blob: 93510f0593fbeea1c729ba1ca4fb084234e13596 [file] [log] [blame]
Chris Lattner233f7dc2002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner8a2a3112001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman844731a2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Chris Lattner8a2a3112001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner318bf792007-03-18 22:51:34 +000015// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
Chris Lattner8a2a3112001-12-14 16:52:21 +000017// into:
Chris Lattner318bf792007-03-18 22:51:34 +000018// %Z = add i32 %X, 2
Chris Lattner8a2a3112001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner065a6162003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattner2cd91962003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdf17af12003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Reid Spencere4d87aa2006-12-23 06:05:41 +000027// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
Chris Lattnere92d2f42003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattnerbac32862004-11-14 19:13:23 +000032// ... etc.
Chris Lattner2cd91962003-07-23 21:41:57 +000033//
Chris Lattner8a2a3112001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattner0cea42a2004-03-13 23:54:27 +000036#define DEBUG_TYPE "instcombine"
Chris Lattner022103b2002-05-07 20:03:00 +000037#include "llvm/Transforms/Scalar.h"
Chris Lattner35b9e482004-10-12 04:52:52 +000038#include "llvm/IntrinsicInst.h"
Chris Lattnerbd0ef772002-02-26 21:46:54 +000039#include "llvm/Pass.h"
Chris Lattner0864acf2002-11-04 16:18:53 +000040#include "llvm/DerivedTypes.h"
Chris Lattner833b8a42003-06-26 05:06:25 +000041#include "llvm/GlobalVariable.h"
Chris Lattner79066fa2007-01-30 23:46:24 +000042#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner173234a2008-06-02 01:18:21 +000043#include "llvm/Analysis/ValueTracking.h"
Chris Lattnerbc61e662003-11-02 05:57:39 +000044#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
Chris Lattner28977af2004-04-05 01:30:19 +000047#include "llvm/Support/CallSite.h"
Nick Lewycky5be29202008-02-03 16:33:09 +000048#include "llvm/Support/ConstantRange.h"
Chris Lattnerea1c4542004-12-08 23:43:58 +000049#include "llvm/Support/Debug.h"
Chris Lattner28977af2004-04-05 01:30:19 +000050#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerdd841ae2002-04-18 17:39:14 +000051#include "llvm/Support/InstVisitor.h"
Chris Lattnerbcd7db52005-08-02 19:16:58 +000052#include "llvm/Support/MathExtras.h"
Chris Lattneracd1f0f2004-07-30 07:50:03 +000053#include "llvm/Support/PatternMatch.h"
Chris Lattnera4f0b3a2006-08-27 12:54:02 +000054#include "llvm/Support/Compiler.h"
Chris Lattnerdbab3862007-03-02 21:28:56 +000055#include "llvm/ADT/DenseMap.h"
Chris Lattner55eb1c42007-01-31 04:40:53 +000056#include "llvm/ADT/SmallVector.h"
Chris Lattner1f87a582007-02-15 19:41:52 +000057#include "llvm/ADT/SmallPtrSet.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000058#include "llvm/ADT/Statistic.h"
Chris Lattnerea1c4542004-12-08 23:43:58 +000059#include "llvm/ADT/STLExtras.h"
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +000060#include <algorithm>
Torok Edwin3eaee312008-04-20 08:33:11 +000061#include <climits>
Reid Spencera9b81012007-03-26 17:44:01 +000062#include <sstream>
Chris Lattner67b1e1b2003-12-07 01:24:23 +000063using namespace llvm;
Chris Lattneracd1f0f2004-07-30 07:50:03 +000064using namespace llvm::PatternMatch;
Brian Gaeked0fde302003-11-11 22:41:34 +000065
Chris Lattner0e5f4992006-12-19 21:40:18 +000066STATISTIC(NumCombined , "Number of insts combined");
67STATISTIC(NumConstProp, "Number of constant folds");
68STATISTIC(NumDeadInst , "Number of dead inst eliminated");
69STATISTIC(NumDeadStore, "Number of dead stores eliminated");
70STATISTIC(NumSunkInst , "Number of instructions sunk");
Chris Lattnera92f6962002-10-01 22:38:41 +000071
Chris Lattner0e5f4992006-12-19 21:40:18 +000072namespace {
Chris Lattnerf4b54612006-06-28 22:08:15 +000073 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass,
75 public InstVisitor<InstCombiner, Instruction*> {
Chris Lattnerdd841ae2002-04-18 17:39:14 +000076 // Worklist of all of the instructions that need to be simplified.
Chris Lattner2806dff2008-08-15 04:03:01 +000077 SmallVector<Instruction*, 256> Worklist;
Chris Lattnerdbab3862007-03-02 21:28:56 +000078 DenseMap<Instruction*, unsigned> WorklistMap;
Chris Lattnerbc61e662003-11-02 05:57:39 +000079 TargetData *TD;
Chris Lattnerf964f322007-03-04 04:27:24 +000080 bool MustPreserveLCSSA;
Chris Lattnerdbab3862007-03-02 21:28:56 +000081 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +000082 static char ID; // Pass identification, replacement for typeid
Dan Gohmanae73dc12008-09-04 17:05:41 +000083 InstCombiner() : FunctionPass(&ID) {}
Devang Patel794fd752007-05-01 21:15:47 +000084
Chris Lattnerdbab3862007-03-02 21:28:56 +000085 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction *I) {
Dan Gohman6b345ee2008-07-07 17:46:23 +000088 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
Chris Lattnerdbab3862007-03-02 21:28:56 +000089 Worklist.push_back(I);
90 }
91
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction *I) {
94 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
95 if (It == WorklistMap.end()) return; // Not in worklist.
96
97 // Don't bother moving everything down, just null out the slot.
98 Worklist[It->second] = 0;
99
100 WorklistMap.erase(It);
101 }
102
103 Instruction *RemoveOneFromWorkList() {
104 Instruction *I = Worklist.back();
105 Worklist.pop_back();
106 WorklistMap.erase(I);
107 return I;
108 }
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000109
Chris Lattnerdbab3862007-03-02 21:28:56 +0000110
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
113 /// now.
114 ///
Chris Lattner6dce1a72006-02-07 06:56:34 +0000115 void AddUsersToWorkList(Value &I) {
Chris Lattner7e708292002-06-25 16:13:24 +0000116 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000117 UI != UE; ++UI)
Chris Lattnerdbab3862007-03-02 21:28:56 +0000118 AddToWorkList(cast<Instruction>(*UI));
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000119 }
120
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
123 ///
124 void AddUsesToWorkList(Instruction &I) {
Gabor Greif177dd3f2008-06-12 21:37:33 +0000125 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
126 if (Instruction *Op = dyn_cast<Instruction>(*i))
Chris Lattnerdbab3862007-03-02 21:28:56 +0000127 AddToWorkList(Op);
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000128 }
Chris Lattner867b99f2006-10-05 06:55:50 +0000129
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
133 ///
134 /// Return the specified operand before it is turned into an undef.
135 ///
136 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
137 Value *R = I.getOperand(op);
138
Gabor Greif177dd3f2008-06-12 21:37:33 +0000139 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
140 if (Instruction *Op = dyn_cast<Instruction>(*i)) {
Chris Lattnerdbab3862007-03-02 21:28:56 +0000141 AddToWorkList(Op);
Chris Lattner867b99f2006-10-05 06:55:50 +0000142 // Set the operand to undef to drop the use.
Gabor Greif177dd3f2008-06-12 21:37:33 +0000143 *i = UndefValue::get(Op->getType());
Chris Lattner867b99f2006-10-05 06:55:50 +0000144 }
145
146 return R;
147 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000148
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000149 public:
Chris Lattner7e708292002-06-25 16:13:24 +0000150 virtual bool runOnFunction(Function &F);
Chris Lattnerec9c3582007-03-03 02:04:50 +0000151
152 bool DoOneIteration(Function &F, unsigned ItNum);
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000153
Chris Lattner97e52e42002-04-28 21:27:06 +0000154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnerbc61e662003-11-02 05:57:39 +0000155 AU.addRequired<TargetData>();
Owen Andersond1b78a12006-07-10 19:03:49 +0000156 AU.addPreservedID(LCSSAID);
Chris Lattnercb2610e2002-10-21 20:00:28 +0000157 AU.setPreservesCFG();
Chris Lattner97e52e42002-04-28 21:27:06 +0000158 }
159
Chris Lattner28977af2004-04-05 01:30:19 +0000160 TargetData &getTargetData() const { return *TD; }
161
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
164 // Return Value:
165 // null - No change was made
Chris Lattner233f7dc2002-08-12 21:17:25 +0000166 // I - Change was made, I is still valid, I may be dead though
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000167 // otherwise - Change was made, replace I with returned instruction
Misha Brukmanfd939082005-04-21 23:48:37 +0000168 //
Chris Lattner7e708292002-06-25 16:13:24 +0000169 Instruction *visitAdd(BinaryOperator &I);
170 Instruction *visitSub(BinaryOperator &I);
171 Instruction *visitMul(BinaryOperator &I);
Reid Spencer0a783f72006-11-02 01:53:59 +0000172 Instruction *visitURem(BinaryOperator &I);
173 Instruction *visitSRem(BinaryOperator &I);
174 Instruction *visitFRem(BinaryOperator &I);
Chris Lattnerfdb19e52008-07-14 00:15:52 +0000175 bool SimplifyDivRemOfSelect(BinaryOperator &I);
Reid Spencer0a783f72006-11-02 01:53:59 +0000176 Instruction *commonRemTransforms(BinaryOperator &I);
177 Instruction *commonIRemTransforms(BinaryOperator &I);
Reid Spencer1628cec2006-10-26 06:15:43 +0000178 Instruction *commonDivTransforms(BinaryOperator &I);
179 Instruction *commonIDivTransforms(BinaryOperator &I);
180 Instruction *visitUDiv(BinaryOperator &I);
181 Instruction *visitSDiv(BinaryOperator &I);
182 Instruction *visitFDiv(BinaryOperator &I);
Chris Lattner29cd5ba2008-11-16 05:06:21 +0000183 Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Chris Lattner7e708292002-06-25 16:13:24 +0000184 Instruction *visitAnd(BinaryOperator &I);
Chris Lattner69d4ced2008-11-16 05:20:07 +0000185 Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Chris Lattner7e708292002-06-25 16:13:24 +0000186 Instruction *visitOr (BinaryOperator &I);
187 Instruction *visitXor(BinaryOperator &I);
Reid Spencer832254e2007-02-02 02:16:23 +0000188 Instruction *visitShl(BinaryOperator &I);
189 Instruction *visitAShr(BinaryOperator &I);
190 Instruction *visitLShr(BinaryOperator &I);
191 Instruction *commonShiftTransforms(BinaryOperator &I);
Chris Lattnera5406232008-05-19 20:18:56 +0000192 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
193 Constant *RHSC);
Reid Spencere4d87aa2006-12-23 06:05:41 +0000194 Instruction *visitFCmpInst(FCmpInst &I);
195 Instruction *visitICmpInst(ICmpInst &I);
196 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
Chris Lattner01deb9d2007-04-03 17:43:25 +0000197 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
198 Instruction *LHS,
199 ConstantInt *RHS);
Chris Lattner562ef782007-06-20 23:46:26 +0000200 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
201 ConstantInt *DivRHS);
Chris Lattner484d3cf2005-04-24 06:59:08 +0000202
Reid Spencere4d87aa2006-12-23 06:05:41 +0000203 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
204 ICmpInst::Predicate Cond, Instruction &I);
Reid Spencerb83eb642006-10-20 07:07:24 +0000205 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
Reid Spencer832254e2007-02-02 02:16:23 +0000206 BinaryOperator &I);
Reid Spencer3da59db2006-11-27 01:05:10 +0000207 Instruction *commonCastTransforms(CastInst &CI);
208 Instruction *commonIntCastTransforms(CastInst &CI);
Chris Lattnerd3e28342007-04-27 17:44:50 +0000209 Instruction *commonPointerCastTransforms(CastInst &CI);
Chris Lattner8a9f5712007-04-11 06:57:46 +0000210 Instruction *visitTrunc(TruncInst &CI);
211 Instruction *visitZExt(ZExtInst &CI);
212 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerb7530652008-01-27 05:29:54 +0000213 Instruction *visitFPTrunc(FPTruncInst &CI);
Reid Spencer3da59db2006-11-27 01:05:10 +0000214 Instruction *visitFPExt(CastInst &CI);
Chris Lattner0c7a9a02008-05-19 20:25:04 +0000215 Instruction *visitFPToUI(FPToUIInst &FI);
216 Instruction *visitFPToSI(FPToSIInst &FI);
Reid Spencer3da59db2006-11-27 01:05:10 +0000217 Instruction *visitUIToFP(CastInst &CI);
218 Instruction *visitSIToFP(CastInst &CI);
219 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattnerf9d9e452008-01-08 07:23:51 +0000220 Instruction *visitIntToPtr(IntToPtrInst &CI);
Chris Lattnerd3e28342007-04-27 17:44:50 +0000221 Instruction *visitBitCast(BitCastInst &CI);
Chris Lattner6fb5a4a2005-01-19 21:50:18 +0000222 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
223 Instruction *FI);
Dan Gohman81b28ce2008-09-16 18:46:06 +0000224 Instruction *visitSelectInst(SelectInst &SI);
225 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Chris Lattner9fe38862003-06-19 17:00:31 +0000226 Instruction *visitCallInst(CallInst &CI);
227 Instruction *visitInvokeInst(InvokeInst &II);
Chris Lattner7e708292002-06-25 16:13:24 +0000228 Instruction *visitPHINode(PHINode &PN);
229 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
Chris Lattner0864acf2002-11-04 16:18:53 +0000230 Instruction *visitAllocationInst(AllocationInst &AI);
Chris Lattner67b1e1b2003-12-07 01:24:23 +0000231 Instruction *visitFreeInst(FreeInst &FI);
Chris Lattner833b8a42003-06-26 05:06:25 +0000232 Instruction *visitLoadInst(LoadInst &LI);
Chris Lattner2f503e62005-01-31 05:36:43 +0000233 Instruction *visitStoreInst(StoreInst &SI);
Chris Lattnerc4d10eb2003-06-04 04:46:00 +0000234 Instruction *visitBranchInst(BranchInst &BI);
Chris Lattner46238a62004-07-03 00:26:11 +0000235 Instruction *visitSwitchInst(SwitchInst &SI);
Chris Lattnerefb47352006-04-15 01:39:45 +0000236 Instruction *visitInsertElementInst(InsertElementInst &IE);
Robert Bocchino1d7456d2006-01-13 22:48:06 +0000237 Instruction *visitExtractElementInst(ExtractElementInst &EI);
Chris Lattnera844fc4c2006-04-10 22:45:52 +0000238 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +0000239 Instruction *visitExtractValueInst(ExtractValueInst &EV);
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000240
241 // visitInstruction - Specify what to return for unhandled instructions...
Chris Lattner7e708292002-06-25 16:13:24 +0000242 Instruction *visitInstruction(Instruction &I) { return 0; }
Chris Lattner8b170942002-08-09 23:47:40 +0000243
Chris Lattner9fe38862003-06-19 17:00:31 +0000244 private:
Chris Lattnera44d8a22003-10-07 22:32:43 +0000245 Instruction *visitCallSite(CallSite CS);
Chris Lattner9fe38862003-06-19 17:00:31 +0000246 bool transformConstExprCastCall(CallSite CS);
Duncan Sandscdb6d922007-09-17 10:26:40 +0000247 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chengb98a10e2008-03-24 00:21:34 +0000248 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
249 bool DoXform = true);
Chris Lattner3d28b1b2008-05-20 05:46:13 +0000250 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Chris Lattner9fe38862003-06-19 17:00:31 +0000251
Chris Lattner28977af2004-04-05 01:30:19 +0000252 public:
Chris Lattner8b170942002-08-09 23:47:40 +0000253 // InsertNewInstBefore - insert an instruction New before instruction Old
254 // in the program. Add the new instruction to the worklist.
255 //
Chris Lattner955f3312004-09-28 21:48:02 +0000256 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
Chris Lattnere6f9a912002-08-23 18:32:43 +0000257 assert(New && New->getParent() == 0 &&
258 "New instruction already inserted into a basic block!");
Chris Lattner8b170942002-08-09 23:47:40 +0000259 BasicBlock *BB = Old.getParent();
260 BB->getInstList().insert(&Old, New); // Insert inst
Chris Lattnerdbab3862007-03-02 21:28:56 +0000261 AddToWorkList(New);
Chris Lattner4cb170c2004-02-23 06:38:22 +0000262 return New;
Chris Lattner8b170942002-08-09 23:47:40 +0000263 }
264
Chris Lattner0c967662004-09-24 15:21:34 +0000265 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
266 /// This also adds the cast to the worklist. Finally, this returns the
267 /// cast.
Reid Spencer17212df2006-12-12 09:18:51 +0000268 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
269 Instruction &Pos) {
Chris Lattner0c967662004-09-24 15:21:34 +0000270 if (V->getType() == Ty) return V;
Misha Brukmanfd939082005-04-21 23:48:37 +0000271
Chris Lattnere2ed0572006-04-06 19:19:17 +0000272 if (Constant *CV = dyn_cast<Constant>(V))
Reid Spencer17212df2006-12-12 09:18:51 +0000273 return ConstantExpr::getCast(opc, CV, Ty);
Chris Lattnere2ed0572006-04-06 19:19:17 +0000274
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000275 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Chris Lattnerdbab3862007-03-02 21:28:56 +0000276 AddToWorkList(C);
Chris Lattner0c967662004-09-24 15:21:34 +0000277 return C;
278 }
Chris Lattner6d0339d2008-01-13 22:23:22 +0000279
280 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
281 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
282 }
283
Chris Lattner0c967662004-09-24 15:21:34 +0000284
Chris Lattner8b170942002-08-09 23:47:40 +0000285 // ReplaceInstUsesWith - This method is to be used when an instruction is
286 // found to be dead, replacable with another preexisting expression. Here
287 // we add all uses of I to the worklist, replace all uses of I with the new
288 // value, then return I, so that the inst combiner will know that I was
289 // modified.
290 //
291 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000292 AddUsersToWorkList(I); // Add all modified instrs to worklist
Chris Lattner15a76c02004-04-05 02:10:19 +0000293 if (&I != V) {
294 I.replaceAllUsesWith(V);
295 return &I;
296 } else {
297 // If we are replacing the instruction with itself, this must be in a
298 // segment of unreachable code, so just clobber the instruction.
Chris Lattner17be6352004-10-18 02:59:09 +0000299 I.replaceAllUsesWith(UndefValue::get(I.getType()));
Chris Lattner15a76c02004-04-05 02:10:19 +0000300 return &I;
301 }
Chris Lattner8b170942002-08-09 23:47:40 +0000302 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000303
Chris Lattner6dce1a72006-02-07 06:56:34 +0000304 // UpdateValueUsesWith - This method is to be used when an value is
305 // found to be replacable with another preexisting expression or was
306 // updated. Here we add all uses of I to the worklist, replace all uses of
307 // I with the new value (unless the instruction was just updated), then
308 // return true, so that the inst combiner will know that I was modified.
309 //
310 bool UpdateValueUsesWith(Value *Old, Value *New) {
311 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
312 if (Old != New)
313 Old->replaceAllUsesWith(New);
314 if (Instruction *I = dyn_cast<Instruction>(Old))
Chris Lattnerdbab3862007-03-02 21:28:56 +0000315 AddToWorkList(I);
Chris Lattnerf8c36f52006-02-12 08:02:11 +0000316 if (Instruction *I = dyn_cast<Instruction>(New))
Chris Lattnerdbab3862007-03-02 21:28:56 +0000317 AddToWorkList(I);
Chris Lattner6dce1a72006-02-07 06:56:34 +0000318 return true;
319 }
320
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000321 // EraseInstFromFunction - When dealing with an instruction that has side
322 // effects or produces a void value, we can't rely on DCE to delete the
323 // instruction. Instead, visit methods should return the value returned by
324 // this function.
325 Instruction *EraseInstFromFunction(Instruction &I) {
326 assert(I.use_empty() && "Cannot erase instruction that is used!");
327 AddUsesToWorkList(I);
Chris Lattnerdbab3862007-03-02 21:28:56 +0000328 RemoveFromWorkList(&I);
Chris Lattner954f66a2004-11-18 21:41:39 +0000329 I.eraseFromParent();
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000330 return 0; // Don't do anything with FI
331 }
Chris Lattner173234a2008-06-02 01:18:21 +0000332
333 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
334 APInt &KnownOne, unsigned Depth = 0) const {
335 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
336 }
337
338 bool MaskedValueIsZero(Value *V, const APInt &Mask,
339 unsigned Depth = 0) const {
340 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
341 }
342 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
343 return llvm::ComputeNumSignBits(Op, TD, Depth);
344 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000345
Chris Lattneraa9c1f12003-08-13 20:16:26 +0000346 private:
Chris Lattner24c8e382003-07-24 17:35:25 +0000347 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
348 /// InsertBefore instruction. This is specialized a bit to avoid inserting
349 /// casts that are known to not do anything...
350 ///
Reid Spencer17212df2006-12-12 09:18:51 +0000351 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
352 Value *V, const Type *DestTy,
Chris Lattner24c8e382003-07-24 17:35:25 +0000353 Instruction *InsertBefore);
354
Reid Spencere4d87aa2006-12-23 06:05:41 +0000355 /// SimplifyCommutative - This performs a few simplifications for
356 /// commutative operators.
Chris Lattnerc8802d22003-03-11 00:12:48 +0000357 bool SimplifyCommutative(BinaryOperator &I);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +0000358
Reid Spencere4d87aa2006-12-23 06:05:41 +0000359 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
360 /// most-complex to least-complex order.
361 bool SimplifyCompare(CmpInst &I);
362
Reid Spencer2ec619a2007-03-23 21:24:59 +0000363 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
364 /// on the demanded bits.
Reid Spencer8cb68342007-03-12 17:25:59 +0000365 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
366 APInt& KnownZero, APInt& KnownOne,
367 unsigned Depth = 0);
368
Chris Lattner867b99f2006-10-05 06:55:50 +0000369 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
370 uint64_t &UndefElts, unsigned Depth = 0);
371
Chris Lattner4e998b22004-09-29 05:07:12 +0000372 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
373 // PHI node as operand #0, see if we can fold the instruction into the PHI
374 // (which is only possible if all operands to the PHI are constants).
375 Instruction *FoldOpIntoPhi(Instruction &I);
376
Chris Lattnerbac32862004-11-14 19:13:23 +0000377 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
378 // operator and they all are only used by the PHI, PHI together their
379 // inputs, and do the operation once, to the result of the PHI.
380 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
Chris Lattner7da52b22006-11-01 04:51:18 +0000381 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
382
383
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000384 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
385 ConstantInt *AndRHS, BinaryOperator &TheAnd);
Chris Lattnerc8e77562005-09-18 04:24:45 +0000386
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000387 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
Chris Lattnerc8e77562005-09-18 04:24:45 +0000388 bool isSub, Instruction &I);
Chris Lattnera96879a2004-09-29 17:40:11 +0000389 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
Reid Spencere4d87aa2006-12-23 06:05:41 +0000390 bool isSigned, bool Inside, Instruction &IB);
Chris Lattnerd3e28342007-04-27 17:44:50 +0000391 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
Chris Lattnerafe91a52006-06-15 19:07:26 +0000392 Instruction *MatchBSwap(BinaryOperator &I);
Chris Lattner3284d1f2007-04-15 00:07:55 +0000393 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattnerf497b022008-01-13 23:50:23 +0000394 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner69ea9d22008-04-30 06:39:11 +0000395 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattnerf497b022008-01-13 23:50:23 +0000396
Chris Lattnerafe91a52006-06-15 19:07:26 +0000397
Reid Spencerc55b2432006-12-13 18:21:21 +0000398 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohmaneee962e2008-04-10 18:43:06 +0000399
Dan Gohmaneee962e2008-04-10 18:43:06 +0000400 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
401 unsigned CastOpc,
402 int &NumCastsRemoved);
403 unsigned GetOrEnforceKnownAlignment(Value *V,
404 unsigned PrefAlign = 0);
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +0000405
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000406 };
407}
408
Dan Gohman844731a2008-05-13 00:00:25 +0000409char InstCombiner::ID = 0;
410static RegisterPass<InstCombiner>
411X("instcombine", "Combine redundant instructions");
412
Chris Lattner4f98c562003-03-10 21:43:22 +0000413// getComplexity: Assign a complexity or rank value to LLVM Values...
Chris Lattnere87597f2004-10-16 18:11:37 +0000414// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
Chris Lattner4f98c562003-03-10 21:43:22 +0000415static unsigned getComplexity(Value *V) {
416 if (isa<Instruction>(V)) {
417 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
Chris Lattnere87597f2004-10-16 18:11:37 +0000418 return 3;
419 return 4;
Chris Lattner4f98c562003-03-10 21:43:22 +0000420 }
Chris Lattnere87597f2004-10-16 18:11:37 +0000421 if (isa<Argument>(V)) return 3;
422 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
Chris Lattner4f98c562003-03-10 21:43:22 +0000423}
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000424
Chris Lattnerc8802d22003-03-11 00:12:48 +0000425// isOnlyUse - Return true if this instruction will be deleted if we stop using
426// it.
427static bool isOnlyUse(Value *V) {
Chris Lattnerfd059242003-10-15 16:48:29 +0000428 return V->hasOneUse() || isa<Constant>(V);
Chris Lattnerc8802d22003-03-11 00:12:48 +0000429}
430
Chris Lattner4cb170c2004-02-23 06:38:22 +0000431// getPromotedType - Return the specified type promoted as it would be to pass
432// though a va_arg area...
433static const Type *getPromotedType(const Type *Ty) {
Reid Spencera54b7cb2007-01-12 07:05:14 +0000434 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
435 if (ITy->getBitWidth() < 32)
436 return Type::Int32Ty;
Chris Lattner2b7e0ad2007-05-23 01:17:04 +0000437 }
Reid Spencera54b7cb2007-01-12 07:05:14 +0000438 return Ty;
Chris Lattner4cb170c2004-02-23 06:38:22 +0000439}
440
Matthijs Kooijman7e6d9b92008-10-13 15:17:01 +0000441/// getBitCastOperand - If the specified operand is a CastInst, a constant
442/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
443/// operand value, otherwise return null.
Reid Spencer3da59db2006-11-27 01:05:10 +0000444static Value *getBitCastOperand(Value *V) {
445 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Matthijs Kooijman7e6d9b92008-10-13 15:17:01 +0000446 // BitCastInst?
Chris Lattnereed48272005-09-13 00:40:14 +0000447 return I->getOperand(0);
Matthijs Kooijman7e6d9b92008-10-13 15:17:01 +0000448 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
449 // GetElementPtrInst?
450 if (GEP->hasAllZeroIndices())
451 return GEP->getOperand(0);
452 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Reid Spencer3da59db2006-11-27 01:05:10 +0000453 if (CE->getOpcode() == Instruction::BitCast)
Matthijs Kooijman7e6d9b92008-10-13 15:17:01 +0000454 // BitCast ConstantExp?
Chris Lattnereed48272005-09-13 00:40:14 +0000455 return CE->getOperand(0);
Matthijs Kooijman7e6d9b92008-10-13 15:17:01 +0000456 else if (CE->getOpcode() == Instruction::GetElementPtr) {
457 // GetElementPtr ConstantExp?
458 for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end();
459 I != E; ++I) {
460 ConstantInt *CI = dyn_cast<ConstantInt>(I);
461 if (!CI || !CI->isZero())
462 // Any non-zero indices? Not cast-like.
463 return 0;
464 }
465 // All-zero indices? This is just like casting.
466 return CE->getOperand(0);
467 }
468 }
Chris Lattnereed48272005-09-13 00:40:14 +0000469 return 0;
470}
471
Reid Spencer3da59db2006-11-27 01:05:10 +0000472/// This function is a wrapper around CastInst::isEliminableCastPair. It
473/// simply extracts arguments and returns what that function returns.
Reid Spencer3da59db2006-11-27 01:05:10 +0000474static Instruction::CastOps
475isEliminableCastPair(
476 const CastInst *CI, ///< The first cast instruction
477 unsigned opcode, ///< The opcode of the second cast instruction
478 const Type *DstTy, ///< The target type for the second cast instruction
479 TargetData *TD ///< The target data for pointer size
480) {
481
482 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
483 const Type *MidTy = CI->getType(); // B from above
Chris Lattner33a61132006-05-06 09:00:16 +0000484
Reid Spencer3da59db2006-11-27 01:05:10 +0000485 // Get the opcodes of the two Cast instructions
486 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
487 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
Chris Lattner33a61132006-05-06 09:00:16 +0000488
Reid Spencer3da59db2006-11-27 01:05:10 +0000489 return Instruction::CastOps(
490 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
491 DstTy, TD->getIntPtrType()));
Chris Lattner33a61132006-05-06 09:00:16 +0000492}
493
494/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
495/// in any code being generated. It does not require codegen if V is simple
496/// enough or if the cast can be folded into other casts.
Reid Spencere4d87aa2006-12-23 06:05:41 +0000497static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
498 const Type *Ty, TargetData *TD) {
Chris Lattner33a61132006-05-06 09:00:16 +0000499 if (V->getType() == Ty || isa<Constant>(V)) return false;
500
Chris Lattner01575b72006-05-25 23:24:33 +0000501 // If this is another cast that can be eliminated, it isn't codegen either.
Chris Lattner33a61132006-05-06 09:00:16 +0000502 if (const CastInst *CI = dyn_cast<CastInst>(V))
Reid Spencere4d87aa2006-12-23 06:05:41 +0000503 if (isEliminableCastPair(CI, opcode, Ty, TD))
Chris Lattner33a61132006-05-06 09:00:16 +0000504 return false;
505 return true;
506}
507
508/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
509/// InsertBefore instruction. This is specialized a bit to avoid inserting
510/// casts that are known to not do anything...
511///
Reid Spencer17212df2006-12-12 09:18:51 +0000512Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
513 Value *V, const Type *DestTy,
Chris Lattner33a61132006-05-06 09:00:16 +0000514 Instruction *InsertBefore) {
515 if (V->getType() == DestTy) return V;
516 if (Constant *C = dyn_cast<Constant>(V))
Reid Spencer17212df2006-12-12 09:18:51 +0000517 return ConstantExpr::getCast(opcode, C, DestTy);
Chris Lattner33a61132006-05-06 09:00:16 +0000518
Reid Spencer17212df2006-12-12 09:18:51 +0000519 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
Chris Lattner33a61132006-05-06 09:00:16 +0000520}
521
Chris Lattner4f98c562003-03-10 21:43:22 +0000522// SimplifyCommutative - This performs a few simplifications for commutative
523// operators:
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000524//
Chris Lattner4f98c562003-03-10 21:43:22 +0000525// 1. Order operands such that they are listed from right (least complex) to
526// left (most complex). This puts constants before unary operators before
527// binary operators.
528//
Chris Lattnerc8802d22003-03-11 00:12:48 +0000529// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
530// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattner4f98c562003-03-10 21:43:22 +0000531//
Chris Lattnerc8802d22003-03-11 00:12:48 +0000532bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +0000533 bool Changed = false;
534 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
535 Changed = !I.swapOperands();
Misha Brukmanfd939082005-04-21 23:48:37 +0000536
Chris Lattner4f98c562003-03-10 21:43:22 +0000537 if (!I.isAssociative()) return Changed;
538 Instruction::BinaryOps Opcode = I.getOpcode();
Chris Lattnerc8802d22003-03-11 00:12:48 +0000539 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
540 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
541 if (isa<Constant>(I.getOperand(1))) {
Chris Lattner2a9c8472003-05-27 16:40:51 +0000542 Constant *Folded = ConstantExpr::get(I.getOpcode(),
543 cast<Constant>(I.getOperand(1)),
544 cast<Constant>(Op->getOperand(1)));
Chris Lattnerc8802d22003-03-11 00:12:48 +0000545 I.setOperand(0, Op->getOperand(0));
546 I.setOperand(1, Folded);
547 return true;
548 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
549 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
550 isOnlyUse(Op) && isOnlyUse(Op1)) {
551 Constant *C1 = cast<Constant>(Op->getOperand(1));
552 Constant *C2 = cast<Constant>(Op1->getOperand(1));
553
554 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattner2a9c8472003-05-27 16:40:51 +0000555 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000556 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Chris Lattnerc8802d22003-03-11 00:12:48 +0000557 Op1->getOperand(0),
558 Op1->getName(), &I);
Chris Lattnerdbab3862007-03-02 21:28:56 +0000559 AddToWorkList(New);
Chris Lattnerc8802d22003-03-11 00:12:48 +0000560 I.setOperand(0, New);
561 I.setOperand(1, Folded);
562 return true;
Misha Brukmanfd939082005-04-21 23:48:37 +0000563 }
Chris Lattner4f98c562003-03-10 21:43:22 +0000564 }
Chris Lattner4f98c562003-03-10 21:43:22 +0000565 return Changed;
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000566}
Chris Lattner8a2a3112001-12-14 16:52:21 +0000567
Reid Spencere4d87aa2006-12-23 06:05:41 +0000568/// SimplifyCompare - For a CmpInst this function just orders the operands
569/// so that theyare listed from right (least complex) to left (most complex).
570/// This puts constants before unary operators before binary operators.
571bool InstCombiner::SimplifyCompare(CmpInst &I) {
572 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
573 return false;
574 I.swapOperands();
575 // Compare instructions are not associative so there's nothing else we can do.
576 return true;
577}
578
Chris Lattner8d969642003-03-10 23:06:50 +0000579// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
580// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattnerb35dde12002-05-06 16:49:18 +0000581//
Chris Lattner8d969642003-03-10 23:06:50 +0000582static inline Value *dyn_castNegVal(Value *V) {
583 if (BinaryOperator::isNeg(V))
Chris Lattnera1df33c2005-04-24 07:30:14 +0000584 return BinaryOperator::getNegArgument(V);
Chris Lattner8d969642003-03-10 23:06:50 +0000585
Chris Lattner0ce85802004-12-14 20:08:06 +0000586 // Constants can be considered to be negated values if they can be folded.
587 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
588 return ConstantExpr::getNeg(C);
Nick Lewycky18b3da62008-05-23 04:54:45 +0000589
590 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
591 if (C->getType()->getElementType()->isInteger())
592 return ConstantExpr::getNeg(C);
593
Chris Lattner8d969642003-03-10 23:06:50 +0000594 return 0;
Chris Lattnerb35dde12002-05-06 16:49:18 +0000595}
596
Chris Lattner8d969642003-03-10 23:06:50 +0000597static inline Value *dyn_castNotVal(Value *V) {
598 if (BinaryOperator::isNot(V))
Chris Lattnera1df33c2005-04-24 07:30:14 +0000599 return BinaryOperator::getNotArgument(V);
Chris Lattner8d969642003-03-10 23:06:50 +0000600
601 // Constants can be considered to be not'ed values...
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000602 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
Zhou Sheng4a1822a2007-04-02 13:45:30 +0000603 return ConstantInt::get(~C->getValue());
Chris Lattner8d969642003-03-10 23:06:50 +0000604 return 0;
605}
606
Chris Lattnerc8802d22003-03-11 00:12:48 +0000607// dyn_castFoldableMul - If this value is a multiply that can be folded into
608// other computations (because it has a constant operand), return the
Chris Lattner50af16a2004-11-13 19:50:12 +0000609// non-constant operand of the multiply, and set CST to point to the multiplier.
610// Otherwise, return null.
Chris Lattnerc8802d22003-03-11 00:12:48 +0000611//
Chris Lattner50af16a2004-11-13 19:50:12 +0000612static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
Chris Lattner42a75512007-01-15 02:27:26 +0000613 if (V->hasOneUse() && V->getType()->isInteger())
Chris Lattner50af16a2004-11-13 19:50:12 +0000614 if (Instruction *I = dyn_cast<Instruction>(V)) {
Chris Lattnerc8802d22003-03-11 00:12:48 +0000615 if (I->getOpcode() == Instruction::Mul)
Chris Lattner50e60c72004-11-15 05:54:07 +0000616 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
Chris Lattnerc8802d22003-03-11 00:12:48 +0000617 return I->getOperand(0);
Chris Lattner50af16a2004-11-13 19:50:12 +0000618 if (I->getOpcode() == Instruction::Shl)
Chris Lattner50e60c72004-11-15 05:54:07 +0000619 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
Chris Lattner50af16a2004-11-13 19:50:12 +0000620 // The multiplier is really 1 << CST.
Zhou Sheng97b52c22007-03-29 01:57:21 +0000621 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +0000622 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
Zhou Sheng97b52c22007-03-29 01:57:21 +0000623 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
Chris Lattner50af16a2004-11-13 19:50:12 +0000624 return I->getOperand(0);
625 }
626 }
Chris Lattnerc8802d22003-03-11 00:12:48 +0000627 return 0;
Chris Lattnera2881962003-02-18 19:28:33 +0000628}
Chris Lattneraf2930e2002-08-14 17:51:49 +0000629
Chris Lattner574da9b2005-01-13 20:14:25 +0000630/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
631/// expression, return it.
632static User *dyn_castGetElementPtr(Value *V) {
633 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
634 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
635 if (CE->getOpcode() == Instruction::GetElementPtr)
636 return cast<User>(V);
637 return false;
638}
639
Dan Gohmaneee962e2008-04-10 18:43:06 +0000640/// getOpcode - If this is an Instruction or a ConstantExpr, return the
641/// opcode value. Otherwise return UserOp1.
Dan Gohmanb99e2e22008-05-29 19:53:46 +0000642static unsigned getOpcode(const Value *V) {
643 if (const Instruction *I = dyn_cast<Instruction>(V))
Dan Gohmaneee962e2008-04-10 18:43:06 +0000644 return I->getOpcode();
Dan Gohmanb99e2e22008-05-29 19:53:46 +0000645 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohmaneee962e2008-04-10 18:43:06 +0000646 return CE->getOpcode();
647 // Use UserOp1 to mean there's no opcode.
648 return Instruction::UserOp1;
649}
650
Reid Spencer7177c3a2007-03-25 05:33:51 +0000651/// AddOne - Add one to a ConstantInt
Chris Lattnera96879a2004-09-29 17:40:11 +0000652static ConstantInt *AddOne(ConstantInt *C) {
Reid Spencer2149a9d2007-03-25 19:55:33 +0000653 APInt Val(C->getValue());
654 return ConstantInt::get(++Val);
Chris Lattner955f3312004-09-28 21:48:02 +0000655}
Reid Spencer7177c3a2007-03-25 05:33:51 +0000656/// SubOne - Subtract one from a ConstantInt
Chris Lattnera96879a2004-09-29 17:40:11 +0000657static ConstantInt *SubOne(ConstantInt *C) {
Reid Spencer2149a9d2007-03-25 19:55:33 +0000658 APInt Val(C->getValue());
659 return ConstantInt::get(--Val);
Reid Spencer7177c3a2007-03-25 05:33:51 +0000660}
661/// Add - Add two ConstantInts together
662static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
663 return ConstantInt::get(C1->getValue() + C2->getValue());
664}
665/// And - Bitwise AND two ConstantInts together
666static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
667 return ConstantInt::get(C1->getValue() & C2->getValue());
668}
669/// Subtract - Subtract one ConstantInt from another
670static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
671 return ConstantInt::get(C1->getValue() - C2->getValue());
672}
673/// Multiply - Multiply two ConstantInts together
674static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
675 return ConstantInt::get(C1->getValue() * C2->getValue());
Chris Lattner955f3312004-09-28 21:48:02 +0000676}
Nick Lewyckye0cfecf2008-02-18 22:48:05 +0000677/// MultiplyOverflows - True if the multiply can not be expressed in an int
678/// this size.
