blob: 6c20e7d14074396f9d7ce48603b9c51c45801f4e [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16// 1. All loops are transformed to have a SINGLE canonical induction variable
17// which starts at zero and steps by one.
18// 2. The canonical induction variable is guaranteed to be the first PHI node
19// in the loop header block.
Dan Gohman024f6132009-06-14 22:38:41 +000020// 3. The canonical induction variable is guaranteed to be in a wide enough
21// type so that IV expressions need not be (directly) zero-extended or
22// sign-extended.
23// 4. Any pointer arithmetic recurrences are raised to use array subscripts.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000024//
25// If the trip count of a loop is computable, this pass also makes the following
26// changes:
27// 1. The exit condition for the loop is canonicalized to compare the
28// induction value against the exit value. This turns loops like:
29// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30// 2. Any use outside of the loop of an expression derived from the indvar
31// is changed to compute the derived value outside of the loop, eliminating
32// the dependence on the exit value of the induction variable. If the only
33// purpose of the loop is to compute the exit value of some derived
34// expression, this transformation will make the loop dead.
35//
36// This transformation should be followed by strength reduction after all of the
Dan Gohman211ca4a2009-05-19 20:38:47 +000037// desired loop transformations have been performed.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038//
39//===----------------------------------------------------------------------===//
40
41#define DEBUG_TYPE "indvars"
42#include "llvm/Transforms/Scalar.h"
43#include "llvm/BasicBlock.h"
44#include "llvm/Constants.h"
45#include "llvm/Instructions.h"
46#include "llvm/Type.h"
Dan Gohman28055122009-05-12 02:17:14 +000047#include "llvm/Analysis/Dominators.h"
48#include "llvm/Analysis/IVUsers.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049#include "llvm/Analysis/ScalarEvolutionExpander.h"
50#include "llvm/Analysis/LoopInfo.h"
51#include "llvm/Analysis/LoopPass.h"
52#include "llvm/Support/CFG.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000055#include "llvm/Transforms/Utils/Local.h"
Dan Gohman28055122009-05-12 02:17:14 +000056#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000057#include "llvm/Support/CommandLine.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/Statistic.h"
Dan Gohman28055122009-05-12 02:17:14 +000060#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000061using namespace llvm;
62
63STATISTIC(NumRemoved , "Number of aux indvars removed");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000064STATISTIC(NumInserted, "Number of canonical indvars added");
65STATISTIC(NumReplaced, "Number of exit values replaced");
66STATISTIC(NumLFTR , "Number of loop exit tests replaced");
67
68namespace {
69 class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
Dan Gohman28055122009-05-12 02:17:14 +000070 IVUsers *IU;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071 LoopInfo *LI;
72 ScalarEvolution *SE;
73 bool Changed;
74 public:
75
76 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000077 IndVarSimplify() : LoopPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078
Dan Gohmanf3a060a2009-02-17 20:49:49 +000079 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
80
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Dan Gohman28055122009-05-12 02:17:14 +000082 AU.addRequired<DominatorTree>();
Devang Patele6a8d482007-09-10 18:08:23 +000083 AU.addRequired<ScalarEvolution>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084 AU.addRequiredID(LCSSAID);
85 AU.addRequiredID(LoopSimplifyID);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000086 AU.addRequired<LoopInfo>();
Dan Gohman28055122009-05-12 02:17:14 +000087 AU.addRequired<IVUsers>();
Dan Gohman0d35b112009-02-23 16:29:41 +000088 AU.addPreserved<ScalarEvolution>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 AU.addPreservedID(LoopSimplifyID);
Dan Gohman28055122009-05-12 02:17:14 +000090 AU.addPreserved<IVUsers>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000091 AU.addPreservedID(LCSSAID);
92 AU.setPreservesCFG();
93 }
94
95 private:
96
Dan Gohmanf3a060a2009-02-17 20:49:49 +000097 void RewriteNonIntegerIVs(Loop *L);
98
Owen Andersonecd0cd72009-06-22 21:39:50 +000099 ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV* BackedgeTakenCount,
Dan Gohman1247dc32009-02-17 15:57:39 +0000100 Value *IndVar,
Dan Gohmancacd2012009-02-12 22:19:27 +0000101 BasicBlock *ExitingBlock,
102 BranchInst *BI,
Dan Gohmanebac2542009-02-23 23:20:35 +0000103 SCEVExpander &Rewriter);
Dan Gohman9a769972009-04-18 17:56:28 +0000104 void RewriteLoopExitValues(Loop *L, const SCEV *BackedgeTakenCount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000105
Dan Gohman28055122009-05-12 02:17:14 +0000106 void RewriteIVExpressions(Loop *L, const Type *LargestType,
107 SCEVExpander &Rewriter);
Devang Patelbda43802008-09-09 21:41:07 +0000108
Dan Gohman28055122009-05-12 02:17:14 +0000109 void SinkUnusedInvariants(Loop *L, SCEVExpander &Rewriter);
110
111 void FixUsesBeforeDefs(Loop *L, SCEVExpander &Rewriter);
112
113 void HandleFloatingPointIV(Loop *L, PHINode *PH);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000114 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000115}
116
Dan Gohman089efff2008-05-13 00:00:25 +0000117char IndVarSimplify::ID = 0;
118static RegisterPass<IndVarSimplify>
119X("indvars", "Canonicalize Induction Variables");
120
Daniel Dunbar163555a2008-10-22 23:32:42 +0000121Pass *llvm::createIndVarSimplifyPass() {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000122 return new IndVarSimplify();
123}
124
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000125/// LinearFunctionTestReplace - This method rewrites the exit condition of the
126/// loop to be a canonical != comparison against the incremented loop induction
127/// variable. This pass is able to rewrite the exit tests of any loop where the
128/// SCEV analysis can determine a loop-invariant trip count of the loop, which
129/// is actually a much broader range than just linear tests.
