// the upper half to come from vector 2.
1813static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1814 if (NumOps != 2 && NumOps != 4) return false;
1815
1816 unsigned Half = NumOps / 2;
1817 for (unsigned i = 0; i < Half; ++i)
1818 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1819 return false;
1820 for (unsigned i = Half; i < NumOps; ++i)
1821 if (!isUndefOrInRange(Ops[i], 0, NumOps))
1822 return false;
1823 return true;
1824}
1825
1826static bool isCommutedSHUFP(SDNode *N) {
1827 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1828 return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1829}
1830
1831/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1832/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1833bool X86::isMOVHLPSMask(SDNode *N) {
1834 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1835
1836 if (N->getNumOperands() != 4)
1837 return false;
1838
1839 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1840 return isUndefOrEqual(N->getOperand(0), 6) &&
1841 isUndefOrEqual(N->getOperand(1), 7) &&
1842 isUndefOrEqual(N->getOperand(2), 2) &&
1843 isUndefOrEqual(N->getOperand(3), 3);
1844}
1845
1846/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1847/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1848/// <2, 3, 2, 3>
1849bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1850 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1851
1852 if (N->getNumOperands() != 4)
1853 return false;
1854
1855 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1856 return isUndefOrEqual(N->getOperand(0), 2) &&
1857 isUndefOrEqual(N->getOperand(1), 3) &&
1858 isUndefOrEqual(N->getOperand(2), 2) &&
1859 isUndefOrEqual(N->getOperand(3), 3);
1860}
1861
1862/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1863/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1864bool X86::isMOVLPMask(SDNode *N) {
1865 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1866
1867 unsigned NumElems = N->getNumOperands();
1868 if (NumElems != 2 && NumElems != 4)
1869 return false;
1870
1871 for (unsigned i = 0; i < NumElems/2; ++i)
1872 if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1873 return false;
1874
1875 for (unsigned i = NumElems/2; i < NumElems; ++i)
1876 if (!isUndefOrEqual(N->getOperand(i), i))
1877 return false;
1878
1879 return true;
1880}
1881
1882/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1883/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1884/// and MOVLHPS.
1885bool X86::isMOVHPMask(SDNode *N) {
1886 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1887
1888 unsigned NumElems = N->getNumOperands();
1889 if (NumElems != 2 && NumElems != 4)
1890 return false;
1891
1892 for (unsigned i = 0; i < NumElems/2; ++i)
1893 if (!isUndefOrEqual(N->getOperand(i), i))
1894 return false;
1895
1896 for (unsigned i = 0; i < NumElems/2; ++i) {
1897 SDOperand Arg = N->getOperand(i + NumElems/2);
1898 if (!isUndefOrEqual(Arg, i + NumElems))
1899 return false;
1900 }
1901
1902 return true;
1903}
1904
1905/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1906/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1907bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1908 bool V2IsSplat = false) {
1909 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1910 return false;
1911
1912 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1913 SDOperand BitI = Elts[i];
1914 SDOperand BitI1 = Elts[i+1];
1915 if (!isUndefOrEqual(BitI, j))
1916 return false;
1917 if (V2IsSplat) {
1918 if (isUndefOrEqual(BitI1, NumElts))
1919 return false;
1920 } else {
1921 if (!isUndefOrEqual(BitI1, j + NumElts))
1922 return false;
1923 }
1924 }
1925
1926 return true;
1927}
1928
1929bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1930 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1931 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1932}
1933
1934/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1935/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1936bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1937 bool V2IsSplat = false) {
1938 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1939 return false;
1940
1941 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1942 SDOperand BitI = Elts[i];
1943 SDOperand BitI1 = Elts[i+1];
1944 if (!isUndefOrEqual(BitI, j + NumElts/2))
1945 return false;
1946 if (V2IsSplat) {
1947 if (isUndefOrEqual(BitI1, NumElts))
1948 return false;
1949 } else {
1950 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1951 return false;
1952 }
1953 }
1954
1955 return true;
1956}
1957
1958bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1959 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1960 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1961}
1962
1963/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1964/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1965/// <0, 0, 1, 1>
1966bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1967 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1968
1969 unsigned NumElems = N->getNumOperands();
1970 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1971 return false;
1972
1973 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1974 SDOperand BitI = N->getOperand(i);
1975 SDOperand BitI1 = N->getOperand(i+1);
1976
1977 if (!isUndefOrEqual(BitI, j))
1978 return false;
1979 if (!isUndefOrEqual(BitI1, j))
1980 return false;
1981 }
1982
1983 return true;
1984}
1985
1986/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1987/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1988/// <2, 2, 3, 3>
1989bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1990 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1991
1992 unsigned NumElems = N->getNumOperands();
1993 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1994 return false;
1995
1996 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1997 SDOperand BitI = N->getOperand(i);
1998 SDOperand BitI1 = N->getOperand(i + 1);
1999
2000 if (!isUndefOrEqual(BitI, j))
2001 return false;
2002 if (!isUndefOrEqual(BitI1, j))
2003 return false;
2004 }
2005
2006 return true;
2007}
2008
2009/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2010/// specifies a shuffle of elements that is suitable for input to MOVSS,
2011/// MOVSD, and MOVD, i.e. setting the lowest element.
2012static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2013 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2014 return false;
2015
2016 if (!isUndefOrEqual(Elts[0], NumElts))
2017 return false;
2018
2019 for (unsigned i = 1; i < NumElts; ++i) {
2020 if (!isUndefOrEqual(Elts[i], i))
2021 return false;
2022 }
2023
2024 return true;
2025}
2026
2027bool X86::isMOVLMask(SDNode *N) {
2028 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2029 return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2030}
2031
2032/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2033/// of what x86 movss want. X86 movs requires the lowest element to be lowest
2034/// element of vector 2 and the other elements to come from vector 1 in order.
2035static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2036 bool V2IsSplat = false,
2037 bool V2IsUndef = false) {
2038 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2039 return false;
2040
2041 if (!isUndefOrEqual(Ops[0], 0))
2042 return false;
2043
2044 for (unsigned i = 1; i < NumOps; ++i) {
2045 SDOperand Arg = Ops[i];
2046 if (!(isUndefOrEqual(Arg, i+NumOps) ||
2047 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2048 (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2049 return false;
2050 }
2051
2052 return true;
2053}
2054
2055static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2056 bool V2IsUndef = false) {
2057 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2058 return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2059 V2IsSplat, V2IsUndef);
2060}
2061
2062/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2063/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2064bool X86::isMOVSHDUPMask(SDNode *N) {
2065 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2066
2067 if (N->getNumOperands() != 4)
2068 return false;
2069
2070 // Expect 1, 1, 3, 3
2071 for (unsigned i = 0; i < 2; ++i) {
2072 SDOperand Arg = N->getOperand(i);
2073 if (Arg.getOpcode() == ISD::UNDEF) continue;
2074 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2075 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2076 if (Val != 1) return false;
2077 }
2078
2079 bool HasHi = false;
2080 for (unsigned i = 2; i < 4; ++i) {
2081 SDOperand Arg = N->getOperand(i);
2082 if (Arg.getOpcode() == ISD::UNDEF) continue;
2083 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2084 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2085 if (Val != 3) return false;
2086 HasHi = true;
2087 }
2088
2089 // Don't use movshdup if it can be done with a shufps.
2090 return HasHi;
2091}
2092
2093/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2094/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2095bool X86::isMOVSLDUPMask(SDNode *N) {
2096 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2097
2098 if (N->getNumOperands() != 4)
2099 return false;
2100
2101 // Expect 0, 0, 2, 2
2102 for (unsigned i = 0; i < 2; ++i) {
2103 SDOperand Arg = N->getOperand(i);
2104 if (Arg.getOpcode() == ISD::UNDEF) continue;
2105 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2106 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2107 if (Val != 0) return false;
2108 }
2109
2110 bool HasHi = false;
2111 for (unsigned i = 2; i < 4; ++i) {
2112 SDOperand Arg = N->getOperand(i);
2113 if (Arg.getOpcode() == ISD::UNDEF) continue;
2114 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2115 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2116 if (Val != 2) return false;
2117 HasHi = true;
2118 }
2119
2120 // Don't use movshdup if it can be done with a shufps.
2121 return HasHi;
2122}
2123
2124/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2125/// specifies a identity operation on the LHS or RHS.
2126static bool isIdentityMask(SDNode *N, bool RHS = false) {
2127 unsigned NumElems = N->getNumOperands();
2128 for (unsigned i = 0; i < NumElems; ++i)
2129 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2130 return false;
2131 return true;
2132}
2133
2134/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2135/// a splat of a single element.
2136static bool isSplatMask(SDNode *N) {
2137 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2138
2139 // This is a splat operation if each element of the permute is the same, and
2140 // if the value doesn't reference the second vector.
2141 unsigned NumElems = N->getNumOperands();
2142 SDOperand ElementBase;
2143 unsigned i = 0;
2144 for (; i != NumElems; ++i) {
2145 SDOperand Elt = N->getOperand(i);
2146 if (isa<ConstantSDNode>(Elt)) {
2147 ElementBase = Elt;
2148 break;
2149 }
2150 }
2151
2152 if (!ElementBase.Val)
2153 return false;
2154
2155 for (; i != NumElems; ++i) {
2156 SDOperand Arg = N->getOperand(i);
2157 if (Arg.getOpcode() == ISD::UNDEF) continue;
2158 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2159 if (Arg != ElementBase) return false;
2160 }
2161
2162 // Make sure it is a splat of the first vector operand.
2163 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2164}
2165
2166/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2167/// a splat of a single element and it's a 2 or 4 element mask.
2168bool X86::isSplatMask(SDNode *N) {
2169 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2170
2171 // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2172 if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2173 return false;
2174 return ::isSplatMask(N);
2175}
2176
2177/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2178/// specifies a splat of zero element.
2179bool X86::isSplatLoMask(SDNode *N) {
2180 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2181
2182 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2183 if (!isUndefOrEqual(N->getOperand(i), 0))
2184 return false;
2185 return true;
2186}
2187
2188/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2189/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2190/// instructions.
2191unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2192 unsigned NumOperands = N->getNumOperands();
2193 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2194 unsigned Mask = 0;
2195 for (unsigned i = 0; i < NumOperands; ++i) {
2196 unsigned Val = 0;
2197 SDOperand Arg = N->getOperand(NumOperands-i-1);
2198 if (Arg.getOpcode() != ISD::UNDEF)
2199 Val = cast<ConstantSDNode>(Arg)->getValue();
2200 if (Val >= NumOperands) Val -= NumOperands;
2201 Mask |= Val;
2202 if (i != NumOperands - 1)
2203 Mask <<= Shift;
2204 }
2205
2206 return Mask;
2207}
2208
2209/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2210/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2211/// instructions.
2212unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2213 unsigned Mask = 0;
2214 // 8 nodes, but we only care about the last 4.
2215 for (unsigned i = 7; i >= 4; --i) {
2216 unsigned Val = 0;
2217 SDOperand Arg = N->getOperand(i);
2218 if (Arg.getOpcode() != ISD::UNDEF)
2219 Val = cast<ConstantSDNode>(Arg)->getValue();
2220 Mask |= (Val - 4);
2221 if (i != 4)
2222 Mask <<= 2;
2223 }
2224
2225 return Mask;
2226}
2227
2228/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2229/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2230/// instructions.
2231unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2232 unsigned Mask = 0;
2233 // 8 nodes, but we only care about the first 4.
2234 for (int i = 3; i >= 0; --i) {
2235 unsigned Val = 0;
2236 SDOperand Arg = N->getOperand(i);
2237 if (Arg.getOpcode() != ISD::UNDEF)
2238 Val = cast<ConstantSDNode>(Arg)->getValue();
2239 Mask |= Val;
2240 if (i != 0)
2241 Mask <<= 2;
2242 }
2243
2244 return Mask;
2245}
2246
2247/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2248/// specifies a 8 element shuffle that can be broken into a pair of
2249/// PSHUFHW and PSHUFLW.
2250static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2251 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2252
2253 if (N->getNumOperands() != 8)
2254 return false;
2255
2256 // Lower quadword shuffled.
2257 for (unsigned i = 0; i != 4; ++i) {
2258 SDOperand Arg = N->getOperand(i);
2259 if (Arg.getOpcode() == ISD::UNDEF) continue;
2260 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2261 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2262 if (Val > 4)
2263 return false;
2264 }
2265
2266 // Upper quadword shuffled.
2267 for (unsigned i = 4; i != 8; ++i) {
2268 SDOperand Arg = N->getOperand(i);
2269 if (Arg.getOpcode() == ISD::UNDEF) continue;
2270 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2271 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2272 if (Val < 4 || Val > 7)
2273 return false;
2274 }
2275
2276 return true;
2277}
2278
2279/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2280/// values in ther permute mask.
2281static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2282 SDOperand &V2, SDOperand &Mask,
2283 SelectionDAG &DAG) {
2284 MVT::ValueType VT = Op.getValueType();
2285 MVT::ValueType MaskVT = Mask.getValueType();
2286 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2287 unsigned NumElems = Mask.getNumOperands();
2288 SmallVector<SDOperand, 8> MaskVec;
2289
2290 for (unsigned i = 0; i != NumElems; ++i) {
2291 SDOperand Arg = Mask.getOperand(i);
2292 if (Arg.getOpcode() == ISD::UNDEF) {
2293 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2294 continue;
2295 }
2296 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2297 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2298 if (Val < NumElems)
2299 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2300 else
2301 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2302 }
2303
2304 std::swap(V1, V2);
2305 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2306 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2307}
2308
2309/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2310/// match movhlps. The lower half elements should come from upper half of
2311/// V1 (and in order), and the upper half elements should come from the upper
2312/// half of V2 (and in order).
2313static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2314 unsigned NumElems = Mask->getNumOperands();
2315 if (NumElems != 4)
2316 return false;
2317 for (unsigned i = 0, e = 2; i != e; ++i)
2318 if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2319 return false;
2320 for (unsigned i = 2; i != 4; ++i)
2321 if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2322 return false;
2323 return true;
2324}
2325
2326/// isScalarLoadToVector - Returns true if the node is a scalar load that
2327/// is promoted to a vector.
