blob: d0537ea8c437e407e022f2b81cd58f275609bdb2 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Assembly/Writer.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/Statistic.h"
36#include <algorithm>
37using namespace llvm;
38
39STATISTIC(NumLinear , "Number of insts linearized");
40STATISTIC(NumChanged, "Number of insts reassociated");
41STATISTIC(NumAnnihil, "Number of expr tree annihilated");
42STATISTIC(NumFactor , "Number of multiplies factored");
43
44namespace {
45 struct VISIBILITY_HIDDEN ValueEntry {
46 unsigned Rank;
47 Value *Op;
48 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
49 };
50 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
51 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
52 }
53}
54
55/// PrintOps - Print out the expression identified in the Ops list.
56///
57static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
58 Module *M = I->getParent()->getParent()->getParent();
59 cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
60 << *Ops[0].Op->getType();
61 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
62 WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M)
63 << "," << Ops[i].Rank;
64}
65
66namespace {
67 class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
68 std::map<BasicBlock*, unsigned> RankMap;
69 std::map<Value*, unsigned> ValueRankMap;
70 bool MadeChange;
71 public:
72 static char ID; // Pass identification, replacement for typeid
73 Reassociate() : FunctionPass((intptr_t)&ID) {}
74
75 bool runOnFunction(Function &F);
76
77 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78 AU.setPreservesCFG();
79 }
80 private:
81 void BuildRankMap(Function &F);
82 unsigned getRank(Value *V);
83 void ReassociateExpression(BinaryOperator *I);
84 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
85 unsigned Idx = 0);
86 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
87 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
88 void LinearizeExpr(BinaryOperator *I);
89 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
90 void ReassociateBB(BasicBlock *BB);
91
92 void RemoveDeadBinaryOp(Value *V);
93 };
94
95 char Reassociate::ID = 0;
96 RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
97}
98
99// Public interface to the Reassociate pass
100FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
101
102void Reassociate::RemoveDeadBinaryOp(Value *V) {
103 Instruction *Op = dyn_cast<Instruction>(V);
104 if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
105 return;
106
107 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
108 RemoveDeadBinaryOp(LHS);
109 RemoveDeadBinaryOp(RHS);
110}
111
112
113static bool isUnmovableInstruction(Instruction *I) {
114 if (I->getOpcode() == Instruction::PHI ||
115 I->getOpcode() == Instruction::Alloca ||
116 I->getOpcode() == Instruction::Load ||
117 I->getOpcode() == Instruction::Malloc ||
118 I->getOpcode() == Instruction::Invoke ||
119 I->getOpcode() == Instruction::Call ||
120 I->getOpcode() == Instruction::UDiv ||
121 I->getOpcode() == Instruction::SDiv ||
122 I->getOpcode() == Instruction::FDiv ||
123 I->getOpcode() == Instruction::URem ||
124 I->getOpcode() == Instruction::SRem ||
125 I->getOpcode() == Instruction::FRem)
126 return true;
127 return false;
128}
129
130void Reassociate::BuildRankMap(Function &F) {
131 unsigned i = 2;
132
133 // Assign distinct ranks to function arguments
134 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
135 ValueRankMap[I] = ++i;
136
137 ReversePostOrderTraversal<Function*> RPOT(&F);
138 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
139 E = RPOT.end(); I != E; ++I) {
140 BasicBlock *BB = *I;
141 unsigned BBRank = RankMap[BB] = ++i << 16;
142
143 // Walk the basic block, adding precomputed ranks for any instructions that
144 // we cannot move. This ensures that the ranks for these instructions are
145 // all different in the block.
146 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
147 if (isUnmovableInstruction(I))
148 ValueRankMap[I] = ++BBRank;
149 }
150}
151
152unsigned Reassociate::getRank(Value *V) {
153 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
154
155 Instruction *I = dyn_cast<Instruction>(V);
156 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
157
158 unsigned &CachedRank = ValueRankMap[I];
159 if (CachedRank) return CachedRank; // Rank already known?
