blob: 37dea796cd67a0c99ef2c09dddd6dbc1e8c13e91 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/ADT/StringExtras.h"
37using namespace llvm;
38
39X86TargetLowering::X86TargetLowering(TargetMachine &TM)
40 : TargetLowering(TM) {
41 Subtarget = &TM.getSubtarget<X86Subtarget>();
42 X86ScalarSSE = Subtarget->hasSSE2();
43 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
44
45 RegInfo = TM.getRegisterInfo();
46
47 // Set up the TargetLowering object.
48
49 // X86 is weird, it always uses i8 for shift amounts and setcc results.
50 setShiftAmountType(MVT::i8);
51 setSetCCResultType(MVT::i8);
52 setSetCCResultContents(ZeroOrOneSetCCResult);
53 setSchedulingPreference(SchedulingForRegPressure);
54 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
55 setStackPointerRegisterToSaveRestore(X86StackPtr);
56
57 if (Subtarget->isTargetDarwin()) {
58 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
59 setUseUnderscoreSetJmp(false);
60 setUseUnderscoreLongJmp(false);
61 } else if (Subtarget->isTargetMingw()) {
62 // MS runtime is weird: it exports _setjmp, but longjmp!
63 setUseUnderscoreSetJmp(true);
64 setUseUnderscoreLongJmp(false);
65 } else {
66 setUseUnderscoreSetJmp(true);
67 setUseUnderscoreLongJmp(true);
68 }
69
70 // Set up the register classes.
71 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
72 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
73 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
74 if (Subtarget->is64Bit())
75 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
76
77 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
78
79 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
80 // operation.
81 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
82 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
83 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
84
85 if (Subtarget->is64Bit()) {
86 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
87 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
88 } else {
89 if (X86ScalarSSE)
90 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
91 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
92 else
93 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
94 }
95
96 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
97 // this operation.
98 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
99 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
100 // SSE has no i16 to fp conversion, only i32
101 if (X86ScalarSSE)
102 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
103 else {
104 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
105 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
106 }
107
108 if (!Subtarget->is64Bit()) {
109 // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
110 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
111 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
112 }
113
114 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
115 // this operation.
116 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
117 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
118
119 if (X86ScalarSSE) {
120 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
121 } else {
122 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
123 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
124 }
125
126 // Handle FP_TO_UINT by promoting the destination to a larger signed
127 // conversion.
128 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
129 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
130 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
131
132 if (Subtarget->is64Bit()) {
133 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
134 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
135 } else {
136 if (X86ScalarSSE && !Subtarget->hasSSE3())
137 // Expand FP_TO_UINT into a select.
138 // FIXME: We would like to use a Custom expander here eventually to do
139 // the optimal thing for SSE vs. the default expansion in the legalizer.
140 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
141 else
142 // With SSE3 we can use fisttpll to convert to a signed i64.
143 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
144 }
145
146 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
147 if (!X86ScalarSSE) {
148 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
149 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
150 }
151
152 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
153 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
154 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
155 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
156 setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
157 if (Subtarget->is64Bit())
158 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
159 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Expand);
160 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
161 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
162 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
163 setOperationAction(ISD::FREM , MVT::f64 , Expand);
164
165 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
166 setOperationAction(ISD::CTTZ , MVT::i8 , Expand);
167 setOperationAction(ISD::CTLZ , MVT::i8 , Expand);
168 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
169 setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
170 setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
171 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
172 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
173 setOperationAction(ISD::CTLZ , MVT::i32 , Expand);
174 if (Subtarget->is64Bit()) {
175 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
176 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
177 setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
178 }
179
180 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
181 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
182
183 // These should be promoted to a larger select which is supported.
184 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
185 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
186 // X86 wants to expand cmov itself.
187 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
188 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
189 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
190 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
191 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
192 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
193 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
194 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
195 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
196 if (Subtarget->is64Bit()) {
197 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
198 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
199 }
200 // X86 ret instruction may pop stack.
201 setOperationAction(ISD::RET , MVT::Other, Custom);
202 if (!Subtarget->is64Bit())
203 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
204
205 // Darwin ABI issue.
206 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
207 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
208 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
209 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
210 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
211 if (Subtarget->is64Bit()) {
212 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
213 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
214 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
215 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
216 }
217 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
218 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
219 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
220 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
221 // X86 wants to expand memset / memcpy itself.
222 setOperationAction(ISD::MEMSET , MVT::Other, Custom);
223 setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
224
225 // We don't have line number support yet.
226 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
227 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
228 // FIXME - use subtarget debug flags
229 if (!Subtarget->isTargetDarwin() &&
230 !Subtarget->isTargetELF() &&
231 !Subtarget->isTargetCygMing())
232 setOperationAction(ISD::LABEL, MVT::Other, Expand);
233
234 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
235 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
236 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
237 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
238 if (Subtarget->is64Bit()) {
239 // FIXME: Verify
240 setExceptionPointerRegister(X86::RAX);
241 setExceptionSelectorRegister(X86::RDX);
242 } else {
243 setExceptionPointerRegister(X86::EAX);
244 setExceptionSelectorRegister(X86::EDX);
245 }
246
247 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
248 setOperationAction(ISD::VASTART , MVT::Other, Custom);
249 setOperationAction(ISD::VAARG , MVT::Other, Expand);
250 setOperationAction(ISD::VAEND , MVT::Other, Expand);
251 if (Subtarget->is64Bit())
252 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
253 else
254 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
255
256 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
257 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
258 if (Subtarget->is64Bit())
259 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
260 if (Subtarget->isTargetCygMing())
261 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
262 else
263 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
264
265 if (X86ScalarSSE) {
266 // Set up the FP register classes.
267 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
268 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
269
270 // Use ANDPD to simulate FABS.
271 setOperationAction(ISD::FABS , MVT::f64, Custom);
272 setOperationAction(ISD::FABS , MVT::f32, Custom);
273
274 // Use XORP to simulate FNEG.
275 setOperationAction(ISD::FNEG , MVT::f64, Custom);
276 setOperationAction(ISD::FNEG , MVT::f32, Custom);
277
278 // Use ANDPD and ORPD to simulate FCOPYSIGN.
279 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
280 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
281
282 // We don't support sin/cos/fmod
283 setOperationAction(ISD::FSIN , MVT::f64, Expand);
284 setOperationAction(ISD::FCOS , MVT::f64, Expand);
285 setOperationAction(ISD::FREM , MVT::f64, Expand);
286 setOperationAction(ISD::FSIN , MVT::f32, Expand);
287 setOperationAction(ISD::FCOS , MVT::f32, Expand);
288 setOperationAction(ISD::FREM , MVT::f32, Expand);
289
290 // Expand FP immediates into loads from the stack, except for the special
291 // cases we handle.
292 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
293 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
294 addLegalFPImmediate(+0.0); // xorps / xorpd
295 } else {
296 // Set up the FP register classes.
297 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
298 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
299
300 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
301 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
302 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
303 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
304 setOperationAction(ISD::FP_ROUND, MVT::f32, Expand);
305
306 if (!UnsafeFPMath) {
307 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
308 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
309 }
310
311 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
312 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
313 addLegalFPImmediate(+0.0); // FLD0
314 addLegalFPImmediate(+1.0); // FLD1
315 addLegalFPImmediate(-0.0); // FLD0/FCHS
316 addLegalFPImmediate(-1.0); // FLD1/FCHS
317 }
318
319 // First set operation action for all vector types to expand. Then we
320 // will selectively turn on ones that can be effectively codegen'd.
321 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
322 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
323 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
324 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
325 setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
326 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
327 setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
328 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
329 setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
330 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
331 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
332 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
333 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
334 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
335 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
336 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
337 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
338 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
339 setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
340 setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
341 setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
342 setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
343 setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
344 setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
345 setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
346 }
347
348 if (Subtarget->hasMMX()) {
349 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
350 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
351 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
352 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
353
354 // FIXME: add MMX packed arithmetics
355
356 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
357 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
358 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
359 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
360
361 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
362 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
363 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
364
365 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
366 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
367
368 setOperationAction(ISD::AND, MVT::v8i8, Promote);
369 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
370 setOperationAction(ISD::AND, MVT::v4i16, Promote);
371 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
372 setOperationAction(ISD::AND, MVT::v2i32, Promote);
373 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
374 setOperationAction(ISD::AND, MVT::v1i64, Legal);
375
376 setOperationAction(ISD::OR, MVT::v8i8, Promote);
377 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
378 setOperationAction(ISD::OR, MVT::v4i16, Promote);
379 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
380 setOperationAction(ISD::OR, MVT::v2i32, Promote);
381 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
382 setOperationAction(ISD::OR, MVT::v1i64, Legal);
383
384 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
385 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
386 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
387 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
388 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
389 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
390 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
391
392 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
393 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
394 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
395 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
396 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
397 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
398 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
399
400 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
401 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
402 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
403 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
404
405 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
406 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
407 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
408 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
409
410 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
411 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
412 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Custom);
413 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
414 }
415
416 if (Subtarget->hasSSE1()) {
417 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
418
419 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
420 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
421 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
422 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
423 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
424 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
425 setOperationAction(ISD::FABS, MVT::v4f32, Custom);
426 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
427 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
428 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
429 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
430 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
431 }
432
433 if (Subtarget->hasSSE2()) {
434 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
435 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
436 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
437 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
438 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
439
440 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
441 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
442 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
443 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
444 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
445 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
446 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
447 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
448 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
449 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
450 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
451 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
452 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
453 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
454 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
455 setOperationAction(ISD::FABS, MVT::v2f64, Custom);
456
457 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
458 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
459 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
460 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
461 // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
462 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
463
464 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
465 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
466 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom);
467 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom);
468 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom);
469 }
470 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
471 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
472 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
473 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
474 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
475 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
476
477 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
478 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
479 setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote);
480 AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64);
481 setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote);
482 AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64);
483 setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote);
484 AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64);
485 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote);
486 AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64);
487 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
488 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
489 }
490
491 // Custom lower v2i64 and v2f64 selects.
492 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
493 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
494 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
495 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
496 }
497
498 // We want to custom lower some of our intrinsics.
499 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
500
501 // We have target-specific dag combine patterns for the following nodes:
502 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
503 setTargetDAGCombine(ISD::SELECT);
504
505 computeRegisterProperties();
506
507 // FIXME: These should be based on subtarget info. Plus, the values should
508 // be smaller when we are in optimizing for size mode.
509 maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
510 maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
511 maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
512 allowUnalignedMemoryAccesses = true; // x86 supports it!
513}
514
515
516//===----------------------------------------------------------------------===//
517// Return Value Calling Convention Implementation
518//===----------------------------------------------------------------------===//
519
520#include "X86GenCallingConv.inc"
521
522/// LowerRET - Lower an ISD::RET node.
523SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
524 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
525
526 SmallVector<CCValAssign, 16> RVLocs;
527 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
528 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
529 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
530 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
531
532
533 // If this is the first return lowered for this function, add the regs to the
534 // liveout set for the function.
535 if (DAG.getMachineFunction().liveout_empty()) {
536 for (unsigned i = 0; i != RVLocs.size(); ++i)
537 if (RVLocs[i].isRegLoc())
538 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
539 }
540
541 SDOperand Chain = Op.getOperand(0);
542 SDOperand Flag;
543
544 // Copy the result values into the output registers.
545 if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
546 RVLocs[0].getLocReg() != X86::ST0) {
547 for (unsigned i = 0; i != RVLocs.size(); ++i) {
548 CCValAssign &VA = RVLocs[i];
549 assert(VA.isRegLoc() && "Can only return in registers!");
550 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
551 Flag);
552 Flag = Chain.getValue(1);
553 }
554 } else {
555 // We need to handle a destination of ST0 specially, because it isn't really
556 // a register.
557 SDOperand Value = Op.getOperand(1);
558
559 // If this is an FP return with ScalarSSE, we need to move the value from
560 // an XMM register onto the fp-stack.
561 if (X86ScalarSSE) {
562 SDOperand MemLoc;
563
564 // If this is a load into a scalarsse value, don't store the loaded value
565 // back to the stack, only to reload it: just replace the scalar-sse load.
566 if (ISD::isNON_EXTLoad(Value.Val) &&
567 (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
568 Chain = Value.getOperand(0);
569 MemLoc = Value.getOperand(1);
570 } else {
571 // Spill the value to memory and reload it into top of stack.
572 unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
573 MachineFunction &MF = DAG.getMachineFunction();
574 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
575 MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
576 Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
577 }
578 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
579 SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
580 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
581 Chain = Value.getValue(1);
582 }
583
584 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
585 SDOperand Ops[] = { Chain, Value };
586 Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
587 Flag = Chain.getValue(1);
588 }
589
590 SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
591 if (Flag.Val)
592 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
593 else
594 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
595}
596
597
598/// LowerCallResult - Lower the result values of an ISD::CALL into the
599/// appropriate copies out of appropriate physical registers. This assumes that
600/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
601/// being lowered. The returns a SDNode with the same number of values as the
602/// ISD::CALL.
603SDNode *X86TargetLowering::
604LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
605 unsigned CallingConv, SelectionDAG &DAG) {
606
607 // Assign locations to each value returned by this call.
608 SmallVector<CCValAssign, 16> RVLocs;
609 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
610 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
611 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
612
613
614 SmallVector<SDOperand, 8> ResultVals;
615
616 // Copy all of the result registers out of their specified physreg.
617 if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
618 for (unsigned i = 0; i != RVLocs.size(); ++i) {
619 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
620 RVLocs[i].getValVT(), InFlag).getValue(1);
621 InFlag = Chain.getValue(2);
622 ResultVals.push_back(Chain.getValue(0));
623 }
624 } else {
625 // Copies from the FP stack are special, as ST0 isn't a valid register
626 // before the fp stackifier runs.
627
628 // Copy ST0 into an RFP register with FP_GET_RESULT.
629 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
630 SDOperand GROps[] = { Chain, InFlag };
631 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
632 Chain = RetVal.getValue(1);
633 InFlag = RetVal.getValue(2);
634
635 // If we are using ScalarSSE, store ST(0) to the stack and reload it into
636 // an XMM register.
637 if (X86ScalarSSE) {
638 // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
639 // shouldn't be necessary except that RFP cannot be live across
640 // multiple blocks. When stackifier is fixed, they can be uncoupled.
641 MachineFunction &MF = DAG.getMachineFunction();
642 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
643 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
644 SDOperand Ops[] = {
645 Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
646 };
647 Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
648 RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
649 Chain = RetVal.getValue(1);
650 }
651 ResultVals.push_back(RetVal);
652 }
653
654 // Merge everything together with a MERGE_VALUES node.
655 ResultVals.push_back(Chain);
656 return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
657 &ResultVals[0], ResultVals.size()).Val;
658}
659
660
661//===----------------------------------------------------------------------===//
662// C & StdCall Calling Convention implementation
663//===----------------------------------------------------------------------===//
664// StdCall calling convention seems to be standard for many Windows' API
665// routines and around. It differs from C calling convention just a little:
666// callee should clean up the stack, not caller. Symbols should be also
667// decorated in some fancy way :) It doesn't support any vector arguments.
668
669/// AddLiveIn - This helper function adds the specified physical register to the
670/// MachineFunction as a live in value. It also creates a corresponding virtual
671/// register for it.
672static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
673 const TargetRegisterClass *RC) {
674 assert(RC->contains(PReg) && "Not the correct regclass!");
675 unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
676 MF.addLiveIn(PReg, VReg);
677 return VReg;
678}
679
680SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
681 bool isStdCall) {
682 unsigned NumArgs = Op.Val->getNumValues() - 1;
683 MachineFunction &MF = DAG.getMachineFunction();
684 MachineFrameInfo *MFI = MF.getFrameInfo();
685 SDOperand Root = Op.getOperand(0);
686 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
687
688 // Assign locations to all of the incoming arguments.
689 SmallVector<CCValAssign, 16> ArgLocs;
690 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
691 getTargetMachine(), ArgLocs);
692 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
693
694 SmallVector<SDOperand, 8> ArgValues;
695 unsigned LastVal = ~0U;
696 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
697 CCValAssign &VA = ArgLocs[i];
698 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
699 // places.
700 assert(VA.getValNo() != LastVal &&
701 "Don't support value assigned to multiple locs yet");
702 LastVal = VA.getValNo();
703
704 if (VA.isRegLoc()) {
705 MVT::ValueType RegVT = VA.getLocVT();
706 TargetRegisterClass *RC;
707 if (RegVT == MVT::i32)
708 RC = X86::GR32RegisterClass;
709 else {
710 assert(MVT::isVector(RegVT));
711 RC = X86::VR128RegisterClass;
712 }
713
714 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
715 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
716
717 // If this is an 8 or 16-bit value, it is really passed promoted to 32
718 // bits. Insert an assert[sz]ext to capture this, then truncate to the
719 // right size.
720 if (VA.getLocInfo() == CCValAssign::SExt)
721 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
722 DAG.getValueType(VA.getValVT()));
723 else if (VA.getLocInfo() == CCValAssign::ZExt)
724 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
725 DAG.getValueType(VA.getValVT()));
726
727 if (VA.getLocInfo() != CCValAssign::Full)
728 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
729
730 ArgValues.push_back(ArgValue);
731 } else {
732 assert(VA.isMemLoc());
733
734 // Create the nodes corresponding to a load from this parameter slot.
735 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
736 VA.getLocMemOffset());
737 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
738 ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
739 }
740 }
741
742 unsigned StackSize = CCInfo.getNextStackOffset();
743
744 ArgValues.push_back(Root);
745
746 // If the function takes variable number of arguments, make a frame index for
747 // the start of the first vararg value... for expansion of llvm.va_start.
748 if (isVarArg)
749 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
750
751 if (isStdCall && !isVarArg) {
752 BytesToPopOnReturn = StackSize; // Callee pops everything..
753 BytesCallerReserves = 0;
754 } else {
755 BytesToPopOnReturn = 0; // Callee pops nothing.
756
757 // If this is an sret function, the return should pop the hidden pointer.
758 if (NumArgs &&
759 (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
760 ISD::ParamFlags::StructReturn))
761 BytesToPopOnReturn = 4;
762
763 BytesCallerReserves = StackSize;
764 }
765
766 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
767 ReturnAddrIndex = 0; // No return address slot generated yet.
768
769 MF.getInfo<X86MachineFunctionInfo>()
770 ->setBytesToPopOnReturn(BytesToPopOnReturn);
771
772 // Return the new list of results.
773 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
774 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
775}
776
777SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
778 unsigned CC) {
779 SDOperand Chain = Op.getOperand(0);
780 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
781 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
782 SDOperand Callee = Op.getOperand(4);
783 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
784
785 // Analyze operands of the call, assigning locations to each operand.
786 SmallVector<CCValAssign, 16> ArgLocs;
787 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
788 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
789
790 // Get a count of how many bytes are to be pushed on the stack.