Dan Gohman28055122009-05-12 02:17:14 +0000130ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
Owen Andersonecd0cd72009-06-22 21:39:50 +0000131 const SCEV* BackedgeTakenCount,
Dan Gohmancacd2012009-02-12 22:19:27 +0000132 Value *IndVar,
133 BasicBlock *ExitingBlock,
134 BranchInst *BI,
Dan Gohmanebac2542009-02-23 23:20:35 +0000135 SCEVExpander &Rewriter) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000136 // If the exiting block is not the same as the backedge block, we must compare
137 // against the preincremented value, otherwise we prefer to compare against
138 // the post-incremented value.
Dan Gohmancacd2012009-02-12 22:19:27 +0000139 Value *CmpIndVar;
Owen Andersonecd0cd72009-06-22 21:39:50 +0000140 const SCEV* RHS = BackedgeTakenCount;
Dan Gohmancacd2012009-02-12 22:19:27 +0000141 if (ExitingBlock == L->getLoopLatch()) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000142 // Add one to the "backedge-taken" count to get the trip count.
143 // If this addition may overflow, we have to be more pessimistic and
144 // cast the induction variable before doing the add.
Owen Andersonecd0cd72009-06-22 21:39:50 +0000145 const SCEV* Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
146 const SCEV* N =
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000147 SE->getAddExpr(BackedgeTakenCount,
148 SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
Dan Gohmancacd2012009-02-12 22:19:27 +0000149 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
150 SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
151 // No overflow. Cast the sum.
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000152 RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
Dan Gohmancacd2012009-02-12 22:19:27 +0000153 } else {
154 // Potential overflow. Cast before doing the add.
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000155 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
156 IndVar->getType());
157 RHS = SE->getAddExpr(RHS,
158 SE->getIntegerSCEV(1, IndVar->getType()));
Dan Gohmancacd2012009-02-12 22:19:27 +0000159 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000160
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000161 // The BackedgeTaken expression contains the number of times that the
162 // backedge branches to the loop header. This is one less than the
163 // number of times the loop executes, so use the incremented indvar.
Dan Gohmancacd2012009-02-12 22:19:27 +0000164 CmpIndVar = L->getCanonicalInductionVariableIncrement();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000165 } else {
166 // We have to use the preincremented value...
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000167 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
168 IndVar->getType());
Dan Gohmancacd2012009-02-12 22:19:27 +0000169 CmpIndVar = IndVar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000170 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000171
172 // Expand the code for the iteration count into the preheader of the loop.
173 BasicBlock *Preheader = L->getLoopPreheader();
Dan Gohmanfc4d0712009-06-13 16:25:49 +0000174 Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(),
Dan Gohmancacd2012009-02-12 22:19:27 +0000175 Preheader->getTerminator());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176
177 // Insert a new icmp_ne or icmp_eq instruction before the branch.
178 ICmpInst::Predicate Opcode;
179 if (L->contains(BI->getSuccessor(0)))
180 Opcode = ICmpInst::ICMP_NE;
181 else
182 Opcode = ICmpInst::ICMP_EQ;
183
Dan Gohmancacd2012009-02-12 22:19:27 +0000184 DOUT << "INDVARS: Rewriting loop exit condition to:\n"
185 << " LHS:" << *CmpIndVar // includes a newline
186 << " op:\t"
Dan Gohman8555ff72009-02-14 02:26:50 +0000187 << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000188 << " RHS:\t" << *RHS << "\n";
Dan Gohmancacd2012009-02-12 22:19:27 +0000189
Dan Gohman28055122009-05-12 02:17:14 +0000190 ICmpInst *Cond = new ICmpInst(Opcode, CmpIndVar, ExitCnt, "exitcond", BI);
191
192 Instruction *OrigCond = cast<Instruction>(BI->getCondition());
Dan Gohman53cc9222009-05-24 19:11:38 +0000193 // It's tempting to use replaceAllUsesWith here to fully replace the old
194 // comparison, but that's not immediately safe, since users of the old
195 // comparison may not be dominated by the new comparison. Instead, just
196 // update the branch to use the new comparison; in the common case this
197 // will make old comparison dead.
198 BI->setCondition(Cond);
Dan Gohman28055122009-05-12 02:17:14 +0000199 RecursivelyDeleteTriviallyDeadInstructions(OrigCond);
200
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000201 ++NumLFTR;
202 Changed = true;
Dan Gohman28055122009-05-12 02:17:14 +0000203 return Cond;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000204}
205
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000206/// RewriteLoopExitValues - Check to see if this loop has a computable
207/// loop-invariant execution count. If so, this means that we can compute the
208/// final value of any expressions that are recurrent in the loop, and
209/// substitute the exit values from the loop into any instructions outside of
210/// the loop that use the final values of the current expressions.
Dan Gohman28055122009-05-12 02:17:14 +0000211///
212/// This is mostly redundant with the regular IndVarSimplify activities that
213/// happen later, except that it's more powerful in some cases, because it's
214/// able to brute-force evaluate arbitrary instructions as long as they have
215/// constant operands at the beginning of the loop.
Dan Gohman9a769972009-04-18 17:56:28 +0000216void IndVarSimplify::RewriteLoopExitValues(Loop *L,
217 const SCEV *BackedgeTakenCount) {
Dan Gohman28055122009-05-12 02:17:14 +0000218 // Verify the input to the pass in already in LCSSA form.
219 assert(L->isLCSSAForm());
220
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000221 BasicBlock *Preheader = L->getLoopPreheader();
222
223 // Scan all of the instructions in the loop, looking at those that have
224 // extra-loop users and which are recurrences.