679static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
680 uint32_t W = C1->getBitWidth();
681 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
682 if (sign) {
683 LHSExt.sext(W * 2);
684 RHSExt.sext(W * 2);
685 } else {
686 LHSExt.zext(W * 2);
687 RHSExt.zext(W * 2);
688 }
689
690 APInt MulExt = LHSExt * RHSExt;
691
692 if (sign) {
693 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
694 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
695 return MulExt.slt(Min) || MulExt.sgt(Max);
696 } else
697 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
698}
Chris Lattner955f3312004-09-28 21:48:02 +0000699
Reid Spencere7816b52007-03-08 01:52:58 +0000700
Chris Lattner255d8912006-02-11 09:31:47 +0000701/// ShrinkDemandedConstant - Check to see if the specified operand of the
702/// specified instruction is a constant integer. If so, check to see if there
703/// are any bits set in the constant that are not demanded. If so, shrink the
704/// constant and return true.
705static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
Reid Spencer6b79e2d2007-03-12 17:15:10 +0000706 APInt Demanded) {
707 assert(I && "No instruction?");
708 assert(OpNo < I->getNumOperands() && "Operand index too large");
709
710 // If the operand is not a constant integer, nothing to do.
711 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
712 if (!OpC) return false;
713
714 // If there are no bits set that aren't demanded, nothing to do.
715 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
716 if ((~Demanded & OpC->getValue()) == 0)
717 return false;
718
719 // This instruction is producing bits that are not demanded. Shrink the RHS.
720 Demanded &= OpC->getValue();
721 I->setOperand(OpNo, ConstantInt::get(Demanded));
722 return true;
723}
724
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000725// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
726// set of known zero and one bits, compute the maximum and minimum values that
727// could have the specified known zero and known one bits, returning them in
728// min/max.
729static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
Reid Spencer0460fb32007-03-22 20:36:03 +0000730 const APInt& KnownZero,
731 const APInt& KnownOne,
732 APInt& Min, APInt& Max) {
733 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
734 assert(KnownZero.getBitWidth() == BitWidth &&
735 KnownOne.getBitWidth() == BitWidth &&
736 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
737 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
Reid Spencer2f549172007-03-25 04:26:16 +0000738 APInt UnknownBits = ~(KnownZero|KnownOne);
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000739
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000740 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
741 // bit if it is unknown.
742 Min = KnownOne;
743 Max = KnownOne|UnknownBits;
744
Zhou Sheng4acf1552007-03-28 05:15:57 +0000745 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
Zhou Sheng4a1822a2007-04-02 13:45:30 +0000746 Min.set(BitWidth-1);
747 Max.clear(BitWidth-1);
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000748 }
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000749}
750
751// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
752// a set of known zero and one bits, compute the maximum and minimum values that
753// could have the specified known zero and known one bits, returning them in
754// min/max.
755static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnera9ff5eb2007-08-05 08:47:58 +0000756 const APInt &KnownZero,
757 const APInt &KnownOne,
758 APInt &Min, APInt &Max) {
759 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Reid Spencer0460fb32007-03-22 20:36:03 +0000760 assert(KnownZero.getBitWidth() == BitWidth &&
761 KnownOne.getBitWidth() == BitWidth &&
762 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
763 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
Reid Spencer2f549172007-03-25 04:26:16 +0000764 APInt UnknownBits = ~(KnownZero|KnownOne);
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000765
766 // The minimum value is when the unknown bits are all zeros.
767 Min = KnownOne;
768 // The maximum value is when the unknown bits are all ones.
769 Max = KnownOne|UnknownBits;
770}
Chris Lattner255d8912006-02-11 09:31:47 +0000771
Reid Spencer8cb68342007-03-12 17:25:59 +0000772/// SimplifyDemandedBits - This function attempts to replace V with a simpler
773/// value based on the demanded bits. When this function is called, it is known
774/// that only the bits set in DemandedMask of the result of V are ever used
775/// downstream. Consequently, depending on the mask and V, it may be possible
776/// to replace V with a constant or one of its operands. In such cases, this
777/// function does the replacement and returns true. In all other cases, it
778/// returns false after analyzing the expression and setting KnownOne and known
779/// to be one in the expression. KnownZero contains all the bits that are known
780/// to be zero in the expression. These are provided to potentially allow the
781/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
782/// the expression. KnownOne and KnownZero always follow the invariant that
783/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
784/// the bits in KnownOne and KnownZero may only be accurate for those bits set
785/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
786/// and KnownOne must all be the same.
787bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
788 APInt& KnownZero, APInt& KnownOne,
789 unsigned Depth) {
790 assert(V != 0 && "Null pointer of Value???");
791 assert(Depth <= 6 && "Limit Search Depth");
792 uint32_t BitWidth = DemandedMask.getBitWidth();
793 const IntegerType *VTy = cast<IntegerType>(V->getType());
794 assert(VTy->getBitWidth() == BitWidth &&
795 KnownZero.getBitWidth() == BitWidth &&
796 KnownOne.getBitWidth() == BitWidth &&
797 "Value *V, DemandedMask, KnownZero and KnownOne \
798 must have same BitWidth");
799 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
800 // We know all of the bits for a constant!
801 KnownOne = CI->getValue() & DemandedMask;
802 KnownZero = ~KnownOne & DemandedMask;
803 return false;
804 }
805
Zhou Sheng96704452007-03-14 03:21:24 +0000806 KnownZero.clear();
807 KnownOne.clear();
Reid Spencer8cb68342007-03-12 17:25:59 +0000808 if (!V->hasOneUse()) { // Other users may use these bits.
809 if (Depth != 0) { // Not at the root.
810 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
811 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
812 return false;
813 }
814 // If this is the root being simplified, allow it to have multiple uses,
815 // just set the DemandedMask to all bits.
816 DemandedMask = APInt::getAllOnesValue(BitWidth);
817 } else if (DemandedMask == 0) { // Not demanding any bits from V.
818 if (V != UndefValue::get(VTy))
819 return UpdateValueUsesWith(V, UndefValue::get(VTy));
820 return false;
821 } else if (Depth == 6) { // Limit search depth.
822 return false;
823 }
824
825 Instruction *I = dyn_cast<Instruction>(V);
826 if (!I) return false; // Only analyze instructions.
827
Reid Spencer8cb68342007-03-12 17:25:59 +0000828 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
829 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
830 switch (I->getOpcode()) {
Dan Gohman23e8b712008-04-28 17:02:21 +0000831 default:
832 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
833 break;
Reid Spencer8cb68342007-03-12 17:25:59 +0000834 case Instruction::And:
835 // If either the LHS or the RHS are Zero, the result is zero.
836 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
837 RHSKnownZero, RHSKnownOne, Depth+1))
838 return true;
839 assert((RHSKnownZero & RHSKnownOne) == 0 &&
840 "Bits known to be one AND zero?");
841
842 // If something is known zero on the RHS, the bits aren't demanded on the
843 // LHS.
844 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
845 LHSKnownZero, LHSKnownOne, Depth+1))
846 return true;
847 assert((LHSKnownZero & LHSKnownOne) == 0 &&
848 "Bits known to be one AND zero?");
849
850 // If all of the demanded bits are known 1 on one side, return the other.
851 // These bits cannot contribute to the result of the 'and'.
852 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
853 (DemandedMask & ~LHSKnownZero))
854 return UpdateValueUsesWith(I, I->getOperand(0));
855 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
856 (DemandedMask & ~RHSKnownZero))
857 return UpdateValueUsesWith(I, I->getOperand(1));
858
859 // If all of the demanded bits in the inputs are known zeros, return zero.
860 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
861 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
862
863 // If the RHS is a constant, see if we can simplify it.
864 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
865 return UpdateValueUsesWith(I, I);
866
867 // Output known-1 bits are only known if set in both the LHS & RHS.
868 RHSKnownOne &= LHSKnownOne;
869 // Output known-0 are known to be clear if zero in either the LHS | RHS.
870 RHSKnownZero |= LHSKnownZero;
871 break;
872 case Instruction::Or:
873 // If either the LHS or the RHS are One, the result is One.
874 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
875 RHSKnownZero, RHSKnownOne, Depth+1))
876 return true;
877 assert((RHSKnownZero & RHSKnownOne) == 0 &&
878 "Bits known to be one AND zero?");
879 // If something is known one on the RHS, the bits aren't demanded on the
880 // LHS.
881 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
882 LHSKnownZero, LHSKnownOne, Depth+1))
883 return true;
884 assert((LHSKnownZero & LHSKnownOne) == 0 &&
885 "Bits known to be one AND zero?");
886
887 // If all of the demanded bits are known zero on one side, return the other.
888 // These bits cannot contribute to the result of the 'or'.
889 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
890 (DemandedMask & ~LHSKnownOne))
891 return UpdateValueUsesWith(I, I->getOperand(0));
892 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
893 (DemandedMask & ~RHSKnownOne))
894 return UpdateValueUsesWith(I, I->getOperand(1));
895
896 // If all of the potentially set bits on one side are known to be set on
897 // the other side, just use the 'other' side.
898 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
899 (DemandedMask & (~RHSKnownZero)))
900 return UpdateValueUsesWith(I, I->getOperand(0));
901 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
902 (DemandedMask & (~LHSKnownZero)))
903 return UpdateValueUsesWith(I, I->getOperand(1));
904
905 // If the RHS is a constant, see if we can simplify it.
906 if (ShrinkDemandedConstant(I, 1, DemandedMask))
907 return UpdateValueUsesWith(I, I);
908
909 // Output known-0 bits are only known if clear in both the LHS & RHS.
910 RHSKnownZero &= LHSKnownZero;
911 // Output known-1 are known to be set if set in either the LHS | RHS.
912 RHSKnownOne |= LHSKnownOne;
913 break;
914 case Instruction::Xor: {
915 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
916 RHSKnownZero, RHSKnownOne, Depth+1))
917 return true;
918 assert((RHSKnownZero & RHSKnownOne) == 0 &&
919 "Bits known to be one AND zero?");
920 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
921 LHSKnownZero, LHSKnownOne, Depth+1))
922 return true;
923 assert((LHSKnownZero & LHSKnownOne) == 0 &&
924 "Bits known to be one AND zero?");
925
926 // If all of the demanded bits are known zero on one side, return the other.
927 // These bits cannot contribute to the result of the 'xor'.
928 if ((DemandedMask & RHSKnownZero) == DemandedMask)
929 return UpdateValueUsesWith(I, I->getOperand(0));
930 if ((DemandedMask & LHSKnownZero) == DemandedMask)
931 return UpdateValueUsesWith(I, I->getOperand(1));
932
933 // Output known-0 bits are known if clear or set in both the LHS & RHS.
934 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
935 (RHSKnownOne & LHSKnownOne);
936 // Output known-1 are known to be set if set in only one of the LHS, RHS.
937 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
938 (RHSKnownOne & LHSKnownZero);
939
940 // If all of the demanded bits are known to be zero on one side or the
941 // other, turn this into an *inclusive* or.
942 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
943 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
944 Instruction *Or =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000945 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Reid Spencer8cb68342007-03-12 17:25:59 +0000946 I->getName());
947 InsertNewInstBefore(Or, *I);
948 return UpdateValueUsesWith(I, Or);
949 }
950
951 // If all of the demanded bits on one side are known, and all of the set
952 // bits on that side are also known to be set on the other side, turn this
953 // into an AND, as we know the bits will be cleared.
954 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
955 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
956 // all known
957 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
958 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
959 Instruction *And =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000960 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Reid Spencer8cb68342007-03-12 17:25:59 +0000961 InsertNewInstBefore(And, *I);
962 return UpdateValueUsesWith(I, And);
963 }
964 }
965
966 // If the RHS is a constant, see if we can simplify it.
967 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
968 if (ShrinkDemandedConstant(I, 1, DemandedMask))
969 return UpdateValueUsesWith(I, I);
970
971 RHSKnownZero = KnownZeroOut;
972 RHSKnownOne = KnownOneOut;
973 break;
974 }
975 case Instruction::Select:
976 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
977 RHSKnownZero, RHSKnownOne, Depth+1))
978 return true;
979 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
980 LHSKnownZero, LHSKnownOne, Depth+1))
981 return true;
982 assert((RHSKnownZero & RHSKnownOne) == 0 &&
983 "Bits known to be one AND zero?");
984 assert((LHSKnownZero & LHSKnownOne) == 0 &&
985 "Bits known to be one AND zero?");
986
987 // If the operands are constants, see if we can simplify them.
988 if (ShrinkDemandedConstant(I, 1, DemandedMask))
989 return UpdateValueUsesWith(I, I);
990 if (ShrinkDemandedConstant(I, 2, DemandedMask))
991 return UpdateValueUsesWith(I, I);
992
993 // Only known if known in both the LHS and RHS.
994 RHSKnownOne &= LHSKnownOne;
995 RHSKnownZero &= LHSKnownZero;
996 break;
997 case Instruction::Trunc: {
998 uint32_t truncBf =
999 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
Zhou Sheng01542f32007-03-29 02:26:30 +00001000 DemandedMask.zext(truncBf);
1001 RHSKnownZero.zext(truncBf);
1002 RHSKnownOne.zext(truncBf);
1003 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1004 RHSKnownZero, RHSKnownOne, Depth+1))
Reid Spencer8cb68342007-03-12 17:25:59 +00001005 return true;
1006 DemandedMask.trunc(BitWidth);
1007 RHSKnownZero.trunc(BitWidth);
1008 RHSKnownOne.trunc(BitWidth);
1009 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1010 "Bits known to be one AND zero?");
1011 break;
1012 }
1013 case Instruction::BitCast:
1014 if (!I->getOperand(0)->getType()->isInteger())
1015 return false;
1016
1017 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1018 RHSKnownZero, RHSKnownOne, Depth+1))
1019 return true;
1020 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1021 "Bits known to be one AND zero?");
1022 break;
1023 case Instruction::ZExt: {
1024 // Compute the bits in the result that are not present in the input.
1025 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
Reid Spencer2f549172007-03-25 04:26:16 +00001026 uint32_t SrcBitWidth = SrcTy->getBitWidth();
Reid Spencer8cb68342007-03-12 17:25:59 +00001027
Zhou Shengd48653a2007-03-29 04:45:55 +00001028 DemandedMask.trunc(SrcBitWidth);
1029 RHSKnownZero.trunc(SrcBitWidth);
1030 RHSKnownOne.trunc(SrcBitWidth);
Zhou Sheng01542f32007-03-29 02:26:30 +00001031 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1032 RHSKnownZero, RHSKnownOne, Depth+1))
Reid Spencer8cb68342007-03-12 17:25:59 +00001033 return true;
1034 DemandedMask.zext(BitWidth);
1035 RHSKnownZero.zext(BitWidth);
1036 RHSKnownOne.zext(BitWidth);
1037 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1038 "Bits known to be one AND zero?");
1039 // The top bits are known to be zero.
Zhou Sheng01542f32007-03-29 02:26:30 +00001040 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Reid Spencer8cb68342007-03-12 17:25:59 +00001041 break;
1042 }
1043 case Instruction::SExt: {
1044 // Compute the bits in the result that are not present in the input.
1045 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
Reid Spencer2f549172007-03-25 04:26:16 +00001046 uint32_t SrcBitWidth = SrcTy->getBitWidth();
Reid Spencer8cb68342007-03-12 17:25:59 +00001047
Reid Spencer8cb68342007-03-12 17:25:59 +00001048 APInt InputDemandedBits = DemandedMask &
Zhou Sheng01542f32007-03-29 02:26:30 +00001049 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
Reid Spencer8cb68342007-03-12 17:25:59 +00001050
Zhou Sheng01542f32007-03-29 02:26:30 +00001051 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
Reid Spencer8cb68342007-03-12 17:25:59 +00001052 // If any of the sign extended bits are demanded, we know that the sign
1053 // bit is demanded.
1054 if ((NewBits & DemandedMask) != 0)
Zhou Sheng4a1822a2007-04-02 13:45:30 +00001055 InputDemandedBits.set(SrcBitWidth-1);
Reid Spencer8cb68342007-03-12 17:25:59 +00001056
Zhou Shengd48653a2007-03-29 04:45:55 +00001057 InputDemandedBits.trunc(SrcBitWidth);
1058 RHSKnownZero.trunc(SrcBitWidth);
1059 RHSKnownOne.trunc(SrcBitWidth);
Zhou Sheng01542f32007-03-29 02:26:30 +00001060 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1061 RHSKnownZero, RHSKnownOne, Depth+1))
Reid Spencer8cb68342007-03-12 17:25:59 +00001062 return true;
1063 InputDemandedBits.zext(BitWidth);
1064 RHSKnownZero.zext(BitWidth);
1065 RHSKnownOne.zext(BitWidth);
1066 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1067 "Bits known to be one AND zero?");
1068
1069 // If the sign bit of the input is known set or clear, then we know the
1070 // top bits of the result.
1071
1072 // If the input sign bit is known zero, or if the NewBits are not demanded
1073 // convert this into a zero extension.
Zhou Sheng01542f32007-03-29 02:26:30 +00001074 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
Reid Spencer8cb68342007-03-12 17:25:59 +00001075 {
1076 // Convert to ZExt cast
1077 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1078 return UpdateValueUsesWith(I, NewCast);
Zhou Sheng01542f32007-03-29 02:26:30 +00001079 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
Reid Spencer8cb68342007-03-12 17:25:59 +00001080 RHSKnownOne |= NewBits;
Reid Spencer8cb68342007-03-12 17:25:59 +00001081 }
1082 break;
1083 }
1084 case Instruction::Add: {
1085 // Figure out what the input bits are. If the top bits of the and result
1086 // are not demanded, then the add doesn't demand them from its input
1087 // either.
Reid Spencer55702aa2007-03-25 21:11:44 +00001088 uint32_t NLZ = DemandedMask.countLeadingZeros();
Reid Spencer8cb68342007-03-12 17:25:59 +00001089
1090 // If there is a constant on the RHS, there are a variety of xformations
1091 // we can do.
1092 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1093 // If null, this should be simplified elsewhere. Some of the xforms here
1094 // won't work if the RHS is zero.
1095 if (RHS->isZero())
1096 break;
1097
1098 // If the top bit of the output is demanded, demand everything from the
1099 // input. Otherwise, we demand all the input bits except NLZ top bits.
Zhou Sheng01542f32007-03-29 02:26:30 +00001100 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
Reid Spencer8cb68342007-03-12 17:25:59 +00001101
1102 // Find information about known zero/one bits in the input.
1103 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1104 LHSKnownZero, LHSKnownOne, Depth+1))
1105 return true;
1106
1107 // If the RHS of the add has bits set that can't affect the input, reduce
1108 // the constant.
1109 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1110 return UpdateValueUsesWith(I, I);
1111
1112 // Avoid excess work.
1113 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1114 break;
1115
1116 // Turn it into OR if input bits are zero.
1117 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1118 Instruction *Or =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001119 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Reid Spencer8cb68342007-03-12 17:25:59 +00001120 I->getName());
1121 InsertNewInstBefore(Or, *I);
1122 return UpdateValueUsesWith(I, Or);
1123 }
1124
1125 // We can say something about the output known-zero and known-one bits,
1126 // depending on potential carries from the input constant and the
1127 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1128 // bits set and the RHS constant is 0x01001, then we know we have a known
1129 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1130
1131 // To compute this, we first compute the potential carry bits. These are
1132 // the bits which may be modified. I'm not aware of a better way to do
1133 // this scan.
Zhou Shengb9cb95f2007-03-31 02:38:39 +00001134 const APInt& RHSVal = RHS->getValue();
1135 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
Reid Spencer8cb68342007-03-12 17:25:59 +00001136
1137 // Now that we know which bits have carries, compute the known-1/0 sets.
1138
1139 // Bits are known one if they are known zero in one operand and one in the
1140 // other, and there is no input carry.
1141 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1142 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1143
1144 // Bits are known zero if they are known zero in both operands and there
1145 // is no input carry.
1146 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1147 } else {
1148 // If the high-bits of this ADD are not demanded, then it does not demand
1149 // the high bits of its LHS or RHS.
Zhou Sheng01542f32007-03-29 02:26:30 +00001150 if (DemandedMask[BitWidth-1] == 0) {
Reid Spencer8cb68342007-03-12 17:25:59 +00001151 // Right fill the mask of bits for this ADD to demand the most
1152 // significant bit and all those below it.
Zhou Sheng01542f32007-03-29 02:26:30 +00001153 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
Reid Spencer8cb68342007-03-12 17:25:59 +00001154 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1155 LHSKnownZero, LHSKnownOne, Depth+1))
1156 return true;
1157 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1158 LHSKnownZero, LHSKnownOne, Depth+1))
1159 return true;
1160 }
1161 }
1162 break;
1163 }
1164 case Instruction::Sub:
1165 // If the high-bits of this SUB are not demanded, then it does not demand
1166 // the high bits of its LHS or RHS.
Zhou Sheng01542f32007-03-29 02:26:30 +00001167 if (DemandedMask[BitWidth-1] == 0) {
Reid Spencer8cb68342007-03-12 17:25:59 +00001168 // Right fill the mask of bits for this SUB to demand the most
1169 // significant bit and all those below it.
Zhou Sheng4351c642007-04-02 08:20:41 +00001170 uint32_t NLZ = DemandedMask.countLeadingZeros();
Zhou Sheng01542f32007-03-29 02:26:30 +00001171 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
Reid Spencer8cb68342007-03-12 17:25:59 +00001172 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1173 LHSKnownZero, LHSKnownOne, Depth+1))
1174 return true;
1175 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1176 LHSKnownZero, LHSKnownOne, Depth+1))
1177 return true;
1178 }
Dan Gohman23e8b712008-04-28 17:02:21 +00001179 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1180 // the known zeros and ones.
1181 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Reid Spencer8cb68342007-03-12 17:25:59 +00001182 break;
1183 case Instruction::Shl:
1184 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00001185 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Zhou Sheng01542f32007-03-29 02:26:30 +00001186 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1187 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
Reid Spencer8cb68342007-03-12 17:25:59 +00001188 RHSKnownZero, RHSKnownOne, Depth+1))
1189 return true;
1190 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1191 "Bits known to be one AND zero?");
1192 RHSKnownZero <<= ShiftAmt;
1193 RHSKnownOne <<= ShiftAmt;
1194 // low bits known zero.
Zhou Shengadc14952007-03-14 09:07:33 +00001195 if (ShiftAmt)
Zhou Shenge9e03f62007-03-28 15:02:20 +00001196 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
Reid Spencer8cb68342007-03-12 17:25:59 +00001197 }
1198 break;
1199 case Instruction::LShr:
1200 // For a logical shift right
1201 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00001202 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Reid Spencer8cb68342007-03-12 17:25:59 +00001203
Reid Spencer8cb68342007-03-12 17:25:59 +00001204 // Unsigned shift right.
Zhou Sheng01542f32007-03-29 02:26:30 +00001205 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1206 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
Reid Spencer8cb68342007-03-12 17:25:59 +00001207 RHSKnownZero, RHSKnownOne, Depth+1))
1208 return true;
1209 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1210 "Bits known to be one AND zero?");
Reid Spencer8cb68342007-03-12 17:25:59 +00001211 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1212 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
Zhou Shengadc14952007-03-14 09:07:33 +00001213 if (ShiftAmt) {
1214 // Compute the new bits that are at the top now.
Zhou Sheng01542f32007-03-29 02:26:30 +00001215 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
Zhou Shengadc14952007-03-14 09:07:33 +00001216 RHSKnownZero |= HighBits; // high bits known zero.
1217 }
Reid Spencer8cb68342007-03-12 17:25:59 +00001218 }
1219 break;
1220 case Instruction::AShr:
1221 // If this is an arithmetic shift right and only the low-bit is set, we can
1222 // always convert this into a logical shr, even if the shift amount is
1223 // variable. The low bit of the shift cannot be an input sign bit unless
1224 // the shift amount is >= the size of the datatype, which is undefined.
1225 if (DemandedMask == 1) {
1226 // Perform the logical shift right.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001227 Value *NewVal = BinaryOperator::CreateLShr(
Reid Spencer8cb68342007-03-12 17:25:59 +00001228 I->getOperand(0), I->getOperand(1), I->getName());
1229 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1230 return UpdateValueUsesWith(I, NewVal);
1231 }
Chris Lattner4241e4d2007-07-15 20:54:51 +00001232
1233 // If the sign bit is the only bit demanded by this ashr, then there is no
1234 // need to do it, the shift doesn't change the high bit.
1235 if (DemandedMask.isSignBit())
1236 return UpdateValueUsesWith(I, I->getOperand(0));
Reid Spencer8cb68342007-03-12 17:25:59 +00001237
1238 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Zhou Sheng302748d2007-03-30 17:20:39 +00001239 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
Reid Spencer8cb68342007-03-12 17:25:59 +00001240
Reid Spencer8cb68342007-03-12 17:25:59 +00001241 // Signed shift right.
Zhou Sheng01542f32007-03-29 02:26:30 +00001242 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
Lauro Ramos Venanciod0499af2007-06-06 17:08:48 +00001243 // If any of the "high bits" are demanded, we should set the sign bit as
1244 // demanded.
1245 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1246 DemandedMaskIn.set(BitWidth-1);
Reid Spencer8cb68342007-03-12 17:25:59 +00001247 if (SimplifyDemandedBits(I->getOperand(0),
Zhou Sheng01542f32007-03-29 02:26:30 +00001248 DemandedMaskIn,
Reid Spencer8cb68342007-03-12 17:25:59 +00001249 RHSKnownZero, RHSKnownOne, Depth+1))
1250 return true;
1251 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1252 "Bits known to be one AND zero?");
1253 // Compute the new bits that are at the top now.
Zhou Sheng01542f32007-03-29 02:26:30 +00001254 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
Reid Spencer8cb68342007-03-12 17:25:59 +00001255 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1256 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1257
1258 // Handle the sign bits.
1259 APInt SignBit(APInt::getSignBit(BitWidth));
1260 // Adjust to where it is now in the mask.
1261 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1262
1263 // If the input sign bit is known to be zero, or if none of the top bits
1264 // are demanded, turn this into an unsigned shift right.
Zhou Shengcc419402008-06-06 08:32:05 +00001265 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
Reid Spencer8cb68342007-03-12 17:25:59 +00001266 (HighBits & ~DemandedMask) == HighBits) {
1267 // Perform the logical shift right.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001268 Value *NewVal = BinaryOperator::CreateLShr(
Reid Spencer8cb68342007-03-12 17:25:59 +00001269 I->getOperand(0), SA, I->getName());
1270 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1271 return UpdateValueUsesWith(I, NewVal);
1272 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1273 RHSKnownOne |= HighBits;
1274 }
1275 }
1276 break;
Nick Lewyckyc1a2a612008-03-06 06:48:30 +00001277 case Instruction::SRem:
1278 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Nick Lewycky8e394322008-11-02 02:41:50 +00001279 APInt RA = Rem->getValue().abs();
1280 if (RA.isPowerOf2()) {
Nick Lewycky3ac9e102008-07-12 05:04:38 +00001281 if (DemandedMask.ule(RA)) // srem won't affect demanded bits
1282 return UpdateValueUsesWith(I, I->getOperand(0));
1283
Nick Lewycky8e394322008-11-02 02:41:50 +00001284 APInt LowBits = RA - 1;
Nick Lewyckyc1a2a612008-03-06 06:48:30 +00001285 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1286 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1287 LHSKnownZero, LHSKnownOne, Depth+1))
1288 return true;
1289
1290 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1291 LHSKnownZero |= ~LowBits;
Nick Lewyckyc1a2a612008-03-06 06:48:30 +00001292
1293 KnownZero |= LHSKnownZero & DemandedMask;
Nick Lewyckyc1a2a612008-03-06 06:48:30 +00001294
1295 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1296 }
1297 }
1298 break;
Dan Gohman23e8b712008-04-28 17:02:21 +00001299 case Instruction::URem: {
Dan Gohman23e8b712008-04-28 17:02:21 +00001300 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1301 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohmane85b7582008-05-01 19:13:24 +00001302 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1303 KnownZero2, KnownOne2, Depth+1))
1304 return true;
1305
Dan Gohman23e8b712008-04-28 17:02:21 +00001306 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohmane85b7582008-05-01 19:13:24 +00001307 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohman23e8b712008-04-28 17:02:21 +00001308 KnownZero2, KnownOne2, Depth+1))
1309 return true;
1310
1311 Leaders = std::max(Leaders,
1312 KnownZero2.countLeadingOnes());
1313 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1a2a612008-03-06 06:48:30 +00001314 break;
Reid Spencer8cb68342007-03-12 17:25:59 +00001315 }
Chris Lattner0521e3c2008-06-18 04:33:20 +00001316 case Instruction::Call:
1317 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1318 switch (II->getIntrinsicID()) {
1319 default: break;
1320 case Intrinsic::bswap: {
1321 // If the only bits demanded come from one byte of the bswap result,
1322 // just shift the input byte into position to eliminate the bswap.
1323 unsigned NLZ = DemandedMask.countLeadingZeros();
1324 unsigned NTZ = DemandedMask.countTrailingZeros();
1325
1326 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1327 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1328 // have 14 leading zeros, round to 8.
1329 NLZ &= ~7;
1330 NTZ &= ~7;
1331 // If we need exactly one byte, we can do this transformation.
1332 if (BitWidth-NLZ-NTZ == 8) {
1333 unsigned ResultBit = NTZ;
1334 unsigned InputBit = BitWidth-NTZ-8;
1335
1336 // Replace this with either a left or right shift to get the byte into
1337 // the right place.
1338 Instruction *NewVal;
1339 if (InputBit > ResultBit)
1340 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1341 ConstantInt::get(I->getType(), InputBit-ResultBit));
1342 else
1343 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1344 ConstantInt::get(I->getType(), ResultBit-InputBit));
1345 NewVal->takeName(I);
1346 InsertNewInstBefore(NewVal, *I);
1347 return UpdateValueUsesWith(I, NewVal);
1348 }
1349
1350 // TODO: Could compute known zero/one bits based on the input.
1351 break;
1352 }
1353 }
1354 }
Chris Lattner6c3bfba2008-06-18 18:11:55 +00001355 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Chris Lattner0521e3c2008-06-18 04:33:20 +00001356 break;
Dan Gohman23e8b712008-04-28 17:02:21 +00001357 }
Reid Spencer8cb68342007-03-12 17:25:59 +00001358
1359 // If the client is only demanding bits that we know, return the known
1360 // constant.
1361 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1362 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1363 return false;
1364}
1365
Chris Lattner867b99f2006-10-05 06:55:50 +00001366
Mon P Wangaeb06d22008-11-10 04:46:22 +00001367/// SimplifyDemandedVectorElts - The specified value produces a vector with
Chris Lattner867b99f2006-10-05 06:55:50 +00001368/// 64 or fewer elements. DemandedElts contains the set of elements that are
1369/// actually used by the caller. This method analyzes which elements of the
1370/// operand are undef and returns that information in UndefElts.
1371///
1372/// If the information about demanded elements can be used to simplify the
1373/// operation, the operation is simplified, then the resultant value is
1374/// returned. This returns null if no change was made.
1375Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1376 uint64_t &UndefElts,
1377 unsigned Depth) {
Reid Spencer9d6565a2007-02-15 02:26:10 +00001378 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
Chris Lattner867b99f2006-10-05 06:55:50 +00001379 assert(VWidth <= 64 && "Vector too wide to analyze!");
1380 uint64_t EltMask = ~0ULL >> (64-VWidth);
Dan Gohman488fbfc2008-09-09 18:11:14 +00001381 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
Chris Lattner867b99f2006-10-05 06:55:50 +00001382
1383 if (isa<UndefValue>(V)) {
1384 // If the entire vector is undefined, just return this info.
1385 UndefElts = EltMask;
1386 return 0;
1387 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1388 UndefElts = EltMask;
1389 return UndefValue::get(V->getType());
1390 }
Mon P Wangaeb06d22008-11-10 04:46:22 +00001391
Chris Lattner867b99f2006-10-05 06:55:50 +00001392 UndefElts = 0;
Reid Spencer9d6565a2007-02-15 02:26:10 +00001393 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1394 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattner867b99f2006-10-05 06:55:50 +00001395 Constant *Undef = UndefValue::get(EltTy);
1396
1397 std::vector<Constant*> Elts;
1398 for (unsigned i = 0; i != VWidth; ++i)
1399 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1400 Elts.push_back(Undef);
1401 UndefElts |= (1ULL << i);
1402 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1403 Elts.push_back(Undef);
1404 UndefElts |= (1ULL << i);
1405 } else { // Otherwise, defined.
1406 Elts.push_back(CP->getOperand(i));
1407 }
Mon P Wangaeb06d22008-11-10 04:46:22 +00001408
Chris Lattner867b99f2006-10-05 06:55:50 +00001409 // If we changed the constant, return it.
Reid Spencer9d6565a2007-02-15 02:26:10 +00001410 Constant *NewCP = ConstantVector::get(Elts);
Chris Lattner867b99f2006-10-05 06:55:50 +00001411 return NewCP != CP ? NewCP : 0;
1412 } else if (isa<ConstantAggregateZero>(V)) {
Reid Spencer9d6565a2007-02-15 02:26:10 +00001413 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
Chris Lattner867b99f2006-10-05 06:55:50 +00001414 // set to undef.
Mon P Wange0b436a2008-11-06 22:52:21 +00001415
1416 // Check if this is identity. If so, return 0 since we are not simplifying
1417 // anything.
1418 if (DemandedElts == ((1ULL << VWidth) -1))
1419 return 0;
1420
Reid Spencer9d6565a2007-02-15 02:26:10 +00001421 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattner867b99f2006-10-05 06:55:50 +00001422 Constant *Zero = Constant::getNullValue(EltTy);
1423 Constant *Undef = UndefValue::get(EltTy);
1424 std::vector<Constant*> Elts;
1425 for (unsigned i = 0; i != VWidth; ++i)
1426 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1427 UndefElts = DemandedElts ^ EltMask;
Reid Spencer9d6565a2007-02-15 02:26:10 +00001428 return ConstantVector::get(Elts);
Chris Lattner867b99f2006-10-05 06:55:50 +00001429 }
1430
Dan Gohman488fbfc2008-09-09 18:11:14 +00001431 // Limit search depth.
1432 if (Depth == 10)
1433 return false;
1434
1435 // If multiple users are using the root value, procede with
1436 // simplification conservatively assuming that all elements
1437 // are needed.
1438 if (!V->hasOneUse()) {
1439 // Quit if we find multiple users of a non-root value though.
1440 // They'll be handled when it's their turn to be visited by
1441 // the main instcombine process.
1442 if (Depth != 0)
Chris Lattner867b99f2006-10-05 06:55:50 +00001443 // TODO: Just compute the UndefElts information recursively.
1444 return false;
Dan Gohman488fbfc2008-09-09 18:11:14 +00001445
1446 // Conservatively assume that all elements are needed.
1447 DemandedElts = EltMask;
Chris Lattner867b99f2006-10-05 06:55:50 +00001448 }
1449
1450 Instruction *I = dyn_cast<Instruction>(V);
1451 if (!I) return false; // Only analyze instructions.
1452
1453 bool MadeChange = false;
1454 uint64_t UndefElts2;
1455 Value *TmpV;
1456 switch (I->getOpcode()) {
1457 default: break;
1458
1459 case Instruction::InsertElement: {
1460 // If this is a variable index, we don't know which element it overwrites.
1461 // demand exactly the same input as we produce.
Reid Spencerb83eb642006-10-20 07:07:24 +00001462 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
Chris Lattner867b99f2006-10-05 06:55:50 +00001463 if (Idx == 0) {
1464 // Note that we can't propagate undef elt info, because we don't know
1465 // which elt is getting updated.
1466 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1467 UndefElts2, Depth+1);
1468 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1469 break;
1470 }
1471
1472 // If this is inserting an element that isn't demanded, remove this
1473 // insertelement.
Reid Spencerb83eb642006-10-20 07:07:24 +00001474 unsigned IdxNo = Idx->getZExtValue();
Chris Lattner867b99f2006-10-05 06:55:50 +00001475 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1476 return AddSoonDeadInstToWorklist(*I, 0);
1477
1478 // Otherwise, the element inserted overwrites whatever was there, so the
1479 // input demanded set is simpler than the output set.
1480 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1481 DemandedElts & ~(1ULL << IdxNo),
1482 UndefElts, Depth+1);
1483 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1484
1485 // The inserted element is defined.
Dan Gohman488fbfc2008-09-09 18:11:14 +00001486 UndefElts &= ~(1ULL << IdxNo);
1487 break;
1488 }
1489 case Instruction::ShuffleVector: {
1490 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Mon P Wangaeb06d22008-11-10 04:46:22 +00001491 uint64_t LHSVWidth =
1492 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
Dan Gohman488fbfc2008-09-09 18:11:14 +00001493 uint64_t LeftDemanded = 0, RightDemanded = 0;
1494 for (unsigned i = 0; i < VWidth; i++) {
1495 if (DemandedElts & (1ULL << i)) {
1496 unsigned MaskVal = Shuffle->getMaskValue(i);
1497 if (MaskVal != -1u) {
Mon P Wangaeb06d22008-11-10 04:46:22 +00001498 assert(MaskVal < LHSVWidth * 2 &&
Dan Gohman488fbfc2008-09-09 18:11:14 +00001499 "shufflevector mask index out of range!");
Mon P Wangaeb06d22008-11-10 04:46:22 +00001500 if (MaskVal < LHSVWidth)
Dan Gohman488fbfc2008-09-09 18:11:14 +00001501 LeftDemanded |= 1ULL << MaskVal;
1502 else
Mon P Wangaeb06d22008-11-10 04:46:22 +00001503 RightDemanded |= 1ULL << (MaskVal - LHSVWidth);
Dan Gohman488fbfc2008-09-09 18:11:14 +00001504 }
1505 }
1506 }
1507
1508 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1509 UndefElts2, Depth+1);
1510 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1511
1512 uint64_t UndefElts3;
1513 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1514 UndefElts3, Depth+1);
1515 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1516
1517 bool NewUndefElts = false;
1518 for (unsigned i = 0; i < VWidth; i++) {
1519 unsigned MaskVal = Shuffle->getMaskValue(i);
Dan Gohmancb893092008-09-10 01:09:32 +00001520 if (MaskVal == -1u) {
Dan Gohman488fbfc2008-09-09 18:11:14 +00001521 uint64_t NewBit = 1ULL << i;
1522 UndefElts |= NewBit;
Mon P Wangaeb06d22008-11-10 04:46:22 +00001523 } else if (MaskVal < LHSVWidth) {
Dan Gohman488fbfc2008-09-09 18:11:14 +00001524 uint64_t NewBit = ((UndefElts2 >> MaskVal) & 1) << i;
1525 NewUndefElts |= NewBit;
1526 UndefElts |= NewBit;
1527 } else {
Mon P Wangaeb06d22008-11-10 04:46:22 +00001528 uint64_t NewBit = ((UndefElts3 >> (MaskVal - LHSVWidth)) & 1) << i;
Dan Gohman488fbfc2008-09-09 18:11:14 +00001529 NewUndefElts |= NewBit;
1530 UndefElts |= NewBit;
1531 }
1532 }
1533
1534 if (NewUndefElts) {
1535 // Add additional discovered undefs.