791 unsigned NumBytes = CCInfo.getNextStackOffset();
792
793 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
794
795 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
796 SmallVector<SDOperand, 8> MemOpChains;
797
798 SDOperand StackPtr;
799
800 // Walk the register/memloc assignments, inserting copies/loads.
801 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
802 CCValAssign &VA = ArgLocs[i];
803 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
804
805 // Promote the value if needed.
806 switch (VA.getLocInfo()) {
807 default: assert(0 && "Unknown loc info!");
808 case CCValAssign::Full: break;
809 case CCValAssign::SExt:
810 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
811 break;
812 case CCValAssign::ZExt:
813 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
814 break;
815 case CCValAssign::AExt:
816 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
817 break;
818 }
819
820 if (VA.isRegLoc()) {
821 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
822 } else {
823 assert(VA.isMemLoc());
824 if (StackPtr.Val == 0)
825 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
826 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
827 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
828 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
829 }
830 }
831
832 // If the first argument is an sret pointer, remember it.
833 bool isSRet = NumOps &&
834 (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
835 ISD::ParamFlags::StructReturn);
836
837 if (!MemOpChains.empty())
838 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
839 &MemOpChains[0], MemOpChains.size());
840
841 // Build a sequence of copy-to-reg nodes chained together with token chain
842 // and flag operands which copy the outgoing args into registers.
843 SDOperand InFlag;
844 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
845 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
846 InFlag);
847 InFlag = Chain.getValue(1);
848 }
849
850 // ELF / PIC requires GOT in the EBX register before function calls via PLT
851 // GOT pointer.
852 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
853 Subtarget->isPICStyleGOT()) {
854 Chain = DAG.getCopyToReg(Chain, X86::EBX,
855 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
856 InFlag);
857 InFlag = Chain.getValue(1);
858 }
859
860 // If the callee is a GlobalAddress node (quite common, every direct call is)
861 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
862 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
863 // We should use extra load for direct calls to dllimported functions in
864 // non-JIT mode.
865 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
866 getTargetMachine(), true))
867 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
868 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
869 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
870
871 // Returns a chain & a flag for retval copy to use.
872 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
873 SmallVector<SDOperand, 8> Ops;
874 Ops.push_back(Chain);
875 Ops.push_back(Callee);
876
877 // Add argument registers to the end of the list so that they are known live
878 // into the call.
879 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
880 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
881 RegsToPass[i].second.getValueType()));
882
883 // Add an implicit use GOT pointer in EBX.
884 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
885 Subtarget->isPICStyleGOT())
886 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
887
888 if (InFlag.Val)
889 Ops.push_back(InFlag);
890
891 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
892 NodeTys, &Ops[0], Ops.size());
893 InFlag = Chain.getValue(1);
894
895 // Create the CALLSEQ_END node.
896 unsigned NumBytesForCalleeToPush = 0;
897
898 if (CC == CallingConv::X86_StdCall) {
899 if (isVarArg)
900 NumBytesForCalleeToPush = isSRet ? 4 : 0;
901 else
902 NumBytesForCalleeToPush = NumBytes;
903 } else {
904 // If this is is a call to a struct-return function, the callee
905 // pops the hidden struct pointer, so we have to push it back.
906 // This is common for Darwin/X86, Linux & Mingw32 targets.
907 NumBytesForCalleeToPush = isSRet ? 4 : 0;
908 }
909
910 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
911 Ops.clear();
912 Ops.push_back(Chain);
913 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
914 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
915 Ops.push_back(InFlag);
916 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
917 InFlag = Chain.getValue(1);
918
919 // Handle result values, copying them out of physregs into vregs that we
920 // return.
921 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
922}
923
924
925//===----------------------------------------------------------------------===//
926// FastCall Calling Convention implementation
927//===----------------------------------------------------------------------===//
928//
929// The X86 'fastcall' calling convention passes up to two integer arguments in
930// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
931// and requires that the callee pop its arguments off the stack (allowing proper
932// tail calls), and has the same return value conventions as C calling convs.
933//
934// This calling convention always arranges for the callee pop value to be 8n+4
935// bytes, which is needed for tail recursion elimination and stack alignment
936// reasons.
937SDOperand
938X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
939 MachineFunction &MF = DAG.getMachineFunction();
940 MachineFrameInfo *MFI = MF.getFrameInfo();
941 SDOperand Root = Op.getOperand(0);
942 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
943
944 // Assign locations to all of the incoming arguments.
945 SmallVector<CCValAssign, 16> ArgLocs;
946 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
947 getTargetMachine(), ArgLocs);
948 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
949
950 SmallVector<SDOperand, 8> ArgValues;
951 unsigned LastVal = ~0U;
952 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
953 CCValAssign &VA = ArgLocs[i];
954 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
955 // places.
956 assert(VA.getValNo() != LastVal &&
957 "Don't support value assigned to multiple locs yet");
958 LastVal = VA.getValNo();
959
960 if (VA.isRegLoc()) {
961 MVT::ValueType RegVT = VA.getLocVT();
962 TargetRegisterClass *RC;
963 if (RegVT == MVT::i32)
964 RC = X86::GR32RegisterClass;
965 else {
966 assert(MVT::isVector(RegVT));
967 RC = X86::VR128RegisterClass;
968 }
969
970 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
971 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
972
973 // If this is an 8 or 16-bit value, it is really passed promoted to 32
974 // bits. Insert an assert[sz]ext to capture this, then truncate to the
975 // right size.
976 if (VA.getLocInfo() == CCValAssign::SExt)
977 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
978 DAG.getValueType(VA.getValVT()));
979 else if (VA.getLocInfo() == CCValAssign::ZExt)
980 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
981 DAG.getValueType(VA.getValVT()));
982
983 if (VA.getLocInfo() != CCValAssign::Full)
984 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
985
986 ArgValues.push_back(ArgValue);
987 } else {
988 assert(VA.isMemLoc());
989
990 // Create the nodes corresponding to a load from this parameter slot.
991 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
992 VA.getLocMemOffset());
993 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
994 ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
995 }
996 }
997
998 ArgValues.push_back(Root);
999
1000 unsigned StackSize = CCInfo.getNextStackOffset();
1001
1002 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1003 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1004 // arguments and the arguments after the retaddr has been pushed are aligned.
1005 if ((StackSize & 7) == 0)
1006 StackSize += 4;
1007 }
1008
1009 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1010 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
1011 ReturnAddrIndex = 0; // No return address slot generated yet.
1012 BytesToPopOnReturn = StackSize; // Callee pops all stack arguments.
1013 BytesCallerReserves = 0;
1014
1015 MF.getInfo<X86MachineFunctionInfo>()
1016 ->setBytesToPopOnReturn(BytesToPopOnReturn);
1017
1018 // Return the new list of results.
1019 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1020 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1021}
1022
1023SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1024 unsigned CC) {
1025 SDOperand Chain = Op.getOperand(0);
1026 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1027 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1028 SDOperand Callee = Op.getOperand(4);
1029
1030 // Analyze operands of the call, assigning locations to each operand.
1031 SmallVector<CCValAssign, 16> ArgLocs;
1032 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1033 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1034
1035 // Get a count of how many bytes are to be pushed on the stack.
1036 unsigned NumBytes = CCInfo.getNextStackOffset();
1037
1038 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1039 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1040 // arguments and the arguments after the retaddr has been pushed are aligned.
1041 if ((NumBytes & 7) == 0)
1042 NumBytes += 4;
1043 }
1044
1045 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1046
1047 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1048 SmallVector<SDOperand, 8> MemOpChains;
1049
1050 SDOperand StackPtr;
1051
1052 // Walk the register/memloc assignments, inserting copies/loads.
1053 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1054 CCValAssign &VA = ArgLocs[i];
1055 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1056
1057 // Promote the value if needed.
1058 switch (VA.getLocInfo()) {
1059 default: assert(0 && "Unknown loc info!");
1060 case CCValAssign::Full: break;
1061 case CCValAssign::SExt:
1062 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1063 break;
1064 case CCValAssign::ZExt:
1065 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1066 break;
1067 case CCValAssign::AExt:
1068 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1069 break;
1070 }
1071
1072 if (VA.isRegLoc()) {
1073 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1074 } else {
1075 assert(VA.isMemLoc());
1076 if (StackPtr.Val == 0)
1077 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1078 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1079 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1080 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1081 }
1082 }
1083
1084 if (!MemOpChains.empty())
1085 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1086 &MemOpChains[0], MemOpChains.size());
1087
1088 // Build a sequence of copy-to-reg nodes chained together with token chain
1089 // and flag operands which copy the outgoing args into registers.
1090 SDOperand InFlag;
1091 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1092 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1093 InFlag);
1094 InFlag = Chain.getValue(1);
1095 }
1096
1097 // If the callee is a GlobalAddress node (quite common, every direct call is)
1098 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1099 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1100 // We should use extra load for direct calls to dllimported functions in
1101 // non-JIT mode.
1102 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1103 getTargetMachine(), true))
1104 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1105 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1106 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1107
1108 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1109 // GOT pointer.
1110 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1111 Subtarget->isPICStyleGOT()) {
1112 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1113 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1114 InFlag);
1115 InFlag = Chain.getValue(1);
1116 }
1117
1118 // Returns a chain & a flag for retval copy to use.
1119 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1120 SmallVector<SDOperand, 8> Ops;
1121 Ops.push_back(Chain);
1122 Ops.push_back(Callee);
1123
1124 // Add argument registers to the end of the list so that they are known live
1125 // into the call.
1126 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1127 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1128 RegsToPass[i].second.getValueType()));
1129
1130 // Add an implicit use GOT pointer in EBX.
1131 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1132 Subtarget->isPICStyleGOT())
1133 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1134
1135 if (InFlag.Val)
1136 Ops.push_back(InFlag);
1137
1138 // FIXME: Do not generate X86ISD::TAILCALL for now.
1139 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1140 NodeTys, &Ops[0], Ops.size());
1141 InFlag = Chain.getValue(1);
1142
1143 // Returns a flag for retval copy to use.
1144 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1145 Ops.clear();
1146 Ops.push_back(Chain);
1147 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1148 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1149 Ops.push_back(InFlag);
1150 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1151 InFlag = Chain.getValue(1);
1152
1153 // Handle result values, copying them out of physregs into vregs that we
1154 // return.
1155 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1156}
1157
1158
1159//===----------------------------------------------------------------------===//
1160// X86-64 C Calling Convention implementation
1161//===----------------------------------------------------------------------===//
1162
1163SDOperand
1164X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1165 MachineFunction &MF = DAG.getMachineFunction();
1166 MachineFrameInfo *MFI = MF.getFrameInfo();
1167 SDOperand Root = Op.getOperand(0);
1168 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1169
1170 static const unsigned GPR64ArgRegs[] = {
1171 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1172 };
1173 static const unsigned XMMArgRegs[] = {
1174 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1175 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1176 };
1177
1178
1179 // Assign locations to all of the incoming arguments.
1180 SmallVector<CCValAssign, 16> ArgLocs;
1181 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1182 getTargetMachine(), ArgLocs);
1183 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1184
1185 SmallVector<SDOperand, 8> ArgValues;
1186 unsigned LastVal = ~0U;
1187 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1188 CCValAssign &VA = ArgLocs[i];
1189 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1190 // places.
1191 assert(VA.getValNo() != LastVal &&
1192 "Don't support value assigned to multiple locs yet");
1193 LastVal = VA.getValNo();
1194
1195 if (VA.isRegLoc()) {
1196 MVT::ValueType RegVT = VA.getLocVT();
1197 TargetRegisterClass *RC;
1198 if (RegVT == MVT::i32)
1199 RC = X86::GR32RegisterClass;
1200 else if (RegVT == MVT::i64)
1201 RC = X86::GR64RegisterClass;
1202 else if (RegVT == MVT::f32)
1203 RC = X86::FR32RegisterClass;
1204 else if (RegVT == MVT::f64)
1205 RC = X86::FR64RegisterClass;
1206 else {
1207 assert(MVT::isVector(RegVT));
1208 if (MVT::getSizeInBits(RegVT) == 64) {
1209 RC = X86::GR64RegisterClass; // MMX values are passed in GPRs.
1210 RegVT = MVT::i64;
1211 } else
1212 RC = X86::VR128RegisterClass;
1213 }
1214
1215 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1216 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1217
1218 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1219 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1220 // right size.
1221 if (VA.getLocInfo() == CCValAssign::SExt)
1222 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1223 DAG.getValueType(VA.getValVT()));
1224 else if (VA.getLocInfo() == CCValAssign::ZExt)
1225 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1226 DAG.getValueType(VA.getValVT()));
1227
1228 if (VA.getLocInfo() != CCValAssign::Full)
1229 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1230
1231 // Handle MMX values passed in GPRs.
1232 if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1233 MVT::getSizeInBits(RegVT) == 64)
1234 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1235
1236 ArgValues.push_back(ArgValue);
1237 } else {
1238 assert(VA.isMemLoc());
1239
1240 // Create the nodes corresponding to a load from this parameter slot.
1241 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1242 VA.getLocMemOffset());
1243 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1244 ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
1245 }
1246 }
1247
1248 unsigned StackSize = CCInfo.getNextStackOffset();
1249
1250 // If the function takes variable number of arguments, make a frame index for
1251 // the start of the first vararg value... for expansion of llvm.va_start.
1252 if (isVarArg) {
1253 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1254 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1255
1256 // For X86-64, if there are vararg parameters that are passed via
1257 // registers, then we must store them to their spots on the stack so they
1258 // may be loaded by deferencing the result of va_next.
1259 VarArgsGPOffset = NumIntRegs * 8;
1260 VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1261 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1262 RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1263
1264 // Store the integer parameter registers.
1265 SmallVector<SDOperand, 8> MemOps;
1266 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1267 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1268 DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1269 for (; NumIntRegs != 6; ++NumIntRegs) {
1270 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1271 X86::GR64RegisterClass);
1272 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1273 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1274 MemOps.push_back(Store);
1275 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1276 DAG.getConstant(8, getPointerTy()));
1277 }
1278
1279 // Now store the XMM (fp + vector) parameter registers.
1280 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1281 DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1282 for (; NumXMMRegs != 8; ++NumXMMRegs) {
1283 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1284 X86::VR128RegisterClass);
1285 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1286 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1287 MemOps.push_back(Store);
1288 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1289 DAG.getConstant(16, getPointerTy()));
1290 }
1291 if (!MemOps.empty())
1292 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1293 &MemOps[0], MemOps.size());
1294 }
1295
1296 ArgValues.push_back(Root);
1297
1298 ReturnAddrIndex = 0; // No return address slot generated yet.
1299 BytesToPopOnReturn = 0; // Callee pops nothing.
1300 BytesCallerReserves = StackSize;
1301
1302 // Return the new list of results.
1303 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1304 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1305}
1306
1307SDOperand
1308X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1309 unsigned CC) {
1310 SDOperand Chain = Op.getOperand(0);
1311 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1312 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1313 SDOperand Callee = Op.getOperand(4);
1314
1315 // Analyze operands of the call, assigning locations to each operand.
1316 SmallVector<CCValAssign, 16> ArgLocs;
1317 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1318 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1319
1320 // Get a count of how many bytes are to be pushed on the stack.
1321 unsigned NumBytes = CCInfo.getNextStackOffset();
1322 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1323
1324 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1325 SmallVector<SDOperand, 8> MemOpChains;
1326
1327 SDOperand StackPtr;
1328
1329 // Walk the register/memloc assignments, inserting copies/loads.
1330 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1331 CCValAssign &VA = ArgLocs[i];
1332 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1333
1334 // Promote the value if needed.
1335 switch (VA.getLocInfo()) {
1336 default: assert(0 && "Unknown loc info!");
1337 case CCValAssign::Full: break;
1338 case CCValAssign::SExt:
1339 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1340 break;
1341 case CCValAssign::ZExt:
1342 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1343 break;
1344 case CCValAssign::AExt:
1345 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1346 break;
1347 }
1348
1349 if (VA.isRegLoc()) {
1350 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1351 } else {
1352 assert(VA.isMemLoc());
1353 if (StackPtr.Val == 0)
1354 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1355 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1356 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1357 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1358 }
1359 }
1360
1361 if (!MemOpChains.empty())
1362 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1363 &MemOpChains[0], MemOpChains.size());
1364
1365 // Build a sequence of copy-to-reg nodes chained together with token chain
1366 // and flag operands which copy the outgoing args into registers.
1367 SDOperand InFlag;
1368 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1369 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1370 InFlag);
1371 InFlag = Chain.getValue(1);
1372 }
1373
1374 if (isVarArg) {
1375 // From AMD64 ABI document:
1376 // For calls that may call functions that use varargs or stdargs
1377 // (prototype-less calls or calls to functions containing ellipsis (...) in
1378 // the declaration) %al is used as hidden argument to specify the number
1379 // of SSE registers used. The contents of %al do not need to match exactly
1380 // the number of registers, but must be an ubound on the number of SSE
1381 // registers used and is in the range 0 - 8 inclusive.
1382
1383 // Count the number of XMM registers allocated.
1384 static const unsigned XMMArgRegs[] = {
1385 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1386 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1387 };
1388 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1389
1390 Chain = DAG.getCopyToReg(Chain, X86::AL,
1391 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1392 InFlag = Chain.getValue(1);
1393 }
1394
1395 // If the callee is a GlobalAddress node (quite common, every direct call is)
1396 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1397 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1398 // We should use extra load for direct calls to dllimported functions in
1399 // non-JIT mode.
1400 if (getTargetMachine().getCodeModel() != CodeModel::Large
1401 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1402 getTargetMachine(), true))
1403 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1404 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1405 if (getTargetMachine().getCodeModel() != CodeModel::Large)
1406 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1407
1408 // Returns a chain & a flag for retval copy to use.
1409 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1410 SmallVector<SDOperand, 8> Ops;
1411 Ops.push_back(Chain);
1412 Ops.push_back(Callee);
1413
1414 // Add argument registers to the end of the list so that they are known live
1415 // into the call.
1416 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1417 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1418 RegsToPass[i].second.getValueType()));
1419
1420 if (InFlag.Val)
1421 Ops.push_back(InFlag);
1422
1423 // FIXME: Do not generate X86ISD::TAILCALL for now.
1424 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1425 NodeTys, &Ops[0], Ops.size());
1426 InFlag = Chain.getValue(1);
1427
1428 // Returns a flag for retval copy to use.
1429 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1430 Ops.clear();
1431 Ops.push_back(Chain);
1432 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1433 Ops.push_back(DAG.getConstant(0, getPointerTy()));
1434 Ops.push_back(InFlag);
1435 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1436 InFlag = Chain.getValue(1);
1437
1438 // Handle result values, copying them out of physregs into vregs that we
1439 // return.
1440 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1441}
1442
1443
1444//===----------------------------------------------------------------------===//
1445// Other Lowering Hooks
1446//===----------------------------------------------------------------------===//
1447
1448
1449SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1450 if (ReturnAddrIndex == 0) {
1451 // Set up a frame object for the return address.
