blob: 945eb909e50810e0df7cea98dcdeb2c4957ceb8b [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a module pass that applies a variety of small
11// optimizations for calls to specific well-known function calls (e.g. runtime
12// library functions). For example, a call to the function "exit(3)" that
13// occurs within the main() function can be transformed into a simple "return 3"
14// instruction. Any optimization that takes this form (replace call to library
15// function with simpler code that provides the same result) belongs in this
16// file.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "simplify-libcalls"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Instructions.h"
24#include "llvm/Module.h"
25#include "llvm/Pass.h"
Anton Korobeynikov05d33ee2008-02-20 11:27:49 +000026#include "llvm/ADT/StringMap.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000027#include "llvm/ADT/Statistic.h"
28#include "llvm/Config/config.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Transforms/IPO.h"
Anton Korobeynikov357a27d2008-02-20 11:08:44 +000033#include <cstring>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000034using namespace llvm;
35
36/// This statistic keeps track of the total number of library calls that have
37/// been simplified regardless of which call it is.
38STATISTIC(SimplifiedLibCalls, "Number of library calls simplified");
39
40namespace {
41 // Forward declarations
42 class LibCallOptimization;
43 class SimplifyLibCalls;
44
45/// This list is populated by the constructor for LibCallOptimization class.
46/// Therefore all subclasses are registered here at static initialization time
47/// and this list is what the SimplifyLibCalls pass uses to apply the individual
48/// optimizations to the call sites.
49/// @brief The list of optimizations deriving from LibCallOptimization
50static LibCallOptimization *OptList = 0;
51
52/// This class is the abstract base class for the set of optimizations that
53/// corresponds to one library call. The SimplifyLibCalls pass will call the
54/// ValidateCalledFunction method to ask the optimization if a given Function
55/// is the kind that the optimization can handle. If the subclass returns true,
56/// then SImplifyLibCalls will also call the OptimizeCall method to perform,
57/// or attempt to perform, the optimization(s) for the library call. Otherwise,
58/// OptimizeCall won't be called. Subclasses are responsible for providing the
59/// name of the library call (strlen, strcpy, etc.) to the LibCallOptimization
60/// constructor. This is used to efficiently select which call instructions to
61/// optimize. The criteria for a "lib call" is "anything with well known
62/// semantics", typically a library function that is defined by an international
63/// standard. Because the semantics are well known, the optimizations can
64/// generally short-circuit actually calling the function if there's a simpler
65/// way (e.g. strlen(X) can be reduced to a constant if X is a constant global).
66/// @brief Base class for library call optimizations
67class VISIBILITY_HIDDEN LibCallOptimization {
68 LibCallOptimization **Prev, *Next;
69 const char *FunctionName; ///< Name of the library call we optimize
70#ifndef NDEBUG
71 Statistic occurrences; ///< debug statistic (-debug-only=simplify-libcalls)
72#endif
73public:
74 /// The \p fname argument must be the name of the library function being
75 /// optimized by the subclass.
76 /// @brief Constructor that registers the optimization.
77 LibCallOptimization(const char *FName, const char *Description)
78 : FunctionName(FName) {
79
80#ifndef NDEBUG
81 occurrences.construct("simplify-libcalls", Description);
82#endif
83 // Register this optimizer in the list of optimizations.
84 Next = OptList;
85 OptList = this;
86 Prev = &OptList;
87 if (Next) Next->Prev = &Next;
88 }
89
90 /// getNext - All libcall optimizations are chained together into a list,
91 /// return the next one in the list.
92 LibCallOptimization *getNext() { return Next; }
93
94 /// @brief Deregister from the optlist
95 virtual ~LibCallOptimization() {
96 *Prev = Next;
97 if (Next) Next->Prev = Prev;
98 }
99
100 /// The implementation of this function in subclasses should determine if
101 /// \p F is suitable for the optimization. This method is called by
102 /// SimplifyLibCalls::runOnModule to short circuit visiting all the call
103 /// sites of such a function if that function is not suitable in the first
104 /// place. If the called function is suitabe, this method should return true;
105 /// false, otherwise. This function should also perform any lazy
106 /// initialization that the LibCallOptimization needs to do, if its to return
107 /// true. This avoids doing initialization until the optimizer is actually
108 /// going to be called upon to do some optimization.
109 /// @brief Determine if the function is suitable for optimization
110 virtual bool ValidateCalledFunction(
111 const Function* F, ///< The function that is the target of call sites
112 SimplifyLibCalls& SLC ///< The pass object invoking us
113 ) = 0;
114
115 /// The implementations of this function in subclasses is the heart of the
116 /// SimplifyLibCalls algorithm. Sublcasses of this class implement
117 /// OptimizeCall to determine if (a) the conditions are right for optimizing
118 /// the call and (b) to perform the optimization. If an action is taken
119 /// against ci, the subclass is responsible for returning true and ensuring
120 /// that ci is erased from its parent.
121 /// @brief Optimize a call, if possible.
122 virtual bool OptimizeCall(
123 CallInst* ci, ///< The call instruction that should be optimized.
124 SimplifyLibCalls& SLC ///< The pass object invoking us
125 ) = 0;
126
127 /// @brief Get the name of the library call being optimized
128 const char *getFunctionName() const { return FunctionName; }
129
130 bool ReplaceCallWith(CallInst *CI, Value *V) {
131 if (!CI->use_empty())
132 CI->replaceAllUsesWith(V);
133 CI->eraseFromParent();
134 return true;
135 }
136
137 /// @brief Called by SimplifyLibCalls to update the occurrences statistic.
138 void succeeded() {
139#ifndef NDEBUG
140 DEBUG(++occurrences);
141#endif
142 }
143};
144
145/// This class is an LLVM Pass that applies each of the LibCallOptimization
146/// instances to all the call sites in a module, relatively efficiently. The
147/// purpose of this pass is to provide optimizations for calls to well-known
148/// functions with well-known semantics, such as those in the c library. The
149/// class provides the basic infrastructure for handling runOnModule. Whenever
150/// this pass finds a function call, it asks the appropriate optimizer to
151/// validate the call (ValidateLibraryCall). If it is validated, then
152/// the OptimizeCall method is also called.
153/// @brief A ModulePass for optimizing well-known function calls.
154class VISIBILITY_HIDDEN SimplifyLibCalls : public ModulePass {
155public:
156 static char ID; // Pass identification, replacement for typeid
157 SimplifyLibCalls() : ModulePass((intptr_t)&ID) {}
158
159 /// We need some target data for accurate signature details that are
160 /// target dependent. So we require target data in our AnalysisUsage.
161 /// @brief Require TargetData from AnalysisUsage.
162 virtual void getAnalysisUsage(AnalysisUsage& Info) const {
163 // Ask that the TargetData analysis be performed before us so we can use
164 // the target data.
165 Info.addRequired<TargetData>();
166 }
167
168 /// For this pass, process all of the function calls in the module, calling
169 /// ValidateLibraryCall and OptimizeCall as appropriate.
170 /// @brief Run all the lib call optimizations on a Module.
171 virtual bool runOnModule(Module &M) {
172 reset(M);
173
174 bool result = false;
Anton Korobeynikov05d33ee2008-02-20 11:27:49 +0000175 StringMap<LibCallOptimization*> OptznMap;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176 for (LibCallOptimization *Optzn = OptList; Optzn; Optzn = Optzn->getNext())
177 OptznMap[Optzn->getFunctionName()] = Optzn;
178
179 // The call optimizations can be recursive. That is, the optimization might
180 // generate a call to another function which can also be optimized. This way
181 // we make the LibCallOptimization instances very specific to the case they
182 // handle. It also means we need to keep running over the function calls in
183 // the module until we don't get any more optimizations possible.
184 bool found_optimization = false;
185 do {
186 found_optimization = false;
187 for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
188 // All the "well-known" functions are external and have external linkage
189 // because they live in a runtime library somewhere and were (probably)
190 // not compiled by LLVM. So, we only act on external functions that
191 // have external or dllimport linkage and non-empty uses.
192 if (!FI->isDeclaration() ||
193 !(FI->hasExternalLinkage() || FI->hasDLLImportLinkage()) ||
194 FI->use_empty())
195 continue;
196
197 // Get the optimization class that pertains to this function
Anton Korobeynikov05d33ee2008-02-20 11:27:49 +0000198 StringMap<LibCallOptimization*>::iterator OMI =
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000199 OptznMap.find(FI->getName());
200 if (OMI == OptznMap.end()) continue;
201
202 LibCallOptimization *CO = OMI->second;
203
204 // Make sure the called function is suitable for the optimization
205 if (!CO->ValidateCalledFunction(FI, *this))
206 continue;
207
208 // Loop over each of the uses of the function
209 for (Value::use_iterator UI = FI->use_begin(), UE = FI->use_end();
210 UI != UE ; ) {
211 // If the use of the function is a call instruction
212 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) {
213 // Do the optimization on the LibCallOptimization.
214 if (CO->OptimizeCall(CI, *this)) {
215 ++SimplifiedLibCalls;
216 found_optimization = result = true;
217 CO->succeeded();
218 }
219 }
220 }
221 }
222 } while (found_optimization);
223
224 return result;
225 }
226
227 /// @brief Return the *current* module we're working on.
228 Module* getModule() const { return M; }
229
230 /// @brief Return the *current* target data for the module we're working on.