160
161 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
162 // we can reassociate expressions for code motion! Since we do not recurse
163 // for PHI nodes, we cannot have infinite recursion here, because there
164 // cannot be loops in the value graph that do not go through PHI nodes.
165 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
166 for (unsigned i = 0, e = I->getNumOperands();
167 i != e && Rank != MaxRank; ++i)
168 Rank = std::max(Rank, getRank(I->getOperand(i)));
169
170 // If this is a not or neg instruction, do not count it for rank. This
171 // assures us that X and ~X will have the same rank.
172 if (!I->getType()->isInteger() ||
173 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
174 ++Rank;
175
176 //DOUT << "Calculated Rank[" << V->getName() << "] = "
177 // << Rank << "\n";
178
179 return CachedRank = Rank;
180}
181
182/// isReassociableOp - Return true if V is an instruction of the specified
183/// opcode and if it only has one use.
184static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
185 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
186 cast<Instruction>(V)->getOpcode() == Opcode)
187 return cast<BinaryOperator>(V);
188 return 0;
189}
190
191/// LowerNegateToMultiply - Replace 0-X with X*-1.
192///
193static Instruction *LowerNegateToMultiply(Instruction *Neg) {
194 Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
195
196 Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, "",Neg);
197 Res->takeName(Neg);
198 Neg->replaceAllUsesWith(Res);
199 Neg->eraseFromParent();
200 return Res;
201}
202
203// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
204// Note that if D is also part of the expression tree that we recurse to
205// linearize it as well. Besides that case, this does not recurse into A,B, or
206// C.
207void Reassociate::LinearizeExpr(BinaryOperator *I) {
208 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
209 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
210 assert(isReassociableOp(LHS, I->getOpcode()) &&
211 isReassociableOp(RHS, I->getOpcode()) &&
212 "Not an expression that needs linearization?");
213
214 DOUT << "Linear" << *LHS << *RHS << *I;
215
216 // Move the RHS instruction to live immediately before I, avoiding breaking
217 // dominator properties.
218 RHS->moveBefore(I);
219
220 // Move operands around to do the linearization.
221 I->setOperand(1, RHS->getOperand(0));
222 RHS->setOperand(0, LHS);
223 I->setOperand(0, RHS);
224
225 ++NumLinear;
226 MadeChange = true;
227 DOUT << "Linearized: " << *I;
228
229 // If D is part of this expression tree, tail recurse.
230 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
231 LinearizeExpr(I);
232}
233
234
235/// LinearizeExprTree - Given an associative binary expression tree, traverse
236/// all of the uses putting it into canonical form. This forces a left-linear
237/// form of the the expression (((a+b)+c)+d), and collects information about the
238/// rank of the non-tree operands.
239///
240/// NOTE: These intentionally destroys the expression tree operands (turning
241/// them into undef values) to reduce #uses of the values. This means that the
242/// caller MUST use something like RewriteExprTree to put the values back in.
243///
244void Reassociate::LinearizeExprTree(BinaryOperator *I,
245 std::vector<ValueEntry> &Ops) {
246 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
247 unsigned Opcode = I->getOpcode();
248
249 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
250 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
251 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
252
253 // If this is a multiply expression tree and it contains internal negations,
254 // transform them into multiplies by -1 so they can be reassociated.
255 if (I->getOpcode() == Instruction::Mul) {
256 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
257 LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
258 LHSBO = isReassociableOp(LHS, Opcode);
259 }
260 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
261 RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
262 RHSBO = isReassociableOp(RHS, Opcode);
263 }
264 }
265
266 if (!LHSBO) {
267 if (!RHSBO) {
268 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
269 // such, just remember these operands and their rank.
270 Ops.push_back(ValueEntry(getRank(LHS), LHS));
271 Ops.push_back(ValueEntry(getRank(RHS), RHS));
272
273 // Clear the leaves out.