1452 MachineFunction &MF = DAG.getMachineFunction();
1453 if (Subtarget->is64Bit())
1454 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1455 else
1456 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1457 }
1458
1459 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1460}
1461
1462
1463
1464/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1465/// specific condition code. It returns a false if it cannot do a direct
1466/// translation. X86CC is the translated CondCode. LHS/RHS are modified as
1467/// needed.
1468static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1469 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1470 SelectionDAG &DAG) {
1471 X86CC = X86::COND_INVALID;
1472 if (!isFP) {
1473 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1474 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1475 // X > -1 -> X == 0, jump !sign.
1476 RHS = DAG.getConstant(0, RHS.getValueType());
1477 X86CC = X86::COND_NS;
1478 return true;
1479 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1480 // X < 0 -> X == 0, jump on sign.
1481 X86CC = X86::COND_S;
1482 return true;
1483 }
1484 }
1485
1486 switch (SetCCOpcode) {
1487 default: break;
1488 case ISD::SETEQ: X86CC = X86::COND_E; break;
1489 case ISD::SETGT: X86CC = X86::COND_G; break;
1490 case ISD::SETGE: X86CC = X86::COND_GE; break;
1491 case ISD::SETLT: X86CC = X86::COND_L; break;
1492 case ISD::SETLE: X86CC = X86::COND_LE; break;
1493 case ISD::SETNE: X86CC = X86::COND_NE; break;
1494 case ISD::SETULT: X86CC = X86::COND_B; break;
1495 case ISD::SETUGT: X86CC = X86::COND_A; break;
1496 case ISD::SETULE: X86CC = X86::COND_BE; break;
1497 case ISD::SETUGE: X86CC = X86::COND_AE; break;
1498 }
1499 } else {
1500 // On a floating point condition, the flags are set as follows:
1501 // ZF PF CF op
1502 // 0 | 0 | 0 | X > Y
1503 // 0 | 0 | 1 | X < Y
1504 // 1 | 0 | 0 | X == Y
1505 // 1 | 1 | 1 | unordered
1506 bool Flip = false;
1507 switch (SetCCOpcode) {
1508 default: break;
1509 case ISD::SETUEQ:
1510 case ISD::SETEQ: X86CC = X86::COND_E; break;
1511 case ISD::SETOLT: Flip = true; // Fallthrough
1512 case ISD::SETOGT:
1513 case ISD::SETGT: X86CC = X86::COND_A; break;
1514 case ISD::SETOLE: Flip = true; // Fallthrough
1515 case ISD::SETOGE:
1516 case ISD::SETGE: X86CC = X86::COND_AE; break;
1517 case ISD::SETUGT: Flip = true; // Fallthrough
1518 case ISD::SETULT:
1519 case ISD::SETLT: X86CC = X86::COND_B; break;
1520 case ISD::SETUGE: Flip = true; // Fallthrough
1521 case ISD::SETULE:
1522 case ISD::SETLE: X86CC = X86::COND_BE; break;
1523 case ISD::SETONE:
1524 case ISD::SETNE: X86CC = X86::COND_NE; break;
1525 case ISD::SETUO: X86CC = X86::COND_P; break;
1526 case ISD::SETO: X86CC = X86::COND_NP; break;
1527 }
1528 if (Flip)
1529 std::swap(LHS, RHS);
1530 }
1531
1532 return X86CC != X86::COND_INVALID;
1533}
1534
1535/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1536/// code. Current x86 isa includes the following FP cmov instructions:
1537/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1538static bool hasFPCMov(unsigned X86CC) {
1539 switch (X86CC) {
1540 default:
1541 return false;
1542 case X86::COND_B:
1543 case X86::COND_BE:
1544 case X86::COND_E:
1545 case X86::COND_P:
1546 case X86::COND_A:
1547 case X86::COND_AE:
1548 case X86::COND_NE:
1549 case X86::COND_NP:
1550 return true;
1551 }
1552}
1553
1554/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
1555/// true if Op is undef or if its value falls within the specified range (L, H].
1556static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1557 if (Op.getOpcode() == ISD::UNDEF)
1558 return true;
1559
1560 unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1561 return (Val >= Low && Val < Hi);
1562}
1563
1564/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
1565/// true if Op is undef or if its value equal to the specified value.
1566static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1567 if (Op.getOpcode() == ISD::UNDEF)
1568 return true;
1569 return cast<ConstantSDNode>(Op)->getValue() == Val;
1570}
1571
1572/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1573/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1574bool X86::isPSHUFDMask(SDNode *N) {
1575 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1576
1577 if (N->getNumOperands() != 4)
1578 return false;
1579
1580 // Check if the value doesn't reference the second vector.
1581 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1582 SDOperand Arg = N->getOperand(i);
1583 if (Arg.getOpcode() == ISD::UNDEF) continue;
1584 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1585 if (cast<ConstantSDNode>(Arg)->getValue() >= 4)
1586 return false;
1587 }
1588
1589 return true;
1590}
1591
1592/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1593/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1594bool X86::isPSHUFHWMask(SDNode *N) {
1595 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1596
1597 if (N->getNumOperands() != 8)
1598 return false;
1599
1600 // Lower quadword copied in order.
1601 for (unsigned i = 0; i != 4; ++i) {
1602 SDOperand Arg = N->getOperand(i);
1603 if (Arg.getOpcode() == ISD::UNDEF) continue;
1604 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1605 if (cast<ConstantSDNode>(Arg)->getValue() != i)
1606 return false;
1607 }
1608
1609 // Upper quadword shuffled.
1610 for (unsigned i = 4; i != 8; ++i) {
1611 SDOperand Arg = N->getOperand(i);
1612 if (Arg.getOpcode() == ISD::UNDEF) continue;
1613 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1614 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1615 if (Val < 4 || Val > 7)
1616 return false;
1617 }
1618
1619 return true;
1620}
1621
1622/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1623/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1624bool X86::isPSHUFLWMask(SDNode *N) {
1625 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1626
1627 if (N->getNumOperands() != 8)
1628 return false;
1629
1630 // Upper quadword copied in order.
1631 for (unsigned i = 4; i != 8; ++i)
1632 if (!isUndefOrEqual(N->getOperand(i), i))
1633 return false;
1634
1635 // Lower quadword shuffled.
1636 for (unsigned i = 0; i != 4; ++i)
1637 if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1638 return false;
1639
1640 return true;
1641}
1642
1643/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1644/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1645static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1646 if (NumElems != 2 && NumElems != 4) return false;
1647
1648 unsigned Half = NumElems / 2;
1649 for (unsigned i = 0; i < Half; ++i)
1650 if (!isUndefOrInRange(Elems[i], 0, NumElems))
1651 return false;
1652 for (unsigned i = Half; i < NumElems; ++i)
1653 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1654 return false;
1655
1656 return true;
1657}
1658
1659bool X86::isSHUFPMask(SDNode *N) {
1660 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1661 return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1662}
1663
1664/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1665/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1666/// half elements to come from vector 1 (which would equal the dest.) and
1667/// the upper half to come from vector 2.
1668static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1669 if (NumOps != 2 && NumOps != 4) return false;
1670
1671 unsigned Half = NumOps / 2;
1672 for (unsigned i = 0; i < Half; ++i)
1673 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1674 return false;
1675 for (unsigned i = Half; i < NumOps; ++i)
1676 if (!isUndefOrInRange(Ops[i], 0, NumOps))
1677 return false;
1678 return true;
1679}
1680
1681static bool isCommutedSHUFP(SDNode *N) {
1682 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1683 return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1684}
1685
1686/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1687/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1688bool X86::isMOVHLPSMask(SDNode *N) {
1689 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1690
1691 if (N->getNumOperands() != 4)
1692 return false;
1693
1694 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1695 return isUndefOrEqual(N->getOperand(0), 6) &&
1696 isUndefOrEqual(N->getOperand(1), 7) &&
1697 isUndefOrEqual(N->getOperand(2), 2) &&
1698 isUndefOrEqual(N->getOperand(3), 3);
1699}
1700
1701/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1702/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1703/// <2, 3, 2, 3>
1704bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1705 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1706
1707 if (N->getNumOperands() != 4)
1708 return false;
1709
1710 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1711 return isUndefOrEqual(N->getOperand(0), 2) &&
1712 isUndefOrEqual(N->getOperand(1), 3) &&
1713 isUndefOrEqual(N->getOperand(2), 2) &&
1714 isUndefOrEqual(N->getOperand(3), 3);
1715}
1716
1717/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1718/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1719bool X86::isMOVLPMask(SDNode *N) {
1720 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1721
1722 unsigned NumElems = N->getNumOperands();
1723 if (NumElems != 2 && NumElems != 4)
1724 return false;
1725
1726 for (unsigned i = 0; i < NumElems/2; ++i)
1727 if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1728 return false;
1729
1730 for (unsigned i = NumElems/2; i < NumElems; ++i)
1731 if (!isUndefOrEqual(N->getOperand(i), i))
1732 return false;
1733
1734 return true;
1735}
1736
1737/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1738/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1739/// and MOVLHPS.
1740bool X86::isMOVHPMask(SDNode *N) {
1741 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1742
1743 unsigned NumElems = N->getNumOperands();
1744 if (NumElems != 2 && NumElems != 4)
1745 return false;
1746
1747 for (unsigned i = 0; i < NumElems/2; ++i)
1748 if (!isUndefOrEqual(N->getOperand(i), i))
1749 return false;
1750
1751 for (unsigned i = 0; i < NumElems/2; ++i) {
1752 SDOperand Arg = N->getOperand(i + NumElems/2);
1753 if (!isUndefOrEqual(Arg, i + NumElems))
1754 return false;
1755 }
1756
1757 return true;
1758}
1759
1760/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1761/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1762bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1763 bool V2IsSplat = false) {
1764 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1765 return false;
1766
1767 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1768 SDOperand BitI = Elts[i];
1769 SDOperand BitI1 = Elts[i+1];
1770 if (!isUndefOrEqual(BitI, j))
1771 return false;
1772 if (V2IsSplat) {
1773 if (isUndefOrEqual(BitI1, NumElts))
1774 return false;
1775 } else {
1776 if (!isUndefOrEqual(BitI1, j + NumElts))
1777 return false;
1778 }
1779 }
1780
1781 return true;
1782}
1783
1784bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1785 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1786 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1787}
1788
1789/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1790/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1791bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1792 bool V2IsSplat = false) {
1793 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1794 return false;
1795
1796 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1797 SDOperand BitI = Elts[i];
1798 SDOperand BitI1 = Elts[i+1];
1799 if (!isUndefOrEqual(BitI, j + NumElts/2))
1800 return false;
1801 if (V2IsSplat) {
1802 if (isUndefOrEqual(BitI1, NumElts))
1803 return false;
1804 } else {
1805 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1806 return false;
1807 }
1808 }
1809
1810 return true;
1811}
1812
1813bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1814 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1815 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1816}
1817
1818/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1819/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1820/// <0, 0, 1, 1>
1821bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1822 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1823
1824 unsigned NumElems = N->getNumOperands();
1825 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1826 return false;
1827
1828 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1829 SDOperand BitI = N->getOperand(i);
1830 SDOperand BitI1 = N->getOperand(i+1);
1831
1832 if (!isUndefOrEqual(BitI, j))
1833 return false;
1834 if (!isUndefOrEqual(BitI1, j))
1835 return false;
1836 }
1837
1838 return true;
1839}
1840
1841/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1842/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1843/// <2, 2, 3, 3>
1844bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1845 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1846
1847 unsigned NumElems = N->getNumOperands();
1848 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1849 return false;
1850
1851 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1852 SDOperand BitI = N->getOperand(i);
1853 SDOperand BitI1 = N->getOperand(i + 1);
1854
1855 if (!isUndefOrEqual(BitI, j))
1856 return false;
1857 if (!isUndefOrEqual(BitI1, j))
1858 return false;
1859 }
1860
1861 return true;
1862}
1863
1864/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
1865/// specifies a shuffle of elements that is suitable for input to MOVSS,
1866/// MOVSD, and MOVD, i.e. setting the lowest element.
1867static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
1868 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1869 return false;
1870
1871 if (!isUndefOrEqual(Elts[0], NumElts))
1872 return false;
1873
1874 for (unsigned i = 1; i < NumElts; ++i) {
1875 if (!isUndefOrEqual(Elts[i], i))
1876 return false;
1877 }
1878
1879 return true;
1880}
1881
1882bool X86::isMOVLMask(SDNode *N) {
1883 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1884 return ::isMOVLMask(N->op_begin(), N->getNumOperands());
1885}
1886
1887/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
1888/// of what x86 movss want. X86 movs requires the lowest element to be lowest
1889/// element of vector 2 and the other elements to come from vector 1 in order.
1890static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
1891 bool V2IsSplat = false,
1892 bool V2IsUndef = false) {
1893 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
1894 return false;
1895
1896 if (!isUndefOrEqual(Ops[0], 0))
1897 return false;
1898
1899 for (unsigned i = 1; i < NumOps; ++i) {
1900 SDOperand Arg = Ops[i];
1901 if (!(isUndefOrEqual(Arg, i+NumOps) ||
1902 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
1903 (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
1904 return false;
1905 }
1906
1907 return true;
1908}
1909
1910static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
1911 bool V2IsUndef = false) {
1912 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1913 return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
1914 V2IsSplat, V2IsUndef);
1915}
1916
1917/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1918/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
1919bool X86::isMOVSHDUPMask(SDNode *N) {
1920 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1921
1922 if (N->getNumOperands() != 4)
1923 return false;
1924
1925 // Expect 1, 1, 3, 3
1926 for (unsigned i = 0; i < 2; ++i) {
1927 SDOperand Arg = N->getOperand(i);
1928 if (Arg.getOpcode() == ISD::UNDEF) continue;
1929 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1930 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1931 if (Val != 1) return false;
1932 }
1933
1934 bool HasHi = false;
1935 for (unsigned i = 2; i < 4; ++i) {
1936 SDOperand Arg = N->getOperand(i);
1937 if (Arg.getOpcode() == ISD::UNDEF) continue;
1938 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1939 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1940 if (Val != 3) return false;
1941 HasHi = true;
1942 }
1943
1944 // Don't use movshdup if it can be done with a shufps.
1945 return HasHi;
1946}
1947
1948/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1949/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
1950bool X86::isMOVSLDUPMask(SDNode *N) {
1951 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1952
1953 if (N->getNumOperands() != 4)
1954 return false;
1955
1956 // Expect 0, 0, 2, 2
1957 for (unsigned i = 0; i < 2; ++i) {
1958 SDOperand Arg = N->getOperand(i);
1959 if (Arg.getOpcode() == ISD::UNDEF) continue;
1960 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1961 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1962 if (Val != 0) return false;
1963 }
1964
1965 bool HasHi = false;
1966 for (unsigned i = 2; i < 4; ++i) {
1967 SDOperand Arg = N->getOperand(i);
1968 if (Arg.getOpcode() == ISD::UNDEF) continue;
1969 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1970 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1971 if (Val != 2) return false;
1972 HasHi = true;
1973 }
1974
1975 // Don't use movshdup if it can be done with a shufps.
1976 return HasHi;
1977}
1978
1979/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
1980/// specifies a identity operation on the LHS or RHS.
1981static bool isIdentityMask(SDNode *N, bool RHS = false) {
1982 unsigned NumElems = N->getNumOperands();
1983 for (unsigned i = 0; i < NumElems; ++i)
1984 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
1985 return false;
1986 return true;
1987}
1988
1989/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
1990/// a splat of a single element.
1991static bool isSplatMask(SDNode *N) {
1992 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1993
1994 // This is a splat operation if each element of the permute is the same, and
1995 // if the value doesn't reference the second vector.
1996 unsigned NumElems = N->getNumOperands();
1997 SDOperand ElementBase;
1998 unsigned i = 0;
1999 for (; i != NumElems; ++i) {
2000 SDOperand Elt = N->getOperand(i);
2001 if (isa<ConstantSDNode>(Elt)) {
2002 ElementBase = Elt;
2003 break;
2004 }
2005 }
2006
2007 if (!ElementBase.Val)
2008 return false;
2009
2010 for (; i != NumElems; ++i) {
2011 SDOperand Arg = N->getOperand(i);
2012 if (Arg.getOpcode() == ISD::UNDEF) continue;
2013 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2014 if (Arg != ElementBase) return false;
2015 }
2016
2017 // Make sure it is a splat of the first vector operand.
2018 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2019}
2020
2021/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2022/// a splat of a single element and it's a 2 or 4 element mask.
2023bool X86::isSplatMask(SDNode *N) {
2024 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2025
2026 // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2027 if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2028 return false;
2029 return ::isSplatMask(N);
2030}
2031
2032/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2033/// specifies a splat of zero element.
2034bool X86::isSplatLoMask(SDNode *N) {
2035 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2036
2037 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2038 if (!isUndefOrEqual(N->getOperand(i), 0))
2039 return false;
2040 return true;
2041}
2042
2043/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2044/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2045/// instructions.
2046unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2047 unsigned NumOperands = N->getNumOperands();
2048 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2049 unsigned Mask = 0;
2050 for (unsigned i = 0; i < NumOperands; ++i) {
2051 unsigned Val = 0;
2052 SDOperand Arg = N->getOperand(NumOperands-i-1);
2053 if (Arg.getOpcode() != ISD::UNDEF)
2054 Val = cast<ConstantSDNode>(Arg)->getValue();
2055 if (Val >= NumOperands) Val -= NumOperands;
2056 Mask |= Val;
2057 if (i != NumOperands - 1)
2058 Mask <<= Shift;
2059 }
2060
2061 return Mask;
2062}
2063
2064/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2065/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2066/// instructions.
2067unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2068 unsigned Mask = 0;
2069 // 8 nodes, but we only care about the last 4.
2070 for (unsigned i = 7; i >= 4; --i) {
2071 unsigned Val = 0;
2072 SDOperand Arg = N->getOperand(i);
2073 if (Arg.getOpcode() != ISD::UNDEF)
2074 Val = cast<ConstantSDNode>(Arg)->getValue();
2075 Mask |= (Val - 4);
2076 if (i != 4)
2077 Mask <<= 2;
2078 }
2079
2080 return Mask;
2081}
2082
2083/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2084/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2085/// instructions.
2086unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2087 unsigned Mask = 0;
2088 // 8 nodes, but we only care about the first 4.
2089 for (int i = 3; i >= 0; --i) {
2090 unsigned Val = 0;
2091 SDOperand Arg = N->getOperand(i);
2092 if (Arg.getOpcode() != ISD::UNDEF)
2093 Val = cast<ConstantSDNode>(Arg)->getValue();
2094 Mask |= Val;
2095 if (i != 0)
2096 Mask <<= 2;
2097 }
2098
2099 return Mask;
2100}
2101
2102/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2103/// specifies a 8 element shuffle that can be broken into a pair of
2104/// PSHUFHW and PSHUFLW.
2105static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2106 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2107
2108 if (N->getNumOperands() != 8)
2109 return false;
2110
2111 // Lower quadword shuffled.
