blob: e44e65057ca3bbd3ab0079c2b61df5180958cf0f [file] [log] [blame]
Chris Lattnerdf986172009-01-02 07:01:27 +00001//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/ValueSymbolTable.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
Chris Lattnerdf986172009-01-02 07:01:27 +000028namespace llvm {
Chris Lattner3ed88ef2009-01-02 08:05:26 +000029 /// ValID - Represents a reference of a definition of some sort with no type.
30 /// There are several cases where we have to parse the value but where the
31 /// type can depend on later context. This may either be a numeric reference
32 /// or a symbolic (%var) reference. This is just a discriminated union.
Chris Lattnerdf986172009-01-02 07:01:27 +000033 struct ValID {
34 enum {
35 t_LocalID, t_GlobalID, // ID in UIntVal.
36 t_LocalName, t_GlobalName, // Name in StrVal.
37 t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal.
38 t_Null, t_Undef, t_Zero, // No value.
39 t_Constant, // Value in ConstantVal.
40 t_InlineAsm // Value in StrVal/StrVal2/UIntVal.
41 } Kind;
42
43 LLParser::LocTy Loc;
44 unsigned UIntVal;
45 std::string StrVal, StrVal2;
46 APSInt APSIntVal;
47 APFloat APFloatVal;
48 Constant *ConstantVal;
49 ValID() : APFloatVal(0.0) {}
50 };
51}
52
Chris Lattner3ed88ef2009-01-02 08:05:26 +000053/// Run: module ::= toplevelentity*
Chris Lattnerad7d1e22009-01-04 20:44:11 +000054bool LLParser::Run() {
Chris Lattner3ed88ef2009-01-02 08:05:26 +000055 // Prime the lexer.
56 Lex.Lex();
57
Chris Lattnerad7d1e22009-01-04 20:44:11 +000058 return ParseTopLevelEntities() ||
59 ValidateEndOfModule();
Chris Lattnerdf986172009-01-02 07:01:27 +000060}
61
62/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
63/// module.
64bool LLParser::ValidateEndOfModule() {
65 if (!ForwardRefTypes.empty())
66 return Error(ForwardRefTypes.begin()->second.second,
67 "use of undefined type named '" +
68 ForwardRefTypes.begin()->first + "'");
69 if (!ForwardRefTypeIDs.empty())
70 return Error(ForwardRefTypeIDs.begin()->second.second,
71 "use of undefined type '%" +
72 utostr(ForwardRefTypeIDs.begin()->first) + "'");
73
74 if (!ForwardRefVals.empty())
75 return Error(ForwardRefVals.begin()->second.second,
76 "use of undefined value '@" + ForwardRefVals.begin()->first +
77 "'");
78
79 if (!ForwardRefValIDs.empty())
80 return Error(ForwardRefValIDs.begin()->second.second,
81 "use of undefined value '@" +
82 utostr(ForwardRefValIDs.begin()->first) + "'");
83
84 // Look for intrinsic functions and CallInst that need to be upgraded
85 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
86 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
87
88 return false;
89}
90
91//===----------------------------------------------------------------------===//
92// Top-Level Entities
93//===----------------------------------------------------------------------===//
94
95bool LLParser::ParseTopLevelEntities() {
Chris Lattnerdf986172009-01-02 07:01:27 +000096 while (1) {
97 switch (Lex.getKind()) {
98 default: return TokError("expected top-level entity");
99 case lltok::Eof: return false;
100 //case lltok::kw_define:
101 case lltok::kw_declare: if (ParseDeclare()) return true; break;
102 case lltok::kw_define: if (ParseDefine()) return true; break;
103 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
104 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
105 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
106 case lltok::kw_type: if (ParseUnnamedType()) return true; break;
107 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
108 case lltok::LocalVar: if (ParseNamedType()) return true; break;
109 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
110
111 // The Global variable production with no name can have many different
112 // optional leading prefixes, the production is:
113 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
114 // OptionalAddrSpace ('constant'|'global') ...
115 case lltok::kw_internal: // OptionalLinkage
116 case lltok::kw_weak: // OptionalLinkage
117 case lltok::kw_linkonce: // OptionalLinkage
118 case lltok::kw_appending: // OptionalLinkage
119 case lltok::kw_dllexport: // OptionalLinkage
120 case lltok::kw_common: // OptionalLinkage
121 case lltok::kw_dllimport: // OptionalLinkage
122 case lltok::kw_extern_weak: // OptionalLinkage
123 case lltok::kw_external: { // OptionalLinkage
124 unsigned Linkage, Visibility;
125 if (ParseOptionalLinkage(Linkage) ||
126 ParseOptionalVisibility(Visibility) ||
127 ParseGlobal("", 0, Linkage, true, Visibility))
128 return true;
129 break;
130 }
131 case lltok::kw_default: // OptionalVisibility
132 case lltok::kw_hidden: // OptionalVisibility
133 case lltok::kw_protected: { // OptionalVisibility
134 unsigned Visibility;
135 if (ParseOptionalVisibility(Visibility) ||
136 ParseGlobal("", 0, 0, false, Visibility))
137 return true;
138 break;
139 }
140
141 case lltok::kw_thread_local: // OptionalThreadLocal
142 case lltok::kw_addrspace: // OptionalAddrSpace
143 case lltok::kw_constant: // GlobalType
144 case lltok::kw_global: // GlobalType
145 if (ParseGlobal("", 0, 0, false, 0)) return true;
146 break;
147 }
148 }
149}
150
151
152/// toplevelentity
153/// ::= 'module' 'asm' STRINGCONSTANT
154bool LLParser::ParseModuleAsm() {
155 assert(Lex.getKind() == lltok::kw_module);
156 Lex.Lex();
157
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000158 std::string AsmStr;
159 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
160 ParseStringConstant(AsmStr)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000161
162 const std::string &AsmSoFar = M->getModuleInlineAsm();
163 if (AsmSoFar.empty())
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000164 M->setModuleInlineAsm(AsmStr);
Chris Lattnerdf986172009-01-02 07:01:27 +0000165 else
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000166 M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
Chris Lattnerdf986172009-01-02 07:01:27 +0000167 return false;
168}
169
170/// toplevelentity
171/// ::= 'target' 'triple' '=' STRINGCONSTANT
172/// ::= 'target' 'datalayout' '=' STRINGCONSTANT
173bool LLParser::ParseTargetDefinition() {
174 assert(Lex.getKind() == lltok::kw_target);
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000175 std::string Str;
Chris Lattnerdf986172009-01-02 07:01:27 +0000176 switch (Lex.Lex()) {
177 default: return TokError("unknown target property");
178 case lltok::kw_triple:
179 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000180 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
181 ParseStringConstant(Str))
Chris Lattnerdf986172009-01-02 07:01:27 +0000182 return true;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000183 M->setTargetTriple(Str);
Chris Lattnerdf986172009-01-02 07:01:27 +0000184 return false;
185 case lltok::kw_datalayout:
186 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000187 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
188 ParseStringConstant(Str))
Chris Lattnerdf986172009-01-02 07:01:27 +0000189 return true;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000190 M->setDataLayout(Str);
Chris Lattnerdf986172009-01-02 07:01:27 +0000191 return false;
192 }
193}
194
195/// toplevelentity
196/// ::= 'deplibs' '=' '[' ']'
197/// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
198bool LLParser::ParseDepLibs() {
199 assert(Lex.getKind() == lltok::kw_deplibs);
Chris Lattnerdf986172009-01-02 07:01:27 +0000200 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000201 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
202 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
203 return true;
204
205 if (EatIfPresent(lltok::rsquare))
206 return false;
207
208 std::string Str;
209 if (ParseStringConstant(Str)) return true;
210 M->addLibrary(Str);
211
212 while (EatIfPresent(lltok::comma)) {
213 if (ParseStringConstant(Str)) return true;
214 M->addLibrary(Str);
215 }
216
217 return ParseToken(lltok::rsquare, "expected ']' at end of list");
Chris Lattnerdf986172009-01-02 07:01:27 +0000218}
219
220/// toplevelentity
221/// ::= 'type' type
222bool LLParser::ParseUnnamedType() {
223 assert(Lex.getKind() == lltok::kw_type);
224 LocTy TypeLoc = Lex.getLoc();
225 Lex.Lex(); // eat kw_type
226
227 PATypeHolder Ty(Type::VoidTy);
228 if (ParseType(Ty)) return true;
229
230 unsigned TypeID = NumberedTypes.size();
231
232 // We don't allow assigning names to void type
233 if (Ty == Type::VoidTy)
234 return Error(TypeLoc, "can't assign name to the void type");
235
236 // See if this type was previously referenced.
237 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
238 FI = ForwardRefTypeIDs.find(TypeID);
239 if (FI != ForwardRefTypeIDs.end()) {
240 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
241 Ty = FI->second.first.get();
242 ForwardRefTypeIDs.erase(FI);
243 }
244
245 NumberedTypes.push_back(Ty);
246
247 return false;
248}
249
250/// toplevelentity
251/// ::= LocalVar '=' 'type' type
252bool LLParser::ParseNamedType() {
253 std::string Name = Lex.getStrVal();
254 LocTy NameLoc = Lex.getLoc();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000255 Lex.Lex(); // eat LocalVar.
Chris Lattnerdf986172009-01-02 07:01:27 +0000256
257 PATypeHolder Ty(Type::VoidTy);
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000258
259 if (ParseToken(lltok::equal, "expected '=' after name") ||
260 ParseToken(lltok::kw_type, "expected 'type' after name") ||
261 ParseType(Ty))
262 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000263
264 // We don't allow assigning names to void type
265 if (Ty == Type::VoidTy)
266 return Error(NameLoc, "can't assign name '" + Name + "' to the void type");
267
268 // Set the type name, checking for conflicts as we do so.
269 bool AlreadyExists = M->addTypeName(Name, Ty);
270 if (!AlreadyExists) return false;
271
272 // See if this type is a forward reference. We need to eagerly resolve
273 // types to allow recursive type redefinitions below.
274 std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
275 FI = ForwardRefTypes.find(Name);
276 if (FI != ForwardRefTypes.end()) {
277 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
278 Ty = FI->second.first.get();
279 ForwardRefTypes.erase(FI);
280 }
281
282 // Inserting a name that is already defined, get the existing name.
283 const Type *Existing = M->getTypeByName(Name);
284 assert(Existing && "Conflict but no matching type?!");
285
286 // Otherwise, this is an attempt to redefine a type. That's okay if
287 // the redefinition is identical to the original.
288 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
289 if (Existing == Ty) return false;
290
291 // Any other kind of (non-equivalent) redefinition is an error.
292 return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
293 Ty->getDescription() + "'");
294}
295
296
297/// toplevelentity
298/// ::= 'declare' FunctionHeader
299bool LLParser::ParseDeclare() {
300 assert(Lex.getKind() == lltok::kw_declare);
301 Lex.Lex();
302
303 Function *F;
304 return ParseFunctionHeader(F, false);
305}
306
307/// toplevelentity
308/// ::= 'define' FunctionHeader '{' ...
309bool LLParser::ParseDefine() {
310 assert(Lex.getKind() == lltok::kw_define);
311 Lex.Lex();
312
313 Function *F;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000314 return ParseFunctionHeader(F, true) ||
315 ParseFunctionBody(*F);
Chris Lattnerdf986172009-01-02 07:01:27 +0000316}
317
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000318/// ParseGlobalType
319/// ::= 'constant'
320/// ::= 'global'
Chris Lattnerdf986172009-01-02 07:01:27 +0000321bool LLParser::ParseGlobalType(bool &IsConstant) {
322 if (Lex.getKind() == lltok::kw_constant)
323 IsConstant = true;
324 else if (Lex.getKind() == lltok::kw_global)
325 IsConstant = false;
326 else
327 return TokError("expected 'global' or 'constant'");
328 Lex.Lex();
329 return false;
330}
331
332/// ParseNamedGlobal:
333/// GlobalVar '=' OptionalVisibility ALIAS ...
334/// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
335bool LLParser::ParseNamedGlobal() {
336 assert(Lex.getKind() == lltok::GlobalVar);
337 LocTy NameLoc = Lex.getLoc();
338 std::string Name = Lex.getStrVal();
339 Lex.Lex();
340
341 bool HasLinkage;
342 unsigned Linkage, Visibility;
343 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
344 ParseOptionalLinkage(Linkage, HasLinkage) ||
345 ParseOptionalVisibility(Visibility))
346 return true;
347
348 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
349 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
350 return ParseAlias(Name, NameLoc, Visibility);
351}
352
353/// ParseAlias:
354/// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
355/// Aliasee
356/// ::= TypeAndValue | 'bitcast' '(' TypeAndValue 'to' Type ')'
357///
358/// Everything through visibility has already been parsed.