1536 std::vector<Constant*> Elts;
1537 for (unsigned i = 0; i < VWidth; ++i) {
1538 if (UndefElts & (1ULL << i))
1539 Elts.push_back(UndefValue::get(Type::Int32Ty));
1540 else
1541 Elts.push_back(ConstantInt::get(Type::Int32Ty,
1542 Shuffle->getMaskValue(i)));
1543 }
1544 I->setOperand(2, ConstantVector::get(Elts));
1545 MadeChange = true;
1546 }
Chris Lattner867b99f2006-10-05 06:55:50 +00001547 break;
1548 }
Chris Lattner69878332007-04-14 22:29:23 +00001549 case Instruction::BitCast: {
Dan Gohman07a96762007-07-16 14:29:03 +00001550 // Vector->vector casts only.
Chris Lattner69878332007-04-14 22:29:23 +00001551 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1552 if (!VTy) break;
1553 unsigned InVWidth = VTy->getNumElements();
1554 uint64_t InputDemandedElts = 0;
1555 unsigned Ratio;
1556
1557 if (VWidth == InVWidth) {
Dan Gohman07a96762007-07-16 14:29:03 +00001558 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
Chris Lattner69878332007-04-14 22:29:23 +00001559 // elements as are demanded of us.
1560 Ratio = 1;
1561 InputDemandedElts = DemandedElts;
1562 } else if (VWidth > InVWidth) {
1563 // Untested so far.
1564 break;
1565
1566 // If there are more elements in the result than there are in the source,
1567 // then an input element is live if any of the corresponding output
1568 // elements are live.
1569 Ratio = VWidth/InVWidth;
1570 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1571 if (DemandedElts & (1ULL << OutIdx))
1572 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1573 }
1574 } else {
1575 // Untested so far.
1576 break;
1577
1578 // If there are more elements in the source than there are in the result,
1579 // then an input element is live if the corresponding output element is
1580 // live.
1581 Ratio = InVWidth/VWidth;
1582 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1583 if (DemandedElts & (1ULL << InIdx/Ratio))
1584 InputDemandedElts |= 1ULL << InIdx;
1585 }
Chris Lattner867b99f2006-10-05 06:55:50 +00001586
Chris Lattner69878332007-04-14 22:29:23 +00001587 // div/rem demand all inputs, because they don't want divide by zero.
1588 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1589 UndefElts2, Depth+1);
1590 if (TmpV) {
1591 I->setOperand(0, TmpV);
1592 MadeChange = true;
1593 }
1594
1595 UndefElts = UndefElts2;
1596 if (VWidth > InVWidth) {
1597 assert(0 && "Unimp");
1598 // If there are more elements in the result than there are in the source,
1599 // then an output element is undef if the corresponding input element is
1600 // undef.
1601 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1602 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1603 UndefElts |= 1ULL << OutIdx;
1604 } else if (VWidth < InVWidth) {
1605 assert(0 && "Unimp");
1606 // If there are more elements in the source than there are in the result,
1607 // then a result element is undef if all of the corresponding input
1608 // elements are undef.
1609 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1610 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1611 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1612 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1613 }
1614 break;
1615 }
Chris Lattner867b99f2006-10-05 06:55:50 +00001616 case Instruction::And:
1617 case Instruction::Or:
1618 case Instruction::Xor:
1619 case Instruction::Add:
1620 case Instruction::Sub:
1621 case Instruction::Mul:
1622 // div/rem demand all inputs, because they don't want divide by zero.
1623 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1624 UndefElts, Depth+1);
1625 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1626 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1627 UndefElts2, Depth+1);
1628 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1629
1630 // Output elements are undefined if both are undefined. Consider things
1631 // like undef&0. The result is known zero, not undef.
1632 UndefElts &= UndefElts2;
1633 break;
1634
1635 case Instruction::Call: {
1636 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1637 if (!II) break;
1638 switch (II->getIntrinsicID()) {
1639 default: break;
1640
1641 // Binary vector operations that work column-wise. A dest element is a
1642 // function of the corresponding input elements from the two inputs.
1643 case Intrinsic::x86_sse_sub_ss:
1644 case Intrinsic::x86_sse_mul_ss:
1645 case Intrinsic::x86_sse_min_ss:
1646 case Intrinsic::x86_sse_max_ss:
1647 case Intrinsic::x86_sse2_sub_sd:
1648 case Intrinsic::x86_sse2_mul_sd:
1649 case Intrinsic::x86_sse2_min_sd:
1650 case Intrinsic::x86_sse2_max_sd:
1651 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1652 UndefElts, Depth+1);
1653 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1654 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1655 UndefElts2, Depth+1);
1656 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1657
1658 // If only the low elt is demanded and this is a scalarizable intrinsic,
1659 // scalarize it now.
1660 if (DemandedElts == 1) {
1661 switch (II->getIntrinsicID()) {
1662 default: break;
1663 case Intrinsic::x86_sse_sub_ss:
1664 case Intrinsic::x86_sse_mul_ss:
1665 case Intrinsic::x86_sse2_sub_sd:
1666 case Intrinsic::x86_sse2_mul_sd:
1667 // TODO: Lower MIN/MAX/ABS/etc
1668 Value *LHS = II->getOperand(1);
1669 Value *RHS = II->getOperand(2);
1670 // Extract the element as scalars.
1671 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1672 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1673
1674 switch (II->getIntrinsicID()) {
1675 default: assert(0 && "Case stmts out of sync!");
1676 case Intrinsic::x86_sse_sub_ss:
1677 case Intrinsic::x86_sse2_sub_sd:
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001678 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Chris Lattner867b99f2006-10-05 06:55:50 +00001679 II->getName()), *II);
1680 break;
1681 case Intrinsic::x86_sse_mul_ss:
1682 case Intrinsic::x86_sse2_mul_sd:
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001683 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Chris Lattner867b99f2006-10-05 06:55:50 +00001684 II->getName()), *II);
1685 break;
1686 }
1687
1688 Instruction *New =
Gabor Greif051a9502008-04-06 20:25:17 +00001689 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1690 II->getName());
Chris Lattner867b99f2006-10-05 06:55:50 +00001691 InsertNewInstBefore(New, *II);
1692 AddSoonDeadInstToWorklist(*II, 0);
1693 return New;
1694 }
1695 }
1696
1697 // Output elements are undefined if both are undefined. Consider things
1698 // like undef&0. The result is known zero, not undef.
1699 UndefElts &= UndefElts2;
1700 break;
1701 }
1702 break;
1703 }
1704 }
1705 return MadeChange ? I : 0;
1706}
1707
Dan Gohman45b4e482008-05-19 22:14:15 +00001708
Chris Lattner564a7272003-08-13 19:01:45 +00001709/// AssociativeOpt - Perform an optimization on an associative operator. This
1710/// function is designed to check a chain of associative operators for a
1711/// potential to apply a certain optimization. Since the optimization may be
1712/// applicable if the expression was reassociated, this checks the chain, then
1713/// reassociates the expression as necessary to expose the optimization
1714/// opportunity. This makes use of a special Functor, which must define
1715/// 'shouldApply' and 'apply' methods.
1716///
1717template<typename Functor>
Dan Gohman76d402b2008-05-20 01:14:05 +00001718static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
Chris Lattner564a7272003-08-13 19:01:45 +00001719 unsigned Opcode = Root.getOpcode();
1720 Value *LHS = Root.getOperand(0);
1721
1722 // Quick check, see if the immediate LHS matches...
1723 if (F.shouldApply(LHS))
1724 return F.apply(Root);
1725
1726 // Otherwise, if the LHS is not of the same opcode as the root, return.
1727 Instruction *LHSI = dyn_cast<Instruction>(LHS);
Chris Lattnerfd059242003-10-15 16:48:29 +00001728 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
Chris Lattner564a7272003-08-13 19:01:45 +00001729 // Should we apply this transform to the RHS?
1730 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1731
1732 // If not to the RHS, check to see if we should apply to the LHS...
1733 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1734 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1735 ShouldApply = true;
1736 }
1737
1738 // If the functor wants to apply the optimization to the RHS of LHSI,
1739 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1740 if (ShouldApply) {
Chris Lattner564a7272003-08-13 19:01:45 +00001741 // Now all of the instructions are in the current basic block, go ahead
1742 // and perform the reassociation.
1743 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1744
1745 // First move the selected RHS to the LHS of the root...
1746 Root.setOperand(0, LHSI->getOperand(1));
1747
1748 // Make what used to be the LHS of the root be the user of the root...
1749 Value *ExtraOperand = TmpLHSI->getOperand(1);
Chris Lattner65725312004-04-16 18:08:07 +00001750 if (&Root == TmpLHSI) {
Chris Lattner15a76c02004-04-05 02:10:19 +00001751 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1752 return 0;
1753 }
Chris Lattner65725312004-04-16 18:08:07 +00001754 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
Chris Lattner564a7272003-08-13 19:01:45 +00001755 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Chris Lattner65725312004-04-16 18:08:07 +00001756 BasicBlock::iterator ARI = &Root; ++ARI;
Dan Gohmand02d9172008-06-19 17:47:47 +00001757 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
Chris Lattner65725312004-04-16 18:08:07 +00001758 ARI = Root;
Chris Lattner564a7272003-08-13 19:01:45 +00001759
1760 // Now propagate the ExtraOperand down the chain of instructions until we
1761 // get to LHSI.
1762 while (TmpLHSI != LHSI) {
1763 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
Chris Lattner65725312004-04-16 18:08:07 +00001764 // Move the instruction to immediately before the chain we are
1765 // constructing to avoid breaking dominance properties.
Dan Gohmand02d9172008-06-19 17:47:47 +00001766 NextLHSI->moveBefore(ARI);
Chris Lattner65725312004-04-16 18:08:07 +00001767 ARI = NextLHSI;
1768
Chris Lattner564a7272003-08-13 19:01:45 +00001769 Value *NextOp = NextLHSI->getOperand(1);
1770 NextLHSI->setOperand(1, ExtraOperand);
1771 TmpLHSI = NextLHSI;
1772 ExtraOperand = NextOp;
1773 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001774
Chris Lattner564a7272003-08-13 19:01:45 +00001775 // Now that the instructions are reassociated, have the functor perform
1776 // the transformation...
1777 return F.apply(Root);
1778 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001779
Chris Lattner564a7272003-08-13 19:01:45 +00001780 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1781 }
1782 return 0;
1783}
1784
Dan Gohman844731a2008-05-13 00:00:25 +00001785namespace {
Chris Lattner564a7272003-08-13 19:01:45 +00001786
Nick Lewycky02d639f2008-05-23 04:34:58 +00001787// AddRHS - Implements: X + X --> X << 1
Chris Lattner564a7272003-08-13 19:01:45 +00001788struct AddRHS {
1789 Value *RHS;
1790 AddRHS(Value *rhs) : RHS(rhs) {}
1791 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1792 Instruction *apply(BinaryOperator &Add) const {
Nick Lewycky02d639f2008-05-23 04:34:58 +00001793 return BinaryOperator::CreateShl(Add.getOperand(0),
1794 ConstantInt::get(Add.getType(), 1));
Chris Lattner564a7272003-08-13 19:01:45 +00001795 }
1796};
1797
1798// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1799// iff C1&C2 == 0
1800struct AddMaskingAnd {
1801 Constant *C2;
1802 AddMaskingAnd(Constant *c) : C2(c) {}
1803 bool shouldApply(Value *LHS) const {
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001804 ConstantInt *C1;
Misha Brukmanfd939082005-04-21 23:48:37 +00001805 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001806 ConstantExpr::getAnd(C1, C2)->isNullValue();
Chris Lattner564a7272003-08-13 19:01:45 +00001807 }
1808 Instruction *apply(BinaryOperator &Add) const {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001809 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Chris Lattner564a7272003-08-13 19:01:45 +00001810 }
1811};
1812
Dan Gohman844731a2008-05-13 00:00:25 +00001813}
1814
Chris Lattner6e7ba452005-01-01 16:22:27 +00001815static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner2eefe512004-04-09 19:05:30 +00001816 InstCombiner *IC) {
Reid Spencer3da59db2006-11-27 01:05:10 +00001817 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Chris Lattner6e7ba452005-01-01 16:22:27 +00001818 if (Constant *SOC = dyn_cast<Constant>(SO))
Reid Spencer3da59db2006-11-27 01:05:10 +00001819 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
Misha Brukmanfd939082005-04-21 23:48:37 +00001820
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001821 return IC->InsertNewInstBefore(CastInst::Create(
Reid Spencer3da59db2006-11-27 01:05:10 +00001822 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
Chris Lattner6e7ba452005-01-01 16:22:27 +00001823 }
1824
Chris Lattner2eefe512004-04-09 19:05:30 +00001825 // Figure out if the constant is the left or the right argument.
Chris Lattner6e7ba452005-01-01 16:22:27 +00001826 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1827 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattner564a7272003-08-13 19:01:45 +00001828
Chris Lattner2eefe512004-04-09 19:05:30 +00001829 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1830 if (ConstIsRHS)
Chris Lattner6e7ba452005-01-01 16:22:27 +00001831 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1832 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner2eefe512004-04-09 19:05:30 +00001833 }
1834
1835 Value *Op0 = SO, *Op1 = ConstOperand;
1836 if (!ConstIsRHS)
1837 std::swap(Op0, Op1);
1838 Instruction *New;
Chris Lattner6e7ba452005-01-01 16:22:27 +00001839 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001840 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Reid Spencere4d87aa2006-12-23 06:05:41 +00001841 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001842 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Reid Spencere4d87aa2006-12-23 06:05:41 +00001843 SO->getName()+".cmp");
Chris Lattner326c0f32004-04-10 19:15:56 +00001844 else {
Chris Lattner2eefe512004-04-09 19:05:30 +00001845 assert(0 && "Unknown binary instruction type!");
Chris Lattner326c0f32004-04-10 19:15:56 +00001846 abort();
1847 }
Chris Lattner6e7ba452005-01-01 16:22:27 +00001848 return IC->InsertNewInstBefore(New, I);
1849}
1850
1851// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1852// constant as the other operand, try to fold the binary operator into the
1853// select arguments. This also works for Cast instructions, which obviously do
1854// not have a second operand.
1855static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1856 InstCombiner *IC) {
1857 // Don't modify shared select instructions
1858 if (!SI->hasOneUse()) return 0;
1859 Value *TV = SI->getOperand(1);
1860 Value *FV = SI->getOperand(2);
1861
1862 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner956db272005-04-21 05:43:13 +00001863 // Bool selects with constant operands can be folded to logical ops.
Reid Spencer4fe16d62007-01-11 18:21:29 +00001864 if (SI->getType() == Type::Int1Ty) return 0;
Chris Lattner956db272005-04-21 05:43:13 +00001865
Chris Lattner6e7ba452005-01-01 16:22:27 +00001866 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1867 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1868
Gabor Greif051a9502008-04-06 20:25:17 +00001869 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1870 SelectFalseVal);
Chris Lattner6e7ba452005-01-01 16:22:27 +00001871 }
1872 return 0;
Chris Lattner2eefe512004-04-09 19:05:30 +00001873}
1874
Chris Lattner4e998b22004-09-29 05:07:12 +00001875
1876/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1877/// node as operand #0, see if we can fold the instruction into the PHI (which
1878/// is only possible if all operands to the PHI are constants).
1879Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1880 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattnerbac32862004-11-14 19:13:23 +00001881 unsigned NumPHIValues = PN->getNumIncomingValues();
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001882 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
Chris Lattner4e998b22004-09-29 05:07:12 +00001883
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001884 // Check to see if all of the operands of the PHI are constants. If there is
1885 // one non-constant value, remember the BB it is. If there is more than one
Chris Lattnerb3036682007-02-24 01:03:45 +00001886 // or if *it* is a PHI, bail out.
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001887 BasicBlock *NonConstBB = 0;
1888 for (unsigned i = 0; i != NumPHIValues; ++i)
1889 if (!isa<Constant>(PN->getIncomingValue(i))) {
1890 if (NonConstBB) return 0; // More than one non-const value.
Chris Lattnerb3036682007-02-24 01:03:45 +00001891 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001892 NonConstBB = PN->getIncomingBlock(i);
1893
1894 // If the incoming non-constant value is in I's block, we have an infinite
1895 // loop.
1896 if (NonConstBB == I.getParent())
1897 return 0;
1898 }
1899
1900 // If there is exactly one non-constant value, we can insert a copy of the
1901 // operation in that block. However, if this is a critical edge, we would be
1902 // inserting the computation one some other paths (e.g. inside a loop). Only
1903 // do this if the pred block is unconditionally branching into the phi block.
1904 if (NonConstBB) {
1905 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1906 if (!BI || !BI->isUnconditional()) return 0;
1907 }
Chris Lattner4e998b22004-09-29 05:07:12 +00001908
1909 // Okay, we can do the transformation: create the new PHI node.
Gabor Greif051a9502008-04-06 20:25:17 +00001910 PHINode *NewPN = PHINode::Create(I.getType(), "");
Chris Lattner55517062005-01-29 00:39:08 +00001911 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
Chris Lattner4e998b22004-09-29 05:07:12 +00001912 InsertNewInstBefore(NewPN, *PN);
Chris Lattner6934a042007-02-11 01:23:03 +00001913 NewPN->takeName(PN);
Chris Lattner4e998b22004-09-29 05:07:12 +00001914
1915 // Next, add all of the operands to the PHI.
1916 if (I.getNumOperands() == 2) {
1917 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattnerbac32862004-11-14 19:13:23 +00001918 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnera9ff5eb2007-08-05 08:47:58 +00001919 Value *InV = 0;
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001920 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00001921 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1922 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1923 else
1924 InV = ConstantExpr::get(I.getOpcode(), InC, C);
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001925 } else {
1926 assert(PN->getIncomingBlock(i) == NonConstBB);
1927 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001928 InV = BinaryOperator::Create(BO->getOpcode(),
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001929 PN->getIncomingValue(i), C, "phitmp",
1930 NonConstBB->getTerminator());
Reid Spencere4d87aa2006-12-23 06:05:41 +00001931 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001932 InV = CmpInst::Create(CI->getOpcode(),
Reid Spencere4d87aa2006-12-23 06:05:41 +00001933 CI->getPredicate(),
1934 PN->getIncomingValue(i), C, "phitmp",
1935 NonConstBB->getTerminator());
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001936 else
1937 assert(0 && "Unknown binop!");
1938
Chris Lattnerdbab3862007-03-02 21:28:56 +00001939 AddToWorkList(cast<Instruction>(InV));
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001940 }
1941 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner4e998b22004-09-29 05:07:12 +00001942 }
Reid Spencer3da59db2006-11-27 01:05:10 +00001943 } else {
1944 CastInst *CI = cast<CastInst>(&I);
1945 const Type *RetTy = CI->getType();
Chris Lattnerbac32862004-11-14 19:13:23 +00001946 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001947 Value *InV;
1948 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
Reid Spencer3da59db2006-11-27 01:05:10 +00001949 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001950 } else {
1951 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001952 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Reid Spencer3da59db2006-11-27 01:05:10 +00001953 I.getType(), "phitmp",
1954 NonConstBB->getTerminator());
Chris Lattnerdbab3862007-03-02 21:28:56 +00001955 AddToWorkList(cast<Instruction>(InV));
Chris Lattner2a86f3b2006-09-09 22:02:56 +00001956 }
1957 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner4e998b22004-09-29 05:07:12 +00001958 }
1959 }
1960 return ReplaceInstUsesWith(I, NewPN);
1961}
1962
Chris Lattner2454a2e2008-01-29 06:52:45 +00001963
Chris Lattner3d28b1b2008-05-20 05:46:13 +00001964/// WillNotOverflowSignedAdd - Return true if we can prove that:
1965/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
1966/// This basically requires proving that the add in the original type would not
1967/// overflow to change the sign bit or have a carry out.
1968bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
1969 // There are different heuristics we can use for this. Here are some simple
1970 // ones.
1971
1972 // Add has the property that adding any two 2's complement numbers can only
1973 // have one carry bit which can change a sign. As such, if LHS and RHS each
1974 // have at least two sign bits, we know that the addition of the two values will
1975 // sign extend fine.
1976 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
1977 return true;
1978
1979
1980 // If one of the operands only has one non-zero bit, and if the other operand
1981 // has a known-zero bit in a more significant place than it (not including the
1982 // sign bit) the ripple may go up to and fill the zero, but won't change the
1983 // sign. For example, (X & ~4) + 1.
1984
1985 // TODO: Implement.
1986
1987 return false;
1988}
1989
Chris Lattner2454a2e2008-01-29 06:52:45 +00001990
Chris Lattner7e708292002-06-25 16:13:24 +00001991Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00001992 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00001993 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Chris Lattnerb35dde12002-05-06 16:49:18 +00001994
Chris Lattner66331a42004-04-10 22:01:55 +00001995 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
Chris Lattnere87597f2004-10-16 18:11:37 +00001996 // X + undef -> undef
1997 if (isa<UndefValue>(RHS))
1998 return ReplaceInstUsesWith(I, RHS);
1999
Chris Lattner66331a42004-04-10 22:01:55 +00002000 // X + 0 --> X
Chris Lattner9919e3d2006-12-02 00:13:08 +00002001 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
Chris Lattner5e678e02005-10-17 17:56:38 +00002002 if (RHSC->isNullValue())
2003 return ReplaceInstUsesWith(I, LHS);
Chris Lattner8532cf62005-10-17 20:18:38 +00002004 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen9e3d3ab2007-09-14 22:26:36 +00002005 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
2006 (I.getType())->getValueAPF()))
Chris Lattner8532cf62005-10-17 20:18:38 +00002007 return ReplaceInstUsesWith(I, LHS);
Chris Lattner5e678e02005-10-17 17:56:38 +00002008 }
Misha Brukmanfd939082005-04-21 23:48:37 +00002009
Chris Lattner66331a42004-04-10 22:01:55 +00002010 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
Chris Lattnerb4a2f052006-11-09 05:12:27 +00002011 // X + (signbit) --> X ^ signbit
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002012 const APInt& Val = CI->getValue();
Zhou Sheng4351c642007-04-02 08:20:41 +00002013 uint32_t BitWidth = Val.getBitWidth();
Reid Spencer2ec619a2007-03-23 21:24:59 +00002014 if (Val == APInt::getSignBit(BitWidth))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002015 return BinaryOperator::CreateXor(LHS, RHS);
Chris Lattnerb4a2f052006-11-09 05:12:27 +00002016
2017 // See if SimplifyDemandedBits can simplify this. This handles stuff like
2018 // (X & 254)+1 -> (X&254)|1
Reid Spencer2ec619a2007-03-23 21:24:59 +00002019 if (!isa<VectorType>(I.getType())) {
2020 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2021 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2022 KnownZero, KnownOne))
2023 return &I;
2024 }
Dan Gohman1975d032008-10-30 20:40:10 +00002025
2026 // zext(i1) - 1 -> select i1, 0, -1
2027 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
2028 if (CI->isAllOnesValue() &&
2029 ZI->getOperand(0)->getType() == Type::Int1Ty)
2030 return SelectInst::Create(ZI->getOperand(0),
2031 Constant::getNullValue(I.getType()),
2032 ConstantInt::getAllOnesValue(I.getType()));
Chris Lattner66331a42004-04-10 22:01:55 +00002033 }
Chris Lattner4e998b22004-09-29 05:07:12 +00002034
2035 if (isa<PHINode>(LHS))
2036 if (Instruction *NV = FoldOpIntoPhi(I))
2037 return NV;
Chris Lattner5931c542005-09-24 23:43:33 +00002038
Chris Lattner4f637d42006-01-06 17:59:59 +00002039 ConstantInt *XorRHS = 0;
2040 Value *XorLHS = 0;
Chris Lattnerc5eff442007-01-30 22:32:46 +00002041 if (isa<ConstantInt>(RHSC) &&
2042 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
Zhou Sheng4351c642007-04-02 08:20:41 +00002043 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002044 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
Chris Lattner5931c542005-09-24 23:43:33 +00002045
Zhou Sheng4351c642007-04-02 08:20:41 +00002046 uint32_t Size = TySizeBits / 2;
Reid Spencer2ec619a2007-03-23 21:24:59 +00002047 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2048 APInt CFF80Val(-C0080Val);
Chris Lattner5931c542005-09-24 23:43:33 +00002049 do {
2050 if (TySizeBits > Size) {
Chris Lattner5931c542005-09-24 23:43:33 +00002051 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2052 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
Reid Spencer2ec619a2007-03-23 21:24:59 +00002053 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2054 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
Chris Lattner5931c542005-09-24 23:43:33 +00002055 // This is a sign extend if the top bits are known zero.
Zhou Sheng290bec52007-03-29 08:15:12 +00002056 if (!MaskedValueIsZero(XorLHS,
2057 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
Chris Lattner5931c542005-09-24 23:43:33 +00002058 Size = 0; // Not a sign ext, but can't be any others either.
Reid Spencer2ec619a2007-03-23 21:24:59 +00002059 break;
Chris Lattner5931c542005-09-24 23:43:33 +00002060 }
2061 }
2062 Size >>= 1;
Reid Spencer2ec619a2007-03-23 21:24:59 +00002063 C0080Val = APIntOps::lshr(C0080Val, Size);
2064 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2065 } while (Size >= 1);
Chris Lattner5931c542005-09-24 23:43:33 +00002066
Reid Spencer35c38852007-03-28 01:36:16 +00002067 // FIXME: This shouldn't be necessary. When the backends can handle types
Chris Lattner0c7a9a02008-05-19 20:25:04 +00002068 // with funny bit widths then this switch statement should be removed. It
2069 // is just here to get the size of the "middle" type back up to something
2070 // that the back ends can handle.
Reid Spencer35c38852007-03-28 01:36:16 +00002071 const Type *MiddleType = 0;
2072 switch (Size) {
2073 default: break;
2074 case 32: MiddleType = Type::Int32Ty; break;
2075 case 16: MiddleType = Type::Int16Ty; break;
2076 case 8: MiddleType = Type::Int8Ty; break;
2077 }
2078 if (MiddleType) {
Reid Spencerd977d862006-12-12 23:36:14 +00002079 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
Chris Lattner5931c542005-09-24 23:43:33 +00002080 InsertNewInstBefore(NewTrunc, I);
Reid Spencer35c38852007-03-28 01:36:16 +00002081 return new SExtInst(NewTrunc, I.getType(), I.getName());
Chris Lattner5931c542005-09-24 23:43:33 +00002082 }
2083 }
Chris Lattner66331a42004-04-10 22:01:55 +00002084 }
Chris Lattnerb35dde12002-05-06 16:49:18 +00002085
Nick Lewycky9419ddb2008-05-31 17:59:52 +00002086 if (I.getType() == Type::Int1Ty)
2087 return BinaryOperator::CreateXor(LHS, RHS);
2088
Nick Lewycky7d26bd82008-05-23 04:39:38 +00002089 // X + X --> X << 1
Nick Lewycky9419ddb2008-05-31 17:59:52 +00002090 if (I.getType()->isInteger()) {
Chris Lattner564a7272003-08-13 19:01:45 +00002091 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
Chris Lattner7edc8c22005-04-07 17:14:51 +00002092
2093 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2094 if (RHSI->getOpcode() == Instruction::Sub)
2095 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2096 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2097 }
2098 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2099 if (LHSI->getOpcode() == Instruction::Sub)
2100 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2101 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2102 }
Robert Bocchino71698282004-07-27 21:02:21 +00002103 }
Chris Lattnere92d2f42003-08-13 04:18:28 +00002104
Chris Lattner5c4afb92002-05-08 22:46:53 +00002105 // -A + B --> B - A
Chris Lattnerdd12f962008-02-17 21:03:36 +00002106 // -A + -B --> -(A + B)
2107 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattnere10c0b92008-02-18 17:50:16 +00002108 if (LHS->getType()->isIntOrIntVector()) {
2109 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002110 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattnere10c0b92008-02-18 17:50:16 +00002111 InsertNewInstBefore(NewAdd, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002112 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattnere10c0b92008-02-18 17:50:16 +00002113 }
Chris Lattnerdd12f962008-02-17 21:03:36 +00002114 }
2115
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002116 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattnerdd12f962008-02-17 21:03:36 +00002117 }
Chris Lattnerb35dde12002-05-06 16:49:18 +00002118
2119 // A + -B --> A - B
Chris Lattner8d969642003-03-10 23:06:50 +00002120 if (!isa<Constant>(RHS))
2121 if (Value *V = dyn_castNegVal(RHS))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002122 return BinaryOperator::CreateSub(LHS, V);
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002123
Misha Brukmanfd939082005-04-21 23:48:37 +00002124
Chris Lattner50af16a2004-11-13 19:50:12 +00002125 ConstantInt *C2;
2126 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2127 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002128 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Chris Lattner50af16a2004-11-13 19:50:12 +00002129
2130 // X*C1 + X*C2 --> X * (C1+C2)
2131 ConstantInt *C1;
2132 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002133 return BinaryOperator::CreateMul(X, Add(C1, C2));
Chris Lattnerad3448c2003-02-18 19:57:07 +00002134 }
2135
2136 // X + X*C --> X * (C+1)
Chris Lattner50af16a2004-11-13 19:50:12 +00002137 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002138 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Chris Lattner50af16a2004-11-13 19:50:12 +00002139
Chris Lattnere617c9e2007-01-05 02:17:46 +00002140 // X + ~X --> -1 since ~X = -X-1
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00002141 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2142 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattnere617c9e2007-01-05 02:17:46 +00002143
Chris Lattnerad3448c2003-02-18 19:57:07 +00002144
Chris Lattner564a7272003-08-13 19:01:45 +00002145 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002146 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
Chris Lattnere617c9e2007-01-05 02:17:46 +00002147 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2148 return R;
Chris Lattner5e0d7182008-05-19 20:01:56 +00002149
2150 // A+B --> A|B iff A and B have no bits set in common.
2151 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2152 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2153 APInt LHSKnownOne(IT->getBitWidth(), 0);
2154 APInt LHSKnownZero(IT->getBitWidth(), 0);
2155 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2156 if (LHSKnownZero != 0) {
2157 APInt RHSKnownOne(IT->getBitWidth(), 0);
2158 APInt RHSKnownZero(IT->getBitWidth(), 0);
2159 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2160
2161 // No bits in common -> bitwise or.
Chris Lattner9d60ba92008-05-19 20:03:53 +00002162 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
Chris Lattner5e0d7182008-05-19 20:01:56 +00002163 return BinaryOperator::CreateOr(LHS, RHS);
Chris Lattner5e0d7182008-05-19 20:01:56 +00002164 }
2165 }
Chris Lattnerc8802d22003-03-11 00:12:48 +00002166
Nick Lewyckyb6eabff2008-02-03 07:42:09 +00002167 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky0c2c3f62008-02-03 08:19:11 +00002168 if (I.getType()->isIntOrIntVector()) {
Nick Lewyckyb6eabff2008-02-03 07:42:09 +00002169 Value *W, *X, *Y, *Z;
2170 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2171 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2172 if (W != Y) {
2173 if (W == Z) {
Bill Wendling587c01d2008-02-26 10:53:30 +00002174 std::swap(Y, Z);
Nick Lewyckyb6eabff2008-02-03 07:42:09 +00002175 } else if (Y == X) {
Bill Wendling587c01d2008-02-26 10:53:30 +00002176 std::swap(W, X);
2177 } else if (X == Z) {
Nick Lewyckyb6eabff2008-02-03 07:42:09 +00002178 std::swap(Y, Z);
2179 std::swap(W, X);
2180 }
2181 }
2182
2183 if (W == Y) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002184 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewyckyb6eabff2008-02-03 07:42:09 +00002185 LHS->getName()), I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002186 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewyckyb6eabff2008-02-03 07:42:09 +00002187 }
2188 }
2189 }
2190
Chris Lattner6b032052003-10-02 15:11:26 +00002191 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
Chris Lattner4f637d42006-01-06 17:59:59 +00002192 Value *X = 0;
Reid Spencer7177c3a2007-03-25 05:33:51 +00002193 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002194 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002195
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002196 // (X & FF00) + xx00 -> (X+xx00) & FF00
2197 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
Reid Spencer7177c3a2007-03-25 05:33:51 +00002198 Constant *Anded = And(CRHS, C2);
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002199 if (Anded == CRHS) {
2200 // See if all bits from the first bit set in the Add RHS up are included
2201 // in the mask. First, get the rightmost bit.
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002202 const APInt& AddRHSV = CRHS->getValue();
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002203
2204 // Form a mask of all bits from the lowest bit added through the top.
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002205 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002206
2207 // See if the and mask includes all of these bits.
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002208 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
Misha Brukmanfd939082005-04-21 23:48:37 +00002209
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002210 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2211 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002212 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002213 LHS->getName()), I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002214 return BinaryOperator::CreateAnd(NewAdd, C2);
Chris Lattnerb99d6b12004-10-08 05:07:56 +00002215 }
2216 }
2217 }
2218
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002219 // Try to fold constant add into select arguments.
2220 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002221 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002222 return R;
Chris Lattner6b032052003-10-02 15:11:26 +00002223 }
2224
Reid Spencer1628cec2006-10-26 06:15:43 +00002225 // add (cast *A to intptrtype) B ->
Chris Lattner42790482007-12-20 01:56:58 +00002226 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Andrew Lenharth16d79552006-09-19 18:24:51 +00002227 {
Reid Spencer3da59db2006-11-27 01:05:10 +00002228 CastInst *CI = dyn_cast<CastInst>(LHS);
2229 Value *Other = RHS;
Andrew Lenharth16d79552006-09-19 18:24:51 +00002230 if (!CI) {
2231 CI = dyn_cast<CastInst>(RHS);
2232 Other = LHS;
2233 }
Andrew Lenharth45633262006-09-20 15:37:57 +00002234 if (CI && CI->getType()->isSized() &&
Reid Spencerabaa8ca2007-01-08 16:32:00 +00002235 (CI->getType()->getPrimitiveSizeInBits() ==
2236 TD->getIntPtrType()->getPrimitiveSizeInBits())
Andrew Lenharth45633262006-09-20 15:37:57 +00002237 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lamb43ad6b32007-12-17 01:12:55 +00002238 unsigned AS =
2239 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner6d0339d2008-01-13 22:23:22 +00002240 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2241 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greif051a9502008-04-06 20:25:17 +00002242 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Reid Spencer3da59db2006-11-27 01:05:10 +00002243 return new PtrToIntInst(I2, CI->getType());
Andrew Lenharth16d79552006-09-19 18:24:51 +00002244 }
2245 }
Christopher Lamb30f017a2007-12-18 09:34:41 +00002246
Chris Lattner42790482007-12-20 01:56:58 +00002247 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb30f017a2007-12-18 09:34:41 +00002248 {
2249 SelectInst *SI = dyn_cast<SelectInst>(LHS);
Chris Lattner6046fb72008-11-16 04:46:19 +00002250 Value *A = RHS;
Christopher Lamb30f017a2007-12-18 09:34:41 +00002251 if (!SI) {
2252 SI = dyn_cast<SelectInst>(RHS);
Chris Lattner6046fb72008-11-16 04:46:19 +00002253 A = LHS;
Christopher Lamb30f017a2007-12-18 09:34:41 +00002254 }
Chris Lattner42790482007-12-20 01:56:58 +00002255 if (SI && SI->hasOneUse()) {
Christopher Lamb30f017a2007-12-18 09:34:41 +00002256 Value *TV = SI->getTrueValue();
2257 Value *FV = SI->getFalseValue();
Chris Lattner6046fb72008-11-16 04:46:19 +00002258 Value *N;
Christopher Lamb30f017a2007-12-18 09:34:41 +00002259
2260 // Can we fold the add into the argument of the select?
2261 // We check both true and false select arguments for a matching subtract.
Chris Lattner6046fb72008-11-16 04:46:19 +00002262 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
2263 // Fold the add into the true select value.
Gabor Greif051a9502008-04-06 20:25:17 +00002264 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattner6046fb72008-11-16 04:46:19 +00002265 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
2266 // Fold the add into the false select value.
Gabor Greif051a9502008-04-06 20:25:17 +00002267 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb30f017a2007-12-18 09:34:41 +00002268 }
2269 }
Chris Lattner2454a2e2008-01-29 06:52:45 +00002270
2271 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2272 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2273 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2274 return ReplaceInstUsesWith(I, LHS);
Andrew Lenharth16d79552006-09-19 18:24:51 +00002275
Chris Lattner3d28b1b2008-05-20 05:46:13 +00002276 // Check for (add (sext x), y), see if we can merge this into an
2277 // integer add followed by a sext.
2278 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2279 // (add (sext x), cst) --> (sext (add x, cst'))
2280 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2281 Constant *CI =
2282 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2283 if (LHSConv->hasOneUse() &&
2284 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2285 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2286 // Insert the new, smaller add.
2287 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2288 CI, "addconv");
2289 InsertNewInstBefore(NewAdd, I);
2290 return new SExtInst(NewAdd, I.getType());
2291 }
2292 }
2293
2294 // (add (sext x), (sext y)) --> (sext (add int x, y))
2295 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2296 // Only do this if x/y have the same type, if at last one of them has a
2297 // single use (so we don't increase the number of sexts), and if the
2298 // integer add will not overflow.
2299 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2300 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2301 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2302 RHSConv->getOperand(0))) {
2303 // Insert the new integer add.
2304 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2305 RHSConv->getOperand(0),
2306 "addconv");
2307 InsertNewInstBefore(NewAdd, I);
2308 return new SExtInst(NewAdd, I.getType());
2309 }
2310 }
2311 }
2312
2313 // Check for (add double (sitofp x), y), see if we can merge this into an
2314 // integer add followed by a promotion.
2315 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2316 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2317 // ... if the constant fits in the integer value. This is useful for things
2318 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2319 // requires a constant pool load, and generally allows the add to be better
2320 // instcombined.
2321 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2322 Constant *CI =
2323 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2324 if (LHSConv->hasOneUse() &&
2325 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2326 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2327 // Insert the new integer add.