2112 for (unsigned i = 0; i != 4; ++i) {
2113 SDOperand Arg = N->getOperand(i);
2114 if (Arg.getOpcode() == ISD::UNDEF) continue;
2115 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2116 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2117 if (Val > 4)
2118 return false;
2119 }
2120
2121 // Upper quadword shuffled.
2122 for (unsigned i = 4; i != 8; ++i) {
2123 SDOperand Arg = N->getOperand(i);
2124 if (Arg.getOpcode() == ISD::UNDEF) continue;
2125 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2126 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2127 if (Val < 4 || Val > 7)
2128 return false;
2129 }
2130
2131 return true;
2132}
2133
2134/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2135/// values in ther permute mask.
2136static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2137 SDOperand &V2, SDOperand &Mask,
2138 SelectionDAG &DAG) {
2139 MVT::ValueType VT = Op.getValueType();
2140 MVT::ValueType MaskVT = Mask.getValueType();
2141 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2142 unsigned NumElems = Mask.getNumOperands();
2143 SmallVector<SDOperand, 8> MaskVec;
2144
2145 for (unsigned i = 0; i != NumElems; ++i) {
2146 SDOperand Arg = Mask.getOperand(i);
2147 if (Arg.getOpcode() == ISD::UNDEF) {
2148 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2149 continue;
2150 }
2151 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2152 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2153 if (Val < NumElems)
2154 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2155 else
2156 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2157 }
2158
2159 std::swap(V1, V2);
2160 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2161 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2162}
2163
2164/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2165/// match movhlps. The lower half elements should come from upper half of
2166/// V1 (and in order), and the upper half elements should come from the upper
2167/// half of V2 (and in order).
2168static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2169 unsigned NumElems = Mask->getNumOperands();
2170 if (NumElems != 4)
2171 return false;
2172 for (unsigned i = 0, e = 2; i != e; ++i)
2173 if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2174 return false;
2175 for (unsigned i = 2; i != 4; ++i)
2176 if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2177 return false;
2178 return true;
2179}
2180
2181/// isScalarLoadToVector - Returns true if the node is a scalar load that
2182/// is promoted to a vector.
2183static inline bool isScalarLoadToVector(SDNode *N) {
2184 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2185 N = N->getOperand(0).Val;
2186 return ISD::isNON_EXTLoad(N);
2187 }
2188 return false;
2189}
2190
2191/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2192/// match movlp{s|d}. The lower half elements should come from lower half of
2193/// V1 (and in order), and the upper half elements should come from the upper
2194/// half of V2 (and in order). And since V1 will become the source of the
2195/// MOVLP, it must be either a vector load or a scalar load to vector.
2196static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2197 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2198 return false;
2199 // Is V2 is a vector load, don't do this transformation. We will try to use
2200 // load folding shufps op.
2201 if (ISD::isNON_EXTLoad(V2))
2202 return false;
2203
2204 unsigned NumElems = Mask->getNumOperands();
2205 if (NumElems != 2 && NumElems != 4)
2206 return false;
2207 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2208 if (!isUndefOrEqual(Mask->getOperand(i), i))
2209 return false;
2210 for (unsigned i = NumElems/2; i != NumElems; ++i)
2211 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2212 return false;
2213 return true;
2214}
2215
2216/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2217/// all the same.
2218static bool isSplatVector(SDNode *N) {
2219 if (N->getOpcode() != ISD::BUILD_VECTOR)
2220 return false;
2221
2222 SDOperand SplatValue = N->getOperand(0);
2223 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2224 if (N->getOperand(i) != SplatValue)
2225 return false;
2226 return true;
2227}
2228
2229/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2230/// to an undef.
2231static bool isUndefShuffle(SDNode *N) {
2232 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2233 return false;
2234
2235 SDOperand V1 = N->getOperand(0);
2236 SDOperand V2 = N->getOperand(1);
2237 SDOperand Mask = N->getOperand(2);
2238 unsigned NumElems = Mask.getNumOperands();
2239 for (unsigned i = 0; i != NumElems; ++i) {
2240 SDOperand Arg = Mask.getOperand(i);
2241 if (Arg.getOpcode() != ISD::UNDEF) {
2242 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2243 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2244 return false;
2245 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2246 return false;
2247 }
2248 }
2249 return true;
2250}
2251
2252/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2253/// constant +0.0.
2254static inline bool isZeroNode(SDOperand Elt) {
2255 return ((isa<ConstantSDNode>(Elt) &&
2256 cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2257 (isa<ConstantFPSDNode>(Elt) &&
2258 cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
2259}
2260
2261/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2262/// to an zero vector.
2263static bool isZeroShuffle(SDNode *N) {
2264 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2265 return false;
2266
2267 SDOperand V1 = N->getOperand(0);
2268 SDOperand V2 = N->getOperand(1);
2269 SDOperand Mask = N->getOperand(2);
2270 unsigned NumElems = Mask.getNumOperands();
2271 for (unsigned i = 0; i != NumElems; ++i) {
2272 SDOperand Arg = Mask.getOperand(i);
2273 if (Arg.getOpcode() != ISD::UNDEF) {
2274 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2275 if (Idx < NumElems) {
2276 unsigned Opc = V1.Val->getOpcode();
2277 if (Opc == ISD::UNDEF)
2278 continue;
2279 if (Opc != ISD::BUILD_VECTOR ||
2280 !isZeroNode(V1.Val->getOperand(Idx)))
2281 return false;
2282 } else if (Idx >= NumElems) {
2283 unsigned Opc = V2.Val->getOpcode();
2284 if (Opc == ISD::UNDEF)
2285 continue;
2286 if (Opc != ISD::BUILD_VECTOR ||
2287 !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2288 return false;
2289 }
2290 }
2291 }
2292 return true;
2293}
2294
2295/// getZeroVector - Returns a vector of specified type with all zero elements.
2296///
2297static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2298 assert(MVT::isVector(VT) && "Expected a vector type");
2299 unsigned NumElems = MVT::getVectorNumElements(VT);
2300 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2301 bool isFP = MVT::isFloatingPoint(EVT);
2302 SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2303 SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2304 return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2305}
2306
2307/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2308/// that point to V2 points to its first element.
2309static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2310 assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2311
2312 bool Changed = false;
2313 SmallVector<SDOperand, 8> MaskVec;
2314 unsigned NumElems = Mask.getNumOperands();
2315 for (unsigned i = 0; i != NumElems; ++i) {
2316 SDOperand Arg = Mask.getOperand(i);
2317 if (Arg.getOpcode() != ISD::UNDEF) {
2318 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2319 if (Val > NumElems) {
2320 Arg = DAG.getConstant(NumElems, Arg.getValueType());
2321 Changed = true;
2322 }
2323 }
2324 MaskVec.push_back(Arg);
2325 }
2326
2327 if (Changed)
2328 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2329 &MaskVec[0], MaskVec.size());
2330 return Mask;
2331}
2332
2333/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2334/// operation of specified width.
2335static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2336 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2337 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2338
2339 SmallVector<SDOperand, 8> MaskVec;
2340 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2341 for (unsigned i = 1; i != NumElems; ++i)
2342 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2343 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2344}
2345
2346/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2347/// of specified width.
2348static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2349 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2350 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2351 SmallVector<SDOperand, 8> MaskVec;
2352 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2353 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2354 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2355 }
2356 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2357}
2358
2359/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2360/// of specified width.
2361static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2362 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2363 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2364 unsigned Half = NumElems/2;
2365 SmallVector<SDOperand, 8> MaskVec;
2366 for (unsigned i = 0; i != Half; ++i) {
2367 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
2368 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2369 }
2370 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2371}
2372
2373/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2374///
2375static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2376 SDOperand V1 = Op.getOperand(0);
2377 SDOperand Mask = Op.getOperand(2);
2378 MVT::ValueType VT = Op.getValueType();
2379 unsigned NumElems = Mask.getNumOperands();
2380 Mask = getUnpacklMask(NumElems, DAG);
2381 while (NumElems != 4) {
2382 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2383 NumElems >>= 1;
2384 }
2385 V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2386
2387 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2388 Mask = getZeroVector(MaskVT, DAG);
2389 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2390 DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2391 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2392}
2393
2394/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2395/// vector of zero or undef vector.
2396static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2397 unsigned NumElems, unsigned Idx,
2398 bool isZero, SelectionDAG &DAG) {
2399 SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2400 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2401 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2402 SDOperand Zero = DAG.getConstant(0, EVT);
2403 SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2404 MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2405 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2406 &MaskVec[0], MaskVec.size());
2407 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2408}
2409
2410/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2411///
2412static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2413 unsigned NumNonZero, unsigned NumZero,
2414 SelectionDAG &DAG, TargetLowering &TLI) {
2415 if (NumNonZero > 8)
2416 return SDOperand();
2417
2418 SDOperand V(0, 0);
2419 bool First = true;
2420 for (unsigned i = 0; i < 16; ++i) {
2421 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2422 if (ThisIsNonZero && First) {
2423 if (NumZero)
2424 V = getZeroVector(MVT::v8i16, DAG);
2425 else
2426 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2427 First = false;
2428 }
2429
2430 if ((i & 1) != 0) {
2431 SDOperand ThisElt(0, 0), LastElt(0, 0);
2432 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2433 if (LastIsNonZero) {
2434 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2435 }
2436 if (ThisIsNonZero) {
2437 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2438 ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2439 ThisElt, DAG.getConstant(8, MVT::i8));
2440 if (LastIsNonZero)
2441 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2442 } else
2443 ThisElt = LastElt;
2444
2445 if (ThisElt.Val)
2446 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2447 DAG.getConstant(i/2, TLI.getPointerTy()));
2448 }
2449 }
2450
2451 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2452}
2453
2454/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2455///
2456static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2457 unsigned NumNonZero, unsigned NumZero,
2458 SelectionDAG &DAG, TargetLowering &TLI) {
2459 if (NumNonZero > 4)
2460 return SDOperand();
2461
2462 SDOperand V(0, 0);
2463 bool First = true;
2464 for (unsigned i = 0; i < 8; ++i) {
2465 bool isNonZero = (NonZeros & (1 << i)) != 0;
2466 if (isNonZero) {
2467 if (First) {
2468 if (NumZero)
2469 V = getZeroVector(MVT::v8i16, DAG);
2470 else
2471 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2472 First = false;
2473 }
2474 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2475 DAG.getConstant(i, TLI.getPointerTy()));
2476 }
2477 }
2478
2479 return V;
2480}
2481
2482SDOperand
2483X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2484 // All zero's are handled with pxor.
2485 if (ISD::isBuildVectorAllZeros(Op.Val))
2486 return Op;
2487
2488 // All one's are handled with pcmpeqd.
2489 if (ISD::isBuildVectorAllOnes(Op.Val))
2490 return Op;
2491
2492 MVT::ValueType VT = Op.getValueType();
2493 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2494 unsigned EVTBits = MVT::getSizeInBits(EVT);
2495
2496 unsigned NumElems = Op.getNumOperands();
2497 unsigned NumZero = 0;
2498 unsigned NumNonZero = 0;
2499 unsigned NonZeros = 0;
2500 std::set<SDOperand> Values;
2501 for (unsigned i = 0; i < NumElems; ++i) {
2502 SDOperand Elt = Op.getOperand(i);
2503 if (Elt.getOpcode() != ISD::UNDEF) {
2504 Values.insert(Elt);
2505 if (isZeroNode(Elt))
2506 NumZero++;
2507 else {
2508 NonZeros |= (1 << i);
2509 NumNonZero++;
2510 }
2511 }
2512 }
2513
2514 if (NumNonZero == 0) {
2515 if (NumZero == 0)
2516 // All undef vector. Return an UNDEF.
2517 return DAG.getNode(ISD::UNDEF, VT);
2518 else
2519 // A mix of zero and undef. Return a zero vector.
2520 return getZeroVector(VT, DAG);
2521 }
2522
2523 // Splat is obviously ok. Let legalizer expand it to a shuffle.
2524 if (Values.size() == 1)
2525 return SDOperand();
2526
2527 // Special case for single non-zero element.
2528 if (NumNonZero == 1) {
2529 unsigned Idx = CountTrailingZeros_32(NonZeros);
2530 SDOperand Item = Op.getOperand(Idx);
2531 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2532 if (Idx == 0)
2533 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2534 return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2535 NumZero > 0, DAG);
2536
2537 if (EVTBits == 32) {
2538 // Turn it into a shuffle of zero and zero-extended scalar to vector.
2539 Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2540 DAG);
2541 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2542 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2543 SmallVector<SDOperand, 8> MaskVec;
2544 for (unsigned i = 0; i < NumElems; i++)
2545 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2546 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2547 &MaskVec[0], MaskVec.size());
2548 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2549 DAG.getNode(ISD::UNDEF, VT), Mask);
2550 }
2551 }
2552
2553 // Let legalizer expand 2-wide build_vectors.
2554 if (EVTBits == 64)
2555 return SDOperand();
2556
2557 // If element VT is < 32 bits, convert it to inserts into a zero vector.
2558 if (EVTBits == 8 && NumElems == 16) {
2559 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2560 *this);
2561 if (V.Val) return V;
2562 }
2563
2564 if (EVTBits == 16 && NumElems == 8) {
2565 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2566 *this);
2567 if (V.Val) return V;
2568 }
2569
2570 // If element VT is == 32 bits, turn it into a number of shuffles.
2571 SmallVector<SDOperand, 8> V;
2572 V.resize(NumElems);
2573 if (NumElems == 4 && NumZero > 0) {
2574 for (unsigned i = 0; i < 4; ++i) {
2575 bool isZero = !(NonZeros & (1 << i));
2576 if (isZero)
2577 V[i] = getZeroVector(VT, DAG);
2578 else
2579 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2580 }
2581
2582 for (unsigned i = 0; i < 2; ++i) {
2583 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2584 default: break;
2585 case 0:
2586 V[i] = V[i*2]; // Must be a zero vector.
2587 break;
2588 case 1:
2589 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2590 getMOVLMask(NumElems, DAG));
2591 break;
2592 case 2:
2593 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2594 getMOVLMask(NumElems, DAG));
2595 break;
2596 case 3:
2597 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2598 getUnpacklMask(NumElems, DAG));
2599 break;
2600 }
2601 }
2602
2603 // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2604 // clears the upper bits.
2605 // FIXME: we can do the same for v4f32 case when we know both parts of
2606 // the lower half come from scalar_to_vector (loadf32). We should do
2607 // that in post legalizer dag combiner with target specific hooks.
2608 if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2609 return V[0];
2610 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2611 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2612 SmallVector<SDOperand, 8> MaskVec;
2613 bool Reverse = (NonZeros & 0x3) == 2;
2614 for (unsigned i = 0; i < 2; ++i)
2615 if (Reverse)
2616 MaskVec.push_back(DAG.getConstant(1-i, EVT));
2617 else
2618 MaskVec.push_back(DAG.getConstant(i, EVT));
2619 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2620 for (unsigned i = 0; i < 2; ++i)
2621 if (Reverse)
2622 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2623 else
2624 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2625 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2626 &MaskVec[0], MaskVec.size());
2627 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2628 }
2629
2630 if (Values.size() > 2) {
2631 // Expand into a number of unpckl*.
2632 // e.g. for v4f32
2633 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2634 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2635 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
2636 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2637 for (unsigned i = 0; i < NumElems; ++i)
2638 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2639 NumElems >>= 1;
2640 while (NumElems != 0) {
2641 for (unsigned i = 0; i < NumElems; ++i)
2642 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2643 UnpckMask);
2644 NumElems >>= 1;
2645 }
2646 return V[0];
2647 }
2648
2649 return SDOperand();
2650}
2651
2652SDOperand
2653X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2654 SDOperand V1 = Op.getOperand(0);
2655 SDOperand V2 = Op.getOperand(1);
2656 SDOperand PermMask = Op.getOperand(2);
2657 MVT::ValueType VT = Op.getValueType();
2658 unsigned NumElems = PermMask.getNumOperands();
2659 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2660 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2661 bool V1IsSplat = false;
2662 bool V2IsSplat = false;
2663
2664 if (isUndefShuffle(Op.Val))
2665 return DAG.getNode(ISD::UNDEF, VT);
2666
2667 if (isZeroShuffle(Op.Val))
2668 return getZeroVector(VT, DAG);
2669
2670 if (isIdentityMask(PermMask.Val))
2671 return V1;
2672 else if (isIdentityMask(PermMask.Val, true))
2673 return V2;
2674
2675 if (isSplatMask(PermMask.Val)) {
2676 if (NumElems <= 4) return Op;
2677 // Promote it to a v4i32 splat.
2678 return PromoteSplat(Op, DAG);
2679 }
2680
2681 if (X86::isMOVLMask(PermMask.Val))
2682 return (V1IsUndef) ? V2 : Op;
2683
2684 if (X86::isMOVSHDUPMask(PermMask.Val) ||
2685 X86::isMOVSLDUPMask(PermMask.Val) ||
2686 X86::isMOVHLPSMask(PermMask.Val) ||
2687 X86::isMOVHPMask(PermMask.Val) ||
2688 X86::isMOVLPMask(PermMask.Val))
2689 return Op;
2690
2691 if (ShouldXformToMOVHLPS(PermMask.Val) ||
2692 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2693 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2694
2695 bool Commuted = false;
2696 V1IsSplat = isSplatVector(V1.Val);
2697 V2IsSplat = isSplatVector(V2.Val);
2698 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2699 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2700 std::swap(V1IsSplat, V2IsSplat);
2701 std::swap(V1IsUndef, V2IsUndef);
2702 Commuted = true;
2703 }
2704
2705 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2706 if (V2IsUndef) return V1;
2707 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2708 if (V2IsSplat) {
2709 // V2 is a splat, so the mask may be malformed. That is, it may point
2710 // to any V2 element. The instruction selectior won't like this. Get
2711 // a corrected mask and commute to form a proper MOVS{S|D}.
2712 SDOperand NewMask = getMOVLMask(NumElems, DAG);
2713 if (NewMask.Val != PermMask.Val)
2714 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2715 }
2716 return Op;
2717 }
2718
2719 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2720 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2721 X86::isUNPCKLMask(PermMask.Val) ||
2722 X86::isUNPCKHMask(PermMask.Val))
2723 return Op;
2724
2725 if (V2IsSplat) {
2726 // Normalize mask so all entries that point to V2 points to its first
2727 // element then try to match unpck{h|l} again. If match, return a
2728 // new vector_shuffle with the corrected mask.
2729 SDOperand NewMask = NormalizeMask(PermMask, DAG);
2730 if (NewMask.Val != PermMask.Val) {
2731 if (X86::isUNPCKLMask(PermMask.Val, true)) {
2732 SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2733 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2734 } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2735 SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2736 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2737 }
2738 }
2739 }
2740
2741 // Normalize the node to match x86 shuffle ops if needed
2742 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2743 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2744
2745 if (Commuted) {
2746 // Commute is back and try unpck* again.