2328static inline bool isScalarLoadToVector(SDNode *N) {
2329 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2330 N = N->getOperand(0).Val;
2331 return ISD::isNON_EXTLoad(N);
2332 }
2333 return false;
2334}
2335
2336/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2337/// match movlp{s|d}. The lower half elements should come from lower half of
2338/// V1 (and in order), and the upper half elements should come from the upper
2339/// half of V2 (and in order). And since V1 will become the source of the
2340/// MOVLP, it must be either a vector load or a scalar load to vector.
2341static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2342 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2343 return false;
2344 // Is V2 is a vector load, don't do this transformation. We will try to use
2345 // load folding shufps op.
2346 if (ISD::isNON_EXTLoad(V2))
2347 return false;
2348
2349 unsigned NumElems = Mask->getNumOperands();
2350 if (NumElems != 2 && NumElems != 4)
2351 return false;
2352 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2353 if (!isUndefOrEqual(Mask->getOperand(i), i))
2354 return false;
2355 for (unsigned i = NumElems/2; i != NumElems; ++i)
2356 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2357 return false;
2358 return true;
2359}
2360
2361/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2362/// all the same.
2363static bool isSplatVector(SDNode *N) {
2364 if (N->getOpcode() != ISD::BUILD_VECTOR)
2365 return false;
2366
2367 SDOperand SplatValue = N->getOperand(0);
2368 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2369 if (N->getOperand(i) != SplatValue)
2370 return false;
2371 return true;
2372}
2373
2374/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2375/// to an undef.
2376static bool isUndefShuffle(SDNode *N) {
2377 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2378 return false;
2379
2380 SDOperand V1 = N->getOperand(0);
2381 SDOperand V2 = N->getOperand(1);
2382 SDOperand Mask = N->getOperand(2);
2383 unsigned NumElems = Mask.getNumOperands();
2384 for (unsigned i = 0; i != NumElems; ++i) {
2385 SDOperand Arg = Mask.getOperand(i);
2386 if (Arg.getOpcode() != ISD::UNDEF) {
2387 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2388 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2389 return false;
2390 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2391 return false;
2392 }
2393 }
2394 return true;
2395}
2396
2397/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2398/// constant +0.0.
2399static inline bool isZeroNode(SDOperand Elt) {
2400 return ((isa<ConstantSDNode>(Elt) &&
2401 cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2402 (isa<ConstantFPSDNode>(Elt) &&
Dale Johannesendf8a8312007-08-31 04:03:46 +00002403 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002404}
2405
2406/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2407/// to an zero vector.
2408static bool isZeroShuffle(SDNode *N) {
2409 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2410 return false;
2411
2412 SDOperand V1 = N->getOperand(0);
2413 SDOperand V2 = N->getOperand(1);
2414 SDOperand Mask = N->getOperand(2);
2415 unsigned NumElems = Mask.getNumOperands();
2416 for (unsigned i = 0; i != NumElems; ++i) {
2417 SDOperand Arg = Mask.getOperand(i);
2418 if (Arg.getOpcode() != ISD::UNDEF) {
2419 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2420 if (Idx < NumElems) {
2421 unsigned Opc = V1.Val->getOpcode();
2422 if (Opc == ISD::UNDEF)
2423 continue;
2424 if (Opc != ISD::BUILD_VECTOR ||
2425 !isZeroNode(V1.Val->getOperand(Idx)))
2426 return false;
2427 } else if (Idx >= NumElems) {
2428 unsigned Opc = V2.Val->getOpcode();
2429 if (Opc == ISD::UNDEF)
2430 continue;
2431 if (Opc != ISD::BUILD_VECTOR ||
2432 !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2433 return false;
2434 }
2435 }
2436 }
2437 return true;
2438}
2439
2440/// getZeroVector - Returns a vector of specified type with all zero elements.
2441///
2442static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2443 assert(MVT::isVector(VT) && "Expected a vector type");
2444 unsigned NumElems = MVT::getVectorNumElements(VT);
2445 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2446 bool isFP = MVT::isFloatingPoint(EVT);
2447 SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2448 SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2449 return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2450}
2451
2452/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2453/// that point to V2 points to its first element.
2454static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2455 assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2456
2457 bool Changed = false;
2458 SmallVector<SDOperand, 8> MaskVec;
2459 unsigned NumElems = Mask.getNumOperands();
2460 for (unsigned i = 0; i != NumElems; ++i) {
2461 SDOperand Arg = Mask.getOperand(i);
2462 if (Arg.getOpcode() != ISD::UNDEF) {
2463 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2464 if (Val > NumElems) {
2465 Arg = DAG.getConstant(NumElems, Arg.getValueType());
2466 Changed = true;
2467 }
2468 }
2469 MaskVec.push_back(Arg);
2470 }
2471
2472 if (Changed)
2473 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2474 &MaskVec[0], MaskVec.size());
2475 return Mask;
2476}
2477
2478/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2479/// operation of specified width.
2480static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2481 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2482 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2483
2484 SmallVector<SDOperand, 8> MaskVec;
2485 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2486 for (unsigned i = 1; i != NumElems; ++i)
2487 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2488 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2489}
2490
2491/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2492/// of specified width.
2493static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2494 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2495 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2496 SmallVector<SDOperand, 8> MaskVec;
2497 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2498 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2499 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2500 }
2501 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2502}
2503
2504/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2505/// of specified width.
2506static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2507 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2508 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2509 unsigned Half = NumElems/2;
2510 SmallVector<SDOperand, 8> MaskVec;
2511 for (unsigned i = 0; i != Half; ++i) {
2512 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
2513 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2514 }
2515 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2516}
2517
2518/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2519///
2520static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2521 SDOperand V1 = Op.getOperand(0);
2522 SDOperand Mask = Op.getOperand(2);
2523 MVT::ValueType VT = Op.getValueType();
2524 unsigned NumElems = Mask.getNumOperands();
2525 Mask = getUnpacklMask(NumElems, DAG);
2526 while (NumElems != 4) {
2527 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2528 NumElems >>= 1;
2529 }
2530 V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2531
2532 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2533 Mask = getZeroVector(MaskVT, DAG);
2534 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2535 DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2536 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2537}
2538
2539/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2540/// vector of zero or undef vector.
2541static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2542 unsigned NumElems, unsigned Idx,
2543 bool isZero, SelectionDAG &DAG) {
2544 SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2545 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2546 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2547 SDOperand Zero = DAG.getConstant(0, EVT);
2548 SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2549 MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2550 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2551 &MaskVec[0], MaskVec.size());
2552 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2553}
2554
2555/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2556///
2557static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2558 unsigned NumNonZero, unsigned NumZero,
2559 SelectionDAG &DAG, TargetLowering &TLI) {
2560 if (NumNonZero > 8)
2561 return SDOperand();
2562
2563 SDOperand V(0, 0);
2564 bool First = true;
2565 for (unsigned i = 0; i < 16; ++i) {
2566 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2567 if (ThisIsNonZero && First) {
2568 if (NumZero)
2569 V = getZeroVector(MVT::v8i16, DAG);
2570 else
2571 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2572 First = false;
2573 }
2574
2575 if ((i & 1) != 0) {
2576 SDOperand ThisElt(0, 0), LastElt(0, 0);
2577 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2578 if (LastIsNonZero) {
2579 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2580 }
2581 if (ThisIsNonZero) {
2582 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2583 ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2584 ThisElt, DAG.getConstant(8, MVT::i8));
2585 if (LastIsNonZero)
2586 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2587 } else
2588 ThisElt = LastElt;
2589
2590 if (ThisElt.Val)
2591 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2592 DAG.getConstant(i/2, TLI.getPointerTy()));
2593 }
2594 }
2595
2596 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2597}
2598
2599/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2600///
2601static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2602 unsigned NumNonZero, unsigned NumZero,
2603 SelectionDAG &DAG, TargetLowering &TLI) {
2604 if (NumNonZero > 4)
2605 return SDOperand();
2606
2607 SDOperand V(0, 0);
2608 bool First = true;
2609 for (unsigned i = 0; i < 8; ++i) {
2610 bool isNonZero = (NonZeros & (1 << i)) != 0;
2611 if (isNonZero) {
2612 if (First) {
2613 if (NumZero)
2614 V = getZeroVector(MVT::v8i16, DAG);
2615 else
2616 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2617 First = false;
2618 }
2619 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2620 DAG.getConstant(i, TLI.getPointerTy()));
2621 }
2622 }
2623
2624 return V;
2625}
2626
2627SDOperand
2628X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2629 // All zero's are handled with pxor.
2630 if (ISD::isBuildVectorAllZeros(Op.Val))
2631 return Op;
2632
2633 // All one's are handled with pcmpeqd.
2634 if (ISD::isBuildVectorAllOnes(Op.Val))
2635 return Op;
2636
2637 MVT::ValueType VT = Op.getValueType();
2638 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2639 unsigned EVTBits = MVT::getSizeInBits(EVT);
2640
2641 unsigned NumElems = Op.getNumOperands();
2642 unsigned NumZero = 0;
2643 unsigned NumNonZero = 0;
2644 unsigned NonZeros = 0;
Dan Gohman21463242007-07-24 22:55:08 +00002645 unsigned NumNonZeroImms = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002646 std::set<SDOperand> Values;
2647 for (unsigned i = 0; i < NumElems; ++i) {
2648 SDOperand Elt = Op.getOperand(i);
2649 if (Elt.getOpcode() != ISD::UNDEF) {
2650 Values.insert(Elt);
2651 if (isZeroNode(Elt))
2652 NumZero++;
2653 else {
2654 NonZeros |= (1 << i);
2655 NumNonZero++;
Dan Gohman21463242007-07-24 22:55:08 +00002656 if (Elt.getOpcode() == ISD::Constant ||
2657 Elt.getOpcode() == ISD::ConstantFP)
2658 NumNonZeroImms++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002659 }
2660 }
2661 }
2662
2663 if (NumNonZero == 0) {
2664 if (NumZero == 0)
2665 // All undef vector. Return an UNDEF.
2666 return DAG.getNode(ISD::UNDEF, VT);
2667 else
2668 // A mix of zero and undef. Return a zero vector.
2669 return getZeroVector(VT, DAG);
2670 }
2671
2672 // Splat is obviously ok. Let legalizer expand it to a shuffle.
2673 if (Values.size() == 1)
2674 return SDOperand();
2675
2676 // Special case for single non-zero element.
2677 if (NumNonZero == 1) {
2678 unsigned Idx = CountTrailingZeros_32(NonZeros);
2679 SDOperand Item = Op.getOperand(Idx);
2680 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2681 if (Idx == 0)
2682 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2683 return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2684 NumZero > 0, DAG);
2685
2686 if (EVTBits == 32) {
2687 // Turn it into a shuffle of zero and zero-extended scalar to vector.
2688 Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2689 DAG);
2690 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2691 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2692 SmallVector<SDOperand, 8> MaskVec;
2693 for (unsigned i = 0; i < NumElems; i++)
2694 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2695 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2696 &MaskVec[0], MaskVec.size());
2697 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2698 DAG.getNode(ISD::UNDEF, VT), Mask);
2699 }
2700 }
2701
Dan Gohman21463242007-07-24 22:55:08 +00002702 // A vector full of immediates; various special cases are already
2703 // handled, so this is best done with a single constant-pool load.
2704 if (NumNonZero == NumNonZeroImms)
2705 return SDOperand();
2706
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002707 // Let legalizer expand 2-wide build_vectors.
2708 if (EVTBits == 64)
2709 return SDOperand();
2710
2711 // If element VT is < 32 bits, convert it to inserts into a zero vector.
2712 if (EVTBits == 8 && NumElems == 16) {
2713 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2714 *this);
2715 if (V.Val) return V;
2716 }
2717
2718 if (EVTBits == 16 && NumElems == 8) {
2719 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2720 *this);
2721 if (V.Val) return V;
2722 }
2723
2724 // If element VT is == 32 bits, turn it into a number of shuffles.
2725 SmallVector<SDOperand, 8> V;
2726 V.resize(NumElems);
2727 if (NumElems == 4 && NumZero > 0) {
2728 for (unsigned i = 0; i < 4; ++i) {
2729 bool isZero = !(NonZeros & (1 << i));
2730 if (isZero)
2731 V[i] = getZeroVector(VT, DAG);
2732 else
2733 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2734 }
2735
2736 for (unsigned i = 0; i < 2; ++i) {
2737 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2738 default: break;
2739 case 0:
2740 V[i] = V[i*2]; // Must be a zero vector.
2741 break;
2742 case 1:
2743 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2744 getMOVLMask(NumElems, DAG));
2745 break;
2746 case 2:
2747 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2748 getMOVLMask(NumElems, DAG));
2749 break;
2750 case 3:
2751 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2752 getUnpacklMask(NumElems, DAG));
2753 break;
2754 }
2755 }
2756
2757 // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2758 // clears the upper bits.
2759 // FIXME: we can do the same for v4f32 case when we know both parts of
2760 // the lower half come from scalar_to_vector (loadf32). We should do
2761 // that in post legalizer dag combiner with target specific hooks.
2762 if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2763 return V[0];
2764 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2765 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2766 SmallVector<SDOperand, 8> MaskVec;
2767 bool Reverse = (NonZeros & 0x3) == 2;
2768 for (unsigned i = 0; i < 2; ++i)
2769 if (Reverse)
2770 MaskVec.push_back(DAG.getConstant(1-i, EVT));
2771 else
2772 MaskVec.push_back(DAG.getConstant(i, EVT));
2773 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2774 for (unsigned i = 0; i < 2; ++i)
2775 if (Reverse)
2776 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2777 else
2778 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2779 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2780 &MaskVec[0], MaskVec.size());
2781 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2782 }
2783
2784 if (Values.size() > 2) {
2785 // Expand into a number of unpckl*.