Dan Gohmand0c01232009-05-19 02:15:55 +0000225 SCEVExpander Rewriter(*SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000226
227 // We insert the code into the preheader of the loop if the loop contains
228 // multiple exit blocks, or in the exit block if there is exactly one.
229 BasicBlock *BlockToInsertInto;
Devang Patel02451fa2007-08-21 00:31:24 +0000230 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000231 L->getUniqueExitBlocks(ExitBlocks);
232 if (ExitBlocks.size() == 1)
233 BlockToInsertInto = ExitBlocks[0];
234 else
235 BlockToInsertInto = Preheader;
Dan Gohman514277c2008-05-23 21:05:58 +0000236 BasicBlock::iterator InsertPt = BlockToInsertInto->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000237
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238 std::map<Instruction*, Value*> ExitValues;
239
240 // Find all values that are computed inside the loop, but used outside of it.
241 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
242 // the exit blocks of the loop to find them.
243 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
244 BasicBlock *ExitBB = ExitBlocks[i];
Dan Gohman963fc812009-02-17 19:13:57 +0000245
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000246 // If there are no PHI nodes in this exit block, then no values defined
247 // inside the loop are used on this path, skip it.
248 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
249 if (!PN) continue;
Dan Gohman963fc812009-02-17 19:13:57 +0000250
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000251 unsigned NumPreds = PN->getNumIncomingValues();
Dan Gohman963fc812009-02-17 19:13:57 +0000252
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000253 // Iterate over all of the PHI nodes.
254 BasicBlock::iterator BBI = ExitBB->begin();
255 while ((PN = dyn_cast<PHINode>(BBI++))) {
Edwin Törökf06a8f22009-05-24 19:36:09 +0000256 if (PN->use_empty())
257 continue; // dead use, don't replace it
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000258 // Iterate over all of the values in all the PHI nodes.
259 for (unsigned i = 0; i != NumPreds; ++i) {
260 // If the value being merged in is not integer or is not defined
261 // in the loop, skip it.
262 Value *InVal = PN->getIncomingValue(i);
263 if (!isa<Instruction>(InVal) ||
264 // SCEV only supports integer expressions for now.
Dan Gohman01c2ee72009-04-16 03:18:22 +0000265 (!isa<IntegerType>(InVal->getType()) &&
266 !isa<PointerType>(InVal->getType())))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000267 continue;
268
269 // If this pred is for a subloop, not L itself, skip it.
Dan Gohman963fc812009-02-17 19:13:57 +0000270 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000271 continue; // The Block is in a subloop, skip it.
272
273 // Check that InVal is defined in the loop.
274 Instruction *Inst = cast<Instruction>(InVal);
275 if (!L->contains(Inst->getParent()))
276 continue;
Dan Gohman963fc812009-02-17 19:13:57 +0000277
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278 // Okay, this instruction has a user outside of the current loop
279 // and varies predictably *inside* the loop. Evaluate the value it
280 // contains when the loop exits, if possible.
Owen Andersonecd0cd72009-06-22 21:39:50 +0000281 const SCEV* ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
Dan Gohmanaff14d62009-05-24 23:25:42 +0000282 if (!ExitValue->isLoopInvariant(L))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000283 continue;
284
285 Changed = true;
286 ++NumReplaced;
Dan Gohman963fc812009-02-17 19:13:57 +0000287
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000288 // See if we already computed the exit value for the instruction, if so,
289 // just reuse it.
290 Value *&ExitVal = ExitValues[Inst];
291 if (!ExitVal)
Dan Gohman01c2ee72009-04-16 03:18:22 +0000292 ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), InsertPt);
Dan Gohman963fc812009-02-17 19:13:57 +0000293
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000294 DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
295 << " LoopVal = " << *Inst << "\n";
296
297 PN->setIncomingValue(i, ExitVal);
Dan Gohman963fc812009-02-17 19:13:57 +0000298
Dan Gohman28055122009-05-12 02:17:14 +0000299 // If this instruction is dead now, delete it.
300 RecursivelyDeleteTriviallyDeadInstructions(Inst);
Dan Gohman963fc812009-02-17 19:13:57 +0000301
Dan Gohmanea999562009-06-22 00:15:15 +0000302 // If we're inserting code into the exit block rather than the
303 // preheader, we can (and have to) remove the PHI entirely.
304 // This is safe, because the NewVal won't be variant
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000305 // in the loop, so we don't need an LCSSA phi node anymore.
Dan Gohmanea999562009-06-22 00:15:15 +0000306 if (ExitBlocks.size() == 1) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000307 PN->replaceAllUsesWith(ExitVal);
Dan Gohman28055122009-05-12 02:17:14 +0000308 RecursivelyDeleteTriviallyDeadInstructions(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000309 break;
310 }
311 }
312 }
313 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000314}
315
Dan Gohmanf3a060a2009-02-17 20:49:49 +0000316void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000317 // First step. Check to see if there are any floating-point recurrences.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000318 // If there are, change them into integer recurrences, permitting analysis by
319 // the SCEV routines.
320 //
321 BasicBlock *Header = L->getHeader();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000322
Dan Gohman28055122009-05-12 02:17:14 +0000323 SmallVector<WeakVH, 8> PHIs;
324 for (BasicBlock::iterator I = Header->begin();
325 PHINode *PN = dyn_cast<PHINode>(I); ++I)
326 PHIs.push_back(PN);
327
328 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
329 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i]))
330 HandleFloatingPointIV(L, PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000331
Dan Gohman01c2ee72009-04-16 03:18:22 +0000332 // If the loop previously had floating-point IV, ScalarEvolution
Dan Gohmanf3a060a2009-02-17 20:49:49 +0000333 // may not have been able to compute a trip count. Now that we've done some
334 // re-writing, the trip count may be computable.