2747 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2748 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2749 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2750 X86::isUNPCKLMask(PermMask.Val) ||
2751 X86::isUNPCKHMask(PermMask.Val))
2752 return Op;
2753 }
2754
2755 // If VT is integer, try PSHUF* first, then SHUFP*.
2756 if (MVT::isInteger(VT)) {
2757 if (X86::isPSHUFDMask(PermMask.Val) ||
2758 X86::isPSHUFHWMask(PermMask.Val) ||
2759 X86::isPSHUFLWMask(PermMask.Val)) {
2760 if (V2.getOpcode() != ISD::UNDEF)
2761 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2762 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2763 return Op;
2764 }
2765
2766 if (X86::isSHUFPMask(PermMask.Val) &&
2767 MVT::getSizeInBits(VT) != 64) // Don't do this for MMX.
2768 return Op;
2769
2770 // Handle v8i16 shuffle high / low shuffle node pair.
2771 if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2772 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2773 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2774 SmallVector<SDOperand, 8> MaskVec;
2775 for (unsigned i = 0; i != 4; ++i)
2776 MaskVec.push_back(PermMask.getOperand(i));
2777 for (unsigned i = 4; i != 8; ++i)
2778 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2779 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2780 &MaskVec[0], MaskVec.size());
2781 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2782 MaskVec.clear();
2783 for (unsigned i = 0; i != 4; ++i)
2784 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2785 for (unsigned i = 4; i != 8; ++i)
2786 MaskVec.push_back(PermMask.getOperand(i));
2787 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2788 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2789 }
2790 } else {
2791 // Floating point cases in the other order.
2792 if (X86::isSHUFPMask(PermMask.Val))
2793 return Op;
2794 if (X86::isPSHUFDMask(PermMask.Val) ||
2795 X86::isPSHUFHWMask(PermMask.Val) ||
2796 X86::isPSHUFLWMask(PermMask.Val)) {
2797 if (V2.getOpcode() != ISD::UNDEF)
2798 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2799 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2800 return Op;
2801 }
2802 }
2803
2804 if (NumElems == 4 &&
2805 // Don't do this for MMX.
2806 MVT::getSizeInBits(VT) != 64) {
2807 MVT::ValueType MaskVT = PermMask.getValueType();
2808 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2809 SmallVector<std::pair<int, int>, 8> Locs;
2810 Locs.reserve(NumElems);
2811 SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2812 SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2813 unsigned NumHi = 0;
2814 unsigned NumLo = 0;
2815 // If no more than two elements come from either vector. This can be
2816 // implemented with two shuffles. First shuffle gather the elements.
2817 // The second shuffle, which takes the first shuffle as both of its
2818 // vector operands, put the elements into the right order.
2819 for (unsigned i = 0; i != NumElems; ++i) {
2820 SDOperand Elt = PermMask.getOperand(i);
2821 if (Elt.getOpcode() == ISD::UNDEF) {
2822 Locs[i] = std::make_pair(-1, -1);
2823 } else {
2824 unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2825 if (Val < NumElems) {
2826 Locs[i] = std::make_pair(0, NumLo);
2827 Mask1[NumLo] = Elt;
2828 NumLo++;
2829 } else {
2830 Locs[i] = std::make_pair(1, NumHi);
2831 if (2+NumHi < NumElems)
2832 Mask1[2+NumHi] = Elt;
2833 NumHi++;
2834 }
2835 }
2836 }
2837 if (NumLo <= 2 && NumHi <= 2) {
2838 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2839 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2840 &Mask1[0], Mask1.size()));
2841 for (unsigned i = 0; i != NumElems; ++i) {
2842 if (Locs[i].first == -1)
2843 continue;
2844 else {
2845 unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
2846 Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
2847 Mask2[i] = DAG.getConstant(Idx, MaskEVT);
2848 }
2849 }
2850
2851 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
2852 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2853 &Mask2[0], Mask2.size()));
2854 }
2855
2856 // Break it into (shuffle shuffle_hi, shuffle_lo).
2857 Locs.clear();
2858 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2859 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2860 SmallVector<SDOperand,8> *MaskPtr = &LoMask;
2861 unsigned MaskIdx = 0;
2862 unsigned LoIdx = 0;
2863 unsigned HiIdx = NumElems/2;
2864 for (unsigned i = 0; i != NumElems; ++i) {
2865 if (i == NumElems/2) {
2866 MaskPtr = &HiMask;
2867 MaskIdx = 1;
2868 LoIdx = 0;
2869 HiIdx = NumElems/2;
2870 }
2871 SDOperand Elt = PermMask.getOperand(i);
2872 if (Elt.getOpcode() == ISD::UNDEF) {
2873 Locs[i] = std::make_pair(-1, -1);
2874 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
2875 Locs[i] = std::make_pair(MaskIdx, LoIdx);
2876 (*MaskPtr)[LoIdx] = Elt;
2877 LoIdx++;
2878 } else {
2879 Locs[i] = std::make_pair(MaskIdx, HiIdx);
2880 (*MaskPtr)[HiIdx] = Elt;
2881 HiIdx++;
2882 }
2883 }
2884
2885 SDOperand LoShuffle =
2886 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2887 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2888 &LoMask[0], LoMask.size()));
2889 SDOperand HiShuffle =
2890 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2891 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2892 &HiMask[0], HiMask.size()));
2893 SmallVector<SDOperand, 8> MaskOps;
2894 for (unsigned i = 0; i != NumElems; ++i) {
2895 if (Locs[i].first == -1) {
2896 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
2897 } else {
2898 unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
2899 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
2900 }
2901 }
2902 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
2903 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2904 &MaskOps[0], MaskOps.size()));
2905 }
2906
2907 return SDOperand();
2908}
2909
2910SDOperand
2911X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2912 if (!isa<ConstantSDNode>(Op.getOperand(1)))
2913 return SDOperand();
2914
2915 MVT::ValueType VT = Op.getValueType();
2916 // TODO: handle v16i8.
2917 if (MVT::getSizeInBits(VT) == 16) {
2918 // Transform it so it match pextrw which produces a 32-bit result.
2919 MVT::ValueType EVT = (MVT::ValueType)(VT+1);
2920 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
2921 Op.getOperand(0), Op.getOperand(1));
2922 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
2923 DAG.getValueType(VT));
2924 return DAG.getNode(ISD::TRUNCATE, VT, Assert);
2925 } else if (MVT::getSizeInBits(VT) == 32) {
2926 SDOperand Vec = Op.getOperand(0);
2927 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2928 if (Idx == 0)
2929 return Op;
2930 // SHUFPS the element to the lowest double word, then movss.
2931 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2932 SmallVector<SDOperand, 8> IdxVec;
2933 IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
2934 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2935 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2936 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2937 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2938 &IdxVec[0], IdxVec.size());
2939 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
2940 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
2941 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
2942 DAG.getConstant(0, getPointerTy()));
2943 } else if (MVT::getSizeInBits(VT) == 64) {
2944 SDOperand Vec = Op.getOperand(0);
2945 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2946 if (Idx == 0)
2947 return Op;
2948
2949 // UNPCKHPD the element to the lowest double word, then movsd.
2950 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
2951 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
2952 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2953 SmallVector<SDOperand, 8> IdxVec;
2954 IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
2955 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2956 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2957 &IdxVec[0], IdxVec.size());
2958 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
2959 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
2960 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
2961 DAG.getConstant(0, getPointerTy()));
2962 }
2963
2964 return SDOperand();
2965}
2966
2967SDOperand
2968X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2969 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
2970 // as its second argument.
2971 MVT::ValueType VT = Op.getValueType();
2972 MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
2973 SDOperand N0 = Op.getOperand(0);
2974 SDOperand N1 = Op.getOperand(1);
2975 SDOperand N2 = Op.getOperand(2);
2976 if (MVT::getSizeInBits(BaseVT) == 16) {
2977 if (N1.getValueType() != MVT::i32)
2978 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
2979 if (N2.getValueType() != MVT::i32)
2980 N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
2981 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
2982 } else if (MVT::getSizeInBits(BaseVT) == 32) {
2983 unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
2984 if (Idx == 0) {
2985 // Use a movss.
2986 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
2987 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2988 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2989 SmallVector<SDOperand, 8> MaskVec;
2990 MaskVec.push_back(DAG.getConstant(4, BaseVT));
2991 for (unsigned i = 1; i <= 3; ++i)
2992 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2993 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
2994 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2995 &MaskVec[0], MaskVec.size()));
2996 } else {
2997 // Use two pinsrw instructions to insert a 32 bit value.
2998 Idx <<= 1;
2999 if (MVT::isFloatingPoint(N1.getValueType())) {
3000 if (ISD::isNON_EXTLoad(N1.Val)) {
3001 // Just load directly from f32mem to GR32.
3002 LoadSDNode *LD = cast<LoadSDNode>(N1);
3003 N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(),
3004 LD->getSrcValue(), LD->getSrcValueOffset());
3005 } else {
3006 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3007 N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3008 N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3009 DAG.getConstant(0, getPointerTy()));
3010 }
3011 }
3012 N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3013 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3014 DAG.getConstant(Idx, getPointerTy()));
3015 N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3016 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3017 DAG.getConstant(Idx+1, getPointerTy()));
3018 return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3019 }
3020 }
3021
3022 return SDOperand();
3023}
3024
3025SDOperand
3026X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3027 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3028 return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3029}
3030
3031// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3032// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3033// one of the above mentioned nodes. It has to be wrapped because otherwise
3034// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3035// be used to form addressing mode. These wrapped nodes will be selected
3036// into MOV32ri.
3037SDOperand
3038X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3039 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3040 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3041 getPointerTy(),
3042 CP->getAlignment());
3043 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3044 // With PIC, the address is actually $g + Offset.
3045 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3046 !Subtarget->isPICStyleRIPRel()) {
3047 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3048 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3049 Result);
3050 }
3051
3052 return Result;
3053}
3054
3055SDOperand
3056X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3057 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3058 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3059 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3060 // With PIC, the address is actually $g + Offset.
3061 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3062 !Subtarget->isPICStyleRIPRel()) {
3063 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3064 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3065 Result);
3066 }
3067
3068 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3069 // load the value at address GV, not the value of GV itself. This means that
3070 // the GlobalAddress must be in the base or index register of the address, not
3071 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3072 // The same applies for external symbols during PIC codegen
3073 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3074 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3075
3076 return Result;
3077}
3078
3079// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3080static SDOperand
3081LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3082 const MVT::ValueType PtrVT) {
3083 SDOperand InFlag;
3084 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3085 DAG.getNode(X86ISD::GlobalBaseReg,
3086 PtrVT), InFlag);
3087 InFlag = Chain.getValue(1);
3088
3089 // emit leal symbol@TLSGD(,%ebx,1), %eax
3090 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3091 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3092 GA->getValueType(0),
3093 GA->getOffset());
3094 SDOperand Ops[] = { Chain, TGA, InFlag };
3095 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3096 InFlag = Result.getValue(2);
3097 Chain = Result.getValue(1);
3098
3099 // call ___tls_get_addr. This function receives its argument in
3100 // the register EAX.
3101 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3102 InFlag = Chain.getValue(1);
3103
3104 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3105 SDOperand Ops1[] = { Chain,
3106 DAG.getTargetExternalSymbol("___tls_get_addr",
3107 PtrVT),
3108 DAG.getRegister(X86::EAX, PtrVT),
3109 DAG.getRegister(X86::EBX, PtrVT),
3110 InFlag };
3111 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3112 InFlag = Chain.getValue(1);
3113
3114 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3115}
3116
3117// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3118// "local exec" model.
3119static SDOperand
3120LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3121 const MVT::ValueType PtrVT) {
3122 // Get the Thread Pointer
3123 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3124 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3125 // exec)
3126 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3127 GA->getValueType(0),
3128 GA->getOffset());
3129 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3130
3131 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3132 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3133
3134 // The address of the thread local variable is the add of the thread
3135 // pointer with the offset of the variable.
3136 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3137}
3138
3139SDOperand
3140X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3141 // TODO: implement the "local dynamic" model
3142 // TODO: implement the "initial exec"model for pic executables
3143 assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3144 "TLS not implemented for non-ELF and 64-bit targets");
3145 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3146 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3147 // otherwise use the "Local Exec"TLS Model
3148 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3149 return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3150 else
3151 return LowerToTLSExecModel(GA, DAG, getPointerTy());
3152}
3153
3154SDOperand
3155X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3156 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3157 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3158 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3159 // With PIC, the address is actually $g + Offset.
3160 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3161 !Subtarget->isPICStyleRIPRel()) {
3162 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3163 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3164 Result);
3165 }
3166
3167 return Result;
3168}
3169
3170SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3171 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3172 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3173 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3174 // With PIC, the address is actually $g + Offset.
3175 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3176 !Subtarget->isPICStyleRIPRel()) {
3177 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3178 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3179 Result);
3180 }
3181
3182 return Result;
3183}
3184
3185SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3186 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3187 "Not an i64 shift!");
3188 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3189 SDOperand ShOpLo = Op.getOperand(0);
3190 SDOperand ShOpHi = Op.getOperand(1);
3191 SDOperand ShAmt = Op.getOperand(2);
3192 SDOperand Tmp1 = isSRA ?
3193 DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3194 DAG.getConstant(0, MVT::i32);
3195
3196 SDOperand Tmp2, Tmp3;
3197 if (Op.getOpcode() == ISD::SHL_PARTS) {
3198 Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3199 Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3200 } else {
3201 Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3202 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3203 }
3204
3205 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3206 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3207 DAG.getConstant(32, MVT::i8));
3208 SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3209 SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3210
3211 SDOperand Hi, Lo;
3212 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3213
3214 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3215 SmallVector<SDOperand, 4> Ops;
3216 if (Op.getOpcode() == ISD::SHL_PARTS) {
3217 Ops.push_back(Tmp2);
3218 Ops.push_back(Tmp3);
3219 Ops.push_back(CC);
3220 Ops.push_back(InFlag);
3221 Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3222 InFlag = Hi.getValue(1);
3223
3224 Ops.clear();
3225 Ops.push_back(Tmp3);
3226 Ops.push_back(Tmp1);
3227 Ops.push_back(CC);
3228 Ops.push_back(InFlag);
3229 Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3230 } else {
3231 Ops.push_back(Tmp2);
3232 Ops.push_back(Tmp3);
3233 Ops.push_back(CC);
3234 Ops.push_back(InFlag);
3235 Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3236 InFlag = Lo.getValue(1);
3237
3238 Ops.clear();
3239 Ops.push_back(Tmp3);
3240 Ops.push_back(Tmp1);
3241 Ops.push_back(CC);
3242 Ops.push_back(InFlag);
3243 Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3244 }
3245
3246 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3247 Ops.clear();
3248 Ops.push_back(Lo);
3249 Ops.push_back(Hi);
3250 return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3251}
3252
3253SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3254 assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3255 Op.getOperand(0).getValueType() >= MVT::i16 &&
3256 "Unknown SINT_TO_FP to lower!");
3257
3258 SDOperand Result;
3259 MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3260 unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3261 MachineFunction &MF = DAG.getMachineFunction();
3262 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3263 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3264 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3265 StackSlot, NULL, 0);
3266
3267 // Build the FILD
3268 SDVTList Tys;
3269 if (X86ScalarSSE)
3270 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3271 else
3272 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3273 SmallVector<SDOperand, 8> Ops;
3274 Ops.push_back(Chain);
3275 Ops.push_back(StackSlot);
3276 Ops.push_back(DAG.getValueType(SrcVT));
3277 Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3278 Tys, &Ops[0], Ops.size());
3279
3280 if (X86ScalarSSE) {
3281 Chain = Result.getValue(1);
3282 SDOperand InFlag = Result.getValue(2);
3283
3284 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3285 // shouldn't be necessary except that RFP cannot be live across
3286 // multiple blocks. When stackifier is fixed, they can be uncoupled.
3287 MachineFunction &MF = DAG.getMachineFunction();
3288 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3289 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3290 Tys = DAG.getVTList(MVT::Other);
3291 SmallVector<SDOperand, 8> Ops;
3292 Ops.push_back(Chain);
3293 Ops.push_back(Result);
3294 Ops.push_back(StackSlot);
3295 Ops.push_back(DAG.getValueType(Op.getValueType()));
3296 Ops.push_back(InFlag);
3297 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3298 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3299 }
3300
3301 return Result;
3302}
3303
3304SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3305 assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3306 "Unknown FP_TO_SINT to lower!");
3307 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3308 // stack slot.
3309 MachineFunction &MF = DAG.getMachineFunction();
3310 unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3311 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3312 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3313
3314 unsigned Opc;
3315 switch (Op.getValueType()) {
3316 default: assert(0 && "Invalid FP_TO_SINT to lower!");
3317 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3318 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3319 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3320 }
3321
3322 SDOperand Chain = DAG.getEntryNode();
3323 SDOperand Value = Op.getOperand(0);
3324 if (X86ScalarSSE) {
3325 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3326 Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3327 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3328 SDOperand Ops[] = {
3329 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3330 };
3331 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3332 Chain = Value.getValue(1);
3333 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3334 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3335 }
3336
3337 // Build the FP_TO_INT*_IN_MEM
3338 SDOperand Ops[] = { Chain, Value, StackSlot };
3339 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3340
3341 // Load the result.
3342 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3343}
3344
3345SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3346 MVT::ValueType VT = Op.getValueType();
3347 MVT::ValueType EltVT = VT;
3348 if (MVT::isVector(VT))
3349 EltVT = MVT::getVectorElementType(VT);
3350 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3351 std::vector<Constant*> CV;
3352 if (EltVT == MVT::f64) {
3353 Constant *C = ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63)));
3354 CV.push_back(C);
3355 CV.push_back(C);
3356 } else {
3357 Constant *C = ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31)));
3358 CV.push_back(C);
3359 CV.push_back(C);
3360 CV.push_back(C);
3361 CV.push_back(C);
3362 }
3363 Constant *CS = ConstantStruct::get(CV);
3364 SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3365 SDVTList Tys = DAG.getVTList(VT, MVT::Other);
3366 SmallVector<SDOperand, 3> Ops;
3367 Ops.push_back(DAG.getEntryNode());
3368 Ops.push_back(CPIdx);
3369 Ops.push_back(DAG.getSrcValue(NULL));
3370 SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3371 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3372}
3373
3374SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3375 MVT::ValueType VT = Op.getValueType();
3376 MVT::ValueType EltVT = VT;
3377 if (MVT::isVector(VT))
3378 EltVT = MVT::getVectorElementType(VT);
3379 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3380 std::vector<Constant*> CV;
3381 if (EltVT == MVT::f64) {
3382 Constant *C = ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63));
3383 CV.push_back(C);
3384 CV.push_back(C);
3385 } else {
3386 Constant *C = ConstantFP::get(OpNTy, BitsToFloat(1U << 31));
3387 CV.push_back(C);
3388 CV.push_back(C);
3389 CV.push_back(C);
3390 CV.push_back(C);
3391 }
3392 Constant *CS = ConstantStruct::get(CV);
3393 SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3394 SDVTList Tys = DAG.getVTList(VT, MVT::Other);
3395 SmallVector<SDOperand, 3> Ops;
3396 Ops.push_back(DAG.getEntryNode());
3397 Ops.push_back(CPIdx);
3398 Ops.push_back(DAG.getSrcValue(NULL));
3399 SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3400 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3401}
3402
3403SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3404 SDOperand Op0 = Op.getOperand(0);
3405 SDOperand Op1 = Op.getOperand(1);
3406 MVT::ValueType VT = Op.getValueType();
3407 MVT::ValueType SrcVT = Op1.getValueType();
3408 const Type *SrcTy = MVT::getTypeForValueType(SrcVT);
3409
3410 // If second operand is smaller, extend it first.