2786 // e.g. for v4f32
2787 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2788 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2789 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
2790 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2791 for (unsigned i = 0; i < NumElems; ++i)
2792 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2793 NumElems >>= 1;
2794 while (NumElems != 0) {
2795 for (unsigned i = 0; i < NumElems; ++i)
2796 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2797 UnpckMask);
2798 NumElems >>= 1;
2799 }
2800 return V[0];
2801 }
2802
2803 return SDOperand();
2804}
2805
2806SDOperand
2807X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2808 SDOperand V1 = Op.getOperand(0);
2809 SDOperand V2 = Op.getOperand(1);
2810 SDOperand PermMask = Op.getOperand(2);
2811 MVT::ValueType VT = Op.getValueType();
2812 unsigned NumElems = PermMask.getNumOperands();
2813 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2814 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2815 bool V1IsSplat = false;
2816 bool V2IsSplat = false;
2817
2818 if (isUndefShuffle(Op.Val))
2819 return DAG.getNode(ISD::UNDEF, VT);
2820
2821 if (isZeroShuffle(Op.Val))
2822 return getZeroVector(VT, DAG);
2823
2824 if (isIdentityMask(PermMask.Val))
2825 return V1;
2826 else if (isIdentityMask(PermMask.Val, true))
2827 return V2;
2828
2829 if (isSplatMask(PermMask.Val)) {
2830 if (NumElems <= 4) return Op;
2831 // Promote it to a v4i32 splat.
2832 return PromoteSplat(Op, DAG);
2833 }
2834
2835 if (X86::isMOVLMask(PermMask.Val))
2836 return (V1IsUndef) ? V2 : Op;
2837
2838 if (X86::isMOVSHDUPMask(PermMask.Val) ||
2839 X86::isMOVSLDUPMask(PermMask.Val) ||
2840 X86::isMOVHLPSMask(PermMask.Val) ||
2841 X86::isMOVHPMask(PermMask.Val) ||
2842 X86::isMOVLPMask(PermMask.Val))
2843 return Op;
2844
2845 if (ShouldXformToMOVHLPS(PermMask.Val) ||
2846 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2847 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2848
2849 bool Commuted = false;
2850 V1IsSplat = isSplatVector(V1.Val);
2851 V2IsSplat = isSplatVector(V2.Val);
2852 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2853 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2854 std::swap(V1IsSplat, V2IsSplat);
2855 std::swap(V1IsUndef, V2IsUndef);
2856 Commuted = true;
2857 }
2858
2859 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2860 if (V2IsUndef) return V1;
2861 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2862 if (V2IsSplat) {
2863 // V2 is a splat, so the mask may be malformed. That is, it may point
2864 // to any V2 element. The instruction selectior won't like this. Get
2865 // a corrected mask and commute to form a proper MOVS{S|D}.
2866 SDOperand NewMask = getMOVLMask(NumElems, DAG);
2867 if (NewMask.Val != PermMask.Val)
2868 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2869 }
2870 return Op;
2871 }
2872
2873 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2874 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2875 X86::isUNPCKLMask(PermMask.Val) ||
2876 X86::isUNPCKHMask(PermMask.Val))
2877 return Op;
2878
2879 if (V2IsSplat) {
2880 // Normalize mask so all entries that point to V2 points to its first
2881 // element then try to match unpck{h|l} again. If match, return a
2882 // new vector_shuffle with the corrected mask.
2883 SDOperand NewMask = NormalizeMask(PermMask, DAG);
2884 if (NewMask.Val != PermMask.Val) {
2885 if (X86::isUNPCKLMask(PermMask.Val, true)) {
2886 SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2887 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2888 } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2889 SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2890 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2891 }
2892 }
2893 }
2894
2895 // Normalize the node to match x86 shuffle ops if needed
2896 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2897 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2898
2899 if (Commuted) {
2900 // Commute is back and try unpck* again.
2901 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2902 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2903 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2904 X86::isUNPCKLMask(PermMask.Val) ||
2905 X86::isUNPCKHMask(PermMask.Val))
2906 return Op;
2907 }
2908
2909 // If VT is integer, try PSHUF* first, then SHUFP*.
2910 if (MVT::isInteger(VT)) {
Dan Gohman7dc19012007-08-02 21:17:01 +00002911 // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
2912 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
2913 if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
2914 X86::isPSHUFDMask(PermMask.Val)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002915 X86::isPSHUFHWMask(PermMask.Val) ||
2916 X86::isPSHUFLWMask(PermMask.Val)) {
2917 if (V2.getOpcode() != ISD::UNDEF)
2918 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2919 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2920 return Op;
2921 }
2922
2923 if (X86::isSHUFPMask(PermMask.Val) &&
2924 MVT::getSizeInBits(VT) != 64) // Don't do this for MMX.
2925 return Op;
2926
2927 // Handle v8i16 shuffle high / low shuffle node pair.
2928 if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2929 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2930 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2931 SmallVector<SDOperand, 8> MaskVec;
2932 for (unsigned i = 0; i != 4; ++i)
2933 MaskVec.push_back(PermMask.getOperand(i));
2934 for (unsigned i = 4; i != 8; ++i)
2935 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2936 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2937 &MaskVec[0], MaskVec.size());
2938 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2939 MaskVec.clear();
2940 for (unsigned i = 0; i != 4; ++i)
2941 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2942 for (unsigned i = 4; i != 8; ++i)
2943 MaskVec.push_back(PermMask.getOperand(i));
2944 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2945 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2946 }
2947 } else {
2948 // Floating point cases in the other order.
2949 if (X86::isSHUFPMask(PermMask.Val))
2950 return Op;
2951 if (X86::isPSHUFDMask(PermMask.Val) ||
2952 X86::isPSHUFHWMask(PermMask.Val) ||
2953 X86::isPSHUFLWMask(PermMask.Val)) {
2954 if (V2.getOpcode() != ISD::UNDEF)
2955 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2956 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2957 return Op;
2958 }
2959 }
2960
2961 if (NumElems == 4 &&
2962 // Don't do this for MMX.
2963 MVT::getSizeInBits(VT) != 64) {
2964 MVT::ValueType MaskVT = PermMask.getValueType();
2965 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2966 SmallVector<std::pair<int, int>, 8> Locs;
2967 Locs.reserve(NumElems);
2968 SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2969 SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2970 unsigned NumHi = 0;
2971 unsigned NumLo = 0;
2972 // If no more than two elements come from either vector. This can be
2973 // implemented with two shuffles. First shuffle gather the elements.
2974 // The second shuffle, which takes the first shuffle as both of its
2975 // vector operands, put the elements into the right order.
2976 for (unsigned i = 0; i != NumElems; ++i) {
2977 SDOperand Elt = PermMask.getOperand(i);
2978 if (Elt.getOpcode() == ISD::UNDEF) {
2979 Locs[i] = std::make_pair(-1, -1);
2980 } else {
2981 unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2982 if (Val < NumElems) {
2983 Locs[i] = std::make_pair(0, NumLo);
2984 Mask1[NumLo] = Elt;
2985 NumLo++;
2986 } else {
2987 Locs[i] = std::make_pair(1, NumHi);
2988 if (2+NumHi < NumElems)
2989 Mask1[2+NumHi] = Elt;
2990 NumHi++;
2991 }
2992 }
2993 }
2994 if (NumLo <= 2 && NumHi <= 2) {
2995 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2996 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2997 &Mask1[0], Mask1.size()));
2998 for (unsigned i = 0; i != NumElems; ++i) {
2999 if (Locs[i].first == -1)
3000 continue;
3001 else {
3002 unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3003 Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3004 Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3005 }
3006 }
3007
3008 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3009 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3010 &Mask2[0], Mask2.size()));
3011 }
3012
3013 // Break it into (shuffle shuffle_hi, shuffle_lo).
3014 Locs.clear();
3015 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3016 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3017 SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3018 unsigned MaskIdx = 0;
3019 unsigned LoIdx = 0;
3020 unsigned HiIdx = NumElems/2;
3021 for (unsigned i = 0; i != NumElems; ++i) {
3022 if (i == NumElems/2) {
3023 MaskPtr = &HiMask;
3024 MaskIdx = 1;
3025 LoIdx = 0;
3026 HiIdx = NumElems/2;
3027 }
3028 SDOperand Elt = PermMask.getOperand(i);
3029 if (Elt.getOpcode() == ISD::UNDEF) {
3030 Locs[i] = std::make_pair(-1, -1);
3031 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3032 Locs[i] = std::make_pair(MaskIdx, LoIdx);
3033 (*MaskPtr)[LoIdx] = Elt;
3034 LoIdx++;
3035 } else {
3036 Locs[i] = std::make_pair(MaskIdx, HiIdx);
3037 (*MaskPtr)[HiIdx] = Elt;
3038 HiIdx++;
3039 }
3040 }
3041
3042 SDOperand LoShuffle =
3043 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3044 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3045 &LoMask[0], LoMask.size()));
3046 SDOperand HiShuffle =
3047 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3048 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3049 &HiMask[0], HiMask.size()));
3050 SmallVector<SDOperand, 8> MaskOps;
3051 for (unsigned i = 0; i != NumElems; ++i) {
3052 if (Locs[i].first == -1) {
3053 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3054 } else {
3055 unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3056 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3057 }
3058 }
3059 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3060 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3061 &MaskOps[0], MaskOps.size()));
3062 }
3063
3064 return SDOperand();
3065}
3066
3067SDOperand
3068X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3069 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3070 return SDOperand();
3071
3072 MVT::ValueType VT = Op.getValueType();
3073 // TODO: handle v16i8.
3074 if (MVT::getSizeInBits(VT) == 16) {
3075 // Transform it so it match pextrw which produces a 32-bit result.
3076 MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3077 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3078 Op.getOperand(0), Op.getOperand(1));
3079 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
3080 DAG.getValueType(VT));
3081 return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3082 } else if (MVT::getSizeInBits(VT) == 32) {
3083 SDOperand Vec = Op.getOperand(0);
3084 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3085 if (Idx == 0)
3086 return Op;
3087 // SHUFPS the element to the lowest double word, then movss.
3088 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3089 SmallVector<SDOperand, 8> IdxVec;
3090 IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3091 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3092 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3093 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3094 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3095 &IdxVec[0], IdxVec.size());
3096 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3097 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3098 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3099 DAG.getConstant(0, getPointerTy()));
3100 } else if (MVT::getSizeInBits(VT) == 64) {
3101 SDOperand Vec = Op.getOperand(0);
3102 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3103 if (Idx == 0)
3104 return Op;
3105
3106 // UNPCKHPD the element to the lowest double word, then movsd.
3107 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3108 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3109 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3110 SmallVector<SDOperand, 8> IdxVec;
3111 IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3112 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3113 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3114 &IdxVec[0], IdxVec.size());
3115 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3116 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3117 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3118 DAG.getConstant(0, getPointerTy()));
3119 }
3120
3121 return SDOperand();
3122}
3123
3124SDOperand
3125X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3126 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3127 // as its second argument.
3128 MVT::ValueType VT = Op.getValueType();
3129 MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3130 SDOperand N0 = Op.getOperand(0);
3131 SDOperand N1 = Op.getOperand(1);
3132 SDOperand N2 = Op.getOperand(2);
3133 if (MVT::getSizeInBits(BaseVT) == 16) {
3134 if (N1.getValueType() != MVT::i32)
3135 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3136 if (N2.getValueType() != MVT::i32)
3137 N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3138 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3139 } else if (MVT::getSizeInBits(BaseVT) == 32) {
3140 unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3141 if (Idx == 0) {
3142 // Use a movss.
3143 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3144 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3145 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3146 SmallVector<SDOperand, 8> MaskVec;
3147 MaskVec.push_back(DAG.getConstant(4, BaseVT));
3148 for (unsigned i = 1; i <= 3; ++i)
3149 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3150 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3151 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3152 &MaskVec[0], MaskVec.size()));
3153 } else {
3154 // Use two pinsrw instructions to insert a 32 bit value.
3155 Idx <<= 1;
3156 if (MVT::isFloatingPoint(N1.getValueType())) {
Evan Cheng1eea6752007-07-31 06:21:44 +00003157 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3158 N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3159 N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3160 DAG.getConstant(0, getPointerTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003161 }
3162 N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3163 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3164 DAG.getConstant(Idx, getPointerTy()));
3165 N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3166 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3167 DAG.getConstant(Idx+1, getPointerTy()));
3168 return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3169 }
3170 }
3171
3172 return SDOperand();
3173}
3174
3175SDOperand
3176X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3177 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3178 return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3179}
3180
3181// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3182// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3183// one of the above mentioned nodes. It has to be wrapped because otherwise
3184// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3185// be used to form addressing mode. These wrapped nodes will be selected
3186// into MOV32ri.
3187SDOperand
3188X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3189 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3190 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3191 getPointerTy(),
3192 CP->getAlignment());
3193 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3194 // With PIC, the address is actually $g + Offset.
3195 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3196 !Subtarget->isPICStyleRIPRel()) {
3197 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3198 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3199 Result);
3200 }
3201
3202 return Result;
3203}
3204
3205SDOperand
3206X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3207 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3208 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3209 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3210 // With PIC, the address is actually $g + Offset.
3211 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3212 !Subtarget->isPICStyleRIPRel()) {
3213 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3214 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3215 Result);
3216 }
3217
3218 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3219 // load the value at address GV, not the value of GV itself. This means that
3220 // the GlobalAddress must be in the base or index register of the address, not
3221 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3222 // The same applies for external symbols during PIC codegen
3223 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3224 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3225
3226 return Result;
3227}
3228
3229// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3230static SDOperand
3231LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3232 const MVT::ValueType PtrVT) {
3233 SDOperand InFlag;
3234 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3235 DAG.getNode(X86ISD::GlobalBaseReg,
3236 PtrVT), InFlag);
3237 InFlag = Chain.getValue(1);
3238
3239 // emit leal symbol@TLSGD(,%ebx,1), %eax
3240 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3241 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3242 GA->getValueType(0),
3243 GA->getOffset());
3244 SDOperand Ops[] = { Chain, TGA, InFlag };
3245 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3246 InFlag = Result.getValue(2);
3247 Chain = Result.getValue(1);
3248
3249 // call ___tls_get_addr. This function receives its argument in
3250 // the register EAX.
3251 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3252 InFlag = Chain.getValue(1);
3253
3254 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3255 SDOperand Ops1[] = { Chain,
3256 DAG.getTargetExternalSymbol("___tls_get_addr",
3257 PtrVT),
3258 DAG.getRegister(X86::EAX, PtrVT),
3259 DAG.getRegister(X86::EBX, PtrVT),
3260 InFlag };
3261 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3262 InFlag = Chain.getValue(1);
3263
3264 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3265}
3266
3267// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3268// "local exec" model.