231 TargetData* getTargetData() const { return TD; }
232
233 /// @brief Return the size_t type -- syntactic shortcut
234 const Type* getIntPtrType() const { return TD->getIntPtrType(); }
235
236 /// @brief Return a Function* for the putchar libcall
237 Constant *get_putchar() {
238 if (!putchar_func)
239 putchar_func =
240 M->getOrInsertFunction("putchar", Type::Int32Ty, Type::Int32Ty, NULL);
241 return putchar_func;
242 }
243
244 /// @brief Return a Function* for the puts libcall
245 Constant *get_puts() {
246 if (!puts_func)
247 puts_func = M->getOrInsertFunction("puts", Type::Int32Ty,
Christopher Lambbb2f2222007-12-17 01:12:55 +0000248 PointerType::getUnqual(Type::Int8Ty),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000249 NULL);
250 return puts_func;
251 }
252
253 /// @brief Return a Function* for the fputc libcall
254 Constant *get_fputc(const Type* FILEptr_type) {
255 if (!fputc_func)
256 fputc_func = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty,
257 FILEptr_type, NULL);
258 return fputc_func;
259 }
260
261 /// @brief Return a Function* for the fputs libcall
262 Constant *get_fputs(const Type* FILEptr_type) {
263 if (!fputs_func)
264 fputs_func = M->getOrInsertFunction("fputs", Type::Int32Ty,
Christopher Lambbb2f2222007-12-17 01:12:55 +0000265 PointerType::getUnqual(Type::Int8Ty),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000266 FILEptr_type, NULL);
267 return fputs_func;
268 }
269
270 /// @brief Return a Function* for the fwrite libcall
271 Constant *get_fwrite(const Type* FILEptr_type) {
272 if (!fwrite_func)
273 fwrite_func = M->getOrInsertFunction("fwrite", TD->getIntPtrType(),
Christopher Lambbb2f2222007-12-17 01:12:55 +0000274 PointerType::getUnqual(Type::Int8Ty),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000275 TD->getIntPtrType(),
276 TD->getIntPtrType(),
277 FILEptr_type, NULL);
278 return fwrite_func;
279 }
280
281 /// @brief Return a Function* for the sqrt libcall
282 Constant *get_sqrt() {
283 if (!sqrt_func)
284 sqrt_func = M->getOrInsertFunction("sqrt", Type::DoubleTy,
285 Type::DoubleTy, NULL);
286 return sqrt_func;
287 }
288
289 /// @brief Return a Function* for the strcpy libcall
290 Constant *get_strcpy() {
291 if (!strcpy_func)
292 strcpy_func = M->getOrInsertFunction("strcpy",
Christopher Lambbb2f2222007-12-17 01:12:55 +0000293 PointerType::getUnqual(Type::Int8Ty),
294 PointerType::getUnqual(Type::Int8Ty),
295 PointerType::getUnqual(Type::Int8Ty),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000296 NULL);
297 return strcpy_func;
298 }
299
300 /// @brief Return a Function* for the strlen libcall
301 Constant *get_strlen() {
302 if (!strlen_func)
303 strlen_func = M->getOrInsertFunction("strlen", TD->getIntPtrType(),
Christopher Lambbb2f2222007-12-17 01:12:55 +0000304 PointerType::getUnqual(Type::Int8Ty),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000305 NULL);
306 return strlen_func;
307 }
308
309 /// @brief Return a Function* for the memchr libcall
310 Constant *get_memchr() {
311 if (!memchr_func)
312 memchr_func = M->getOrInsertFunction("memchr",
Christopher Lambbb2f2222007-12-17 01:12:55 +0000313 PointerType::getUnqual(Type::Int8Ty),
314 PointerType::getUnqual(Type::Int8Ty),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000315 Type::Int32Ty, TD->getIntPtrType(),
316 NULL);
317 return memchr_func;
318 }
319
320 /// @brief Return a Function* for the memcpy libcall
321 Constant *get_memcpy() {
322 if (!memcpy_func) {
Christopher Lambbb2f2222007-12-17 01:12:55 +0000323 const Type *SBP = PointerType::getUnqual(Type::Int8Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000324 const char *N = TD->getIntPtrType() == Type::Int32Ty ?
325 "llvm.memcpy.i32" : "llvm.memcpy.i64";
326 memcpy_func = M->getOrInsertFunction(N, Type::VoidTy, SBP, SBP,
327 TD->getIntPtrType(), Type::Int32Ty,
328 NULL);
329 }
330 return memcpy_func;
331 }
332
333 Constant *getUnaryFloatFunction(const char *Name, Constant *&Cache) {
334 if (!Cache)
335 Cache = M->getOrInsertFunction(Name, Type::FloatTy, Type::FloatTy, NULL);
336 return Cache;
337 }
338
339 Constant *get_floorf() { return getUnaryFloatFunction("floorf", floorf_func);}
340 Constant *get_ceilf() { return getUnaryFloatFunction( "ceilf", ceilf_func);}
341 Constant *get_roundf() { return getUnaryFloatFunction("roundf", roundf_func);}
342 Constant *get_rintf() { return getUnaryFloatFunction( "rintf", rintf_func);}
343 Constant *get_nearbyintf() { return getUnaryFloatFunction("nearbyintf",
344 nearbyintf_func); }
345private:
346 /// @brief Reset our cached data for a new Module
347 void reset(Module& mod) {
348 M = &mod;
349 TD = &getAnalysis<TargetData>();
350 putchar_func = 0;
351 puts_func = 0;
352 fputc_func = 0;
353 fputs_func = 0;
354 fwrite_func = 0;
355 memcpy_func = 0;
356 memchr_func = 0;
357 sqrt_func = 0;
358 strcpy_func = 0;
359 strlen_func = 0;
360 floorf_func = 0;
361 ceilf_func = 0;
362 roundf_func = 0;
363 rintf_func = 0;
364 nearbyintf_func = 0;
365 }
366
367private:
368 /// Caches for function pointers.
369 Constant *putchar_func, *puts_func;
370 Constant *fputc_func, *fputs_func, *fwrite_func;
371 Constant *memcpy_func, *memchr_func;
372 Constant *sqrt_func;
373 Constant *strcpy_func, *strlen_func;
374 Constant *floorf_func, *ceilf_func, *roundf_func;
375 Constant *rintf_func, *nearbyintf_func;
376 Module *M; ///< Cached Module
377 TargetData *TD; ///< Cached TargetData
378};
379
380char SimplifyLibCalls::ID = 0;
381// Register the pass
382RegisterPass<SimplifyLibCalls>
383X("simplify-libcalls", "Simplify well-known library calls");
384
385} // anonymous namespace
386
387// The only public symbol in this file which just instantiates the pass object
388ModulePass *llvm::createSimplifyLibCallsPass() {
389 return new SimplifyLibCalls();
390}
391
392// Classes below here, in the anonymous namespace, are all subclasses of the
393// LibCallOptimization class, each implementing all optimizations possible for a
394// single well-known library call. Each has a static singleton instance that
395// auto registers it into the "optlist" global above.
396namespace {
397
398// Forward declare utility functions.
399static bool GetConstantStringInfo(Value *V, std::string &Str);
400static Value *CastToCStr(Value *V, Instruction *IP);
401
402/// This LibCallOptimization will find instances of a call to "exit" that occurs
403/// within the "main" function and change it to a simple "ret" instruction with
404/// the same value passed to the exit function. When this is done, it splits the
405/// basic block at the exit(3) call and deletes the call instruction.
406/// @brief Replace calls to exit in main with a simple return
407struct VISIBILITY_HIDDEN ExitInMainOptimization : public LibCallOptimization {
408 ExitInMainOptimization() : LibCallOptimization("exit",
409 "Number of 'exit' calls simplified") {}
410
411 // Make sure the called function looks like exit (int argument, int return
412 // type, external linkage, not varargs).
413 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
414 return F->arg_size() >= 1 && F->arg_begin()->getType()->isInteger();
415 }
416
417 virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) {
418 // To be careful, we check that the call to exit is coming from "main", that
419 // main has external linkage, and the return type of main and the argument
420 // to exit have the same type.
421 Function *from = ci->getParent()->getParent();
422 if (from->hasExternalLinkage())
Devang Patelead436b2008-03-12 00:32:32 +0000423 if (from->getReturnType() == ci->getOperand(1)->getType()
424 && !isa<StructType>(from->getReturnType()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000425 if (from->getName() == "main") {
426 // Okay, time to actually do the optimization. First, get the basic
427 // block of the call instruction
428 BasicBlock* bb = ci->getParent();
429
430 // Create a return instruction that we'll replace the call with.
431 // Note that the argument of the return is the argument of the call
432 // instruction.
433 new ReturnInst(ci->getOperand(1), ci);
434
435 // Split the block at the call instruction which places it in a new
436 // basic block.
437 bb->splitBasicBlock(ci);
438
439 // The block split caused a branch instruction to be inserted into
440 // the end of the original block, right after the return instruction
441 // that we put there. That's not a valid block, so delete the branch
442 // instruction.
443 bb->getInstList().pop_back();
444
445 // Now we can finally get rid of the call instruction which now lives
446 // in the new basic block.
447 ci->eraseFromParent();
448
449 // Optimization succeeded, return true.
450 return true;
451 }
452 // We didn't pass the criteria for this optimization so return false
453 return false;
454 }
455} ExitInMainOptimizer;
456
457/// This LibCallOptimization will simplify a call to the strcat library
458/// function. The simplification is possible only if the string being
459/// concatenated is a constant array or a constant expression that results in
460/// a constant string. In this case we can replace it with strlen + llvm.memcpy
461/// of the constant string. Both of these calls are further reduced, if possible
462/// on subsequent passes.
463/// @brief Simplify the strcat library function.
464struct VISIBILITY_HIDDEN StrCatOptimization : public LibCallOptimization {
465public:
466 /// @brief Default constructor
467 StrCatOptimization() : LibCallOptimization("strcat",
468 "Number of 'strcat' calls simplified") {}
469
470public:
471
472 /// @brief Make sure that the "strcat" function has the right prototype
473 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
474 const FunctionType *FT = F->getFunctionType();
475 return FT->getNumParams() == 2 &&
Christopher Lambbb2f2222007-12-17 01:12:55 +0000476 FT->getReturnType() == PointerType::getUnqual(Type::Int8Ty) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000477 FT->getParamType(0) == FT->getReturnType() &&
478 FT->getParamType(1) == FT->getReturnType();
479 }
480
481 /// @brief Optimize the strcat library function
482 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
483 // Extract some information from the instruction
484 Value *Dst = CI->getOperand(1);
485 Value *Src = CI->getOperand(2);
486
487 // Extract the initializer (while making numerous checks) from the
488 // source operand of the call to strcat.
489 std::string SrcStr;
490 if (!GetConstantStringInfo(Src, SrcStr))
491 return false;
492
493 // Handle the simple, do-nothing case
494 if (SrcStr.empty())
495 return ReplaceCallWith(CI, Dst);
496
497 // We need to find the end of the destination string. That's where the
498 // memory is to be moved to. We just generate a call to strlen.
499 CallInst *DstLen = new CallInst(SLC.get_strlen(), Dst,
500 Dst->getName()+".len", CI);
501
502 // Now that we have the destination's length, we must index into the
503 // destination's pointer to get the actual memcpy destination (end of
504 // the string .. we're concatenating).
505 Dst = new GetElementPtrInst(Dst, DstLen, Dst->getName()+".indexed", CI);
506
507 // We have enough information to now generate the memcpy call to
508 // do the concatenation for us.
509 Value *Vals[] = {
510 Dst, Src,
511 ConstantInt::get(SLC.getIntPtrType(), SrcStr.size()+1), // copy nul byte.
512 ConstantInt::get(Type::Int32Ty, 1) // alignment
513 };
David Greeneb1c4a7b2007-08-01 03:43:44 +0000514 new CallInst(SLC.get_memcpy(), Vals, Vals + 4, "", CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000515
516 return ReplaceCallWith(CI, Dst);
517 }
518} StrCatOptimizer;
519
520/// This LibCallOptimization will simplify a call to the strchr library
521/// function. It optimizes out cases where the arguments are both constant
522/// and the result can be determined statically.
523/// @brief Simplify the strcmp library function.
524struct VISIBILITY_HIDDEN StrChrOptimization : public LibCallOptimization {
525public:
526 StrChrOptimization() : LibCallOptimization("strchr",
527 "Number of 'strchr' calls simplified") {}
528
529 /// @brief Make sure that the "strchr" function has the right prototype
530 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
531 const FunctionType *FT = F->getFunctionType();
532 return FT->getNumParams() == 2 &&
Christopher Lambbb2f2222007-12-17 01:12:55 +0000533 FT->getReturnType() == PointerType::getUnqual(Type::Int8Ty) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000534 FT->getParamType(0) == FT->getReturnType() &&
535 isa<IntegerType>(FT->getParamType(1));
536 }
537
538 /// @brief Perform the strchr optimizations
539 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
540 // Check that the first argument to strchr is a constant array of sbyte.