3411 if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3412 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3413 SrcVT = VT;
3414 }
3415
3416 // First get the sign bit of second operand.
3417 std::vector<Constant*> CV;
3418 if (SrcVT == MVT::f64) {
3419 CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63)));
3420 CV.push_back(ConstantFP::get(SrcTy, 0.0));
3421 } else {
3422 CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31)));
3423 CV.push_back(ConstantFP::get(SrcTy, 0.0));
3424 CV.push_back(ConstantFP::get(SrcTy, 0.0));
3425 CV.push_back(ConstantFP::get(SrcTy, 0.0));
3426 }
3427 Constant *CS = ConstantStruct::get(CV);
3428 SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3429 SDVTList Tys = DAG.getVTList(SrcVT, MVT::Other);
3430 SmallVector<SDOperand, 3> Ops;
3431 Ops.push_back(DAG.getEntryNode());
3432 Ops.push_back(CPIdx);
3433 Ops.push_back(DAG.getSrcValue(NULL));
3434 SDOperand Mask1 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3435 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3436
3437 // Shift sign bit right or left if the two operands have different types.
3438 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3439 // Op0 is MVT::f32, Op1 is MVT::f64.
3440 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3441 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3442 DAG.getConstant(32, MVT::i32));
3443 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3444 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3445 DAG.getConstant(0, getPointerTy()));
3446 }
3447
3448 // Clear first operand sign bit.
3449 CV.clear();
3450 if (VT == MVT::f64) {
3451 CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63))));
3452 CV.push_back(ConstantFP::get(SrcTy, 0.0));
3453 } else {
3454 CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31))));
3455 CV.push_back(ConstantFP::get(SrcTy, 0.0));
3456 CV.push_back(ConstantFP::get(SrcTy, 0.0));
3457 CV.push_back(ConstantFP::get(SrcTy, 0.0));
3458 }
3459 CS = ConstantStruct::get(CV);
3460 CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3461 Tys = DAG.getVTList(VT, MVT::Other);
3462 Ops.clear();
3463 Ops.push_back(DAG.getEntryNode());
3464 Ops.push_back(CPIdx);
3465 Ops.push_back(DAG.getSrcValue(NULL));
3466 SDOperand Mask2 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3467 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3468
3469 // Or the value with the sign bit.
3470 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3471}
3472
3473SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3474 SDOperand Chain) {
3475 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3476 SDOperand Cond;
3477 SDOperand Op0 = Op.getOperand(0);
3478 SDOperand Op1 = Op.getOperand(1);
3479 SDOperand CC = Op.getOperand(2);
3480 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3481 const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3482 const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3483 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3484 unsigned X86CC;
3485
3486 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3487 Op0, Op1, DAG)) {
3488 SDOperand Ops1[] = { Chain, Op0, Op1 };
3489 Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3490 SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3491 return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3492 }
3493
3494 assert(isFP && "Illegal integer SetCC!");
3495
3496 SDOperand COps[] = { Chain, Op0, Op1 };
3497 Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3498
3499 switch (SetCCOpcode) {
3500 default: assert(false && "Illegal floating point SetCC!");
3501 case ISD::SETOEQ: { // !PF & ZF
3502 SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3503 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3504 SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3505 Tmp1.getValue(1) };
3506 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3507 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3508 }
3509 case ISD::SETUNE: { // PF | !ZF
3510 SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3511 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3512 SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3513 Tmp1.getValue(1) };
3514 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3515 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3516 }
3517 }
3518}
3519
3520SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3521 bool addTest = true;
3522 SDOperand Chain = DAG.getEntryNode();
3523 SDOperand Cond = Op.getOperand(0);
3524 SDOperand CC;
3525 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3526
3527 if (Cond.getOpcode() == ISD::SETCC)
3528 Cond = LowerSETCC(Cond, DAG, Chain);
3529
3530 if (Cond.getOpcode() == X86ISD::SETCC) {
3531 CC = Cond.getOperand(0);
3532
3533 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3534 // (since flag operand cannot be shared). Use it as the condition setting
3535 // operand in place of the X86ISD::SETCC.
3536 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3537 // to use a test instead of duplicating the X86ISD::CMP (for register
3538 // pressure reason)?
3539 SDOperand Cmp = Cond.getOperand(1);
3540 unsigned Opc = Cmp.getOpcode();
3541 bool IllegalFPCMov = !X86ScalarSSE &&
3542 MVT::isFloatingPoint(Op.getValueType()) &&
3543 !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3544 if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3545 !IllegalFPCMov) {
3546 SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3547 Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3548 addTest = false;
3549 }
3550 }
3551
3552 if (addTest) {
3553 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3554 SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3555 Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3556 }
3557
3558 VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3559 SmallVector<SDOperand, 4> Ops;
3560 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3561 // condition is true.
3562 Ops.push_back(Op.getOperand(2));
3563 Ops.push_back(Op.getOperand(1));
3564 Ops.push_back(CC);
3565 Ops.push_back(Cond.getValue(1));
3566 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3567}
3568
3569SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3570 bool addTest = true;
3571 SDOperand Chain = Op.getOperand(0);
3572 SDOperand Cond = Op.getOperand(1);
3573 SDOperand Dest = Op.getOperand(2);
3574 SDOperand CC;
3575 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3576
3577 if (Cond.getOpcode() == ISD::SETCC)
3578 Cond = LowerSETCC(Cond, DAG, Chain);
3579
3580 if (Cond.getOpcode() == X86ISD::SETCC) {
3581 CC = Cond.getOperand(0);
3582
3583 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3584 // (since flag operand cannot be shared). Use it as the condition setting
3585 // operand in place of the X86ISD::SETCC.
3586 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3587 // to use a test instead of duplicating the X86ISD::CMP (for register
3588 // pressure reason)?
3589 SDOperand Cmp = Cond.getOperand(1);
3590 unsigned Opc = Cmp.getOpcode();
3591 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3592 SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3593 Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3594 addTest = false;
3595 }
3596 }
3597
3598 if (addTest) {
3599 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3600 SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3601 Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3602 }
3603 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3604 Cond, Op.getOperand(2), CC, Cond.getValue(1));
3605}
3606
3607SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3608 unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3609
3610 if (Subtarget->is64Bit())
3611 return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3612 else
3613 switch (CallingConv) {
3614 default:
3615 assert(0 && "Unsupported calling convention");
3616 case CallingConv::Fast:
3617 // TODO: Implement fastcc
3618 // Falls through
3619 case CallingConv::C:
3620 case CallingConv::X86_StdCall:
3621 return LowerCCCCallTo(Op, DAG, CallingConv);
3622 case CallingConv::X86_FastCall:
3623 return LowerFastCCCallTo(Op, DAG, CallingConv);
3624 }
3625}
3626
3627
3628// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3629// Calls to _alloca is needed to probe the stack when allocating more than 4k
3630// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3631// that the guard pages used by the OS virtual memory manager are allocated in
3632// correct sequence.
3633SDOperand
3634X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3635 SelectionDAG &DAG) {
3636 assert(Subtarget->isTargetCygMing() &&
3637 "This should be used only on Cygwin/Mingw targets");
3638
3639 // Get the inputs.
3640 SDOperand Chain = Op.getOperand(0);
3641 SDOperand Size = Op.getOperand(1);
3642 // FIXME: Ensure alignment here
3643
3644 SDOperand Flag;
3645
3646 MVT::ValueType IntPtr = getPointerTy();
3647 MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3648
3649 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
3650 Flag = Chain.getValue(1);
3651
3652 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3653 SDOperand Ops[] = { Chain,
3654 DAG.getTargetExternalSymbol("_alloca", IntPtr),
3655 DAG.getRegister(X86::EAX, IntPtr),
3656 Flag };
3657 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
3658 Flag = Chain.getValue(1);
3659
3660 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
3661
3662 std::vector<MVT::ValueType> Tys;
3663 Tys.push_back(SPTy);
3664 Tys.push_back(MVT::Other);
3665 SDOperand Ops1[2] = { Chain.getValue(0), Chain };
3666 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
3667}
3668
3669SDOperand
3670X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3671 MachineFunction &MF = DAG.getMachineFunction();
3672 const Function* Fn = MF.getFunction();
3673 if (Fn->hasExternalLinkage() &&
3674 Subtarget->isTargetCygMing() &&
3675 Fn->getName() == "main")
3676 MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
3677
3678 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3679 if (Subtarget->is64Bit())
3680 return LowerX86_64CCCArguments(Op, DAG);
3681 else
3682 switch(CC) {
3683 default:
3684 assert(0 && "Unsupported calling convention");
3685 case CallingConv::Fast:
3686 // TODO: implement fastcc.
3687
3688 // Falls through
3689 case CallingConv::C:
3690 return LowerCCCArguments(Op, DAG);
3691 case CallingConv::X86_StdCall:
3692 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
3693 return LowerCCCArguments(Op, DAG, true);
3694 case CallingConv::X86_FastCall:
3695 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
3696 return LowerFastCCArguments(Op, DAG);
3697 }
3698}
3699
3700SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3701 SDOperand InFlag(0, 0);
3702 SDOperand Chain = Op.getOperand(0);
3703 unsigned Align =
3704 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3705 if (Align == 0) Align = 1;
3706
3707 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3708 // If not DWORD aligned, call memset if size is less than the threshold.
3709 // It knows how to align to the right boundary first.
3710 if ((Align & 3) != 0 ||
3711 (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
3712 MVT::ValueType IntPtr = getPointerTy();
3713 const Type *IntPtrTy = getTargetData()->getIntPtrType();
3714 TargetLowering::ArgListTy Args;
3715 TargetLowering::ArgListEntry Entry;
3716 Entry.Node = Op.getOperand(1);
3717 Entry.Ty = IntPtrTy;
3718 Args.push_back(Entry);
3719 // Extend the unsigned i8 argument to be an int value for the call.
3720 Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3721 Entry.Ty = IntPtrTy;
3722 Args.push_back(Entry);
3723 Entry.Node = Op.getOperand(3);
3724 Args.push_back(Entry);
3725 std::pair<SDOperand,SDOperand> CallResult =
3726 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3727 DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3728 return CallResult.second;
3729 }
3730
3731 MVT::ValueType AVT;
3732 SDOperand Count;
3733 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3734 unsigned BytesLeft = 0;
3735 bool TwoRepStos = false;
3736 if (ValC) {
3737 unsigned ValReg;
3738 uint64_t Val = ValC->getValue() & 255;
3739
3740 // If the value is a constant, then we can potentially use larger sets.
3741 switch (Align & 3) {
3742 case 2: // WORD aligned
3743 AVT = MVT::i16;
3744 ValReg = X86::AX;
3745 Val = (Val << 8) | Val;
3746 break;
3747 case 0: // DWORD aligned
3748 AVT = MVT::i32;
3749 ValReg = X86::EAX;
3750 Val = (Val << 8) | Val;
3751 Val = (Val << 16) | Val;
3752 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned
3753 AVT = MVT::i64;
3754 ValReg = X86::RAX;
3755 Val = (Val << 32) | Val;
3756 }
3757 break;
3758 default: // Byte aligned
3759 AVT = MVT::i8;
3760 ValReg = X86::AL;
3761 Count = Op.getOperand(3);
3762 break;
3763 }
3764
3765 if (AVT > MVT::i8) {
3766 if (I) {
3767 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3768 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3769 BytesLeft = I->getValue() % UBytes;
3770 } else {
3771 assert(AVT >= MVT::i32 &&
3772 "Do not use rep;stos if not at least DWORD aligned");
3773 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3774 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3775 TwoRepStos = true;
3776 }
3777 }
3778
3779 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3780 InFlag);
3781 InFlag = Chain.getValue(1);
3782 } else {
3783 AVT = MVT::i8;
3784 Count = Op.getOperand(3);
3785 Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3786 InFlag = Chain.getValue(1);
3787 }
3788
3789 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3790 Count, InFlag);
3791 InFlag = Chain.getValue(1);
3792 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3793 Op.getOperand(1), InFlag);
3794 InFlag = Chain.getValue(1);
3795
3796 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3797 SmallVector<SDOperand, 8> Ops;
3798 Ops.push_back(Chain);
3799 Ops.push_back(DAG.getValueType(AVT));
3800 Ops.push_back(InFlag);
3801 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3802
3803 if (TwoRepStos) {
3804 InFlag = Chain.getValue(1);
3805 Count = Op.getOperand(3);
3806 MVT::ValueType CVT = Count.getValueType();
3807 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3808 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3809 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3810 Left, InFlag);
3811 InFlag = Chain.getValue(1);
3812 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3813 Ops.clear();
3814 Ops.push_back(Chain);
3815 Ops.push_back(DAG.getValueType(MVT::i8));
3816 Ops.push_back(InFlag);
3817 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3818 } else if (BytesLeft) {
3819 // Issue stores for the last 1 - 7 bytes.
3820 SDOperand Value;
3821 unsigned Val = ValC->getValue() & 255;
3822 unsigned Offset = I->getValue() - BytesLeft;
3823 SDOperand DstAddr = Op.getOperand(1);
3824 MVT::ValueType AddrVT = DstAddr.getValueType();
3825 if (BytesLeft >= 4) {
3826 Val = (Val << 8) | Val;
3827 Val = (Val << 16) | Val;
3828 Value = DAG.getConstant(Val, MVT::i32);
3829 Chain = DAG.getStore(Chain, Value,
3830 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3831 DAG.getConstant(Offset, AddrVT)),
3832 NULL, 0);
3833 BytesLeft -= 4;
3834 Offset += 4;
3835 }
3836 if (BytesLeft >= 2) {
3837 Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3838 Chain = DAG.getStore(Chain, Value,
3839 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3840 DAG.getConstant(Offset, AddrVT)),
3841 NULL, 0);
3842 BytesLeft -= 2;
3843 Offset += 2;
3844 }
3845 if (BytesLeft == 1) {
3846 Value = DAG.getConstant(Val, MVT::i8);
3847 Chain = DAG.getStore(Chain, Value,
3848 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3849 DAG.getConstant(Offset, AddrVT)),
3850 NULL, 0);
3851 }
3852 }
3853
3854 return Chain;
3855}
3856
3857SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
3858 SDOperand Chain = Op.getOperand(0);
3859 unsigned Align =
3860 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3861 if (Align == 0) Align = 1;
3862
3863 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3864 // If not DWORD aligned, call memcpy if size is less than the threshold.
3865 // It knows how to align to the right boundary first.
3866 if ((Align & 3) != 0 ||
3867 (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
3868 MVT::ValueType IntPtr = getPointerTy();
3869 TargetLowering::ArgListTy Args;
3870 TargetLowering::ArgListEntry Entry;
3871 Entry.Ty = getTargetData()->getIntPtrType();
3872 Entry.Node = Op.getOperand(1); Args.push_back(Entry);
3873 Entry.Node = Op.getOperand(2); Args.push_back(Entry);
3874 Entry.Node = Op.getOperand(3); Args.push_back(Entry);
3875 std::pair<SDOperand,SDOperand> CallResult =
3876 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3877 DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
3878 return CallResult.second;
3879 }
3880
3881 MVT::ValueType AVT;
3882 SDOperand Count;
3883 unsigned BytesLeft = 0;
3884 bool TwoRepMovs = false;
3885 switch (Align & 3) {
3886 case 2: // WORD aligned
3887 AVT = MVT::i16;
3888 break;
3889 case 0: // DWORD aligned
3890 AVT = MVT::i32;
3891 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned
3892 AVT = MVT::i64;
3893 break;
3894 default: // Byte aligned
3895 AVT = MVT::i8;
3896 Count = Op.getOperand(3);
3897 break;
3898 }
3899
3900 if (AVT > MVT::i8) {
3901 if (I) {
3902 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3903 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3904 BytesLeft = I->getValue() % UBytes;
3905 } else {
3906 assert(AVT >= MVT::i32 &&
3907 "Do not use rep;movs if not at least DWORD aligned");
3908 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3909 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3910 TwoRepMovs = true;
3911 }
3912 }
3913
3914 SDOperand InFlag(0, 0);
3915 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3916 Count, InFlag);
3917 InFlag = Chain.getValue(1);
3918 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3919 Op.getOperand(1), InFlag);
3920 InFlag = Chain.getValue(1);
3921 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
3922 Op.getOperand(2), InFlag);
3923 InFlag = Chain.getValue(1);
3924
3925 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3926 SmallVector<SDOperand, 8> Ops;
3927 Ops.push_back(Chain);
3928 Ops.push_back(DAG.getValueType(AVT));
3929 Ops.push_back(InFlag);
3930 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3931
3932 if (TwoRepMovs) {
3933 InFlag = Chain.getValue(1);
3934 Count = Op.getOperand(3);
3935 MVT::ValueType CVT = Count.getValueType();
3936 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3937 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3938 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3939 Left, InFlag);
3940 InFlag = Chain.getValue(1);
3941 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3942 Ops.clear();
3943 Ops.push_back(Chain);
3944 Ops.push_back(DAG.getValueType(MVT::i8));
3945 Ops.push_back(InFlag);
3946 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3947 } else if (BytesLeft) {
3948 // Issue loads and stores for the last 1 - 7 bytes.