3269static SDOperand
3270LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3271 const MVT::ValueType PtrVT) {
3272 // Get the Thread Pointer
3273 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3274 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3275 // exec)
3276 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3277 GA->getValueType(0),
3278 GA->getOffset());
3279 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3280
3281 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3282 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3283
3284 // The address of the thread local variable is the add of the thread
3285 // pointer with the offset of the variable.
3286 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3287}
3288
3289SDOperand
3290X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3291 // TODO: implement the "local dynamic" model
3292 // TODO: implement the "initial exec"model for pic executables
3293 assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3294 "TLS not implemented for non-ELF and 64-bit targets");
3295 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3296 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3297 // otherwise use the "Local Exec"TLS Model
3298 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3299 return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3300 else
3301 return LowerToTLSExecModel(GA, DAG, getPointerTy());
3302}
3303
3304SDOperand
3305X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3306 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3307 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3308 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3309 // With PIC, the address is actually $g + Offset.
3310 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3311 !Subtarget->isPICStyleRIPRel()) {
3312 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3313 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3314 Result);
3315 }
3316
3317 return Result;
3318}
3319
3320SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3321 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3322 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3323 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3324 // With PIC, the address is actually $g + Offset.
3325 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3326 !Subtarget->isPICStyleRIPRel()) {
3327 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3328 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3329 Result);
3330 }
3331
3332 return Result;
3333}
3334
3335SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3336 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3337 "Not an i64 shift!");
3338 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3339 SDOperand ShOpLo = Op.getOperand(0);
3340 SDOperand ShOpHi = Op.getOperand(1);
3341 SDOperand ShAmt = Op.getOperand(2);
3342 SDOperand Tmp1 = isSRA ?
3343 DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3344 DAG.getConstant(0, MVT::i32);
3345
3346 SDOperand Tmp2, Tmp3;
3347 if (Op.getOpcode() == ISD::SHL_PARTS) {
3348 Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3349 Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3350 } else {
3351 Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3352 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3353 }
3354
3355 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3356 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3357 DAG.getConstant(32, MVT::i8));
Evan Cheng621216e2007-09-29 00:00:36 +00003358 SDOperand Cond = DAG.getNode(X86ISD::CMP, MVT::i32,
3359 AndNode, DAG.getConstant(0, MVT::i8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003360
3361 SDOperand Hi, Lo;
3362 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng621216e2007-09-29 00:00:36 +00003363 unsigned Opc = X86ISD::CMOV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003364 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3365 SmallVector<SDOperand, 4> Ops;
3366 if (Op.getOpcode() == ISD::SHL_PARTS) {
3367 Ops.push_back(Tmp2);
3368 Ops.push_back(Tmp3);
3369 Ops.push_back(CC);
Evan Cheng950aac02007-09-25 01:57:46 +00003370 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003371 Hi = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003372
3373 Ops.clear();
3374 Ops.push_back(Tmp3);
3375 Ops.push_back(Tmp1);
3376 Ops.push_back(CC);
Evan Cheng950aac02007-09-25 01:57:46 +00003377 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003378 Lo = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003379 } else {
3380 Ops.push_back(Tmp2);
3381 Ops.push_back(Tmp3);
3382 Ops.push_back(CC);
Evan Cheng950aac02007-09-25 01:57:46 +00003383 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003384 Lo = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003385
3386 Ops.clear();
3387 Ops.push_back(Tmp3);
3388 Ops.push_back(Tmp1);
3389 Ops.push_back(CC);
Evan Cheng950aac02007-09-25 01:57:46 +00003390 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003391 Hi = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003392 }
3393
3394 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3395 Ops.clear();
3396 Ops.push_back(Lo);
3397 Ops.push_back(Hi);
3398 return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3399}
3400
Dan Gohman242a5ba2007-09-25 18:23:27 +00003401SDOperand X86TargetLowering::LowerIntegerDivOrRem(SDOperand Op, SelectionDAG &DAG) {
3402 unsigned Opcode = Op.getOpcode();
3403 MVT::ValueType NVT = Op.getValueType();
3404 bool isSigned = Opcode == ISD::SDIV || Opcode == ISD::SREM;
3405 bool isDiv = Opcode == ISD::SDIV || Opcode == ISD::UDIV;
3406 unsigned Opc = isSigned ? X86ISD::IDIV : X86ISD::DIV;
3407
3408 SDOperand Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3409 SDOperand DR = DAG.getNode(Opc, DAG.getVTList(NVT, NVT), Ops, 2);
3410
3411 if (isDiv)
3412 return DR;
3413
3414 return SDOperand(DR.Val, 1);
3415}
3416
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003417SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3418 assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3419 Op.getOperand(0).getValueType() >= MVT::i16 &&
3420 "Unknown SINT_TO_FP to lower!");
3421
3422 SDOperand Result;
3423 MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3424 unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3425 MachineFunction &MF = DAG.getMachineFunction();
3426 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3427 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3428 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3429 StackSlot, NULL, 0);
3430
Dale Johannesen2fc20782007-09-14 22:26:36 +00003431 // These are really Legal; caller falls through into that case.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003432 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
3433 return Result;
3434 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
Dale Johannesen2fc20782007-09-14 22:26:36 +00003435 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003436 if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3437 Subtarget->is64Bit())
3438 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003439
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003440 // Build the FILD
3441 SDVTList Tys;
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003442 bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
3443 (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
Dale Johannesen2fc20782007-09-14 22:26:36 +00003444 if (useSSE)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003445 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3446 else
3447 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3448 SmallVector<SDOperand, 8> Ops;
3449 Ops.push_back(Chain);
3450 Ops.push_back(StackSlot);
3451 Ops.push_back(DAG.getValueType(SrcVT));
Dale Johannesen2fc20782007-09-14 22:26:36 +00003452 Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003453 Tys, &Ops[0], Ops.size());
3454
Dale Johannesen2fc20782007-09-14 22:26:36 +00003455 if (useSSE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003456 Chain = Result.getValue(1);
3457 SDOperand InFlag = Result.getValue(2);
3458
3459 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3460 // shouldn't be necessary except that RFP cannot be live across
3461 // multiple blocks. When stackifier is fixed, they can be uncoupled.
3462 MachineFunction &MF = DAG.getMachineFunction();
3463 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3464 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3465 Tys = DAG.getVTList(MVT::Other);
3466 SmallVector<SDOperand, 8> Ops;
3467 Ops.push_back(Chain);
3468 Ops.push_back(Result);
3469 Ops.push_back(StackSlot);
3470 Ops.push_back(DAG.getValueType(Op.getValueType()));
3471 Ops.push_back(InFlag);
3472 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3473 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3474 }
3475
3476 return Result;
3477}
3478
3479SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3480 assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3481 "Unknown FP_TO_SINT to lower!");
3482 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3483 // stack slot.
Dale Johannesen2fc20782007-09-14 22:26:36 +00003484 SDOperand Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003485 MachineFunction &MF = DAG.getMachineFunction();
3486 unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3487 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3488 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3489
Dale Johannesen2fc20782007-09-14 22:26:36 +00003490 // These are really Legal.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003491 if (Op.getValueType() == MVT::i32 &&
3492 X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
3493 return Result;
3494 if (Op.getValueType() == MVT::i32 &&
3495 X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
Dale Johannesen2fc20782007-09-14 22:26:36 +00003496 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003497 if (Subtarget->is64Bit() &&
3498 Op.getValueType() == MVT::i64 &&
3499 Op.getOperand(0).getValueType() != MVT::f80)
3500 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003501
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003502 unsigned Opc;
3503 switch (Op.getValueType()) {
3504 default: assert(0 && "Invalid FP_TO_SINT to lower!");
3505 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3506 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3507 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3508 }
3509
3510 SDOperand Chain = DAG.getEntryNode();
3511 SDOperand Value = Op.getOperand(0);
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003512 if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
3513 (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003514 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3515 Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3516 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3517 SDOperand Ops[] = {
3518 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3519 };
3520 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3521 Chain = Value.getValue(1);
3522 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3523 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3524 }
3525
3526 // Build the FP_TO_INT*_IN_MEM
3527 SDOperand Ops[] = { Chain, Value, StackSlot };
3528 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3529
3530 // Load the result.
3531 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3532}
3533
3534SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3535 MVT::ValueType VT = Op.getValueType();
3536 MVT::ValueType EltVT = VT;
3537 if (MVT::isVector(VT))
3538 EltVT = MVT::getVectorElementType(VT);
3539 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3540 std::vector<Constant*> CV;
3541 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003542 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003543 CV.push_back(C);
3544 CV.push_back(C);
3545 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003546 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003547 CV.push_back(C);
3548 CV.push_back(C);
3549 CV.push_back(C);
3550 CV.push_back(C);
3551 }
Dan Gohman11821702007-07-27 17:16:43 +00003552 Constant *C = ConstantVector::get(CV);
3553 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3554 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3555 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003556 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3557}
3558
3559SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3560 MVT::ValueType VT = Op.getValueType();
3561 MVT::ValueType EltVT = VT;
Evan Cheng92b8f782007-07-19 23:36:01 +00003562 unsigned EltNum = 1;
3563 if (MVT::isVector(VT)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003564 EltVT = MVT::getVectorElementType(VT);
Evan Cheng92b8f782007-07-19 23:36:01 +00003565 EltNum = MVT::getVectorNumElements(VT);
3566 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003567 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3568 std::vector<Constant*> CV;
3569 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003570 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003571 CV.push_back(C);
3572 CV.push_back(C);
3573 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003574 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003575 CV.push_back(C);
3576 CV.push_back(C);
3577 CV.push_back(C);
3578 CV.push_back(C);
3579 }
Dan Gohman11821702007-07-27 17:16:43 +00003580 Constant *C = ConstantVector::get(CV);
3581 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3582 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3583 false, 16);
Evan Cheng92b8f782007-07-19 23:36:01 +00003584 if (MVT::isVector(VT)) {
Evan Cheng92b8f782007-07-19 23:36:01 +00003585 return DAG.getNode(ISD::BIT_CONVERT, VT,
3586 DAG.getNode(ISD::XOR, MVT::v2i64,
3587 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
3588 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
3589 } else {
Evan Cheng92b8f782007-07-19 23:36:01 +00003590 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3591 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003592}
3593
3594SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3595 SDOperand Op0 = Op.getOperand(0);
3596 SDOperand Op1 = Op.getOperand(1);
3597 MVT::ValueType VT = Op.getValueType();
3598 MVT::ValueType SrcVT = Op1.getValueType();
3599 const Type *SrcTy = MVT::getTypeForValueType(SrcVT);
3600
3601 // If second operand is smaller, extend it first.
3602 if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3603 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3604 SrcVT = VT;
Dale Johannesenb9de9f02007-09-06 18:13:44 +00003605 SrcTy = MVT::getTypeForValueType(SrcVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003606 }
3607
3608 // First get the sign bit of second operand.
3609 std::vector<Constant*> CV;
3610 if (SrcVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003611 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
3612 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003613 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003614 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
3615 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3616 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3617 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003618 }
Dan Gohman11821702007-07-27 17:16:43 +00003619 Constant *C = ConstantVector::get(CV);
3620 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3621 SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
3622 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003623 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3624
3625 // Shift sign bit right or left if the two operands have different types.
3626 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3627 // Op0 is MVT::f32, Op1 is MVT::f64.
3628 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3629 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3630 DAG.getConstant(32, MVT::i32));
3631 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3632 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3633 DAG.getConstant(0, getPointerTy()));
3634 }
3635
3636 // Clear first operand sign bit.
3637 CV.clear();
3638 if (VT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003639 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
3640 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003641 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003642 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
3643 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3644 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3645 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003646 }
Dan Gohman11821702007-07-27 17:16:43 +00003647 C = ConstantVector::get(CV);
3648 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3649 SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3650 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003651 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3652
3653 // Or the value with the sign bit.
3654 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3655}
3656
Evan Cheng621216e2007-09-29 00:00:36 +00003657SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
Evan Cheng950aac02007-09-25 01:57:46 +00003658 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
Evan Cheng6afec3d2007-09-26 00:45:55 +00003659 SDOperand Cond;
Evan Cheng950aac02007-09-25 01:57:46 +00003660 SDOperand Op0 = Op.getOperand(0);
3661 SDOperand Op1 = Op.getOperand(1);
3662 SDOperand CC = Op.getOperand(2);
3663 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3664 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3665 unsigned X86CC;
3666
Evan Cheng950aac02007-09-25 01:57:46 +00003667 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
Evan Cheng6afec3d2007-09-26 00:45:55 +00003668 Op0, Op1, DAG)) {
Evan Cheng621216e2007-09-29 00:00:36 +00003669 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
3670 return DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00003671 DAG.getConstant(X86CC, MVT::i8), Cond);
Evan Cheng6afec3d2007-09-26 00:45:55 +00003672 }
Evan Cheng950aac02007-09-25 01:57:46 +00003673
3674 assert(isFP && "Illegal integer SetCC!");
3675
Evan Cheng621216e2007-09-29 00:00:36 +00003676 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
Evan Cheng950aac02007-09-25 01:57:46 +00003677 switch (SetCCOpcode) {
3678 default: assert(false && "Illegal floating point SetCC!");
3679 case ISD::SETOEQ: { // !PF & ZF
Evan Cheng621216e2007-09-29 00:00:36 +00003680 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00003681 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003682 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00003683 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
3684 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3685 }
3686 case ISD::SETUNE: { // PF | !ZF
Evan Cheng621216e2007-09-29 00:00:36 +00003687 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00003688 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003689 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00003690 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
3691 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3692 }
3693 }
3694}
3695
3696
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003697SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3698 bool addTest = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003699 SDOperand Cond = Op.getOperand(0);
3700 SDOperand CC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003701
3702 if (Cond.getOpcode() == ISD::SETCC)
Evan Cheng621216e2007-09-29 00:00:36 +00003703 Cond = LowerSETCC(Cond, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003704
3705 if (Cond.getOpcode() == X86ISD::SETCC) {
3706 CC = Cond.getOperand(0);
3707
3708 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3709 // (since flag operand cannot be shared). Use it as the condition setting
3710 // operand in place of the X86ISD::SETCC.
3711 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3712 // to use a test instead of duplicating the X86ISD::CMP (for register
3713 // pressure reason)?