359///
360bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
361 unsigned Visibility) {
362 assert(Lex.getKind() == lltok::kw_alias);
363 Lex.Lex();
364 unsigned Linkage;
365 LocTy LinkageLoc = Lex.getLoc();
366 if (ParseOptionalLinkage(Linkage))
367 return true;
368
369 if (Linkage != GlobalValue::ExternalLinkage &&
370 Linkage != GlobalValue::WeakLinkage &&
371 Linkage != GlobalValue::InternalLinkage)
372 return Error(LinkageLoc, "invalid linkage type for alias");
373
374 Constant *Aliasee;
375 LocTy AliaseeLoc = Lex.getLoc();
376 if (Lex.getKind() != lltok::kw_bitcast) {
377 if (ParseGlobalTypeAndValue(Aliasee)) return true;
378 } else {
379 // The bitcast dest type is not present, it is implied by the dest type.
380 ValID ID;
381 if (ParseValID(ID)) return true;
382 if (ID.Kind != ValID::t_Constant)
383 return Error(AliaseeLoc, "invalid aliasee");
384 Aliasee = ID.ConstantVal;
385 }
386
387 if (!isa<PointerType>(Aliasee->getType()))
388 return Error(AliaseeLoc, "alias must have pointer type");
389
390 // Okay, create the alias but do not insert it into the module yet.
391 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
392 (GlobalValue::LinkageTypes)Linkage, Name,
393 Aliasee);
394 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
395
396 // See if this value already exists in the symbol table. If so, it is either
397 // a redefinition or a definition of a forward reference.
398 if (GlobalValue *Val =
399 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
400 // See if this was a redefinition. If so, there is no entry in
401 // ForwardRefVals.
402 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
403 I = ForwardRefVals.find(Name);
404 if (I == ForwardRefVals.end())
405 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
406
407 // Otherwise, this was a definition of forward ref. Verify that types
408 // agree.
409 if (Val->getType() != GA->getType())
410 return Error(NameLoc,
411 "forward reference and definition of alias have different types");
412
413 // If they agree, just RAUW the old value with the alias and remove the
414 // forward ref info.
415 Val->replaceAllUsesWith(GA);
416 Val->eraseFromParent();
417 ForwardRefVals.erase(I);
418 }
419
420 // Insert into the module, we know its name won't collide now.
421 M->getAliasList().push_back(GA);
422 assert(GA->getNameStr() == Name && "Should not be a name conflict!");
423
424 return false;
425}
426
427/// ParseGlobal
428/// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
429/// OptionalAddrSpace GlobalType Type Const
430/// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
431/// OptionalAddrSpace GlobalType Type Const
432///
433/// Everything through visibility has been parsed already.
434///
435bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
436 unsigned Linkage, bool HasLinkage,
437 unsigned Visibility) {
438 unsigned AddrSpace;
439 bool ThreadLocal, IsConstant;
440 LocTy TyLoc;
441
442 PATypeHolder Ty(Type::VoidTy);
443 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
444 ParseOptionalAddrSpace(AddrSpace) ||
445 ParseGlobalType(IsConstant) ||
446 ParseType(Ty, TyLoc))
447 return true;
448
449 // If the linkage is specified and is external, then no initializer is
450 // present.
451 Constant *Init = 0;
452 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
453 Linkage != GlobalValue::ExternalWeakLinkage &&
454 Linkage != GlobalValue::ExternalLinkage)) {
455 if (ParseGlobalValue(Ty, Init))
456 return true;
457 }
458
459 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
460 return Error(TyLoc, "invald type for global variable");
461
462 GlobalVariable *GV = 0;
463
464 // See if the global was forward referenced, if so, use the global.
465 if (!Name.empty() && (GV = M->getGlobalVariable(Name, true))) {
466 if (!ForwardRefVals.erase(Name))
467 return Error(NameLoc, "redefinition of global '@" + Name + "'");
468 } else {
469 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
470 I = ForwardRefValIDs.find(NumberedVals.size());
471 if (I != ForwardRefValIDs.end()) {
472 GV = cast<GlobalVariable>(I->second.first);
473 ForwardRefValIDs.erase(I);
474 }
475 }
476
477 if (GV == 0) {
478 GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
479 M, false, AddrSpace);
480 } else {
481 if (GV->getType()->getElementType() != Ty)
482 return Error(TyLoc,
483 "forward reference and definition of global have different types");
484
485 // Move the forward-reference to the correct spot in the module.
486 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
487 }
488
489 if (Name.empty())
490 NumberedVals.push_back(GV);
491
492 // Set the parsed properties on the global.
493 if (Init)
494 GV->setInitializer(Init);
495 GV->setConstant(IsConstant);
496 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
497 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
498 GV->setThreadLocal(ThreadLocal);
499
500 // Parse attributes on the global.
501 while (Lex.getKind() == lltok::comma) {
502 Lex.Lex();
503
504 if (Lex.getKind() == lltok::kw_section) {
505 Lex.Lex();
506 GV->setSection(Lex.getStrVal());
507 if (ParseToken(lltok::StringConstant, "expected global section string"))
508 return true;
509 } else if (Lex.getKind() == lltok::kw_align) {
510 unsigned Alignment;
511 if (ParseOptionalAlignment(Alignment)) return true;
512 GV->setAlignment(Alignment);
513 } else {
514 TokError("unknown global variable property!");
515 }
516 }
517
518 return false;
519}
520
521
522//===----------------------------------------------------------------------===//
523// GlobalValue Reference/Resolution Routines.
524//===----------------------------------------------------------------------===//
525
526/// GetGlobalVal - Get a value with the specified name or ID, creating a
527/// forward reference record if needed. This can return null if the value
528/// exists but does not have the right type.
529GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
530 LocTy Loc) {
531 const PointerType *PTy = dyn_cast<PointerType>(Ty);
532 if (PTy == 0) {
533 Error(Loc, "global variable reference must have pointer type");
534 return 0;
535 }
536
537 // Look this name up in the normal function symbol table.
538 GlobalValue *Val =
539 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
540
541 // If this is a forward reference for the value, see if we already created a
542 // forward ref record.
543 if (Val == 0) {
544 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
545 I = ForwardRefVals.find(Name);
546 if (I != ForwardRefVals.end())
547 Val = I->second.first;
548 }
549
550 // If we have the value in the symbol table or fwd-ref table, return it.
551 if (Val) {
552 if (Val->getType() == Ty) return Val;
553 Error(Loc, "'@" + Name + "' defined with type '" +
554 Val->getType()->getDescription() + "'");
555 return 0;
556 }
557
558 // Otherwise, create a new forward reference for this value and remember it.
559 GlobalValue *FwdVal;
560 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
561 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
562 else
563 FwdVal = new GlobalVariable(PTy->getElementType(), false,
564 GlobalValue::ExternalWeakLinkage, 0, Name, M);
565
566 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
567 return FwdVal;
568}
569
570GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
571 const PointerType *PTy = dyn_cast<PointerType>(Ty);
572 if (PTy == 0) {
573 Error(Loc, "global variable reference must have pointer type");
574 return 0;
575 }
576
577 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
578
579 // If this is a forward reference for the value, see if we already created a
580 // forward ref record.
581 if (Val == 0) {
582 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
583 I = ForwardRefValIDs.find(ID);
584 if (I != ForwardRefValIDs.end())
585 Val = I->second.first;
586 }
587
588 // If we have the value in the symbol table or fwd-ref table, return it.
589 if (Val) {
590 if (Val->getType() == Ty) return Val;
591 Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
592 Val->getType()->getDescription() + "'");
593 return 0;
594 }
595
596 // Otherwise, create a new forward reference for this value and remember it.
597 GlobalValue *FwdVal;
598 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
599 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
600 else
601 FwdVal = new GlobalVariable(PTy->getElementType(), false,
602 GlobalValue::ExternalWeakLinkage, 0, "", M);
603
604 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
605 return FwdVal;
606}
607
608
609//===----------------------------------------------------------------------===//
610// Helper Routines.
611//===----------------------------------------------------------------------===//
612
613/// ParseToken - If the current token has the specified kind, eat it and return
614/// success. Otherwise, emit the specified error and return failure.
615bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
616 if (Lex.getKind() != T)
617 return TokError(ErrMsg);
618 Lex.Lex();
619 return false;
620}
621
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000622/// ParseStringConstant
623/// ::= StringConstant
624bool LLParser::ParseStringConstant(std::string &Result) {
625 if (Lex.getKind() != lltok::StringConstant)
626 return TokError("expected string constant");
627 Result = Lex.getStrVal();
628 Lex.Lex();
629 return false;
630}
631
632/// ParseUInt32
633/// ::= uint32
634bool LLParser::ParseUInt32(unsigned &Val) {
Chris Lattnerdf986172009-01-02 07:01:27 +0000635 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
636 return TokError("expected integer");
637 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
638 if (Val64 != unsigned(Val64))
639 return TokError("expected 32-bit integer (too large)");
640 Val = Val64;
641 Lex.Lex();
642 return false;
643}
644
645
646/// ParseOptionalAddrSpace
647/// := /*empty*/
648/// := 'addrspace' '(' uint32 ')'
649bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
650 AddrSpace = 0;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000651 if (!EatIfPresent(lltok::kw_addrspace))
Chris Lattnerdf986172009-01-02 07:01:27 +0000652 return false;
Chris Lattnerdf986172009-01-02 07:01:27 +0000653 return ParseToken(lltok::lparen, "expected '(' in address space") ||
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000654 ParseUInt32(AddrSpace) ||
Chris Lattnerdf986172009-01-02 07:01:27 +0000655 ParseToken(lltok::rparen, "expected ')' in address space");
656}
657
658/// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
659/// indicates what kind of attribute list this is: 0: function arg, 1: result,
660/// 2: function attr.
661bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
662 Attrs = Attribute::None;
663 LocTy AttrLoc = Lex.getLoc();
664
665 while (1) {
666 switch (Lex.getKind()) {
667 case lltok::kw_sext:
668 case lltok::kw_zext:
669 // Treat these as signext/zeroext unless they are function attrs.
670 // FIXME: REMOVE THIS IN LLVM 3.0
671 if (AttrKind != 2) {
672 if (Lex.getKind() == lltok::kw_sext)
673 Attrs |= Attribute::SExt;
674 else
675 Attrs |= Attribute::ZExt;
676 break;
677 }
678 // FALL THROUGH.
679 default: // End of attributes.
680 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
681 return Error(AttrLoc, "invalid use of function-only attribute");
682
683 if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
684 return Error(AttrLoc, "invalid use of parameter-only attribute");
685
686 return false;
687 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
688 case lltok::kw_signext: Attrs |= Attribute::SExt; break;
689 case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
690 case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
691 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
692 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
693 case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
694 case lltok::kw_nest: Attrs |= Attribute::Nest; break;
695
696 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
697 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
698 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
699 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
700 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
701 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
702 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
703 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
704 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
705
706
707 case lltok::kw_align: {
708 unsigned Alignment;
709 if (ParseOptionalAlignment(Alignment))
710 return true;
711 Attrs |= Attribute::constructAlignmentFromInt(Alignment);
712 continue;
713 }
714 }
715 Lex.Lex();
716 }
717}
718
719/// ParseOptionalLinkage
720/// ::= /*empty*/
721/// ::= 'internal'
722/// ::= 'weak'
723/// ::= 'linkonce'
724/// ::= 'appending'
725/// ::= 'dllexport'
726/// ::= 'common'
727/// ::= 'dllimport'
728/// ::= 'extern_weak'
729/// ::= 'external'
730bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
731 HasLinkage = false;
732 switch (Lex.getKind()) {
733 default: Res = GlobalValue::ExternalLinkage; return false;
734 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
735 case lltok::kw_weak: Res = GlobalValue::WeakLinkage; break;
736 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceLinkage; break;
737 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
738 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
739 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
740 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
741 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
742 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
743 }
744 Lex.Lex();
745 HasLinkage = true;
746 return false;
747}
748
749/// ParseOptionalVisibility
750/// ::= /*empty*/
751/// ::= 'default'
752/// ::= 'hidden'
753/// ::= 'protected'
754///
755bool LLParser::ParseOptionalVisibility(unsigned &Res) {
756 switch (Lex.getKind()) {
757 default: Res = GlobalValue::DefaultVisibility; return false;
758 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
759 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
760 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
761 }
762 Lex.Lex();
763 return false;
764}
765
766/// ParseOptionalCallingConv
767/// ::= /*empty*/
768/// ::= 'ccc'
769/// ::= 'fastcc'
770/// ::= 'coldcc'
771/// ::= 'x86_stdcallcc'
772/// ::= 'x86_fastcallcc'
773/// ::= 'cc' UINT
774///
775bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
776 switch (Lex.getKind()) {
777 default: CC = CallingConv::C; return false;
778 case lltok::kw_ccc: CC = CallingConv::C; break;
779 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
780 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
781 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
782 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000783 case lltok::kw_cc: Lex.Lex(); return ParseUInt32(CC);
Chris Lattnerdf986172009-01-02 07:01:27 +0000784 }
785 Lex.Lex();
786 return false;
787}
788
789/// ParseOptionalAlignment
790/// ::= /* empty */
791/// ::= 'align' 4
792bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
793 Alignment = 0;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000794 if (!EatIfPresent(lltok::kw_align))
795 return false;
796 return ParseUInt32(Alignment);
Chris Lattnerdf986172009-01-02 07:01:27 +0000797}
798
799/// ParseOptionalCommaAlignment
800/// ::= /* empty */
801/// ::= ',' 'align' 4
802bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
803 Alignment = 0;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000804 if (!EatIfPresent(lltok::comma))
Chris Lattnerdf986172009-01-02 07:01:27 +0000805 return false;
Chris Lattnerdf986172009-01-02 07:01:27 +0000806 return ParseToken(lltok::kw_align, "expected 'align'") ||
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000807 ParseUInt32(Alignment);
Chris Lattnerdf986172009-01-02 07:01:27 +0000808}
809
810/// ParseIndexList
811/// ::= (',' uint32)+
812bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
813 if (Lex.getKind() != lltok::comma)
814 return TokError("expected ',' as start of index list");
815
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000816 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +0000817 unsigned Idx;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000818 if (ParseUInt32(Idx)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000819 Indices.push_back(Idx);
820 }
821
822 return false;
823}
824
825//===----------------------------------------------------------------------===//
826// Type Parsing.