541 std::string Str;
542 if (!GetConstantStringInfo(CI->getOperand(1), Str))
543 return false;
544
545 // If the second operand is not constant, just lower this to memchr since we
546 // know the length of the input string.
547 ConstantInt *CSI = dyn_cast<ConstantInt>(CI->getOperand(2));
548 if (!CSI) {
549 Value *Args[3] = {
550 CI->getOperand(1),
551 CI->getOperand(2),
552 ConstantInt::get(SLC.getIntPtrType(), Str.size()+1)
553 };
David Greeneb1c4a7b2007-08-01 03:43:44 +0000554 return ReplaceCallWith(CI, new CallInst(SLC.get_memchr(), Args, Args + 3,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000555 CI->getName(), CI));
556 }
557
558 // strchr can find the nul character.
559 Str += '\0';
560
561 // Get the character we're looking for
562 char CharValue = CSI->getSExtValue();
563
564 // Compute the offset
565 uint64_t i = 0;
566 while (1) {
567 if (i == Str.size()) // Didn't find the char. strchr returns null.
568 return ReplaceCallWith(CI, Constant::getNullValue(CI->getType()));
569 // Did we find our match?
570 if (Str[i] == CharValue)
571 break;
572 ++i;
573 }
574
575 // strchr(s+n,c) -> gep(s+n+i,c)
576 // (if c is a constant integer and s is a constant string)
577 Value *Idx = ConstantInt::get(Type::Int64Ty, i);
578 Value *GEP = new GetElementPtrInst(CI->getOperand(1), Idx,
579 CI->getOperand(1)->getName() +
580 ".strchr", CI);
581 return ReplaceCallWith(CI, GEP);
582 }
583} StrChrOptimizer;
584
585/// This LibCallOptimization will simplify a call to the strcmp library
586/// function. It optimizes out cases where one or both arguments are constant
587/// and the result can be determined statically.
588/// @brief Simplify the strcmp library function.
589struct VISIBILITY_HIDDEN StrCmpOptimization : public LibCallOptimization {
590public:
591 StrCmpOptimization() : LibCallOptimization("strcmp",
592 "Number of 'strcmp' calls simplified") {}
593
594 /// @brief Make sure that the "strcmp" function has the right prototype
595 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
596 const FunctionType *FT = F->getFunctionType();
597 return FT->getReturnType() == Type::Int32Ty && FT->getNumParams() == 2 &&
598 FT->getParamType(0) == FT->getParamType(1) &&
Christopher Lambbb2f2222007-12-17 01:12:55 +0000599 FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000600 }
601
602 /// @brief Perform the strcmp optimization
603 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
604 // First, check to see if src and destination are the same. If they are,
605 // then the optimization is to replace the CallInst with a constant 0
606 // because the call is a no-op.
607 Value *Str1P = CI->getOperand(1);
608 Value *Str2P = CI->getOperand(2);
609 if (Str1P == Str2P) // strcmp(x,x) -> 0
610 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
611
612 std::string Str1;
613 if (!GetConstantStringInfo(Str1P, Str1))
614 return false;
615 if (Str1.empty()) {
616 // strcmp("", x) -> *x
617 Value *V = new LoadInst(Str2P, CI->getName()+".load", CI);
618 V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
619 return ReplaceCallWith(CI, V);
620 }
621
622 std::string Str2;
623 if (!GetConstantStringInfo(Str2P, Str2))
624 return false;
625 if (Str2.empty()) {
626 // strcmp(x,"") -> *x
627 Value *V = new LoadInst(Str1P, CI->getName()+".load", CI);
628 V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
629 return ReplaceCallWith(CI, V);
630 }
631
632 // strcmp(x, y) -> cnst (if both x and y are constant strings)
633 int R = strcmp(Str1.c_str(), Str2.c_str());
634 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), R));
635 }
636} StrCmpOptimizer;
637
638/// This LibCallOptimization will simplify a call to the strncmp library
639/// function. It optimizes out cases where one or both arguments are constant
640/// and the result can be determined statically.
641/// @brief Simplify the strncmp library function.
642struct VISIBILITY_HIDDEN StrNCmpOptimization : public LibCallOptimization {
643public:
644 StrNCmpOptimization() : LibCallOptimization("strncmp",
645 "Number of 'strncmp' calls simplified") {}
646
647 /// @brief Make sure that the "strncmp" function has the right prototype
648 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
649 const FunctionType *FT = F->getFunctionType();
650 return FT->getReturnType() == Type::Int32Ty && FT->getNumParams() == 3 &&
651 FT->getParamType(0) == FT->getParamType(1) &&
Christopher Lambbb2f2222007-12-17 01:12:55 +0000652 FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000653 isa<IntegerType>(FT->getParamType(2));
654 return false;
655 }
656
657 /// @brief Perform the strncmp optimization
658 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
659 // First, check to see if src and destination are the same. If they are,
660 // then the optimization is to replace the CallInst with a constant 0
661 // because the call is a no-op.
662 Value *Str1P = CI->getOperand(1);
663 Value *Str2P = CI->getOperand(2);
664 if (Str1P == Str2P) // strncmp(x,x, n) -> 0
665 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
666
667 // Check the length argument, if it is Constant zero then the strings are
668 // considered equal.
669 uint64_t Length;
670 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3)))
671 Length = LengthArg->getZExtValue();
672 else
673 return false;
674
675 if (Length == 0) // strncmp(x,y,0) -> 0
676 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
677
678 std::string Str1;
679 if (!GetConstantStringInfo(Str1P, Str1))
680 return false;
681 if (Str1.empty()) {
682 // strncmp("", x, n) -> *x
683 Value *V = new LoadInst(Str2P, CI->getName()+".load", CI);
684 V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
685 return ReplaceCallWith(CI, V);
686 }
687
688 std::string Str2;
689 if (!GetConstantStringInfo(Str2P, Str2))
690 return false;
691 if (Str2.empty()) {
692 // strncmp(x, "", n) -> *x
693 Value *V = new LoadInst(Str1P, CI->getName()+".load", CI);
694 V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
695 return ReplaceCallWith(CI, V);
696 }
697
698 // strncmp(x, y, n) -> cnst (if both x and y are constant strings)
699 int R = strncmp(Str1.c_str(), Str2.c_str(), Length);
700 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), R));
701 }
702} StrNCmpOptimizer;
703
704/// This LibCallOptimization will simplify a call to the strcpy library
705/// function. Two optimizations are possible:
706/// (1) If src and dest are the same and not volatile, just return dest
707/// (2) If the src is a constant then we can convert to llvm.memmove
708/// @brief Simplify the strcpy library function.
709struct VISIBILITY_HIDDEN StrCpyOptimization : public LibCallOptimization {
710public:
711 StrCpyOptimization() : LibCallOptimization("strcpy",
712 "Number of 'strcpy' calls simplified") {}
713
714 /// @brief Make sure that the "strcpy" function has the right prototype
715 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
716 const FunctionType *FT = F->getFunctionType();
717 return FT->getNumParams() == 2 &&
718 FT->getParamType(0) == FT->getParamType(1) &&
719 FT->getReturnType() == FT->getParamType(0) &&
Christopher Lambbb2f2222007-12-17 01:12:55 +0000720 FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000721 }
722
723 /// @brief Perform the strcpy optimization
724 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
725 // First, check to see if src and destination are the same. If they are,
726 // then the optimization is to replace the CallInst with the destination
727 // because the call is a no-op. Note that this corresponds to the
728 // degenerate strcpy(X,X) case which should have "undefined" results
729 // according to the C specification. However, it occurs sometimes and
730 // we optimize it as a no-op.
731 Value *Dst = CI->getOperand(1);
732 Value *Src = CI->getOperand(2);
733 if (Dst == Src) {
734 // strcpy(x, x) -> x
735 return ReplaceCallWith(CI, Dst);
736 }
737
738 // Get the length of the constant string referenced by the Src operand.
739 std::string SrcStr;
740 if (!GetConstantStringInfo(Src, SrcStr))
741 return false;
742
743 // If the constant string's length is zero we can optimize this by just
744 // doing a store of 0 at the first byte of the destination
Dan Gohman301f4052008-01-29 13:02:09 +0000745 if (SrcStr.empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000746 new StoreInst(ConstantInt::get(Type::Int8Ty, 0), Dst, CI);
747 return ReplaceCallWith(CI, Dst);
748 }
749
750 // We have enough information to now generate the memcpy call to
751 // do the concatenation for us.
752 Value *MemcpyOps[] = {
753 Dst, Src, // Pass length including nul byte.
754 ConstantInt::get(SLC.getIntPtrType(), SrcStr.size()+1),
755 ConstantInt::get(Type::Int32Ty, 1) // alignment
756 };
David Greeneb1c4a7b2007-08-01 03:43:44 +0000757 new CallInst(SLC.get_memcpy(), MemcpyOps, MemcpyOps + 4, "", CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000758
759 return ReplaceCallWith(CI, Dst);
760 }
761} StrCpyOptimizer;
762
763/// This LibCallOptimization will simplify a call to the strlen library
764/// function by replacing it with a constant value if the string provided to
765/// it is a constant array.
766/// @brief Simplify the strlen library function.
767struct VISIBILITY_HIDDEN StrLenOptimization : public LibCallOptimization {
768 StrLenOptimization() : LibCallOptimization("strlen",
769 "Number of 'strlen' calls simplified") {}
770
771 /// @brief Make sure that the "strlen" function has the right prototype
772 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
773 const FunctionType *FT = F->getFunctionType();
774 return FT->getNumParams() == 1 &&
Christopher Lambbb2f2222007-12-17 01:12:55 +0000775 FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000776 isa<IntegerType>(FT->getReturnType());
777 }
778
779 /// @brief Perform the strlen optimization
780 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
781 // Make sure we're dealing with an sbyte* here.
782 Value *Src = CI->getOperand(1);
783
784 // Does the call to strlen have exactly one use?
785 if (CI->hasOneUse()) {
786 // Is that single use a icmp operator?
787 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CI->use_back()))
788 // Is it compared against a constant integer?
789 if (ConstantInt *Cst = dyn_cast<ConstantInt>(Cmp->getOperand(1))) {
790 // If its compared against length 0 with == or !=
791 if (Cst->getZExtValue() == 0 && Cmp->isEquality()) {
792 // strlen(x) != 0 -> *x != 0
793 // strlen(x) == 0 -> *x == 0
794 Value *V = new LoadInst(Src, Src->getName()+".first", CI);
795 V = new ICmpInst(Cmp->getPredicate(), V,
796 ConstantInt::get(Type::Int8Ty, 0),
797 Cmp->getName()+".strlen", CI);
798 Cmp->replaceAllUsesWith(V);
799 Cmp->eraseFromParent();
800 return ReplaceCallWith(CI, 0); // no uses.
801 }
802 }
803 }
804
805 // Get the length of the constant string operand
806 std::string Str;
807 if (!GetConstantStringInfo(Src, Str))
808 return false;
809
810 // strlen("xyz") -> 3 (for example)
811 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), Str.size()));
812 }
813} StrLenOptimizer;
814
815/// IsOnlyUsedInEqualsComparison - Return true if it only matters that the value
816/// is equal or not-equal to zero.