2328 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2329 CI, "addconv");
2330 InsertNewInstBefore(NewAdd, I);
2331 return new SIToFPInst(NewAdd, I.getType());
2332 }
2333 }
2334
2335 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2336 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2337 // Only do this if x/y have the same type, if at last one of them has a
2338 // single use (so we don't increase the number of int->fp conversions),
2339 // and if the integer add will not overflow.
2340 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2341 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2342 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2343 RHSConv->getOperand(0))) {
2344 // Insert the new integer add.
2345 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2346 RHSConv->getOperand(0),
2347 "addconv");
2348 InsertNewInstBefore(NewAdd, I);
2349 return new SIToFPInst(NewAdd, I.getType());
2350 }
2351 }
2352 }
2353
Chris Lattner7e708292002-06-25 16:13:24 +00002354 return Changed ? &I : 0;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002355}
2356
Chris Lattner7e708292002-06-25 16:13:24 +00002357Instruction *InstCombiner::visitSub(BinaryOperator &I) {
Chris Lattner7e708292002-06-25 16:13:24 +00002358 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00002359
Chris Lattnerd137ab42008-07-17 06:07:20 +00002360 if (Op0 == Op1 && // sub X, X -> 0
2361 !I.getType()->isFPOrFPVector())
Chris Lattner233f7dc2002-08-12 21:17:25 +00002362 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002363
Chris Lattner233f7dc2002-08-12 21:17:25 +00002364 // If this is a 'B = x-(-A)', change to B = x+A...
Chris Lattner8d969642003-03-10 23:06:50 +00002365 if (Value *V = dyn_castNegVal(Op1))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002366 return BinaryOperator::CreateAdd(Op0, V);
Chris Lattnerb35dde12002-05-06 16:49:18 +00002367
Chris Lattnere87597f2004-10-16 18:11:37 +00002368 if (isa<UndefValue>(Op0))
2369 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2370 if (isa<UndefValue>(Op1))
2371 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2372
Chris Lattnerd65460f2003-11-05 01:06:05 +00002373 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2374 // Replace (-1 - A) with (~A)...
Chris Lattnera2881962003-02-18 19:28:33 +00002375 if (C->isAllOnesValue())
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002376 return BinaryOperator::CreateNot(Op1);
Chris Lattner40371712002-05-09 01:29:19 +00002377
Chris Lattnerd65460f2003-11-05 01:06:05 +00002378 // C - ~X == X + (1+C)
Reid Spencer4b828e62005-06-18 17:37:34 +00002379 Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002380 if (match(Op1, m_Not(m_Value(X))))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002381 return BinaryOperator::CreateAdd(X, AddOne(C));
Reid Spencer7177c3a2007-03-25 05:33:51 +00002382
Chris Lattner76b7a062007-01-15 07:02:54 +00002383 // -(X >>u 31) -> (X >>s 31)
2384 // -(X >>s 31) -> (X >>u 31)
Zhou Sheng302748d2007-03-30 17:20:39 +00002385 if (C->isZero()) {
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00002386 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Reid Spencer3822ff52006-11-08 06:47:33 +00002387 if (SI->getOpcode() == Instruction::LShr) {
Reid Spencerb83eb642006-10-20 07:07:24 +00002388 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
Chris Lattner9c290672004-03-12 23:53:13 +00002389 // Check to see if we are shifting out everything but the sign bit.
Zhou Sheng302748d2007-03-30 17:20:39 +00002390 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
Reid Spencerb83eb642006-10-20 07:07:24 +00002391 SI->getType()->getPrimitiveSizeInBits()-1) {
Reid Spencer3822ff52006-11-08 06:47:33 +00002392 // Ok, the transformation is safe. Insert AShr.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002393 return BinaryOperator::Create(Instruction::AShr,
Reid Spencer832254e2007-02-02 02:16:23 +00002394 SI->getOperand(0), CU, SI->getName());
Chris Lattner9c290672004-03-12 23:53:13 +00002395 }
2396 }
Reid Spencer3822ff52006-11-08 06:47:33 +00002397 }
2398 else if (SI->getOpcode() == Instruction::AShr) {
2399 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2400 // Check to see if we are shifting out everything but the sign bit.
Zhou Sheng302748d2007-03-30 17:20:39 +00002401 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
Reid Spencer3822ff52006-11-08 06:47:33 +00002402 SI->getType()->getPrimitiveSizeInBits()-1) {
Reid Spencerc5b206b2006-12-31 05:48:39 +00002403 // Ok, the transformation is safe. Insert LShr.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002404 return BinaryOperator::CreateLShr(
Reid Spencer832254e2007-02-02 02:16:23 +00002405 SI->getOperand(0), CU, SI->getName());
Reid Spencer3822ff52006-11-08 06:47:33 +00002406 }
2407 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00002408 }
2409 }
Chris Lattnerbfe492b2004-03-13 00:11:49 +00002410 }
Chris Lattner2eefe512004-04-09 19:05:30 +00002411
2412 // Try to fold constant sub into select arguments.
2413 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002414 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00002415 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00002416
2417 if (isa<PHINode>(Op0))
2418 if (Instruction *NV = FoldOpIntoPhi(I))
2419 return NV;
Chris Lattnerd65460f2003-11-05 01:06:05 +00002420 }
2421
Nick Lewycky9419ddb2008-05-31 17:59:52 +00002422 if (I.getType() == Type::Int1Ty)
2423 return BinaryOperator::CreateXor(Op0, Op1);
2424
Chris Lattner43d84d62005-04-07 16:15:25 +00002425 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2426 if (Op1I->getOpcode() == Instruction::Add &&
Chris Lattner9919e3d2006-12-02 00:13:08 +00002427 !Op0->getType()->isFPOrFPVector()) {
Chris Lattner08954a22005-04-07 16:28:01 +00002428 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002429 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Chris Lattner08954a22005-04-07 16:28:01 +00002430 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002431 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Chris Lattner08954a22005-04-07 16:28:01 +00002432 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2433 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2434 // C1-(X+C2) --> (C1-C2)-X
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002435 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Chris Lattner08954a22005-04-07 16:28:01 +00002436 Op1I->getOperand(0));
2437 }
Chris Lattner43d84d62005-04-07 16:15:25 +00002438 }
2439
Chris Lattnerfd059242003-10-15 16:48:29 +00002440 if (Op1I->hasOneUse()) {
Chris Lattnera2881962003-02-18 19:28:33 +00002441 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2442 // is not used by anyone else...
2443 //
Chris Lattner0517e722004-02-02 20:09:56 +00002444 if (Op1I->getOpcode() == Instruction::Sub &&
Chris Lattner9919e3d2006-12-02 00:13:08 +00002445 !Op1I->getType()->isFPOrFPVector()) {
Chris Lattnera2881962003-02-18 19:28:33 +00002446 // Swap the two operands of the subexpr...
2447 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2448 Op1I->setOperand(0, IIOp1);
2449 Op1I->setOperand(1, IIOp0);
Misha Brukmanfd939082005-04-21 23:48:37 +00002450
Chris Lattnera2881962003-02-18 19:28:33 +00002451 // Create the new top level add instruction...
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002452 return BinaryOperator::CreateAdd(Op0, Op1);
Chris Lattnera2881962003-02-18 19:28:33 +00002453 }
2454
2455 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2456 //
2457 if (Op1I->getOpcode() == Instruction::And &&
2458 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2459 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2460
Chris Lattnerf523d062004-06-09 05:08:07 +00002461 Value *NewNot =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002462 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2463 return BinaryOperator::CreateAnd(Op0, NewNot);
Chris Lattnera2881962003-02-18 19:28:33 +00002464 }
Chris Lattnerad3448c2003-02-18 19:57:07 +00002465
Reid Spencerac5209e2006-10-16 23:08:08 +00002466 // 0 - (X sdiv C) -> (X sdiv -C)
Reid Spencer1628cec2006-10-26 06:15:43 +00002467 if (Op1I->getOpcode() == Instruction::SDiv)
Reid Spencerb83eb642006-10-20 07:07:24 +00002468 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
Zhou Sheng843f07672007-04-19 05:39:12 +00002469 if (CSI->isZero())
Chris Lattner91ccc152004-10-06 15:08:25 +00002470 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002471 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Chris Lattner91ccc152004-10-06 15:08:25 +00002472 ConstantExpr::getNeg(DivRHS));
2473
Chris Lattnerad3448c2003-02-18 19:57:07 +00002474 // X - X*C --> X * (1-C)
Reid Spencer4b828e62005-06-18 17:37:34 +00002475 ConstantInt *C2 = 0;
Chris Lattner50af16a2004-11-13 19:50:12 +00002476 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
Reid Spencer7177c3a2007-03-25 05:33:51 +00002477 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002478 return BinaryOperator::CreateMul(Op0, CP1);
Chris Lattnerad3448c2003-02-18 19:57:07 +00002479 }
Chris Lattner40371712002-05-09 01:29:19 +00002480 }
Chris Lattner43d84d62005-04-07 16:15:25 +00002481 }
Chris Lattnera2881962003-02-18 19:28:33 +00002482
Chris Lattner9919e3d2006-12-02 00:13:08 +00002483 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00002484 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Chris Lattner7edc8c22005-04-07 17:14:51 +00002485 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00002486 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2487 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2488 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2489 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
Chris Lattner7edc8c22005-04-07 17:14:51 +00002490 } else if (Op0I->getOpcode() == Instruction::Sub) {
2491 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002492 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00002493 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00002494 }
Misha Brukmanfd939082005-04-21 23:48:37 +00002495
Chris Lattner50af16a2004-11-13 19:50:12 +00002496 ConstantInt *C1;
2497 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
Reid Spencer7177c3a2007-03-25 05:33:51 +00002498 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002499 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Chris Lattnerad3448c2003-02-18 19:57:07 +00002500
Chris Lattner50af16a2004-11-13 19:50:12 +00002501 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2502 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002503 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Chris Lattner50af16a2004-11-13 19:50:12 +00002504 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00002505 return 0;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002506}
2507
Chris Lattnera0141b92007-07-15 20:42:37 +00002508/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2509/// comparison only checks the sign bit. If it only checks the sign bit, set
2510/// TrueIfSigned if the result of the comparison is true when the input value is
2511/// signed.
2512static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2513 bool &TrueIfSigned) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00002514 switch (pred) {
Chris Lattnera0141b92007-07-15 20:42:37 +00002515 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2516 TrueIfSigned = true;
2517 return RHS->isZero();
Chris Lattnercb7122b2007-07-16 04:15:34 +00002518 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2519 TrueIfSigned = true;
2520 return RHS->isAllOnesValue();
Chris Lattnera0141b92007-07-15 20:42:37 +00002521 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2522 TrueIfSigned = false;
2523 return RHS->isAllOnesValue();
Chris Lattnercb7122b2007-07-16 04:15:34 +00002524 case ICmpInst::ICMP_UGT:
2525 // True if LHS u> RHS and RHS == high-bit-mask - 1
2526 TrueIfSigned = true;
2527 return RHS->getValue() ==
2528 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2529 case ICmpInst::ICMP_UGE:
2530 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2531 TrueIfSigned = true;
Chris Lattner833f25d2008-06-02 01:29:46 +00002532 return RHS->getValue().isSignBit();
Chris Lattnera0141b92007-07-15 20:42:37 +00002533 default:
2534 return false;
Chris Lattner4cb170c2004-02-23 06:38:22 +00002535 }
Chris Lattner4cb170c2004-02-23 06:38:22 +00002536}
2537
Chris Lattner7e708292002-06-25 16:13:24 +00002538Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00002539 bool Changed = SimplifyCommutative(I);
Chris Lattnera2881962003-02-18 19:28:33 +00002540 Value *Op0 = I.getOperand(0);
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002541
Chris Lattnere87597f2004-10-16 18:11:37 +00002542 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2543 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2544
Chris Lattner233f7dc2002-08-12 21:17:25 +00002545 // Simplify mul instructions with a constant RHS...
Chris Lattnera2881962003-02-18 19:28:33 +00002546 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2547 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnere92d2f42003-08-13 04:18:28 +00002548
2549 // ((X << C1)*C2) == (X * (C2 << C1))
Reid Spencer832254e2007-02-02 02:16:23 +00002550 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
Chris Lattnere92d2f42003-08-13 04:18:28 +00002551 if (SI->getOpcode() == Instruction::Shl)
2552 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002553 return BinaryOperator::CreateMul(SI->getOperand(0),
Chris Lattner48595f12004-06-10 02:07:29 +00002554 ConstantExpr::getShl(CI, ShOp));
Misha Brukmanfd939082005-04-21 23:48:37 +00002555
Zhou Sheng843f07672007-04-19 05:39:12 +00002556 if (CI->isZero())
Chris Lattner515c97c2003-09-11 22:24:54 +00002557 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2558 if (CI->equalsInt(1)) // X * 1 == X
2559 return ReplaceInstUsesWith(I, Op0);
2560 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002561 return BinaryOperator::CreateNeg(Op0, I.getName());
Chris Lattner6c1ce212002-04-29 22:24:47 +00002562
Zhou Sheng97b52c22007-03-29 01:57:21 +00002563 const APInt& Val = cast<ConstantInt>(CI)->getValue();
Reid Spencerbca0e382007-03-23 20:05:17 +00002564 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002565 return BinaryOperator::CreateShl(Op0,
Reid Spencerbca0e382007-03-23 20:05:17 +00002566 ConstantInt::get(Op0->getType(), Val.logBase2()));
Chris Lattnerbcd7db52005-08-02 19:16:58 +00002567 }
Robert Bocchino71698282004-07-27 21:02:21 +00002568 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
Chris Lattnera2881962003-02-18 19:28:33 +00002569 if (Op1F->isNullValue())
2570 return ReplaceInstUsesWith(I, Op1);
Chris Lattner6c1ce212002-04-29 22:24:47 +00002571
Chris Lattnera2881962003-02-18 19:28:33 +00002572 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2573 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Chris Lattnerb8cd4d32008-08-11 22:06:05 +00002574 if (Op1F->isExactlyValue(1.0))
2575 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2576 } else if (isa<VectorType>(Op1->getType())) {
2577 if (isa<ConstantAggregateZero>(Op1))
2578 return ReplaceInstUsesWith(I, Op1);
Nick Lewycky895f0852008-11-27 20:21:08 +00002579
2580 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2581 if (Op1V->isAllOnesValue()) // X * -1 == 0 - X
2582 return BinaryOperator::CreateNeg(Op0, I.getName());
2583
2584 // As above, vector X*splat(1.0) -> X in all defined cases.
2585 if (Constant *Splat = Op1V->getSplatValue()) {
2586 if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
2587 if (F->isExactlyValue(1.0))
2588 return ReplaceInstUsesWith(I, Op0);
2589 if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat))
2590 if (CI->equalsInt(1))
2591 return ReplaceInstUsesWith(I, Op0);
2592 }
2593 }
Chris Lattnera2881962003-02-18 19:28:33 +00002594 }
Chris Lattnerab51f3f2006-03-04 06:04:02 +00002595
2596 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2597 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner47c99092008-05-18 04:11:26 +00002598 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Chris Lattnerab51f3f2006-03-04 06:04:02 +00002599 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002600 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Chris Lattnerab51f3f2006-03-04 06:04:02 +00002601 Op1, "tmp");
2602 InsertNewInstBefore(Add, I);
2603 Value *C1C2 = ConstantExpr::getMul(Op1,
2604 cast<Constant>(Op0I->getOperand(1)));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002605 return BinaryOperator::CreateAdd(Add, C1C2);
Chris Lattnerab51f3f2006-03-04 06:04:02 +00002606
2607 }
Chris Lattner2eefe512004-04-09 19:05:30 +00002608
2609 // Try to fold constant mul into select arguments.
2610 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002611 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00002612 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00002613
2614 if (isa<PHINode>(Op0))
2615 if (Instruction *NV = FoldOpIntoPhi(I))
2616 return NV;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002617 }
2618
Chris Lattnera4f445b2003-03-10 23:23:04 +00002619 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2620 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002621 return BinaryOperator::CreateMul(Op0v, Op1v);
Chris Lattnera4f445b2003-03-10 23:23:04 +00002622
Nick Lewycky0c730792008-11-21 07:33:58 +00002623 // (X / Y) * Y = X - (X % Y)
2624 // (X / Y) * -Y = (X % Y) - X
2625 {
2626 Value *Op1 = I.getOperand(1);
2627 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
2628 if (!BO ||
2629 (BO->getOpcode() != Instruction::UDiv &&
2630 BO->getOpcode() != Instruction::SDiv)) {
2631 Op1 = Op0;
2632 BO = dyn_cast<BinaryOperator>(I.getOperand(1));
2633 }
2634 Value *Neg = dyn_castNegVal(Op1);
2635 if (BO && BO->hasOneUse() &&
2636 (BO->getOperand(1) == Op1 || BO->getOperand(1) == Neg) &&
2637 (BO->getOpcode() == Instruction::UDiv ||
2638 BO->getOpcode() == Instruction::SDiv)) {
2639 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
2640
2641 Instruction *Rem;
2642 if (BO->getOpcode() == Instruction::UDiv)
2643 Rem = BinaryOperator::CreateURem(Op0BO, Op1BO);
2644 else
2645 Rem = BinaryOperator::CreateSRem(Op0BO, Op1BO);
2646
2647 InsertNewInstBefore(Rem, I);
2648 Rem->takeName(BO);
2649
2650 if (Op1BO == Op1)
2651 return BinaryOperator::CreateSub(Op0BO, Rem);
2652 else
2653 return BinaryOperator::CreateSub(Rem, Op0BO);
2654 }
2655 }
2656
Nick Lewycky9419ddb2008-05-31 17:59:52 +00002657 if (I.getType() == Type::Int1Ty)
2658 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2659
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002660 // If one of the operands of the multiply is a cast from a boolean value, then
2661 // we know the bool is either zero or one, so this is a 'masking' multiply.
2662 // See if we can simplify things based on how the boolean was originally
2663 // formed.
2664 CastInst *BoolCast = 0;
Nick Lewycky9419ddb2008-05-31 17:59:52 +00002665 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
Reid Spencer4fe16d62007-01-11 18:21:29 +00002666 if (CI->getOperand(0)->getType() == Type::Int1Ty)
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002667 BoolCast = CI;
2668 if (!BoolCast)
Reid Spencerc55b2432006-12-13 18:21:21 +00002669 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
Reid Spencer4fe16d62007-01-11 18:21:29 +00002670 if (CI->getOperand(0)->getType() == Type::Int1Ty)
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002671 BoolCast = CI;
2672 if (BoolCast) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00002673 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002674 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2675 const Type *SCOpTy = SCIOp0->getType();
Chris Lattnera0141b92007-07-15 20:42:37 +00002676 bool TIS = false;
2677
Reid Spencere4d87aa2006-12-23 06:05:41 +00002678 // If the icmp is true iff the sign bit of X is set, then convert this
Chris Lattner4cb170c2004-02-23 06:38:22 +00002679 // multiply into a shift/and combination.
2680 if (isa<ConstantInt>(SCIOp1) &&
Chris Lattnera0141b92007-07-15 20:42:37 +00002681 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2682 TIS) {
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002683 // Shift the X value right to turn it into "all signbits".
Reid Spencer832254e2007-02-02 02:16:23 +00002684 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
Chris Lattner484d3cf2005-04-24 06:59:08 +00002685 SCOpTy->getPrimitiveSizeInBits()-1);
Chris Lattner4cb170c2004-02-23 06:38:22 +00002686 Value *V =
Reid Spencer832254e2007-02-02 02:16:23 +00002687 InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002688 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Chris Lattner4cb170c2004-02-23 06:38:22 +00002689 BoolCast->getOperand(0)->getName()+
2690 ".mask"), I);
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002691
2692 // If the multiply type is not the same as the source type, sign extend
2693 // or truncate to the multiply type.
Reid Spencer17212df2006-12-12 09:18:51 +00002694 if (I.getType() != V->getType()) {
Zhou Sheng4351c642007-04-02 08:20:41 +00002695 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2696 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
Reid Spencer17212df2006-12-12 09:18:51 +00002697 Instruction::CastOps opcode =
2698 (SrcBits == DstBits ? Instruction::BitCast :
2699 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2700 V = InsertCastBefore(opcode, V, I.getType(), I);
2701 }
Misha Brukmanfd939082005-04-21 23:48:37 +00002702
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002703 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002704 return BinaryOperator::CreateAnd(V, OtherOp);
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00002705 }
2706 }
2707 }
2708
Chris Lattner7e708292002-06-25 16:13:24 +00002709 return Changed ? &I : 0;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002710}
2711
Chris Lattnerfdb19e52008-07-14 00:15:52 +00002712/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2713/// instruction.
2714bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
2715 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
2716
2717 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2718 int NonNullOperand = -1;
2719 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2720 if (ST->isNullValue())
2721 NonNullOperand = 2;
2722 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2723 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2724 if (ST->isNullValue())
2725 NonNullOperand = 1;
2726
2727 if (NonNullOperand == -1)
2728 return false;
2729
2730 Value *SelectCond = SI->getOperand(0);
2731
2732 // Change the div/rem to use 'Y' instead of the select.
2733 I.setOperand(1, SI->getOperand(NonNullOperand));
2734
2735 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2736 // problem. However, the select, or the condition of the select may have
2737 // multiple uses. Based on our knowledge that the operand must be non-zero,
2738 // propagate the known value for the select into other uses of it, and
2739 // propagate a known value of the condition into its other users.
2740
2741 // If the select and condition only have a single use, don't bother with this,
2742 // early exit.
2743 if (SI->use_empty() && SelectCond->hasOneUse())
2744 return true;
2745
2746 // Scan the current block backward, looking for other uses of SI.
2747 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
2748
2749 while (BBI != BBFront) {
2750 --BBI;
2751 // If we found a call to a function, we can't assume it will return, so
2752 // information from below it cannot be propagated above it.
2753 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
2754 break;
2755
2756 // Replace uses of the select or its condition with the known values.
2757 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
2758 I != E; ++I) {
2759 if (*I == SI) {
2760 *I = SI->getOperand(NonNullOperand);
2761 AddToWorkList(BBI);
2762 } else if (*I == SelectCond) {
2763 *I = NonNullOperand == 1 ? ConstantInt::getTrue() :
2764 ConstantInt::getFalse();
2765 AddToWorkList(BBI);
2766 }
2767 }
2768
2769 // If we past the instruction, quit looking for it.
2770 if (&*BBI == SI)
2771 SI = 0;
2772 if (&*BBI == SelectCond)
2773 SelectCond = 0;
2774
2775 // If we ran out of things to eliminate, break out of the loop.
2776 if (SelectCond == 0 && SI == 0)
2777 break;
2778
2779 }
2780 return true;
2781}
2782
2783
Reid Spencer1628cec2006-10-26 06:15:43 +00002784/// This function implements the transforms on div instructions that work
2785/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2786/// used by the visitors to those instructions.
2787/// @brief Transforms common to all three div instructions
Reid Spencer3da59db2006-11-27 01:05:10 +00002788Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
Chris Lattner857e8cd2004-12-12 21:48:58 +00002789 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnere87597f2004-10-16 18:11:37 +00002790
Chris Lattner50b2ca42008-02-19 06:12:18 +00002791 // undef / X -> 0 for integer.
2792 // undef / X -> undef for FP (the undef could be a snan).
2793 if (isa<UndefValue>(Op0)) {
2794 if (Op0->getType()->isFPOrFPVector())
2795 return ReplaceInstUsesWith(I, Op0);
Chris Lattner857e8cd2004-12-12 21:48:58 +00002796 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner50b2ca42008-02-19 06:12:18 +00002797 }
Reid Spencer1628cec2006-10-26 06:15:43 +00002798
2799 // X / undef -> undef
Chris Lattner857e8cd2004-12-12 21:48:58 +00002800 if (isa<UndefValue>(Op1))
Reid Spencer1628cec2006-10-26 06:15:43 +00002801 return ReplaceInstUsesWith(I, Op1);
Chris Lattner857e8cd2004-12-12 21:48:58 +00002802
Reid Spencer1628cec2006-10-26 06:15:43 +00002803 return 0;
2804}
Misha Brukmanfd939082005-04-21 23:48:37 +00002805
Reid Spencer1628cec2006-10-26 06:15:43 +00002806/// This function implements the transforms common to both integer division
2807/// instructions (udiv and sdiv). It is called by the visitors to those integer
2808/// division instructions.
2809/// @brief Common integer divide transforms
Reid Spencer3da59db2006-11-27 01:05:10 +00002810Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
Reid Spencer1628cec2006-10-26 06:15:43 +00002811 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2812
Chris Lattnerb2ae9e32008-05-16 02:59:42 +00002813 // (sdiv X, X) --> 1 (udiv X, X) --> 1
Nick Lewycky39ac3b52008-05-23 03:26:47 +00002814 if (Op0 == Op1) {
2815 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2816 ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1);
2817 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2818 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2819 }
2820
2821 ConstantInt *CI = ConstantInt::get(I.getType(), 1);
2822 return ReplaceInstUsesWith(I, CI);
2823 }
Chris Lattnerb2ae9e32008-05-16 02:59:42 +00002824
Reid Spencer1628cec2006-10-26 06:15:43 +00002825 if (Instruction *Common = commonDivTransforms(I))
2826 return Common;
Chris Lattnerfdb19e52008-07-14 00:15:52 +00002827
2828 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2829 // This does not apply for fdiv.
2830 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2831 return &I;
Reid Spencer1628cec2006-10-26 06:15:43 +00002832
2833 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2834 // div X, 1 == X
2835 if (RHS->equalsInt(1))
2836 return ReplaceInstUsesWith(I, Op0);
2837
2838 // (X / C1) / C2 -> X / (C1*C2)
2839 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2840 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2841 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewyckye0cfecf2008-02-18 22:48:05 +00002842 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2843 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2844 else
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002845 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewyckye0cfecf2008-02-18 22:48:05 +00002846 Multiply(RHS, LHSRHS));
Chris Lattnerbf70b832005-04-08 04:03:26 +00002847 }
Reid Spencer1628cec2006-10-26 06:15:43 +00002848
Reid Spencerbca0e382007-03-23 20:05:17 +00002849 if (!RHS->isZero()) { // avoid X udiv 0
Reid Spencer1628cec2006-10-26 06:15:43 +00002850 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2851 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2852 return R;
2853 if (isa<PHINode>(Op0))
2854 if (Instruction *NV = FoldOpIntoPhi(I))
2855 return NV;
2856 }
Chris Lattner8e49e082006-09-09 20:26:32 +00002857 }
Misha Brukmanfd939082005-04-21 23:48:37 +00002858
Chris Lattnera2881962003-02-18 19:28:33 +00002859 // 0 / X == 0, we don't need to preserve faults!
Chris Lattner857e8cd2004-12-12 21:48:58 +00002860 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
Chris Lattnera2881962003-02-18 19:28:33 +00002861 if (LHS->equalsInt(0))
2862 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2863
Nick Lewycky9419ddb2008-05-31 17:59:52 +00002864 // It can't be division by zero, hence it must be division by one.
2865 if (I.getType() == Type::Int1Ty)
2866 return ReplaceInstUsesWith(I, Op0);
2867
Nick Lewycky895f0852008-11-27 20:21:08 +00002868 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2869 if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
2870 // div X, 1 == X
2871 if (X->isOne())
2872 return ReplaceInstUsesWith(I, Op0);
2873 }
2874
Reid Spencer1628cec2006-10-26 06:15:43 +00002875 return 0;
2876}
2877
2878Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2879 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2880
2881 // Handle the integer div common cases
2882 if (Instruction *Common = commonIDivTransforms(I))
2883 return Common;
2884
Reid Spencer1628cec2006-10-26 06:15:43 +00002885 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky8ca52482008-11-27 22:41:10 +00002886 // X udiv C^2 -> X >> C
2887 // Check to see if this is an unsigned division with an exact power of 2,
2888 // if so, convert to a right shift.
Reid Spencer6eb0d992007-03-26 23:58:26 +00002889 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002890 return BinaryOperator::CreateLShr(Op0,
Zhou Sheng0fc50952007-03-25 05:01:29 +00002891 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
Nick Lewycky8ca52482008-11-27 22:41:10 +00002892
2893 // X udiv C, where C >= signbit
2894 if (C->getValue().isNegative()) {
2895 Value *IC = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_ULT, Op0, C),
2896 I);
2897 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
2898 ConstantInt::get(I.getType(), 1));
2899 }
Reid Spencer1628cec2006-10-26 06:15:43 +00002900 }
2901
2902 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
Reid Spencer832254e2007-02-02 02:16:23 +00002903 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
Reid Spencer1628cec2006-10-26 06:15:43 +00002904 if (RHSI->getOpcode() == Instruction::Shl &&
2905 isa<ConstantInt>(RHSI->getOperand(0))) {
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002906 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
Reid Spencerbca0e382007-03-23 20:05:17 +00002907 if (C1.isPowerOf2()) {
Reid Spencer1628cec2006-10-26 06:15:43 +00002908 Value *N = RHSI->getOperand(1);
Reid Spencer3da59db2006-11-27 01:05:10 +00002909 const Type *NTy = N->getType();
Reid Spencer2ec619a2007-03-23 21:24:59 +00002910 if (uint32_t C2 = C1.logBase2()) {
Reid Spencer1628cec2006-10-26 06:15:43 +00002911 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002912 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00002913 }
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002914 return BinaryOperator::CreateLShr(Op0, N);
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00002915 }
2916 }
Chris Lattnerc812e5d2005-11-05 07:40:31 +00002917 }
2918
Reid Spencer1628cec2006-10-26 06:15:43 +00002919 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2920 // where C1&C2 are powers of two.
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00002921 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Reid Spencer1628cec2006-10-26 06:15:43 +00002922 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00002923 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
Zhou Sheng3a507fd2007-04-01 17:13:37 +00002924 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
Reid Spencerbca0e382007-03-23 20:05:17 +00002925 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00002926 // Compute the shift amounts
Reid Spencerbca0e382007-03-23 20:05:17 +00002927 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00002928 // Construct the "on true" case of the select
2929 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002930 Instruction *TSI = BinaryOperator::CreateLShr(
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00002931 Op0, TC, SI->getName()+".t");
2932 TSI = InsertNewInstBefore(TSI, I);
2933
2934 // Construct the "on false" case of the select
2935 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002936 Instruction *FSI = BinaryOperator::CreateLShr(
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00002937 Op0, FC, SI->getName()+".f");
2938 FSI = InsertNewInstBefore(FSI, I);
Reid Spencer1628cec2006-10-26 06:15:43 +00002939
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00002940 // construct the select instruction and return it.
Gabor Greif051a9502008-04-06 20:25:17 +00002941 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Reid Spencer1628cec2006-10-26 06:15:43 +00002942 }
Reid Spencerbaf1e4b2007-03-05 23:36:13 +00002943 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00002944 return 0;
2945}
2946
Reid Spencer1628cec2006-10-26 06:15:43 +00002947Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2948 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2949
2950 // Handle the integer div common cases
2951 if (Instruction *Common = commonIDivTransforms(I))
2952 return Common;
2953
2954 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2955 // sdiv X, -1 == -X
2956 if (RHS->isAllOnesValue())
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002957 return BinaryOperator::CreateNeg(Op0);
Reid Spencer1628cec2006-10-26 06:15:43 +00002958
Bill Wendlinge1196d62008-11-30 03:42:12 +00002959 ConstantInt *RHSNeg = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
Bill Wendling6e1783f2008-11-30 12:38:24 +00002960 APInt RHSNegAPI(RHSNeg->getValue());
Bill Wendlingf0e44c42008-11-30 05:01:05 +00002961
2962 APInt NegOne = -APInt(RHSNeg->getBitWidth(), 1, true);
Bill Wendling3f93df52008-11-30 05:29:33 +00002963 APInt TwoToExp(RHSNeg->getBitWidth(), 1 << (RHSNeg->getBitWidth() - 1));
Bill Wendlinge1196d62008-11-30 03:42:12 +00002964
2965 // -X/C -> X/-C, if and only if negation doesn't overflow.
Bill Wendling6e1783f2008-11-30 12:38:24 +00002966 if ((RHS->getValue().isNegative() && RHSNegAPI.slt(TwoToExp - 1)) ||
2967 (RHS->getValue().isNonNegative() && RHSNegAPI.sgt(TwoToExp * NegOne))) {
Bill Wendlinge1196d62008-11-30 03:42:12 +00002968 if (Value *LHSNeg = dyn_castNegVal(Op0)) {
2969 if (ConstantInt *CI = dyn_cast<ConstantInt>(LHSNeg)) {
2970 ConstantInt *CINeg = cast<ConstantInt>(ConstantExpr::getNeg(CI));
Bill Wendlingf0e44c42008-11-30 05:01:05 +00002971 APInt CINegAPI(CINeg->getBitWidth(), CINeg->getSExtValue(), true);
Bill Wendlinge1196d62008-11-30 03:42:12 +00002972
Bill Wendling6e1783f2008-11-30 12:38:24 +00002973 if ((CI->getValue().isNegative() && CINegAPI.slt(TwoToExp - 1)) ||
2974 (CI->getValue().isNonNegative() && CINegAPI.sgt(TwoToExp*NegOne)))
Bill Wendlinge1196d62008-11-30 03:42:12 +00002975 return BinaryOperator::CreateSDiv(LHSNeg,
2976 ConstantExpr::getNeg(RHS));
2977 }
2978 }
2979 }
Reid Spencer1628cec2006-10-26 06:15:43 +00002980 }
2981
2982 // If the sign bits of both operands are zero (i.e. we can prove they are
2983 // unsigned inputs), turn this into a udiv.
Chris Lattner42a75512007-01-15 02:27:26 +00002984 if (I.getType()->isInteger()) {
Reid Spencerbca0e382007-03-23 20:05:17 +00002985 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
Reid Spencer1628cec2006-10-26 06:15:43 +00002986 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmancff55092007-11-05 23:16:33 +00002987 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greif7cbd8a32008-05-16 19:29:10 +00002988 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Reid Spencer1628cec2006-10-26 06:15:43 +00002989 }
2990 }
2991
2992 return 0;
2993}
2994
2995Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2996 return commonDivTransforms(I);
2997}
Chris Lattner3f5b8772002-05-06 16:14:14 +00002998
Reid Spencer0a783f72006-11-02 01:53:59 +00002999/// This function implements the transforms on rem instructions that work
3000/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
3001/// is used by the visitors to those instructions.
3002/// @brief Transforms common to all three rem instructions
3003Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
Chris Lattner857e8cd2004-12-12 21:48:58 +00003004 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Reid Spencer0a783f72006-11-02 01:53:59 +00003005
Chris Lattner50b2ca42008-02-19 06:12:18 +00003006 // 0 % X == 0 for integer, we don't need to preserve faults!
Chris Lattner19ccd5c2006-02-28 05:30:45 +00003007 if (Constant *LHS = dyn_cast<Constant>(Op0))
3008 if (LHS->isNullValue())
3009 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3010
Chris Lattner50b2ca42008-02-19 06:12:18 +00003011 if (isa<UndefValue>(Op0)) { // undef % X -> 0
3012 if (I.getType()->isFPOrFPVector())
3013 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Chris Lattner19ccd5c2006-02-28 05:30:45 +00003014 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner50b2ca42008-02-19 06:12:18 +00003015 }
Chris Lattner19ccd5c2006-02-28 05:30:45 +00003016 if (isa<UndefValue>(Op1))
3017 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
Reid Spencer0a783f72006-11-02 01:53:59 +00003018
3019 // Handle cases involving: rem X, (select Cond, Y, Z)
Chris Lattnerfdb19e52008-07-14 00:15:52 +00003020 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
3021 return &I;
Chris Lattner5b73c082004-07-06 07:01:22 +00003022
Reid Spencer0a783f72006-11-02 01:53:59 +00003023 return 0;
3024}
3025
3026/// This function implements the transforms common to both integer remainder
3027/// instructions (urem and srem). It is called by the visitors to those integer
3028/// remainder instructions.
3029/// @brief Common integer remainder transforms
3030Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
3031 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3032
3033 if (Instruction *common = commonRemTransforms(I))
3034 return common;
3035
Chris Lattner857e8cd2004-12-12 21:48:58 +00003036 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner19ccd5c2006-02-28 05:30:45 +00003037 // X % 0 == undef, we don't need to preserve faults!
3038 if (RHS->equalsInt(0))
3039 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
3040
Chris Lattnera2881962003-02-18 19:28:33 +00003041 if (RHS->equalsInt(1)) // X % 1 == 0
3042 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3043
Chris Lattner97943922006-02-28 05:49:21 +00003044 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
3045 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
3046 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3047 return R;
3048 } else if (isa<PHINode>(Op0I)) {
3049 if (Instruction *NV = FoldOpIntoPhi(I))
3050 return NV;
Chris Lattner97943922006-02-28 05:49:21 +00003051 }
Nick Lewyckyc1a2a612008-03-06 06:48:30 +00003052
3053 // See if we can fold away this rem instruction.
3054 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3055 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3056 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3057 KnownZero, KnownOne))
3058 return &I;
Chris Lattner97943922006-02-28 05:49:21 +00003059 }
Chris Lattnera2881962003-02-18 19:28:33 +00003060 }
3061
Reid Spencer0a783f72006-11-02 01:53:59 +00003062 return 0;
3063}
3064
3065Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3066 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3067
3068 if (Instruction *common = commonIRemTransforms(I))
3069 return common;
3070
3071 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3072 // X urem C^2 -> X and C
3073 // Check to see if this is an unsigned remainder with an exact power of 2,
3074 // if so, convert to a bitwise and.
3075 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
Reid Spencerbca0e382007-03-23 20:05:17 +00003076 if (C->getValue().isPowerOf2())
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003077 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Reid Spencer0a783f72006-11-02 01:53:59 +00003078 }
3079
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00003080 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
Reid Spencer0a783f72006-11-02 01:53:59 +00003081 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3082 if (RHSI->getOpcode() == Instruction::Shl &&
3083 isa<ConstantInt>(RHSI->getOperand(0))) {
Zhou Sheng0fc50952007-03-25 05:01:29 +00003084 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00003085 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003086 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00003087 "tmp"), I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003088 return BinaryOperator::CreateAnd(Op0, Add);
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00003089 }
3090 }
Reid Spencer0a783f72006-11-02 01:53:59 +00003091 }
Chris Lattner8e49e082006-09-09 20:26:32 +00003092
Reid Spencer0a783f72006-11-02 01:53:59 +00003093 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3094 // where C1&C2 are powers of two.
3095 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3096 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3097 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3098 // STO == 0 and SFO == 0 handled above.