827//===----------------------------------------------------------------------===//
828
829/// ParseType - Parse and resolve a full type.
830bool LLParser::ParseType(PATypeHolder &Result) {
831 if (ParseTypeRec(Result)) return true;
832
833 // Verify no unresolved uprefs.
834 if (!UpRefs.empty())
835 return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
Chris Lattnerdf986172009-01-02 07:01:27 +0000836
837 return false;
838}
839
840/// HandleUpRefs - Every time we finish a new layer of types, this function is
841/// called. It loops through the UpRefs vector, which is a list of the
842/// currently active types. For each type, if the up-reference is contained in
843/// the newly completed type, we decrement the level count. When the level
844/// count reaches zero, the up-referenced type is the type that is passed in:
845/// thus we can complete the cycle.
846///
847PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
848 // If Ty isn't abstract, or if there are no up-references in it, then there is
849 // nothing to resolve here.
850 if (!ty->isAbstract() || UpRefs.empty()) return ty;
851
852 PATypeHolder Ty(ty);
853#if 0
854 errs() << "Type '" << Ty->getDescription()
855 << "' newly formed. Resolving upreferences.\n"
856 << UpRefs.size() << " upreferences active!\n";
857#endif
858
859 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
860 // to zero), we resolve them all together before we resolve them to Ty. At
861 // the end of the loop, if there is anything to resolve to Ty, it will be in
862 // this variable.
863 OpaqueType *TypeToResolve = 0;
864
865 for (unsigned i = 0; i != UpRefs.size(); ++i) {
866 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
867 bool ContainsType =
868 std::find(Ty->subtype_begin(), Ty->subtype_end(),
869 UpRefs[i].LastContainedTy) != Ty->subtype_end();
870
871#if 0
872 errs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
873 << UpRefs[i].LastContainedTy->getDescription() << ") = "
874 << (ContainsType ? "true" : "false")
875 << " level=" << UpRefs[i].NestingLevel << "\n";
876#endif
877 if (!ContainsType)
878 continue;
879
880 // Decrement level of upreference
881 unsigned Level = --UpRefs[i].NestingLevel;
882 UpRefs[i].LastContainedTy = Ty;
883
884 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
885 if (Level != 0)
886 continue;
887
888#if 0
889 errs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
890#endif
891 if (!TypeToResolve)
892 TypeToResolve = UpRefs[i].UpRefTy;
893 else
894 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
895 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list.
896 --i; // Do not skip the next element.
897 }
898
899 if (TypeToResolve)
900 TypeToResolve->refineAbstractTypeTo(Ty);
901
902 return Ty;
903}
904
905
906/// ParseTypeRec - The recursive function used to process the internal
907/// implementation details of types.
908bool LLParser::ParseTypeRec(PATypeHolder &Result) {
909 switch (Lex.getKind()) {
910 default:
911 return TokError("expected type");
912 case lltok::Type:
913 // TypeRec ::= 'float' | 'void' (etc)
914 Result = Lex.getTyVal();
915 Lex.Lex();
916 break;
917 case lltok::kw_opaque:
918 // TypeRec ::= 'opaque'
919 Result = OpaqueType::get();
920 Lex.Lex();
921 break;
922 case lltok::lbrace:
923 // TypeRec ::= '{' ... '}'
924 if (ParseStructType(Result, false))
925 return true;
926 break;
927 case lltok::lsquare:
928 // TypeRec ::= '[' ... ']'
929 Lex.Lex(); // eat the lsquare.
930 if (ParseArrayVectorType(Result, false))
931 return true;
932 break;
933 case lltok::less: // Either vector or packed struct.
934 // TypeRec ::= '<' ... '>'
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000935 Lex.Lex();
936 if (Lex.getKind() == lltok::lbrace) {
937 if (ParseStructType(Result, true) ||
938 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
Chris Lattnerdf986172009-01-02 07:01:27 +0000939 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000940 } else if (ParseArrayVectorType(Result, true))
941 return true;
942 break;
943 case lltok::LocalVar:
944 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
945 // TypeRec ::= %foo
946 if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
947 Result = T;
948 } else {
949 Result = OpaqueType::get();
950 ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
951 std::make_pair(Result,
952 Lex.getLoc())));
953 M->addTypeName(Lex.getStrVal(), Result.get());
954 }
955 Lex.Lex();
956 break;
957
958 case lltok::LocalVarID:
959 // TypeRec ::= %4
960 if (Lex.getUIntVal() < NumberedTypes.size())
961 Result = NumberedTypes[Lex.getUIntVal()];
962 else {
963 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
964 I = ForwardRefTypeIDs.find(Lex.getUIntVal());
965 if (I != ForwardRefTypeIDs.end())
966 Result = I->second.first;
967 else {
968 Result = OpaqueType::get();
969 ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
970 std::make_pair(Result,
971 Lex.getLoc())));
972 }
973 }
974 Lex.Lex();
975 break;
976 case lltok::backslash: {
977 // TypeRec ::= '\' 4
Chris Lattnerdf986172009-01-02 07:01:27 +0000978 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000979 unsigned Val;
980 if (ParseUInt32(Val)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000981 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder.
982 UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
983 Result = OT;
984 break;
985 }
986 }
987
988 // Parse the type suffixes.
989 while (1) {
990 switch (Lex.getKind()) {
991 // End of type.
992 default: return false;
993
994 // TypeRec ::= TypeRec '*'
995 case lltok::star:
996 if (Result.get() == Type::LabelTy)
997 return TokError("basic block pointers are invalid");
998 Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
999 Lex.Lex();
1000 break;
1001
1002 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1003 case lltok::kw_addrspace: {
1004 if (Result.get() == Type::LabelTy)
1005 return TokError("basic block pointers are invalid");
1006 unsigned AddrSpace;
1007 if (ParseOptionalAddrSpace(AddrSpace) ||
1008 ParseToken(lltok::star, "expected '*' in address space"))
1009 return true;
1010
1011 Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1012 break;
1013 }
1014
1015 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1016 case lltok::lparen:
1017 if (ParseFunctionType(Result))
1018 return true;
1019 break;
1020 }
1021 }
1022}
1023
1024/// ParseParameterList
1025/// ::= '(' ')'
1026/// ::= '(' Arg (',' Arg)* ')'
1027/// Arg
1028/// ::= Type OptionalAttributes Value OptionalAttributes
1029bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1030 PerFunctionState &PFS) {
1031 if (ParseToken(lltok::lparen, "expected '(' in call"))
1032 return true;
1033
1034 while (Lex.getKind() != lltok::rparen) {
1035 // If this isn't the first argument, we need a comma.
1036 if (!ArgList.empty() &&
1037 ParseToken(lltok::comma, "expected ',' in argument list"))
1038 return true;
1039
1040 // Parse the argument.
1041 LocTy ArgLoc;
1042 PATypeHolder ArgTy(Type::VoidTy);
1043 unsigned ArgAttrs1, ArgAttrs2;
1044 Value *V;
1045 if (ParseType(ArgTy, ArgLoc) ||
1046 ParseOptionalAttrs(ArgAttrs1, 0) ||
1047 ParseValue(ArgTy, V, PFS) ||
1048 // FIXME: Should not allow attributes after the argument, remove this in
1049 // LLVM 3.0.
1050 ParseOptionalAttrs(ArgAttrs2, 0))
1051 return true;
1052 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1053 }
1054
1055 Lex.Lex(); // Lex the ')'.
1056 return false;
1057}
1058
1059
1060
1061/// ParseArgumentList
1062/// ::= '(' ArgTypeListI ')'
1063/// ArgTypeListI
1064/// ::= /*empty*/
1065/// ::= '...'
1066/// ::= ArgTypeList ',' '...'
1067/// ::= ArgType (',' ArgType)*
1068bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1069 bool &isVarArg) {
1070 isVarArg = false;
1071 assert(Lex.getKind() == lltok::lparen);
1072 Lex.Lex(); // eat the (.
1073
1074 if (Lex.getKind() == lltok::rparen) {
1075 // empty
1076 } else if (Lex.getKind() == lltok::dotdotdot) {
1077 isVarArg = true;
1078 Lex.Lex();
1079 } else {
1080 LocTy TypeLoc = Lex.getLoc();
1081 PATypeHolder ArgTy(Type::VoidTy);
Chris Lattnerdf986172009-01-02 07:01:27 +00001082 unsigned Attrs;
Chris Lattnerdf986172009-01-02 07:01:27 +00001083 std::string Name;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001084
1085 if (ParseTypeRec(ArgTy) ||
1086 ParseOptionalAttrs(Attrs, 0)) return true;
1087
Chris Lattnerdf986172009-01-02 07:01:27 +00001088 if (Lex.getKind() == lltok::LocalVar ||
1089 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1090 Name = Lex.getStrVal();
1091 Lex.Lex();
1092 }
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001093
1094 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1095 return Error(TypeLoc, "invalid type for function argument");
Chris Lattnerdf986172009-01-02 07:01:27 +00001096
1097 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1098
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001099 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001100 // Handle ... at end of arg list.
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001101 if (EatIfPresent(lltok::dotdotdot)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001102 isVarArg = true;
Chris Lattnerdf986172009-01-02 07:01:27 +00001103 break;
1104 }
1105
1106 // Otherwise must be an argument type.
1107 TypeLoc = Lex.getLoc();
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001108 if (ParseTypeRec(ArgTy) ||
1109 ParseOptionalAttrs(Attrs, 0)) return true;
1110
Chris Lattnerdf986172009-01-02 07:01:27 +00001111 if (Lex.getKind() == lltok::LocalVar ||
1112 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1113 Name = Lex.getStrVal();
1114 Lex.Lex();
1115 } else {
1116 Name = "";
1117 }
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001118
1119 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1120 return Error(TypeLoc, "invalid type for function argument");
Chris Lattnerdf986172009-01-02 07:01:27 +00001121
1122 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1123 }
1124 }
1125
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001126 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
Chris Lattnerdf986172009-01-02 07:01:27 +00001127}
1128
1129/// ParseFunctionType
1130/// ::= Type ArgumentList OptionalAttrs
1131bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1132 assert(Lex.getKind() == lltok::lparen);
1133
1134 std::vector<ArgInfo> ArgList;
1135 bool isVarArg;
1136 unsigned Attrs;
1137 if (ParseArgumentList(ArgList, isVarArg) ||
1138 // FIXME: Allow, but ignore attributes on function types!
1139 // FIXME: Remove in LLVM 3.0
1140 ParseOptionalAttrs(Attrs, 2))
1141 return true;
1142
1143 // Reject names on the arguments lists.
1144 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1145 if (!ArgList[i].Name.empty())
1146 return Error(ArgList[i].Loc, "argument name invalid in function type");
1147 if (!ArgList[i].Attrs != 0) {
1148 // Allow but ignore attributes on function types; this permits
1149 // auto-upgrade.
1150 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1151 }
1152 }
1153
1154 std::vector<const Type*> ArgListTy;
1155 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1156 ArgListTy.push_back(ArgList[i].Type);
1157
1158 Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1159 return false;
1160}
1161
1162/// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1163/// TypeRec
1164/// ::= '{' '}'
1165/// ::= '{' TypeRec (',' TypeRec)* '}'
1166/// ::= '<' '{' '}' '>'
1167/// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1168bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1169 assert(Lex.getKind() == lltok::lbrace);
1170 Lex.Lex(); // Consume the '{'
1171
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001172 if (EatIfPresent(lltok::rbrace)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001173 Result = StructType::get(std::vector<const Type*>(), Packed);
Chris Lattnerdf986172009-01-02 07:01:27 +00001174 return false;
1175 }
1176
1177 std::vector<PATypeHolder> ParamsList;
1178 if (ParseTypeRec(Result)) return true;
1179 ParamsList.push_back(Result);
1180
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001181 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001182 if (ParseTypeRec(Result)) return true;
1183 ParamsList.push_back(Result);
1184 }
1185
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001186 if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1187 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00001188
1189 std::vector<const Type*> ParamsListTy;
1190 for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1191 ParamsListTy.push_back(ParamsList[i].get());
1192 Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1193 return false;
1194}
1195
1196/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1197/// token has already been consumed.