274 I->setOperand(0, UndefValue::get(I->getType()));
275 I->setOperand(1, UndefValue::get(I->getType()));
276 return;
277 } else {
278 // Turn X+(Y+Z) -> (Y+Z)+X
279 std::swap(LHSBO, RHSBO);
280 std::swap(LHS, RHS);
281 bool Success = !I->swapOperands();
282 assert(Success && "swapOperands failed");
283 MadeChange = true;
284 }
285 } else if (RHSBO) {
286 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
287 // part of the expression tree.
288 LinearizeExpr(I);
289 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
290 RHS = I->getOperand(1);
291 RHSBO = 0;
292 }
293
294 // Okay, now we know that the LHS is a nested expression and that the RHS is
295 // not. Perform reassociation.
296 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
297
298 // Move LHS right before I to make sure that the tree expression dominates all
299 // values.
300 LHSBO->moveBefore(I);
301
302 // Linearize the expression tree on the LHS.
303 LinearizeExprTree(LHSBO, Ops);
304
305 // Remember the RHS operand and its rank.
306 Ops.push_back(ValueEntry(getRank(RHS), RHS));
307
308 // Clear the RHS leaf out.
309 I->setOperand(1, UndefValue::get(I->getType()));
310}
311
312// RewriteExprTree - Now that the operands for this expression tree are
313// linearized and optimized, emit them in-order. This function is written to be
314// tail recursive.
315void Reassociate::RewriteExprTree(BinaryOperator *I,
316 std::vector<ValueEntry> &Ops,
317 unsigned i) {
318 if (i+2 == Ops.size()) {
319 if (I->getOperand(0) != Ops[i].Op ||
320 I->getOperand(1) != Ops[i+1].Op) {
321 Value *OldLHS = I->getOperand(0);
322 DOUT << "RA: " << *I;
323 I->setOperand(0, Ops[i].Op);
324 I->setOperand(1, Ops[i+1].Op);
325 DOUT << "TO: " << *I;
326 MadeChange = true;
327 ++NumChanged;
328
329 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
330 // delete the extra, now dead, nodes.
331 RemoveDeadBinaryOp(OldLHS);
332 }
333 return;
334 }
335 assert(i+2 < Ops.size() && "Ops index out of range!");
336
337 if (I->getOperand(1) != Ops[i].Op) {
338 DOUT << "RA: " << *I;
339 I->setOperand(1, Ops[i].Op);
340 DOUT << "TO: " << *I;
341 MadeChange = true;
342 ++NumChanged;
343 }
344
345 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
346 assert(LHS->getOpcode() == I->getOpcode() &&
347 "Improper expression tree!");
348
349 // Compactify the tree instructions together with each other to guarantee
350 // that the expression tree is dominated by all of Ops.
351 LHS->moveBefore(I);
352 RewriteExprTree(LHS, Ops, i+1);
353}
354
355
356
357// NegateValue - Insert instructions before the instruction pointed to by BI,
358// that computes the negative version of the value specified. The negative
359// version of the value is returned, and BI is left pointing at the instruction
360// that should be processed next by the reassociation pass.
361//
362static Value *NegateValue(Value *V, Instruction *BI) {
363 // We are trying to expose opportunity for reassociation. One of the things
364 // that we want to do to achieve this is to push a negation as deep into an
365 // expression chain as possible, to expose the add instructions. In practice,
366 // this means that we turn this:
367 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
368 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
369 // the constants. We assume that instcombine will clean up the mess later if
370 // we introduce tons of unnecessary negation instructions...
371 //
372 if (Instruction *I = dyn_cast<Instruction>(V))
373 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
374 // Push the negates through the add.
375 I->setOperand(0, NegateValue(I->getOperand(0), BI));
376 I->setOperand(1, NegateValue(I->getOperand(1), BI));
377
378 // We must move the add instruction here, because the neg instructions do
379 // not dominate the old add instruction in general. By moving it, we are
380 // assured that the neg instructions we just inserted dominate the
381 // instruction we are about to insert after them.