Reid Spencerbca0e382007-03-23 20:05:17 +00003099 if ((STO->getValue().isPowerOf2()) &&
3100 (SFO->getValue().isPowerOf2())) {
Reid Spencer0a783f72006-11-02 01:53:59 +00003101 Value *TrueAnd = InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003102 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Reid Spencer0a783f72006-11-02 01:53:59 +00003103 Value *FalseAnd = InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003104 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greif051a9502008-04-06 20:25:17 +00003105 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Reid Spencer0a783f72006-11-02 01:53:59 +00003106 }
3107 }
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00003108 }
3109
Chris Lattner3f5b8772002-05-06 16:14:14 +00003110 return 0;
3111}
3112
Reid Spencer0a783f72006-11-02 01:53:59 +00003113Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3114 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3115
Dan Gohmancff55092007-11-05 23:16:33 +00003116 // Handle the integer rem common cases
Reid Spencer0a783f72006-11-02 01:53:59 +00003117 if (Instruction *common = commonIRemTransforms(I))
3118 return common;
3119
3120 if (Value *RHSNeg = dyn_castNegVal(Op1))
Nick Lewycky23c04302008-09-03 06:24:21 +00003121 if (!isa<Constant>(RHSNeg) ||
3122 (isa<ConstantInt>(RHSNeg) &&
3123 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
Reid Spencer0a783f72006-11-02 01:53:59 +00003124 // X % -Y -> X % Y
3125 AddUsesToWorkList(I);
3126 I.setOperand(1, RHSNeg);
3127 return &I;
3128 }
Nick Lewyckya06cf822008-09-30 06:08:34 +00003129
Dan Gohmancff55092007-11-05 23:16:33 +00003130 // If the sign bits of both operands are zero (i.e. we can prove they are
Reid Spencer0a783f72006-11-02 01:53:59 +00003131 // unsigned inputs), turn this into a urem.
Dan Gohmancff55092007-11-05 23:16:33 +00003132 if (I.getType()->isInteger()) {
3133 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3134 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3135 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003136 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmancff55092007-11-05 23:16:33 +00003137 }
Reid Spencer0a783f72006-11-02 01:53:59 +00003138 }
3139
3140 return 0;
3141}
3142
3143Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
Reid Spencer0a783f72006-11-02 01:53:59 +00003144 return commonRemTransforms(I);
3145}
3146
Chris Lattner457dd822004-06-09 07:59:58 +00003147// isOneBitSet - Return true if there is exactly one bit set in the specified
3148// constant.
3149static bool isOneBitSet(const ConstantInt *CI) {
Reid Spencer5f6a8952007-03-20 00:16:52 +00003150 return CI->getValue().isPowerOf2();
Chris Lattner457dd822004-06-09 07:59:58 +00003151}
3152
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00003153// isHighOnes - Return true if the constant is of the form 1+0+.
3154// This is the same as lowones(~X).
3155static bool isHighOnes(const ConstantInt *CI) {
Zhou Sheng2cde46c2007-03-20 12:49:06 +00003156 return (~CI->getValue() + 1).isPowerOf2();
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00003157}
3158
Reid Spencere4d87aa2006-12-23 06:05:41 +00003159/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003160/// are carefully arranged to allow folding of expressions such as:
3161///
3162/// (A < B) | (A > B) --> (A != B)
3163///
Reid Spencere4d87aa2006-12-23 06:05:41 +00003164/// Note that this is only valid if the first and second predicates have the
3165/// same sign. Is illegal to do: (A u< B) | (A s> B)
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003166///
Reid Spencere4d87aa2006-12-23 06:05:41 +00003167/// Three bits are used to represent the condition, as follows:
3168/// 0 A > B
3169/// 1 A == B
3170/// 2 A < B
3171///
3172/// <=> Value Definition
3173/// 000 0 Always false
3174/// 001 1 A > B
3175/// 010 2 A == B
3176/// 011 3 A >= B
3177/// 100 4 A < B
3178/// 101 5 A != B
3179/// 110 6 A <= B
3180/// 111 7 Always true
3181///
3182static unsigned getICmpCode(const ICmpInst *ICI) {
3183 switch (ICI->getPredicate()) {
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003184 // False -> 0
Reid Spencere4d87aa2006-12-23 06:05:41 +00003185 case ICmpInst::ICMP_UGT: return 1; // 001
3186 case ICmpInst::ICMP_SGT: return 1; // 001
3187 case ICmpInst::ICMP_EQ: return 2; // 010
3188 case ICmpInst::ICMP_UGE: return 3; // 011
3189 case ICmpInst::ICMP_SGE: return 3; // 011
3190 case ICmpInst::ICMP_ULT: return 4; // 100
3191 case ICmpInst::ICMP_SLT: return 4; // 100
3192 case ICmpInst::ICMP_NE: return 5; // 101
3193 case ICmpInst::ICMP_ULE: return 6; // 110
3194 case ICmpInst::ICMP_SLE: return 6; // 110
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003195 // True -> 7
3196 default:
Reid Spencere4d87aa2006-12-23 06:05:41 +00003197 assert(0 && "Invalid ICmp predicate!");
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003198 return 0;
3199 }
3200}
3201
Evan Cheng8db90722008-10-14 17:15:11 +00003202/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
3203/// predicate into a three bit mask. It also returns whether it is an ordered
3204/// predicate by reference.
3205static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
3206 isOrdered = false;
3207 switch (CC) {
3208 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
3209 case FCmpInst::FCMP_UNO: return 0; // 000
Evan Cheng4990b252008-10-14 18:13:38 +00003210 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
3211 case FCmpInst::FCMP_UGT: return 1; // 001
3212 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
3213 case FCmpInst::FCMP_UEQ: return 2; // 010
Evan Cheng8db90722008-10-14 17:15:11 +00003214 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
3215 case FCmpInst::FCMP_UGE: return 3; // 011
3216 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
3217 case FCmpInst::FCMP_ULT: return 4; // 100
Evan Cheng4990b252008-10-14 18:13:38 +00003218 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
3219 case FCmpInst::FCMP_UNE: return 5; // 101
Evan Cheng8db90722008-10-14 17:15:11 +00003220 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
3221 case FCmpInst::FCMP_ULE: return 6; // 110
Evan Cheng40300622008-10-14 18:44:08 +00003222 // True -> 7
Evan Cheng8db90722008-10-14 17:15:11 +00003223 default:
3224 // Not expecting FCMP_FALSE and FCMP_TRUE;
3225 assert(0 && "Unexpected FCmp predicate!");
3226 return 0;
3227 }
3228}
3229
Reid Spencere4d87aa2006-12-23 06:05:41 +00003230/// getICmpValue - This is the complement of getICmpCode, which turns an
3231/// opcode and two operands into either a constant true or false, or a brand
Dan Gohman5d066ff2007-09-17 17:31:57 +00003232/// new ICmp instruction. The sign is passed in to determine which kind
Evan Cheng8db90722008-10-14 17:15:11 +00003233/// of predicate to use in the new icmp instruction.
Reid Spencere4d87aa2006-12-23 06:05:41 +00003234static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3235 switch (code) {
3236 default: assert(0 && "Illegal ICmp code!");
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003237 case 0: return ConstantInt::getFalse();
Reid Spencere4d87aa2006-12-23 06:05:41 +00003238 case 1:
3239 if (sign)
3240 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3241 else
3242 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3243 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3244 case 3:
3245 if (sign)
3246 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3247 else
3248 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3249 case 4:
3250 if (sign)
3251 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3252 else
3253 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3254 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3255 case 6:
3256 if (sign)
3257 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3258 else
3259 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003260 case 7: return ConstantInt::getTrue();
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003261 }
3262}
3263
Evan Cheng8db90722008-10-14 17:15:11 +00003264/// getFCmpValue - This is the complement of getFCmpCode, which turns an
3265/// opcode and two operands into either a FCmp instruction. isordered is passed
3266/// in to determine which kind of predicate to use in the new fcmp instruction.
3267static Value *getFCmpValue(bool isordered, unsigned code,
3268 Value *LHS, Value *RHS) {
3269 switch (code) {
Evan Cheng4990b252008-10-14 18:13:38 +00003270 default: assert(0 && "Illegal FCmp code!");
Evan Cheng8db90722008-10-14 17:15:11 +00003271 case 0:
3272 if (isordered)
3273 return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
3274 else
3275 return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
3276 case 1:
3277 if (isordered)
Evan Cheng8db90722008-10-14 17:15:11 +00003278 return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
3279 else
3280 return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
Evan Cheng4990b252008-10-14 18:13:38 +00003281 case 2:
3282 if (isordered)
3283 return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
3284 else
3285 return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
Evan Cheng8db90722008-10-14 17:15:11 +00003286 case 3:
3287 if (isordered)
3288 return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
3289 else
3290 return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
3291 case 4:
3292 if (isordered)
3293 return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
3294 else
3295 return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
3296 case 5:
3297 if (isordered)
Evan Cheng4990b252008-10-14 18:13:38 +00003298 return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
3299 else
3300 return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
3301 case 6:
3302 if (isordered)
Evan Cheng8db90722008-10-14 17:15:11 +00003303 return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
3304 else
3305 return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
Evan Cheng40300622008-10-14 18:44:08 +00003306 case 7: return ConstantInt::getTrue();
Evan Cheng8db90722008-10-14 17:15:11 +00003307 }
3308}
3309
Chris Lattnerb9553d62008-11-16 04:55:20 +00003310/// PredicatesFoldable - Return true if both predicates match sign or if at
3311/// least one of them is an equality comparison (which is signless).
Reid Spencere4d87aa2006-12-23 06:05:41 +00003312static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3313 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
Chris Lattnerb9553d62008-11-16 04:55:20 +00003314 (ICmpInst::isSignedPredicate(p1) && ICmpInst::isEquality(p2)) ||
3315 (ICmpInst::isSignedPredicate(p2) && ICmpInst::isEquality(p1));
Reid Spencere4d87aa2006-12-23 06:05:41 +00003316}
3317
3318namespace {
3319// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3320struct FoldICmpLogical {
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003321 InstCombiner &IC;
3322 Value *LHS, *RHS;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003323 ICmpInst::Predicate pred;
3324 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3325 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3326 pred(ICI->getPredicate()) {}
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003327 bool shouldApply(Value *V) const {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003328 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3329 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00003330 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3331 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003332 return false;
3333 }
Reid Spencere4d87aa2006-12-23 06:05:41 +00003334 Instruction *apply(Instruction &Log) const {
3335 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3336 if (ICI->getOperand(0) != LHS) {
3337 assert(ICI->getOperand(1) == LHS);
3338 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003339 }
3340
Chris Lattnerbc1dbfc2007-03-13 14:27:42 +00003341 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
Reid Spencere4d87aa2006-12-23 06:05:41 +00003342 unsigned LHSCode = getICmpCode(ICI);
Chris Lattnerbc1dbfc2007-03-13 14:27:42 +00003343 unsigned RHSCode = getICmpCode(RHSICI);
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003344 unsigned Code;
3345 switch (Log.getOpcode()) {
3346 case Instruction::And: Code = LHSCode & RHSCode; break;
3347 case Instruction::Or: Code = LHSCode | RHSCode; break;
3348 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
Chris Lattner021c1902003-09-22 20:33:34 +00003349 default: assert(0 && "Illegal logical opcode!"); return 0;
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003350 }
3351
Chris Lattnerbc1dbfc2007-03-13 14:27:42 +00003352 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3353 ICmpInst::isSignedPredicate(ICI->getPredicate());
3354
3355 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003356 if (Instruction *I = dyn_cast<Instruction>(RV))
3357 return I;
3358 // Otherwise, it's a constant boolean value...
3359 return IC.ReplaceInstUsesWith(Log, RV);
3360 }
3361};
Chris Lattnerd23b5ba2006-11-15 04:53:24 +00003362} // end anonymous namespace
Chris Lattneraa9c1f12003-08-13 20:16:26 +00003363
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003364// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3365// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
Reid Spencer832254e2007-02-02 02:16:23 +00003366// guaranteed to be a binary operator.
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003367Instruction *InstCombiner::OptAndOp(Instruction *Op,
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003368 ConstantInt *OpRHS,
3369 ConstantInt *AndRHS,
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003370 BinaryOperator &TheAnd) {
3371 Value *X = Op->getOperand(0);
Chris Lattner76f7fe22004-01-12 19:47:05 +00003372 Constant *Together = 0;
Reid Spencer832254e2007-02-02 02:16:23 +00003373 if (!Op->isShift())
Reid Spencer7177c3a2007-03-25 05:33:51 +00003374 Together = And(AndRHS, OpRHS);
Chris Lattner7c4049c2004-01-12 19:35:11 +00003375
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003376 switch (Op->getOpcode()) {
3377 case Instruction::Xor:
Chris Lattner6e7ba452005-01-01 16:22:27 +00003378 if (Op->hasOneUse()) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003379 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003380 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003381 InsertNewInstBefore(And, TheAnd);
Chris Lattner6934a042007-02-11 01:23:03 +00003382 And->takeName(Op);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003383 return BinaryOperator::CreateXor(And, Together);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003384 }
3385 break;
3386 case Instruction::Or:
Chris Lattner6e7ba452005-01-01 16:22:27 +00003387 if (Together == AndRHS) // (X | C) & C --> C
3388 return ReplaceInstUsesWith(TheAnd, AndRHS);
Misha Brukmanfd939082005-04-21 23:48:37 +00003389
Chris Lattner6e7ba452005-01-01 16:22:27 +00003390 if (Op->hasOneUse() && Together != OpRHS) {
3391 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003392 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Chris Lattner6e7ba452005-01-01 16:22:27 +00003393 InsertNewInstBefore(Or, TheAnd);
Chris Lattner6934a042007-02-11 01:23:03 +00003394 Or->takeName(Op);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003395 return BinaryOperator::CreateAnd(Or, AndRHS);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003396 }
3397 break;
3398 case Instruction::Add:
Chris Lattnerfd059242003-10-15 16:48:29 +00003399 if (Op->hasOneUse()) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003400 // Adding a one to a single bit bit-field should be turned into an XOR
3401 // of the bit. First thing to check is to see if this AND is with a
3402 // single bit constant.
Zhou Sheng3a507fd2007-04-01 17:13:37 +00003403 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003404
3405 // If there is only one bit set...
Chris Lattner457dd822004-06-09 07:59:58 +00003406 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003407 // Ok, at this point, we know that we are masking the result of the
3408 // ADD down to exactly one bit. If the constant we are adding has
3409 // no bits set below this bit, then we can eliminate the ADD.
Zhou Sheng3a507fd2007-04-01 17:13:37 +00003410 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
Misha Brukmanfd939082005-04-21 23:48:37 +00003411
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003412 // Check to see if any bits below the one bit set in AndRHSV are set.
3413 if ((AddRHS & (AndRHSV-1)) == 0) {
3414 // If not, the only thing that can effect the output of the AND is
3415 // the bit specified by AndRHSV. If that bit is set, the effect of
3416 // the XOR is to toggle the bit. If it is clear, then the ADD has
3417 // no effect.
3418 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3419 TheAnd.setOperand(0, X);
3420 return &TheAnd;
3421 } else {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003422 // Pull the XOR out of the AND.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003423 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003424 InsertNewInstBefore(NewAnd, TheAnd);
Chris Lattner6934a042007-02-11 01:23:03 +00003425 NewAnd->takeName(Op);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003426 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003427 }
3428 }
3429 }
3430 }
3431 break;
Chris Lattner62a355c2003-09-19 19:05:02 +00003432
3433 case Instruction::Shl: {
3434 // We know that the AND will not produce any of the bits shifted in, so if
3435 // the anded constant includes them, clear them now!
3436 //
Zhou Sheng290bec52007-03-29 08:15:12 +00003437 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00003438 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
Zhou Sheng290bec52007-03-29 08:15:12 +00003439 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3440 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
Misha Brukmanfd939082005-04-21 23:48:37 +00003441
Zhou Sheng290bec52007-03-29 08:15:12 +00003442 if (CI->getValue() == ShlMask) {
3443 // Masking out bits that the shift already masks
Chris Lattner0c967662004-09-24 15:21:34 +00003444 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3445 } else if (CI != AndRHS) { // Reducing bits set in and.
Chris Lattner62a355c2003-09-19 19:05:02 +00003446 TheAnd.setOperand(1, CI);
3447 return &TheAnd;
3448 }
3449 break;
Misha Brukmanfd939082005-04-21 23:48:37 +00003450 }
Reid Spencer3822ff52006-11-08 06:47:33 +00003451 case Instruction::LShr:
3452 {
Chris Lattner62a355c2003-09-19 19:05:02 +00003453 // We know that the AND will not produce any of the bits shifted in, so if
3454 // the anded constant includes them, clear them now! This only applies to
3455 // unsigned shifts, because a signed shr may bring in set bits!
3456 //
Zhou Sheng290bec52007-03-29 08:15:12 +00003457 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00003458 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
Zhou Sheng290bec52007-03-29 08:15:12 +00003459 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3460 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
Chris Lattner0c967662004-09-24 15:21:34 +00003461
Zhou Sheng290bec52007-03-29 08:15:12 +00003462 if (CI->getValue() == ShrMask) {
3463 // Masking out bits that the shift already masks.
Reid Spencer3822ff52006-11-08 06:47:33 +00003464 return ReplaceInstUsesWith(TheAnd, Op);
3465 } else if (CI != AndRHS) {
3466 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3467 return &TheAnd;
3468 }
3469 break;
3470 }
3471 case Instruction::AShr:
3472 // Signed shr.
3473 // See if this is shifting in some sign extension, then masking it out
3474 // with an and.
3475 if (Op->hasOneUse()) {
Zhou Sheng290bec52007-03-29 08:15:12 +00003476 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00003477 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
Zhou Sheng290bec52007-03-29 08:15:12 +00003478 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3479 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
Reid Spencer7eb76382006-12-13 17:19:09 +00003480 if (C == AndRHS) { // Masking out bits shifted in.
Reid Spencer17212df2006-12-12 09:18:51 +00003481 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
Reid Spencer3822ff52006-11-08 06:47:33 +00003482 // Make the argument unsigned.
3483 Value *ShVal = Op->getOperand(0);
Reid Spencer832254e2007-02-02 02:16:23 +00003484 ShVal = InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003485 BinaryOperator::CreateLShr(ShVal, OpRHS,
Reid Spencer832254e2007-02-02 02:16:23 +00003486 Op->getName()), TheAnd);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003487 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Chris Lattner0c967662004-09-24 15:21:34 +00003488 }
Chris Lattner62a355c2003-09-19 19:05:02 +00003489 }
3490 break;
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003491 }
3492 return 0;
3493}
3494
Chris Lattner8b170942002-08-09 23:47:40 +00003495
Chris Lattnera96879a2004-09-29 17:40:11 +00003496/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3497/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
Reid Spencere4d87aa2006-12-23 06:05:41 +00003498/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3499/// whether to treat the V, Lo and HI as signed or not. IB is the location to
Chris Lattnera96879a2004-09-29 17:40:11 +00003500/// insert new instructions.
3501Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
Reid Spencere4d87aa2006-12-23 06:05:41 +00003502 bool isSigned, bool Inside,
3503 Instruction &IB) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003504 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
Reid Spencer579dca12007-01-12 04:24:46 +00003505 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
Chris Lattnera96879a2004-09-29 17:40:11 +00003506 "Lo is not <= Hi in range emission code!");
Reid Spencere4d87aa2006-12-23 06:05:41 +00003507
Chris Lattnera96879a2004-09-29 17:40:11 +00003508 if (Inside) {
3509 if (Lo == Hi) // Trivially false.
Reid Spencere4d87aa2006-12-23 06:05:41 +00003510 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
Misha Brukmanfd939082005-04-21 23:48:37 +00003511
Reid Spencere4d87aa2006-12-23 06:05:41 +00003512 // V >= Min && V < Hi --> V < Hi
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003513 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
Reid Spencere4e40032007-03-21 23:19:50 +00003514 ICmpInst::Predicate pred = (isSigned ?
Reid Spencere4d87aa2006-12-23 06:05:41 +00003515 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3516 return new ICmpInst(pred, V, Hi);
3517 }
3518
3519 // Emit V-Lo <u Hi-Lo
3520 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003521 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Chris Lattnera96879a2004-09-29 17:40:11 +00003522 InsertNewInstBefore(Add, IB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003523 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3524 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
Chris Lattnera96879a2004-09-29 17:40:11 +00003525 }
3526
3527 if (Lo == Hi) // Trivially true.
Reid Spencere4d87aa2006-12-23 06:05:41 +00003528 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
Chris Lattnera96879a2004-09-29 17:40:11 +00003529
Reid Spencere4e40032007-03-21 23:19:50 +00003530 // V < Min || V >= Hi -> V > Hi-1
Chris Lattnera96879a2004-09-29 17:40:11 +00003531 Hi = SubOne(cast<ConstantInt>(Hi));
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003532 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003533 ICmpInst::Predicate pred = (isSigned ?
3534 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3535 return new ICmpInst(pred, V, Hi);
3536 }
Reid Spencerb83eb642006-10-20 07:07:24 +00003537
Reid Spencere4e40032007-03-21 23:19:50 +00003538 // Emit V-Lo >u Hi-1-Lo
3539 // Note that Hi has already had one subtracted from it, above.
3540 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003541 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Chris Lattnera96879a2004-09-29 17:40:11 +00003542 InsertNewInstBefore(Add, IB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003543 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3544 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
Chris Lattnera96879a2004-09-29 17:40:11 +00003545}
3546
Chris Lattner7203e152005-09-18 07:22:02 +00003547// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3548// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3549// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3550// not, since all 1s are not contiguous.
Zhou Sheng4351c642007-04-02 08:20:41 +00003551static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
Zhou Sheng3a507fd2007-04-01 17:13:37 +00003552 const APInt& V = Val->getValue();
Reid Spencerf2442522007-03-24 00:42:08 +00003553 uint32_t BitWidth = Val->getType()->getBitWidth();
3554 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
Chris Lattner7203e152005-09-18 07:22:02 +00003555
3556 // look for the first zero bit after the run of ones
Reid Spencerf2442522007-03-24 00:42:08 +00003557 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
Chris Lattner7203e152005-09-18 07:22:02 +00003558 // look for the first non-zero bit
Reid Spencerf2442522007-03-24 00:42:08 +00003559 ME = V.getActiveBits();
Chris Lattner7203e152005-09-18 07:22:02 +00003560 return true;
3561}
3562
Chris Lattner7203e152005-09-18 07:22:02 +00003563/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3564/// where isSub determines whether the operator is a sub. If we can fold one of
3565/// the following xforms:
Chris Lattnerc8e77562005-09-18 04:24:45 +00003566///
3567/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3568/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3569/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3570///
3571/// return (A +/- B).
3572///
3573Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003574 ConstantInt *Mask, bool isSub,
Chris Lattnerc8e77562005-09-18 04:24:45 +00003575 Instruction &I) {
3576 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3577 if (!LHSI || LHSI->getNumOperands() != 2 ||
3578 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3579
3580 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3581
3582 switch (LHSI->getOpcode()) {
3583 default: return 0;
3584 case Instruction::And:
Reid Spencer7177c3a2007-03-25 05:33:51 +00003585 if (And(N, Mask) == Mask) {
Chris Lattner7203e152005-09-18 07:22:02 +00003586 // If the AndRHS is a power of two minus one (0+1+), this is simple.
Zhou Sheng00f436c2007-03-24 15:34:37 +00003587 if ((Mask->getValue().countLeadingZeros() +
3588 Mask->getValue().countPopulation()) ==
3589 Mask->getValue().getBitWidth())
Chris Lattner7203e152005-09-18 07:22:02 +00003590 break;
3591
3592 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3593 // part, we don't need any explicit masks to take them out of A. If that
3594 // is all N is, ignore it.
Zhou Sheng4351c642007-04-02 08:20:41 +00003595 uint32_t MB = 0, ME = 0;
Chris Lattner7203e152005-09-18 07:22:02 +00003596 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
Reid Spencerb35ae032007-03-23 18:46:34 +00003597 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
Zhou Sheng290bec52007-03-29 08:15:12 +00003598 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
Chris Lattner3bedbd92006-02-07 07:27:52 +00003599 if (MaskedValueIsZero(RHS, Mask))
Chris Lattner7203e152005-09-18 07:22:02 +00003600 break;
3601 }
3602 }
Chris Lattnerc8e77562005-09-18 04:24:45 +00003603 return 0;
3604 case Instruction::Or:
3605 case Instruction::Xor:
Chris Lattner7203e152005-09-18 07:22:02 +00003606 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
Zhou Sheng00f436c2007-03-24 15:34:37 +00003607 if ((Mask->getValue().countLeadingZeros() +
3608 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
Reid Spencer6eb0d992007-03-26 23:58:26 +00003609 && And(N, Mask)->isZero())
Chris Lattnerc8e77562005-09-18 04:24:45 +00003610 break;
3611 return 0;
3612 }
3613
3614 Instruction *New;
3615 if (isSub)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003616 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Chris Lattnerc8e77562005-09-18 04:24:45 +00003617 else
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003618 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Chris Lattnerc8e77562005-09-18 04:24:45 +00003619 return InsertNewInstBefore(New, I);
3620}
3621
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003622/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
3623Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
3624 ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattnerea065fb2008-11-16 05:10:52 +00003625 Value *Val, *Val2;
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003626 ConstantInt *LHSCst, *RHSCst;
3627 ICmpInst::Predicate LHSCC, RHSCC;
3628
Chris Lattnerea065fb2008-11-16 05:10:52 +00003629 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003630 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
Chris Lattnerea065fb2008-11-16 05:10:52 +00003631 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003632 return 0;
Chris Lattnerea065fb2008-11-16 05:10:52 +00003633
3634 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3635 // where C is a power of 2
3636 if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
3637 LHSCst->getValue().isPowerOf2()) {
3638 Instruction *NewOr = BinaryOperator::CreateOr(Val, Val2);
3639 InsertNewInstBefore(NewOr, I);
3640 return new ICmpInst(LHSCC, NewOr, LHSCst);
3641 }
3642
3643 // From here on, we only handle:
3644 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
3645 if (Val != Val2) return 0;
3646
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003647 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
3648 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
3649 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
3650 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
3651 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
3652 return 0;
3653
3654 // We can't fold (ugt x, C) & (sgt x, C2).
3655 if (!PredicatesFoldable(LHSCC, RHSCC))
3656 return 0;
3657
3658 // Ensure that the larger constant is on the RHS.
Chris Lattneraa3e1572008-11-16 05:14:43 +00003659 bool ShouldSwap;
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003660 if (ICmpInst::isSignedPredicate(LHSCC) ||
3661 (ICmpInst::isEquality(LHSCC) &&
3662 ICmpInst::isSignedPredicate(RHSCC)))
Chris Lattneraa3e1572008-11-16 05:14:43 +00003663 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003664 else
Chris Lattneraa3e1572008-11-16 05:14:43 +00003665 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
3666
3667 if (ShouldSwap) {
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003668 std::swap(LHS, RHS);
3669 std::swap(LHSCst, RHSCst);
3670 std::swap(LHSCC, RHSCC);
3671 }
3672
3673 // At this point, we know we have have two icmp instructions
3674 // comparing a value against two constants and and'ing the result
3675 // together. Because of the above check, we know that we only have
3676 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3677 // (from the FoldICmpLogical check above), that the two constants
3678 // are not equal and that the larger constant is on the RHS
3679 assert(LHSCst != RHSCst && "Compares not folded above?");
3680
3681 switch (LHSCC) {
3682 default: assert(0 && "Unknown integer condition code!");
3683 case ICmpInst::ICMP_EQ:
3684 switch (RHSCC) {
3685 default: assert(0 && "Unknown integer condition code!");
3686 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3687 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3688 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3689 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3690 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3691 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3692 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3693 return ReplaceInstUsesWith(I, LHS);
3694 }
3695 case ICmpInst::ICMP_NE:
3696 switch (RHSCC) {
3697 default: assert(0 && "Unknown integer condition code!");
3698 case ICmpInst::ICMP_ULT:
3699 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3700 return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
3701 break; // (X != 13 & X u< 15) -> no change
3702 case ICmpInst::ICMP_SLT:
3703 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3704 return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
3705 break; // (X != 13 & X s< 15) -> no change
3706 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3707 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3708 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3709 return ReplaceInstUsesWith(I, RHS);
3710 case ICmpInst::ICMP_NE:
3711 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3712 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3713 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
3714 Val->getName()+".off");
3715 InsertNewInstBefore(Add, I);
3716 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3717 ConstantInt::get(Add->getType(), 1));
3718 }
3719 break; // (X != 13 & X != 15) -> no change
3720 }
3721 break;
3722 case ICmpInst::ICMP_ULT:
3723 switch (RHSCC) {
3724 default: assert(0 && "Unknown integer condition code!");
3725 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3726 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3727 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3728 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3729 break;
3730 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3731 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3732 return ReplaceInstUsesWith(I, LHS);
3733 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3734 break;
3735 }
3736 break;
3737 case ICmpInst::ICMP_SLT:
3738 switch (RHSCC) {
3739 default: assert(0 && "Unknown integer condition code!");
3740 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3741 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3742 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3743 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3744 break;
3745 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3746 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3747 return ReplaceInstUsesWith(I, LHS);
3748 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3749 break;
3750 }
3751 break;
3752 case ICmpInst::ICMP_UGT:
3753 switch (RHSCC) {
3754 default: assert(0 && "Unknown integer condition code!");
3755 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
3756 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3757 return ReplaceInstUsesWith(I, RHS);
3758 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3759 break;
3760 case ICmpInst::ICMP_NE:
3761 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3762 return new ICmpInst(LHSCC, Val, RHSCst);
3763 break; // (X u> 13 & X != 15) -> no change
Chris Lattner69d4ced2008-11-16 05:20:07 +00003764 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003765 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true, I);
3766 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3767 break;
3768 }
3769 break;
3770 case ICmpInst::ICMP_SGT:
3771 switch (RHSCC) {
3772 default: assert(0 && "Unknown integer condition code!");
3773 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
3774 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3775 return ReplaceInstUsesWith(I, RHS);
3776 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3777 break;
3778 case ICmpInst::ICMP_NE:
3779 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3780 return new ICmpInst(LHSCC, Val, RHSCst);
3781 break; // (X s> 13 & X != 15) -> no change
Chris Lattner69d4ced2008-11-16 05:20:07 +00003782 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003783 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true, I);
3784 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3785 break;
3786 }
3787 break;
3788 }
Chris Lattner29cd5ba2008-11-16 05:06:21 +00003789
3790 return 0;
3791}
3792
3793
Chris Lattner7e708292002-06-25 16:13:24 +00003794Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00003795 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00003796 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00003797
Chris Lattnere87597f2004-10-16 18:11:37 +00003798 if (isa<UndefValue>(Op1)) // X & undef -> 0
3799 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3800
Chris Lattner6e7ba452005-01-01 16:22:27 +00003801 // and X, X = X
3802 if (Op0 == Op1)
Chris Lattner233f7dc2002-08-12 21:17:25 +00003803 return ReplaceInstUsesWith(I, Op1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00003804
Chris Lattnerf8c36f52006-02-12 08:02:11 +00003805 // See if we can simplify any instructions used by the instruction whose sole
Chris Lattner9ca96412006-02-08 03:25:32 +00003806 // purpose is to compute bits we don't care about.
Reid Spencer9d6565a2007-02-15 02:26:10 +00003807 if (!isa<VectorType>(I.getType())) {
Reid Spencera03d45f2007-03-22 22:19:58 +00003808 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3809 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3810 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
Chris Lattner696ee0a2007-01-18 22:16:33 +00003811 KnownZero, KnownOne))
Reid Spencer6eb0d992007-03-26 23:58:26 +00003812 return &I;
Chris Lattner696ee0a2007-01-18 22:16:33 +00003813 } else {
Reid Spencer9d6565a2007-02-15 02:26:10 +00003814 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
Chris Lattner041a6c92007-06-15 05:26:55 +00003815 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
Chris Lattner696ee0a2007-01-18 22:16:33 +00003816 return ReplaceInstUsesWith(I, I.getOperand(0));
Chris Lattner041a6c92007-06-15 05:26:55 +00003817 } else if (isa<ConstantAggregateZero>(Op1)) {
3818 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
Chris Lattner696ee0a2007-01-18 22:16:33 +00003819 }
3820 }
Chris Lattner9ca96412006-02-08 03:25:32 +00003821
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003822 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
Zhou Sheng3a507fd2007-04-01 17:13:37 +00003823 const APInt& AndRHSMask = AndRHS->getValue();
3824 APInt NotAndRHS(~AndRHSMask);
Chris Lattner6e7ba452005-01-01 16:22:27 +00003825
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003826 // Optimize a variety of ((val OP C1) & C2) combinations...
Reid Spencer832254e2007-02-02 02:16:23 +00003827 if (isa<BinaryOperator>(Op0)) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003828 Instruction *Op0I = cast<Instruction>(Op0);
Chris Lattner6e7ba452005-01-01 16:22:27 +00003829 Value *Op0LHS = Op0I->getOperand(0);
3830 Value *Op0RHS = Op0I->getOperand(1);
3831 switch (Op0I->getOpcode()) {
3832 case Instruction::Xor:
3833 case Instruction::Or:
Chris Lattnerad1e3022005-01-23 20:26:55 +00003834 // If the mask is only needed on one incoming arm, push it up.
3835 if (Op0I->hasOneUse()) {
3836 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3837 // Not masking anything out for the LHS, move to RHS.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003838 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Chris Lattnerad1e3022005-01-23 20:26:55 +00003839 Op0RHS->getName()+".masked");
3840 InsertNewInstBefore(NewRHS, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003841 return BinaryOperator::Create(
Chris Lattnerad1e3022005-01-23 20:26:55 +00003842 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
Misha Brukmanfd939082005-04-21 23:48:37 +00003843 }
Chris Lattner3bedbd92006-02-07 07:27:52 +00003844 if (!isa<Constant>(Op0RHS) &&
Chris Lattnerad1e3022005-01-23 20:26:55 +00003845 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3846 // Not masking anything out for the RHS, move to LHS.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003847 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Chris Lattnerad1e3022005-01-23 20:26:55 +00003848 Op0LHS->getName()+".masked");
3849 InsertNewInstBefore(NewLHS, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003850 return BinaryOperator::Create(
Chris Lattnerad1e3022005-01-23 20:26:55 +00003851 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3852 }
3853 }
3854
Chris Lattner6e7ba452005-01-01 16:22:27 +00003855 break;
Chris Lattnerc8e77562005-09-18 04:24:45 +00003856 case Instruction::Add:
Chris Lattner7203e152005-09-18 07:22:02 +00003857 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3858 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3859 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3860 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003861 return BinaryOperator::CreateAnd(V, AndRHS);
Chris Lattner7203e152005-09-18 07:22:02 +00003862 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003863 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Chris Lattnerc8e77562005-09-18 04:24:45 +00003864 break;
3865
3866 case Instruction::Sub:
Chris Lattner7203e152005-09-18 07:22:02 +00003867 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3868 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3869 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3870 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003871 return BinaryOperator::CreateAnd(V, AndRHS);
Nick Lewyckyb4d1bc92008-07-09 04:32:37 +00003872
Nick Lewycky5dcc41f2008-07-10 05:51:40 +00003873 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3874 // has 1's for all bits that the subtraction with A might affect.
3875 if (Op0I->hasOneUse()) {
3876 uint32_t BitWidth = AndRHSMask.getBitWidth();
3877 uint32_t Zeros = AndRHSMask.countLeadingZeros();
3878 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
3879
Nick Lewyckyb4d1bc92008-07-09 04:32:37 +00003880 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
Nick Lewycky5dcc41f2008-07-10 05:51:40 +00003881 if (!(A && A->isZero()) && // avoid infinite recursion.
3882 MaskedValueIsZero(Op0LHS, Mask)) {
Nick Lewyckyb4d1bc92008-07-09 04:32:37 +00003883 Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
3884 InsertNewInstBefore(NewNeg, I);
3885 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
3886 }
3887 }
Chris Lattnerc8e77562005-09-18 04:24:45 +00003888 break;
Nick Lewyckyd1f77bf2008-07-09 05:20:13 +00003889
3890 case Instruction::Shl:
3891 case Instruction::LShr:
3892 // (1 << x) & 1 --> zext(x == 0)
3893 // (1 >> x) & 1 --> zext(x == 0)
Nick Lewyckyd8ad4922008-07-09 07:35:26 +00003894 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
Nick Lewyckyd1f77bf2008-07-09 05:20:13 +00003895 Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
3896 Constant::getNullValue(I.getType()));
3897 InsertNewInstBefore(NewICmp, I);
3898 return new ZExtInst(NewICmp, I.getType());
3899 }
3900 break;
Chris Lattner6e7ba452005-01-01 16:22:27 +00003901 }
3902
Chris Lattner58403262003-07-23 19:25:52 +00003903 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
Chris Lattner6e7ba452005-01-01 16:22:27 +00003904 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00003905 return Res;
Chris Lattner6e7ba452005-01-01 16:22:27 +00003906 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
Chris Lattner2b83af22005-08-07 07:03:10 +00003907 // If this is an integer truncation or change from signed-to-unsigned, and
3908 // if the source is an and/or with immediate, transform it. This
3909 // frequently occurs for bitfield accesses.
3910 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
Reid Spencer3da59db2006-11-27 01:05:10 +00003911 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
Chris Lattner2b83af22005-08-07 07:03:10 +00003912 CastOp->getNumOperands() == 2)
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00003913 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Chris Lattner2b83af22005-08-07 07:03:10 +00003914 if (CastOp->getOpcode() == Instruction::And) {
3915 // Change: and (cast (and X, C1) to T), C2
Reid Spencer3da59db2006-11-27 01:05:10 +00003916 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3917 // This will fold the two constants together, which may allow
3918 // other simplifications.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003919 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Reid Spencerd977d862006-12-12 23:36:14 +00003920 CastOp->getOperand(0), I.getType(),
3921 CastOp->getName()+".shrunk");
Chris Lattner2b83af22005-08-07 07:03:10 +00003922 NewCast = InsertNewInstBefore(NewCast, I);
Reid Spencer3da59db2006-11-27 01:05:10 +00003923 // trunc_or_bitcast(C1)&C2
Reid Spencerd977d862006-12-12 23:36:14 +00003924 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
Reid Spencer3da59db2006-11-27 01:05:10 +00003925 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003926 return BinaryOperator::CreateAnd(NewCast, C3);
Chris Lattner2b83af22005-08-07 07:03:10 +00003927 } else if (CastOp->getOpcode() == Instruction::Or) {
3928 // Change: and (cast (or X, C1) to T), C2
3929 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
Chris Lattnerbb4e7b22006-12-12 19:11:20 +00003930 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
Chris Lattner2b83af22005-08-07 07:03:10 +00003931 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3932 return ReplaceInstUsesWith(I, AndRHS);
3933 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00003934 }
Chris Lattner2b83af22005-08-07 07:03:10 +00003935 }
Chris Lattner06782f82003-07-23 19:36:21 +00003936 }
Chris Lattner2eefe512004-04-09 19:05:30 +00003937
3938 // Try to fold constant and into select arguments.