335 if (Changed)
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000336 SE->forgetLoopBackedgeTakenCount(L);
Dale Johannesen3c25cb22009-04-15 23:31:51 +0000337}
338
Dan Gohmancacd2012009-02-12 22:19:27 +0000339bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
Dan Gohman28055122009-05-12 02:17:14 +0000340 IU = &getAnalysis<IVUsers>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000341 LI = &getAnalysis<LoopInfo>();
342 SE = &getAnalysis<ScalarEvolution>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343 Changed = false;
Dan Gohmanf3a060a2009-02-17 20:49:49 +0000344
Dan Gohman01c2ee72009-04-16 03:18:22 +0000345 // If there are any floating-point recurrences, attempt to
Dan Gohmanf3a060a2009-02-17 20:49:49 +0000346 // transform them to use integer recurrences.
347 RewriteNonIntegerIVs(L);
348
Dan Gohmancacd2012009-02-12 22:19:27 +0000349 BasicBlock *Header = L->getHeader();
Dan Gohman28055122009-05-12 02:17:14 +0000350 BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
Owen Andersonecd0cd72009-06-22 21:39:50 +0000351 const SCEV* BackedgeTakenCount = SE->getBackedgeTakenCount(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000352
353 // Check to see if this loop has a computable loop-invariant execution count.
354 // If so, this means that we can compute the final value of any expressions
355 // that are recurrent in the loop, and substitute the exit values from the
356 // loop into any instructions outside of the loop that use the final values of
357 // the current expressions.
358 //
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000359 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
360 RewriteLoopExitValues(L, BackedgeTakenCount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000361
Dan Gohman28055122009-05-12 02:17:14 +0000362 // Compute the type of the largest recurrence expression, and decide whether
363 // a canonical induction variable should be inserted.
Dan Gohmancacd2012009-02-12 22:19:27 +0000364 const Type *LargestType = 0;
Dan Gohman28055122009-05-12 02:17:14 +0000365 bool NeedCannIV = false;
Dan Gohman76d5a0d2009-02-24 18:55:53 +0000366 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
367 LargestType = BackedgeTakenCount->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000368 LargestType = SE->getEffectiveSCEVType(LargestType);
Dan Gohman28055122009-05-12 02:17:14 +0000369 // If we have a known trip count and a single exit block, we'll be
370 // rewriting the loop exit test condition below, which requires a
371 // canonical induction variable.
372 if (ExitingBlock)
373 NeedCannIV = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000374 }
Dan Gohman28055122009-05-12 02:17:14 +0000375 for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
Owen Andersonecd0cd72009-06-22 21:39:50 +0000376 const SCEV* Stride = IU->StrideOrder[i];
Dan Gohman28055122009-05-12 02:17:14 +0000377 const Type *Ty = SE->getEffectiveSCEVType(Stride->getType());
Dan Gohmancacd2012009-02-12 22:19:27 +0000378 if (!LargestType ||
Dan Gohman28055122009-05-12 02:17:14 +0000379 SE->getTypeSizeInBits(Ty) >
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000380 SE->getTypeSizeInBits(LargestType))
Dan Gohman28055122009-05-12 02:17:14 +0000381 LargestType = Ty;
382
Owen Andersonecd0cd72009-06-22 21:39:50 +0000383 std::map<const SCEV*, IVUsersOfOneStride *>::iterator SI =
Dan Gohman28055122009-05-12 02:17:14 +0000384 IU->IVUsesByStride.find(IU->StrideOrder[i]);
385 assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
386
387 if (!SI->second->Users.empty())
388 NeedCannIV = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000389 }
390
391 // Create a rewriter object which we'll use to transform the code with.
Dan Gohmand0c01232009-05-19 02:15:55 +0000392 SCEVExpander Rewriter(*SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393
Dan Gohman28055122009-05-12 02:17:14 +0000394 // Now that we know the largest of of the induction variable expressions
395 // in this loop, insert a canonical induction variable of the largest size.
Dan Gohmancacd2012009-02-12 22:19:27 +0000396 Value *IndVar = 0;
Dan Gohman28055122009-05-12 02:17:14 +0000397 if (NeedCannIV) {
Dan Gohmanfc4d0712009-06-13 16:25:49 +0000398 // Check to see if the loop already has a canonical-looking induction
399 // variable. If one is present and it's wider than the planned canonical
400 // induction variable, temporarily remove it, so that the Rewriter
401 // doesn't attempt to reuse it.
402 PHINode *OldCannIV = L->getCanonicalInductionVariable();
403 if (OldCannIV) {
404 if (SE->getTypeSizeInBits(OldCannIV->getType()) >
405 SE->getTypeSizeInBits(LargestType))
406 OldCannIV->removeFromParent();
407 else
408 OldCannIV = 0;
409 }
410
Dan Gohmancacd2012009-02-12 22:19:27 +0000411 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
Dan Gohmanfc4d0712009-06-13 16:25:49 +0000412
Dan Gohmancacd2012009-02-12 22:19:27 +0000413 ++NumInserted;
414 Changed = true;
415 DOUT << "INDVARS: New CanIV: " << *IndVar;
Dan Gohmanfc4d0712009-06-13 16:25:49 +0000416
417 // Now that the official induction variable is established, reinsert
418 // the old canonical-looking variable after it so that the IR remains
419 // consistent. It will be deleted as part of the dead-PHI deletion at
420 // the end of the pass.