3949 unsigned Offset = I->getValue() - BytesLeft;
3950 SDOperand DstAddr = Op.getOperand(1);
3951 MVT::ValueType DstVT = DstAddr.getValueType();
3952 SDOperand SrcAddr = Op.getOperand(2);
3953 MVT::ValueType SrcVT = SrcAddr.getValueType();
3954 SDOperand Value;
3955 if (BytesLeft >= 4) {
3956 Value = DAG.getLoad(MVT::i32, Chain,
3957 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3958 DAG.getConstant(Offset, SrcVT)),
3959 NULL, 0);
3960 Chain = Value.getValue(1);
3961 Chain = DAG.getStore(Chain, Value,
3962 DAG.getNode(ISD::ADD, DstVT, DstAddr,
3963 DAG.getConstant(Offset, DstVT)),
3964 NULL, 0);
3965 BytesLeft -= 4;
3966 Offset += 4;
3967 }
3968 if (BytesLeft >= 2) {
3969 Value = DAG.getLoad(MVT::i16, Chain,
3970 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3971 DAG.getConstant(Offset, SrcVT)),
3972 NULL, 0);
3973 Chain = Value.getValue(1);
3974 Chain = DAG.getStore(Chain, Value,
3975 DAG.getNode(ISD::ADD, DstVT, DstAddr,
3976 DAG.getConstant(Offset, DstVT)),
3977 NULL, 0);
3978 BytesLeft -= 2;
3979 Offset += 2;
3980 }
3981
3982 if (BytesLeft == 1) {
3983 Value = DAG.getLoad(MVT::i8, Chain,
3984 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3985 DAG.getConstant(Offset, SrcVT)),
3986 NULL, 0);
3987 Chain = Value.getValue(1);
3988 Chain = DAG.getStore(Chain, Value,
3989 DAG.getNode(ISD::ADD, DstVT, DstAddr,
3990 DAG.getConstant(Offset, DstVT)),
3991 NULL, 0);
3992 }
3993 }
3994
3995 return Chain;
3996}
3997
3998SDOperand
3999X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4000 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4001 SDOperand TheOp = Op.getOperand(0);
4002 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4003 if (Subtarget->is64Bit()) {
4004 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4005 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4006 MVT::i64, Copy1.getValue(2));
4007 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4008 DAG.getConstant(32, MVT::i8));
4009 SDOperand Ops[] = {
4010 DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4011 };
4012
4013 Tys = DAG.getVTList(MVT::i64, MVT::Other);
4014 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4015 }
4016
4017 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4018 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4019 MVT::i32, Copy1.getValue(2));
4020 SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4021 Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4022 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4023}
4024
4025SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4026 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4027
4028 if (!Subtarget->is64Bit()) {
4029 // vastart just stores the address of the VarArgsFrameIndex slot into the
4030 // memory location argument.
4031 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4032 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4033 SV->getOffset());
4034 }
4035
4036 // __va_list_tag:
4037 // gp_offset (0 - 6 * 8)
4038 // fp_offset (48 - 48 + 8 * 16)
4039 // overflow_arg_area (point to parameters coming in memory).
4040 // reg_save_area
4041 SmallVector<SDOperand, 8> MemOps;
4042 SDOperand FIN = Op.getOperand(1);
4043 // Store gp_offset
4044 SDOperand Store = DAG.getStore(Op.getOperand(0),
4045 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4046 FIN, SV->getValue(), SV->getOffset());
4047 MemOps.push_back(Store);
4048
4049 // Store fp_offset
4050 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4051 DAG.getConstant(4, getPointerTy()));
4052 Store = DAG.getStore(Op.getOperand(0),
4053 DAG.getConstant(VarArgsFPOffset, MVT::i32),
4054 FIN, SV->getValue(), SV->getOffset());
4055 MemOps.push_back(Store);
4056
4057 // Store ptr to overflow_arg_area
4058 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4059 DAG.getConstant(4, getPointerTy()));
4060 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4061 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4062 SV->getOffset());
4063 MemOps.push_back(Store);
4064
4065 // Store ptr to reg_save_area.
4066 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4067 DAG.getConstant(8, getPointerTy()));
4068 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4069 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4070 SV->getOffset());
4071 MemOps.push_back(Store);
4072 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4073}
4074
4075SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4076 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4077 SDOperand Chain = Op.getOperand(0);
4078 SDOperand DstPtr = Op.getOperand(1);
4079 SDOperand SrcPtr = Op.getOperand(2);
4080 SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4081 SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4082
4083 SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4084 SrcSV->getValue(), SrcSV->getOffset());
4085 Chain = SrcPtr.getValue(1);
4086 for (unsigned i = 0; i < 3; ++i) {
4087 SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4088 SrcSV->getValue(), SrcSV->getOffset());
4089 Chain = Val.getValue(1);
4090 Chain = DAG.getStore(Chain, Val, DstPtr,
4091 DstSV->getValue(), DstSV->getOffset());
4092 if (i == 2)
4093 break;
4094 SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4095 DAG.getConstant(8, getPointerTy()));
4096 DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4097 DAG.getConstant(8, getPointerTy()));
4098 }
4099 return Chain;
4100}
4101
4102SDOperand
4103X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4104 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4105 switch (IntNo) {
4106 default: return SDOperand(); // Don't custom lower most intrinsics.
4107 // Comparison intrinsics.
4108 case Intrinsic::x86_sse_comieq_ss:
4109 case Intrinsic::x86_sse_comilt_ss:
4110 case Intrinsic::x86_sse_comile_ss:
4111 case Intrinsic::x86_sse_comigt_ss:
4112 case Intrinsic::x86_sse_comige_ss:
4113 case Intrinsic::x86_sse_comineq_ss:
4114 case Intrinsic::x86_sse_ucomieq_ss:
4115 case Intrinsic::x86_sse_ucomilt_ss:
4116 case Intrinsic::x86_sse_ucomile_ss:
4117 case Intrinsic::x86_sse_ucomigt_ss:
4118 case Intrinsic::x86_sse_ucomige_ss:
4119 case Intrinsic::x86_sse_ucomineq_ss:
4120 case Intrinsic::x86_sse2_comieq_sd:
4121 case Intrinsic::x86_sse2_comilt_sd:
4122 case Intrinsic::x86_sse2_comile_sd:
4123 case Intrinsic::x86_sse2_comigt_sd:
4124 case Intrinsic::x86_sse2_comige_sd:
4125 case Intrinsic::x86_sse2_comineq_sd:
4126 case Intrinsic::x86_sse2_ucomieq_sd:
4127 case Intrinsic::x86_sse2_ucomilt_sd:
4128 case Intrinsic::x86_sse2_ucomile_sd:
4129 case Intrinsic::x86_sse2_ucomigt_sd:
4130 case Intrinsic::x86_sse2_ucomige_sd:
4131 case Intrinsic::x86_sse2_ucomineq_sd: {
4132 unsigned Opc = 0;
4133 ISD::CondCode CC = ISD::SETCC_INVALID;
4134 switch (IntNo) {
4135 default: break;
4136 case Intrinsic::x86_sse_comieq_ss:
4137 case Intrinsic::x86_sse2_comieq_sd:
4138 Opc = X86ISD::COMI;
4139 CC = ISD::SETEQ;
4140 break;
4141 case Intrinsic::x86_sse_comilt_ss:
4142 case Intrinsic::x86_sse2_comilt_sd:
4143 Opc = X86ISD::COMI;
4144 CC = ISD::SETLT;
4145 break;
4146 case Intrinsic::x86_sse_comile_ss:
4147 case Intrinsic::x86_sse2_comile_sd:
4148 Opc = X86ISD::COMI;
4149 CC = ISD::SETLE;
4150 break;
4151 case Intrinsic::x86_sse_comigt_ss:
4152 case Intrinsic::x86_sse2_comigt_sd:
4153 Opc = X86ISD::COMI;
4154 CC = ISD::SETGT;
4155 break;
4156 case Intrinsic::x86_sse_comige_ss:
4157 case Intrinsic::x86_sse2_comige_sd:
4158 Opc = X86ISD::COMI;
4159 CC = ISD::SETGE;
4160 break;
4161 case Intrinsic::x86_sse_comineq_ss:
4162 case Intrinsic::x86_sse2_comineq_sd:
4163 Opc = X86ISD::COMI;
4164 CC = ISD::SETNE;
4165 break;
4166 case Intrinsic::x86_sse_ucomieq_ss:
4167 case Intrinsic::x86_sse2_ucomieq_sd:
4168 Opc = X86ISD::UCOMI;
4169 CC = ISD::SETEQ;
4170 break;
4171 case Intrinsic::x86_sse_ucomilt_ss:
4172 case Intrinsic::x86_sse2_ucomilt_sd:
4173 Opc = X86ISD::UCOMI;
4174 CC = ISD::SETLT;
4175 break;
4176 case Intrinsic::x86_sse_ucomile_ss:
4177 case Intrinsic::x86_sse2_ucomile_sd:
4178 Opc = X86ISD::UCOMI;
4179 CC = ISD::SETLE;
4180 break;
4181 case Intrinsic::x86_sse_ucomigt_ss:
4182 case Intrinsic::x86_sse2_ucomigt_sd:
4183 Opc = X86ISD::UCOMI;
4184 CC = ISD::SETGT;
4185 break;
4186 case Intrinsic::x86_sse_ucomige_ss:
4187 case Intrinsic::x86_sse2_ucomige_sd:
4188 Opc = X86ISD::UCOMI;
4189 CC = ISD::SETGE;
4190 break;
4191 case Intrinsic::x86_sse_ucomineq_ss:
4192 case Intrinsic::x86_sse2_ucomineq_sd:
4193 Opc = X86ISD::UCOMI;
4194 CC = ISD::SETNE;
4195 break;
4196 }
4197
4198 unsigned X86CC;
4199 SDOperand LHS = Op.getOperand(1);
4200 SDOperand RHS = Op.getOperand(2);
4201 translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4202
4203 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4204 SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4205 SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4206 VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4207 SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4208 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4209 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4210 }
4211 }
4212}
4213
4214SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4215 // Depths > 0 not supported yet!
4216 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4217 return SDOperand();
4218
4219 // Just load the return address
4220 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4221 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4222}
4223
4224SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4225 // Depths > 0 not supported yet!
4226 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4227 return SDOperand();
4228
4229 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4230 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4231 DAG.getConstant(4, getPointerTy()));
4232}
4233
4234SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4235 SelectionDAG &DAG) {
4236 // Is not yet supported on x86-64
4237 if (Subtarget->is64Bit())
4238 return SDOperand();
4239
4240 return DAG.getConstant(8, getPointerTy());
4241}
4242
4243SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4244{
4245 assert(!Subtarget->is64Bit() &&
4246 "Lowering of eh_return builtin is not supported yet on x86-64");
4247
4248 MachineFunction &MF = DAG.getMachineFunction();
4249 SDOperand Chain = Op.getOperand(0);
4250 SDOperand Offset = Op.getOperand(1);
4251 SDOperand Handler = Op.getOperand(2);
4252
4253 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4254 getPointerTy());
4255
4256 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4257 DAG.getConstant(-4UL, getPointerTy()));
4258 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4259 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4260 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4261 MF.addLiveOut(X86::ECX);
4262
4263 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4264 Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4265}
4266
4267/// LowerOperation - Provide custom lowering hooks for some operations.
4268///
4269SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4270 switch (Op.getOpcode()) {
4271 default: assert(0 && "Should not custom lower this!");
4272 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
4273 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4274 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4275 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
4276 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
4277 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
4278 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
4279 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4280 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
4281 case ISD::SHL_PARTS:
4282 case ISD::SRA_PARTS:
4283 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
4284 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
4285 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
4286 case ISD::FABS: return LowerFABS(Op, DAG);
4287 case ISD::FNEG: return LowerFNEG(Op, DAG);
4288 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
4289 case ISD::SETCC: return LowerSETCC(Op, DAG, DAG.getEntryNode());
4290 case ISD::SELECT: return LowerSELECT(Op, DAG);
4291 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4292 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
4293 case ISD::CALL: return LowerCALL(Op, DAG);
4294 case ISD::RET: return LowerRET(Op, DAG);
4295 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
4296 case ISD::MEMSET: return LowerMEMSET(Op, DAG);
4297 case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
4298 case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG);
4299 case ISD::VASTART: return LowerVASTART(Op, DAG);
4300 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
4301 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4302 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4303 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
4304 case ISD::FRAME_TO_ARGS_OFFSET:
4305 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4306 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4307 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
4308 }
4309 return SDOperand();
4310}
4311
4312const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4313 switch (Opcode) {
4314 default: return NULL;
4315 case X86ISD::SHLD: return "X86ISD::SHLD";
4316 case X86ISD::SHRD: return "X86ISD::SHRD";
4317 case X86ISD::FAND: return "X86ISD::FAND";
4318 case X86ISD::FOR: return "X86ISD::FOR";
4319 case X86ISD::FXOR: return "X86ISD::FXOR";
4320 case X86ISD::FSRL: return "X86ISD::FSRL";
4321 case X86ISD::FILD: return "X86ISD::FILD";
4322 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
4323 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4324 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4325 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4326 case X86ISD::FLD: return "X86ISD::FLD";
4327 case X86ISD::FST: return "X86ISD::FST";
4328 case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
4329 case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
4330 case X86ISD::CALL: return "X86ISD::CALL";
4331 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
4332 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
4333 case X86ISD::CMP: return "X86ISD::CMP";
4334 case X86ISD::COMI: return "X86ISD::COMI";
4335 case X86ISD::UCOMI: return "X86ISD::UCOMI";
4336 case X86ISD::SETCC: return "X86ISD::SETCC";
4337 case X86ISD::CMOV: return "X86ISD::CMOV";
4338 case X86ISD::BRCOND: return "X86ISD::BRCOND";
4339 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
4340 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
4341 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
4342 case X86ISD::LOAD_PACK: return "X86ISD::LOAD_PACK";
4343 case X86ISD::LOAD_UA: return "X86ISD::LOAD_UA";
4344 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
4345 case X86ISD::Wrapper: return "X86ISD::Wrapper";
4346 case X86ISD::S2VEC: return "X86ISD::S2VEC";
4347 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
4348 case X86ISD::PINSRW: return "X86ISD::PINSRW";
4349 case X86ISD::FMAX: return "X86ISD::FMAX";
4350 case X86ISD::FMIN: return "X86ISD::FMIN";
4351 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
4352 case X86ISD::FRCP: return "X86ISD::FRCP";
4353 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
4354 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER";
4355 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
4356 }
4357}
4358
4359// isLegalAddressingMode - Return true if the addressing mode represented
4360// by AM is legal for this target, for a load/store of the specified type.
4361bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4362 const Type *Ty) const {
4363 // X86 supports extremely general addressing modes.
4364
4365 // X86 allows a sign-extended 32-bit immediate field as a displacement.
4366 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4367 return false;
4368
4369 if (AM.BaseGV) {
4370 // X86-64 only supports addr of globals in small code model.
4371 if (Subtarget->is64Bit() &&
4372 getTargetMachine().getCodeModel() != CodeModel::Small)
4373 return false;
4374
4375 // We can only fold this if we don't need a load either.
4376 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4377 return false;
4378 }
4379
4380 switch (AM.Scale) {
4381 case 0:
4382 case 1:
4383 case 2:
4384 case 4:
4385 case 8:
4386 // These scales always work.
4387 break;
4388 case 3:
4389 case 5:
4390 case 9:
4391 // These scales are formed with basereg+scalereg. Only accept if there is
4392 // no basereg yet.
4393 if (AM.HasBaseReg)
4394 return false;
4395 break;
4396 default: // Other stuff never works.
4397 return false;
4398 }
4399
4400 return true;
4401}
4402
4403
4404/// isShuffleMaskLegal - Targets can use this to indicate that they only
4405/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4406/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4407/// are assumed to be legal.
4408bool
4409X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4410 // Only do shuffles on 128-bit vector types for now.
4411 if (MVT::getSizeInBits(VT) == 64) return false;
4412 return (Mask.Val->getNumOperands() <= 4 ||
4413 isIdentityMask(Mask.Val) ||
4414 isIdentityMask(Mask.Val, true) ||
4415 isSplatMask(Mask.Val) ||
4416 isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4417 X86::isUNPCKLMask(Mask.Val) ||
4418 X86::isUNPCKHMask(Mask.Val) ||
4419 X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4420 X86::isUNPCKH_v_undef_Mask(Mask.Val));
4421}
4422
4423bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4424 MVT::ValueType EVT,
4425 SelectionDAG &DAG) const {
4426 unsigned NumElts = BVOps.size();
4427 // Only do shuffles on 128-bit vector types for now.
4428 if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4429 if (NumElts == 2) return true;
4430 if (NumElts == 4) {
4431 return (isMOVLMask(&BVOps[0], 4) ||
4432 isCommutedMOVL(&BVOps[0], 4, true) ||
4433 isSHUFPMask(&BVOps[0], 4) ||
4434 isCommutedSHUFP(&BVOps[0], 4));
4435 }
4436 return false;
4437}
4438
4439//===----------------------------------------------------------------------===//
4440// X86 Scheduler Hooks
4441//===----------------------------------------------------------------------===//
4442
4443MachineBasicBlock *
4444X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4445 MachineBasicBlock *BB) {
4446 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4447 switch (MI->getOpcode()) {
4448 default: assert(false && "Unexpected instr type to insert");
4449 case X86::CMOV_FR32:
4450 case X86::CMOV_FR64:
4451 case X86::CMOV_V4F32:
4452 case X86::CMOV_V2F64:
4453 case X86::CMOV_V2I64: {
4454 // To "insert" a SELECT_CC instruction, we actually have to insert the
4455 // diamond control-flow pattern. The incoming instruction knows the
4456 // destination vreg to set, the condition code register to branch on, the
4457 // true/false values to select between, and a branch opcode to use.
4458 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4459 ilist<MachineBasicBlock>::iterator It = BB;
4460 ++It;
4461
4462 // thisMBB:
4463 // ...
4464 // TrueVal = ...
4465 // cmpTY ccX, r1, r2
4466 // bCC copy1MBB
4467 // fallthrough --> copy0MBB
4468 MachineBasicBlock *thisMBB = BB;
4469 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4470 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4471 unsigned Opc =
4472 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4473 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4474 MachineFunction *F = BB->getParent();
4475 F->getBasicBlockList().insert(It, copy0MBB);
4476 F->getBasicBlockList().insert(It, sinkMBB);
4477 // Update machine-CFG edges by first adding all successors of the current
4478 // block to the new block which will contain the Phi node for the select.
4479 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4480 e = BB->succ_end(); i != e; ++i)
4481 sinkMBB->addSuccessor(*i);
4482 // Next, remove all successors of the current block, and add the true
4483 // and fallthrough blocks as its successors.
4484 while(!BB->succ_empty())
4485 BB->removeSuccessor(BB->succ_begin());
4486 BB->addSuccessor(copy0MBB);
4487 BB->addSuccessor(sinkMBB);
4488
4489 // copy0MBB:
4490 // %FalseValue = ...
4491 // # fallthrough to sinkMBB
4492 BB = copy0MBB;
4493
4494 // Update machine-CFG edges
4495 BB->addSuccessor(sinkMBB);
4496
4497 // sinkMBB:
4498 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4499 // ...
4500 BB = sinkMBB;
4501 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4502 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4503 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4504
4505 delete MI; // The pseudo instruction is gone now.
4506 return BB;
4507 }
4508
4509 case X86::FP32_TO_INT16_IN_MEM:
4510 case X86::FP32_TO_INT32_IN_MEM:
4511 case X86::FP32_TO_INT64_IN_MEM:
4512 case X86::FP64_TO_INT16_IN_MEM:
4513 case X86::FP64_TO_INT32_IN_MEM:
4514 case X86::FP64_TO_INT64_IN_MEM: {
4515 // Change the floating point control register to use "round towards zero"
4516 // mode when truncating to an integer value.