3714 SDOperand Cmp = Cond.getOperand(1);
3715 unsigned Opc = Cmp.getOpcode();
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003716 bool IllegalFPCMov =
3717 ! ((X86ScalarSSEf32 && Op.getValueType()==MVT::f32) ||
3718 (X86ScalarSSEf64 && Op.getValueType()==MVT::f64)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003719 !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
Evan Cheng621216e2007-09-29 00:00:36 +00003720 if ((Opc == X86ISD::CMP ||
3721 Opc == X86ISD::COMI ||
3722 Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
Evan Cheng950aac02007-09-25 01:57:46 +00003723 Cond = DAG.getNode(Opc, MVT::i32, Cmp.getOperand(0), Cmp.getOperand(1));
3724 addTest = false;
3725 }
3726 }
3727
3728 if (addTest) {
3729 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng621216e2007-09-29 00:00:36 +00003730 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Cond,
Evan Cheng950aac02007-09-25 01:57:46 +00003731 DAG.getConstant(0, MVT::i8));
3732 }
3733
3734 const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
3735 MVT::Flag);
3736 SmallVector<SDOperand, 4> Ops;
3737 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3738 // condition is true.
3739 Ops.push_back(Op.getOperand(2));
3740 Ops.push_back(Op.getOperand(1));
3741 Ops.push_back(CC);
3742 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003743 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
Evan Cheng950aac02007-09-25 01:57:46 +00003744}
3745
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003746SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3747 bool addTest = true;
3748 SDOperand Chain = Op.getOperand(0);
3749 SDOperand Cond = Op.getOperand(1);
3750 SDOperand Dest = Op.getOperand(2);
3751 SDOperand CC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003752
3753 if (Cond.getOpcode() == ISD::SETCC)
Evan Cheng621216e2007-09-29 00:00:36 +00003754 Cond = LowerSETCC(Cond, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003755
3756 if (Cond.getOpcode() == X86ISD::SETCC) {
3757 CC = Cond.getOperand(0);
3758
3759 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3760 // (since flag operand cannot be shared). Use it as the condition setting
3761 // operand in place of the X86ISD::SETCC.
3762 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3763 // to use a test instead of duplicating the X86ISD::CMP (for register
3764 // pressure reason)?
3765 SDOperand Cmp = Cond.getOperand(1);
3766 unsigned Opc = Cmp.getOpcode();
Evan Cheng621216e2007-09-29 00:00:36 +00003767 if (Opc == X86ISD::CMP ||
3768 Opc == X86ISD::COMI ||
3769 Opc == X86ISD::UCOMI) {
Evan Cheng950aac02007-09-25 01:57:46 +00003770 Cond = DAG.getNode(Opc, MVT::i32, Cmp.getOperand(0), Cmp.getOperand(1));
3771 addTest = false;
3772 }
3773 }
3774
3775 if (addTest) {
3776 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng621216e2007-09-29 00:00:36 +00003777 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
Evan Cheng950aac02007-09-25 01:57:46 +00003778 }
Evan Cheng621216e2007-09-29 00:00:36 +00003779 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
Evan Cheng950aac02007-09-25 01:57:46 +00003780 Chain, Op.getOperand(2), CC, Cond);
3781}
3782
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003783SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3784 unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3785
3786 if (Subtarget->is64Bit())
3787 return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3788 else
3789 switch (CallingConv) {
3790 default:
3791 assert(0 && "Unsupported calling convention");
3792 case CallingConv::Fast:
3793 // TODO: Implement fastcc
3794 // Falls through
3795 case CallingConv::C:
3796 case CallingConv::X86_StdCall:
3797 return LowerCCCCallTo(Op, DAG, CallingConv);
3798 case CallingConv::X86_FastCall:
3799 return LowerFastCCCallTo(Op, DAG, CallingConv);
3800 }
3801}
3802
3803
3804// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3805// Calls to _alloca is needed to probe the stack when allocating more than 4k
3806// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3807// that the guard pages used by the OS virtual memory manager are allocated in
3808// correct sequence.
3809SDOperand
3810X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3811 SelectionDAG &DAG) {
3812 assert(Subtarget->isTargetCygMing() &&
3813 "This should be used only on Cygwin/Mingw targets");
3814
3815 // Get the inputs.
3816 SDOperand Chain = Op.getOperand(0);
3817 SDOperand Size = Op.getOperand(1);
3818 // FIXME: Ensure alignment here
3819
3820 SDOperand Flag;
3821
3822 MVT::ValueType IntPtr = getPointerTy();
3823 MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3824
3825 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
3826 Flag = Chain.getValue(1);
3827
3828 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3829 SDOperand Ops[] = { Chain,
3830 DAG.getTargetExternalSymbol("_alloca", IntPtr),
3831 DAG.getRegister(X86::EAX, IntPtr),
3832 Flag };
3833 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
3834 Flag = Chain.getValue(1);
3835
3836 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
3837
3838 std::vector<MVT::ValueType> Tys;
3839 Tys.push_back(SPTy);
3840 Tys.push_back(MVT::Other);
3841 SDOperand Ops1[2] = { Chain.getValue(0), Chain };
3842 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
3843}
3844
3845SDOperand
3846X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3847 MachineFunction &MF = DAG.getMachineFunction();
3848 const Function* Fn = MF.getFunction();
3849 if (Fn->hasExternalLinkage() &&
3850 Subtarget->isTargetCygMing() &&
3851 Fn->getName() == "main")
3852 MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
3853
3854 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3855 if (Subtarget->is64Bit())
3856 return LowerX86_64CCCArguments(Op, DAG);
3857 else
3858 switch(CC) {
3859 default:
3860 assert(0 && "Unsupported calling convention");
3861 case CallingConv::Fast:
3862 // TODO: implement fastcc.
3863
3864 // Falls through
3865 case CallingConv::C:
3866 return LowerCCCArguments(Op, DAG);
3867 case CallingConv::X86_StdCall:
3868 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
3869 return LowerCCCArguments(Op, DAG, true);
3870 case CallingConv::X86_FastCall:
3871 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
3872 return LowerFastCCArguments(Op, DAG);
3873 }
3874}
3875
3876SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3877 SDOperand InFlag(0, 0);
3878 SDOperand Chain = Op.getOperand(0);
3879 unsigned Align =
3880 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3881 if (Align == 0) Align = 1;
3882
3883 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003884 // If not DWORD aligned or size is more than the threshold, call memset.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00003885 // The libc version is likely to be faster for these cases. It can use the
3886 // address value and run time information about the CPU.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003887 if ((Align & 3) != 0 ||
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003888 (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003889 MVT::ValueType IntPtr = getPointerTy();
3890 const Type *IntPtrTy = getTargetData()->getIntPtrType();
3891 TargetLowering::ArgListTy Args;
3892 TargetLowering::ArgListEntry Entry;
3893 Entry.Node = Op.getOperand(1);
3894 Entry.Ty = IntPtrTy;
3895 Args.push_back(Entry);
3896 // Extend the unsigned i8 argument to be an int value for the call.
3897 Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3898 Entry.Ty = IntPtrTy;
3899 Args.push_back(Entry);
3900 Entry.Node = Op.getOperand(3);
3901 Args.push_back(Entry);
3902 std::pair<SDOperand,SDOperand> CallResult =
3903 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3904 DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3905 return CallResult.second;
3906 }
3907
3908 MVT::ValueType AVT;
3909 SDOperand Count;
3910 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3911 unsigned BytesLeft = 0;
3912 bool TwoRepStos = false;
3913 if (ValC) {
3914 unsigned ValReg;
3915 uint64_t Val = ValC->getValue() & 255;
3916
3917 // If the value is a constant, then we can potentially use larger sets.
3918 switch (Align & 3) {
3919 case 2: // WORD aligned
3920 AVT = MVT::i16;
3921 ValReg = X86::AX;
3922 Val = (Val << 8) | Val;
3923 break;
3924 case 0: // DWORD aligned
3925 AVT = MVT::i32;
3926 ValReg = X86::EAX;
3927 Val = (Val << 8) | Val;
3928 Val = (Val << 16) | Val;
3929 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned
3930 AVT = MVT::i64;
3931 ValReg = X86::RAX;
3932 Val = (Val << 32) | Val;
3933 }
3934 break;
3935 default: // Byte aligned
3936 AVT = MVT::i8;
3937 ValReg = X86::AL;
3938 Count = Op.getOperand(3);
3939 break;
3940 }
3941
3942 if (AVT > MVT::i8) {
3943 if (I) {
3944 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3945 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3946 BytesLeft = I->getValue() % UBytes;
3947 } else {
3948 assert(AVT >= MVT::i32 &&
3949 "Do not use rep;stos if not at least DWORD aligned");
3950 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3951 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3952 TwoRepStos = true;
3953 }
3954 }
3955
3956 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3957 InFlag);
3958 InFlag = Chain.getValue(1);
3959 } else {
3960 AVT = MVT::i8;
3961 Count = Op.getOperand(3);
3962 Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3963 InFlag = Chain.getValue(1);
3964 }
3965
3966 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3967 Count, InFlag);
3968 InFlag = Chain.getValue(1);
3969 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3970 Op.getOperand(1), InFlag);
3971 InFlag = Chain.getValue(1);
3972
3973 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3974 SmallVector<SDOperand, 8> Ops;
3975 Ops.push_back(Chain);
3976 Ops.push_back(DAG.getValueType(AVT));
3977 Ops.push_back(InFlag);
3978 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3979
3980 if (TwoRepStos) {
3981 InFlag = Chain.getValue(1);
3982 Count = Op.getOperand(3);
3983 MVT::ValueType CVT = Count.getValueType();
3984 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3985 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3986 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3987 Left, InFlag);
3988 InFlag = Chain.getValue(1);
3989 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3990 Ops.clear();
3991 Ops.push_back(Chain);
3992 Ops.push_back(DAG.getValueType(MVT::i8));
3993 Ops.push_back(InFlag);
3994 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3995 } else if (BytesLeft) {
3996 // Issue stores for the last 1 - 7 bytes.
3997 SDOperand Value;
3998 unsigned Val = ValC->getValue() & 255;
3999 unsigned Offset = I->getValue() - BytesLeft;
4000 SDOperand DstAddr = Op.getOperand(1);
4001 MVT::ValueType AddrVT = DstAddr.getValueType();
4002 if (BytesLeft >= 4) {
4003 Val = (Val << 8) | Val;
4004 Val = (Val << 16) | Val;
4005 Value = DAG.getConstant(Val, MVT::i32);
4006 Chain = DAG.getStore(Chain, Value,
4007 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4008 DAG.getConstant(Offset, AddrVT)),
4009 NULL, 0);
4010 BytesLeft -= 4;
4011 Offset += 4;
4012 }
4013 if (BytesLeft >= 2) {
4014 Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4015 Chain = DAG.getStore(Chain, Value,
4016 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4017 DAG.getConstant(Offset, AddrVT)),
4018 NULL, 0);
4019 BytesLeft -= 2;
4020 Offset += 2;
4021 }
4022 if (BytesLeft == 1) {
4023 Value = DAG.getConstant(Val, MVT::i8);
4024 Chain = DAG.getStore(Chain, Value,
4025 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4026 DAG.getConstant(Offset, AddrVT)),
4027 NULL, 0);
4028 }
4029 }
4030
4031 return Chain;
4032}
4033
4034SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004035 SDOperand ChainOp = Op.getOperand(0);
4036 SDOperand DestOp = Op.getOperand(1);
4037 SDOperand SourceOp = Op.getOperand(2);
4038 SDOperand CountOp = Op.getOperand(3);
4039 SDOperand AlignOp = Op.getOperand(4);
4040 unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004041 if (Align == 0) Align = 1;
4042
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004043 // The libc version is likely to be faster for the following cases. It can
4044 // use the address value and run time information about the CPU.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00004045 // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004046
4047 // If not DWORD aligned, call memcpy.
4048 if ((Align & 3) != 0)
4049 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4050
4051 // If size is unknown, call memcpy.
4052 ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
4053 if (!I)
4054 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4055
4056 // If size is more than the threshold, call memcpy.
4057 unsigned Size = I->getValue();
4058 if (Size > Subtarget->getMinRepStrSizeThreshold())
4059 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4060
4061 return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
4062}
4063
4064SDOperand X86TargetLowering::LowerMEMCPYCall(SDOperand Chain,
4065 SDOperand Dest,
4066 SDOperand Source,
4067 SDOperand Count,
4068 SelectionDAG &DAG) {
4069 MVT::ValueType IntPtr = getPointerTy();
4070 TargetLowering::ArgListTy Args;
4071 TargetLowering::ArgListEntry Entry;
4072 Entry.Ty = getTargetData()->getIntPtrType();
4073 Entry.Node = Dest; Args.push_back(Entry);
4074 Entry.Node = Source; Args.push_back(Entry);
4075 Entry.Node = Count; Args.push_back(Entry);
4076 std::pair<SDOperand,SDOperand> CallResult =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004077 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4078 DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004079 return CallResult.second;
4080}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004081
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004082SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4083 SDOperand Dest,
4084 SDOperand Source,
4085 unsigned Size,
4086 unsigned Align,
4087 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004088 MVT::ValueType AVT;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004089 unsigned BytesLeft = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004090 switch (Align & 3) {
4091 case 2: // WORD aligned
4092 AVT = MVT::i16;
4093 break;
4094 case 0: // DWORD aligned
4095 AVT = MVT::i32;
4096 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned
4097 AVT = MVT::i64;
4098 break;
4099 default: // Byte aligned
4100 AVT = MVT::i8;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004101 break;
4102 }
4103
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004104 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4105 SDOperand Count = DAG.getConstant(Size / UBytes, getPointerTy());
4106 BytesLeft = Size % UBytes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004107
4108 SDOperand InFlag(0, 0);
4109 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4110 Count, InFlag);
4111 InFlag = Chain.getValue(1);
4112 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004113 Dest, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004114 InFlag = Chain.getValue(1);
4115 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004116 Source, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004117 InFlag = Chain.getValue(1);
4118
4119 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4120 SmallVector<SDOperand, 8> Ops;
4121 Ops.push_back(Chain);
4122 Ops.push_back(DAG.getValueType(AVT));
4123 Ops.push_back(InFlag);
4124 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4125
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004126 if (BytesLeft) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004127 // Issue loads and stores for the last 1 - 7 bytes.