817static bool IsOnlyUsedInEqualsZeroComparison(Instruction *I) {
818 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
819 UI != E; ++UI) {
820 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
821 if (IC->isEquality())
822 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
823 if (C->isNullValue())
824 continue;
825 // Unknown instruction.
826 return false;
827 }
828 return true;
829}
830
831/// This memcmpOptimization will simplify a call to the memcmp library
832/// function.
833struct VISIBILITY_HIDDEN memcmpOptimization : public LibCallOptimization {
834 /// @brief Default Constructor
835 memcmpOptimization()
836 : LibCallOptimization("memcmp", "Number of 'memcmp' calls simplified") {}
837
838 /// @brief Make sure that the "memcmp" function has the right prototype
839 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) {
840 Function::const_arg_iterator AI = F->arg_begin();
841 if (F->arg_size() != 3 || !isa<PointerType>(AI->getType())) return false;
842 if (!isa<PointerType>((++AI)->getType())) return false;
843 if (!(++AI)->getType()->isInteger()) return false;
844 if (!F->getReturnType()->isInteger()) return false;
845 return true;
846 }
847
848 /// Because of alignment and instruction information that we don't have, we
849 /// leave the bulk of this to the code generators.
850 ///
851 /// Note that we could do much more if we could force alignment on otherwise
852 /// small aligned allocas, or if we could indicate that loads have a small
853 /// alignment.
854 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &TD) {
855 Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2);
856
857 // If the two operands are the same, return zero.
858 if (LHS == RHS) {
859 // memcmp(s,s,x) -> 0
860 return ReplaceCallWith(CI, Constant::getNullValue(CI->getType()));
861 }
862
863 // Make sure we have a constant length.
864 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3));
865 if (!LenC) return false;
866 uint64_t Len = LenC->getZExtValue();
867
868 // If the length is zero, this returns 0.
869 switch (Len) {
870 case 0:
871 // memcmp(s1,s2,0) -> 0
872 return ReplaceCallWith(CI, Constant::getNullValue(CI->getType()));
873 case 1: {
874 // memcmp(S1,S2,1) -> *(ubyte*)S1 - *(ubyte*)S2
Christopher Lambbb2f2222007-12-17 01:12:55 +0000875 const Type *UCharPtr = PointerType::getUnqual(Type::Int8Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000876 CastInst *Op1Cast = CastInst::create(
877 Instruction::BitCast, LHS, UCharPtr, LHS->getName(), CI);
878 CastInst *Op2Cast = CastInst::create(
879 Instruction::BitCast, RHS, UCharPtr, RHS->getName(), CI);
880 Value *S1V = new LoadInst(Op1Cast, LHS->getName()+".val", CI);
881 Value *S2V = new LoadInst(Op2Cast, RHS->getName()+".val", CI);
882 Value *RV = BinaryOperator::createSub(S1V, S2V, CI->getName()+".diff",CI);
883 if (RV->getType() != CI->getType())
884 RV = CastInst::createIntegerCast(RV, CI->getType(), false,
885 RV->getName(), CI);
886 return ReplaceCallWith(CI, RV);
887 }
888 case 2:
889 if (IsOnlyUsedInEqualsZeroComparison(CI)) {
890 // TODO: IF both are aligned, use a short load/compare.
891
892 // memcmp(S1,S2,2) -> S1[0]-S2[0] | S1[1]-S2[1] iff only ==/!= 0 matters
Christopher Lambbb2f2222007-12-17 01:12:55 +0000893 const Type *UCharPtr = PointerType::getUnqual(Type::Int8Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000894 CastInst *Op1Cast = CastInst::create(
895 Instruction::BitCast, LHS, UCharPtr, LHS->getName(), CI);
896 CastInst *Op2Cast = CastInst::create(
897 Instruction::BitCast, RHS, UCharPtr, RHS->getName(), CI);
898 Value *S1V1 = new LoadInst(Op1Cast, LHS->getName()+".val1", CI);
899 Value *S2V1 = new LoadInst(Op2Cast, RHS->getName()+".val1", CI);
900 Value *D1 = BinaryOperator::createSub(S1V1, S2V1,
901 CI->getName()+".d1", CI);
902 Constant *One = ConstantInt::get(Type::Int32Ty, 1);
903 Value *G1 = new GetElementPtrInst(Op1Cast, One, "next1v", CI);
904 Value *G2 = new GetElementPtrInst(Op2Cast, One, "next2v", CI);
905 Value *S1V2 = new LoadInst(G1, LHS->getName()+".val2", CI);
906 Value *S2V2 = new LoadInst(G2, RHS->getName()+".val2", CI);
907 Value *D2 = BinaryOperator::createSub(S1V2, S2V2,
908 CI->getName()+".d1", CI);
909 Value *Or = BinaryOperator::createOr(D1, D2, CI->getName()+".res", CI);
910 if (Or->getType() != CI->getType())
911 Or = CastInst::createIntegerCast(Or, CI->getType(), false /*ZExt*/,
912 Or->getName(), CI);
913 return ReplaceCallWith(CI, Or);
914 }
915 break;
916 default:
917 break;
918 }
919
920 return false;
921 }
922} memcmpOptimizer;
923
Chris Lattnerd3c51ad2008-01-28 04:41:43 +0000924/// This LibCallOptimization will simplify a call to the memcpy library
925/// function. It simply converts them into calls to llvm.memcpy.*;
926/// the resulting call should be optimized later.
927/// @brief Simplify the memcpy library function.
928struct VISIBILITY_HIDDEN MemCpyOptimization : public LibCallOptimization {
929public:
930 MemCpyOptimization() : LibCallOptimization("memcpy",
931 "Number of 'memcpy' calls simplified") {}
932
933 /// @brief Make sure that the "memcpy" function has the right prototype
934 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
935 const FunctionType *FT = F->getFunctionType();
936 const Type* voidPtr = PointerType::getUnqual(Type::Int8Ty);
937 return FT->getReturnType() == voidPtr && FT->getNumParams() == 3 &&
938 FT->getParamType(0) == voidPtr &&
939 FT->getParamType(1) == voidPtr &&
940 FT->getParamType(2) == SLC.getIntPtrType();
941 }
942
943 /// @brief Perform the memcpy optimization
944 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
945 Value *MemcpyOps[] = {
946 CI->getOperand(1), CI->getOperand(2), CI->getOperand(3),
947 ConstantInt::get(Type::Int32Ty, 1) // align = 1 always.
948 };
949 new CallInst(SLC.get_memcpy(), MemcpyOps, MemcpyOps + 4, "", CI);
950 // memcpy always returns the destination
951 return ReplaceCallWith(CI, CI->getOperand(1));
952 }
953} MemCpyOptimizer;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000954
955/// This LibCallOptimization will simplify a call to the memcpy library
956/// function by expanding it out to a single store of size 0, 1, 2, 4, or 8
957/// bytes depending on the length of the string and the alignment. Additional
958/// optimizations are possible in code generation (sequence of immediate store)
959/// @brief Simplify the memcpy library function.
960struct VISIBILITY_HIDDEN LLVMMemCpyMoveOptzn : public LibCallOptimization {
961 LLVMMemCpyMoveOptzn(const char* fname, const char* desc)
962 : LibCallOptimization(fname, desc) {}
963
964 /// @brief Make sure that the "memcpy" function has the right prototype
965 virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& TD) {
966 // Just make sure this has 4 arguments per LLVM spec.
967 return (f->arg_size() == 4);
968 }
969
970 /// Because of alignment and instruction information that we don't have, we
971 /// leave the bulk of this to the code generators. The optimization here just
972 /// deals with a few degenerate cases where the length of the string and the
973 /// alignment match the sizes of our intrinsic types so we can do a load and
974 /// store instead of the memcpy call.
975 /// @brief Perform the memcpy optimization.
976 virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& TD) {
977 // Make sure we have constant int values to work with
978 ConstantInt* LEN = dyn_cast<ConstantInt>(ci->getOperand(3));
979 if (!LEN)
980 return false;
981 ConstantInt* ALIGN = dyn_cast<ConstantInt>(ci->getOperand(4));
982 if (!ALIGN)
983 return false;
984
985 // If the length is larger than the alignment, we can't optimize
986 uint64_t len = LEN->getZExtValue();
987 uint64_t alignment = ALIGN->getZExtValue();
988 if (alignment == 0)
989 alignment = 1; // Alignment 0 is identity for alignment 1
990 if (len > alignment)
991 return false;
992
993 // Get the type we will cast to, based on size of the string
994 Value* dest = ci->getOperand(1);
995 Value* src = ci->getOperand(2);
996 const Type* castType = 0;
997 switch (len) {
998 case 0:
999 // memcpy(d,s,0,a) -> d
1000 return ReplaceCallWith(ci, 0);
1001 case 1: castType = Type::Int8Ty; break;
1002 case 2: castType = Type::Int16Ty; break;
1003 case 4: castType = Type::Int32Ty; break;
1004 case 8: castType = Type::Int64Ty; break;
1005 default:
1006 return false;
1007 }
1008
1009 // Cast source and dest to the right sized primitive and then load/store
1010 CastInst* SrcCast = CastInst::create(Instruction::BitCast,
Christopher Lambbb2f2222007-12-17 01:12:55 +00001011 src, PointerType::getUnqual(castType), src->getName()+".cast", ci);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001012 CastInst* DestCast = CastInst::create(Instruction::BitCast,
Christopher Lambbb2f2222007-12-17 01:12:55 +00001013 dest, PointerType::getUnqual(castType),dest->getName()+".cast", ci);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001014 LoadInst* LI = new LoadInst(SrcCast,SrcCast->getName()+".val",ci);
1015 new StoreInst(LI, DestCast, ci);
1016 return ReplaceCallWith(ci, 0);
1017 }
1018};
1019
1020/// This LibCallOptimization will simplify a call to the memcpy/memmove library
1021/// functions.
1022LLVMMemCpyMoveOptzn LLVMMemCpyOptimizer32("llvm.memcpy.i32",
1023 "Number of 'llvm.memcpy' calls simplified");
1024LLVMMemCpyMoveOptzn LLVMMemCpyOptimizer64("llvm.memcpy.i64",
1025 "Number of 'llvm.memcpy' calls simplified");
1026LLVMMemCpyMoveOptzn LLVMMemMoveOptimizer32("llvm.memmove.i32",
1027 "Number of 'llvm.memmove' calls simplified");
1028LLVMMemCpyMoveOptzn LLVMMemMoveOptimizer64("llvm.memmove.i64",
1029 "Number of 'llvm.memmove' calls simplified");
1030
1031/// This LibCallOptimization will simplify a call to the memset library
1032/// function by expanding it out to a single store of size 0, 1, 2, 4, or 8
1033/// bytes depending on the length argument.
1034struct VISIBILITY_HIDDEN LLVMMemSetOptimization : public LibCallOptimization {
1035 /// @brief Default Constructor
1036 LLVMMemSetOptimization(const char *Name) : LibCallOptimization(Name,
1037 "Number of 'llvm.memset' calls simplified") {}
1038
1039 /// @brief Make sure that the "memset" function has the right prototype
1040 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) {
1041 // Just make sure this has 3 arguments per LLVM spec.