421 if (OldCannIV)
422 OldCannIV->insertAfter(cast<Instruction>(IndVar));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000423 }
424
Dan Gohmancacd2012009-02-12 22:19:27 +0000425 // If we have a trip count expression, rewrite the loop's exit condition
426 // using it. We can currently only handle loops with a single exit.
Dan Gohman28055122009-05-12 02:17:14 +0000427 ICmpInst *NewICmp = 0;
428 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && ExitingBlock) {
429 assert(NeedCannIV &&
430 "LinearFunctionTestReplace requires a canonical induction variable");
Dan Gohmancacd2012009-02-12 22:19:27 +0000431 // Can't rewrite non-branch yet.
Dan Gohman28055122009-05-12 02:17:14 +0000432 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
433 NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
434 ExitingBlock, BI, Rewriter);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000435 }
436
Dan Gohman28055122009-05-12 02:17:14 +0000437 Rewriter.setInsertionPoint(Header->getFirstNonPHI());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000438
Edwin Törökacec1c02009-05-24 20:08:21 +0000439 // Rewrite IV-derived expressions. Clears the rewriter cache.
Dan Gohman28055122009-05-12 02:17:14 +0000440 RewriteIVExpressions(L, LargestType, Rewriter);
Dan Gohmancacd2012009-02-12 22:19:27 +0000441
Edwin Törökacec1c02009-05-24 20:08:21 +0000442 // The Rewriter may only be used for isInsertedInstruction queries from this
443 // point on.
444
Dan Gohman28055122009-05-12 02:17:14 +0000445 // Loop-invariant instructions in the preheader that aren't used in the
446 // loop may be sunk below the loop to reduce register pressure.
447 SinkUnusedInvariants(L, Rewriter);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000448
Dan Gohman28055122009-05-12 02:17:14 +0000449 // Reorder instructions to avoid use-before-def conditions.
450 FixUsesBeforeDefs(L, Rewriter);
451
452 // For completeness, inform IVUsers of the IV use in the newly-created
453 // loop exit test instruction.
454 if (NewICmp)
455 IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
456
457 // Clean up dead instructions.
458 DeleteDeadPHIs(L->getHeader());
459 // Check a post-condition.
460 assert(L->isLCSSAForm() && "Indvars did not leave the loop in lcssa form!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000461 return Changed;
462}
Devang Patelbda43802008-09-09 21:41:07 +0000463
Dan Gohman28055122009-05-12 02:17:14 +0000464void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType,
465 SCEVExpander &Rewriter) {
466 SmallVector<WeakVH, 16> DeadInsts;
467
468 // Rewrite all induction variable expressions in terms of the canonical
469 // induction variable.
470 //
471 // If there were induction variables of other sizes or offsets, manually
472 // add the offsets to the primary induction variable and cast, avoiding
473 // the need for the code evaluation methods to insert induction variables
474 // of different sizes.
475 for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
Owen Andersonecd0cd72009-06-22 21:39:50 +0000476 const SCEV* Stride = IU->StrideOrder[i];
Dan Gohman28055122009-05-12 02:17:14 +0000477
Owen Andersonecd0cd72009-06-22 21:39:50 +0000478 std::map<const SCEV*, IVUsersOfOneStride *>::iterator SI =
Dan Gohman28055122009-05-12 02:17:14 +0000479 IU->IVUsesByStride.find(IU->StrideOrder[i]);
480 assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
481 ilist<IVStrideUse> &List = SI->second->Users;
482 for (ilist<IVStrideUse>::iterator UI = List.begin(),
483 E = List.end(); UI != E; ++UI) {
Dan Gohman28055122009-05-12 02:17:14 +0000484 Value *Op = UI->getOperandValToReplace();
Dan Gohmanfc4d0712009-06-13 16:25:49 +0000485 const Type *UseTy = Op->getType();
Dan Gohman28055122009-05-12 02:17:14 +0000486 Instruction *User = UI->getUser();
Dan Gohman28055122009-05-12 02:17:14 +0000487
488 // Compute the final addrec to expand into code.
Owen Andersonecd0cd72009-06-22 21:39:50 +0000489 const SCEV* AR = IU->getReplacementExpr(*UI);
Dan Gohman28055122009-05-12 02:17:14 +0000490
Dan Gohman28055122009-05-12 02:17:14 +0000491 Value *NewVal = 0;
492 if (AR->isLoopInvariant(L)) {
493 BasicBlock::iterator I = Rewriter.getInsertionPoint();
494 // Expand loop-invariant values in the loop preheader. They will
495 // be sunk to the exit block later, if possible.
Dan Gohmand0c01232009-05-19 02:15:55 +0000496 NewVal =
Dan Gohmanfc4d0712009-06-13 16:25:49 +0000497 Rewriter.expandCodeFor(AR, UseTy,
Dan Gohman28055122009-05-12 02:17:14 +0000498 L->getLoopPreheader()->getTerminator());
499 Rewriter.setInsertionPoint(I);
500 ++NumReplaced;
501 } else {
Dan Gohman17370302009-06-03 19:11:31 +0000502 // FIXME: It is an extremely bad idea to indvar substitute anything more
503 // complex than affine induction variables. Doing so will put expensive
504 // polynomial evaluations inside of the loop, and the str reduction pass
505 // currently can only reduce affine polynomials. For now just disable
506 // indvar subst on anything more complex than an affine addrec, unless
507 // it can be expanded to a trivial value.
508 if (!Stride->isLoopInvariant(L))
509 continue;
510
Dan Gohman28055122009-05-12 02:17:14 +0000511 // Now expand it into actual Instructions and patch it into place.
512 NewVal = Rewriter.expandCodeFor(AR, UseTy);
513 }
514
515 // Patch the new value into place.