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004128 unsigned Offset = Size - BytesLeft;
4129 SDOperand DstAddr = Dest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004130 MVT::ValueType DstVT = DstAddr.getValueType();
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004131 SDOperand SrcAddr = Source;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004132 MVT::ValueType SrcVT = SrcAddr.getValueType();
4133 SDOperand Value;
4134 if (BytesLeft >= 4) {
4135 Value = DAG.getLoad(MVT::i32, Chain,
4136 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4137 DAG.getConstant(Offset, SrcVT)),
4138 NULL, 0);
4139 Chain = Value.getValue(1);
4140 Chain = DAG.getStore(Chain, Value,
4141 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4142 DAG.getConstant(Offset, DstVT)),
4143 NULL, 0);
4144 BytesLeft -= 4;
4145 Offset += 4;
4146 }
4147 if (BytesLeft >= 2) {
4148 Value = DAG.getLoad(MVT::i16, Chain,
4149 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4150 DAG.getConstant(Offset, SrcVT)),
4151 NULL, 0);
4152 Chain = Value.getValue(1);
4153 Chain = DAG.getStore(Chain, Value,
4154 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4155 DAG.getConstant(Offset, DstVT)),
4156 NULL, 0);
4157 BytesLeft -= 2;
4158 Offset += 2;
4159 }
4160
4161 if (BytesLeft == 1) {
4162 Value = DAG.getLoad(MVT::i8, Chain,
4163 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4164 DAG.getConstant(Offset, SrcVT)),
4165 NULL, 0);
4166 Chain = Value.getValue(1);
4167 Chain = DAG.getStore(Chain, Value,
4168 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4169 DAG.getConstant(Offset, DstVT)),
4170 NULL, 0);
4171 }
4172 }
4173
4174 return Chain;
4175}
4176
4177SDOperand
4178X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4179 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4180 SDOperand TheOp = Op.getOperand(0);
4181 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4182 if (Subtarget->is64Bit()) {
4183 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4184 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4185 MVT::i64, Copy1.getValue(2));
4186 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4187 DAG.getConstant(32, MVT::i8));
4188 SDOperand Ops[] = {
4189 DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4190 };
4191
4192 Tys = DAG.getVTList(MVT::i64, MVT::Other);
4193 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4194 }
4195
4196 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4197 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4198 MVT::i32, Copy1.getValue(2));
4199 SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4200 Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4201 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4202}
4203
4204SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4205 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4206
4207 if (!Subtarget->is64Bit()) {
4208 // vastart just stores the address of the VarArgsFrameIndex slot into the
4209 // memory location argument.
4210 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4211 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4212 SV->getOffset());
4213 }
4214
4215 // __va_list_tag:
4216 // gp_offset (0 - 6 * 8)
4217 // fp_offset (48 - 48 + 8 * 16)
4218 // overflow_arg_area (point to parameters coming in memory).
4219 // reg_save_area
4220 SmallVector<SDOperand, 8> MemOps;
4221 SDOperand FIN = Op.getOperand(1);
4222 // Store gp_offset
4223 SDOperand Store = DAG.getStore(Op.getOperand(0),
4224 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4225 FIN, SV->getValue(), SV->getOffset());
4226 MemOps.push_back(Store);
4227
4228 // Store fp_offset
4229 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4230 DAG.getConstant(4, getPointerTy()));
4231 Store = DAG.getStore(Op.getOperand(0),
4232 DAG.getConstant(VarArgsFPOffset, MVT::i32),
4233 FIN, SV->getValue(), SV->getOffset());
4234 MemOps.push_back(Store);
4235
4236 // Store ptr to overflow_arg_area
4237 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4238 DAG.getConstant(4, getPointerTy()));
4239 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4240 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4241 SV->getOffset());
4242 MemOps.push_back(Store);
4243
4244 // Store ptr to reg_save_area.
4245 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4246 DAG.getConstant(8, getPointerTy()));
4247 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4248 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4249 SV->getOffset());
4250 MemOps.push_back(Store);
4251 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4252}
4253
4254SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4255 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4256 SDOperand Chain = Op.getOperand(0);
4257 SDOperand DstPtr = Op.getOperand(1);
4258 SDOperand SrcPtr = Op.getOperand(2);
4259 SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4260 SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4261
4262 SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4263 SrcSV->getValue(), SrcSV->getOffset());
4264 Chain = SrcPtr.getValue(1);
4265 for (unsigned i = 0; i < 3; ++i) {
4266 SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4267 SrcSV->getValue(), SrcSV->getOffset());
4268 Chain = Val.getValue(1);
4269 Chain = DAG.getStore(Chain, Val, DstPtr,
4270 DstSV->getValue(), DstSV->getOffset());
4271 if (i == 2)
4272 break;
4273 SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4274 DAG.getConstant(8, getPointerTy()));
4275 DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4276 DAG.getConstant(8, getPointerTy()));
4277 }
4278 return Chain;
4279}
4280
4281SDOperand
4282X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4283 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4284 switch (IntNo) {
4285 default: return SDOperand(); // Don't custom lower most intrinsics.
4286 // Comparison intrinsics.
4287 case Intrinsic::x86_sse_comieq_ss:
4288 case Intrinsic::x86_sse_comilt_ss:
4289 case Intrinsic::x86_sse_comile_ss:
4290 case Intrinsic::x86_sse_comigt_ss:
4291 case Intrinsic::x86_sse_comige_ss:
4292 case Intrinsic::x86_sse_comineq_ss:
4293 case Intrinsic::x86_sse_ucomieq_ss:
4294 case Intrinsic::x86_sse_ucomilt_ss:
4295 case Intrinsic::x86_sse_ucomile_ss:
4296 case Intrinsic::x86_sse_ucomigt_ss:
4297 case Intrinsic::x86_sse_ucomige_ss:
4298 case Intrinsic::x86_sse_ucomineq_ss:
4299 case Intrinsic::x86_sse2_comieq_sd:
4300 case Intrinsic::x86_sse2_comilt_sd:
4301 case Intrinsic::x86_sse2_comile_sd:
4302 case Intrinsic::x86_sse2_comigt_sd:
4303 case Intrinsic::x86_sse2_comige_sd:
4304 case Intrinsic::x86_sse2_comineq_sd:
4305 case Intrinsic::x86_sse2_ucomieq_sd:
4306 case Intrinsic::x86_sse2_ucomilt_sd:
4307 case Intrinsic::x86_sse2_ucomile_sd:
4308 case Intrinsic::x86_sse2_ucomigt_sd:
4309 case Intrinsic::x86_sse2_ucomige_sd:
4310 case Intrinsic::x86_sse2_ucomineq_sd: {
4311 unsigned Opc = 0;
4312 ISD::CondCode CC = ISD::SETCC_INVALID;
4313 switch (IntNo) {
4314 default: break;
4315 case Intrinsic::x86_sse_comieq_ss:
4316 case Intrinsic::x86_sse2_comieq_sd:
4317 Opc = X86ISD::COMI;
4318 CC = ISD::SETEQ;
4319 break;
4320 case Intrinsic::x86_sse_comilt_ss:
4321 case Intrinsic::x86_sse2_comilt_sd:
4322 Opc = X86ISD::COMI;
4323 CC = ISD::SETLT;
4324 break;
4325 case Intrinsic::x86_sse_comile_ss:
4326 case Intrinsic::x86_sse2_comile_sd:
4327 Opc = X86ISD::COMI;
4328 CC = ISD::SETLE;
4329 break;
4330 case Intrinsic::x86_sse_comigt_ss:
4331 case Intrinsic::x86_sse2_comigt_sd:
4332 Opc = X86ISD::COMI;
4333 CC = ISD::SETGT;
4334 break;
4335 case Intrinsic::x86_sse_comige_ss:
4336 case Intrinsic::x86_sse2_comige_sd:
4337 Opc = X86ISD::COMI;
4338 CC = ISD::SETGE;
4339 break;
4340 case Intrinsic::x86_sse_comineq_ss:
4341 case Intrinsic::x86_sse2_comineq_sd:
4342 Opc = X86ISD::COMI;
4343 CC = ISD::SETNE;
4344 break;
4345 case Intrinsic::x86_sse_ucomieq_ss:
4346 case Intrinsic::x86_sse2_ucomieq_sd:
4347 Opc = X86ISD::UCOMI;
4348 CC = ISD::SETEQ;
4349 break;
4350 case Intrinsic::x86_sse_ucomilt_ss:
4351 case Intrinsic::x86_sse2_ucomilt_sd:
4352 Opc = X86ISD::UCOMI;
4353 CC = ISD::SETLT;
4354 break;
4355 case Intrinsic::x86_sse_ucomile_ss:
4356 case Intrinsic::x86_sse2_ucomile_sd:
4357 Opc = X86ISD::UCOMI;
4358 CC = ISD::SETLE;
4359 break;
4360 case Intrinsic::x86_sse_ucomigt_ss:
4361 case Intrinsic::x86_sse2_ucomigt_sd:
4362 Opc = X86ISD::UCOMI;
4363 CC = ISD::SETGT;
4364 break;
4365 case Intrinsic::x86_sse_ucomige_ss:
4366 case Intrinsic::x86_sse2_ucomige_sd:
4367 Opc = X86ISD::UCOMI;
4368 CC = ISD::SETGE;
4369 break;
4370 case Intrinsic::x86_sse_ucomineq_ss:
4371 case Intrinsic::x86_sse2_ucomineq_sd:
4372 Opc = X86ISD::UCOMI;
4373 CC = ISD::SETNE;
4374 break;
4375 }
4376
4377 unsigned X86CC;
4378 SDOperand LHS = Op.getOperand(1);
4379 SDOperand RHS = Op.getOperand(2);
4380 translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4381
Evan Cheng621216e2007-09-29 00:00:36 +00004382 SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
4383 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
4384 DAG.getConstant(X86CC, MVT::i8), Cond);
4385 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004386 }
4387 }
4388}
4389
4390SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4391 // Depths > 0 not supported yet!
4392 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4393 return SDOperand();
4394
4395 // Just load the return address
4396 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4397 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4398}
4399
4400SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4401 // Depths > 0 not supported yet!
4402 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4403 return SDOperand();
4404
4405 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4406 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4407 DAG.getConstant(4, getPointerTy()));
4408}
4409
4410SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4411 SelectionDAG &DAG) {
4412 // Is not yet supported on x86-64
4413 if (Subtarget->is64Bit())
4414 return SDOperand();
4415
4416 return DAG.getConstant(8, getPointerTy());
4417}
4418
4419SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4420{
4421 assert(!Subtarget->is64Bit() &&
4422 "Lowering of eh_return builtin is not supported yet on x86-64");
4423
4424 MachineFunction &MF = DAG.getMachineFunction();
4425 SDOperand Chain = Op.getOperand(0);
4426 SDOperand Offset = Op.getOperand(1);
4427 SDOperand Handler = Op.getOperand(2);
4428
4429 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4430 getPointerTy());
4431
4432 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4433 DAG.getConstant(-4UL, getPointerTy()));
4434 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4435 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4436 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4437 MF.addLiveOut(X86::ECX);
4438
4439 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4440 Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4441}
4442
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004443SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4444 SelectionDAG &DAG) {
4445 SDOperand Root = Op.getOperand(0);
4446 SDOperand Trmp = Op.getOperand(1); // trampoline
4447 SDOperand FPtr = Op.getOperand(2); // nested function
4448 SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4449
4450 SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4451
4452 if (Subtarget->is64Bit()) {
4453 return SDOperand(); // not yet supported
4454 } else {
4455 Function *Func = (Function *)
4456 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4457 unsigned CC = Func->getCallingConv();
Duncan Sands466eadd2007-08-29 19:01:20 +00004458 unsigned NestReg;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004459
4460 switch (CC) {
4461 default:
4462 assert(0 && "Unsupported calling convention");
4463 case CallingConv::C:
4464 case CallingConv::Fast:
4465 case CallingConv::X86_StdCall: {
4466 // Pass 'nest' parameter in ECX.
4467 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004468 NestReg = X86::ECX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004469
4470 // Check that ECX wasn't needed by an 'inreg' parameter.
4471 const FunctionType *FTy = Func->getFunctionType();
4472 const ParamAttrsList *Attrs = FTy->getParamAttrs();
4473
4474 if (Attrs && !Func->isVarArg()) {
4475 unsigned InRegCount = 0;
4476 unsigned Idx = 1;
4477
4478 for (FunctionType::param_iterator I = FTy->param_begin(),
4479 E = FTy->param_end(); I != E; ++I, ++Idx)
4480 if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4481 // FIXME: should only count parameters that are lowered to integers.
4482 InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4483
4484 if (InRegCount > 2) {
4485 cerr << "Nest register in use - reduce number of inreg parameters!\n";
4486 abort();
4487 }
4488 }
4489 break;
4490 }
4491 case CallingConv::X86_FastCall:
4492 // Pass 'nest' parameter in EAX.
4493 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004494 NestReg = X86::EAX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004495 break;
4496 }
4497
Duncan Sands466eadd2007-08-29 19:01:20 +00004498 const X86InstrInfo *TII =
4499 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4500
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004501 SDOperand OutChains[4];
4502 SDOperand Addr, Disp;
4503
4504 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4505 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4506
Duncan Sands466eadd2007-08-29 19:01:20 +00004507 unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4508 unsigned char N86Reg = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4509 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004510 Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4511
4512 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4513 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4514 TrmpSV->getOffset() + 1, false, 1);
4515
Duncan Sands466eadd2007-08-29 19:01:20 +00004516 unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004517 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4518 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4519 TrmpSV->getValue() + 5, TrmpSV->getOffset());
4520
4521 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4522 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4523 TrmpSV->getOffset() + 6, false, 1);
4524
Duncan Sands7407a9f2007-09-11 14:10:23 +00004525 SDOperand Ops[] =
4526 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4527 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004528 }
4529}
4530
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004531/// LowerOperation - Provide custom lowering hooks for some operations.