1042 return F->arg_size() == 4;
1043 }
1044
1045 /// Because of alignment and instruction information that we don't have, we
1046 /// leave the bulk of this to the code generators. The optimization here just
1047 /// deals with a few degenerate cases where the length parameter is constant
1048 /// and the alignment matches the sizes of our intrinsic types so we can do
1049 /// store instead of the memcpy call. Other calls are transformed into the
1050 /// llvm.memset intrinsic.
1051 /// @brief Perform the memset optimization.
1052 virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &TD) {
1053 // Make sure we have constant int values to work with
1054 ConstantInt* LEN = dyn_cast<ConstantInt>(ci->getOperand(3));
1055 if (!LEN)
1056 return false;
1057 ConstantInt* ALIGN = dyn_cast<ConstantInt>(ci->getOperand(4));
1058 if (!ALIGN)
1059 return false;
1060
1061 // Extract the length and alignment
1062 uint64_t len = LEN->getZExtValue();
1063 uint64_t alignment = ALIGN->getZExtValue();
1064
1065 // Alignment 0 is identity for alignment 1
1066 if (alignment == 0)
1067 alignment = 1;
1068
1069 // If the length is zero, this is a no-op
1070 if (len == 0) {
1071 // memset(d,c,0,a) -> noop
1072 return ReplaceCallWith(ci, 0);
1073 }
1074
1075 // If the length is larger than the alignment, we can't optimize
1076 if (len > alignment)
1077 return false;
1078
1079 // Make sure we have a constant ubyte to work with so we can extract
1080 // the value to be filled.
1081 ConstantInt* FILL = dyn_cast<ConstantInt>(ci->getOperand(2));
1082 if (!FILL)
1083 return false;
1084 if (FILL->getType() != Type::Int8Ty)
1085 return false;
1086
1087 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
1088
1089 // Extract the fill character
1090 uint64_t fill_char = FILL->getZExtValue();
1091 uint64_t fill_value = fill_char;
1092
1093 // Get the type we will cast to, based on size of memory area to fill, and
1094 // and the value we will store there.
1095 Value* dest = ci->getOperand(1);
1096 const Type* castType = 0;
1097 switch (len) {
1098 case 1:
1099 castType = Type::Int8Ty;
1100 break;
1101 case 2:
1102 castType = Type::Int16Ty;
1103 fill_value |= fill_char << 8;
1104 break;
1105 case 4:
1106 castType = Type::Int32Ty;
1107 fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24;
1108 break;
1109 case 8:
1110 castType = Type::Int64Ty;
1111 fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24;
1112 fill_value |= fill_char << 32 | fill_char << 40 | fill_char << 48;
1113 fill_value |= fill_char << 56;
1114 break;
1115 default:
1116 return false;
1117 }
1118
1119 // Cast dest to the right sized primitive and then load/store
Christopher Lambbb2f2222007-12-17 01:12:55 +00001120 CastInst* DestCast = new BitCastInst(dest, PointerType::getUnqual(castType),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001121 dest->getName()+".cast", ci);
1122 new StoreInst(ConstantInt::get(castType,fill_value),DestCast, ci);
1123 return ReplaceCallWith(ci, 0);
1124 }
1125};
1126
1127LLVMMemSetOptimization MemSet32Optimizer("llvm.memset.i32");
1128LLVMMemSetOptimization MemSet64Optimizer("llvm.memset.i64");
1129
1130
1131/// This LibCallOptimization will simplify calls to the "pow" library
1132/// function. It looks for cases where the result of pow is well known and
1133/// substitutes the appropriate value.
1134/// @brief Simplify the pow library function.
1135struct VISIBILITY_HIDDEN PowOptimization : public LibCallOptimization {
1136public:
1137 /// @brief Default Constructor
1138 PowOptimization() : LibCallOptimization("pow",
1139 "Number of 'pow' calls simplified") {}
1140
1141 /// @brief Make sure that the "pow" function has the right prototype
1142 virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){
1143 // Just make sure this has 2 arguments
1144 return (f->arg_size() == 2);
1145 }
1146
1147 /// @brief Perform the pow optimization.
1148 virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) {
1149 const Type *Ty = cast<Function>(ci->getOperand(0))->getReturnType();
Dale Johannesen3b5303b2007-09-28 18:06:58 +00001150 if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
1151 return false; // FIXME long double not yet supported
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001152 Value* base = ci->getOperand(1);
1153 Value* expn = ci->getOperand(2);
1154 if (ConstantFP *Op1 = dyn_cast<ConstantFP>(base)) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001155 if (Op1->isExactlyValue(1.0)) // pow(1.0,x) -> 1.0
1156 return ReplaceCallWith(ci, ConstantFP::get(Ty,
1157 Ty==Type::FloatTy ? APFloat(1.0f) : APFloat(1.0)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001158 } else if (ConstantFP* Op2 = dyn_cast<ConstantFP>(expn)) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001159 if (Op2->getValueAPF().isZero()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001160 // pow(x,0.0) -> 1.0
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001161 return ReplaceCallWith(ci, ConstantFP::get(Ty,
1162 Ty==Type::FloatTy ? APFloat(1.0f) : APFloat(1.0)));
1163 } else if (Op2->isExactlyValue(0.5)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001164 // pow(x,0.5) -> sqrt(x)
1165 CallInst* sqrt_inst = new CallInst(SLC.get_sqrt(), base,
1166 ci->getName()+".pow",ci);
1167 return ReplaceCallWith(ci, sqrt_inst);
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001168 } else if (Op2->isExactlyValue(1.0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001169 // pow(x,1.0) -> x
1170 return ReplaceCallWith(ci, base);
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001171 } else if (Op2->isExactlyValue(-1.0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001172 // pow(x,-1.0) -> 1.0/x
1173 Value *div_inst =
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001174 BinaryOperator::createFDiv(ConstantFP::get(Ty,
1175 Ty==Type::FloatTy ? APFloat(1.0f) : APFloat(1.0)),
1176 base, ci->getName()+".pow", ci);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001177 return ReplaceCallWith(ci, div_inst);
1178 }
1179 }
1180 return false; // opt failed
1181 }
1182} PowOptimizer;
1183
1184/// This LibCallOptimization will simplify calls to the "printf" library
1185/// function. It looks for cases where the result of printf is not used and the
1186/// operation can be reduced to something simpler.
1187/// @brief Simplify the printf library function.
1188struct VISIBILITY_HIDDEN PrintfOptimization : public LibCallOptimization {
1189public:
1190 /// @brief Default Constructor
1191 PrintfOptimization() : LibCallOptimization("printf",
1192 "Number of 'printf' calls simplified") {}
1193
1194 /// @brief Make sure that the "printf" function has the right prototype
1195 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
1196 // Just make sure this has at least 1 argument and returns an integer or
1197 // void type.
1198 const FunctionType *FT = F->getFunctionType();
1199 return FT->getNumParams() >= 1 &&
1200 (isa<IntegerType>(FT->getReturnType()) ||
1201 FT->getReturnType() == Type::VoidTy);
1202 }
1203
1204 /// @brief Perform the printf optimization.
1205 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1206 // All the optimizations depend on the length of the first argument and the
1207 // fact that it is a constant string array. Check that now
1208 std::string FormatStr;
1209 if (!GetConstantStringInfo(CI->getOperand(1), FormatStr))
1210 return false;
1211
1212 // If this is a simple constant string with no format specifiers that ends
1213 // with a \n, turn it into a puts call.
1214 if (FormatStr.empty()) {
1215 // Tolerate printf's declared void.
1216 if (CI->use_empty()) return ReplaceCallWith(CI, 0);
1217 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
1218 }
1219
1220 if (FormatStr.size() == 1) {
1221 // Turn this into a putchar call, even if it is a %.
1222 Value *V = ConstantInt::get(Type::Int32Ty, FormatStr[0]);
1223 new CallInst(SLC.get_putchar(), V, "", CI);
1224 if (CI->use_empty()) return ReplaceCallWith(CI, 0);
1225 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
1226 }
1227
1228 // Check to see if the format str is something like "foo\n", in which case
1229 // we convert it to a puts call. We don't allow it to contain any format
1230 // characters.
1231 if (FormatStr[FormatStr.size()-1] == '\n' &&
1232 FormatStr.find('%') == std::string::npos) {
1233 // Create a string literal with no \n on it. We expect the constant merge
1234 // pass to be run after this pass, to merge duplicate strings.
1235 FormatStr.erase(FormatStr.end()-1);
1236 Constant *Init = ConstantArray::get(FormatStr, true);
1237 Constant *GV = new GlobalVariable(Init->getType(), true,
1238 GlobalVariable::InternalLinkage,
1239 Init, "str",
1240 CI->getParent()->getParent()->getParent());
1241 // Cast GV to be a pointer to char.
Christopher Lambbb2f2222007-12-17 01:12:55 +00001242 GV = ConstantExpr::getBitCast(GV, PointerType::getUnqual(Type::Int8Ty));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001243 new CallInst(SLC.get_puts(), GV, "", CI);
1244
1245 if (CI->use_empty()) return ReplaceCallWith(CI, 0);
Dale Johannesen488548a2007-10-24 20:14:50 +00001246 // The return value from printf includes the \n we just removed, so +1.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001247 return ReplaceCallWith(CI,
Dale Johannesen488548a2007-10-24 20:14:50 +00001248 ConstantInt::get(CI->getType(),
1249 FormatStr.size()+1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001250 }
1251
1252
1253 // Only support %c or "%s\n" for now.
1254 if (FormatStr.size() < 2 || FormatStr[0] != '%')
1255 return false;
1256
1257 // Get the second character and switch on its value
1258 switch (FormatStr[1]) {
1259 default: return false;
1260 case 's':
1261 if (FormatStr != "%s\n" || CI->getNumOperands() < 3 ||
1262 // TODO: could insert strlen call to compute string length.
1263 !CI->use_empty())
1264 return false;
1265
1266 // printf("%s\n",str) -> puts(str)
1267 new CallInst(SLC.get_puts(), CastToCStr(CI->getOperand(2), CI),
1268 CI->getName(), CI);
1269 return ReplaceCallWith(CI, 0);
1270 case 'c': {
1271 // printf("%c",c) -> putchar(c)
1272 if (FormatStr.size() != 2 || CI->getNumOperands() < 3)
1273 return false;
1274
1275 Value *V = CI->getOperand(2);
1276 if (!isa<IntegerType>(V->getType()) ||
1277 cast<IntegerType>(V->getType())->getBitWidth() > 32)
1278 return false;
1279
1280 V = CastInst::createZExtOrBitCast(V, Type::Int32Ty, CI->getName()+".int",
1281 CI);
1282 new CallInst(SLC.get_putchar(), V, "", CI);
1283 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
1284 }
1285 }
1286 }
1287} PrintfOptimizer;
1288
1289/// This LibCallOptimization will simplify calls to the "fprintf" library
1290/// function. It looks for cases where the result of fprintf is not used and the
1291/// operation can be reduced to something simpler.
1292/// @brief Simplify the fprintf library function.