382 //
383 I->moveBefore(BI);
384 I->setName(I->getName()+".neg");
385 return I;
386 }
387
388 // Insert a 'neg' instruction that subtracts the value from zero to get the
389 // negation.
390 //
391 return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
392}
393
Chris Lattner6cf17172008-02-17 20:44:51 +0000394/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
395/// X-Y into (X + -Y).
396static bool ShouldBreakUpSubtract(Instruction *Sub) {
397 // If this is a negation, we can't split it up!
398 if (BinaryOperator::isNeg(Sub))
399 return false;
400
401 // Don't bother to break this up unless either the LHS is an associable add or
402 // if this is only used by one.
403 if (isReassociableOp(Sub->getOperand(0), Instruction::Add))
404 return true;
405 if (isReassociableOp(Sub->getOperand(1), Instruction::Add))
406 return true;
407
408 if (Sub->hasOneUse() && isReassociableOp(Sub->use_back(), Instruction::Add))
409 return true;
410
411 return false;
412}
413
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000414/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
415/// only used by an add, transform this into (X+(0-Y)) to promote better
416/// reassociation.
417static Instruction *BreakUpSubtract(Instruction *Sub) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000418 // Convert a subtract into an add and a neg instruction... so that sub
419 // instructions can be commuted with other add instructions...
420 //
421 // Calculate the negative value of Operand 1 of the sub instruction...
422 // and set it as the RHS of the add instruction we just made...
423 //
424 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
425 Instruction *New =
426 BinaryOperator::createAdd(Sub->getOperand(0), NegVal, "", Sub);
427 New->takeName(Sub);
428
429 // Everyone now refers to the add instruction.
430 Sub->replaceAllUsesWith(New);
431 Sub->eraseFromParent();
432
433 DOUT << "Negated: " << *New;
434 return New;
435}
436
437/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
438/// by one, change this into a multiply by a constant to assist with further
439/// reassociation.
440static Instruction *ConvertShiftToMul(Instruction *Shl) {
441 // If an operand of this shift is a reassociable multiply, or if the shift
442 // is used by a reassociable multiply or add, turn into a multiply.
443 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
444 (Shl->hasOneUse() &&
445 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
446 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
447 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
448 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
449
450 Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
451 "", Shl);
452 Mul->takeName(Shl);
453 Shl->replaceAllUsesWith(Mul);
454 Shl->eraseFromParent();
455 return Mul;
456 }
457 return 0;
458}
459
460// Scan backwards and forwards among values with the same rank as element i to
461// see if X exists. If X does not exist, return i.
462static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
463 Value *X) {
464 unsigned XRank = Ops[i].Rank;
465 unsigned e = Ops.size();
466 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
467 if (Ops[j].Op == X)
468 return j;
469 // Scan backwards
470 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
471 if (Ops[j].Op == X)
472 return j;
473 return i;
474}
475
476/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
477/// and returning the result. Insert the tree before I.
478static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
479 if (Ops.size() == 1) return Ops.back();
480
481 Value *V1 = Ops.back();
482 Ops.pop_back();
483 Value *V2 = EmitAddTreeOfValues(I, Ops);
484 return BinaryOperator::createAdd(V2, V1, "tmp", I);
485}
486
487/// RemoveFactorFromExpression - If V is an expression tree that is a
488/// multiplication sequence, and if this sequence contains a multiply by Factor,
489/// remove Factor from the tree and return the new tree.
490Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
491 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
492 if (!BO) return 0;
493
494 std::vector<ValueEntry> Factors;
495 LinearizeExprTree(BO, Factors);
496
497 bool FoundFactor = false;
498 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
499 if (Factors[i].Op == Factor) {
500 FoundFactor = true;
501 Factors.erase(Factors.begin()+i);
502 break;
503 }
504 if (!FoundFactor) {
505 // Make sure to restore the operands to the expression tree.
506 RewriteExprTree(BO, Factors);
507 return 0;
508 }
509
510 if (Factors.size() == 1) return Factors[0].Op;
511
512 RewriteExprTree(BO, Factors);
513 return BO;
514}
515
516/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
517/// add its operands as factors, otherwise add V to the list of factors.