4532///
4533SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4534 switch (Op.getOpcode()) {
4535 default: assert(0 && "Should not custom lower this!");
4536 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
4537 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4538 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4539 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
4540 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
4541 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
4542 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
4543 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4544 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
4545 case ISD::SHL_PARTS:
4546 case ISD::SRA_PARTS:
4547 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
Dan Gohman242a5ba2007-09-25 18:23:27 +00004548 case ISD::SDIV:
4549 case ISD::UDIV:
4550 case ISD::SREM:
4551 case ISD::UREM: return LowerIntegerDivOrRem(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004552 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
4553 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
4554 case ISD::FABS: return LowerFABS(Op, DAG);
4555 case ISD::FNEG: return LowerFNEG(Op, DAG);
4556 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
Evan Cheng621216e2007-09-29 00:00:36 +00004557 case ISD::SETCC: return LowerSETCC(Op, DAG);
4558 case ISD::SELECT: return LowerSELECT(Op, DAG);
4559 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004560 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
4561 case ISD::CALL: return LowerCALL(Op, DAG);
4562 case ISD::RET: return LowerRET(Op, DAG);
4563 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
4564 case ISD::MEMSET: return LowerMEMSET(Op, DAG);
4565 case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
4566 case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG);
4567 case ISD::VASTART: return LowerVASTART(Op, DAG);
4568 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
4569 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4570 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4571 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
4572 case ISD::FRAME_TO_ARGS_OFFSET:
4573 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4574 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4575 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004576 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004577 }
4578 return SDOperand();
4579}
4580
4581const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4582 switch (Opcode) {
4583 default: return NULL;
4584 case X86ISD::SHLD: return "X86ISD::SHLD";
4585 case X86ISD::SHRD: return "X86ISD::SHRD";
4586 case X86ISD::FAND: return "X86ISD::FAND";
4587 case X86ISD::FOR: return "X86ISD::FOR";
4588 case X86ISD::FXOR: return "X86ISD::FXOR";
4589 case X86ISD::FSRL: return "X86ISD::FSRL";
4590 case X86ISD::FILD: return "X86ISD::FILD";
4591 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
4592 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4593 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4594 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4595 case X86ISD::FLD: return "X86ISD::FLD";
4596 case X86ISD::FST: return "X86ISD::FST";
4597 case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
4598 case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
4599 case X86ISD::CALL: return "X86ISD::CALL";
4600 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
4601 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
4602 case X86ISD::CMP: return "X86ISD::CMP";
4603 case X86ISD::COMI: return "X86ISD::COMI";
4604 case X86ISD::UCOMI: return "X86ISD::UCOMI";
4605 case X86ISD::SETCC: return "X86ISD::SETCC";
4606 case X86ISD::CMOV: return "X86ISD::CMOV";
4607 case X86ISD::BRCOND: return "X86ISD::BRCOND";
4608 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
4609 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
4610 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004611 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
4612 case X86ISD::Wrapper: return "X86ISD::Wrapper";
4613 case X86ISD::S2VEC: return "X86ISD::S2VEC";
4614 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
4615 case X86ISD::PINSRW: return "X86ISD::PINSRW";
4616 case X86ISD::FMAX: return "X86ISD::FMAX";
4617 case X86ISD::FMIN: return "X86ISD::FMIN";
4618 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
4619 case X86ISD::FRCP: return "X86ISD::FRCP";
4620 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
4621 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER";
4622 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
Dan Gohman242a5ba2007-09-25 18:23:27 +00004623 case X86ISD::DIV: return "X86ISD::DIV";
4624 case X86ISD::IDIV: return "X86ISD::IDIV";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004625 }
4626}
4627
4628// isLegalAddressingMode - Return true if the addressing mode represented
4629// by AM is legal for this target, for a load/store of the specified type.
4630bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4631 const Type *Ty) const {
4632 // X86 supports extremely general addressing modes.
4633
4634 // X86 allows a sign-extended 32-bit immediate field as a displacement.
4635 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4636 return false;
4637
4638 if (AM.BaseGV) {
Evan Cheng6a1f3f12007-08-01 23:46:47 +00004639 // We can only fold this if we don't need an extra load.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004640 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4641 return false;
Evan Cheng6a1f3f12007-08-01 23:46:47 +00004642
4643 // X86-64 only supports addr of globals in small code model.
4644 if (Subtarget->is64Bit()) {
4645 if (getTargetMachine().getCodeModel() != CodeModel::Small)
4646 return false;
4647 // If lower 4G is not available, then we must use rip-relative addressing.
4648 if (AM.BaseOffs || AM.Scale > 1)
4649 return false;
4650 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004651 }
4652
4653 switch (AM.Scale) {
4654 case 0:
4655 case 1:
4656 case 2:
4657 case 4:
4658 case 8:
4659 // These scales always work.
4660 break;
4661 case 3:
4662 case 5:
4663 case 9:
4664 // These scales are formed with basereg+scalereg. Only accept if there is
4665 // no basereg yet.
4666 if (AM.HasBaseReg)
4667 return false;
4668 break;
4669 default: // Other stuff never works.
4670 return false;
4671 }
4672
4673 return true;
4674}
4675
4676
4677/// isShuffleMaskLegal - Targets can use this to indicate that they only
4678/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4679/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4680/// are assumed to be legal.
4681bool
4682X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4683 // Only do shuffles on 128-bit vector types for now.
4684 if (MVT::getSizeInBits(VT) == 64) return false;
4685 return (Mask.Val->getNumOperands() <= 4 ||
4686 isIdentityMask(Mask.Val) ||
4687 isIdentityMask(Mask.Val, true) ||
4688 isSplatMask(Mask.Val) ||
4689 isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4690 X86::isUNPCKLMask(Mask.Val) ||
4691 X86::isUNPCKHMask(Mask.Val) ||
4692 X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4693 X86::isUNPCKH_v_undef_Mask(Mask.Val));
4694}
4695
4696bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4697 MVT::ValueType EVT,
4698 SelectionDAG &DAG) const {
4699 unsigned NumElts = BVOps.size();
4700 // Only do shuffles on 128-bit vector types for now.
4701 if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4702 if (NumElts == 2) return true;
4703 if (NumElts == 4) {
4704 return (isMOVLMask(&BVOps[0], 4) ||
4705 isCommutedMOVL(&BVOps[0], 4, true) ||
4706 isSHUFPMask(&BVOps[0], 4) ||
4707 isCommutedSHUFP(&BVOps[0], 4));
4708 }
4709 return false;
4710}
4711
4712//===----------------------------------------------------------------------===//
4713// X86 Scheduler Hooks
4714//===----------------------------------------------------------------------===//
4715
4716MachineBasicBlock *
4717X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4718 MachineBasicBlock *BB) {
4719 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4720 switch (MI->getOpcode()) {
4721 default: assert(false && "Unexpected instr type to insert");
4722 case X86::CMOV_FR32:
4723 case X86::CMOV_FR64:
4724 case X86::CMOV_V4F32:
4725 case X86::CMOV_V2F64:
Evan Cheng621216e2007-09-29 00:00:36 +00004726 case X86::CMOV_V2I64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004727 // To "insert" a SELECT_CC instruction, we actually have to insert the
4728 // diamond control-flow pattern. The incoming instruction knows the
4729 // destination vreg to set, the condition code register to branch on, the
4730 // true/false values to select between, and a branch opcode to use.
4731 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4732 ilist<MachineBasicBlock>::iterator It = BB;
4733 ++It;
4734
4735 // thisMBB:
4736 // ...
4737 // TrueVal = ...
4738 // cmpTY ccX, r1, r2
4739 // bCC copy1MBB
4740 // fallthrough --> copy0MBB
4741 MachineBasicBlock *thisMBB = BB;
4742 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4743 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4744 unsigned Opc =
4745 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4746 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4747 MachineFunction *F = BB->getParent();
4748 F->getBasicBlockList().insert(It, copy0MBB);
4749 F->getBasicBlockList().insert(It, sinkMBB);
4750 // Update machine-CFG edges by first adding all successors of the current
4751 // block to the new block which will contain the Phi node for the select.
4752 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4753 e = BB->succ_end(); i != e; ++i)
4754 sinkMBB->addSuccessor(*i);
4755 // Next, remove all successors of the current block, and add the true
4756 // and fallthrough blocks as its successors.
4757 while(!BB->succ_empty())
4758 BB->removeSuccessor(BB->succ_begin());
4759 BB->addSuccessor(copy0MBB);
4760 BB->addSuccessor(sinkMBB);
4761
4762 // copy0MBB:
4763 // %FalseValue = ...
4764 // # fallthrough to sinkMBB
4765 BB = copy0MBB;
4766
4767 // Update machine-CFG edges
4768 BB->addSuccessor(sinkMBB);
4769
4770 // sinkMBB:
4771 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4772 // ...
4773 BB = sinkMBB;
4774 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4775 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4776 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4777
4778 delete MI; // The pseudo instruction is gone now.
4779 return BB;
4780 }
4781
4782 case X86::FP32_TO_INT16_IN_MEM:
4783 case X86::FP32_TO_INT32_IN_MEM:
4784 case X86::FP32_TO_INT64_IN_MEM:
4785 case X86::FP64_TO_INT16_IN_MEM:
4786 case X86::FP64_TO_INT32_IN_MEM:
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00004787 case X86::FP64_TO_INT64_IN_MEM:
4788 case X86::FP80_TO_INT16_IN_MEM:
4789 case X86::FP80_TO_INT32_IN_MEM:
4790 case X86::FP80_TO_INT64_IN_MEM: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004791 // Change the floating point control register to use "round towards zero"
4792 // mode when truncating to an integer value.
4793 MachineFunction *F = BB->getParent();
4794 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4795 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4796
4797 // Load the old value of the high byte of the control word...
4798 unsigned OldCW =
4799 F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4800 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4801
4802 // Set the high part to be round to zero...
4803 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4804 .addImm(0xC7F);
4805
4806 // Reload the modified control word now...
4807 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4808
4809 // Restore the memory image of control word to original value
4810 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4811 .addReg(OldCW);
4812
4813 // Get the X86 opcode to use.
4814 unsigned Opc;
4815 switch (MI->getOpcode()) {
4816 default: assert(0 && "illegal opcode!");
4817 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
4818 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
4819 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
4820 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
4821 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
4822 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00004823 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
4824 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
4825 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004826 }
4827
4828 X86AddressMode AM;
4829 MachineOperand &Op = MI->getOperand(0);
4830 if (Op.isRegister()) {
4831 AM.BaseType = X86AddressMode::RegBase;
4832 AM.Base.Reg = Op.getReg();
4833 } else {
4834 AM.BaseType = X86AddressMode::FrameIndexBase;
4835 AM.Base.FrameIndex = Op.getFrameIndex();
4836 }
4837 Op = MI->getOperand(1);
4838 if (Op.isImmediate())
4839 AM.Scale = Op.getImm();
4840 Op = MI->getOperand(2);
4841 if (Op.isImmediate())
4842 AM.IndexReg = Op.getImm();
4843 Op = MI->getOperand(3);
4844 if (Op.isGlobalAddress()) {
4845 AM.GV = Op.getGlobal();
4846 } else {
4847 AM.Disp = Op.getImm();
4848 }
4849 addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4850 .addReg(MI->getOperand(4).getReg());
4851
4852 // Reload the original control word now.
4853 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4854
4855 delete MI; // The pseudo instruction is gone now.
4856 return BB;
4857 }
4858 }
4859}
4860
4861//===----------------------------------------------------------------------===//
4862// X86 Optimization Hooks
4863//===----------------------------------------------------------------------===//
4864
4865void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4866 uint64_t Mask,
4867 uint64_t &KnownZero,
4868 uint64_t &KnownOne,
4869 const SelectionDAG &DAG,
4870 unsigned Depth) const {
4871 unsigned Opc = Op.getOpcode();
4872 assert((Opc >= ISD::BUILTIN_OP_END ||
4873 Opc == ISD::INTRINSIC_WO_CHAIN ||
4874 Opc == ISD::INTRINSIC_W_CHAIN ||
4875 Opc == ISD::INTRINSIC_VOID) &&
4876 "Should use MaskedValueIsZero if you don't know whether Op"
4877 " is a target node!");
4878
4879 KnownZero = KnownOne = 0; // Don't know anything.
4880 switch (Opc) {
4881 default: break;
4882 case X86ISD::SETCC:
4883 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4884 break;
4885 }
4886}
4887
4888/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4889/// element of the result of the vector shuffle.
4890static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4891 MVT::ValueType VT = N->getValueType(0);
4892 SDOperand PermMask = N->getOperand(2);
4893 unsigned NumElems = PermMask.getNumOperands();
4894 SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4895 i %= NumElems;
4896 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4897 return (i == 0)
4898 ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4899 } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4900 SDOperand Idx = PermMask.getOperand(i);
4901 if (Idx.getOpcode() == ISD::UNDEF)
4902 return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4903 return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4904 }
4905 return SDOperand();
4906}
4907
4908/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4909/// node is a GlobalAddress + an offset.
4910static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4911 unsigned Opc = N->getOpcode();
4912 if (Opc == X86ISD::Wrapper) {
4913 if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4914 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4915 return true;
4916 }
4917 } else if (Opc == ISD::ADD) {
4918 SDOperand N1 = N->getOperand(0);
4919 SDOperand N2 = N->getOperand(1);
4920 if (isGAPlusOffset(N1.Val, GA, Offset)) {
4921 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4922 if (V) {
4923 Offset += V->getSignExtended();
4924 return true;
4925 }
4926 } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4927 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4928 if (V) {
4929 Offset += V->getSignExtended();
4930 return true;
4931 }
4932 }
4933 }
4934 return false;
4935}
4936
4937/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4938/// + Dist * Size.
4939static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4940 MachineFrameInfo *MFI) {
4941 if (N->getOperand(0).Val != Base->getOperand(0).Val)
4942 return false;
4943
4944 SDOperand Loc = N->getOperand(1);
4945 SDOperand BaseLoc = Base->getOperand(1);
4946 if (Loc.getOpcode() == ISD::FrameIndex) {
4947 if (BaseLoc.getOpcode() != ISD::FrameIndex)
4948 return false;
Dan Gohman53491e92007-07-23 20:24:29 +00004949 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
4950 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004951 int FS = MFI->getObjectSize(FI);
4952 int BFS = MFI->getObjectSize(BFI);
4953 if (FS != BFS || FS != Size) return false;
4954 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4955 } else {
4956 GlobalValue *GV1 = NULL;
4957 GlobalValue *GV2 = NULL;
4958 int64_t Offset1 = 0;
4959 int64_t Offset2 = 0;
4960 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4961 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4962 if (isGA1 && isGA2 && GV1 == GV2)
4963 return Offset1 == (Offset2 + Dist*Size);
4964 }
4965
4966 return false;
4967}
4968
4969static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4970 const X86Subtarget *Subtarget) {
4971 GlobalValue *GV;
4972 int64_t Offset;
4973 if (isGAPlusOffset(Base, GV, Offset))
4974 return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4975 else {
4976 assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
Dan Gohman53491e92007-07-23 20:24:29 +00004977 int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004978 if (BFI < 0)
4979 // Fixed objects do not specify alignment, however the offsets are known.