1293struct VISIBILITY_HIDDEN FPrintFOptimization : public LibCallOptimization {
1294public:
1295 /// @brief Default Constructor
1296 FPrintFOptimization() : LibCallOptimization("fprintf",
1297 "Number of 'fprintf' calls simplified") {}
1298
1299 /// @brief Make sure that the "fprintf" function has the right prototype
1300 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
1301 const FunctionType *FT = F->getFunctionType();
1302 return FT->getNumParams() == 2 && // two fixed arguments.
Christopher Lambbb2f2222007-12-17 01:12:55 +00001303 FT->getParamType(1) == PointerType::getUnqual(Type::Int8Ty) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001304 isa<PointerType>(FT->getParamType(0)) &&
1305 isa<IntegerType>(FT->getReturnType());
1306 }
1307
1308 /// @brief Perform the fprintf optimization.
1309 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1310 // If the call has more than 3 operands, we can't optimize it
1311 if (CI->getNumOperands() != 3 && CI->getNumOperands() != 4)
1312 return false;
1313
1314 // All the optimizations depend on the format string.
1315 std::string FormatStr;
1316 if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
1317 return false;
1318
1319 // If this is just a format string, turn it into fwrite.
1320 if (CI->getNumOperands() == 3) {
1321 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1322 if (FormatStr[i] == '%')
1323 return false; // we found a format specifier
1324
1325 // fprintf(file,fmt) -> fwrite(fmt,strlen(fmt),file)
1326 const Type *FILEty = CI->getOperand(1)->getType();
1327
1328 Value *FWriteArgs[] = {
1329 CI->getOperand(2),
1330 ConstantInt::get(SLC.getIntPtrType(), FormatStr.size()),
1331 ConstantInt::get(SLC.getIntPtrType(), 1),
1332 CI->getOperand(1)
1333 };
David Greeneb1c4a7b2007-08-01 03:43:44 +00001334 new CallInst(SLC.get_fwrite(FILEty), FWriteArgs, FWriteArgs + 4, CI->getName(), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001335 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(),
1336 FormatStr.size()));
1337 }
1338
1339 // The remaining optimizations require the format string to be length 2:
1340 // "%s" or "%c".
1341 if (FormatStr.size() != 2 || FormatStr[0] != '%')
1342 return false;
1343
1344 // Get the second character and switch on its value
1345 switch (FormatStr[1]) {
1346 case 'c': {
1347 // fprintf(file,"%c",c) -> fputc(c,file)
1348 const Type *FILETy = CI->getOperand(1)->getType();
1349 Value *C = CastInst::createZExtOrBitCast(CI->getOperand(3), Type::Int32Ty,
1350 CI->getName()+".int", CI);
David Greeneb1c4a7b2007-08-01 03:43:44 +00001351 SmallVector<Value *, 2> Args;
1352 Args.push_back(C);
1353 Args.push_back(CI->getOperand(1));
1354 new CallInst(SLC.get_fputc(FILETy), Args.begin(), Args.end(), "", CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001355 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
1356 }
1357 case 's': {
1358 const Type *FILETy = CI->getOperand(1)->getType();
1359
1360 // If the result of the fprintf call is used, we can't do this.
1361 // TODO: we should insert a strlen call.
1362 if (!CI->use_empty())
1363 return false;
1364
1365 // fprintf(file,"%s",str) -> fputs(str,file)
David Greeneb1c4a7b2007-08-01 03:43:44 +00001366 SmallVector<Value *, 2> Args;
1367 Args.push_back(CastToCStr(CI->getOperand(3), CI));
1368 Args.push_back(CI->getOperand(1));
1369 new CallInst(SLC.get_fputs(FILETy), Args.begin(),
1370 Args.end(), CI->getName(), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001371 return ReplaceCallWith(CI, 0);
1372 }
1373 default:
1374 return false;
1375 }
1376 }
1377} FPrintFOptimizer;
1378
1379/// This LibCallOptimization will simplify calls to the "sprintf" library
1380/// function. It looks for cases where the result of sprintf is not used and the
1381/// operation can be reduced to something simpler.
1382/// @brief Simplify the sprintf library function.
1383struct VISIBILITY_HIDDEN SPrintFOptimization : public LibCallOptimization {
1384public:
1385 /// @brief Default Constructor
1386 SPrintFOptimization() : LibCallOptimization("sprintf",
1387 "Number of 'sprintf' calls simplified") {}
1388
1389 /// @brief Make sure that the "sprintf" function has the right prototype
1390 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
1391 const FunctionType *FT = F->getFunctionType();
1392 return FT->getNumParams() == 2 && // two fixed arguments.
Christopher Lambbb2f2222007-12-17 01:12:55 +00001393 FT->getParamType(1) == PointerType::getUnqual(Type::Int8Ty) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001394 FT->getParamType(0) == FT->getParamType(1) &&
1395 isa<IntegerType>(FT->getReturnType());
1396 }
1397
1398 /// @brief Perform the sprintf optimization.
1399 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1400 // If the call has more than 3 operands, we can't optimize it
1401 if (CI->getNumOperands() != 3 && CI->getNumOperands() != 4)
1402 return false;
1403
1404 std::string FormatStr;
1405 if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
1406 return false;
1407
1408 if (CI->getNumOperands() == 3) {
1409 // Make sure there's no % in the constant array
1410 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1411 if (FormatStr[i] == '%')
1412 return false; // we found a format specifier
1413
1414 // sprintf(str,fmt) -> llvm.memcpy(str,fmt,strlen(fmt),1)
1415 Value *MemCpyArgs[] = {
1416 CI->getOperand(1), CI->getOperand(2),
1417 ConstantInt::get(SLC.getIntPtrType(),
1418 FormatStr.size()+1), // Copy the nul byte.
1419 ConstantInt::get(Type::Int32Ty, 1)
1420 };
David Greeneb1c4a7b2007-08-01 03:43:44 +00001421 new CallInst(SLC.get_memcpy(), MemCpyArgs, MemCpyArgs + 4, "", CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001422 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(),
1423 FormatStr.size()));
1424 }
1425
1426 // The remaining optimizations require the format string to be "%s" or "%c".
1427 if (FormatStr.size() != 2 || FormatStr[0] != '%')
1428 return false;
1429
1430 // Get the second character and switch on its value
1431 switch (FormatStr[1]) {
1432 case 'c': {
1433 // sprintf(dest,"%c",chr) -> store chr, dest
1434 Value *V = CastInst::createTruncOrBitCast(CI->getOperand(3),
1435 Type::Int8Ty, "char", CI);
1436 new StoreInst(V, CI->getOperand(1), CI);
1437 Value *Ptr = new GetElementPtrInst(CI->getOperand(1),
1438 ConstantInt::get(Type::Int32Ty, 1),
1439 CI->getOperand(1)->getName()+".end",
1440 CI);
1441 new StoreInst(ConstantInt::get(Type::Int8Ty,0), Ptr, CI);
1442 return ReplaceCallWith(CI, ConstantInt::get(Type::Int32Ty, 1));
1443 }
1444 case 's': {
1445 // sprintf(dest,"%s",str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1446 Value *Len = new CallInst(SLC.get_strlen(),
1447 CastToCStr(CI->getOperand(3), CI),
1448 CI->getOperand(3)->getName()+".len", CI);
1449 Value *UnincLen = Len;
1450 Len = BinaryOperator::createAdd(Len, ConstantInt::get(Len->getType(), 1),
1451 Len->getName()+"1", CI);
1452 Value *MemcpyArgs[4] = {
1453 CI->getOperand(1),
1454 CastToCStr(CI->getOperand(3), CI),
1455 Len,
1456 ConstantInt::get(Type::Int32Ty, 1)
1457 };
David Greeneb1c4a7b2007-08-01 03:43:44 +00001458 new CallInst(SLC.get_memcpy(), MemcpyArgs, MemcpyArgs + 4, "", CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001459
1460 // The strlen result is the unincremented number of bytes in the string.
1461 if (!CI->use_empty()) {
1462 if (UnincLen->getType() != CI->getType())
1463 UnincLen = CastInst::createIntegerCast(UnincLen, CI->getType(), false,
1464 Len->getName(), CI);
1465 CI->replaceAllUsesWith(UnincLen);
1466 }
1467 return ReplaceCallWith(CI, 0);
1468 }
1469 }
1470 return false;
1471 }
1472} SPrintFOptimizer;
1473
1474/// This LibCallOptimization will simplify calls to the "fputs" library
1475/// function. It looks for cases where the result of fputs is not used and the
1476/// operation can be reduced to something simpler.
1477/// @brief Simplify the fputs library function.
1478struct VISIBILITY_HIDDEN FPutsOptimization : public LibCallOptimization {
1479public:
1480 /// @brief Default Constructor
1481 FPutsOptimization() : LibCallOptimization("fputs",
1482 "Number of 'fputs' calls simplified") {}
1483
1484 /// @brief Make sure that the "fputs" function has the right prototype
1485 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
1486 // Just make sure this has 2 arguments
1487 return F->arg_size() == 2;
1488 }
1489
1490 /// @brief Perform the fputs optimization.
1491 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1492 // If the result is used, none of these optimizations work.
1493 if (!CI->use_empty())
1494 return false;
1495
1496 // All the optimizations depend on the length of the first argument and the
1497 // fact that it is a constant string array. Check that now
1498 std::string Str;
1499 if (!GetConstantStringInfo(CI->getOperand(1), Str))
1500 return false;
1501
1502 const Type *FILETy = CI->getOperand(2)->getType();
1503 // fputs(s,F) -> fwrite(s,1,len,F) (if s is constant and strlen(s) > 1)
1504 Value *FWriteParms[4] = {
1505 CI->getOperand(1),
1506 ConstantInt::get(SLC.getIntPtrType(), Str.size()),
1507 ConstantInt::get(SLC.getIntPtrType(), 1),
1508 CI->getOperand(2)
1509 };
David Greeneb1c4a7b2007-08-01 03:43:44 +00001510 new CallInst(SLC.get_fwrite(FILETy), FWriteParms, FWriteParms + 4, "", CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001511 return ReplaceCallWith(CI, 0); // Known to have no uses (see above).
1512 }
1513} FPutsOptimizer;
1514
1515/// This LibCallOptimization will simplify calls to the "fwrite" function.
1516struct VISIBILITY_HIDDEN FWriteOptimization : public LibCallOptimization {
1517public:
1518 /// @brief Default Constructor
1519 FWriteOptimization() : LibCallOptimization("fwrite",
1520 "Number of 'fwrite' calls simplified") {}
1521
1522 /// @brief Make sure that the "fputs" function has the right prototype
1523 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
1524 const FunctionType *FT = F->getFunctionType();
1525 return FT->getNumParams() == 4 &&
Christopher Lambbb2f2222007-12-17 01:12:55 +00001526 FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001527 FT->getParamType(1) == FT->getParamType(2) &&
1528 isa<IntegerType>(FT->getParamType(1)) &&
1529 isa<PointerType>(FT->getParamType(3)) &&
1530 isa<IntegerType>(FT->getReturnType());
1531 }
1532
1533 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1534 // Get the element size and count.
1535 uint64_t EltSize, EltCount;
1536 if (ConstantInt *C = dyn_cast<ConstantInt>(CI->getOperand(2)))
1537 EltSize = C->getZExtValue();
1538 else
1539 return false;
1540 if (ConstantInt *C = dyn_cast<ConstantInt>(CI->getOperand(3)))
1541 EltCount = C->getZExtValue();
1542 else
1543 return false;
1544
1545 // If this is writing zero records, remove the call (it's a noop).