1198/// TypeRec
1199/// ::= '[' APSINTVAL 'x' Types ']'
1200/// ::= '<' APSINTVAL 'x' Types '>'
1201bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1202 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1203 Lex.getAPSIntVal().getBitWidth() > 64)
1204 return TokError("expected number in address space");
1205
1206 LocTy SizeLoc = Lex.getLoc();
1207 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001208 Lex.Lex();
1209
1210 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1211 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00001212
1213 LocTy TypeLoc = Lex.getLoc();
1214 PATypeHolder EltTy(Type::VoidTy);
1215 if (ParseTypeRec(EltTy)) return true;
1216
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001217 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1218 "expected end of sequential type"))
1219 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00001220
1221 if (isVector) {
1222 if ((unsigned)Size != Size)
1223 return Error(SizeLoc, "size too large for vector");
1224 if (!EltTy->isFloatingPoint() && !EltTy->isInteger())
1225 return Error(TypeLoc, "vector element type must be fp or integer");
1226 Result = VectorType::get(EltTy, unsigned(Size));
1227 } else {
1228 if (!EltTy->isFirstClassType() && !isa<OpaqueType>(EltTy))
1229 return Error(TypeLoc, "invalid array element type");
1230 Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1231 }
1232 return false;
1233}
1234
1235//===----------------------------------------------------------------------===//
1236// Function Semantic Analysis.
1237//===----------------------------------------------------------------------===//
1238
1239LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1240 : P(p), F(f) {
1241
1242 // Insert unnamed arguments into the NumberedVals list.
1243 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1244 AI != E; ++AI)
1245 if (!AI->hasName())
1246 NumberedVals.push_back(AI);
1247}
1248
1249LLParser::PerFunctionState::~PerFunctionState() {
1250 // If there were any forward referenced non-basicblock values, delete them.
1251 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1252 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1253 if (!isa<BasicBlock>(I->second.first)) {
1254 I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1255 ->getType()));
1256 delete I->second.first;
1257 I->second.first = 0;
1258 }
1259
1260 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1261 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1262 if (!isa<BasicBlock>(I->second.first)) {
1263 I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1264 ->getType()));
1265 delete I->second.first;
1266 I->second.first = 0;
1267 }
1268}
1269
1270bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1271 if (!ForwardRefVals.empty())
1272 return P.Error(ForwardRefVals.begin()->second.second,
1273 "use of undefined value '%" + ForwardRefVals.begin()->first +
1274 "'");
1275 if (!ForwardRefValIDs.empty())
1276 return P.Error(ForwardRefValIDs.begin()->second.second,
1277 "use of undefined value '%" +
1278 utostr(ForwardRefValIDs.begin()->first) + "'");
1279 return false;
1280}
1281
1282
1283/// GetVal - Get a value with the specified name or ID, creating a
1284/// forward reference record if needed. This can return null if the value
1285/// exists but does not have the right type.
1286Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1287 const Type *Ty, LocTy Loc) {
1288 // Look this name up in the normal function symbol table.
1289 Value *Val = F.getValueSymbolTable().lookup(Name);
1290
1291 // If this is a forward reference for the value, see if we already created a
1292 // forward ref record.
1293 if (Val == 0) {
1294 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1295 I = ForwardRefVals.find(Name);
1296 if (I != ForwardRefVals.end())
1297 Val = I->second.first;
1298 }
1299
1300 // If we have the value in the symbol table or fwd-ref table, return it.
1301 if (Val) {
1302 if (Val->getType() == Ty) return Val;
1303 if (Ty == Type::LabelTy)
1304 P.Error(Loc, "'%" + Name + "' is not a basic block");
1305 else
1306 P.Error(Loc, "'%" + Name + "' defined with type '" +
1307 Val->getType()->getDescription() + "'");
1308 return 0;
1309 }
1310
1311 // Don't make placeholders with invalid type.
1312 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1313 P.Error(Loc, "invalid use of a non-first-class type");
1314 return 0;
1315 }
1316
1317 // Otherwise, create a new forward reference for this value and remember it.
1318 Value *FwdVal;
1319 if (Ty == Type::LabelTy)
1320 FwdVal = BasicBlock::Create(Name, &F);
1321 else
1322 FwdVal = new Argument(Ty, Name);
1323
1324 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1325 return FwdVal;
1326}
1327
1328Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1329 LocTy Loc) {
1330 // Look this name up in the normal function symbol table.
1331 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1332
1333 // If this is a forward reference for the value, see if we already created a
1334 // forward ref record.
1335 if (Val == 0) {
1336 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1337 I = ForwardRefValIDs.find(ID);
1338 if (I != ForwardRefValIDs.end())
1339 Val = I->second.first;
1340 }
1341
1342 // If we have the value in the symbol table or fwd-ref table, return it.
1343 if (Val) {
1344 if (Val->getType() == Ty) return Val;
1345 if (Ty == Type::LabelTy)
1346 P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1347 else
1348 P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1349 Val->getType()->getDescription() + "'");
1350 return 0;
1351 }
1352
1353 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1354 P.Error(Loc, "invalid use of a non-first-class type");
1355 return 0;
1356 }
1357
1358 // Otherwise, create a new forward reference for this value and remember it.
1359 Value *FwdVal;
1360 if (Ty == Type::LabelTy)
1361 FwdVal = BasicBlock::Create("", &F);
1362 else
1363 FwdVal = new Argument(Ty);
1364
1365 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1366 return FwdVal;
1367}
1368
1369/// SetInstName - After an instruction is parsed and inserted into its
1370/// basic block, this installs its name.
1371bool LLParser::PerFunctionState::SetInstName(int NameID,
1372 const std::string &NameStr,
1373 LocTy NameLoc, Instruction *Inst) {
1374 // If this instruction has void type, it cannot have a name or ID specified.
1375 if (Inst->getType() == Type::VoidTy) {
1376 if (NameID != -1 || !NameStr.empty())
1377 return P.Error(NameLoc, "instructions returning void cannot have a name");
1378 return false;
1379 }
1380
1381 // If this was a numbered instruction, verify that the instruction is the
1382 // expected value and resolve any forward references.
1383 if (NameStr.empty()) {
1384 // If neither a name nor an ID was specified, just use the next ID.
1385 if (NameID == -1)
1386 NameID = NumberedVals.size();
1387
1388 if (unsigned(NameID) != NumberedVals.size())
1389 return P.Error(NameLoc, "instruction expected to be numbered '%" +
1390 utostr(NumberedVals.size()) + "'");
1391
1392 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1393 ForwardRefValIDs.find(NameID);
1394 if (FI != ForwardRefValIDs.end()) {
1395 if (FI->second.first->getType() != Inst->getType())
1396 return P.Error(NameLoc, "instruction forward referenced with type '" +
1397 FI->second.first->getType()->getDescription() + "'");
1398 FI->second.first->replaceAllUsesWith(Inst);
1399 ForwardRefValIDs.erase(FI);
1400 }
1401
1402 NumberedVals.push_back(Inst);
1403 return false;
1404 }
1405
1406 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1407 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1408 FI = ForwardRefVals.find(NameStr);
1409 if (FI != ForwardRefVals.end()) {
1410 if (FI->second.first->getType() != Inst->getType())
1411 return P.Error(NameLoc, "instruction forward referenced with type '" +
1412 FI->second.first->getType()->getDescription() + "'");
1413 FI->second.first->replaceAllUsesWith(Inst);
1414 ForwardRefVals.erase(FI);
1415 }
1416
1417 // Set the name on the instruction.
1418 Inst->setName(NameStr);
1419
1420 if (Inst->getNameStr() != NameStr)
1421 return P.Error(NameLoc, "multiple definition of local value named '" +
1422 NameStr + "'");
1423 return false;
1424}
1425
1426/// GetBB - Get a basic block with the specified name or ID, creating a
1427/// forward reference record if needed.
1428BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1429 LocTy Loc) {
1430 return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1431}
1432
1433BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1434 return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1435}
1436
1437/// DefineBB - Define the specified basic block, which is either named or
1438/// unnamed. If there is an error, this returns null otherwise it returns
1439/// the block being defined.
1440BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1441 LocTy Loc) {
1442 BasicBlock *BB;
1443 if (Name.empty())
1444 BB = GetBB(NumberedVals.size(), Loc);
1445 else
1446 BB = GetBB(Name, Loc);
1447 if (BB == 0) return 0; // Already diagnosed error.
1448
1449 // Move the block to the end of the function. Forward ref'd blocks are
1450 // inserted wherever they happen to be referenced.
1451 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1452
1453 // Remove the block from forward ref sets.
1454 if (Name.empty()) {
1455 ForwardRefValIDs.erase(NumberedVals.size());
1456 NumberedVals.push_back(BB);
1457 } else {
1458 // BB forward references are already in the function symbol table.
1459 ForwardRefVals.erase(Name);
1460 }
1461
1462 return BB;
1463}
1464
1465//===----------------------------------------------------------------------===//
1466// Constants.
1467//===----------------------------------------------------------------------===//
1468
1469/// ParseValID - Parse an abstract value that doesn't necessarily have a
1470/// type implied. For example, if we parse "4" we don't know what integer type
1471/// it has. The value will later be combined with its type and checked for
1472/// sanity.
1473bool LLParser::ParseValID(ValID &ID) {
1474 ID.Loc = Lex.getLoc();
1475 switch (Lex.getKind()) {
1476 default: return TokError("expected value token");
1477 case lltok::GlobalID: // @42
1478 ID.UIntVal = Lex.getUIntVal();
1479 ID.Kind = ValID::t_GlobalID;
1480 break;
1481 case lltok::GlobalVar: // @foo
1482 ID.StrVal = Lex.getStrVal();
1483 ID.Kind = ValID::t_GlobalName;
1484 break;
1485 case lltok::LocalVarID: // %42
1486 ID.UIntVal = Lex.getUIntVal();
1487 ID.Kind = ValID::t_LocalID;
1488 break;
1489 case lltok::LocalVar: // %foo
1490 case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0
1491 ID.StrVal = Lex.getStrVal();
1492 ID.Kind = ValID::t_LocalName;
1493 break;
1494 case lltok::APSInt:
1495 ID.APSIntVal = Lex.getAPSIntVal();
1496 ID.Kind = ValID::t_APSInt;
1497 break;
1498 case lltok::APFloat:
1499 ID.APFloatVal = Lex.getAPFloatVal();
1500 ID.Kind = ValID::t_APFloat;
1501 break;
1502 case lltok::kw_true:
1503 ID.ConstantVal = ConstantInt::getTrue();
1504 ID.Kind = ValID::t_Constant;
1505 break;
1506 case lltok::kw_false:
1507 ID.ConstantVal = ConstantInt::getFalse();
1508 ID.Kind = ValID::t_Constant;
1509 break;
1510 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1511 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1512 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1513
1514 case lltok::lbrace: {
1515 // ValID ::= '{' ConstVector '}'
1516 Lex.Lex();
1517 SmallVector<Constant*, 16> Elts;
1518 if (ParseGlobalValueVector(Elts) ||
1519 ParseToken(lltok::rbrace, "expected end of struct constant"))
1520 return true;
1521
1522 ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), false);
1523 ID.Kind = ValID::t_Constant;
1524 return false;
1525 }
1526 case lltok::less: {
1527 // ValID ::= '<' ConstVector '>' --> Vector.
1528 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1529 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001530 bool isPackedStruct = EatIfPresent(lltok::lbrace);
Chris Lattnerdf986172009-01-02 07:01:27 +00001531
1532 SmallVector<Constant*, 16> Elts;
1533 LocTy FirstEltLoc = Lex.getLoc();
1534 if (ParseGlobalValueVector(Elts) ||
1535 (isPackedStruct &&
1536 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1537 ParseToken(lltok::greater, "expected end of constant"))
1538 return true;
1539
1540 if (isPackedStruct) {
1541 ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), true);
1542 ID.Kind = ValID::t_Constant;
1543 return false;
1544 }
1545
1546 if (Elts.empty())
1547 return Error(ID.Loc, "constant vector must not be empty");
1548
1549 if (!Elts[0]->getType()->isInteger() &&
1550 !Elts[0]->getType()->isFloatingPoint())
1551 return Error(FirstEltLoc,
1552 "vector elements must have integer or floating point type");
1553
1554 // Verify that all the vector elements have the same type.
1555 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1556 if (Elts[i]->getType() != Elts[0]->getType())
1557 return Error(FirstEltLoc,
1558 "vector element #" + utostr(i) +
1559 " is not of type '" + Elts[0]->getType()->getDescription());
1560
1561 ID.ConstantVal = ConstantVector::get(&Elts[0], Elts.size());
1562 ID.Kind = ValID::t_Constant;
1563 return false;
1564 }
1565 case lltok::lsquare: { // Array Constant
1566 Lex.Lex();
1567 SmallVector<Constant*, 16> Elts;
1568 LocTy FirstEltLoc = Lex.getLoc();
1569 if (ParseGlobalValueVector(Elts) ||
1570 ParseToken(lltok::rsquare, "expected end of array constant"))
1571 return true;
1572
1573 // Handle empty element.
1574 if (Elts.empty()) {
1575 // Use undef instead of an array because it's inconvenient to determine
1576 // the element type at this point, there being no elements to examine.