516 if (Op->hasName())
517 NewVal->takeName(Op);
518 User->replaceUsesOfWith(Op, NewVal);
519 UI->setOperandValToReplace(NewVal);
520 DOUT << "INDVARS: Rewrote IV '" << *AR << "' " << *Op
521 << " into = " << *NewVal << "\n";
522 ++NumRemoved;
523 Changed = true;
524
525 // The old value may be dead now.
526 DeadInsts.push_back(Op);
527 }
528 }
529
Edwin Törökacec1c02009-05-24 20:08:21 +0000530 // Clear the rewriter cache, because values that are in the rewriter's cache
531 // can be deleted in the loop below, causing the AssertingVH in the cache to
532 // trigger.
533 Rewriter.clear();
Dan Gohman28055122009-05-12 02:17:14 +0000534 // Now that we're done iterating through lists, clean up any instructions
535 // which are now dead.
536 while (!DeadInsts.empty()) {
537 Instruction *Inst = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
538 if (Inst)
539 RecursivelyDeleteTriviallyDeadInstructions(Inst);
540 }
541}
542
543/// If there's a single exit block, sink any loop-invariant values that
544/// were defined in the preheader but not used inside the loop into the
545/// exit block to reduce register pressure in the loop.
546void IndVarSimplify::SinkUnusedInvariants(Loop *L, SCEVExpander &Rewriter) {
547 BasicBlock *ExitBlock = L->getExitBlock();
548 if (!ExitBlock) return;
549
550 Instruction *NonPHI = ExitBlock->getFirstNonPHI();
551 BasicBlock *Preheader = L->getLoopPreheader();
552 BasicBlock::iterator I = Preheader->getTerminator();
553 while (I != Preheader->begin()) {
554 --I;
555 // New instructions were inserted at the end of the preheader. Only
556 // consider those new instructions.
557 if (!Rewriter.isInsertedInstruction(I))
558 break;
559 // Determine if there is a use in or before the loop (direct or
560 // otherwise).
561 bool UsedInLoop = false;
562 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
563 UI != UE; ++UI) {
564 BasicBlock *UseBB = cast<Instruction>(UI)->getParent();
565 if (PHINode *P = dyn_cast<PHINode>(UI)) {
566 unsigned i =
567 PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
568 UseBB = P->getIncomingBlock(i);
569 }
570 if (UseBB == Preheader || L->contains(UseBB)) {
571 UsedInLoop = true;
572 break;
573 }
574 }
575 // If there is, the def must remain in the preheader.
576 if (UsedInLoop)
577 continue;
578 // Otherwise, sink it to the exit block.
579 Instruction *ToMove = I;
580 bool Done = false;
581 if (I != Preheader->begin())
582 --I;
583 else
584 Done = true;
585 ToMove->moveBefore(NonPHI);
586 if (Done)
587 break;
588 }
589}
590
591/// Re-schedule the inserted instructions to put defs before uses. This
592/// fixes problems that arrise when SCEV expressions contain loop-variant
593/// values unrelated to the induction variable which are defined inside the
594/// loop. FIXME: It would be better to insert instructions in the right
595/// place so that this step isn't needed.
596void IndVarSimplify::FixUsesBeforeDefs(Loop *L, SCEVExpander &Rewriter) {
597 // Visit all the blocks in the loop in pre-order dom-tree dfs order.
598 DominatorTree *DT = &getAnalysis<DominatorTree>();
599 std::map<Instruction *, unsigned> NumPredsLeft;
600 SmallVector<DomTreeNode *, 16> Worklist;
601 Worklist.push_back(DT->getNode(L->getHeader()));
602 do {
603 DomTreeNode *Node = Worklist.pop_back_val();
604 for (DomTreeNode::iterator I = Node->begin(), E = Node->end(); I != E; ++I)
605 if (L->contains((*I)->getBlock()))
606 Worklist.push_back(*I);
607 BasicBlock *BB = Node->getBlock();
608 // Visit all the instructions in the block top down.
609 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
610 // Count the number of operands that aren't properly dominating.
611 unsigned NumPreds = 0;
612 if (Rewriter.isInsertedInstruction(I) && !isa<PHINode>(I))
613 for (User::op_iterator OI = I->op_begin(), OE = I->op_end();
614 OI != OE; ++OI)
615 if (Instruction *Inst = dyn_cast<Instruction>(OI))
616 if (L->contains(Inst->getParent()) && !NumPredsLeft.count(Inst))
617 ++NumPreds;
618 NumPredsLeft[I] = NumPreds;
619 // Notify uses of the position of this instruction, and move the
620 // users (and their dependents, recursively) into place after this
621 // instruction if it is their last outstanding operand.
622 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
623 UI != UE; ++UI) {
624 Instruction *Inst = cast<Instruction>(UI);
625 std::map<Instruction *, unsigned>::iterator Z = NumPredsLeft.find(Inst);
626 if (Z != NumPredsLeft.end() && Z->second != 0 && --Z->second == 0) {
627 SmallVector<Instruction *, 4> UseWorkList;
628 UseWorkList.push_back(Inst);
Dan Gohmanca885982009-05-22 16:47:11 +0000629 BasicBlock::iterator InsertPt = I;
630 if (InvokeInst *II = dyn_cast<InvokeInst>(InsertPt))
631 InsertPt = II->getNormalDest()->begin();
632 else
633 ++InsertPt;
Dan Gohman28055122009-05-12 02:17:14 +0000634 while (isa<PHINode>(InsertPt)) ++InsertPt;
635 do {
636 Instruction *Use = UseWorkList.pop_back_val();
637 Use->moveBefore(InsertPt);
638 NumPredsLeft.erase(Use);
639 for (Value::use_iterator IUI = Use->use_begin(),
640 IUE = Use->use_end(); IUI != IUE; ++IUI) {
641 Instruction *IUIInst = cast<Instruction>(IUI);
642 if (L->contains(IUIInst->getParent()) &&
643 Rewriter.isInsertedInstruction(IUIInst) &&
644 !isa<PHINode>(IUIInst))
645 UseWorkList.push_back(IUIInst);
646 }
647 } while (!UseWorkList.empty());
648 }
649 }
650 }
651 } while (!Worklist.empty());
652}
653
Devang Patelb8ccf572008-11-18 00:40:02 +0000654/// Return true if it is OK to use SIToFPInst for an inducation variable
655/// with given inital and exit values.