1546 if (EltSize * EltCount == 0)
1547 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
1548
1549 // If this is writing one byte, turn it into fputc.
1550 if (EltSize == 1 && EltCount == 1) {
David Greeneb1c4a7b2007-08-01 03:43:44 +00001551 SmallVector<Value *, 2> Args;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001552 // fwrite(s,1,1,F) -> fputc(s[0],F)
1553 Value *Ptr = CI->getOperand(1);
1554 Value *Val = new LoadInst(Ptr, Ptr->getName()+".byte", CI);
David Greeneb1c4a7b2007-08-01 03:43:44 +00001555 Args.push_back(new ZExtInst(Val, Type::Int32Ty, Val->getName()+".int", CI));
1556 Args.push_back(CI->getOperand(4));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001557 const Type *FILETy = CI->getOperand(4)->getType();
David Greeneb1c4a7b2007-08-01 03:43:44 +00001558 new CallInst(SLC.get_fputc(FILETy), Args.begin(), Args.end(), "", CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001559 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
1560 }
1561 return false;
1562 }
1563} FWriteOptimizer;
1564
1565/// This LibCallOptimization will simplify calls to the "isdigit" library
1566/// function. It simply does range checks the parameter explicitly.
1567/// @brief Simplify the isdigit library function.
1568struct VISIBILITY_HIDDEN isdigitOptimization : public LibCallOptimization {
1569public:
1570 isdigitOptimization() : LibCallOptimization("isdigit",
1571 "Number of 'isdigit' calls simplified") {}
1572
1573 /// @brief Make sure that the "isdigit" function has the right prototype
1574 virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){
1575 // Just make sure this has 1 argument
1576 return (f->arg_size() == 1);
1577 }
1578
1579 /// @brief Perform the toascii optimization.
1580 virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) {
1581 if (ConstantInt* CI = dyn_cast<ConstantInt>(ci->getOperand(1))) {
1582 // isdigit(c) -> 0 or 1, if 'c' is constant
1583 uint64_t val = CI->getZExtValue();
1584 if (val >= '0' && val <= '9')
1585 return ReplaceCallWith(ci, ConstantInt::get(Type::Int32Ty, 1));
1586 else
1587 return ReplaceCallWith(ci, ConstantInt::get(Type::Int32Ty, 0));
1588 }
1589
1590 // isdigit(c) -> (unsigned)c - '0' <= 9
1591 CastInst* cast = CastInst::createIntegerCast(ci->getOperand(1),
1592 Type::Int32Ty, false/*ZExt*/, ci->getOperand(1)->getName()+".uint", ci);
1593 BinaryOperator* sub_inst = BinaryOperator::createSub(cast,
1594 ConstantInt::get(Type::Int32Ty,0x30),
1595 ci->getOperand(1)->getName()+".sub",ci);
1596 ICmpInst* setcond_inst = new ICmpInst(ICmpInst::ICMP_ULE,sub_inst,
1597 ConstantInt::get(Type::Int32Ty,9),
1598 ci->getOperand(1)->getName()+".cmp",ci);
1599 CastInst* c2 = new ZExtInst(setcond_inst, Type::Int32Ty,
1600 ci->getOperand(1)->getName()+".isdigit", ci);
1601 return ReplaceCallWith(ci, c2);
1602 }
1603} isdigitOptimizer;
1604
1605struct VISIBILITY_HIDDEN isasciiOptimization : public LibCallOptimization {
1606public:
1607 isasciiOptimization()
1608 : LibCallOptimization("isascii", "Number of 'isascii' calls simplified") {}
1609
1610 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
1611 return F->arg_size() == 1 && F->arg_begin()->getType()->isInteger() &&
1612 F->getReturnType()->isInteger();
1613 }
1614
1615 /// @brief Perform the isascii optimization.
1616 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1617 // isascii(c) -> (unsigned)c < 128
1618 Value *V = CI->getOperand(1);
1619 Value *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, V,
1620 ConstantInt::get(V->getType(), 128),
1621 V->getName()+".isascii", CI);
1622 if (Cmp->getType() != CI->getType())
1623 Cmp = new ZExtInst(Cmp, CI->getType(), Cmp->getName(), CI);
1624 return ReplaceCallWith(CI, Cmp);
1625 }
1626} isasciiOptimizer;
1627
1628
1629/// This LibCallOptimization will simplify calls to the "toascii" library
1630/// function. It simply does the corresponding and operation to restrict the
1631/// range of values to the ASCII character set (0-127).
1632/// @brief Simplify the toascii library function.
1633struct VISIBILITY_HIDDEN ToAsciiOptimization : public LibCallOptimization {
1634public:
1635 /// @brief Default Constructor
1636 ToAsciiOptimization() : LibCallOptimization("toascii",
1637 "Number of 'toascii' calls simplified") {}
1638
1639 /// @brief Make sure that the "fputs" function has the right prototype
1640 virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){
1641 // Just make sure this has 2 arguments
1642 return (f->arg_size() == 1);
1643 }
1644
1645 /// @brief Perform the toascii optimization.
1646 virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) {
1647 // toascii(c) -> (c & 0x7f)
1648 Value *chr = ci->getOperand(1);
1649 Value *and_inst = BinaryOperator::createAnd(chr,
1650 ConstantInt::get(chr->getType(),0x7F),ci->getName()+".toascii",ci);
1651 return ReplaceCallWith(ci, and_inst);
1652 }
1653} ToAsciiOptimizer;
1654
1655/// This LibCallOptimization will simplify calls to the "ffs" library
1656/// calls which find the first set bit in an int, long, or long long. The
1657/// optimization is to compute the result at compile time if the argument is
1658/// a constant.
1659/// @brief Simplify the ffs library function.
1660struct VISIBILITY_HIDDEN FFSOptimization : public LibCallOptimization {
1661protected:
1662 /// @brief Subclass Constructor
1663 FFSOptimization(const char* funcName, const char* description)
1664 : LibCallOptimization(funcName, description) {}
1665
1666public:
1667 /// @brief Default Constructor
1668 FFSOptimization() : LibCallOptimization("ffs",
1669 "Number of 'ffs' calls simplified") {}
1670
1671 /// @brief Make sure that the "ffs" function has the right prototype
1672 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
1673 // Just make sure this has 2 arguments
1674 return F->arg_size() == 1 && F->getReturnType() == Type::Int32Ty;
1675 }
1676
1677 /// @brief Perform the ffs optimization.
1678 virtual bool OptimizeCall(CallInst *TheCall, SimplifyLibCalls &SLC) {
1679 if (ConstantInt *CI = dyn_cast<ConstantInt>(TheCall->getOperand(1))) {
1680 // ffs(cnst) -> bit#
1681 // ffsl(cnst) -> bit#
1682 // ffsll(cnst) -> bit#
1683 uint64_t val = CI->getZExtValue();
1684 int result = 0;
1685 if (val) {
1686 ++result;
1687 while ((val & 1) == 0) {
1688 ++result;
1689 val >>= 1;
1690 }
1691 }
1692 return ReplaceCallWith(TheCall, ConstantInt::get(Type::Int32Ty, result));
1693 }
1694
1695 // ffs(x) -> x == 0 ? 0 : llvm.cttz(x)+1
1696 // ffsl(x) -> x == 0 ? 0 : llvm.cttz(x)+1
1697 // ffsll(x) -> x == 0 ? 0 : llvm.cttz(x)+1
1698 const Type *ArgType = TheCall->getOperand(1)->getType();
1699 const char *CTTZName;
1700 assert(ArgType->getTypeID() == Type::IntegerTyID &&
1701 "llvm.cttz argument is not an integer?");
1702 unsigned BitWidth = cast<IntegerType>(ArgType)->getBitWidth();
1703 if (BitWidth == 8)
1704 CTTZName = "llvm.cttz.i8";
1705 else if (BitWidth == 16)
1706 CTTZName = "llvm.cttz.i16";
1707 else if (BitWidth == 32)
1708 CTTZName = "llvm.cttz.i32";
1709 else {
1710 assert(BitWidth == 64 && "Unknown bitwidth");
1711 CTTZName = "llvm.cttz.i64";
1712 }
1713
1714 Constant *F = SLC.getModule()->getOrInsertFunction(CTTZName, ArgType,
1715 ArgType, NULL);
1716 Value *V = CastInst::createIntegerCast(TheCall->getOperand(1), ArgType,
1717 false/*ZExt*/, "tmp", TheCall);
1718 Value *V2 = new CallInst(F, V, "tmp", TheCall);
1719 V2 = CastInst::createIntegerCast(V2, Type::Int32Ty, false/*ZExt*/,
1720 "tmp", TheCall);
1721 V2 = BinaryOperator::createAdd(V2, ConstantInt::get(Type::Int32Ty, 1),
1722 "tmp", TheCall);
1723 Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, V,
1724 Constant::getNullValue(V->getType()), "tmp",
1725 TheCall);
1726 V2 = new SelectInst(Cond, ConstantInt::get(Type::Int32Ty, 0), V2,
1727 TheCall->getName(), TheCall);
1728 return ReplaceCallWith(TheCall, V2);
1729 }
1730} FFSOptimizer;
1731
1732/// This LibCallOptimization will simplify calls to the "ffsl" library
1733/// calls. It simply uses FFSOptimization for which the transformation is
1734/// identical.
1735/// @brief Simplify the ffsl library function.
1736struct VISIBILITY_HIDDEN FFSLOptimization : public FFSOptimization {
1737public:
1738 /// @brief Default Constructor
1739 FFSLOptimization() : FFSOptimization("ffsl",
1740 "Number of 'ffsl' calls simplified") {}
1741
1742} FFSLOptimizer;
1743
1744/// This LibCallOptimization will simplify calls to the "ffsll" library
1745/// calls. It simply uses FFSOptimization for which the transformation is
1746/// identical.
1747/// @brief Simplify the ffsl library function.
1748struct VISIBILITY_HIDDEN FFSLLOptimization : public FFSOptimization {
1749public:
1750 /// @brief Default Constructor
1751 FFSLLOptimization() : FFSOptimization("ffsll",
1752 "Number of 'ffsll' calls simplified") {}
1753
1754} FFSLLOptimizer;
1755
1756/// This optimizes unary functions that take and return doubles.
1757struct UnaryDoubleFPOptimizer : public LibCallOptimization {
1758 UnaryDoubleFPOptimizer(const char *Fn, const char *Desc)
1759 : LibCallOptimization(Fn, Desc) {}
1760
1761 // Make sure that this function has the right prototype
1762 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
1763 return F->arg_size() == 1 && F->arg_begin()->getType() == Type::DoubleTy &&
1764 F->getReturnType() == Type::DoubleTy;
1765 }
1766
1767 /// ShrinkFunctionToFloatVersion - If the input to this function is really a
1768 /// float, strength reduce this to a float version of the function,
1769 /// e.g. floor((double)FLT) -> (double)floorf(FLT). This can only be called
1770 /// when the target supports the destination function and where there can be
1771 /// no precision loss.