518static void FindSingleUseMultiplyFactors(Value *V,
519 std::vector<Value*> &Factors) {
520 BinaryOperator *BO;
521 if ((!V->hasOneUse() && !V->use_empty()) ||
522 !(BO = dyn_cast<BinaryOperator>(V)) ||
523 BO->getOpcode() != Instruction::Mul) {
524 Factors.push_back(V);
525 return;
526 }
527
528 // Otherwise, add the LHS and RHS to the list of factors.
529 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
530 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
531}
532
533
534
535Value *Reassociate::OptimizeExpression(BinaryOperator *I,
536 std::vector<ValueEntry> &Ops) {
537 // Now that we have the linearized expression tree, try to optimize it.
538 // Start by folding any constants that we found.
539 bool IterateOptimization = false;
540 if (Ops.size() == 1) return Ops[0].Op;
541
542 unsigned Opcode = I->getOpcode();
543
544 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
545 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
546 Ops.pop_back();
547 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
548 return OptimizeExpression(I, Ops);
549 }
550
551 // Check for destructive annihilation due to a constant being used.
552 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
553 switch (Opcode) {
554 default: break;
555 case Instruction::And:
556 if (CstVal->isZero()) { // ... & 0 -> 0
557 ++NumAnnihil;
558 return CstVal;
559 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
560 Ops.pop_back();
561 }
562 break;
563 case Instruction::Mul:
564 if (CstVal->isZero()) { // ... * 0 -> 0
565 ++NumAnnihil;
566 return CstVal;
567 } else if (cast<ConstantInt>(CstVal)->isOne()) {
568 Ops.pop_back(); // ... * 1 -> ...
569 }
570 break;
571 case Instruction::Or:
572 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
573 ++NumAnnihil;
574 return CstVal;
575 }
576 // FALLTHROUGH!
577 case Instruction::Add:
578 case Instruction::Xor:
579 if (CstVal->isZero()) // ... [|^+] 0 -> ...
580 Ops.pop_back();
581 break;
582 }
583 if (Ops.size() == 1) return Ops[0].Op;
584
585 // Handle destructive annihilation do to identities between elements in the
586 // argument list here.
587 switch (Opcode) {
588 default: break;
589 case Instruction::And:
590 case Instruction::Or:
591 case Instruction::Xor:
592 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
593 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
594 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
595 // First, check for X and ~X in the operand list.
596 assert(i < Ops.size());
597 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
598 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
599 unsigned FoundX = FindInOperandList(Ops, i, X);
600 if (FoundX != i) {
601 if (Opcode == Instruction::And) { // ...&X&~X = 0
602 ++NumAnnihil;
603 return Constant::getNullValue(X->getType());
604 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
605 ++NumAnnihil;
606 return ConstantInt::getAllOnesValue(X->getType());
607 }
608 }
609 }
610
611 // Next, check for duplicate pairs of values, which we assume are next to
612 // each other, due to our sorting criteria.
613 assert(i < Ops.size());
614 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
615 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
616 // Drop duplicate values.
617 Ops.erase(Ops.begin()+i);
618 --i; --e;
619 IterateOptimization = true;
620 ++NumAnnihil;
621 } else {
622 assert(Opcode == Instruction::Xor);
623 if (e == 2) {
624 ++NumAnnihil;
625 return Constant::getNullValue(Ops[0].Op->getType());
626 }
627 // ... X^X -> ...
628 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
629 i -= 1; e -= 2;
630 IterateOptimization = true;
631 ++NumAnnihil;
632 }
633 }
634 }
635 break;
636
637 case Instruction::Add:
638 // Scan the operand lists looking for X and -X pairs. If we find any, we
639 // can simplify the expression. X+-X == 0.
640 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
641 assert(i < Ops.size());
642 // Check for X and -X in the operand list.