4980 return ((Subtarget->getStackAlignment() % 16) == 0 &&
4981 (MFI->getObjectOffset(BFI) % 16) == 0);
4982 else
4983 return MFI->getObjectAlignment(BFI) >= 16;
4984 }
4985 return false;
4986}
4987
4988
4989/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4990/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4991/// if the load addresses are consecutive, non-overlapping, and in the right
4992/// order.
4993static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4994 const X86Subtarget *Subtarget) {
4995 MachineFunction &MF = DAG.getMachineFunction();
4996 MachineFrameInfo *MFI = MF.getFrameInfo();
4997 MVT::ValueType VT = N->getValueType(0);
4998 MVT::ValueType EVT = MVT::getVectorElementType(VT);
4999 SDOperand PermMask = N->getOperand(2);
5000 int NumElems = (int)PermMask.getNumOperands();
5001 SDNode *Base = NULL;
5002 for (int i = 0; i < NumElems; ++i) {
5003 SDOperand Idx = PermMask.getOperand(i);
5004 if (Idx.getOpcode() == ISD::UNDEF) {
5005 if (!Base) return SDOperand();
5006 } else {
5007 SDOperand Arg =
5008 getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5009 if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5010 return SDOperand();
5011 if (!Base)
5012 Base = Arg.Val;
5013 else if (!isConsecutiveLoad(Arg.Val, Base,
5014 i, MVT::getSizeInBits(EVT)/8,MFI))
5015 return SDOperand();
5016 }
5017 }
5018
5019 bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
Dan Gohman11821702007-07-27 17:16:43 +00005020 LoadSDNode *LD = cast<LoadSDNode>(Base);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005021 if (isAlign16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005022 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
Dan Gohman11821702007-07-27 17:16:43 +00005023 LD->getSrcValueOffset(), LD->isVolatile());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005024 } else {
Dan Gohman11821702007-07-27 17:16:43 +00005025 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5026 LD->getSrcValueOffset(), LD->isVolatile(),
5027 LD->getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005028 }
5029}
5030
5031/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5032static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5033 const X86Subtarget *Subtarget) {
5034 SDOperand Cond = N->getOperand(0);
5035
5036 // If we have SSE[12] support, try to form min/max nodes.
5037 if (Subtarget->hasSSE2() &&
5038 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5039 if (Cond.getOpcode() == ISD::SETCC) {
5040 // Get the LHS/RHS of the select.
5041 SDOperand LHS = N->getOperand(1);
5042 SDOperand RHS = N->getOperand(2);
5043 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5044
5045 unsigned Opcode = 0;
5046 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5047 switch (CC) {
5048 default: break;
5049 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5050 case ISD::SETULE:
5051 case ISD::SETLE:
5052 if (!UnsafeFPMath) break;
5053 // FALL THROUGH.
5054 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
5055 case ISD::SETLT:
5056 Opcode = X86ISD::FMIN;
5057 break;
5058
5059 case ISD::SETOGT: // (X > Y) ? X : Y -> max
5060 case ISD::SETUGT:
5061 case ISD::SETGT:
5062 if (!UnsafeFPMath) break;
5063 // FALL THROUGH.
5064 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
5065 case ISD::SETGE:
5066 Opcode = X86ISD::FMAX;
5067 break;
5068 }
5069 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5070 switch (CC) {
5071 default: break;
5072 case ISD::SETOGT: // (X > Y) ? Y : X -> min
5073 case ISD::SETUGT:
5074 case ISD::SETGT:
5075 if (!UnsafeFPMath) break;
5076 // FALL THROUGH.
5077 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
5078 case ISD::SETGE:
5079 Opcode = X86ISD::FMIN;
5080 break;
5081
5082 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
5083 case ISD::SETULE:
5084 case ISD::SETLE:
5085 if (!UnsafeFPMath) break;
5086 // FALL THROUGH.
5087 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
5088 case ISD::SETLT:
5089 Opcode = X86ISD::FMAX;
5090 break;
5091 }
5092 }
5093
5094 if (Opcode)
5095 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5096 }
5097
5098 }
5099
5100 return SDOperand();
5101}
5102
5103
5104SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5105 DAGCombinerInfo &DCI) const {
5106 SelectionDAG &DAG = DCI.DAG;
5107 switch (N->getOpcode()) {
5108 default: break;
5109 case ISD::VECTOR_SHUFFLE:
5110 return PerformShuffleCombine(N, DAG, Subtarget);
5111 case ISD::SELECT:
5112 return PerformSELECTCombine(N, DAG, Subtarget);
5113 }
5114
5115 return SDOperand();
5116}
5117
5118//===----------------------------------------------------------------------===//
5119// X86 Inline Assembly Support
5120//===----------------------------------------------------------------------===//
5121
5122/// getConstraintType - Given a constraint letter, return the type of
5123/// constraint it is for this target.
5124X86TargetLowering::ConstraintType
5125X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5126 if (Constraint.size() == 1) {
5127 switch (Constraint[0]) {
5128 case 'A':
5129 case 'r':
5130 case 'R':
5131 case 'l':
5132 case 'q':
5133 case 'Q':
5134 case 'x':
5135 case 'Y':
5136 return C_RegisterClass;
5137 default:
5138 break;
5139 }
5140 }
5141 return TargetLowering::getConstraintType(Constraint);
5142}
5143
Chris Lattnera531abc2007-08-25 00:47:38 +00005144/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5145/// vector. If it is invalid, don't add anything to Ops.
5146void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5147 char Constraint,
5148 std::vector<SDOperand>&Ops,
5149 SelectionDAG &DAG) {
5150 SDOperand Result(0, 0);
5151
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005152 switch (Constraint) {
5153 default: break;
5154 case 'I':
5155 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005156 if (C->getValue() <= 31) {
5157 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5158 break;
5159 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005160 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005161 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005162 case 'N':
5163 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005164 if (C->getValue() <= 255) {
5165 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5166 break;
5167 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005168 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005169 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005170 case 'i': {
5171 // Literal immediates are always ok.
Chris Lattnera531abc2007-08-25 00:47:38 +00005172 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5173 Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5174 break;
5175 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005176
5177 // If we are in non-pic codegen mode, we allow the address of a global (with
5178 // an optional displacement) to be used with 'i'.
5179 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5180 int64_t Offset = 0;
5181
5182 // Match either (GA) or (GA+C)
5183 if (GA) {
5184 Offset = GA->getOffset();
5185 } else if (Op.getOpcode() == ISD::ADD) {
5186 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5187 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5188 if (C && GA) {
5189 Offset = GA->getOffset()+C->getValue();
5190 } else {
5191 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5192 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5193 if (C && GA)
5194 Offset = GA->getOffset()+C->getValue();
5195 else
5196 C = 0, GA = 0;
5197 }
5198 }
5199
5200 if (GA) {
5201 // If addressing this global requires a load (e.g. in PIC mode), we can't
5202 // match.
5203 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5204 false))
Chris Lattnera531abc2007-08-25 00:47:38 +00005205 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005206
5207 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5208 Offset);
Chris Lattnera531abc2007-08-25 00:47:38 +00005209 Result = Op;
5210 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005211 }
5212
5213 // Otherwise, not valid for this mode.
Chris Lattnera531abc2007-08-25 00:47:38 +00005214 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005215 }
5216 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005217
5218 if (Result.Val) {
5219 Ops.push_back(Result);
5220 return;
5221 }
5222 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005223}
5224
5225std::vector<unsigned> X86TargetLowering::
5226getRegClassForInlineAsmConstraint(const std::string &Constraint,
5227 MVT::ValueType VT) const {
5228 if (Constraint.size() == 1) {
5229 // FIXME: not handling fp-stack yet!
5230 switch (Constraint[0]) { // GCC X86 Constraint Letters
5231 default: break; // Unknown constraint letter
5232 case 'A': // EAX/EDX
5233 if (VT == MVT::i32 || VT == MVT::i64)
5234 return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5235 break;
5236 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
5237 case 'Q': // Q_REGS
5238 if (VT == MVT::i32)
5239 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5240 else if (VT == MVT::i16)
5241 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5242 else if (VT == MVT::i8)
Evan Chengf85c10f2007-08-13 23:27:11 +00005243 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005244 break;
5245 }
5246 }
5247
5248 return std::vector<unsigned>();
5249}
5250
5251std::pair<unsigned, const TargetRegisterClass*>
5252X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5253 MVT::ValueType VT) const {
5254 // First, see if this is a constraint that directly corresponds to an LLVM
5255 // register class.
5256 if (Constraint.size() == 1) {
5257 // GCC Constraint Letters
5258 switch (Constraint[0]) {
5259 default: break;
5260 case 'r': // GENERAL_REGS
5261 case 'R': // LEGACY_REGS
5262 case 'l': // INDEX_REGS
5263 if (VT == MVT::i64 && Subtarget->is64Bit())
5264 return std::make_pair(0U, X86::GR64RegisterClass);
5265 if (VT == MVT::i32)
5266 return std::make_pair(0U, X86::GR32RegisterClass);
5267 else if (VT == MVT::i16)
5268 return std::make_pair(0U, X86::GR16RegisterClass);
5269 else if (VT == MVT::i8)
5270 return std::make_pair(0U, X86::GR8RegisterClass);
5271 break;
5272 case 'y': // MMX_REGS if MMX allowed.
5273 if (!Subtarget->hasMMX()) break;
5274 return std::make_pair(0U, X86::VR64RegisterClass);
5275 break;
5276 case 'Y': // SSE_REGS if SSE2 allowed
5277 if (!Subtarget->hasSSE2()) break;
5278 // FALL THROUGH.
5279 case 'x': // SSE_REGS if SSE1 allowed
5280 if (!Subtarget->hasSSE1()) break;
5281
5282 switch (VT) {
5283 default: break;
5284 // Scalar SSE types.
5285 case MVT::f32:
5286 case MVT::i32:
5287 return std::make_pair(0U, X86::FR32RegisterClass);
5288 case MVT::f64:
5289 case MVT::i64:
5290 return std::make_pair(0U, X86::FR64RegisterClass);
5291 // Vector types.
5292 case MVT::v16i8:
5293 case MVT::v8i16:
5294 case MVT::v4i32:
5295 case MVT::v2i64:
5296 case MVT::v4f32:
5297 case MVT::v2f64:
5298 return std::make_pair(0U, X86::VR128RegisterClass);
5299 }
5300 break;
5301 }
5302 }
5303
5304 // Use the default implementation in TargetLowering to convert the register
5305 // constraint into a member of a register class.
5306 std::pair<unsigned, const TargetRegisterClass*> Res;
5307 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5308
5309 // Not found as a standard register?
5310 if (Res.second == 0) {
5311 // GCC calls "st(0)" just plain "st".
5312 if (StringsEqualNoCase("{st}", Constraint)) {
5313 Res.first = X86::ST0;
Chris Lattner3cfe51b2007-09-24 05:27:37 +00005314 Res.second = X86::RFP80RegisterClass;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005315 }
5316
5317 return Res;
5318 }
5319
5320 // Otherwise, check to see if this is a register class of the wrong value
5321 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5322 // turn into {ax},{dx}.
5323 if (Res.second->hasType(VT))
5324 return Res; // Correct type already, nothing to do.
5325
5326 // All of the single-register GCC register classes map their values onto
5327 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
5328 // really want an 8-bit or 32-bit register, map to the appropriate register
5329 // class and return the appropriate register.
5330 if (Res.second != X86::GR16RegisterClass)
5331 return Res;
5332
5333 if (VT == MVT::i8) {
5334 unsigned DestReg = 0;
5335 switch (Res.first) {
5336 default: break;
5337 case X86::AX: DestReg = X86::AL; break;
5338 case X86::DX: DestReg = X86::DL; break;
5339 case X86::CX: DestReg = X86::CL; break;
5340 case X86::BX: DestReg = X86::BL; break;
5341 }
5342 if (DestReg) {
5343 Res.first = DestReg;
5344 Res.second = Res.second = X86::GR8RegisterClass;
5345 }
5346 } else if (VT == MVT::i32) {
5347 unsigned DestReg = 0;
5348 switch (Res.first) {
5349 default: break;
5350 case X86::AX: DestReg = X86::EAX; break;
5351 case X86::DX: DestReg = X86::EDX; break;
5352 case X86::CX: DestReg = X86::ECX; break;
5353 case X86::BX: DestReg = X86::EBX; break;
5354 case X86::SI: DestReg = X86::ESI; break;
5355 case X86::DI: DestReg = X86::EDI; break;
5356 case X86::BP: DestReg = X86::EBP; break;
5357 case X86::SP: DestReg = X86::ESP; break;
5358 }
5359 if (DestReg) {
5360 Res.first = DestReg;
5361 Res.second = Res.second = X86::GR32RegisterClass;
5362 }
5363 } else if (VT == MVT::i64) {
5364 unsigned DestReg = 0;
5365 switch (Res.first) {
5366 default: break;
5367 case X86::AX: DestReg = X86::RAX; break;
5368 case X86::DX: DestReg = X86::RDX; break;
5369 case X86::CX: DestReg = X86::RCX; break;
5370 case X86::BX: DestReg = X86::RBX; break;
5371 case X86::SI: DestReg = X86::RSI; break;
5372 case X86::DI: DestReg = X86::RDI; break;
5373 case X86::BP: DestReg = X86::RBP; break;
5374 case X86::SP: DestReg = X86::RSP; break;
5375 }
5376 if (DestReg) {
5377 Res.first = DestReg;
5378 Res.second = Res.second = X86::GR64RegisterClass;
5379 }
5380 }
5381
5382 return Res;
5383}