1772 static bool ShrinkFunctionToFloatVersion(CallInst *CI, SimplifyLibCalls &SLC,
1773 Constant *(SimplifyLibCalls::*FP)()){
1774 if (FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1)))
1775 if (Cast->getOperand(0)->getType() == Type::FloatTy) {
1776 Value *New = new CallInst((SLC.*FP)(), Cast->getOperand(0),
1777 CI->getName(), CI);
1778 New = new FPExtInst(New, Type::DoubleTy, CI->getName(), CI);
1779 CI->replaceAllUsesWith(New);
1780 CI->eraseFromParent();
1781 if (Cast->use_empty())
1782 Cast->eraseFromParent();
1783 return true;
1784 }
1785 return false;
1786 }
1787};
1788
1789
1790struct VISIBILITY_HIDDEN FloorOptimization : public UnaryDoubleFPOptimizer {
1791 FloorOptimization()
1792 : UnaryDoubleFPOptimizer("floor", "Number of 'floor' calls simplified") {}
1793
1794 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1795#ifdef HAVE_FLOORF
1796 // If this is a float argument passed in, convert to floorf.
1797 if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_floorf))
1798 return true;
1799#endif
1800 return false; // opt failed
1801 }
1802} FloorOptimizer;
1803
1804struct VISIBILITY_HIDDEN CeilOptimization : public UnaryDoubleFPOptimizer {
1805 CeilOptimization()
1806 : UnaryDoubleFPOptimizer("ceil", "Number of 'ceil' calls simplified") {}
1807
1808 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1809#ifdef HAVE_CEILF
1810 // If this is a float argument passed in, convert to ceilf.
1811 if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_ceilf))
1812 return true;
1813#endif
1814 return false; // opt failed
1815 }
1816} CeilOptimizer;
1817
1818struct VISIBILITY_HIDDEN RoundOptimization : public UnaryDoubleFPOptimizer {
1819 RoundOptimization()
1820 : UnaryDoubleFPOptimizer("round", "Number of 'round' calls simplified") {}
1821
1822 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1823#ifdef HAVE_ROUNDF
1824 // If this is a float argument passed in, convert to roundf.
1825 if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_roundf))
1826 return true;
1827#endif
1828 return false; // opt failed
1829 }
1830} RoundOptimizer;
1831
1832struct VISIBILITY_HIDDEN RintOptimization : public UnaryDoubleFPOptimizer {
1833 RintOptimization()
1834 : UnaryDoubleFPOptimizer("rint", "Number of 'rint' calls simplified") {}
1835
1836 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1837#ifdef HAVE_RINTF
1838 // If this is a float argument passed in, convert to rintf.
1839 if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_rintf))
1840 return true;
1841#endif
1842 return false; // opt failed
1843 }
1844} RintOptimizer;
1845
1846struct VISIBILITY_HIDDEN NearByIntOptimization : public UnaryDoubleFPOptimizer {
1847 NearByIntOptimization()
1848 : UnaryDoubleFPOptimizer("nearbyint",
1849 "Number of 'nearbyint' calls simplified") {}
1850
1851 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1852#ifdef HAVE_NEARBYINTF
1853 // If this is a float argument passed in, convert to nearbyintf.
1854 if (ShrinkFunctionToFloatVersion(CI, SLC,&SimplifyLibCalls::get_nearbyintf))
1855 return true;
1856#endif
1857 return false; // opt failed
1858 }
1859} NearByIntOptimizer;
1860
1861/// GetConstantStringInfo - This function computes the length of a
1862/// null-terminated constant array of integers. This function can't rely on the
1863/// size of the constant array because there could be a null terminator in the
1864/// middle of the array.
1865///
1866/// We also have to bail out if we find a non-integer constant initializer
1867/// of one of the elements or if there is no null-terminator. The logic
1868/// below checks each of these conditions and will return true only if all
1869/// conditions are met. If the conditions aren't met, this returns false.
1870///
1871/// If successful, the \p Array param is set to the constant array being
1872/// indexed, the \p Length parameter is set to the length of the null-terminated
1873/// string pointed to by V, the \p StartIdx value is set to the first
1874/// element of the Array that V points to, and true is returned.
1875static bool GetConstantStringInfo(Value *V, std::string &Str) {
1876 // Look through noop bitcast instructions.
1877 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1878 if (BCI->getType() == BCI->getOperand(0)->getType())
1879 return GetConstantStringInfo(BCI->getOperand(0), Str);
1880 return false;
1881 }
1882
1883 // If the value is not a GEP instruction nor a constant expression with a
1884 // GEP instruction, then return false because ConstantArray can't occur
1885 // any other way
1886 User *GEP = 0;
1887 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1888 GEP = GEPI;
1889 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1890 if (CE->getOpcode() != Instruction::GetElementPtr)
1891 return false;
1892 GEP = CE;
1893 } else {
1894 return false;
1895 }
1896
1897 // Make sure the GEP has exactly three arguments.
1898 if (GEP->getNumOperands() != 3)
1899 return false;
1900
1901 // Check to make sure that the first operand of the GEP is an integer and
1902 // has value 0 so that we are sure we're indexing into the initializer.
1903 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
1904 if (!Idx->isZero())
1905 return false;
1906 } else
1907 return false;
1908
1909 // If the second index isn't a ConstantInt, then this is a variable index
1910 // into the array. If this occurs, we can't say anything meaningful about
1911 // the string.
1912 uint64_t StartIdx = 0;
1913 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1914 StartIdx = CI->getZExtValue();
1915 else
1916 return false;
1917
1918 // The GEP instruction, constant or instruction, must reference a global
1919 // variable that is a constant and is initialized. The referenced constant
1920 // initializer is the array that we'll use for optimization.
1921 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1922 if (!GV || !GV->isConstant() || !GV->hasInitializer())
1923 return false;
1924 Constant *GlobalInit = GV->getInitializer();
1925
1926 // Handle the ConstantAggregateZero case
1927 if (isa<ConstantAggregateZero>(GlobalInit)) {
1928 // This is a degenerate case. The initializer is constant zero so the
1929 // length of the string must be zero.
1930 Str.clear();
1931 return true;
1932 }
1933
1934 // Must be a Constant Array
1935 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1936 if (!Array) return false;
1937
1938 // Get the number of elements in the array
1939 uint64_t NumElts = Array->getType()->getNumElements();
1940
1941 // Traverse the constant array from StartIdx (derived above) which is
1942 // the place the GEP refers to in the array.
1943 for (unsigned i = StartIdx; i < NumElts; ++i) {
1944 Constant *Elt = Array->getOperand(i);
1945 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1946 if (!CI) // This array isn't suitable, non-int initializer.
1947 return false;
1948 if (CI->isZero())
1949 return true; // we found end of string, success!
1950 Str += (char)CI->getZExtValue();
1951 }
1952
1953 return false; // The array isn't null terminated.
1954}
1955
1956/// CastToCStr - Return V if it is an sbyte*, otherwise cast it to sbyte*,
1957/// inserting the cast before IP, and return the cast.
1958/// @brief Cast a value to a "C" string.
1959static Value *CastToCStr(Value *V, Instruction *IP) {
1960 assert(isa<PointerType>(V->getType()) &&
1961 "Can't cast non-pointer type to C string type");
Christopher Lambbb2f2222007-12-17 01:12:55 +00001962 const Type *SBPTy = PointerType::getUnqual(Type::Int8Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001963 if (V->getType() != SBPTy)
1964 return new BitCastInst(V, SBPTy, V->getName(), IP);
1965 return V;
1966}
1967
1968// TODO:
1969// Additional cases that we need to add to this file:
1970//
1971// cbrt:
1972// * cbrt(expN(X)) -> expN(x/3)
1973// * cbrt(sqrt(x)) -> pow(x,1/6)
1974// * cbrt(sqrt(x)) -> pow(x,1/9)
1975//
1976// cos, cosf, cosl:
1977// * cos(-x) -> cos(x)
1978//
1979// exp, expf, expl:
1980// * exp(log(x)) -> x
1981//
1982// log, logf, logl:
1983// * log(exp(x)) -> x
1984// * log(x**y) -> y*log(x)
1985// * log(exp(y)) -> y*log(e)
1986// * log(exp2(y)) -> y*log(2)
1987// * log(exp10(y)) -> y*log(10)
1988// * log(sqrt(x)) -> 0.5*log(x)
1989// * log(pow(x,y)) -> y*log(x)
1990//
1991// lround, lroundf, lroundl:
1992// * lround(cnst) -> cnst'
1993//
1994// memcmp:
1995// * memcmp(x,y,l) -> cnst
1996// (if all arguments are constant and strlen(x) <= l and strlen(y) <= l)
1997//
1998// memmove:
1999// * memmove(d,s,l,a) -> memcpy(d,s,l,a)
2000// (if s is a global constant array)
2001//
2002// pow, powf, powl:
2003// * pow(exp(x),y) -> exp(x*y)
2004// * pow(sqrt(x),y) -> pow(x,y*0.5)
2005// * pow(pow(x,y),z)-> pow(x,y*z)
2006//
2007// puts:
2008// * puts("") -> putchar("\n")
2009//
2010// round, roundf, roundl:
2011// * round(cnst) -> cnst'
2012//
2013// signbit:
2014// * signbit(cnst) -> cnst'
2015// * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2016//
2017// sqrt, sqrtf, sqrtl:
2018// * sqrt(expN(x)) -> expN(x*0.5)
2019// * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2020// * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2021//
2022// stpcpy:
2023// * stpcpy(str, "literal") ->
2024// llvm.memcpy(str,"literal",strlen("literal")+1,1)
2025// strrchr:
2026// * strrchr(s,c) -> reverse_offset_of_in(c,s)
2027// (if c is a constant integer and s is a constant string)
2028// * strrchr(s1,0) -> strchr(s1,0)
2029//
2030// strncat:
2031// * strncat(x,y,0) -> x
2032// * strncat(x,y,0) -> x (if strlen(y) = 0)
2033// * strncat(x,y,l) -> strcat(x,y) (if y and l are constants an l > strlen(y))
2034//
2035// strncpy:
2036// * strncpy(d,s,0) -> d
2037// * strncpy(d,s,l) -> memcpy(d,s,l,1)
2038// (if s and l are constants)
2039//
2040// strpbrk:
2041// * strpbrk(s,a) -> offset_in_for(s,a)
2042// (if s and a are both constant strings)
2043// * strpbrk(s,"") -> 0
2044// * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1)
2045//
2046// strspn, strcspn:
2047// * strspn(s,a) -> const_int (if both args are constant)
2048// * strspn("",a) -> 0
2049// * strspn(s,"") -> 0
2050// * strcspn(s,a) -> const_int (if both args are constant)
2051// * strcspn("",a) -> 0
2052// * strcspn(s,"") -> strlen(a)
2053//
2054// strstr:
2055// * strstr(x,x) -> x
2056// * strstr(s1,s2) -> offset_of_s2_in(s1)
2057// (if s1 and s2 are constant strings)
2058//
2059// tan, tanf, tanl:
2060// * tan(atan(x)) -> x
2061//
2062// trunc, truncf, truncl:
2063// * trunc(cnst) -> cnst'
2064//
2065//
2066}