3939 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00003940 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00003941 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00003942 if (isa<PHINode>(Op0))
3943 if (Instruction *NV = FoldOpIntoPhi(I))
3944 return NV;
Chris Lattnerc6a8aff2003-07-23 17:57:01 +00003945 }
3946
Chris Lattner8d969642003-03-10 23:06:50 +00003947 Value *Op0NotVal = dyn_castNotVal(Op0);
3948 Value *Op1NotVal = dyn_castNotVal(Op1);
Chris Lattnera2881962003-02-18 19:28:33 +00003949
Chris Lattner5b62aa72004-06-18 06:07:51 +00003950 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3951 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3952
Misha Brukmancb6267b2004-07-30 12:50:08 +00003953 // (~A & ~B) == (~(A | B)) - De Morgan's Law
Chris Lattner8d969642003-03-10 23:06:50 +00003954 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003955 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Chris Lattner48595f12004-06-10 02:07:29 +00003956 I.getName()+".demorgan");
Chris Lattnerc6a8aff2003-07-23 17:57:01 +00003957 InsertNewInstBefore(Or, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003958 return BinaryOperator::CreateNot(Or);
Chris Lattnera2881962003-02-18 19:28:33 +00003959 }
Chris Lattner2082ad92006-02-13 23:07:23 +00003960
3961 {
Chris Lattner003b6202007-06-15 05:58:24 +00003962 Value *A = 0, *B = 0, *C = 0, *D = 0;
3963 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
Chris Lattner2082ad92006-02-13 23:07:23 +00003964 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3965 return ReplaceInstUsesWith(I, Op1);
Chris Lattner003b6202007-06-15 05:58:24 +00003966
3967 // (A|B) & ~(A&B) -> A^B
3968 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3969 if ((A == C && B == D) || (A == D && B == C))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003970 return BinaryOperator::CreateXor(A, B);
Chris Lattner003b6202007-06-15 05:58:24 +00003971 }
3972 }
3973
3974 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
Chris Lattner2082ad92006-02-13 23:07:23 +00003975 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3976 return ReplaceInstUsesWith(I, Op0);
Chris Lattner003b6202007-06-15 05:58:24 +00003977
3978 // ~(A&B) & (A|B) -> A^B
3979 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3980 if ((A == C && B == D) || (A == D && B == C))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00003981 return BinaryOperator::CreateXor(A, B);
Chris Lattner003b6202007-06-15 05:58:24 +00003982 }
3983 }
Chris Lattner64daab52006-04-01 08:03:55 +00003984
3985 if (Op0->hasOneUse() &&
3986 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3987 if (A == Op1) { // (A^B)&A -> A&(A^B)
3988 I.swapOperands(); // Simplify below
3989 std::swap(Op0, Op1);
3990 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3991 cast<BinaryOperator>(Op0)->swapOperands();
3992 I.swapOperands(); // Simplify below
3993 std::swap(Op0, Op1);
3994 }
3995 }
3996 if (Op1->hasOneUse() &&
3997 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3998 if (B == Op0) { // B&(A^B) -> B&(B^A)
3999 cast<BinaryOperator>(Op1)->swapOperands();
4000 std::swap(A, B);
4001 }
4002 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004003 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Chris Lattner64daab52006-04-01 08:03:55 +00004004 InsertNewInstBefore(NotB, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004005 return BinaryOperator::CreateAnd(A, NotB);
Chris Lattner64daab52006-04-01 08:03:55 +00004006 }
4007 }
Chris Lattner2082ad92006-02-13 23:07:23 +00004008 }
4009
Reid Spencere4d87aa2006-12-23 06:05:41 +00004010 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
4011 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
4012 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
Chris Lattneraa9c1f12003-08-13 20:16:26 +00004013 return R;
4014
Chris Lattner29cd5ba2008-11-16 05:06:21 +00004015 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
4016 if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
4017 return Res;
Chris Lattner955f3312004-09-28 21:48:02 +00004018 }
4019
Chris Lattner6fc205f2006-05-05 06:39:07 +00004020 // fold (and (cast A), (cast B)) -> (cast (and A, B))
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004021 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
4022 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4023 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
4024 const Type *SrcTy = Op0C->getOperand(0)->getType();
Chris Lattner42a75512007-01-15 02:27:26 +00004025 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004026 // Only do this if the casts both really cause code to be generated.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004027 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4028 I.getType(), TD) &&
4029 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4030 I.getType(), TD)) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004031 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004032 Op1C->getOperand(0),
4033 I.getName());
4034 InsertNewInstBefore(NewOp, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004035 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004036 }
Chris Lattner6fc205f2006-05-05 06:39:07 +00004037 }
Chris Lattnere511b742006-11-14 07:46:50 +00004038
4039 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
Reid Spencer832254e2007-02-02 02:16:23 +00004040 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4041 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4042 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
Chris Lattnere511b742006-11-14 07:46:50 +00004043 SI0->getOperand(1) == SI1->getOperand(1) &&
4044 (SI0->hasOneUse() || SI1->hasOneUse())) {
4045 Instruction *NewOp =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004046 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Chris Lattnere511b742006-11-14 07:46:50 +00004047 SI1->getOperand(0),
4048 SI0->getName()), I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004049 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Reid Spencer832254e2007-02-02 02:16:23 +00004050 SI1->getOperand(1));
Chris Lattnere511b742006-11-14 07:46:50 +00004051 }
Chris Lattner6fc205f2006-05-05 06:39:07 +00004052 }
4053
Evan Cheng8db90722008-10-14 17:15:11 +00004054 // If and'ing two fcmp, try combine them into one.
Chris Lattner99c65742007-10-24 05:38:08 +00004055 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4056 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4057 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
Evan Cheng8db90722008-10-14 17:15:11 +00004058 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
4059 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
Chris Lattner99c65742007-10-24 05:38:08 +00004060 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4061 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4062 // If either of the constants are nans, then the whole thing returns
4063 // false.
Chris Lattnerbe3e3482007-10-24 18:54:45 +00004064 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner99c65742007-10-24 05:38:08 +00004065 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4066 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
4067 RHS->getOperand(0));
4068 }
Evan Cheng8db90722008-10-14 17:15:11 +00004069 } else {
4070 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4071 FCmpInst::Predicate Op0CC, Op1CC;
4072 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4073 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
Evan Cheng4990b252008-10-14 18:13:38 +00004074 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4075 // Swap RHS operands to match LHS.
4076 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4077 std::swap(Op1LHS, Op1RHS);
4078 }
Evan Cheng8db90722008-10-14 17:15:11 +00004079 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4080 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
4081 if (Op0CC == Op1CC)
4082 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4083 else if (Op0CC == FCmpInst::FCMP_FALSE ||
4084 Op1CC == FCmpInst::FCMP_FALSE)
4085 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4086 else if (Op0CC == FCmpInst::FCMP_TRUE)
4087 return ReplaceInstUsesWith(I, Op1);
4088 else if (Op1CC == FCmpInst::FCMP_TRUE)
4089 return ReplaceInstUsesWith(I, Op0);
4090 bool Op0Ordered;
4091 bool Op1Ordered;
4092 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4093 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4094 if (Op1Pred == 0) {
4095 std::swap(Op0, Op1);
4096 std::swap(Op0Pred, Op1Pred);
4097 std::swap(Op0Ordered, Op1Ordered);
4098 }
4099 if (Op0Pred == 0) {
4100 // uno && ueq -> uno && (uno || eq) -> ueq
4101 // ord && olt -> ord && (ord && lt) -> olt
4102 if (Op0Ordered == Op1Ordered)
4103 return ReplaceInstUsesWith(I, Op1);
4104 // uno && oeq -> uno && (ord && eq) -> false
4105 // uno && ord -> false
4106 if (!Op0Ordered)
4107 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4108 // ord && ueq -> ord && (uno || eq) -> oeq
4109 return cast<Instruction>(getFCmpValue(true, Op1Pred,
4110 Op0LHS, Op0RHS));
4111 }
4112 }
4113 }
4114 }
Chris Lattner99c65742007-10-24 05:38:08 +00004115 }
4116 }
Nick Lewyckyb4d1bc92008-07-09 04:32:37 +00004117
Chris Lattner7e708292002-06-25 16:13:24 +00004118 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00004119}
4120
Chris Lattner8c34cd22008-10-05 02:13:19 +00004121/// CollectBSwapParts - Analyze the specified subexpression and see if it is
4122/// capable of providing pieces of a bswap. The subexpression provides pieces
4123/// of a bswap if it is proven that each of the non-zero bytes in the output of
4124/// the expression came from the corresponding "byte swapped" byte in some other
4125/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
4126/// we know that the expression deposits the low byte of %X into the high byte
4127/// of the bswap result and that all other bytes are zero. This expression is
4128/// accepted, the high byte of ByteValues is set to X to indicate a correct
4129/// match.
4130///
4131/// This function returns true if the match was unsuccessful and false if so.
4132/// On entry to the function the "OverallLeftShift" is a signed integer value
4133/// indicating the number of bytes that the subexpression is later shifted. For
4134/// example, if the expression is later right shifted by 16 bits, the
4135/// OverallLeftShift value would be -2 on entry. This is used to specify which
4136/// byte of ByteValues is actually being set.
4137///
4138/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
4139/// byte is masked to zero by a user. For example, in (X & 255), X will be
4140/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
4141/// this function to working on up to 32-byte (256 bit) values. ByteMask is
4142/// always in the local (OverallLeftShift) coordinate space.
4143///
4144static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
4145 SmallVector<Value*, 8> &ByteValues) {
4146 if (Instruction *I = dyn_cast<Instruction>(V)) {
4147 // If this is an or instruction, it may be an inner node of the bswap.
4148 if (I->getOpcode() == Instruction::Or) {
4149 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4150 ByteValues) ||
4151 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
4152 ByteValues);
Chris Lattnerafe91a52006-06-15 19:07:26 +00004153 }
Chris Lattner8c34cd22008-10-05 02:13:19 +00004154
4155 // If this is a logical shift by a constant multiple of 8, recurse with
4156 // OverallLeftShift and ByteMask adjusted.
4157 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
4158 unsigned ShAmt =
4159 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
4160 // Ensure the shift amount is defined and of a byte value.
4161 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
4162 return true;
4163
4164 unsigned ByteShift = ShAmt >> 3;
4165 if (I->getOpcode() == Instruction::Shl) {
4166 // X << 2 -> collect(X, +2)
4167 OverallLeftShift += ByteShift;
4168 ByteMask >>= ByteShift;
4169 } else {
4170 // X >>u 2 -> collect(X, -2)
4171 OverallLeftShift -= ByteShift;
4172 ByteMask <<= ByteShift;
Chris Lattnerde17ddc2008-10-08 06:42:28 +00004173 ByteMask &= (~0U >> (32-ByteValues.size()));
Chris Lattner8c34cd22008-10-05 02:13:19 +00004174 }
4175
4176 if (OverallLeftShift >= (int)ByteValues.size()) return true;
4177 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
4178
4179 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4180 ByteValues);
4181 }
4182
4183 // If this is a logical 'and' with a mask that clears bytes, clear the
4184 // corresponding bytes in ByteMask.
4185 if (I->getOpcode() == Instruction::And &&
4186 isa<ConstantInt>(I->getOperand(1))) {
4187 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
4188 unsigned NumBytes = ByteValues.size();
4189 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
4190 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
4191
4192 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
4193 // If this byte is masked out by a later operation, we don't care what
4194 // the and mask is.
4195 if ((ByteMask & (1 << i)) == 0)
4196 continue;
4197
4198 // If the AndMask is all zeros for this byte, clear the bit.
4199 APInt MaskB = AndMask & Byte;
4200 if (MaskB == 0) {
4201 ByteMask &= ~(1U << i);
4202 continue;
4203 }
4204
4205 // If the AndMask is not all ones for this byte, it's not a bytezap.
4206 if (MaskB != Byte)
4207 return true;
4208
4209 // Otherwise, this byte is kept.
4210 }
4211
4212 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4213 ByteValues);
4214 }
Chris Lattnerafe91a52006-06-15 19:07:26 +00004215 }
4216
Chris Lattner8c34cd22008-10-05 02:13:19 +00004217 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
4218 // the input value to the bswap. Some observations: 1) if more than one byte
4219 // is demanded from this input, then it could not be successfully assembled
4220 // into a byteswap. At least one of the two bytes would not be aligned with
4221 // their ultimate destination.
4222 if (!isPowerOf2_32(ByteMask)) return true;
4223 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
Chris Lattnerafe91a52006-06-15 19:07:26 +00004224
Chris Lattner8c34cd22008-10-05 02:13:19 +00004225 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
4226 // is demanded, it needs to go into byte 0 of the result. This means that the
4227 // byte needs to be shifted until it lands in the right byte bucket. The
4228 // shift amount depends on the position: if the byte is coming from the high
4229 // part of the value (e.g. byte 3) then it must be shifted right. If from the
4230 // low part, it must be shifted left.
4231 unsigned DestByteNo = InputByteNo + OverallLeftShift;
4232 if (InputByteNo < ByteValues.size()/2) {
4233 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4234 return true;
4235 } else {
4236 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4237 return true;
4238 }
Chris Lattnerafe91a52006-06-15 19:07:26 +00004239
4240 // If the destination byte value is already defined, the values are or'd
4241 // together, which isn't a bswap (unless it's an or of the same bits).
Chris Lattner8c34cd22008-10-05 02:13:19 +00004242 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
Chris Lattnerafe91a52006-06-15 19:07:26 +00004243 return true;
Chris Lattner8c34cd22008-10-05 02:13:19 +00004244 ByteValues[DestByteNo] = V;
Chris Lattnerafe91a52006-06-15 19:07:26 +00004245 return false;
4246}
4247
4248/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4249/// If so, insert the new bswap intrinsic and return it.
4250Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
Chris Lattner55fc8c42007-04-01 20:57:36 +00004251 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
Chris Lattner8c34cd22008-10-05 02:13:19 +00004252 if (!ITy || ITy->getBitWidth() % 16 ||
4253 // ByteMask only allows up to 32-byte values.
4254 ITy->getBitWidth() > 32*8)
Chris Lattner55fc8c42007-04-01 20:57:36 +00004255 return 0; // Can only bswap pairs of bytes. Can't do vectors.
Chris Lattnerafe91a52006-06-15 19:07:26 +00004256
4257 /// ByteValues - For each byte of the result, we keep track of which value
4258 /// defines each byte.
Chris Lattner535014f2007-02-15 22:52:10 +00004259 SmallVector<Value*, 8> ByteValues;
Chris Lattner55fc8c42007-04-01 20:57:36 +00004260 ByteValues.resize(ITy->getBitWidth()/8);
Chris Lattnerafe91a52006-06-15 19:07:26 +00004261
4262 // Try to find all the pieces corresponding to the bswap.
Chris Lattner8c34cd22008-10-05 02:13:19 +00004263 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
4264 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
Chris Lattnerafe91a52006-06-15 19:07:26 +00004265 return 0;
4266
4267 // Check to see if all of the bytes come from the same value.
4268 Value *V = ByteValues[0];
4269 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4270
4271 // Check to make sure that all of the bytes come from the same value.
4272 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4273 if (ByteValues[i] != V)
4274 return 0;
Chandler Carruth69940402007-08-04 01:51:18 +00004275 const Type *Tys[] = { ITy };
Chris Lattnerafe91a52006-06-15 19:07:26 +00004276 Module *M = I.getParent()->getParent()->getParent();
Chandler Carruth69940402007-08-04 01:51:18 +00004277 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greif051a9502008-04-06 20:25:17 +00004278 return CallInst::Create(F, V);
Chris Lattnerafe91a52006-06-15 19:07:26 +00004279}
4280
Chris Lattnerfaaf9512008-11-16 04:24:12 +00004281/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
4282/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
4283/// we can simplify this expression to "cond ? C : D or B".
4284static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
4285 Value *C, Value *D) {
Chris Lattnera6a474d2008-11-16 04:26:55 +00004286 // If A is not a select of -1/0, this cannot match.
Chris Lattner6046fb72008-11-16 04:46:19 +00004287 Value *Cond = 0;
Chris Lattner321e6a62008-11-16 04:33:38 +00004288 if (!match(A, m_SelectCst(m_Value(Cond), -1, 0)))
Chris Lattnerfaaf9512008-11-16 04:24:12 +00004289 return 0;
4290
Chris Lattnera6a474d2008-11-16 04:26:55 +00004291 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
Chris Lattner6046fb72008-11-16 04:46:19 +00004292 if (match(D, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnera6a474d2008-11-16 04:26:55 +00004293 return SelectInst::Create(Cond, C, B);
Chris Lattner6046fb72008-11-16 04:46:19 +00004294 if (match(D, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnera6a474d2008-11-16 04:26:55 +00004295 return SelectInst::Create(Cond, C, B);
4296 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
Chris Lattner6046fb72008-11-16 04:46:19 +00004297 if (match(B, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnera6a474d2008-11-16 04:26:55 +00004298 return SelectInst::Create(Cond, C, D);
Chris Lattner6046fb72008-11-16 04:46:19 +00004299 if (match(B, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnera6a474d2008-11-16 04:26:55 +00004300 return SelectInst::Create(Cond, C, D);
Chris Lattnerfaaf9512008-11-16 04:24:12 +00004301 return 0;
4302}
Chris Lattnerafe91a52006-06-15 19:07:26 +00004303
Chris Lattner69d4ced2008-11-16 05:20:07 +00004304/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
4305Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
4306 ICmpInst *LHS, ICmpInst *RHS) {
4307 Value *Val, *Val2;
4308 ConstantInt *LHSCst, *RHSCst;
4309 ICmpInst::Predicate LHSCC, RHSCC;
4310
4311 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
4312 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
4313 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
4314 return 0;
4315
4316 // From here on, we only handle:
4317 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
4318 if (Val != Val2) return 0;
4319
4320 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
4321 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
4322 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
4323 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
4324 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
4325 return 0;
4326
4327 // We can't fold (ugt x, C) | (sgt x, C2).
4328 if (!PredicatesFoldable(LHSCC, RHSCC))
4329 return 0;
4330
4331 // Ensure that the larger constant is on the RHS.
4332 bool ShouldSwap;
4333 if (ICmpInst::isSignedPredicate(LHSCC) ||
4334 (ICmpInst::isEquality(LHSCC) &&
4335 ICmpInst::isSignedPredicate(RHSCC)))
4336 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4337 else
4338 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4339
4340 if (ShouldSwap) {
4341 std::swap(LHS, RHS);
4342 std::swap(LHSCst, RHSCst);
4343 std::swap(LHSCC, RHSCC);
4344 }
4345
4346 // At this point, we know we have have two icmp instructions
4347 // comparing a value against two constants and or'ing the result
4348 // together. Because of the above check, we know that we only have
4349 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4350 // FoldICmpLogical check above), that the two constants are not
4351 // equal.
4352 assert(LHSCst != RHSCst && "Compares not folded above?");
4353
4354 switch (LHSCC) {
4355 default: assert(0 && "Unknown integer condition code!");
4356 case ICmpInst::ICMP_EQ:
4357 switch (RHSCC) {
4358 default: assert(0 && "Unknown integer condition code!");
4359 case ICmpInst::ICMP_EQ:
4360 if (LHSCst == SubOne(RHSCst)) { // (X == 13 | X == 14) -> X-13 <u 2
4361 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4362 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
4363 Val->getName()+".off");
4364 InsertNewInstBefore(Add, I);
4365 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4366 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4367 }
4368 break; // (X == 13 | X == 15) -> no change
4369 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4370 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4371 break;
4372 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4373 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4374 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4375 return ReplaceInstUsesWith(I, RHS);
4376 }
4377 break;
4378 case ICmpInst::ICMP_NE:
4379 switch (RHSCC) {
4380 default: assert(0 && "Unknown integer condition code!");
4381 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4382 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4383 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4384 return ReplaceInstUsesWith(I, LHS);
4385 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4386 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4387 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4388 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4389 }
4390 break;
4391 case ICmpInst::ICMP_ULT:
4392 switch (RHSCC) {
4393 default: assert(0 && "Unknown integer condition code!");
4394 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4395 break;
4396 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
4397 // If RHSCst is [us]MAXINT, it is always false. Not handling
4398 // this can cause overflow.
4399 if (RHSCst->isMaxValue(false))
4400 return ReplaceInstUsesWith(I, LHS);
4401 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false, I);
4402 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4403 break;
4404 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4405 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4406 return ReplaceInstUsesWith(I, RHS);
4407 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4408 break;
4409 }
4410 break;
4411 case ICmpInst::ICMP_SLT:
4412 switch (RHSCC) {
4413 default: assert(0 && "Unknown integer condition code!");
4414 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4415 break;
4416 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
4417 // If RHSCst is [us]MAXINT, it is always false. Not handling
4418 // this can cause overflow.
4419 if (RHSCst->isMaxValue(true))
4420 return ReplaceInstUsesWith(I, LHS);
4421 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false, I);
4422 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4423 break;
4424 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4425 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4426 return ReplaceInstUsesWith(I, RHS);
4427 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4428 break;
4429 }
4430 break;
4431 case ICmpInst::ICMP_UGT:
4432 switch (RHSCC) {
4433 default: assert(0 && "Unknown integer condition code!");
4434 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4435 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4436 return ReplaceInstUsesWith(I, LHS);
4437 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4438 break;
4439 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4440 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4441 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4442 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4443 break;
4444 }
4445 break;
4446 case ICmpInst::ICMP_SGT:
4447 switch (RHSCC) {
4448 default: assert(0 && "Unknown integer condition code!");
4449 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4450 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4451 return ReplaceInstUsesWith(I, LHS);
4452 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4453 break;
4454 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4455 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4456 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4457 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4458 break;
4459 }
4460 break;
4461 }
4462 return 0;
4463}
4464
Chris Lattner7e708292002-06-25 16:13:24 +00004465Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00004466 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00004467 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00004468
Chris Lattner42593e62007-03-24 23:56:43 +00004469 if (isa<UndefValue>(Op1)) // X | undef -> -1
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004470 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattnere87597f2004-10-16 18:11:37 +00004471
Chris Lattnerf8c36f52006-02-12 08:02:11 +00004472 // or X, X = X
4473 if (Op0 == Op1)
Chris Lattner233f7dc2002-08-12 21:17:25 +00004474 return ReplaceInstUsesWith(I, Op0);
Chris Lattner3f5b8772002-05-06 16:14:14 +00004475
Chris Lattnerf8c36f52006-02-12 08:02:11 +00004476 // See if we can simplify any instructions used by the instruction whose sole
4477 // purpose is to compute bits we don't care about.
Chris Lattner42593e62007-03-24 23:56:43 +00004478 if (!isa<VectorType>(I.getType())) {
4479 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4480 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4481 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4482 KnownZero, KnownOne))
4483 return &I;
Chris Lattner041a6c92007-06-15 05:26:55 +00004484 } else if (isa<ConstantAggregateZero>(Op1)) {
4485 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4486 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4487 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4488 return ReplaceInstUsesWith(I, I.getOperand(1));
Chris Lattner42593e62007-03-24 23:56:43 +00004489 }
Chris Lattner041a6c92007-06-15 05:26:55 +00004490
4491
Chris Lattnerf8c36f52006-02-12 08:02:11 +00004492
Chris Lattner3f5b8772002-05-06 16:14:14 +00004493 // or X, -1 == -1
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004494 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner4f637d42006-01-06 17:59:59 +00004495 ConstantInt *C1 = 0; Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004496 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4497 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004498 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004499 InsertNewInstBefore(Or, I);
Chris Lattner6934a042007-02-11 01:23:03 +00004500 Or->takeName(Op0);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004501 return BinaryOperator::CreateAnd(Or,
Zhou Sheng4a1822a2007-04-02 13:45:30 +00004502 ConstantInt::get(RHS->getValue() | C1->getValue()));
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004503 }
Chris Lattnerad44ebf2003-07-23 18:29:44 +00004504
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004505 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4506 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004507 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004508 InsertNewInstBefore(Or, I);
Chris Lattner6934a042007-02-11 01:23:03 +00004509 Or->takeName(Op0);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004510 return BinaryOperator::CreateXor(Or,
Zhou Sheng4a1822a2007-04-02 13:45:30 +00004511 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
Chris Lattnerad44ebf2003-07-23 18:29:44 +00004512 }
Chris Lattner2eefe512004-04-09 19:05:30 +00004513
4514 // Try to fold constant and into select arguments.
4515 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00004516 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00004517 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00004518 if (isa<PHINode>(Op0))
4519 if (Instruction *NV = FoldOpIntoPhi(I))
4520 return NV;
Chris Lattnerad44ebf2003-07-23 18:29:44 +00004521 }
4522
Chris Lattner4f637d42006-01-06 17:59:59 +00004523 Value *A = 0, *B = 0;
4524 ConstantInt *C1 = 0, *C2 = 0;
Chris Lattnerf4d4c872005-05-07 23:49:08 +00004525
4526 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4527 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4528 return ReplaceInstUsesWith(I, Op1);
4529 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4530 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4531 return ReplaceInstUsesWith(I, Op0);
4532
Chris Lattner6423d4c2006-07-10 20:25:24 +00004533 // (A | B) | C and A | (B | C) -> bswap if possible.
4534 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
Chris Lattnerafe91a52006-06-15 19:07:26 +00004535 if (match(Op0, m_Or(m_Value(), m_Value())) ||
Chris Lattner6423d4c2006-07-10 20:25:24 +00004536 match(Op1, m_Or(m_Value(), m_Value())) ||
4537 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4538 match(Op1, m_Shift(m_Value(), m_Value())))) {
Chris Lattnerafe91a52006-06-15 19:07:26 +00004539 if (Instruction *BSwap = MatchBSwap(I))
4540 return BSwap;
4541 }
4542
Chris Lattner6e4c6492005-05-09 04:58:36 +00004543 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4544 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Reid Spencera03d45f2007-03-22 22:19:58 +00004545 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004546 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Chris Lattner6934a042007-02-11 01:23:03 +00004547 InsertNewInstBefore(NOr, I);
4548 NOr->takeName(Op0);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004549 return BinaryOperator::CreateXor(NOr, C1);
Chris Lattner6e4c6492005-05-09 04:58:36 +00004550 }
4551
4552 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4553 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Reid Spencera03d45f2007-03-22 22:19:58 +00004554 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004555 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Chris Lattner6934a042007-02-11 01:23:03 +00004556 InsertNewInstBefore(NOr, I);
4557 NOr->takeName(Op0);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004558 return BinaryOperator::CreateXor(NOr, C1);
Chris Lattner6e4c6492005-05-09 04:58:36 +00004559 }
4560
Chris Lattnerc5e7ea42007-04-08 07:47:01 +00004561 // (A & C)|(B & D)
Chris Lattner2384d7b2007-06-19 05:43:49 +00004562 Value *C = 0, *D = 0;
Chris Lattnerc5e7ea42007-04-08 07:47:01 +00004563 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4564 match(Op1, m_And(m_Value(B), m_Value(D)))) {
Chris Lattner6cae0e02007-04-08 07:55:22 +00004565 Value *V1 = 0, *V2 = 0, *V3 = 0;
4566 C1 = dyn_cast<ConstantInt>(C);
4567 C2 = dyn_cast<ConstantInt>(D);
4568 if (C1 && C2) { // (A & C1)|(B & C2)
4569 // If we have: ((V + N) & C1) | (V & C2)
4570 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4571 // replace with V+N.
4572 if (C1->getValue() == ~C2->getValue()) {
4573 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4574 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4575 // Add commutes, try both ways.
4576 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4577 return ReplaceInstUsesWith(I, A);
4578 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4579 return ReplaceInstUsesWith(I, A);
4580 }
4581 // Or commutes, try both ways.
4582 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4583 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4584 // Add commutes, try both ways.
4585 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4586 return ReplaceInstUsesWith(I, B);
4587 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4588 return ReplaceInstUsesWith(I, B);
4589 }
4590 }
Chris Lattner044e5332007-04-08 08:01:49 +00004591 V1 = 0; V2 = 0; V3 = 0;
Chris Lattner6cae0e02007-04-08 07:55:22 +00004592 }
4593
Chris Lattnerc5e7ea42007-04-08 07:47:01 +00004594 // Check to see if we have any common things being and'ed. If so, find the
4595 // terms for V1 & (V2|V3).
Chris Lattnerc5e7ea42007-04-08 07:47:01 +00004596 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4597 if (A == B) // (A & C)|(A & D) == A & (C|D)
4598 V1 = A, V2 = C, V3 = D;
4599 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4600 V1 = A, V2 = B, V3 = C;
4601 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4602 V1 = C, V2 = A, V3 = D;
4603 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4604 V1 = C, V2 = A, V3 = B;
4605
4606 if (V1) {
4607 Value *Or =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004608 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4609 return BinaryOperator::CreateAnd(V1, Or);
Chris Lattner0b7c0bf2005-09-18 06:02:59 +00004610 }
Chris Lattnerc5e7ea42007-04-08 07:47:01 +00004611 }
Dan Gohmanb493b272008-10-28 22:38:57 +00004612
Dan Gohman1975d032008-10-30 20:40:10 +00004613 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
Chris Lattnerfaaf9512008-11-16 04:24:12 +00004614 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
4615 return Match;
4616 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
4617 return Match;
4618 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
4619 return Match;
4620 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
4621 return Match;
Chris Lattnere9bed7d2005-09-18 03:42:07 +00004622 }
Chris Lattnere511b742006-11-14 07:46:50 +00004623
4624 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
Reid Spencer832254e2007-02-02 02:16:23 +00004625 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4626 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4627 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
Chris Lattnere511b742006-11-14 07:46:50 +00004628 SI0->getOperand(1) == SI1->getOperand(1) &&
4629 (SI0->hasOneUse() || SI1->hasOneUse())) {
4630 Instruction *NewOp =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004631 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Chris Lattnere511b742006-11-14 07:46:50 +00004632 SI1->getOperand(0),
4633 SI0->getName()), I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004634 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Reid Spencer832254e2007-02-02 02:16:23 +00004635 SI1->getOperand(1));
Chris Lattnere511b742006-11-14 07:46:50 +00004636 }
4637 }
Chris Lattner67ca7682003-08-12 19:11:07 +00004638
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004639 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4640 if (A == Op1) // ~A | A == -1
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004641 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004642 } else {
4643 A = 0;
4644 }
Chris Lattnerf4d4c872005-05-07 23:49:08 +00004645 // Note, A is still live here!
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004646 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4647 if (Op0 == B)
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004648 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattnera27231a2003-03-10 23:13:59 +00004649
Misha Brukmancb6267b2004-07-30 12:50:08 +00004650 // (~A | ~B) == (~(A & B)) - De Morgan's Law
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004651 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004652 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004653 I.getName()+".demorgan"), I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004654 return BinaryOperator::CreateNot(And);
Chris Lattneracd1f0f2004-07-30 07:50:03 +00004655 }
Chris Lattnera27231a2003-03-10 23:13:59 +00004656 }
Chris Lattnera2881962003-02-18 19:28:33 +00004657
Reid Spencere4d87aa2006-12-23 06:05:41 +00004658 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4659 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4660 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
Chris Lattneraa9c1f12003-08-13 20:16:26 +00004661 return R;
4662
Chris Lattner69d4ced2008-11-16 05:20:07 +00004663 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
4664 if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS))
4665 return Res;
Chris Lattnerb4f40d22004-09-28 22:33:08 +00004666 }
Chris Lattner6fc205f2006-05-05 06:39:07 +00004667
4668 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner99c65742007-10-24 05:38:08 +00004669 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Chris Lattner6fc205f2006-05-05 06:39:07 +00004670 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004671 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chengb98a10e2008-03-24 00:21:34 +00004672 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4673 !isa<ICmpInst>(Op1C->getOperand(0))) {
4674 const Type *SrcTy = Op0C->getOperand(0)->getType();
4675 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4676 // Only do this if the casts both really cause code to be
4677 // generated.
4678 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4679 I.getType(), TD) &&
4680 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4681 I.getType(), TD)) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004682 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chengb98a10e2008-03-24 00:21:34 +00004683 Op1C->getOperand(0),
4684 I.getName());
4685 InsertNewInstBefore(NewOp, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004686 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chengb98a10e2008-03-24 00:21:34 +00004687 }
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00004688 }
Chris Lattner6fc205f2006-05-05 06:39:07 +00004689 }
Chris Lattner99c65742007-10-24 05:38:08 +00004690 }
4691
4692
4693 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4694 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4695 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4696 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattner5ebd9362008-02-29 06:09:11 +00004697 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
Evan Cheng40300622008-10-14 18:44:08 +00004698 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
Chris Lattner99c65742007-10-24 05:38:08 +00004699 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4700 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4701 // If either of the constants are nans, then the whole thing returns
4702 // true.
Chris Lattnerbe3e3482007-10-24 18:54:45 +00004703 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner99c65742007-10-24 05:38:08 +00004704 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4705
4706 // Otherwise, no need to compare the two constants, compare the
4707 // rest.
4708 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4709 RHS->getOperand(0));
4710 }
Evan Cheng40300622008-10-14 18:44:08 +00004711 } else {
4712 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4713 FCmpInst::Predicate Op0CC, Op1CC;
4714 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4715 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
4716 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4717 // Swap RHS operands to match LHS.
4718 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4719 std::swap(Op1LHS, Op1RHS);
4720 }
4721 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4722 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
4723 if (Op0CC == Op1CC)
4724 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4725 else if (Op0CC == FCmpInst::FCMP_TRUE ||
4726 Op1CC == FCmpInst::FCMP_TRUE)
4727 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4728 else if (Op0CC == FCmpInst::FCMP_FALSE)
4729 return ReplaceInstUsesWith(I, Op1);
4730 else if (Op1CC == FCmpInst::FCMP_FALSE)
4731 return ReplaceInstUsesWith(I, Op0);
4732 bool Op0Ordered;
4733 bool Op1Ordered;
4734 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4735 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4736 if (Op0Ordered == Op1Ordered) {
4737 // If both are ordered or unordered, return a new fcmp with
4738 // or'ed predicates.
4739 Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
4740 Op0LHS, Op0RHS);
4741 if (Instruction *I = dyn_cast<Instruction>(RV))
4742 return I;
4743 // Otherwise, it's a constant boolean value...
4744 return ReplaceInstUsesWith(I, RV);
4745 }
4746 }
4747 }
4748 }
Chris Lattner99c65742007-10-24 05:38:08 +00004749 }
4750 }
Chris Lattnere9bed7d2005-09-18 03:42:07 +00004751
Chris Lattner7e708292002-06-25 16:13:24 +00004752 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00004753}
4754
Dan Gohman844731a2008-05-13 00:00:25 +00004755namespace {
4756
Chris Lattnerc317d392004-02-16 01:20:27 +00004757// XorSelf - Implements: X ^ X --> 0
4758struct XorSelf {
4759 Value *RHS;
4760 XorSelf(Value *rhs) : RHS(rhs) {}
4761 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4762 Instruction *apply(BinaryOperator &Xor) const {
4763 return &Xor;
4764 }
4765};
Chris Lattner3f5b8772002-05-06 16:14:14 +00004766
Dan Gohman844731a2008-05-13 00:00:25 +00004767}
Chris Lattner3f5b8772002-05-06 16:14:14 +00004768
Chris Lattner7e708292002-06-25 16:13:24 +00004769Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00004770 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00004771 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00004772
Evan Chengd34af782008-03-25 20:07:13 +00004773 if (isa<UndefValue>(Op1)) {
4774 if (isa<UndefValue>(Op0))
4775 // Handle undef ^ undef -> 0 special case. This is a common
4776 // idiom (misuse).
4777 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnere87597f2004-10-16 18:11:37 +00004778 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chengd34af782008-03-25 20:07:13 +00004779 }
Chris Lattnere87597f2004-10-16 18:11:37 +00004780
Chris Lattnerc317d392004-02-16 01:20:27 +00004781 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4782 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnera9ff5eb2007-08-05 08:47:58 +00004783 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Chris Lattner233f7dc2002-08-12 21:17:25 +00004784 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerc317d392004-02-16 01:20:27 +00004785 }
Chris Lattnerf8c36f52006-02-12 08:02:11 +00004786
4787 // See if we can simplify any instructions used by the instruction whose sole
4788 // purpose is to compute bits we don't care about.
Reid Spencera03d45f2007-03-22 22:19:58 +00004789 if (!isa<VectorType>(I.getType())) {
4790 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4791 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4792 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4793 KnownZero, KnownOne))
4794 return &I;
Chris Lattner041a6c92007-06-15 05:26:55 +00004795 } else if (isa<ConstantAggregateZero>(Op1)) {
4796 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
Reid Spencera03d45f2007-03-22 22:19:58 +00004797 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00004798
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004799 // Is this a ~ operation?
4800 if (Value *NotOp = dyn_castNotVal(&I)) {
4801 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4802 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4803 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4804 if (Op0I->getOpcode() == Instruction::And ||
4805 Op0I->getOpcode() == Instruction::Or) {
4806 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4807 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4808 Instruction *NotY =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004809 BinaryOperator::CreateNot(Op0I->getOperand(1),
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004810 Op0I->getOperand(1)->getName()+".not");
4811 InsertNewInstBefore(NotY, I);
4812 if (Op0I->getOpcode() == Instruction::And)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004813 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004814 else
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004815 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004816 }
4817 }
4818 }
4819 }
4820
4821
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004822 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewyckyf947b3e2007-08-06 20:04:16 +00004823 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4824 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4825 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004826 return new ICmpInst(ICI->getInversePredicate(),
4827 ICI->getOperand(0), ICI->getOperand(1));
Chris Lattnerad5b4fb2003-11-04 23:50:51 +00004828
Nick Lewyckyf947b3e2007-08-06 20:04:16 +00004829 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4830 return new FCmpInst(FCI->getInversePredicate(),
4831 FCI->getOperand(0), FCI->getOperand(1));
4832 }
4833
Nick Lewycky517e1f52008-05-31 19:01:33 +00004834 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4835 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4836 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
4837 if (CI->hasOneUse() && Op0C->hasOneUse()) {
4838 Instruction::CastOps Opcode = Op0C->getOpcode();
4839 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
4840 if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(),
4841 Op0C->getDestTy())) {
4842 Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
4843 CI->getOpcode(), CI->getInversePredicate(),
4844 CI->getOperand(0), CI->getOperand(1)), I);
4845 NewCI->takeName(CI);
4846 return CastInst::Create(Opcode, NewCI, Op0C->getType());
4847 }
4848 }
4849 }
4850 }
4851 }
4852
Reid Spencere4d87aa2006-12-23 06:05:41 +00004853 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Chris Lattnerd65460f2003-11-05 01:06:05 +00004854 // ~(c-X) == X-c-1 == X+(-c-1)
Chris Lattner7c4049c2004-01-12 19:35:11 +00004855 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4856 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
Chris Lattner48595f12004-06-10 02:07:29 +00004857 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4858 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
Chris Lattner7c4049c2004-01-12 19:35:11 +00004859 ConstantInt::get(I.getType(), 1));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004860 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Chris Lattner7c4049c2004-01-12 19:35:11 +00004861 }
Chris Lattner5c6e2db2007-04-02 05:36:22 +00004862
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00004863 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Chris Lattnerf8c36f52006-02-12 08:02:11 +00004864 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner689d24b2003-11-04 23:37:10 +00004865 // ~(X-c) --> (-c-1)-X
Chris Lattner7c4049c2004-01-12 19:35:11 +00004866 if (RHS->isAllOnesValue()) {
Chris Lattner48595f12004-06-10 02:07:29 +00004867 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004868 return BinaryOperator::CreateSub(
Chris Lattner48595f12004-06-10 02:07:29 +00004869 ConstantExpr::getSub(NegOp0CI,
Chris Lattner7c4049c2004-01-12 19:35:11 +00004870 ConstantInt::get(I.getType(), 1)),
Chris Lattner689d24b2003-11-04 23:37:10 +00004871 Op0I->getOperand(0));
Chris Lattneracf4e072007-04-02 05:42:22 +00004872 } else if (RHS->getValue().isSignBit()) {
Chris Lattner5c6e2db2007-04-02 05:36:22 +00004873 // (X + C) ^ signbit -> (X + C + signbit)
4874 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004875 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Chris Lattnercd1d6d52007-04-02 05:48:58 +00004876
Chris Lattner7c4049c2004-01-12 19:35:11 +00004877 }
Chris Lattner02bd1b32006-02-26 19:57:54 +00004878 } else if (Op0I->getOpcode() == Instruction::Or) {
4879 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
Reid Spencera03d45f2007-03-22 22:19:58 +00004880 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
Chris Lattner02bd1b32006-02-26 19:57:54 +00004881 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4882 // Anything in both C1 and C2 is known to be zero, remove it from
4883 // NewRHS.