4517 MachineFunction *F = BB->getParent();
4518 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4519 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4520
4521 // Load the old value of the high byte of the control word...
4522 unsigned OldCW =
4523 F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4524 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4525
4526 // Set the high part to be round to zero...
4527 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4528 .addImm(0xC7F);
4529
4530 // Reload the modified control word now...
4531 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4532
4533 // Restore the memory image of control word to original value
4534 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4535 .addReg(OldCW);
4536
4537 // Get the X86 opcode to use.
4538 unsigned Opc;
4539 switch (MI->getOpcode()) {
4540 default: assert(0 && "illegal opcode!");
4541 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
4542 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
4543 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
4544 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
4545 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
4546 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
4547 }
4548
4549 X86AddressMode AM;
4550 MachineOperand &Op = MI->getOperand(0);
4551 if (Op.isRegister()) {
4552 AM.BaseType = X86AddressMode::RegBase;
4553 AM.Base.Reg = Op.getReg();
4554 } else {
4555 AM.BaseType = X86AddressMode::FrameIndexBase;
4556 AM.Base.FrameIndex = Op.getFrameIndex();
4557 }
4558 Op = MI->getOperand(1);
4559 if (Op.isImmediate())
4560 AM.Scale = Op.getImm();
4561 Op = MI->getOperand(2);
4562 if (Op.isImmediate())
4563 AM.IndexReg = Op.getImm();
4564 Op = MI->getOperand(3);
4565 if (Op.isGlobalAddress()) {
4566 AM.GV = Op.getGlobal();
4567 } else {
4568 AM.Disp = Op.getImm();
4569 }
4570 addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4571 .addReg(MI->getOperand(4).getReg());
4572
4573 // Reload the original control word now.
4574 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4575
4576 delete MI; // The pseudo instruction is gone now.
4577 return BB;
4578 }
4579 }
4580}
4581
4582//===----------------------------------------------------------------------===//
4583// X86 Optimization Hooks
4584//===----------------------------------------------------------------------===//
4585
4586void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4587 uint64_t Mask,
4588 uint64_t &KnownZero,
4589 uint64_t &KnownOne,
4590 const SelectionDAG &DAG,
4591 unsigned Depth) const {
4592 unsigned Opc = Op.getOpcode();
4593 assert((Opc >= ISD::BUILTIN_OP_END ||
4594 Opc == ISD::INTRINSIC_WO_CHAIN ||
4595 Opc == ISD::INTRINSIC_W_CHAIN ||
4596 Opc == ISD::INTRINSIC_VOID) &&
4597 "Should use MaskedValueIsZero if you don't know whether Op"
4598 " is a target node!");
4599
4600 KnownZero = KnownOne = 0; // Don't know anything.
4601 switch (Opc) {
4602 default: break;
4603 case X86ISD::SETCC:
4604 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4605 break;
4606 }
4607}
4608
4609/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4610/// element of the result of the vector shuffle.
4611static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4612 MVT::ValueType VT = N->getValueType(0);
4613 SDOperand PermMask = N->getOperand(2);
4614 unsigned NumElems = PermMask.getNumOperands();
4615 SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4616 i %= NumElems;
4617 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4618 return (i == 0)
4619 ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4620 } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4621 SDOperand Idx = PermMask.getOperand(i);
4622 if (Idx.getOpcode() == ISD::UNDEF)
4623 return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4624 return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4625 }
4626 return SDOperand();
4627}
4628
4629/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4630/// node is a GlobalAddress + an offset.
4631static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4632 unsigned Opc = N->getOpcode();
4633 if (Opc == X86ISD::Wrapper) {
4634 if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4635 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4636 return true;
4637 }
4638 } else if (Opc == ISD::ADD) {
4639 SDOperand N1 = N->getOperand(0);
4640 SDOperand N2 = N->getOperand(1);
4641 if (isGAPlusOffset(N1.Val, GA, Offset)) {
4642 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4643 if (V) {
4644 Offset += V->getSignExtended();
4645 return true;
4646 }
4647 } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4648 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4649 if (V) {
4650 Offset += V->getSignExtended();
4651 return true;
4652 }
4653 }
4654 }
4655 return false;
4656}
4657
4658/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4659/// + Dist * Size.
4660static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4661 MachineFrameInfo *MFI) {
4662 if (N->getOperand(0).Val != Base->getOperand(0).Val)
4663 return false;
4664
4665 SDOperand Loc = N->getOperand(1);
4666 SDOperand BaseLoc = Base->getOperand(1);
4667 if (Loc.getOpcode() == ISD::FrameIndex) {
4668 if (BaseLoc.getOpcode() != ISD::FrameIndex)
4669 return false;
4670 int FI = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
4671 int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
4672 int FS = MFI->getObjectSize(FI);
4673 int BFS = MFI->getObjectSize(BFI);
4674 if (FS != BFS || FS != Size) return false;
4675 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4676 } else {
4677 GlobalValue *GV1 = NULL;
4678 GlobalValue *GV2 = NULL;
4679 int64_t Offset1 = 0;
4680 int64_t Offset2 = 0;
4681 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4682 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4683 if (isGA1 && isGA2 && GV1 == GV2)
4684 return Offset1 == (Offset2 + Dist*Size);
4685 }
4686
4687 return false;
4688}
4689
4690static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4691 const X86Subtarget *Subtarget) {
4692 GlobalValue *GV;
4693 int64_t Offset;
4694 if (isGAPlusOffset(Base, GV, Offset))
4695 return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4696 else {
4697 assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
4698 int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
4699 if (BFI < 0)
4700 // Fixed objects do not specify alignment, however the offsets are known.
4701 return ((Subtarget->getStackAlignment() % 16) == 0 &&
4702 (MFI->getObjectOffset(BFI) % 16) == 0);
4703 else
4704 return MFI->getObjectAlignment(BFI) >= 16;
4705 }
4706 return false;
4707}
4708
4709
4710/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4711/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4712/// if the load addresses are consecutive, non-overlapping, and in the right
4713/// order.
4714static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4715 const X86Subtarget *Subtarget) {
4716 MachineFunction &MF = DAG.getMachineFunction();
4717 MachineFrameInfo *MFI = MF.getFrameInfo();
4718 MVT::ValueType VT = N->getValueType(0);
4719 MVT::ValueType EVT = MVT::getVectorElementType(VT);
4720 SDOperand PermMask = N->getOperand(2);
4721 int NumElems = (int)PermMask.getNumOperands();
4722 SDNode *Base = NULL;
4723 for (int i = 0; i < NumElems; ++i) {
4724 SDOperand Idx = PermMask.getOperand(i);
4725 if (Idx.getOpcode() == ISD::UNDEF) {
4726 if (!Base) return SDOperand();
4727 } else {
4728 SDOperand Arg =
4729 getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4730 if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4731 return SDOperand();
4732 if (!Base)
4733 Base = Arg.Val;
4734 else if (!isConsecutiveLoad(Arg.Val, Base,
4735 i, MVT::getSizeInBits(EVT)/8,MFI))
4736 return SDOperand();
4737 }
4738 }
4739
4740 bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
4741 if (isAlign16) {
4742 LoadSDNode *LD = cast<LoadSDNode>(Base);
4743 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4744 LD->getSrcValueOffset());
4745 } else {
4746 // Just use movups, it's shorter.
4747 SDVTList Tys = DAG.getVTList(MVT::v4f32, MVT::Other);
4748 SmallVector<SDOperand, 3> Ops;
4749 Ops.push_back(Base->getOperand(0));
4750 Ops.push_back(Base->getOperand(1));
4751 Ops.push_back(Base->getOperand(2));
4752 return DAG.getNode(ISD::BIT_CONVERT, VT,
4753 DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size()));
4754 }
4755}
4756
4757/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
4758static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
4759 const X86Subtarget *Subtarget) {
4760 SDOperand Cond = N->getOperand(0);
4761
4762 // If we have SSE[12] support, try to form min/max nodes.
4763 if (Subtarget->hasSSE2() &&
4764 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
4765 if (Cond.getOpcode() == ISD::SETCC) {
4766 // Get the LHS/RHS of the select.
4767 SDOperand LHS = N->getOperand(1);
4768 SDOperand RHS = N->getOperand(2);
4769 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4770
4771 unsigned Opcode = 0;
4772 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
4773 switch (CC) {
4774 default: break;
4775 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
4776 case ISD::SETULE:
4777 case ISD::SETLE:
4778 if (!UnsafeFPMath) break;
4779 // FALL THROUGH.
4780 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
4781 case ISD::SETLT:
4782 Opcode = X86ISD::FMIN;
4783 break;
4784
4785 case ISD::SETOGT: // (X > Y) ? X : Y -> max
4786 case ISD::SETUGT:
4787 case ISD::SETGT:
4788 if (!UnsafeFPMath) break;
4789 // FALL THROUGH.
4790 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
4791 case ISD::SETGE:
4792 Opcode = X86ISD::FMAX;
4793 break;
4794 }
4795 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
4796 switch (CC) {
4797 default: break;
4798 case ISD::SETOGT: // (X > Y) ? Y : X -> min
4799 case ISD::SETUGT:
4800 case ISD::SETGT:
4801 if (!UnsafeFPMath) break;
4802 // FALL THROUGH.
4803 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
4804 case ISD::SETGE:
4805 Opcode = X86ISD::FMIN;
4806 break;
4807
4808 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
4809 case ISD::SETULE:
4810 case ISD::SETLE:
4811 if (!UnsafeFPMath) break;
4812 // FALL THROUGH.
4813 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
4814 case ISD::SETLT:
4815 Opcode = X86ISD::FMAX;
4816 break;
4817 }
4818 }
4819
4820 if (Opcode)
4821 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
4822 }
4823
4824 }
4825
4826 return SDOperand();
4827}
4828
4829
4830SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
4831 DAGCombinerInfo &DCI) const {
4832 SelectionDAG &DAG = DCI.DAG;
4833 switch (N->getOpcode()) {
4834 default: break;
4835 case ISD::VECTOR_SHUFFLE:
4836 return PerformShuffleCombine(N, DAG, Subtarget);
4837 case ISD::SELECT:
4838 return PerformSELECTCombine(N, DAG, Subtarget);
4839 }
4840
4841 return SDOperand();
4842}
4843
4844//===----------------------------------------------------------------------===//
4845// X86 Inline Assembly Support
4846//===----------------------------------------------------------------------===//
4847
4848/// getConstraintType - Given a constraint letter, return the type of
4849/// constraint it is for this target.
4850X86TargetLowering::ConstraintType
4851X86TargetLowering::getConstraintType(const std::string &Constraint) const {
4852 if (Constraint.size() == 1) {
4853 switch (Constraint[0]) {
4854 case 'A':
4855 case 'r':
4856 case 'R':
4857 case 'l':
4858 case 'q':
4859 case 'Q':
4860 case 'x':
4861 case 'Y':
4862 return C_RegisterClass;
4863 default:
4864 break;
4865 }
4866 }
4867 return TargetLowering::getConstraintType(Constraint);
4868}
4869
4870/// isOperandValidForConstraint - Return the specified operand (possibly
4871/// modified) if the specified SDOperand is valid for the specified target
4872/// constraint letter, otherwise return null.
4873SDOperand X86TargetLowering::
4874isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) {
4875 switch (Constraint) {
4876 default: break;
4877 case 'I':
4878 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4879 if (C->getValue() <= 31)
4880 return DAG.getTargetConstant(C->getValue(), Op.getValueType());
4881 }
4882 return SDOperand(0,0);
4883 case 'N':
4884 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4885 if (C->getValue() <= 255)
4886 return DAG.getTargetConstant(C->getValue(), Op.getValueType());
4887 }
4888 return SDOperand(0,0);
4889 case 'i': {
4890 // Literal immediates are always ok.
4891 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op))
4892 return DAG.getTargetConstant(CST->getValue(), Op.getValueType());
4893
4894 // If we are in non-pic codegen mode, we allow the address of a global (with
4895 // an optional displacement) to be used with 'i'.
4896 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
4897 int64_t Offset = 0;
4898
4899 // Match either (GA) or (GA+C)
4900 if (GA) {
4901 Offset = GA->getOffset();
4902 } else if (Op.getOpcode() == ISD::ADD) {
4903 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
4904 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
4905 if (C && GA) {
4906 Offset = GA->getOffset()+C->getValue();
4907 } else {
4908 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
4909 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
4910 if (C && GA)
4911 Offset = GA->getOffset()+C->getValue();
4912 else
4913 C = 0, GA = 0;
4914 }
4915 }
4916
4917 if (GA) {
4918 // If addressing this global requires a load (e.g. in PIC mode), we can't
4919 // match.
4920 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
4921 false))
4922 return SDOperand(0, 0);
4923
4924 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4925 Offset);
4926 return Op;
4927 }
4928
4929 // Otherwise, not valid for this mode.
4930 return SDOperand(0, 0);
4931 }
4932 }
4933 return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG);
4934}
4935
4936std::vector<unsigned> X86TargetLowering::
4937getRegClassForInlineAsmConstraint(const std::string &Constraint,
4938 MVT::ValueType VT) const {
4939 if (Constraint.size() == 1) {
4940 // FIXME: not handling fp-stack yet!
4941 switch (Constraint[0]) { // GCC X86 Constraint Letters
4942 default: break; // Unknown constraint letter
4943 case 'A': // EAX/EDX
4944 if (VT == MVT::i32 || VT == MVT::i64)
4945 return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
4946 break;
4947 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
4948 case 'Q': // Q_REGS
4949 if (VT == MVT::i32)
4950 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
4951 else if (VT == MVT::i16)
4952 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
4953 else if (VT == MVT::i8)
4954 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
4955 break;
4956 }
4957 }
4958
4959 return std::vector<unsigned>();
4960}
4961
4962std::pair<unsigned, const TargetRegisterClass*>
4963X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4964 MVT::ValueType VT) const {
4965 // First, see if this is a constraint that directly corresponds to an LLVM
4966 // register class.
4967 if (Constraint.size() == 1) {
4968 // GCC Constraint Letters
4969 switch (Constraint[0]) {
4970 default: break;
4971 case 'r': // GENERAL_REGS
4972 case 'R': // LEGACY_REGS
4973 case 'l': // INDEX_REGS
4974 if (VT == MVT::i64 && Subtarget->is64Bit())
4975 return std::make_pair(0U, X86::GR64RegisterClass);
4976 if (VT == MVT::i32)
4977 return std::make_pair(0U, X86::GR32RegisterClass);
4978 else if (VT == MVT::i16)
4979 return std::make_pair(0U, X86::GR16RegisterClass);
4980 else if (VT == MVT::i8)
4981 return std::make_pair(0U, X86::GR8RegisterClass);
4982 break;
4983 case 'y': // MMX_REGS if MMX allowed.
4984 if (!Subtarget->hasMMX()) break;
4985 return std::make_pair(0U, X86::VR64RegisterClass);
4986 break;
4987 case 'Y': // SSE_REGS if SSE2 allowed
4988 if (!Subtarget->hasSSE2()) break;
4989 // FALL THROUGH.
4990 case 'x': // SSE_REGS if SSE1 allowed
4991 if (!Subtarget->hasSSE1()) break;
4992
4993 switch (VT) {
4994 default: break;
4995 // Scalar SSE types.
4996 case MVT::f32:
4997 case MVT::i32:
4998 return std::make_pair(0U, X86::FR32RegisterClass);
4999 case MVT::f64:
5000 case MVT::i64:
5001 return std::make_pair(0U, X86::FR64RegisterClass);
5002 // Vector types.
5003 case MVT::v16i8:
5004 case MVT::v8i16:
5005 case MVT::v4i32:
5006 case MVT::v2i64:
5007 case MVT::v4f32:
5008 case MVT::v2f64:
5009 return std::make_pair(0U, X86::VR128RegisterClass);
5010 }
5011 break;
5012 }
5013 }
5014
5015 // Use the default implementation in TargetLowering to convert the register
5016 // constraint into a member of a register class.
5017 std::pair<unsigned, const TargetRegisterClass*> Res;
5018 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5019
5020 // Not found as a standard register?
5021 if (Res.second == 0) {
5022 // GCC calls "st(0)" just plain "st".
5023 if (StringsEqualNoCase("{st}", Constraint)) {
5024 Res.first = X86::ST0;
5025 Res.second = X86::RSTRegisterClass;
5026 }
5027
5028 return Res;
5029 }
5030
5031 // Otherwise, check to see if this is a register class of the wrong value
5032 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5033 // turn into {ax},{dx}.
5034 if (Res.second->hasType(VT))
5035 return Res; // Correct type already, nothing to do.
5036
5037 // All of the single-register GCC register classes map their values onto
5038 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
5039 // really want an 8-bit or 32-bit register, map to the appropriate register
5040 // class and return the appropriate register.
5041 if (Res.second != X86::GR16RegisterClass)
5042 return Res;
5043
5044 if (VT == MVT::i8) {
5045 unsigned DestReg = 0;
5046 switch (Res.first) {
5047 default: break;
5048 case X86::AX: DestReg = X86::AL; break;
5049 case X86::DX: DestReg = X86::DL; break;
5050 case X86::CX: DestReg = X86::CL; break;
5051 case X86::BX: DestReg = X86::BL; break;
5052 }
5053 if (DestReg) {
5054 Res.first = DestReg;
5055 Res.second = Res.second = X86::GR8RegisterClass;
5056 }
5057 } else if (VT == MVT::i32) {
5058 unsigned DestReg = 0;
5059 switch (Res.first) {
5060 default: break;
5061 case X86::AX: DestReg = X86::EAX; break;
5062 case X86::DX: DestReg = X86::EDX; break;
5063 case X86::CX: DestReg = X86::ECX; break;
5064 case X86::BX: DestReg = X86::EBX; break;
5065 case X86::SI: DestReg = X86::ESI; break;
5066 case X86::DI: DestReg = X86::EDI; break;
5067 case X86::BP: DestReg = X86::EBP; break;
5068 case X86::SP: DestReg = X86::ESP; break;
5069 }
5070 if (DestReg) {
5071 Res.first = DestReg;
5072 Res.second = Res.second = X86::GR32RegisterClass;
5073 }
5074 } else if (VT == MVT::i64) {
5075 unsigned DestReg = 0;
5076 switch (Res.first) {
5077 default: break;
5078 case X86::AX: DestReg = X86::RAX; break;
5079 case X86::DX: DestReg = X86::RDX; break;
5080 case X86::CX: DestReg = X86::RCX; break;
5081 case X86::BX: DestReg = X86::RBX; break;
5082 case X86::SI: DestReg = X86::RSI; break;
5083 case X86::DI: DestReg = X86::RDI; break;
5084 case X86::BP: DestReg = X86::RBP; break;
5085 case X86::SP: DestReg = X86::RSP; break;
5086 }
5087 if (DestReg) {
5088 Res.first = DestReg;
5089 Res.second = Res.second = X86::GR64RegisterClass;
5090 }
5091 }
5092
5093 return Res;
5094}