643 if (BinaryOperator::isNeg(Ops[i].Op)) {
644 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
645 unsigned FoundX = FindInOperandList(Ops, i, X);
646 if (FoundX != i) {
647 // Remove X and -X from the operand list.
648 if (Ops.size() == 2) {
649 ++NumAnnihil;
650 return Constant::getNullValue(X->getType());
651 } else {
652 Ops.erase(Ops.begin()+i);
653 if (i < FoundX)
654 --FoundX;
655 else
656 --i; // Need to back up an extra one.
657 Ops.erase(Ops.begin()+FoundX);
658 IterateOptimization = true;
659 ++NumAnnihil;
660 --i; // Revisit element.
661 e -= 2; // Removed two elements.
662 }
663 }
664 }
665 }
666
667
668 // Scan the operand list, checking to see if there are any common factors
669 // between operands. Consider something like A*A+A*B*C+D. We would like to
670 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
671 // To efficiently find this, we count the number of times a factor occurs
672 // for any ADD operands that are MULs.
673 std::map<Value*, unsigned> FactorOccurrences;
674 unsigned MaxOcc = 0;
675 Value *MaxOccVal = 0;
676 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
677 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
678 if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
679 // Compute all of the factors of this added value.
680 std::vector<Value*> Factors;
681 FindSingleUseMultiplyFactors(BOp, Factors);
682 assert(Factors.size() > 1 && "Bad linearize!");
683
684 // Add one to FactorOccurrences for each unique factor in this op.
685 if (Factors.size() == 2) {
686 unsigned Occ = ++FactorOccurrences[Factors[0]];
687 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
688 if (Factors[0] != Factors[1]) { // Don't double count A*A.
689 Occ = ++FactorOccurrences[Factors[1]];
690 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
691 }
692 } else {
693 std::set<Value*> Duplicates;
694 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
695 if (Duplicates.insert(Factors[i]).second) {
696 unsigned Occ = ++FactorOccurrences[Factors[i]];
697 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
698 }
699 }
700 }
701 }
702 }
703 }
704
705 // If any factor occurred more than one time, we can pull it out.
706 if (MaxOcc > 1) {
707 DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
708
709 // Create a new instruction that uses the MaxOccVal twice. If we don't do
710 // this, we could otherwise run into situations where removing a factor
711 // from an expression will drop a use of maxocc, and this can cause
712 // RemoveFactorFromExpression on successive values to behave differently.
713 Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
714 std::vector<Value*> NewMulOps;
715 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
716 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
717 NewMulOps.push_back(V);
718 Ops.erase(Ops.begin()+i);
719 --i; --e;
720 }
721 }
722
723 // No need for extra uses anymore.
724 delete DummyInst;
725
726 unsigned NumAddedValues = NewMulOps.size();
727 Value *V = EmitAddTreeOfValues(I, NewMulOps);
728 Value *V2 = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
729
730 // Now that we have inserted V and its sole use, optimize it. This allows
731 // us to handle cases that require multiple factoring steps, such as this:
732 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
733 if (NumAddedValues > 1)
734 ReassociateExpression(cast<BinaryOperator>(V));
735
736 ++NumFactor;
737
Dan Gohman301f4052008-01-29 13:02:09 +0000738 if (Ops.empty())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000739 return V2;
740
741 // Add the new value to the list of things being added.
742 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
743
744 // Rewrite the tree so that there is now a use of V.
745 RewriteExprTree(I, Ops);
746 return OptimizeExpression(I, Ops);
747 }
748 break;
749 //case Instruction::Mul:
750 }
751
752 if (IterateOptimization)
753 return OptimizeExpression(I, Ops);
754 return 0;
755}
756
757
758/// ReassociateBB - Inspect all of the instructions in this basic block,
759/// reassociating them as we go.
760void Reassociate::ReassociateBB(BasicBlock *BB) {
761 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
762 Instruction *BI = BBI++;
763 if (BI->getOpcode() == Instruction::Shl &&
764 isa<ConstantInt>(BI->getOperand(1)))
765 if (Instruction *NI = ConvertShiftToMul(BI)) {
766 MadeChange = true;
767 BI = NI;
768 }
769
770 // Reject cases where it is pointless to do this.