656static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
657 uint64_t intIV, uint64_t intEV) {
658
Dan Gohman963fc812009-02-17 19:13:57 +0000659 if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
Devang Patelb8ccf572008-11-18 00:40:02 +0000660 return true;
661
662 // If the iteration range can be handled by SIToFPInst then use it.
663 APInt Max = APInt::getSignedMaxValue(32);
Dale Johannesen0a12b4c2009-05-14 16:47:34 +0000664 if (Max.getZExtValue() > static_cast<uint64_t>(abs64(intEV - intIV)))
Devang Patelb8ccf572008-11-18 00:40:02 +0000665 return true;
Dan Gohman963fc812009-02-17 19:13:57 +0000666
Devang Patelb8ccf572008-11-18 00:40:02 +0000667 return false;
668}
669
670/// convertToInt - Convert APF to an integer, if possible.
Devang Patele2ba01d2008-11-17 23:27:13 +0000671static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
672
673 bool isExact = false;
Evan Cheng30e65f62008-11-26 01:11:57 +0000674 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
675 return false;
Dan Gohman963fc812009-02-17 19:13:57 +0000676 if (APF.convertToInteger(intVal, 32, APF.isNegative(),
Devang Patele2ba01d2008-11-17 23:27:13 +0000677 APFloat::rmTowardZero, &isExact)
678 != APFloat::opOK)
679 return false;
Dan Gohman963fc812009-02-17 19:13:57 +0000680 if (!isExact)
Devang Patele2ba01d2008-11-17 23:27:13 +0000681 return false;
682 return true;
683
684}
685
Devang Patel7ca23c92008-11-03 18:32:19 +0000686/// HandleFloatingPointIV - If the loop has floating induction variable
687/// then insert corresponding integer induction variable if possible.
Devang Patelc8dac622008-11-17 21:32:02 +0000688/// For example,
689/// for(double i = 0; i < 10000; ++i)
690/// bar(i)
691/// is converted into
692/// for(int i = 0; i < 10000; ++i)
693/// bar((double)i);
694///
Dan Gohman28055122009-05-12 02:17:14 +0000695void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
Devang Patel7ca23c92008-11-03 18:32:19 +0000696
Devang Patelc8dac622008-11-17 21:32:02 +0000697 unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
698 unsigned BackEdge = IncomingEdge^1;
Dan Gohman963fc812009-02-17 19:13:57 +0000699
Devang Patelc8dac622008-11-17 21:32:02 +0000700 // Check incoming value.
Devang Patele2ba01d2008-11-17 23:27:13 +0000701 ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
702 if (!InitValue) return;
703 uint64_t newInitValue = Type::Int32Ty->getPrimitiveSizeInBits();
704 if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
705 return;
706
707 // Check IV increment. Reject this PH if increement operation is not
708 // an add or increment value can not be represented by an integer.
Dan Gohman963fc812009-02-17 19:13:57 +0000709 BinaryOperator *Incr =
Devang Patelc8dac622008-11-17 21:32:02 +0000710 dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
711 if (!Incr) return;
Dan Gohman7ce405e2009-06-04 22:49:04 +0000712 if (Incr->getOpcode() != Instruction::FAdd) return;
Devang Patelc8dac622008-11-17 21:32:02 +0000713 ConstantFP *IncrValue = NULL;
714 unsigned IncrVIndex = 1;
715 if (Incr->getOperand(1) == PH)
716 IncrVIndex = 0;
717 IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
718 if (!IncrValue) return;
Devang Patele2ba01d2008-11-17 23:27:13 +0000719 uint64_t newIncrValue = Type::Int32Ty->getPrimitiveSizeInBits();
720 if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
721 return;
Dan Gohman963fc812009-02-17 19:13:57 +0000722
Devang Patele2ba01d2008-11-17 23:27:13 +0000723 // Check Incr uses. One user is PH and the other users is exit condition used
724 // by the conditional terminator.
Devang Patelc8dac622008-11-17 21:32:02 +0000725 Value::use_iterator IncrUse = Incr->use_begin();
726 Instruction *U1 = cast<Instruction>(IncrUse++);
727 if (IncrUse == Incr->use_end()) return;
728 Instruction *U2 = cast<Instruction>(IncrUse++);
729 if (IncrUse != Incr->use_end()) return;
Dan Gohman963fc812009-02-17 19:13:57 +0000730
Devang Patelc8dac622008-11-17 21:32:02 +0000731 // Find exit condition.
732 FCmpInst *EC = dyn_cast<FCmpInst>(U1);
733 if (!EC)
734 EC = dyn_cast<FCmpInst>(U2);
735 if (!EC) return;
736
737 if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
738 if (!BI->isConditional()) return;
739 if (BI->getCondition() != EC) return;
Devang Patel7ca23c92008-11-03 18:32:19 +0000740 }
Devang Patel7ca23c92008-11-03 18:32:19 +0000741
Devang Patele2ba01d2008-11-17 23:27:13 +0000742 // Find exit value. If exit value can not be represented as an interger then
743 // do not handle this floating point PH.