1577 ID.Kind = ValID::t_Undef;
1578 return false;
1579 }
1580
1581 if (!Elts[0]->getType()->isFirstClassType())
1582 return Error(FirstEltLoc, "invalid array element type: " +
1583 Elts[0]->getType()->getDescription());
1584
1585 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1586
1587 // Verify all elements are correct type!
Chris Lattner6d6b3cc2009-01-02 08:49:06 +00001588 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001589 if (Elts[i]->getType() != Elts[0]->getType())
1590 return Error(FirstEltLoc,
1591 "array element #" + utostr(i) +
1592 " is not of type '" +Elts[0]->getType()->getDescription());
1593 }
1594
1595 ID.ConstantVal = ConstantArray::get(ATy, &Elts[0], Elts.size());
1596 ID.Kind = ValID::t_Constant;
1597 return false;
1598 }
1599 case lltok::kw_c: // c "foo"
1600 Lex.Lex();
1601 ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1602 if (ParseToken(lltok::StringConstant, "expected string")) return true;
1603 ID.Kind = ValID::t_Constant;
1604 return false;
1605
1606 case lltok::kw_asm: {
1607 // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1608 bool HasSideEffect;
1609 Lex.Lex();
1610 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001611 ParseStringConstant(ID.StrVal) ||
1612 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
Chris Lattnerdf986172009-01-02 07:01:27 +00001613 ParseToken(lltok::StringConstant, "expected constraint string"))
1614 return true;
1615 ID.StrVal2 = Lex.getStrVal();
1616 ID.UIntVal = HasSideEffect;
1617 ID.Kind = ValID::t_InlineAsm;
1618 return false;
1619 }
1620
1621 case lltok::kw_trunc:
1622 case lltok::kw_zext:
1623 case lltok::kw_sext:
1624 case lltok::kw_fptrunc:
1625 case lltok::kw_fpext:
1626 case lltok::kw_bitcast:
1627 case lltok::kw_uitofp:
1628 case lltok::kw_sitofp:
1629 case lltok::kw_fptoui:
1630 case lltok::kw_fptosi:
1631 case lltok::kw_inttoptr:
1632 case lltok::kw_ptrtoint: {
1633 unsigned Opc = Lex.getUIntVal();
1634 PATypeHolder DestTy(Type::VoidTy);
1635 Constant *SrcVal;
1636 Lex.Lex();
1637 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1638 ParseGlobalTypeAndValue(SrcVal) ||
1639 ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") ||
1640 ParseType(DestTy) ||
1641 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1642 return true;
1643 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1644 return Error(ID.Loc, "invalid cast opcode for cast from '" +
1645 SrcVal->getType()->getDescription() + "' to '" +
1646 DestTy->getDescription() + "'");
1647 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1648 DestTy);
1649 ID.Kind = ValID::t_Constant;
1650 return false;
1651 }
1652 case lltok::kw_extractvalue: {
1653 Lex.Lex();
1654 Constant *Val;
1655 SmallVector<unsigned, 4> Indices;
1656 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1657 ParseGlobalTypeAndValue(Val) ||
1658 ParseIndexList(Indices) ||
1659 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1660 return true;
1661 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1662 return Error(ID.Loc, "extractvalue operand must be array or struct");
1663 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1664 Indices.end()))
1665 return Error(ID.Loc, "invalid indices for extractvalue");
1666 ID.ConstantVal = ConstantExpr::getExtractValue(Val,
1667 &Indices[0], Indices.size());
1668 ID.Kind = ValID::t_Constant;
1669 return false;
1670 }
1671 case lltok::kw_insertvalue: {
1672 Lex.Lex();
1673 Constant *Val0, *Val1;
1674 SmallVector<unsigned, 4> Indices;
1675 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1676 ParseGlobalTypeAndValue(Val0) ||
1677 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1678 ParseGlobalTypeAndValue(Val1) ||
1679 ParseIndexList(Indices) ||
1680 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1681 return true;
1682 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1683 return Error(ID.Loc, "extractvalue operand must be array or struct");
1684 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1685 Indices.end()))
1686 return Error(ID.Loc, "invalid indices for insertvalue");
1687 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
1688 &Indices[0], Indices.size());
1689 ID.Kind = ValID::t_Constant;
1690 return false;
1691 }
1692 case lltok::kw_icmp:
1693 case lltok::kw_fcmp:
1694 case lltok::kw_vicmp:
1695 case lltok::kw_vfcmp: {
1696 unsigned PredVal, Opc = Lex.getUIntVal();
1697 Constant *Val0, *Val1;
1698 Lex.Lex();
1699 if (ParseCmpPredicate(PredVal, Opc) ||
1700 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1701 ParseGlobalTypeAndValue(Val0) ||
1702 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1703 ParseGlobalTypeAndValue(Val1) ||
1704 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1705 return true;
1706
1707 if (Val0->getType() != Val1->getType())
1708 return Error(ID.Loc, "compare operands must have the same type");
1709
1710 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1711
1712 if (Opc == Instruction::FCmp) {
1713 if (!Val0->getType()->isFPOrFPVector())
1714 return Error(ID.Loc, "fcmp requires floating point operands");
1715 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1716 } else if (Opc == Instruction::ICmp) {
1717 if (!Val0->getType()->isIntOrIntVector() &&
1718 !isa<PointerType>(Val0->getType()))
1719 return Error(ID.Loc, "icmp requires pointer or integer operands");
1720 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1721 } else if (Opc == Instruction::VFCmp) {
1722 // FIXME: REMOVE VFCMP Support
1723 ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1724 } else if (Opc == Instruction::VICmp) {
1725 // FIXME: REMOVE VFCMP Support
1726 ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1727 }
1728 ID.Kind = ValID::t_Constant;
1729 return false;
1730 }
1731
1732 // Binary Operators.
1733 case lltok::kw_add:
1734 case lltok::kw_sub:
1735 case lltok::kw_mul:
1736 case lltok::kw_udiv:
1737 case lltok::kw_sdiv:
1738 case lltok::kw_fdiv:
1739 case lltok::kw_urem:
1740 case lltok::kw_srem:
1741 case lltok::kw_frem: {
1742 unsigned Opc = Lex.getUIntVal();
1743 Constant *Val0, *Val1;
1744 Lex.Lex();
1745 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1746 ParseGlobalTypeAndValue(Val0) ||
1747 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1748 ParseGlobalTypeAndValue(Val1) ||
1749 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1750 return true;
1751 if (Val0->getType() != Val1->getType())
1752 return Error(ID.Loc, "operands of constexpr must have same type");
1753 if (!Val0->getType()->isIntOrIntVector() &&
1754 !Val0->getType()->isFPOrFPVector())
1755 return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1756 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1757 ID.Kind = ValID::t_Constant;
1758 return false;
1759 }
1760
1761 // Logical Operations
1762 case lltok::kw_shl:
1763 case lltok::kw_lshr:
1764 case lltok::kw_ashr:
1765 case lltok::kw_and:
1766 case lltok::kw_or:
1767 case lltok::kw_xor: {
1768 unsigned Opc = Lex.getUIntVal();
1769 Constant *Val0, *Val1;
1770 Lex.Lex();
1771 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1772 ParseGlobalTypeAndValue(Val0) ||
1773 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1774 ParseGlobalTypeAndValue(Val1) ||
1775 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1776 return true;
1777 if (Val0->getType() != Val1->getType())
1778 return Error(ID.Loc, "operands of constexpr must have same type");
1779 if (!Val0->getType()->isIntOrIntVector())
1780 return Error(ID.Loc,
1781 "constexpr requires integer or integer vector operands");
1782 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1783 ID.Kind = ValID::t_Constant;
1784 return false;
1785 }
1786
1787 case lltok::kw_getelementptr:
1788 case lltok::kw_shufflevector:
1789 case lltok::kw_insertelement:
1790 case lltok::kw_extractelement:
1791 case lltok::kw_select: {
1792 unsigned Opc = Lex.getUIntVal();
1793 SmallVector<Constant*, 16> Elts;
1794 Lex.Lex();
1795 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1796 ParseGlobalValueVector(Elts) ||
1797 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1798 return true;
1799
1800 if (Opc == Instruction::GetElementPtr) {
1801 if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1802 return Error(ID.Loc, "getelementptr requires pointer operand");
1803
1804 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1805 (Value**)&Elts[1], Elts.size()-1))
1806 return Error(ID.Loc, "invalid indices for getelementptr");
1807 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1808 &Elts[1], Elts.size()-1);
1809 } else if (Opc == Instruction::Select) {
1810 if (Elts.size() != 3)
1811 return Error(ID.Loc, "expected three operands to select");
1812 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1813 Elts[2]))
1814 return Error(ID.Loc, Reason);
1815 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1816 } else if (Opc == Instruction::ShuffleVector) {
1817 if (Elts.size() != 3)
1818 return Error(ID.Loc, "expected three operands to shufflevector");
1819 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1820 return Error(ID.Loc, "invalid operands to shufflevector");
1821 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1822 } else if (Opc == Instruction::ExtractElement) {
1823 if (Elts.size() != 2)
1824 return Error(ID.Loc, "expected two operands to extractelement");
1825 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1826 return Error(ID.Loc, "invalid extractelement operands");
1827 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1828 } else {
1829 assert(Opc == Instruction::InsertElement && "Unknown opcode");
1830 if (Elts.size() != 3)
1831 return Error(ID.Loc, "expected three operands to insertelement");
1832 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1833 return Error(ID.Loc, "invalid insertelement operands");
1834 ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1835 }
1836
1837 ID.Kind = ValID::t_Constant;
1838 return false;
1839 }
1840 }
1841
1842 Lex.Lex();
1843 return false;
1844}
1845
1846/// ParseGlobalValue - Parse a global value with the specified type.
1847bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1848 V = 0;
1849 ValID ID;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001850 return ParseValID(ID) ||
1851 ConvertGlobalValIDToValue(Ty, ID, V);
Chris Lattnerdf986172009-01-02 07:01:27 +00001852}
1853
1854/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1855/// constant.
1856bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1857 Constant *&V) {
1858 if (isa<FunctionType>(Ty))
1859 return Error(ID.Loc, "functions are not values, refer to them as pointers");
1860
1861 switch (ID.Kind) {
1862 default: assert(0 && "Unknown ValID!");
1863 case ValID::t_LocalID:
1864 case ValID::t_LocalName:
1865 return Error(ID.Loc, "invalid use of function-local name");
1866 case ValID::t_InlineAsm:
1867 return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1868 case ValID::t_GlobalName:
1869 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1870 return V == 0;
1871 case ValID::t_GlobalID:
1872 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1873 return V == 0;
1874 case ValID::t_APSInt:
1875 if (!isa<IntegerType>(Ty))
1876 return Error(ID.Loc, "integer constant must have integer type");
1877 ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
1878 V = ConstantInt::get(ID.APSIntVal);
1879 return false;
1880 case ValID::t_APFloat:
1881 if (!Ty->isFloatingPoint() ||
1882 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
1883 return Error(ID.Loc, "floating point constant invalid for type");
1884
1885 // The lexer has no type info, so builds all float and double FP constants
1886 // as double. Fix this here. Long double does not need this.
1887 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
1888 Ty == Type::FloatTy) {
1889 bool Ignored;
1890 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1891 &Ignored);
1892 }
1893 V = ConstantFP::get(ID.APFloatVal);
1894 return false;
1895 case ValID::t_Null:
1896 if (!isa<PointerType>(Ty))
1897 return Error(ID.Loc, "null must be a pointer type");
1898 V = ConstantPointerNull::get(cast<PointerType>(Ty));
1899 return false;
1900 case ValID::t_Undef:
1901 V = UndefValue::get(Ty);
1902 return false;
1903 case ValID::t_Zero:
1904 if (!Ty->isFirstClassType())
1905 return Error(ID.Loc, "invalid type for null constant");
1906 V = Constant::getNullValue(Ty);
1907 return false;
1908 case ValID::t_Constant:
1909 if (ID.ConstantVal->getType() != Ty)
1910 return Error(ID.Loc, "constant expression type mismatch");
1911 V = ID.ConstantVal;
1912 return false;
1913 }
1914}
1915
1916bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
1917 PATypeHolder Type(Type::VoidTy);
1918 return ParseType(Type) ||
1919 ParseGlobalValue(Type, V);
1920}
1921
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001922/// ParseGlobalValueVector
1923/// ::= /*empty*/
1924/// ::= TypeAndValue (',' TypeAndValue)*
Chris Lattnerdf986172009-01-02 07:01:27 +00001925bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
1926 // Empty list.
1927 if (Lex.getKind() == lltok::rbrace ||
1928 Lex.getKind() == lltok::rsquare ||
1929 Lex.getKind() == lltok::greater ||
1930 Lex.getKind() == lltok::rparen)
1931 return false;
1932
1933 Constant *C;
1934 if (ParseGlobalTypeAndValue(C)) return true;
1935 Elts.push_back(C);
1936
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001937 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001938 if (ParseGlobalTypeAndValue(C)) return true;
1939 Elts.push_back(C);
1940 }
1941
1942 return false;
1943}
1944
1945
1946//===----------------------------------------------------------------------===//
1947// Function Parsing.