771 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
772 isa<VectorType>(BI->getType()))
773 continue; // Floating point ops are not associative.
774
775 // If this is a subtract instruction which is not already in negate form,
776 // see if we can convert it to X+-Y.
777 if (BI->getOpcode() == Instruction::Sub) {
Chris Lattner6cf17172008-02-17 20:44:51 +0000778 if (ShouldBreakUpSubtract(BI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000779 if (Instruction *NI = BreakUpSubtract(BI)) {
780 MadeChange = true;
781 BI = NI;
782 }
Chris Lattner6cf17172008-02-17 20:44:51 +0000783 } else if (BinaryOperator::isNeg(BI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000784 // Otherwise, this is a negation. See if the operand is a multiply tree
785 // and if this is not an inner node of a multiply tree.
786 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
787 (!BI->hasOneUse() ||
788 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
789 BI = LowerNegateToMultiply(BI);
790 MadeChange = true;
791 }
792 }
793 }
794
795 // If this instruction is a commutative binary operator, process it.
796 if (!BI->isAssociative()) continue;
797 BinaryOperator *I = cast<BinaryOperator>(BI);
798
799 // If this is an interior node of a reassociable tree, ignore it until we
800 // get to the root of the tree, to avoid N^2 analysis.
801 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
802 continue;
803
804 // If this is an add tree that is used by a sub instruction, ignore it
805 // until we process the subtract.
806 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
807 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
808 continue;
809
810 ReassociateExpression(I);
811 }
812}
813
814void Reassociate::ReassociateExpression(BinaryOperator *I) {
815
816 // First, walk the expression tree, linearizing the tree, collecting
817 std::vector<ValueEntry> Ops;
818 LinearizeExprTree(I, Ops);
819
820 DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
821
822 // Now that we have linearized the tree to a list and have gathered all of
823 // the operands and their ranks, sort the operands by their rank. Use a
824 // stable_sort so that values with equal ranks will have their relative
825 // positions maintained (and so the compiler is deterministic). Note that
826 // this sorts so that the highest ranking values end up at the beginning of
827 // the vector.
828 std::stable_sort(Ops.begin(), Ops.end());
829
830 // OptimizeExpression - Now that we have the expression tree in a convenient
831 // sorted form, optimize it globally if possible.
832 if (Value *V = OptimizeExpression(I, Ops)) {
833 // This expression tree simplified to something that isn't a tree,
834 // eliminate it.
835 DOUT << "Reassoc to scalar: " << *V << "\n";
836 I->replaceAllUsesWith(V);
837 RemoveDeadBinaryOp(I);
838 return;
839 }
840
841 // We want to sink immediates as deeply as possible except in the case where
842 // this is a multiply tree used only by an add, and the immediate is a -1.
843 // In this case we reassociate to put the negation on the outside so that we
844 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
845 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
846 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
847 isa<ConstantInt>(Ops.back().Op) &&
848 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
849 Ops.insert(Ops.begin(), Ops.back());
850 Ops.pop_back();
851 }
852
853 DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
854
855 if (Ops.size() == 1) {
856 // This expression tree simplified to something that isn't a tree,
857 // eliminate it.
858 I->replaceAllUsesWith(Ops[0].Op);
859 RemoveDeadBinaryOp(I);
860 } else {
861 // Now that we ordered and optimized the expressions, splat them back into
862 // the expression tree, removing any unneeded nodes.
863 RewriteExprTree(I, Ops);
864 }
865}
866
867
868bool Reassociate::runOnFunction(Function &F) {
869 // Recalculate the rank map for F
870 BuildRankMap(F);
871
872 MadeChange = false;
873 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
874 ReassociateBB(FI);
875
876 // We are done with the rank map...
877 RankMap.clear();
878 ValueRankMap.clear();
879 return MadeChange;
880}
881