Zhou Sheng4a1822a2007-04-02 13:45:30 +00004884 Constant *CommonBits = And(Op0CI, RHS);
Chris Lattner02bd1b32006-02-26 19:57:54 +00004885 NewRHS = ConstantExpr::getAnd(NewRHS,
4886 ConstantExpr::getNot(CommonBits));
Chris Lattnerdbab3862007-03-02 21:28:56 +00004887 AddToWorkList(Op0I);
Chris Lattner02bd1b32006-02-26 19:57:54 +00004888 I.setOperand(0, Op0I->getOperand(0));
4889 I.setOperand(1, NewRHS);
4890 return &I;
4891 }
Chris Lattnereca0c5c2003-07-23 21:37:07 +00004892 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00004893 }
Chris Lattner05bd1b22002-08-20 18:24:26 +00004894 }
Chris Lattner2eefe512004-04-09 19:05:30 +00004895
4896 // Try to fold constant and into select arguments.
4897 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00004898 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00004899 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00004900 if (isa<PHINode>(Op0))
4901 if (Instruction *NV = FoldOpIntoPhi(I))
4902 return NV;
Chris Lattner3f5b8772002-05-06 16:14:14 +00004903 }
4904
Chris Lattner8d969642003-03-10 23:06:50 +00004905 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
Chris Lattnera2881962003-02-18 19:28:33 +00004906 if (X == Op1)
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004907 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattnera2881962003-02-18 19:28:33 +00004908
Chris Lattner8d969642003-03-10 23:06:50 +00004909 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
Chris Lattnera2881962003-02-18 19:28:33 +00004910 if (X == Op0)
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00004911 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
Chris Lattnera2881962003-02-18 19:28:33 +00004912
Chris Lattner318bf792007-03-18 22:51:34 +00004913
4914 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4915 if (Op1I) {
4916 Value *A, *B;
4917 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4918 if (A == Op0) { // B^(B|A) == (A|B)^B
Chris Lattner64daab52006-04-01 08:03:55 +00004919 Op1I->swapOperands();
Chris Lattnercb40a372003-03-10 18:24:17 +00004920 I.swapOperands();
4921 std::swap(Op0, Op1);
Chris Lattner318bf792007-03-18 22:51:34 +00004922 } else if (B == Op0) { // B^(A|B) == (A|B)^B
Chris Lattner64daab52006-04-01 08:03:55 +00004923 I.swapOperands(); // Simplified below.
Chris Lattnercb40a372003-03-10 18:24:17 +00004924 std::swap(Op0, Op1);
Misha Brukmanfd939082005-04-21 23:48:37 +00004925 }
Chris Lattnercb504b92008-11-16 05:38:51 +00004926 } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
4927 return ReplaceInstUsesWith(I, B); // A^(A^B) == B
4928 } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
4929 return ReplaceInstUsesWith(I, A); // A^(B^A) == B
Chris Lattner318bf792007-03-18 22:51:34 +00004930 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
Chris Lattner6abbdf92007-04-01 05:36:37 +00004931 if (A == Op0) { // A^(A&B) -> A^(B&A)
Chris Lattner64daab52006-04-01 08:03:55 +00004932 Op1I->swapOperands();
Chris Lattner6abbdf92007-04-01 05:36:37 +00004933 std::swap(A, B);
4934 }
Chris Lattner318bf792007-03-18 22:51:34 +00004935 if (B == Op0) { // A^(B&A) -> (B&A)^A
Chris Lattner64daab52006-04-01 08:03:55 +00004936 I.swapOperands(); // Simplified below.
4937 std::swap(Op0, Op1);
4938 }
Chris Lattner26ca7e12004-02-16 03:54:20 +00004939 }
Chris Lattner318bf792007-03-18 22:51:34 +00004940 }
4941
4942 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4943 if (Op0I) {
4944 Value *A, *B;
4945 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4946 if (A == Op1) // (B|A)^B == (A|B)^B
4947 std::swap(A, B);
4948 if (B == Op1) { // (A|B)^B == A & ~B
4949 Instruction *NotB =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004950 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
4951 return BinaryOperator::CreateAnd(A, NotB);
Chris Lattnercb40a372003-03-10 18:24:17 +00004952 }
Chris Lattnercb504b92008-11-16 05:38:51 +00004953 } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
4954 return ReplaceInstUsesWith(I, B); // (A^B)^A == B
4955 } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
4956 return ReplaceInstUsesWith(I, A); // (B^A)^A == B
Chris Lattner318bf792007-03-18 22:51:34 +00004957 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4958 if (A == Op1) // (A&B)^A -> (B&A)^A
4959 std::swap(A, B);
4960 if (B == Op1 && // (B&A)^A == ~B & A
Chris Lattnerae1ab392006-04-01 22:05:01 +00004961 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
Chris Lattner318bf792007-03-18 22:51:34 +00004962 Instruction *N =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004963 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
4964 return BinaryOperator::CreateAnd(N, Op1);
Chris Lattner64daab52006-04-01 08:03:55 +00004965 }
Chris Lattnercb40a372003-03-10 18:24:17 +00004966 }
Chris Lattner318bf792007-03-18 22:51:34 +00004967 }
4968
4969 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4970 if (Op0I && Op1I && Op0I->isShift() &&
4971 Op0I->getOpcode() == Op1I->getOpcode() &&
4972 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4973 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4974 Instruction *NewOp =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004975 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Chris Lattner318bf792007-03-18 22:51:34 +00004976 Op1I->getOperand(0),
4977 Op0I->getName()), I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004978 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Chris Lattner318bf792007-03-18 22:51:34 +00004979 Op1I->getOperand(1));
4980 }
4981
4982 if (Op0I && Op1I) {
4983 Value *A, *B, *C, *D;
4984 // (A & B)^(A | B) -> A ^ B
4985 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4986 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4987 if ((A == C && B == D) || (A == D && B == C))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004988 return BinaryOperator::CreateXor(A, B);
Chris Lattner318bf792007-03-18 22:51:34 +00004989 }
4990 // (A | B)^(A & B) -> A ^ B
4991 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4992 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4993 if ((A == C && B == D) || (A == D && B == C))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00004994 return BinaryOperator::CreateXor(A, B);
Chris Lattner318bf792007-03-18 22:51:34 +00004995 }
4996
4997 // (A & B)^(C & D)
4998 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4999 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5000 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5001 // (X & Y)^(X & Y) -> (Y^Z) & X
5002 Value *X = 0, *Y = 0, *Z = 0;
5003 if (A == C)
5004 X = A, Y = B, Z = D;
5005 else if (A == D)
5006 X = A, Y = B, Z = C;
5007 else if (B == C)
5008 X = B, Y = A, Z = D;
5009 else if (B == D)
5010 X = B, Y = A, Z = C;
5011
5012 if (X) {
5013 Instruction *NewOp =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005014 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
5015 return BinaryOperator::CreateAnd(NewOp, X);
Chris Lattner318bf792007-03-18 22:51:34 +00005016 }
5017 }
5018 }
5019
Reid Spencere4d87aa2006-12-23 06:05:41 +00005020 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
5021 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
5022 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
Chris Lattneraa9c1f12003-08-13 20:16:26 +00005023 return R;
5024
Chris Lattner6fc205f2006-05-05 06:39:07 +00005025 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner99c65742007-10-24 05:38:08 +00005026 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Chris Lattner6fc205f2006-05-05 06:39:07 +00005027 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00005028 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
5029 const Type *SrcTy = Op0C->getOperand(0)->getType();
Chris Lattner42a75512007-01-15 02:27:26 +00005030 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00005031 // Only do this if the casts both really cause code to be generated.
Reid Spencere4d87aa2006-12-23 06:05:41 +00005032 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
5033 I.getType(), TD) &&
5034 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
5035 I.getType(), TD)) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005036 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00005037 Op1C->getOperand(0),
5038 I.getName());
5039 InsertNewInstBefore(NewOp, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005040 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Reid Spencer5ae9ceb2006-12-13 08:27:15 +00005041 }
Chris Lattner6fc205f2006-05-05 06:39:07 +00005042 }
Chris Lattner99c65742007-10-24 05:38:08 +00005043 }
Nick Lewycky517e1f52008-05-31 19:01:33 +00005044
Chris Lattner7e708292002-06-25 16:13:24 +00005045 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00005046}
5047
Chris Lattnera96879a2004-09-29 17:40:11 +00005048/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
5049/// overflowed for this type.
5050static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
Reid Spencere4e40032007-03-21 23:19:50 +00005051 ConstantInt *In2, bool IsSigned = false) {
Zhou Sheng4a1822a2007-04-02 13:45:30 +00005052 Result = cast<ConstantInt>(Add(In1, In2));
Chris Lattnera96879a2004-09-29 17:40:11 +00005053
Reid Spencere4e40032007-03-21 23:19:50 +00005054 if (IsSigned)
5055 if (In2->getValue().isNegative())
5056 return Result->getValue().sgt(In1->getValue());
5057 else
5058 return Result->getValue().slt(In1->getValue());
5059 else
5060 return Result->getValue().ult(In1->getValue());
Chris Lattnera96879a2004-09-29 17:40:11 +00005061}
5062
Dan Gohman1df3fd62008-09-10 23:30:57 +00005063/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
5064/// overflowed for this type.
5065static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1,
5066 ConstantInt *In2, bool IsSigned = false) {
Dan Gohmanbcb37fd2008-09-11 18:53:02 +00005067 Result = cast<ConstantInt>(Subtract(In1, In2));
Dan Gohman1df3fd62008-09-10 23:30:57 +00005068
5069 if (IsSigned)
5070 if (In2->getValue().isNegative())
5071 return Result->getValue().slt(In1->getValue());
5072 else
5073 return Result->getValue().sgt(In1->getValue());
5074 else
5075 return Result->getValue().ugt(In1->getValue());
5076}
5077
Chris Lattner574da9b2005-01-13 20:14:25 +00005078/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
5079/// code necessary to compute the offset from the base pointer (without adding
5080/// in the base pointer). Return the result as a signed integer of intptr size.
5081static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
5082 TargetData &TD = IC.getTargetData();
5083 gep_type_iterator GTI = gep_type_begin(GEP);
Reid Spencere4d87aa2006-12-23 06:05:41 +00005084 const Type *IntPtrTy = TD.getIntPtrType();
5085 Value *Result = Constant::getNullValue(IntPtrTy);
Chris Lattner574da9b2005-01-13 20:14:25 +00005086
5087 // Build a mask for high order bits.
Chris Lattner10c0d912008-04-22 02:53:33 +00005088 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Chris Lattnere62f0212007-04-28 04:52:43 +00005089 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
Chris Lattner574da9b2005-01-13 20:14:25 +00005090
Gabor Greif177dd3f2008-06-12 21:37:33 +00005091 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
5092 ++i, ++GTI) {
5093 Value *Op = *i;
Duncan Sands514ab342007-11-01 20:53:16 +00005094 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Chris Lattnere62f0212007-04-28 04:52:43 +00005095 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
5096 if (OpC->isZero()) continue;
5097
5098 // Handle a struct index, which adds its field offset to the pointer.
5099 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5100 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5101
5102 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
5103 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
Chris Lattner9bc14642007-04-28 00:57:34 +00005104 else
Chris Lattnere62f0212007-04-28 04:52:43 +00005105 Result = IC.InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005106 BinaryOperator::CreateAdd(Result,
Chris Lattnere62f0212007-04-28 04:52:43 +00005107 ConstantInt::get(IntPtrTy, Size),
5108 GEP->getName()+".offs"), I);
5109 continue;
Chris Lattner9bc14642007-04-28 00:57:34 +00005110 }
Chris Lattnere62f0212007-04-28 04:52:43 +00005111
5112 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5113 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
5114 Scale = ConstantExpr::getMul(OC, Scale);
5115 if (Constant *RC = dyn_cast<Constant>(Result))
5116 Result = ConstantExpr::getAdd(RC, Scale);
5117 else {
5118 // Emit an add instruction.
5119 Result = IC.InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005120 BinaryOperator::CreateAdd(Result, Scale,
Chris Lattnere62f0212007-04-28 04:52:43 +00005121 GEP->getName()+".offs"), I);
Chris Lattner9bc14642007-04-28 00:57:34 +00005122 }
Chris Lattnere62f0212007-04-28 04:52:43 +00005123 continue;
Chris Lattner574da9b2005-01-13 20:14:25 +00005124 }
Chris Lattnere62f0212007-04-28 04:52:43 +00005125 // Convert to correct type.
5126 if (Op->getType() != IntPtrTy) {
5127 if (Constant *OpC = dyn_cast<Constant>(Op))
5128 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
5129 else
5130 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
5131 Op->getName()+".c"), I);
5132 }
5133 if (Size != 1) {
5134 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5135 if (Constant *OpC = dyn_cast<Constant>(Op))
5136 Op = ConstantExpr::getMul(OpC, Scale);
5137 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005138 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Chris Lattnere62f0212007-04-28 04:52:43 +00005139 GEP->getName()+".idx"), I);
5140 }
5141
5142 // Emit an add instruction.
5143 if (isa<Constant>(Op) && isa<Constant>(Result))
5144 Result = ConstantExpr::getAdd(cast<Constant>(Op),
5145 cast<Constant>(Result));
5146 else
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005147 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Chris Lattnere62f0212007-04-28 04:52:43 +00005148 GEP->getName()+".offs"), I);
Chris Lattner574da9b2005-01-13 20:14:25 +00005149 }
5150 return Result;
5151}
5152
Chris Lattner10c0d912008-04-22 02:53:33 +00005153
5154/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
5155/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
5156/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
5157/// complex, and scales are involved. The above expression would also be legal
5158/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
5159/// later form is less amenable to optimization though, and we are allowed to
5160/// generate the first by knowing that pointer arithmetic doesn't overflow.
5161///
5162/// If we can't emit an optimized form for this expression, this returns null.
5163///
5164static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
5165 InstCombiner &IC) {
Chris Lattner10c0d912008-04-22 02:53:33 +00005166 TargetData &TD = IC.getTargetData();
5167 gep_type_iterator GTI = gep_type_begin(GEP);
5168
5169 // Check to see if this gep only has a single variable index. If so, and if
5170 // any constant indices are a multiple of its scale, then we can compute this
5171 // in terms of the scale of the variable index. For example, if the GEP
5172 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5173 // because the expression will cross zero at the same point.
5174 unsigned i, e = GEP->getNumOperands();
5175 int64_t Offset = 0;
5176 for (i = 1; i != e; ++i, ++GTI) {
5177 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5178 // Compute the aggregate offset of constant indices.
5179 if (CI->isZero()) continue;
5180
5181 // Handle a struct index, which adds its field offset to the pointer.
5182 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5183 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5184 } else {
5185 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5186 Offset += Size*CI->getSExtValue();
5187 }
5188 } else {
5189 // Found our variable index.
5190 break;
5191 }
5192 }
5193
5194 // If there are no variable indices, we must have a constant offset, just
5195 // evaluate it the general way.
5196 if (i == e) return 0;
5197
5198 Value *VariableIdx = GEP->getOperand(i);
5199 // Determine the scale factor of the variable element. For example, this is
5200 // 4 if the variable index is into an array of i32.
5201 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
5202
5203 // Verify that there are no other variable indices. If so, emit the hard way.
5204 for (++i, ++GTI; i != e; ++i, ++GTI) {
5205 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5206 if (!CI) return 0;
5207
5208 // Compute the aggregate offset of constant indices.
5209 if (CI->isZero()) continue;
5210
5211 // Handle a struct index, which adds its field offset to the pointer.
5212 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5213 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5214 } else {
5215 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5216 Offset += Size*CI->getSExtValue();
5217 }
5218 }
5219
5220 // Okay, we know we have a single variable index, which must be a
5221 // pointer/array/vector index. If there is no offset, life is simple, return
5222 // the index.
5223 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5224 if (Offset == 0) {
5225 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5226 // we don't need to bother extending: the extension won't affect where the
5227 // computation crosses zero.
5228 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5229 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5230 VariableIdx->getNameStart(), &I);
5231 return VariableIdx;
5232 }
5233
5234 // Otherwise, there is an index. The computation we will do will be modulo
5235 // the pointer size, so get it.
5236 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5237
5238 Offset &= PtrSizeMask;
5239 VariableScale &= PtrSizeMask;
5240
5241 // To do this transformation, any constant index must be a multiple of the
5242 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5243 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5244 // multiple of the variable scale.
5245 int64_t NewOffs = Offset / (int64_t)VariableScale;
5246 if (Offset != NewOffs*(int64_t)VariableScale)
5247 return 0;
5248
5249 // Okay, we can do this evaluation. Start by converting the index to intptr.
5250 const Type *IntPtrTy = TD.getIntPtrType();
5251 if (VariableIdx->getType() != IntPtrTy)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005252 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattner10c0d912008-04-22 02:53:33 +00005253 true /*SExt*/,
5254 VariableIdx->getNameStart(), &I);
5255 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005256 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattner10c0d912008-04-22 02:53:33 +00005257}
5258
5259
Reid Spencere4d87aa2006-12-23 06:05:41 +00005260/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
Chris Lattner574da9b2005-01-13 20:14:25 +00005261/// else. At this point we know that the GEP is on the LHS of the comparison.
Reid Spencere4d87aa2006-12-23 06:05:41 +00005262Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5263 ICmpInst::Predicate Cond,
5264 Instruction &I) {
Chris Lattner574da9b2005-01-13 20:14:25 +00005265 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
Chris Lattnere9d782b2005-01-13 22:25:21 +00005266
Chris Lattner10c0d912008-04-22 02:53:33 +00005267 // Look through bitcasts.
5268 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5269 RHS = BCI->getOperand(0);
Chris Lattnere9d782b2005-01-13 22:25:21 +00005270
Chris Lattner574da9b2005-01-13 20:14:25 +00005271 Value *PtrBase = GEPLHS->getOperand(0);
5272 if (PtrBase == RHS) {
Chris Lattner7c95deb2008-02-05 04:45:32 +00005273 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattner10c0d912008-04-22 02:53:33 +00005274 // This transformation (ignoring the base and scales) is valid because we
5275 // know pointers can't overflow. See if we can output an optimized form.
5276 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5277
5278 // If not, synthesize the offset the hard way.
5279 if (Offset == 0)
5280 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattner7c95deb2008-02-05 04:45:32 +00005281 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5282 Constant::getNullValue(Offset->getType()));
Chris Lattner574da9b2005-01-13 20:14:25 +00005283 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
Chris Lattnera70b66d2005-04-25 20:17:30 +00005284 // If the base pointers are different, but the indices are the same, just
5285 // compare the base pointer.
5286 if (PtrBase != GEPRHS->getOperand(0)) {
5287 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
Jeff Cohen00b168892005-07-27 06:12:32 +00005288 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
Chris Lattner93b94a62005-04-26 14:40:41 +00005289 GEPRHS->getOperand(0)->getType();
Chris Lattnera70b66d2005-04-25 20:17:30 +00005290 if (IndicesTheSame)
5291 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5292 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5293 IndicesTheSame = false;
5294 break;
5295 }
5296
5297 // If all indices are the same, just compare the base pointers.
5298 if (IndicesTheSame)
Reid Spencere4d87aa2006-12-23 06:05:41 +00005299 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5300 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
Chris Lattnera70b66d2005-04-25 20:17:30 +00005301
5302 // Otherwise, the base pointers are different and the indices are
5303 // different, bail out.
Chris Lattner574da9b2005-01-13 20:14:25 +00005304 return 0;
Chris Lattnera70b66d2005-04-25 20:17:30 +00005305 }
Chris Lattner574da9b2005-01-13 20:14:25 +00005306
Chris Lattnere9d782b2005-01-13 22:25:21 +00005307 // If one of the GEPs has all zero indices, recurse.
5308 bool AllZeros = true;
5309 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5310 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5311 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5312 AllZeros = false;
5313 break;
5314 }
5315 if (AllZeros)
Reid Spencere4d87aa2006-12-23 06:05:41 +00005316 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5317 ICmpInst::getSwappedPredicate(Cond), I);
Chris Lattner4401c9c2005-01-14 00:20:05 +00005318
5319 // If the other GEP has all zero indices, recurse.
Chris Lattnere9d782b2005-01-13 22:25:21 +00005320 AllZeros = true;
5321 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5322 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5323 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5324 AllZeros = false;
5325 break;
5326 }
5327 if (AllZeros)
Reid Spencere4d87aa2006-12-23 06:05:41 +00005328 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
Chris Lattnere9d782b2005-01-13 22:25:21 +00005329
Chris Lattner4401c9c2005-01-14 00:20:05 +00005330 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5331 // If the GEPs only differ by one index, compare it.
5332 unsigned NumDifferences = 0; // Keep track of # differences.
5333 unsigned DiffOperand = 0; // The operand that differs.
5334 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5335 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
Chris Lattner484d3cf2005-04-24 06:59:08 +00005336 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5337 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
Chris Lattner45f57b82005-01-21 23:06:49 +00005338 // Irreconcilable differences.
Chris Lattner4401c9c2005-01-14 00:20:05 +00005339 NumDifferences = 2;
5340 break;
5341 } else {
5342 if (NumDifferences++) break;
5343 DiffOperand = i;
5344 }
5345 }
5346
5347 if (NumDifferences == 0) // SAME GEP?
5348 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky455e1762007-09-06 02:40:25 +00005349 ConstantInt::get(Type::Int1Ty,
Nick Lewyckyfc1efbb2008-05-17 07:33:39 +00005350 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky455e1762007-09-06 02:40:25 +00005351
Chris Lattner4401c9c2005-01-14 00:20:05 +00005352 else if (NumDifferences == 1) {
Chris Lattner45f57b82005-01-21 23:06:49 +00005353 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5354 Value *RHSV = GEPRHS->getOperand(DiffOperand);
Reid Spencere4d87aa2006-12-23 06:05:41 +00005355 // Make sure we do a signed comparison here.
5356 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
Chris Lattner4401c9c2005-01-14 00:20:05 +00005357 }
5358 }
5359
Reid Spencere4d87aa2006-12-23 06:05:41 +00005360 // Only lower this if the icmp is the only user of the GEP or if we expect
Chris Lattner574da9b2005-01-13 20:14:25 +00005361 // the result to fold to a constant!
5362 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5363 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5364 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5365 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5366 Value *R = EmitGEPOffset(GEPRHS, I, *this);
Reid Spencere4d87aa2006-12-23 06:05:41 +00005367 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
Chris Lattner574da9b2005-01-13 20:14:25 +00005368 }
5369 }
5370 return 0;
5371}
5372
Chris Lattnera5406232008-05-19 20:18:56 +00005373/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5374///
5375Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
5376 Instruction *LHSI,
5377 Constant *RHSC) {
5378 if (!isa<ConstantFP>(RHSC)) return 0;
5379 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5380
5381 // Get the width of the mantissa. We don't want to hack on conversions that
5382 // might lose information from the integer, e.g. "i64 -> float"
Chris Lattner7be1c452008-05-19 21:17:23 +00005383 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Chris Lattnera5406232008-05-19 20:18:56 +00005384 if (MantissaWidth == -1) return 0; // Unknown.
5385
5386 // Check to see that the input is converted from an integer type that is small
5387 // enough that preserves all bits. TODO: check here for "known" sign bits.
5388 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5389 unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
5390
5391 // If this is a uitofp instruction, we need an extra bit to hold the sign.
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005392 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5393 if (LHSUnsigned)
Chris Lattnera5406232008-05-19 20:18:56 +00005394 ++InputSize;
5395
5396 // If the conversion would lose info, don't hack on this.
5397 if ((int)InputSize > MantissaWidth)
5398 return 0;
5399
5400 // Otherwise, we can potentially simplify the comparison. We know that it
5401 // will always come through as an integer value and we know the constant is
5402 // not a NAN (it would have been previously simplified).
5403 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5404
5405 ICmpInst::Predicate Pred;
5406 switch (I.getPredicate()) {
5407 default: assert(0 && "Unexpected predicate!");
5408 case FCmpInst::FCMP_UEQ:
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005409 case FCmpInst::FCMP_OEQ:
5410 Pred = ICmpInst::ICMP_EQ;
5411 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005412 case FCmpInst::FCMP_UGT:
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005413 case FCmpInst::FCMP_OGT:
5414 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5415 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005416 case FCmpInst::FCMP_UGE:
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005417 case FCmpInst::FCMP_OGE:
5418 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5419 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005420 case FCmpInst::FCMP_ULT:
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005421 case FCmpInst::FCMP_OLT:
5422 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5423 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005424 case FCmpInst::FCMP_ULE:
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005425 case FCmpInst::FCMP_OLE:
5426 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5427 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005428 case FCmpInst::FCMP_UNE:
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005429 case FCmpInst::FCMP_ONE:
5430 Pred = ICmpInst::ICMP_NE;
5431 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005432 case FCmpInst::FCMP_ORD:
5433 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5434 case FCmpInst::FCMP_UNO:
5435 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5436 }
5437
5438 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5439
5440 // Now we know that the APFloat is a normal number, zero or inf.
5441
Chris Lattner85162782008-05-20 03:50:52 +00005442 // See if the FP constant is too large for the integer. For example,
Chris Lattnera5406232008-05-19 20:18:56 +00005443 // comparing an i8 to 300.0.
5444 unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
5445
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005446 if (!LHSUnsigned) {
5447 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5448 // and large values.
5449 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
5450 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5451 APFloat::rmNearestTiesToEven);
5452 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
5453 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5454 Pred == ICmpInst::ICMP_SLE)
5455 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5456 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5457 }
5458 } else {
5459 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5460 // +INF and large values.
5461 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
5462 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5463 APFloat::rmNearestTiesToEven);
5464 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
5465 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5466 Pred == ICmpInst::ICMP_ULE)
5467 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5468 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5469 }
Chris Lattnera5406232008-05-19 20:18:56 +00005470 }
5471
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005472 if (!LHSUnsigned) {
5473 // See if the RHS value is < SignedMin.
5474 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5475 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5476 APFloat::rmNearestTiesToEven);
5477 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5478 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5479 Pred == ICmpInst::ICMP_SGE)
5480 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5481 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5482 }
Chris Lattnera5406232008-05-19 20:18:56 +00005483 }
5484
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005485 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5486 // [0, UMAX], but it may still be fractional. See if it is fractional by
5487 // casting the FP value to the integer value and back, checking for equality.
5488 // Don't do this for zero, because -0.0 is not fractional.
Chris Lattnera5406232008-05-19 20:18:56 +00005489 Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
5490 if (!RHS.isZero() &&
5491 ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005492 // If we had a comparison against a fractional value, we have to adjust the
5493 // compare predicate and sometimes the value. RHSC is rounded towards zero
5494 // at this point.
Chris Lattnera5406232008-05-19 20:18:56 +00005495 switch (Pred) {
5496 default: assert(0 && "Unexpected integer comparison!");
5497 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
5498 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5499 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
5500 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005501 case ICmpInst::ICMP_ULE:
5502 // (float)int <= 4.4 --> int <= 4
5503 // (float)int <= -4.4 --> false
5504 if (RHS.isNegative())
5505 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5506 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005507 case ICmpInst::ICMP_SLE:
5508 // (float)int <= 4.4 --> int <= 4
5509 // (float)int <= -4.4 --> int < -4
5510 if (RHS.isNegative())
5511 Pred = ICmpInst::ICMP_SLT;
5512 break;
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005513 case ICmpInst::ICMP_ULT:
5514 // (float)int < -4.4 --> false
5515 // (float)int < 4.4 --> int <= 4
5516 if (RHS.isNegative())
5517 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5518 Pred = ICmpInst::ICMP_ULE;
5519 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005520 case ICmpInst::ICMP_SLT:
5521 // (float)int < -4.4 --> int < -4
5522 // (float)int < 4.4 --> int <= 4
5523 if (!RHS.isNegative())
5524 Pred = ICmpInst::ICMP_SLE;
5525 break;
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005526 case ICmpInst::ICMP_UGT:
5527 // (float)int > 4.4 --> int > 4
5528 // (float)int > -4.4 --> true
5529 if (RHS.isNegative())
5530 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5531 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005532 case ICmpInst::ICMP_SGT:
5533 // (float)int > 4.4 --> int > 4
5534 // (float)int > -4.4 --> int >= -4
5535 if (RHS.isNegative())
5536 Pred = ICmpInst::ICMP_SGE;
5537 break;
Bill Wendlingc143bcf2008-11-09 04:26:50 +00005538 case ICmpInst::ICMP_UGE:
5539 // (float)int >= -4.4 --> true
5540 // (float)int >= 4.4 --> int > 4
5541 if (!RHS.isNegative())
5542 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5543 Pred = ICmpInst::ICMP_UGT;
5544 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005545 case ICmpInst::ICMP_SGE:
5546 // (float)int >= -4.4 --> int >= -4
5547 // (float)int >= 4.4 --> int > 4
5548 if (!RHS.isNegative())
5549 Pred = ICmpInst::ICMP_SGT;
5550 break;
5551 }
5552 }
5553
5554 // Lower this FP comparison into an appropriate integer version of the
5555 // comparison.
5556 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5557}
5558
Reid Spencere4d87aa2006-12-23 06:05:41 +00005559Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5560 bool Changed = SimplifyCompare(I);
Chris Lattner8b170942002-08-09 23:47:40 +00005561 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00005562
Chris Lattner58e97462007-01-14 19:42:17 +00005563 // Fold trivial predicates.
5564 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
5565 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
5566 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
5567 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5568
5569 // Simplify 'fcmp pred X, X'
5570 if (Op0 == Op1) {
5571 switch (I.getPredicate()) {
5572 default: assert(0 && "Unknown predicate!");
5573 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5574 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5575 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
5576 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5577 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5578 case FCmpInst::FCMP_OLT: // True if ordered and less than
5579 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
5580 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5581
5582 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5583 case FCmpInst::FCMP_ULT: // True if unordered or less than
5584 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5585 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5586 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5587 I.setPredicate(FCmpInst::FCMP_UNO);
5588 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5589 return &I;
5590
5591 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5592 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5593 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5594 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5595 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5596 I.setPredicate(FCmpInst::FCMP_ORD);
5597 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5598 return &I;
5599 }
5600 }
5601
Reid Spencere4d87aa2006-12-23 06:05:41 +00005602 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
Reid Spencer4fe16d62007-01-11 18:21:29 +00005603 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Chris Lattnere87597f2004-10-16 18:11:37 +00005604
Reid Spencere4d87aa2006-12-23 06:05:41 +00005605 // Handle fcmp with constant RHS
5606 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
Chris Lattnera5406232008-05-19 20:18:56 +00005607 // If the constant is a nan, see if we can fold the comparison based on it.
5608 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5609 if (CFP->getValueAPF().isNaN()) {
5610 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
5611 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
Chris Lattner85162782008-05-20 03:50:52 +00005612 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5613 "Comparison must be either ordered or unordered!");
5614 // True if unordered.
5615 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
Chris Lattnera5406232008-05-19 20:18:56 +00005616 }
5617 }
5618
Reid Spencere4d87aa2006-12-23 06:05:41 +00005619 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5620 switch (LHSI->getOpcode()) {
5621 case Instruction::PHI:
Chris Lattner7d8ab4e2008-06-08 20:52:11 +00005622 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5623 // block. If in the same block, we're encouraging jump threading. If
5624 // not, we are just pessimizing the code by making an i1 phi.
5625 if (LHSI->getParent() == I.getParent())
5626 if (Instruction *NV = FoldOpIntoPhi(I))
5627 return NV;
Reid Spencere4d87aa2006-12-23 06:05:41 +00005628 break;
Chris Lattnera5406232008-05-19 20:18:56 +00005629 case Instruction::SIToFP:
5630 case Instruction::UIToFP:
5631 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5632 return NV;
5633 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00005634 case Instruction::Select:
5635 // If either operand of the select is a constant, we can fold the
5636 // comparison into the select arms, which will cause one to be
5637 // constant folded and the select turned into a bitwise or.
5638 Value *Op1 = 0, *Op2 = 0;
5639 if (LHSI->hasOneUse()) {
5640 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5641 // Fold the known value into the constant operand.
5642 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5643 // Insert a new FCmp of the other select operand.
5644 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5645 LHSI->getOperand(2), RHSC,
5646 I.getName()), I);
5647 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5648 // Fold the known value into the constant operand.
5649 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5650 // Insert a new FCmp of the other select operand.
5651 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5652 LHSI->getOperand(1), RHSC,
5653 I.getName()), I);
5654 }
5655 }
5656
5657 if (Op1)
Gabor Greif051a9502008-04-06 20:25:17 +00005658 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Reid Spencere4d87aa2006-12-23 06:05:41 +00005659 break;
5660 }
5661 }
5662
5663 return Changed ? &I : 0;
5664}
5665
5666Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5667 bool Changed = SimplifyCompare(I);
5668 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5669 const Type *Ty = Op0->getType();
5670
5671 // icmp X, X
5672 if (Op0 == Op1)
Reid Spencer579dca12007-01-12 04:24:46 +00005673 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewyckyfc1efbb2008-05-17 07:33:39 +00005674 I.isTrueWhenEqual()));
Reid Spencere4d87aa2006-12-23 06:05:41 +00005675
5676 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
Reid Spencer4fe16d62007-01-11 18:21:29 +00005677 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lamb7a0678c2007-12-18 21:32:20 +00005678
Reid Spencere4d87aa2006-12-23 06:05:41 +00005679 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
Chris Lattner711b3402004-11-14 07:33:16 +00005680 // addresses never equal each other! We already know that Op0 != Op1.
Misha Brukmanfd939082005-04-21 23:48:37 +00005681 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5682 isa<ConstantPointerNull>(Op0)) &&
5683 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
Chris Lattner711b3402004-11-14 07:33:16 +00005684 isa<ConstantPointerNull>(Op1)))
Reid Spencer579dca12007-01-12 04:24:46 +00005685 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewyckyfc1efbb2008-05-17 07:33:39 +00005686 !I.isTrueWhenEqual()));
Chris Lattner8b170942002-08-09 23:47:40 +00005687
Reid Spencere4d87aa2006-12-23 06:05:41 +00005688 // icmp's with boolean values can always be turned into bitwise operations
Reid Spencer4fe16d62007-01-11 18:21:29 +00005689 if (Ty == Type::Int1Ty) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00005690 switch (I.getPredicate()) {
5691 default: assert(0 && "Invalid icmp instruction!");
Chris Lattner85b5eb02008-07-11 04:20:58 +00005692 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005693 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Chris Lattner8b170942002-08-09 23:47:40 +00005694 InsertNewInstBefore(Xor, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005695 return BinaryOperator::CreateNot(Xor);
Chris Lattner8b170942002-08-09 23:47:40 +00005696 }
Chris Lattner85b5eb02008-07-11 04:20:58 +00005697 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005698 return BinaryOperator::CreateXor(Op0, Op1);
Chris Lattner8b170942002-08-09 23:47:40 +00005699
Reid Spencere4d87aa2006-12-23 06:05:41 +00005700 case ICmpInst::ICMP_UGT:
Chris Lattner85b5eb02008-07-11 04:20:58 +00005701 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Chris Lattner5dbef222004-08-11 00:50:51 +00005702 // FALL THROUGH
Chris Lattner85b5eb02008-07-11 04:20:58 +00005703 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005704 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Chris Lattner5dbef222004-08-11 00:50:51 +00005705 InsertNewInstBefore(Not, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005706 return BinaryOperator::CreateAnd(Not, Op1);
Chris Lattner5dbef222004-08-11 00:50:51 +00005707 }
Chris Lattner85b5eb02008-07-11 04:20:58 +00005708 case ICmpInst::ICMP_SGT:
5709 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Chris Lattner5dbef222004-08-11 00:50:51 +00005710 // FALL THROUGH
Chris Lattner85b5eb02008-07-11 04:20:58 +00005711 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5712 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5713 InsertNewInstBefore(Not, I);
5714 return BinaryOperator::CreateAnd(Not, Op0);
5715 }
5716 case ICmpInst::ICMP_UGE:
5717 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5718 // FALL THROUGH
5719 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005720 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Chris Lattner5dbef222004-08-11 00:50:51 +00005721 InsertNewInstBefore(Not, I);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00005722 return BinaryOperator::CreateOr(Not, Op1);
Chris Lattner5dbef222004-08-11 00:50:51 +00005723 }
Chris Lattner85b5eb02008-07-11 04:20:58 +00005724 case ICmpInst::ICMP_SGE:
5725 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5726 // FALL THROUGH
5727 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5728 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5729 InsertNewInstBefore(Not, I);
5730 return BinaryOperator::CreateOr(Not, Op0);
5731 }
Chris Lattner5dbef222004-08-11 00:50:51 +00005732 }
Chris Lattner8b170942002-08-09 23:47:40 +00005733 }
5734
Dan Gohman81b28ce2008-09-16 18:46:06 +00005735 // See if we are doing a comparison with a constant.
Chris Lattner8b170942002-08-09 23:47:40 +00005736 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerf2991842008-07-11 04:09:09 +00005737 Value *A, *B;
Christopher Lamb103e1a32007-12-20 07:21:11 +00005738
Chris Lattnerb6566012008-01-05 01:18:20 +00005739 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5740 if (I.isEquality() && CI->isNullValue() &&
5741 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5742 // (icmp cond A B) if cond is equality
5743 return new ICmpInst(I.getPredicate(), A, B);
Owen Andersonf5783f82007-12-28 07:42:12 +00005744 }
Christopher Lamb103e1a32007-12-20 07:21:11 +00005745
Dan Gohman81b28ce2008-09-16 18:46:06 +00005746 // If we have an icmp le or icmp ge instruction, turn it into the
5747 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
5748 // them being folded in the code below.