1948//===----------------------------------------------------------------------===//
1949
1950bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
1951 PerFunctionState &PFS) {
1952 if (ID.Kind == ValID::t_LocalID)
1953 V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
1954 else if (ID.Kind == ValID::t_LocalName)
1955 V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
1956 else if (ID.Kind == ValID::ValID::t_InlineAsm) {
1957 const PointerType *PTy = dyn_cast<PointerType>(Ty);
1958 const FunctionType *FTy =
1959 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
1960 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
1961 return Error(ID.Loc, "invalid type for inline asm constraint string");
1962 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
1963 return false;
1964 } else {
1965 Constant *C;
1966 if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
1967 V = C;
1968 return false;
1969 }
1970
1971 return V == 0;
1972}
1973
1974bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
1975 V = 0;
1976 ValID ID;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001977 return ParseValID(ID) ||
1978 ConvertValIDToValue(Ty, ID, V, PFS);
Chris Lattnerdf986172009-01-02 07:01:27 +00001979}
1980
1981bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
1982 PATypeHolder T(Type::VoidTy);
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001983 return ParseType(T) ||
1984 ParseValue(T, V, PFS);
Chris Lattnerdf986172009-01-02 07:01:27 +00001985}
1986
1987/// FunctionHeader
1988/// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
1989/// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
1990/// OptionalAlign OptGC
1991bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
1992 // Parse the linkage.
1993 LocTy LinkageLoc = Lex.getLoc();
1994 unsigned Linkage;
1995
1996 unsigned Visibility, CC, RetAttrs;
1997 PATypeHolder RetType(Type::VoidTy);
1998 LocTy RetTypeLoc = Lex.getLoc();
1999 if (ParseOptionalLinkage(Linkage) ||
2000 ParseOptionalVisibility(Visibility) ||
2001 ParseOptionalCallingConv(CC) ||
2002 ParseOptionalAttrs(RetAttrs, 1) ||
2003 ParseType(RetType, RetTypeLoc))
2004 return true;
2005
2006 // Verify that the linkage is ok.
2007 switch ((GlobalValue::LinkageTypes)Linkage) {
2008 case GlobalValue::ExternalLinkage:
2009 break; // always ok.
2010 case GlobalValue::DLLImportLinkage:
2011 case GlobalValue::ExternalWeakLinkage:
2012 if (isDefine)
2013 return Error(LinkageLoc, "invalid linkage for function definition");
2014 break;
2015 case GlobalValue::InternalLinkage:
2016 case GlobalValue::LinkOnceLinkage:
2017 case GlobalValue::WeakLinkage:
2018 case GlobalValue::DLLExportLinkage:
2019 if (!isDefine)
2020 return Error(LinkageLoc, "invalid linkage for function declaration");
2021 break;
2022 case GlobalValue::AppendingLinkage:
2023 case GlobalValue::GhostLinkage:
2024 case GlobalValue::CommonLinkage:
2025 return Error(LinkageLoc, "invalid function linkage type");
2026 }
2027
2028 if (!FunctionType::isValidReturnType(RetType))
2029 return Error(RetTypeLoc, "invalid function return type");
2030
2031 if (Lex.getKind() != lltok::GlobalVar)
2032 return TokError("expected function name");
2033
2034 LocTy NameLoc = Lex.getLoc();
2035 std::string FunctionName = Lex.getStrVal();
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002036 Lex.Lex();
Chris Lattnerdf986172009-01-02 07:01:27 +00002037
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002038 if (Lex.getKind() != lltok::lparen)
Chris Lattnerdf986172009-01-02 07:01:27 +00002039 return TokError("expected '(' in function argument list");
2040
2041 std::vector<ArgInfo> ArgList;
2042 bool isVarArg;
Chris Lattnerdf986172009-01-02 07:01:27 +00002043 unsigned FuncAttrs;
Chris Lattnerdf986172009-01-02 07:01:27 +00002044 std::string Section;
Chris Lattnerdf986172009-01-02 07:01:27 +00002045 unsigned Alignment;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002046 std::string GC;
2047
2048 if (ParseArgumentList(ArgList, isVarArg) ||
2049 ParseOptionalAttrs(FuncAttrs, 2) ||
2050 (EatIfPresent(lltok::kw_section) &&
2051 ParseStringConstant(Section)) ||
2052 ParseOptionalAlignment(Alignment) ||
2053 (EatIfPresent(lltok::kw_gc) &&
2054 ParseStringConstant(GC)))
2055 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00002056
2057 // If the alignment was parsed as an attribute, move to the alignment field.
2058 if (FuncAttrs & Attribute::Alignment) {
2059 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2060 FuncAttrs &= ~Attribute::Alignment;
2061 }
2062
Chris Lattnerdf986172009-01-02 07:01:27 +00002063 // Okay, if we got here, the function is syntactically valid. Convert types
2064 // and do semantic checks.
2065 std::vector<const Type*> ParamTypeList;
2066 SmallVector<AttributeWithIndex, 8> Attrs;
2067 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2068 // attributes.
2069 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2070 if (FuncAttrs & ObsoleteFuncAttrs) {
2071 RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2072 FuncAttrs &= ~ObsoleteFuncAttrs;
2073 }
2074
2075 if (RetAttrs != Attribute::None)
2076 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2077
2078 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2079 ParamTypeList.push_back(ArgList[i].Type);
2080 if (ArgList[i].Attrs != Attribute::None)
2081 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2082 }
2083
2084 if (FuncAttrs != Attribute::None)
2085 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2086
2087 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2088
2089 const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2090 const PointerType *PFT = PointerType::getUnqual(FT);
2091
2092 Fn = 0;
2093 if (!FunctionName.empty()) {
2094 // If this was a definition of a forward reference, remove the definition
2095 // from the forward reference table and fill in the forward ref.
2096 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2097 ForwardRefVals.find(FunctionName);
2098 if (FRVI != ForwardRefVals.end()) {
2099 Fn = M->getFunction(FunctionName);
2100 ForwardRefVals.erase(FRVI);
2101 } else if ((Fn = M->getFunction(FunctionName))) {
2102 // If this function already exists in the symbol table, then it is
2103 // multiply defined. We accept a few cases for old backwards compat.
2104 // FIXME: Remove this stuff for LLVM 3.0.
2105 if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2106 (!Fn->isDeclaration() && isDefine)) {
2107 // If the redefinition has different type or different attributes,
2108 // reject it. If both have bodies, reject it.
2109 return Error(NameLoc, "invalid redefinition of function '" +
2110 FunctionName + "'");
2111 } else if (Fn->isDeclaration()) {
2112 // Make sure to strip off any argument names so we can't get conflicts.
2113 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2114 AI != AE; ++AI)
2115 AI->setName("");
2116 }
2117 }
2118
2119 } else if (FunctionName.empty()) {
2120 // If this is a definition of a forward referenced function, make sure the
2121 // types agree.
2122 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2123 = ForwardRefValIDs.find(NumberedVals.size());
2124 if (I != ForwardRefValIDs.end()) {
2125 Fn = cast<Function>(I->second.first);
2126 if (Fn->getType() != PFT)
2127 return Error(NameLoc, "type of definition and forward reference of '@" +
2128 utostr(NumberedVals.size()) +"' disagree");
2129 ForwardRefValIDs.erase(I);
2130 }
2131 }
2132
2133 if (Fn == 0)
2134 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2135 else // Move the forward-reference to the correct spot in the module.
2136 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2137
2138 if (FunctionName.empty())
2139 NumberedVals.push_back(Fn);
2140
2141 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2142 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2143 Fn->setCallingConv(CC);
2144 Fn->setAttributes(PAL);
2145 Fn->setAlignment(Alignment);
2146 Fn->setSection(Section);
2147 if (!GC.empty()) Fn->setGC(GC.c_str());
2148
2149 // Add all of the arguments we parsed to the function.
2150 Function::arg_iterator ArgIt = Fn->arg_begin();
2151 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2152 // If the argument has a name, insert it into the argument symbol table.
2153 if (ArgList[i].Name.empty()) continue;
2154
2155 // Set the name, if it conflicted, it will be auto-renamed.
2156 ArgIt->setName(ArgList[i].Name);
2157
2158 if (ArgIt->getNameStr() != ArgList[i].Name)
2159 return Error(ArgList[i].Loc, "redefinition of argument '%" +
2160 ArgList[i].Name + "'");
2161 }
2162
2163 return false;
2164}
2165
2166
2167/// ParseFunctionBody
2168/// ::= '{' BasicBlock+ '}'
2169/// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2170///
2171bool LLParser::ParseFunctionBody(Function &Fn) {
2172 if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2173 return TokError("expected '{' in function body");
2174 Lex.Lex(); // eat the {.
2175
2176 PerFunctionState PFS(*this, Fn);
2177
2178 while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2179 if (ParseBasicBlock(PFS)) return true;
2180
2181 // Eat the }.
2182 Lex.Lex();
2183
2184 // Verify function is ok.
2185 return PFS.VerifyFunctionComplete();
2186}
2187
2188/// ParseBasicBlock
2189/// ::= LabelStr? Instruction*
2190bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2191 // If this basic block starts out with a name, remember it.
2192 std::string Name;
2193 LocTy NameLoc = Lex.getLoc();
2194 if (Lex.getKind() == lltok::LabelStr) {
2195 Name = Lex.getStrVal();
2196 Lex.Lex();
2197 }
2198
2199 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2200 if (BB == 0) return true;
2201
2202 std::string NameStr;
2203
2204 // Parse the instructions in this block until we get a terminator.
2205 Instruction *Inst;
2206 do {
2207 // This instruction may have three possibilities for a name: a) none
2208 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2209 LocTy NameLoc = Lex.getLoc();
2210 int NameID = -1;
2211 NameStr = "";
2212
2213 if (Lex.getKind() == lltok::LocalVarID) {
2214 NameID = Lex.getUIntVal();
2215 Lex.Lex();
2216 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2217 return true;
2218 } else if (Lex.getKind() == lltok::LocalVar ||
2219 // FIXME: REMOVE IN LLVM 3.0
2220 Lex.getKind() == lltok::StringConstant) {
2221 NameStr = Lex.getStrVal();
2222 Lex.Lex();
2223 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2224 return true;
2225 }
2226
2227 if (ParseInstruction(Inst, BB, PFS)) return true;
2228
2229 BB->getInstList().push_back(Inst);
2230
2231 // Set the name on the instruction.
2232 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2233 } while (!isa<TerminatorInst>(Inst));
2234
2235 return false;
2236}
2237
2238//===----------------------------------------------------------------------===//
2239// Instruction Parsing.
2240//===----------------------------------------------------------------------===//
2241
2242/// ParseInstruction - Parse one of the many different instructions.
2243///
2244bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2245 PerFunctionState &PFS) {
2246 lltok::Kind Token = Lex.getKind();
2247 if (Token == lltok::Eof)
2248 return TokError("found end of file when expecting more instructions");
2249 LocTy Loc = Lex.getLoc();
2250 Lex.Lex(); // Eat the keyword.
2251
2252 switch (Token) {
2253 default: return Error(Loc, "expected instruction opcode");
2254 // Terminator Instructions.
2255 case lltok::kw_unwind: Inst = new UnwindInst(); return false;
2256 case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2257 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
2258 case lltok::kw_br: return ParseBr(Inst, PFS);
2259 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
2260 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
2261 // Binary Operators.
2262 case lltok::kw_add:
2263 case lltok::kw_sub:
2264 case lltok::kw_mul:
2265 case lltok::kw_udiv:
2266 case lltok::kw_sdiv:
2267 case lltok::kw_fdiv:
2268 case lltok::kw_urem:
2269 case lltok::kw_srem:
2270 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, Lex.getUIntVal());
2271 case lltok::kw_shl:
2272 case lltok::kw_lshr:
2273 case lltok::kw_ashr:
2274 case lltok::kw_and:
2275 case lltok::kw_or:
2276 case lltok::kw_xor: return ParseLogical(Inst, PFS, Lex.getUIntVal());
2277 case lltok::kw_icmp:
2278 case lltok::kw_fcmp:
2279 case lltok::kw_vicmp:
2280 case lltok::kw_vfcmp: return ParseCompare(Inst, PFS, Lex.getUIntVal());
2281 // Casts.
2282 case lltok::kw_trunc:
2283 case lltok::kw_zext:
2284 case lltok::kw_sext:
2285 case lltok::kw_fptrunc:
2286 case lltok::kw_fpext:
2287 case lltok::kw_bitcast:
2288 case lltok::kw_uitofp:
2289 case lltok::kw_sitofp:
2290 case lltok::kw_fptoui:
2291 case lltok::kw_fptosi:
2292 case lltok::kw_inttoptr:
2293 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, Lex.getUIntVal());
2294 // Other.
2295 case lltok::kw_select: return ParseSelect(Inst, PFS);
2296 case lltok::kw_va_arg: return ParseVAArg(Inst, PFS);
2297 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2298 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
2299 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
2300 case lltok::kw_phi: return ParsePHI(Inst, PFS);
2301 case lltok::kw_call: return ParseCall(Inst, PFS, false);
2302 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
2303 // Memory.