Devang Patelc8dac622008-11-17 21:32:02 +0000744 ConstantFP *EV = NULL;
745 unsigned EVIndex = 1;
746 if (EC->getOperand(1) == Incr)
747 EVIndex = 0;
748 EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
749 if (!EV) return;
Devang Patelc8dac622008-11-17 21:32:02 +0000750 uint64_t intEV = Type::Int32Ty->getPrimitiveSizeInBits();
Devang Patele2ba01d2008-11-17 23:27:13 +0000751 if (!convertToInt(EV->getValueAPF(), &intEV))
Devang Patelc8dac622008-11-17 21:32:02 +0000752 return;
Dan Gohman963fc812009-02-17 19:13:57 +0000753
Devang Patelc8dac622008-11-17 21:32:02 +0000754 // Find new predicate for integer comparison.
755 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
756 switch (EC->getPredicate()) {
757 case CmpInst::FCMP_OEQ:
758 case CmpInst::FCMP_UEQ:
759 NewPred = CmpInst::ICMP_EQ;
760 break;
761 case CmpInst::FCMP_OGT:
762 case CmpInst::FCMP_UGT:
763 NewPred = CmpInst::ICMP_UGT;
764 break;
765 case CmpInst::FCMP_OGE:
766 case CmpInst::FCMP_UGE:
767 NewPred = CmpInst::ICMP_UGE;
768 break;
769 case CmpInst::FCMP_OLT:
770 case CmpInst::FCMP_ULT:
771 NewPred = CmpInst::ICMP_ULT;
772 break;
773 case CmpInst::FCMP_OLE:
774 case CmpInst::FCMP_ULE:
775 NewPred = CmpInst::ICMP_ULE;
776 break;
777 default:
778 break;
Devang Patel7ca23c92008-11-03 18:32:19 +0000779 }
Devang Patelc8dac622008-11-17 21:32:02 +0000780 if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
Dan Gohman963fc812009-02-17 19:13:57 +0000781
Devang Patelc8dac622008-11-17 21:32:02 +0000782 // Insert new integer induction variable.
783 PHINode *NewPHI = PHINode::Create(Type::Int32Ty,
784 PH->getName()+".int", PH);
Devang Patele2ba01d2008-11-17 23:27:13 +0000785 NewPHI->addIncoming(ConstantInt::get(Type::Int32Ty, newInitValue),
Devang Patelc8dac622008-11-17 21:32:02 +0000786 PH->getIncomingBlock(IncomingEdge));
787
Dan Gohman963fc812009-02-17 19:13:57 +0000788 Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
789 ConstantInt::get(Type::Int32Ty,
Devang Patele2ba01d2008-11-17 23:27:13 +0000790 newIncrValue),
Devang Patelc8dac622008-11-17 21:32:02 +0000791 Incr->getName()+".int", Incr);
792 NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
793
Dale Johannesen6cb3e262009-04-27 21:03:15 +0000794 // The back edge is edge 1 of newPHI, whatever it may have been in the
795 // original PHI.
Devang Patelc8dac622008-11-17 21:32:02 +0000796 ConstantInt *NewEV = ConstantInt::get(Type::Int32Ty, intEV);
Dale Johannesen6cb3e262009-04-27 21:03:15 +0000797 Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(1) : NewEV);
798 Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(1));
Dan Gohman963fc812009-02-17 19:13:57 +0000799 ICmpInst *NewEC = new ICmpInst(NewPred, LHS, RHS, EC->getNameStart(),
Devang Patelc8dac622008-11-17 21:32:02 +0000800 EC->getParent()->getTerminator());
Dan Gohman963fc812009-02-17 19:13:57 +0000801
Dan Gohman28055122009-05-12 02:17:14 +0000802 // In the following deltions, PH may become dead and may be deleted.
803 // Use a WeakVH to observe whether this happens.
804 WeakVH WeakPH = PH;
805
Devang Patelc8dac622008-11-17 21:32:02 +0000806 // Delete old, floating point, exit comparision instruction.
Dan Gohmanb8098742009-05-24 18:09:01 +0000807 NewEC->takeName(EC);
Devang Patelc8dac622008-11-17 21:32:02 +0000808 EC->replaceAllUsesWith(NewEC);
Dan Gohman28055122009-05-12 02:17:14 +0000809 RecursivelyDeleteTriviallyDeadInstructions(EC);
Dan Gohman963fc812009-02-17 19:13:57 +0000810
Devang Patelc8dac622008-11-17 21:32:02 +0000811 // Delete old, floating point, increment instruction.
812 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
Dan Gohman28055122009-05-12 02:17:14 +0000813 RecursivelyDeleteTriviallyDeadInstructions(Incr);
Dan Gohman963fc812009-02-17 19:13:57 +0000814
Dan Gohman28055122009-05-12 02:17:14 +0000815 // Replace floating induction variable, if it isn't already deleted.
816 // Give SIToFPInst preference over UIToFPInst because it is faster on
817 // platforms that are widely used.
818 if (WeakPH && !PH->use_empty()) {
819 if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
820 SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
821 PH->getParent()->getFirstNonPHI());
822 PH->replaceAllUsesWith(Conv);
823 } else {
824 UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
825 PH->getParent()->getFirstNonPHI());
826 PH->replaceAllUsesWith(Conv);
827 }
828 RecursivelyDeleteTriviallyDeadInstructions(PH);
Devang Patele2ba01d2008-11-17 23:27:13 +0000829 }
Devang Patel7ca23c92008-11-03 18:32:19 +0000830
Dan Gohman28055122009-05-12 02:17:14 +0000831 // Add a new IVUsers entry for the newly-created integer PHI.
832 IU->AddUsersIfInteresting(NewPHI);
833}