2304 case lltok::kw_alloca:
2305 case lltok::kw_malloc: return ParseAlloc(Inst, PFS, Lex.getUIntVal());
2306 case lltok::kw_free: return ParseFree(Inst, PFS);
2307 case lltok::kw_load: return ParseLoad(Inst, PFS, false);
2308 case lltok::kw_store: return ParseStore(Inst, PFS, false);
2309 case lltok::kw_volatile:
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002310 if (EatIfPresent(lltok::kw_load))
Chris Lattnerdf986172009-01-02 07:01:27 +00002311 return ParseLoad(Inst, PFS, true);
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002312 else if (EatIfPresent(lltok::kw_store))
Chris Lattnerdf986172009-01-02 07:01:27 +00002313 return ParseStore(Inst, PFS, true);
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002314 else
Chris Lattnerdf986172009-01-02 07:01:27 +00002315 return TokError("expected 'load' or 'store'");
Chris Lattnerdf986172009-01-02 07:01:27 +00002316 case lltok::kw_getresult: return ParseGetResult(Inst, PFS);
2317 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2318 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
2319 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
2320 }
2321}
2322
2323/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2324bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2325 // FIXME: REMOVE vicmp/vfcmp!
2326 if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2327 switch (Lex.getKind()) {
2328 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2329 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2330 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2331 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2332 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2333 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2334 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2335 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2336 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2337 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2338 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2339 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2340 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2341 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2342 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2343 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2344 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2345 }
2346 } else {
2347 switch (Lex.getKind()) {
2348 default: TokError("expected icmp predicate (e.g. 'eq')");
2349 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
2350 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
2351 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2352 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2353 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2354 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2355 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2356 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2357 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2358 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2359 }
2360 }
2361 Lex.Lex();
2362 return false;
2363}
2364
2365//===----------------------------------------------------------------------===//
2366// Terminator Instructions.
2367//===----------------------------------------------------------------------===//
2368
2369/// ParseRet - Parse a return instruction.
2370/// ::= 'ret' void
2371/// ::= 'ret' TypeAndValue
2372/// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]]
2373bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2374 PerFunctionState &PFS) {
2375 PATypeHolder Ty(Type::VoidTy);
2376 if (ParseType(Ty)) return true;
2377
2378 if (Ty == Type::VoidTy) {
2379 Inst = ReturnInst::Create();
2380 return false;
2381 }
2382
2383 Value *RV;
2384 if (ParseValue(Ty, RV, PFS)) return true;
2385
2386 // The normal case is one return value.
2387 if (Lex.getKind() == lltok::comma) {
2388 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2389 // of 'ret {i32,i32} {i32 1, i32 2}'
2390 SmallVector<Value*, 8> RVs;
2391 RVs.push_back(RV);
2392
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002393 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00002394 if (ParseTypeAndValue(RV, PFS)) return true;
2395 RVs.push_back(RV);
2396 }
2397
2398 RV = UndefValue::get(PFS.getFunction().getReturnType());
2399 for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2400 Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2401 BB->getInstList().push_back(I);
2402 RV = I;
2403 }
2404 }
2405 Inst = ReturnInst::Create(RV);
2406 return false;
2407}
2408
2409
2410/// ParseBr
2411/// ::= 'br' TypeAndValue
2412/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2413bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2414 LocTy Loc, Loc2;
2415 Value *Op0, *Op1, *Op2;
2416 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2417
2418 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2419 Inst = BranchInst::Create(BB);
2420 return false;
2421 }
2422
2423 if (Op0->getType() != Type::Int1Ty)
2424 return Error(Loc, "branch condition must have 'i1' type");
2425
2426 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2427 ParseTypeAndValue(Op1, Loc, PFS) ||
2428 ParseToken(lltok::comma, "expected ',' after true destination") ||
2429 ParseTypeAndValue(Op2, Loc2, PFS))
2430 return true;
2431
2432 if (!isa<BasicBlock>(Op1))
2433 return Error(Loc, "true destination of branch must be a basic block");
Chris Lattnerdf986172009-01-02 07:01:27 +00002434 if (!isa<BasicBlock>(Op2))
2435 return Error(Loc2, "true destination of branch must be a basic block");
2436
2437 Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2438 return false;
2439}
2440
2441/// ParseSwitch
2442/// Instruction
2443/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2444/// JumpTable
2445/// ::= (TypeAndValue ',' TypeAndValue)*
2446bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2447 LocTy CondLoc, BBLoc;
2448 Value *Cond, *DefaultBB;
2449 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2450 ParseToken(lltok::comma, "expected ',' after switch condition") ||
2451 ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2452 ParseToken(lltok::lsquare, "expected '[' with switch table"))
2453 return true;
2454
2455 if (!isa<IntegerType>(Cond->getType()))
2456 return Error(CondLoc, "switch condition must have integer type");
2457 if (!isa<BasicBlock>(DefaultBB))
2458 return Error(BBLoc, "default destination must be a basic block");
2459
2460 // Parse the jump table pairs.
2461 SmallPtrSet<Value*, 32> SeenCases;
2462 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2463 while (Lex.getKind() != lltok::rsquare) {
2464 Value *Constant, *DestBB;
2465
2466 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2467 ParseToken(lltok::comma, "expected ',' after case value") ||
2468 ParseTypeAndValue(DestBB, BBLoc, PFS))
2469 return true;
2470
2471 if (!SeenCases.insert(Constant))
2472 return Error(CondLoc, "duplicate case value in switch");
2473 if (!isa<ConstantInt>(Constant))
2474 return Error(CondLoc, "case value is not a constant integer");
2475 if (!isa<BasicBlock>(DestBB))
2476 return Error(BBLoc, "case destination is not a basic block");
2477
2478 Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2479 cast<BasicBlock>(DestBB)));
2480 }
2481
2482 Lex.Lex(); // Eat the ']'.
2483
2484 SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2485 Table.size());
2486 for (unsigned i = 0, e = Table.size(); i != e; ++i)
2487 SI->addCase(Table[i].first, Table[i].second);
2488 Inst = SI;
2489 return false;
2490}
2491
2492/// ParseInvoke
2493/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2494/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2495bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2496 LocTy CallLoc = Lex.getLoc();
2497 unsigned CC, RetAttrs, FnAttrs;
2498 PATypeHolder RetType(Type::VoidTy);
2499 LocTy RetTypeLoc;
2500 ValID CalleeID;
2501 SmallVector<ParamInfo, 16> ArgList;
2502
2503 Value *NormalBB, *UnwindBB;
2504 if (ParseOptionalCallingConv(CC) ||
2505 ParseOptionalAttrs(RetAttrs, 1) ||
2506 ParseType(RetType, RetTypeLoc) ||
2507 ParseValID(CalleeID) ||
2508 ParseParameterList(ArgList, PFS) ||
2509 ParseOptionalAttrs(FnAttrs, 2) ||
2510 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2511 ParseTypeAndValue(NormalBB, PFS) ||
2512 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2513 ParseTypeAndValue(UnwindBB, PFS))
2514 return true;
2515
2516 if (!isa<BasicBlock>(NormalBB))
2517 return Error(CallLoc, "normal destination is not a basic block");
2518 if (!isa<BasicBlock>(UnwindBB))
2519 return Error(CallLoc, "unwind destination is not a basic block");
2520
2521 // If RetType is a non-function pointer type, then this is the short syntax
2522 // for the call, which means that RetType is just the return type. Infer the
2523 // rest of the function argument types from the arguments that are present.
2524 const PointerType *PFTy = 0;
2525 const FunctionType *Ty = 0;
2526 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2527 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2528 // Pull out the types of all of the arguments...
2529 std::vector<const Type*> ParamTypes;
2530 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2531 ParamTypes.push_back(ArgList[i].V->getType());
2532
2533 if (!FunctionType::isValidReturnType(RetType))
2534 return Error(RetTypeLoc, "Invalid result type for LLVM function");
2535
2536 Ty = FunctionType::get(RetType, ParamTypes, false);
2537 PFTy = PointerType::getUnqual(Ty);
2538 }
2539
2540 // Look up the callee.
2541 Value *Callee;
2542 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2543
2544 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2545 // function attributes.
2546 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2547 if (FnAttrs & ObsoleteFuncAttrs) {
2548 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2549 FnAttrs &= ~ObsoleteFuncAttrs;
2550 }
2551
2552 // Set up the Attributes for the function.
2553 SmallVector<AttributeWithIndex, 8> Attrs;
2554 if (RetAttrs != Attribute::None)
2555 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2556
2557 SmallVector<Value*, 8> Args;
2558
2559 // Loop through FunctionType's arguments and ensure they are specified
2560 // correctly. Also, gather any parameter attributes.
2561 FunctionType::param_iterator I = Ty->param_begin();
2562 FunctionType::param_iterator E = Ty->param_end();
2563 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2564 const Type *ExpectedTy = 0;
2565 if (I != E) {
2566 ExpectedTy = *I++;
2567 } else if (!Ty->isVarArg()) {
2568 return Error(ArgList[i].Loc, "too many arguments specified");
2569 }
2570
2571 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2572 return Error(ArgList[i].Loc, "argument is not of expected type '" +
2573 ExpectedTy->getDescription() + "'");
2574 Args.push_back(ArgList[i].V);
2575 if (ArgList[i].Attrs != Attribute::None)
2576 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2577 }
2578
2579 if (I != E)
2580 return Error(CallLoc, "not enough parameters specified for call");
2581
2582 if (FnAttrs != Attribute::None)
2583 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2584
2585 // Finish off the Attributes and check them
2586 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2587
2588 InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2589 cast<BasicBlock>(UnwindBB),
2590 Args.begin(), Args.end());
2591 II->setCallingConv(CC);
2592 II->setAttributes(PAL);
2593 Inst = II;
2594 return false;
2595}
2596
2597
2598
2599//===----------------------------------------------------------------------===//
2600// Binary Operators.
2601//===----------------------------------------------------------------------===//
2602
2603/// ParseArithmetic
2604/// ::= ArithmeticOps TypeAndValue ',' Value {
2605bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2606 unsigned Opc) {
2607 LocTy Loc; Value *LHS, *RHS;
2608 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2609 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2610 ParseValue(LHS->getType(), RHS, PFS))
2611 return true;
2612
2613 if (!isa<IntegerType>(LHS->getType()) && !LHS->getType()->isFloatingPoint() &&
2614 !isa<VectorType>(LHS->getType()))
2615 return Error(Loc, "instruction requires integer, fp, or vector operands");
2616
2617 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2618 return false;
2619}
2620
2621/// ParseLogical
2622/// ::= ArithmeticOps TypeAndValue ',' Value {
2623bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2624 unsigned Opc) {
2625 LocTy Loc; Value *LHS, *RHS;
2626 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2627 ParseToken(lltok::comma, "expected ',' in logical operation") ||
2628 ParseValue(LHS->getType(), RHS, PFS))
2629 return true;
2630
2631 if (!LHS->getType()->isIntOrIntVector())
2632 return Error(Loc,"instruction requires integer or integer vector operands");
2633
2634 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2635 return false;
2636}
2637
2638
2639/// ParseCompare
2640/// ::= 'icmp' IPredicates TypeAndValue ',' Value
2641/// ::= 'fcmp' FPredicates TypeAndValue ',' Value
2642/// ::= 'vicmp' IPredicates TypeAndValue ',' Value
2643/// ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2644bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2645 unsigned Opc) {
2646 // Parse the integer/fp comparison predicate.
2647 LocTy Loc;
2648 unsigned Pred;
2649 Value *LHS, *RHS;
2650 if (ParseCmpPredicate(Pred, Opc) ||
2651 ParseTypeAndValue(LHS, Loc, PFS) ||
2652 ParseToken(lltok::comma, "expected ',' after compare value") ||
2653 ParseValue(LHS->getType(), RHS, PFS))
2654 return true;
2655
2656 if (Opc == Instruction::FCmp) {
2657 if (!LHS->getType()->isFPOrFPVector())
2658 return Error(Loc, "fcmp requires floating point operands");
2659 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2660 } else if (Opc == Instruction::ICmp) {
2661 if (!LHS->getType()->isIntOrIntVector() &&
2662 !isa<PointerType>(LHS->getType()))
2663 return Error(Loc, "icmp requires integer operands");
2664 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2665 } else if (Opc == Instruction::VFCmp) {
2666 Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2667 } else if (Opc == Instruction::VICmp) {
2668 Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2669 }
2670 return false;
2671}
2672
2673//===----------------------------------------------------------------------===//
2674// Other Instructions.
2675//===----------------------------------------------------------------------===//
2676
2677
2678/// ParseCast
2679/// ::= CastOpc TypeAndValue 'to' Type
2680bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2681 unsigned Opc) {
2682 LocTy Loc; Value *Op;
2683 PATypeHolder DestTy(Type::VoidTy);
2684 if (ParseTypeAndValue(Op, Loc, PFS) ||
2685 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2686 ParseType(DestTy))
2687 return true;
2688
2689 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy))
2690 return Error(Loc, "invalid cast opcode for cast from '" +
2691 Op->getType()->getDescription() + "' to '" +
2692 DestTy->getDescription() + "'");
2693 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2694 return false;
2695}
2696
2697/// ParseSelect
2698/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2699bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2700 LocTy Loc;
2701 Value *Op0, *Op1, *Op2;
2702 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2703 ParseToken(lltok::comma, "expected ',' after select condition") ||
2704 ParseTypeAndValue(Op1, PFS) ||
2705 ParseToken(lltok::comma, "expected ',' after select value") ||
2706 ParseTypeAndValue(Op2, PFS))
2707 return true;
2708
2709 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2710 return Error(Loc, Reason);
2711
2712 Inst = SelectInst::Create(Op0, Op1, Op2);
2713 return false;
2714}
2715
2716/// ParseVAArg
2717/// ::= 'vaarg' TypeAndValue ',' Type
2718bool LLParser::ParseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
2719 Value *Op;
2720 PATypeHolder EltTy(Type::VoidTy);
2721 if (ParseTypeAndValue(Op, PFS) ||
2722 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2723 ParseType(EltTy))
2724 return true;
2725
2726 Inst = new VAArgInst(Op, EltTy);
2727 return false;
2728}
2729
2730/// ParseExtractElement
2731/// ::= 'extractelement' TypeAndValue ',' TypeAndValue
2732bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2733 LocTy Loc;
2734 Value *Op0, *Op1;
2735 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2736 ParseToken(lltok::comma, "expected ',' after extract value") ||
2737 ParseTypeAndValue(Op1, PFS))
2738 return true;
2739
2740 if (!ExtractElementInst::isValidOperands(Op0, Op1))
2741 return Error(Loc, "invalid extractelement operands");
2742
2743 Inst = new ExtractElementInst(Op0, Op1);
2744 return false;
2745}
2746
2747/// ParseInsertElement
2748/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2749bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2750 LocTy Loc;
2751 Value *Op0, *Op1, *Op2;
2752 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2753 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2754 ParseTypeAndValue(Op1, PFS) ||
2755 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2756 ParseTypeAndValue(Op2, PFS))
2757 return true;
2758
2759 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2760 return Error(Loc, "invalid extractelement operands");
2761
2762 Inst = InsertElementInst::Create(Op0, Op1, Op2);
2763 return false;
2764}
2765
2766/// ParseShuffleVector
2767/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2768bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2769 LocTy Loc;
2770 Value *Op0, *Op1, *Op2;
2771 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2772 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2773 ParseTypeAndValue(Op1, PFS) ||
2774 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2775 ParseTypeAndValue(Op2, PFS))
2776 return true;
2777
2778 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2779 return Error(Loc, "invalid extractelement operands");
2780
2781 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2782 return false;
2783}
2784
2785/// ParsePHI
2786/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
2787bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2788 PATypeHolder Ty(Type::VoidTy);
2789 Value *Op0, *Op1;
2790 LocTy TypeLoc = Lex.getLoc();
2791
2792 if (ParseType(Ty) ||
2793 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2794 ParseValue(Ty, Op0, PFS) ||
2795 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2796 ParseValue(Type::LabelTy, Op1, PFS) ||
2797 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2798 return true;
2799
2800 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2801 while (1) {
2802 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2803
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002804 if (!EatIfPresent(lltok::comma))
Chris Lattnerdf986172009-01-02 07:01:27 +00002805 break;
2806
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002807 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
Chris Lattnerdf986172009-01-02 07:01:27 +00002808 ParseValue(Ty, Op0, PFS) ||
2809 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2810 ParseValue(Type::LabelTy, Op1, PFS) ||
2811 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2812 return true;
2813 }
2814
2815 if (!Ty->isFirstClassType())
2816 return Error(TypeLoc, "phi node must have first class type");
2817
2818 PHINode *PN = PHINode::Create(Ty);
2819 PN->reserveOperandSpace(PHIVals.size());
2820 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
2821 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
2822 Inst = PN;
2823 return false;
2824}
2825
2826/// ParseCall
2827/// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
2828/// ParameterList OptionalAttrs
2829bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
2830 bool isTail) {
2831 unsigned CC, RetAttrs, FnAttrs;
2832 PATypeHolder RetType(Type::VoidTy);
2833 LocTy RetTypeLoc;
2834 ValID CalleeID;
2835 SmallVector<ParamInfo, 16> ArgList;
2836 LocTy CallLoc = Lex.getLoc();
2837
2838 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
2839 ParseOptionalCallingConv(CC) ||
2840 ParseOptionalAttrs(RetAttrs, 1) ||
2841 ParseType(RetType, RetTypeLoc) ||
2842 ParseValID(CalleeID) ||
2843 ParseParameterList(ArgList, PFS) ||
2844 ParseOptionalAttrs(FnAttrs, 2))
2845 return true;
2846
2847 // If RetType is a non-function pointer type, then this is the short syntax
2848 // for the call, which means that RetType is just the return type. Infer the
2849 // rest of the function argument types from the arguments that are present.
2850 const PointerType *PFTy = 0;
2851 const FunctionType *Ty = 0;
2852 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2853 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2854 // Pull out the types of all of the arguments...
2855 std::vector<const Type*> ParamTypes;
2856 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2857 ParamTypes.push_back(ArgList[i].V->getType());
2858
2859 if (!FunctionType::isValidReturnType(RetType))
2860 return Error(RetTypeLoc, "Invalid result type for LLVM function");
2861
2862 Ty = FunctionType::get(RetType, ParamTypes, false);
2863 PFTy = PointerType::getUnqual(Ty);
2864 }
2865
2866 // Look up the callee.
2867 Value *Callee;
2868 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2869
2870 // Check for call to invalid intrinsic to avoid crashing later.
2871 if (Function *F = dyn_cast<Function>(Callee)) {
2872 if (F->hasName() && F->getNameLen() >= 5 &&
2873 !strncmp(F->getValueName()->getKeyData(), "llvm.", 5) &&
2874 !F->getIntrinsicID(true))
2875 return Error(CallLoc, "Call to invalid LLVM intrinsic function '" +
2876 F->getNameStr() + "'");
2877 }
2878
2879 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2880 // function attributes.
2881 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2882 if (FnAttrs & ObsoleteFuncAttrs) {
2883 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2884 FnAttrs &= ~ObsoleteFuncAttrs;
2885 }
2886
2887 // Set up the Attributes for the function.
2888 SmallVector<AttributeWithIndex, 8> Attrs;
2889 if (RetAttrs != Attribute::None)
2890 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2891
2892 SmallVector<Value*, 8> Args;
2893
2894 // Loop through FunctionType's arguments and ensure they are specified
2895 // correctly. Also, gather any parameter attributes.
2896 FunctionType::param_iterator I = Ty->param_begin();
2897 FunctionType::param_iterator E = Ty->param_end();
2898 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2899 const Type *ExpectedTy = 0;
2900 if (I != E) {
2901 ExpectedTy = *I++;
2902 } else if (!Ty->isVarArg()) {
2903 return Error(ArgList[i].Loc, "too many arguments specified");
2904 }
2905
2906 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2907 return Error(ArgList[i].Loc, "argument is not of expected type '" +
2908 ExpectedTy->getDescription() + "'");
2909 Args.push_back(ArgList[i].V);
2910 if (ArgList[i].Attrs != Attribute::None)
2911 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2912 }
2913
2914 if (I != E)
2915 return Error(CallLoc, "not enough parameters specified for call");
2916
2917 if (FnAttrs != Attribute::None)
2918 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2919
2920 // Finish off the Attributes and check them
2921 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2922
2923 CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
2924 CI->setTailCall(isTail);
2925 CI->setCallingConv(CC);
2926 CI->setAttributes(PAL);
2927 Inst = CI;
2928 return false;
2929}
2930
2931//===----------------------------------------------------------------------===//
2932// Memory Instructions.
2933//===----------------------------------------------------------------------===//
2934
2935/// ParseAlloc
2936/// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
2937/// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
2938bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
2939 unsigned Opc) {
2940 PATypeHolder Ty(Type::VoidTy);
2941 Value *Size = 0;
2942 LocTy SizeLoc = 0;
2943 unsigned Alignment = 0;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002944 if (ParseType(Ty)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00002945
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002946 if (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00002947 if (Lex.getKind() == lltok::kw_align) {
2948 if (ParseOptionalAlignment(Alignment)) return true;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002949 } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
2950 ParseOptionalCommaAlignment(Alignment)) {
2951 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00002952 }
2953 }
2954
2955 if (Size && Size->getType() != Type::Int32Ty)
2956 return Error(SizeLoc, "element count must be i32");
2957
2958 if (Opc == Instruction::Malloc)
2959 Inst = new MallocInst(Ty, Size, Alignment);
2960 else
2961 Inst = new AllocaInst(Ty, Size, Alignment);
2962 return false;
2963}
2964
2965/// ParseFree
2966/// ::= 'free' TypeAndValue
2967bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
2968 Value *Val; LocTy Loc;
2969 if (ParseTypeAndValue(Val, Loc, PFS)) return true;
2970 if (!isa<PointerType>(Val->getType()))
2971 return Error(Loc, "operand to free must be a pointer");
2972 Inst = new FreeInst(Val);
2973 return false;
2974}
2975
2976/// ParseLoad
2977/// ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
2978bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
2979 bool isVolatile) {
2980 Value *Val; LocTy Loc;
2981 unsigned Alignment;
2982 if (ParseTypeAndValue(Val, Loc, PFS) ||
2983 ParseOptionalCommaAlignment(Alignment))
2984 return true;
2985
2986 if (!isa<PointerType>(Val->getType()) ||
2987 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
2988 return Error(Loc, "load operand must be a pointer to a first class type");
2989
2990 Inst = new LoadInst(Val, "", isVolatile, Alignment);
2991 return false;
2992}
2993
2994/// ParseStore
2995/// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
2996bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
2997 bool isVolatile) {
2998 Value *Val, *Ptr; LocTy Loc, PtrLoc;
2999 unsigned Alignment;
3000 if (ParseTypeAndValue(Val, Loc, PFS) ||
3001 ParseToken(lltok::comma, "expected ',' after store operand") ||
3002 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3003 ParseOptionalCommaAlignment(Alignment))
3004 return true;
3005
3006 if (!isa<PointerType>(Ptr->getType()))
3007 return Error(PtrLoc, "store operand must be a pointer");
3008 if (!Val->getType()->isFirstClassType())
3009 return Error(Loc, "store operand must be a first class value");
3010 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3011 return Error(Loc, "stored value and pointer type do not match");
3012
3013 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3014 return false;
3015}
3016
3017/// ParseGetResult
3018/// ::= 'getresult' TypeAndValue ',' uint
3019/// FIXME: Remove support for getresult in LLVM 3.0
3020bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3021 Value *Val; LocTy ValLoc, EltLoc;
3022 unsigned Element;
3023 if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3024 ParseToken(lltok::comma, "expected ',' after getresult operand") ||
Chris Lattner3ed88ef2009-01-02 08:05:26 +00003025 ParseUInt32(Element, EltLoc))
Chris Lattnerdf986172009-01-02 07:01:27 +00003026 return true;
3027
3028 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3029 return Error(ValLoc, "getresult inst requires an aggregate operand");
3030 if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3031 return Error(EltLoc, "invalid getresult index for value");
3032 Inst = ExtractValueInst::Create(Val, Element);
3033 return false;
3034}
3035
3036/// ParseGetElementPtr
3037/// ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3038bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3039 Value *Ptr, *Val; LocTy Loc, EltLoc;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00003040 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00003041
3042 if (!isa<PointerType>(Ptr->getType()))
3043 return Error(Loc, "base of getelementptr must be a pointer");
3044
3045 SmallVector<Value*, 16> Indices;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00003046 while (EatIfPresent(lltok::comma)) {
3047 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00003048 if (!isa<IntegerType>(Val->getType()))
3049 return Error(EltLoc, "getelementptr index must be an integer");
3050 Indices.push_back(Val);
3051 }
3052
3053 if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3054 Indices.begin(), Indices.end()))
3055 return Error(Loc, "invalid getelementptr indices");
3056 Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3057 return false;
3058}
3059
3060/// ParseExtractValue
3061/// ::= 'extractvalue' TypeAndValue (',' uint32)+
3062bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3063 Value *Val; LocTy Loc;
3064 SmallVector<unsigned, 4> Indices;
3065 if (ParseTypeAndValue(Val, Loc, PFS) ||
3066 ParseIndexList(Indices))
3067 return true;
3068
3069 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3070 return Error(Loc, "extractvalue operand must be array or struct");
3071
3072 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3073 Indices.end()))
3074 return Error(Loc, "invalid indices for extractvalue");
3075 Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3076 return false;
3077}
3078
3079/// ParseInsertValue
3080/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3081bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3082 Value *Val0, *Val1; LocTy Loc0, Loc1;
3083 SmallVector<unsigned, 4> Indices;
3084 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3085 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3086 ParseTypeAndValue(Val1, Loc1, PFS) ||
3087 ParseIndexList(Indices))
3088 return true;
3089
3090 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3091 return Error(Loc0, "extractvalue operand must be array or struct");
3092
3093 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3094 Indices.end()))
3095 return Error(Loc0, "invalid indices for insertvalue");
3096 Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3097 return false;
3098}