Chris Lattner84dff672008-07-11 05:08:55 +00005749 switch (I.getPredicate()) {
5750 default: break;
5751 case ICmpInst::ICMP_ULE:
5752 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5753 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5754 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5755 case ICmpInst::ICMP_SLE:
5756 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5757 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5758 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5759 case ICmpInst::ICMP_UGE:
5760 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5761 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5762 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5763 case ICmpInst::ICMP_SGE:
5764 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5765 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5766 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5767 }
5768
Chris Lattner183661e2008-07-11 05:40:05 +00005769 // See if we can fold the comparison based on range information we can get
5770 // by checking whether bits are known to be zero or one in the input.
5771 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5772 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5773
5774 // If this comparison is a normal comparison, it demands all
Chris Lattner4241e4d2007-07-15 20:54:51 +00005775 // bits, if it is a sign bit comparison, it only demands the sign bit.
Chris Lattner4241e4d2007-07-15 20:54:51 +00005776 bool UnusedBit;
5777 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5778
Chris Lattner4241e4d2007-07-15 20:54:51 +00005779 if (SimplifyDemandedBits(Op0,
5780 isSignBit ? APInt::getSignBit(BitWidth)
5781 : APInt::getAllOnesValue(BitWidth),
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00005782 KnownZero, KnownOne, 0))
5783 return &I;
5784
5785 // Given the known and unknown bits, compute a range that the LHS could be
Chris Lattner84dff672008-07-11 05:08:55 +00005786 // in. Compute the Min, Max and RHS values based on the known bits. For the
5787 // EQ and NE we use unsigned values.
5788 APInt Min(BitWidth, 0), Max(BitWidth, 0);
Chris Lattner84dff672008-07-11 05:08:55 +00005789 if (ICmpInst::isSignedPredicate(I.getPredicate()))
5790 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max);
5791 else
5792 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,Min,Max);
5793
Chris Lattner183661e2008-07-11 05:40:05 +00005794 // If Min and Max are known to be the same, then SimplifyDemandedBits
5795 // figured out that the LHS is a constant. Just constant fold this now so
5796 // that code below can assume that Min != Max.
5797 if (Min == Max)
5798 return ReplaceInstUsesWith(I, ConstantExpr::getICmp(I.getPredicate(),
5799 ConstantInt::get(Min),
5800 CI));
5801
5802 // Based on the range information we know about the LHS, see if we can
5803 // simplify this comparison. For example, (x&4) < 8 is always true.
5804 const APInt &RHSVal = CI->getValue();
Chris Lattner84dff672008-07-11 05:08:55 +00005805 switch (I.getPredicate()) { // LE/GE have been folded already.
5806 default: assert(0 && "Unknown icmp opcode!");
5807 case ICmpInst::ICMP_EQ:
5808 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5809 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5810 break;
5811 case ICmpInst::ICMP_NE:
5812 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5813 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5814 break;
5815 case ICmpInst::ICMP_ULT:
Chris Lattner183661e2008-07-11 05:40:05 +00005816 if (Max.ult(RHSVal)) // A <u C -> true iff max(A) < C
Chris Lattner84dff672008-07-11 05:08:55 +00005817 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner183661e2008-07-11 05:40:05 +00005818 if (Min.uge(RHSVal)) // A <u C -> false iff min(A) >= C
Chris Lattner84dff672008-07-11 05:08:55 +00005819 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattner183661e2008-07-11 05:40:05 +00005820 if (RHSVal == Max) // A <u MAX -> A != MAX
5821 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5822 if (RHSVal == Min+1) // A <u MIN+1 -> A == MIN
5823 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5824
5825 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5826 if (CI->isMinValue(true))
5827 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5828 ConstantInt::getAllOnesValue(Op0->getType()));
Chris Lattner84dff672008-07-11 05:08:55 +00005829 break;
5830 case ICmpInst::ICMP_UGT:
Chris Lattner183661e2008-07-11 05:40:05 +00005831 if (Min.ugt(RHSVal)) // A >u C -> true iff min(A) > C
Chris Lattner84dff672008-07-11 05:08:55 +00005832 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner183661e2008-07-11 05:40:05 +00005833 if (Max.ule(RHSVal)) // A >u C -> false iff max(A) <= C
Chris Lattner84dff672008-07-11 05:08:55 +00005834 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattner183661e2008-07-11 05:40:05 +00005835
5836 if (RHSVal == Min) // A >u MIN -> A != MIN
5837 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5838 if (RHSVal == Max-1) // A >u MAX-1 -> A == MAX
5839 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5840
5841 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5842 if (CI->isMaxValue(true))
5843 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5844 ConstantInt::getNullValue(Op0->getType()));
Chris Lattner84dff672008-07-11 05:08:55 +00005845 break;
5846 case ICmpInst::ICMP_SLT:
Chris Lattner183661e2008-07-11 05:40:05 +00005847 if (Max.slt(RHSVal)) // A <s C -> true iff max(A) < C
Chris Lattner84dff672008-07-11 05:08:55 +00005848 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnerd01bee72008-07-11 06:40:29 +00005849 if (Min.sge(RHSVal)) // A <s C -> false iff min(A) >= C
Chris Lattner84dff672008-07-11 05:08:55 +00005850 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattner183661e2008-07-11 05:40:05 +00005851 if (RHSVal == Max) // A <s MAX -> A != MAX
5852 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
Chris Lattnera8ff4a82008-07-11 06:36:01 +00005853 if (RHSVal == Min+1) // A <s MIN+1 -> A == MIN
Chris Lattnerf9685ac2008-07-11 06:38:16 +00005854 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
Chris Lattner84dff672008-07-11 05:08:55 +00005855 break;
5856 case ICmpInst::ICMP_SGT:
Chris Lattner183661e2008-07-11 05:40:05 +00005857 if (Min.sgt(RHSVal)) // A >s C -> true iff min(A) > C
Chris Lattner84dff672008-07-11 05:08:55 +00005858 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner183661e2008-07-11 05:40:05 +00005859 if (Max.sle(RHSVal)) // A >s C -> false iff max(A) <= C
Chris Lattner84dff672008-07-11 05:08:55 +00005860 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattner183661e2008-07-11 05:40:05 +00005861
5862 if (RHSVal == Min) // A >s MIN -> A != MIN
5863 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5864 if (RHSVal == Max-1) // A >s MAX-1 -> A == MAX
5865 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
Chris Lattner84dff672008-07-11 05:08:55 +00005866 break;
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00005867 }
Dan Gohman81b28ce2008-09-16 18:46:06 +00005868 }
5869
5870 // Test if the ICmpInst instruction is used exclusively by a select as
5871 // part of a minimum or maximum operation. If so, refrain from doing
5872 // any other folding. This helps out other analyses which understand
5873 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5874 // and CodeGen. And in this case, at least one of the comparison
5875 // operands has at least one user besides the compare (the select),
5876 // which would often largely negate the benefit of folding anyway.
5877 if (I.hasOneUse())
5878 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
5879 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
5880 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
5881 return 0;
5882
5883 // See if we are doing a comparison between a constant and an instruction that
5884 // can be folded into the comparison.
5885 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00005886 // Since the RHS is a ConstantInt (CI), if the left hand side is an
Reid Spencer1628cec2006-10-26 06:15:43 +00005887 // instruction, see if that instruction also has constants so that the
Reid Spencere4d87aa2006-12-23 06:05:41 +00005888 // instruction can be folded into the icmp
Chris Lattner3c6a0d42004-05-25 06:32:08 +00005889 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
Chris Lattner01deb9d2007-04-03 17:43:25 +00005890 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5891 return Res;
Chris Lattner3f5b8772002-05-06 16:14:14 +00005892 }
5893
Chris Lattner01deb9d2007-04-03 17:43:25 +00005894 // Handle icmp with constant (but not simple integer constant) RHS
Chris Lattner6970b662005-04-23 15:31:55 +00005895 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5896 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5897 switch (LHSI->getOpcode()) {
Chris Lattner9fb25db2005-05-01 04:42:15 +00005898 case Instruction::GetElementPtr:
5899 if (RHSC->isNullValue()) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00005900 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
Chris Lattner9fb25db2005-05-01 04:42:15 +00005901 bool isAllZeros = true;
5902 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5903 if (!isa<Constant>(LHSI->getOperand(i)) ||
5904 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5905 isAllZeros = false;
5906 break;
5907 }
5908 if (isAllZeros)
Reid Spencere4d87aa2006-12-23 06:05:41 +00005909 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
Chris Lattner9fb25db2005-05-01 04:42:15 +00005910 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5911 }
5912 break;
5913
Chris Lattner6970b662005-04-23 15:31:55 +00005914 case Instruction::PHI:
Chris Lattner7d8ab4e2008-06-08 20:52:11 +00005915 // Only fold icmp into the PHI if the phi and fcmp are in the same
5916 // block. If in the same block, we're encouraging jump threading. If
5917 // not, we are just pessimizing the code by making an i1 phi.
5918 if (LHSI->getParent() == I.getParent())
5919 if (Instruction *NV = FoldOpIntoPhi(I))
5920 return NV;
Chris Lattner6970b662005-04-23 15:31:55 +00005921 break;
Chris Lattner4802d902007-04-06 18:57:34 +00005922 case Instruction::Select: {
Chris Lattner6970b662005-04-23 15:31:55 +00005923 // If either operand of the select is a constant, we can fold the
5924 // comparison into the select arms, which will cause one to be
5925 // constant folded and the select turned into a bitwise or.
5926 Value *Op1 = 0, *Op2 = 0;
5927 if (LHSI->hasOneUse()) {
5928 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5929 // Fold the known value into the constant operand.
Reid Spencere4d87aa2006-12-23 06:05:41 +00005930 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5931 // Insert a new ICmp of the other select operand.
5932 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5933 LHSI->getOperand(2), RHSC,
5934 I.getName()), I);
Chris Lattner6970b662005-04-23 15:31:55 +00005935 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5936 // Fold the known value into the constant operand.
Reid Spencere4d87aa2006-12-23 06:05:41 +00005937 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5938 // Insert a new ICmp of the other select operand.
5939 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5940 LHSI->getOperand(1), RHSC,
5941 I.getName()), I);
Chris Lattner6970b662005-04-23 15:31:55 +00005942 }
5943 }
Jeff Cohen9d809302005-04-23 21:38:35 +00005944
Chris Lattner6970b662005-04-23 15:31:55 +00005945 if (Op1)
Gabor Greif051a9502008-04-06 20:25:17 +00005946 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Chris Lattner6970b662005-04-23 15:31:55 +00005947 break;
5948 }
Chris Lattner4802d902007-04-06 18:57:34 +00005949 case Instruction::Malloc:
5950 // If we have (malloc != null), and if the malloc has a single use, we
5951 // can assume it is successful and remove the malloc.
5952 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5953 AddToWorkList(LHSI);
5954 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewyckyfc1efbb2008-05-17 07:33:39 +00005955 !I.isTrueWhenEqual()));
Chris Lattner4802d902007-04-06 18:57:34 +00005956 }
5957 break;
5958 }
Chris Lattner6970b662005-04-23 15:31:55 +00005959 }
5960
Reid Spencere4d87aa2006-12-23 06:05:41 +00005961 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
Chris Lattner574da9b2005-01-13 20:14:25 +00005962 if (User *GEP = dyn_castGetElementPtr(Op0))
Reid Spencere4d87aa2006-12-23 06:05:41 +00005963 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
Chris Lattner574da9b2005-01-13 20:14:25 +00005964 return NI;
5965 if (User *GEP = dyn_castGetElementPtr(Op1))
Reid Spencere4d87aa2006-12-23 06:05:41 +00005966 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
5967 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
Chris Lattner574da9b2005-01-13 20:14:25 +00005968 return NI;
5969
Reid Spencere4d87aa2006-12-23 06:05:41 +00005970 // Test to see if the operands of the icmp are casted versions of other
Chris Lattner57d86372007-01-06 01:45:59 +00005971 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5972 // now.
5973 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
5974 if (isa<PointerType>(Op0->getType()) &&
5975 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
Chris Lattnerde90b762003-11-03 04:25:02 +00005976 // We keep moving the cast from the left operand over to the right
5977 // operand, where it can often be eliminated completely.
Chris Lattner57d86372007-01-06 01:45:59 +00005978 Op0 = CI->getOperand(0);
Misha Brukmanfd939082005-04-21 23:48:37 +00005979
Chris Lattner57d86372007-01-06 01:45:59 +00005980 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5981 // so eliminate it as well.
5982 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
5983 Op1 = CI2->getOperand(0);
Misha Brukmanfd939082005-04-21 23:48:37 +00005984
Chris Lattnerde90b762003-11-03 04:25:02 +00005985 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00005986 if (Op0->getType() != Op1->getType()) {
Chris Lattnerde90b762003-11-03 04:25:02 +00005987 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
Reid Spencerd977d862006-12-12 23:36:14 +00005988 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
Chris Lattnerde90b762003-11-03 04:25:02 +00005989 } else {
Reid Spencere4d87aa2006-12-23 06:05:41 +00005990 // Otherwise, cast the RHS right before the icmp
Chris Lattner6d0339d2008-01-13 22:23:22 +00005991 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Chris Lattnerde90b762003-11-03 04:25:02 +00005992 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00005993 }
Reid Spencere4d87aa2006-12-23 06:05:41 +00005994 return new ICmpInst(I.getPredicate(), Op0, Op1);
Chris Lattnerde90b762003-11-03 04:25:02 +00005995 }
Chris Lattner57d86372007-01-06 01:45:59 +00005996 }
5997
5998 if (isa<CastInst>(Op0)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00005999 // Handle the special case of: icmp (cast bool to X), <cst>
Chris Lattner68708052003-11-03 05:17:03 +00006000 // This comes up when you have code like
6001 // int X = A < B;
6002 // if (X) ...
6003 // For generality, we handle any zero-extension of any operand comparison
Chris Lattner484d3cf2005-04-24 06:59:08 +00006004 // with a constant or another cast from the same type.
6005 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
Reid Spencere4d87aa2006-12-23 06:05:41 +00006006 if (Instruction *R = visitICmpInstWithCastAndCast(I))
Chris Lattner484d3cf2005-04-24 06:59:08 +00006007 return R;
Chris Lattner68708052003-11-03 05:17:03 +00006008 }
Chris Lattner26ab9a92006-02-27 01:44:11 +00006009
Nick Lewycky4bf1e592008-07-11 07:20:53 +00006010 // See if it's the same type of instruction on the left and right.
6011 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
6012 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
Nick Lewycky5d52c452008-08-21 05:56:10 +00006013 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
6014 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1) &&
6015 I.isEquality()) {
Nick Lewycky23c04302008-09-03 06:24:21 +00006016 switch (Op0I->getOpcode()) {
Nick Lewycky4bf1e592008-07-11 07:20:53 +00006017 default: break;
6018 case Instruction::Add:
6019 case Instruction::Sub:
6020 case Instruction::Xor:
Nick Lewycky5d52c452008-08-21 05:56:10 +00006021 // a+x icmp eq/ne b+x --> a icmp b
6022 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
6023 Op1I->getOperand(0));
Nick Lewycky4bf1e592008-07-11 07:20:53 +00006024 break;
6025 case Instruction::Mul:
Nick Lewycky5d52c452008-08-21 05:56:10 +00006026 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
6027 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
6028 // Mask = -1 >> count-trailing-zeros(Cst).
6029 if (!CI->isZero() && !CI->isOne()) {
6030 const APInt &AP = CI->getValue();
6031 ConstantInt *Mask = ConstantInt::get(
6032 APInt::getLowBitsSet(AP.getBitWidth(),
6033 AP.getBitWidth() -
Nick Lewycky4bf1e592008-07-11 07:20:53 +00006034 AP.countTrailingZeros()));
Nick Lewycky5d52c452008-08-21 05:56:10 +00006035 Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
6036 Mask);
6037 Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
6038 Mask);
6039 InsertNewInstBefore(And1, I);
6040 InsertNewInstBefore(And2, I);
6041 return new ICmpInst(I.getPredicate(), And1, And2);
Nick Lewycky4bf1e592008-07-11 07:20:53 +00006042 }
6043 }
6044 break;
6045 }
6046 }
6047 }
6048 }
6049
Chris Lattner7d2cbd22008-05-09 05:19:28 +00006050 // ~x < ~y --> y < x
6051 { Value *A, *B;
6052 if (match(Op0, m_Not(m_Value(A))) &&
6053 match(Op1, m_Not(m_Value(B))))
6054 return new ICmpInst(I.getPredicate(), B, A);
6055 }
6056
Chris Lattner65b72ba2006-09-18 04:22:48 +00006057 if (I.isEquality()) {
Chris Lattner4f0e33d2007-01-05 03:04:57 +00006058 Value *A, *B, *C, *D;
Chris Lattner7d2cbd22008-05-09 05:19:28 +00006059
6060 // -x == -y --> x == y
6061 if (match(Op0, m_Neg(m_Value(A))) &&
6062 match(Op1, m_Neg(m_Value(B))))
6063 return new ICmpInst(I.getPredicate(), A, B);
6064
Chris Lattner4f0e33d2007-01-05 03:04:57 +00006065 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
6066 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
6067 Value *OtherVal = A == Op1 ? B : A;
6068 return new ICmpInst(I.getPredicate(), OtherVal,
6069 Constant::getNullValue(A->getType()));
6070 }
6071
6072 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
6073 // A^c1 == C^c2 --> A == C^(c1^c2)
Chris Lattnercb504b92008-11-16 05:38:51 +00006074 ConstantInt *C1, *C2;
6075 if (match(B, m_ConstantInt(C1)) &&
6076 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
6077 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
6078 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
6079 return new ICmpInst(I.getPredicate(), A,
6080 InsertNewInstBefore(Xor, I));
6081 }
Chris Lattner4f0e33d2007-01-05 03:04:57 +00006082
6083 // A^B == A^D -> B == D
6084 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
6085 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
6086 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
6087 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
6088 }
6089 }
6090
6091 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
6092 (A == Op0 || B == Op0)) {
Chris Lattner26ab9a92006-02-27 01:44:11 +00006093 // A == (A^B) -> B == 0
6094 Value *OtherVal = A == Op0 ? B : A;
Reid Spencere4d87aa2006-12-23 06:05:41 +00006095 return new ICmpInst(I.getPredicate(), OtherVal,
6096 Constant::getNullValue(A->getType()));
Chris Lattner4f0e33d2007-01-05 03:04:57 +00006097 }
Chris Lattnercb504b92008-11-16 05:38:51 +00006098
6099 // (A-B) == A -> B == 0
6100 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
6101 return new ICmpInst(I.getPredicate(), B,
6102 Constant::getNullValue(B->getType()));
6103
6104 // A == (A-B) -> B == 0
6105 if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
Reid Spencere4d87aa2006-12-23 06:05:41 +00006106 return new ICmpInst(I.getPredicate(), B,
6107 Constant::getNullValue(B->getType()));
Chris Lattner9c2328e2006-11-14 06:06:06 +00006108
Chris Lattner9c2328e2006-11-14 06:06:06 +00006109 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
6110 if (Op0->hasOneUse() && Op1->hasOneUse() &&
6111 match(Op0, m_And(m_Value(A), m_Value(B))) &&
6112 match(Op1, m_And(m_Value(C), m_Value(D)))) {
6113 Value *X = 0, *Y = 0, *Z = 0;
6114
6115 if (A == C) {
6116 X = B; Y = D; Z = A;
6117 } else if (A == D) {
6118 X = B; Y = C; Z = A;
6119 } else if (B == C) {
6120 X = A; Y = D; Z = B;
6121 } else if (B == D) {
6122 X = A; Y = C; Z = B;
6123 }
6124
6125 if (X) { // Build (X^Y) & Z
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006126 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
6127 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Chris Lattner9c2328e2006-11-14 06:06:06 +00006128 I.setOperand(0, Op1);
6129 I.setOperand(1, Constant::getNullValue(Op1->getType()));
6130 return &I;
6131 }
6132 }
Chris Lattner26ab9a92006-02-27 01:44:11 +00006133 }
Chris Lattner7e708292002-06-25 16:13:24 +00006134 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00006135}
6136
Chris Lattner562ef782007-06-20 23:46:26 +00006137
6138/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
6139/// and CmpRHS are both known to be integer constants.
6140Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
6141 ConstantInt *DivRHS) {
6142 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
6143 const APInt &CmpRHSV = CmpRHS->getValue();
6144
6145 // FIXME: If the operand types don't match the type of the divide
6146 // then don't attempt this transform. The code below doesn't have the
6147 // logic to deal with a signed divide and an unsigned compare (and
6148 // vice versa). This is because (x /s C1) <s C2 produces different
6149 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
6150 // (x /u C1) <u C2. Simply casting the operands and result won't
6151 // work. :( The if statement below tests that condition and bails
6152 // if it finds it.
6153 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
6154 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
6155 return 0;
6156 if (DivRHS->isZero())
Chris Lattner1dbfd482007-06-21 18:11:19 +00006157 return 0; // The ProdOV computation fails on divide by zero.
Chris Lattnera6321b42008-10-11 22:55:00 +00006158 if (DivIsSigned && DivRHS->isAllOnesValue())
6159 return 0; // The overflow computation also screws up here
6160 if (DivRHS->isOne())
6161 return 0; // Not worth bothering, and eliminates some funny cases
6162 // with INT_MIN.
Chris Lattner562ef782007-06-20 23:46:26 +00006163
6164 // Compute Prod = CI * DivRHS. We are essentially solving an equation
6165 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
6166 // C2 (CI). By solving for X we can turn this into a range check
6167 // instead of computing a divide.
6168 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
6169
6170 // Determine if the product overflows by seeing if the product is
6171 // not equal to the divide. Make sure we do the same kind of divide
6172 // as in the LHS instruction that we're folding.
6173 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
6174 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
6175
6176 // Get the ICmp opcode
Chris Lattner1dbfd482007-06-21 18:11:19 +00006177 ICmpInst::Predicate Pred = ICI.getPredicate();
Chris Lattner562ef782007-06-20 23:46:26 +00006178
Chris Lattner1dbfd482007-06-21 18:11:19 +00006179 // Figure out the interval that is being checked. For example, a comparison
6180 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
6181 // Compute this interval based on the constants involved and the signedness of
6182 // the compare/divide. This computes a half-open interval, keeping track of
6183 // whether either value in the interval overflows. After analysis each
6184 // overflow variable is set to 0 if it's corresponding bound variable is valid
6185 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
6186 int LoOverflow = 0, HiOverflow = 0;
6187 ConstantInt *LoBound = 0, *HiBound = 0;
6188
Chris Lattner562ef782007-06-20 23:46:26 +00006189 if (!DivIsSigned) { // udiv
Chris Lattner1dbfd482007-06-21 18:11:19 +00006190 // e.g. X/5 op 3 --> [15, 20)
Chris Lattner562ef782007-06-20 23:46:26 +00006191 LoBound = Prod;
Chris Lattner1dbfd482007-06-21 18:11:19 +00006192 HiOverflow = LoOverflow = ProdOV;
6193 if (!HiOverflow)
6194 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman76491272008-02-13 22:09:18 +00006195 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Chris Lattner562ef782007-06-20 23:46:26 +00006196 if (CmpRHSV == 0) { // (X / pos) op 0
Chris Lattner1dbfd482007-06-21 18:11:19 +00006197 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
Chris Lattner562ef782007-06-20 23:46:26 +00006198 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
6199 HiBound = DivRHS;
Dan Gohman76491272008-02-13 22:09:18 +00006200 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Chris Lattner1dbfd482007-06-21 18:11:19 +00006201 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
6202 HiOverflow = LoOverflow = ProdOV;
6203 if (!HiOverflow)
6204 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
Chris Lattner562ef782007-06-20 23:46:26 +00006205 } else { // (X / pos) op neg
Chris Lattner1dbfd482007-06-21 18:11:19 +00006206 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
Chris Lattner562ef782007-06-20 23:46:26 +00006207 HiBound = AddOne(Prod);
Chris Lattnera6321b42008-10-11 22:55:00 +00006208 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
6209 if (!LoOverflow) {
6210 ConstantInt* DivNeg = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6211 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg,
6212 true) ? -1 : 0;
6213 }
Chris Lattner562ef782007-06-20 23:46:26 +00006214 }
Dan Gohman76491272008-02-13 22:09:18 +00006215 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Chris Lattner562ef782007-06-20 23:46:26 +00006216 if (CmpRHSV == 0) { // (X / neg) op 0
Chris Lattner1dbfd482007-06-21 18:11:19 +00006217 // e.g. X/-5 op 0 --> [-4, 5)
Chris Lattner562ef782007-06-20 23:46:26 +00006218 LoBound = AddOne(DivRHS);
6219 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
Chris Lattner1dbfd482007-06-21 18:11:19 +00006220 if (HiBound == DivRHS) { // -INTMIN = INTMIN
6221 HiOverflow = 1; // [INTMIN+1, overflow)
6222 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
6223 }
Dan Gohman76491272008-02-13 22:09:18 +00006224 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Chris Lattner1dbfd482007-06-21 18:11:19 +00006225 // e.g. X/-5 op 3 --> [-19, -14)
Chris Lattnera6321b42008-10-11 22:55:00 +00006226 HiBound = AddOne(Prod);
Chris Lattner1dbfd482007-06-21 18:11:19 +00006227 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
Chris Lattner562ef782007-06-20 23:46:26 +00006228 if (!LoOverflow)
Chris Lattnera6321b42008-10-11 22:55:00 +00006229 LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
Chris Lattner562ef782007-06-20 23:46:26 +00006230 } else { // (X / neg) op neg
Chris Lattnera6321b42008-10-11 22:55:00 +00006231 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
6232 LoOverflow = HiOverflow = ProdOV;
Dan Gohman7f85fbd2008-09-11 00:25:00 +00006233 if (!HiOverflow)
6234 HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
Chris Lattner562ef782007-06-20 23:46:26 +00006235 }
6236
Chris Lattner1dbfd482007-06-21 18:11:19 +00006237 // Dividing by a negative swaps the condition. LT <-> GT
6238 Pred = ICmpInst::getSwappedPredicate(Pred);
Chris Lattner562ef782007-06-20 23:46:26 +00006239 }
6240
6241 Value *X = DivI->getOperand(0);
Chris Lattner1dbfd482007-06-21 18:11:19 +00006242 switch (Pred) {
Chris Lattner562ef782007-06-20 23:46:26 +00006243 default: assert(0 && "Unhandled icmp opcode!");
6244 case ICmpInst::ICMP_EQ:
6245 if (LoOverflow && HiOverflow)
6246 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6247 else if (HiOverflow)
Chris Lattner1dbfd482007-06-21 18:11:19 +00006248 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
Chris Lattner562ef782007-06-20 23:46:26 +00006249 ICmpInst::ICMP_UGE, X, LoBound);
6250 else if (LoOverflow)
6251 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6252 ICmpInst::ICMP_ULT, X, HiBound);
6253 else
Chris Lattner1dbfd482007-06-21 18:11:19 +00006254 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
Chris Lattner562ef782007-06-20 23:46:26 +00006255 case ICmpInst::ICMP_NE:
6256 if (LoOverflow && HiOverflow)
6257 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6258 else if (HiOverflow)
Chris Lattner1dbfd482007-06-21 18:11:19 +00006259 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
Chris Lattner562ef782007-06-20 23:46:26 +00006260 ICmpInst::ICMP_ULT, X, LoBound);
6261 else if (LoOverflow)
6262 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6263 ICmpInst::ICMP_UGE, X, HiBound);
6264 else
Chris Lattner1dbfd482007-06-21 18:11:19 +00006265 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
Chris Lattner562ef782007-06-20 23:46:26 +00006266 case ICmpInst::ICMP_ULT:
6267 case ICmpInst::ICMP_SLT:
Chris Lattner1dbfd482007-06-21 18:11:19 +00006268 if (LoOverflow == +1) // Low bound is greater than input range.
6269 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6270 if (LoOverflow == -1) // Low bound is less than input range.
Chris Lattner562ef782007-06-20 23:46:26 +00006271 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
Chris Lattner1dbfd482007-06-21 18:11:19 +00006272 return new ICmpInst(Pred, X, LoBound);
Chris Lattner562ef782007-06-20 23:46:26 +00006273 case ICmpInst::ICMP_UGT:
6274 case ICmpInst::ICMP_SGT:
Chris Lattner1dbfd482007-06-21 18:11:19 +00006275 if (HiOverflow == +1) // High bound greater than input range.
Chris Lattner562ef782007-06-20 23:46:26 +00006276 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
Chris Lattner1dbfd482007-06-21 18:11:19 +00006277 else if (HiOverflow == -1) // High bound less than input range.
6278 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6279 if (Pred == ICmpInst::ICMP_UGT)
Chris Lattner562ef782007-06-20 23:46:26 +00006280 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
6281 else
6282 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
6283 }
6284}
6285
6286
Chris Lattner01deb9d2007-04-03 17:43:25 +00006287/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
6288///
6289Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
6290 Instruction *LHSI,
6291 ConstantInt *RHS) {
6292 const APInt &RHSV = RHS->getValue();
6293
6294 switch (LHSI->getOpcode()) {
Duncan Sands0091bf22007-04-04 06:42:45 +00006295 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
Chris Lattner01deb9d2007-04-03 17:43:25 +00006296 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
6297 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
6298 // fold the xor.
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00006299 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
6300 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Chris Lattner01deb9d2007-04-03 17:43:25 +00006301 Value *CompareVal = LHSI->getOperand(0);
6302
6303 // If the sign bit of the XorCST is not set, there is no change to
6304 // the operation, just stop using the Xor.
6305 if (!XorCST->getValue().isNegative()) {
6306 ICI.setOperand(0, CompareVal);
6307 AddToWorkList(LHSI);
6308 return &ICI;
6309 }
6310
6311 // Was the old condition true if the operand is positive?
6312 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
6313
6314 // If so, the new one isn't.
6315 isTrueIfPositive ^= true;
6316
6317 if (isTrueIfPositive)
6318 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
6319 else
6320 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
6321 }
6322 }
6323 break;
6324 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
6325 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
6326 LHSI->getOperand(0)->hasOneUse()) {
6327 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
6328
6329 // If the LHS is an AND of a truncating cast, we can widen the
6330 // and/compare to be the input width without changing the value
6331 // produced, eliminating a cast.
6332 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
6333 // We can do this transformation if either the AND constant does not
6334 // have its sign bit set or if it is an equality comparison.
6335 // Extending a relational comparison when we're checking the sign
6336 // bit would not work.
6337 if (Cast->hasOneUse() &&
Anton Korobeynikov4aefd6b2008-02-20 12:07:57 +00006338 (ICI.isEquality() ||
6339 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Chris Lattner01deb9d2007-04-03 17:43:25 +00006340 uint32_t BitWidth =
6341 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
6342 APInt NewCST = AndCST->getValue();
6343 NewCST.zext(BitWidth);
6344 APInt NewCI = RHSV;
6345 NewCI.zext(BitWidth);
6346 Instruction *NewAnd =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006347 BinaryOperator::CreateAnd(Cast->getOperand(0),
Chris Lattner01deb9d2007-04-03 17:43:25 +00006348 ConstantInt::get(NewCST),LHSI->getName());
6349 InsertNewInstBefore(NewAnd, ICI);
6350 return new ICmpInst(ICI.getPredicate(), NewAnd,
6351 ConstantInt::get(NewCI));
6352 }
6353 }
6354
6355 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
6356 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
6357 // happens a LOT in code produced by the C front-end, for bitfield
6358 // access.
6359 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
6360 if (Shift && !Shift->isShift())
6361 Shift = 0;
6362
6363 ConstantInt *ShAmt;
6364 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
6365 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
6366 const Type *AndTy = AndCST->getType(); // Type of the and.
6367
6368 // We can fold this as long as we can't shift unknown bits
6369 // into the mask. This can only happen with signed shift
6370 // rights, as they sign-extend.
6371 if (ShAmt) {
6372 bool CanFold = Shift->isLogicalShift();
6373 if (!CanFold) {
6374 // To test for the bad case of the signed shr, see if any
6375 // of the bits shifted in could be tested after the mask.
6376 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
6377 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
6378
6379 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
6380 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
6381 AndCST->getValue()) == 0)
6382 CanFold = true;
6383 }
6384
6385 if (CanFold) {
6386 Constant *NewCst;
6387 if (Shift->getOpcode() == Instruction::Shl)
6388 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
6389 else
6390 NewCst = ConstantExpr::getShl(RHS, ShAmt);
6391
6392 // Check to see if we are shifting out any of the bits being
6393 // compared.
6394 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
6395 // If we shifted bits out, the fold is not going to work out.
6396 // As a special case, check to see if this means that the
6397 // result is always true or false now.
6398 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6399 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6400 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6401 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6402 } else {
6403 ICI.setOperand(1, NewCst);
6404 Constant *NewAndCST;
6405 if (Shift->getOpcode() == Instruction::Shl)
6406 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6407 else
6408 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6409 LHSI->setOperand(1, NewAndCST);
6410 LHSI->setOperand(0, Shift->getOperand(0));
6411 AddToWorkList(Shift); // Shift is dead.
6412 AddUsesToWorkList(ICI);
6413 return &ICI;
6414 }
6415 }
6416 }
6417
6418 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6419 // preferable because it allows the C<<Y expression to be hoisted out
6420 // of a loop if Y is invariant and X is not.
6421 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6422 ICI.isEquality() && !Shift->isArithmeticShift() &&
6423 isa<Instruction>(Shift->getOperand(0))) {
6424 // Compute C << Y.
6425 Value *NS;
6426 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006427 NS = BinaryOperator::CreateShl(AndCST,
Chris Lattner01deb9d2007-04-03 17:43:25 +00006428 Shift->getOperand(1), "tmp");
6429 } else {
6430 // Insert a logical shift.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006431 NS = BinaryOperator::CreateLShr(AndCST,
Chris Lattner01deb9d2007-04-03 17:43:25 +00006432 Shift->getOperand(1), "tmp");
6433 }
6434 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6435
6436 // Compute X & (C << Y).
6437 Instruction *NewAnd =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006438 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Chris Lattner01deb9d2007-04-03 17:43:25 +00006439 InsertNewInstBefore(NewAnd, ICI);
6440
6441 ICI.setOperand(0, NewAnd);
6442 return &ICI;
6443 }
6444 }
6445 break;
6446
Chris Lattnera0141b92007-07-15 20:42:37 +00006447 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6448 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6449 if (!ShAmt) break;
6450
6451 uint32_t TypeBits = RHSV.getBitWidth();
6452
6453 // Check that the shift amount is in range. If not, don't perform
6454 // undefined shifts. When the shift is visited it will be
6455 // simplified.
6456 if (ShAmt->uge(TypeBits))
6457 break;
6458
6459 if (ICI.isEquality()) {
6460 // If we are comparing against bits always shifted out, the
6461 // comparison cannot succeed.
6462 Constant *Comp =
6463 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6464 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6465 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6466 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6467 return ReplaceInstUsesWith(ICI, Cst);
6468 }
6469
6470 if (LHSI->hasOneUse()) {
6471 // Otherwise strength reduce the shift into an and.
6472 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6473 Constant *Mask =
6474 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
Chris Lattner01deb9d2007-04-03 17:43:25 +00006475
Chris Lattnera0141b92007-07-15 20:42:37 +00006476 Instruction *AndI =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006477 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattnera0141b92007-07-15 20:42:37 +00006478 Mask, LHSI->getName()+".mask");
6479 Value *And = InsertNewInstBefore(AndI, ICI);
6480 return new ICmpInst(ICI.getPredicate(), And,
6481 ConstantInt::get(RHSV.lshr(ShAmtVal)));
Chris Lattner01deb9d2007-04-03 17:43:25 +00006482 }
6483 }
Chris Lattnera0141b92007-07-15 20:42:37 +00006484
6485 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6486 bool TrueIfSigned = false;
6487 if (LHSI->hasOneUse() &&
6488 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6489 // (X << 31) <s 0 --> (X&1) != 0
6490 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6491 (TypeBits-ShAmt->getZExtValue()-1));
6492 Instruction *AndI =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006493 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattnera0141b92007-07-15 20:42:37 +00006494 Mask, LHSI->getName()+".mask");
6495 Value *And = InsertNewInstBefore(AndI, ICI);
6496
6497 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6498 And, Constant::getNullValue(And->getType()));
6499 }
Chris Lattner01deb9d2007-04-03 17:43:25 +00006500 break;
Chris Lattnera0141b92007-07-15 20:42:37 +00006501 }
Chris Lattner01deb9d2007-04-03 17:43:25 +00006502
6503 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
Chris Lattnera0141b92007-07-15 20:42:37 +00006504 case Instruction::AShr: {
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006505 // Only handle equality comparisons of shift-by-constant.
Chris Lattnera0141b92007-07-15 20:42:37 +00006506 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006507 if (!ShAmt || !ICI.isEquality()) break;
Chris Lattnera0141b92007-07-15 20:42:37 +00006508
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006509 // Check that the shift amount is in range. If not, don't perform
6510 // undefined shifts. When the shift is visited it will be
6511 // simplified.
6512 uint32_t TypeBits = RHSV.getBitWidth();
6513 if (ShAmt->uge(TypeBits))
6514 break;
6515
6516 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Chris Lattnera0141b92007-07-15 20:42:37 +00006517
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006518 // If we are comparing against bits always shifted out, the
6519 // comparison cannot succeed.
6520 APInt Comp = RHSV << ShAmtVal;
6521 if (LHSI->getOpcode() == Instruction::LShr)
6522 Comp = Comp.lshr(ShAmtVal);
6523 else
6524 Comp = Comp.ashr(ShAmtVal);
6525
6526 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6527 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6528 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6529 return ReplaceInstUsesWith(ICI, Cst);
6530 }
6531
6532 // Otherwise, check to see if the bits shifted out are known to be zero.
6533 // If so, we can compare against the unshifted value:
6534 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengf30752c2008-04-23 00:38:06 +00006535 if (LHSI->hasOneUse() &&
6536 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006537 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6538 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6539 ConstantExpr::getShl(RHS, ShAmt));
6540 }
Chris Lattnera0141b92007-07-15 20:42:37 +00006541
Evan Chengf30752c2008-04-23 00:38:06 +00006542 if (LHSI->hasOneUse()) {
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006543 // Otherwise strength reduce the shift into an and.
6544 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6545 Constant *Mask = ConstantInt::get(Val);
Chris Lattnera0141b92007-07-15 20:42:37 +00006546
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006547 Instruction *AndI =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006548 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner41dc0fc2008-03-21 05:19:58 +00006549 Mask, LHSI->getName()+".mask");
6550 Value *And = InsertNewInstBefore(AndI, ICI);
6551 return new ICmpInst(ICI.getPredicate(), And,
6552 ConstantExpr::getShl(RHS, ShAmt));
Chris Lattner01deb9d2007-04-03 17:43:25 +00006553 }
6554 break;
Chris Lattnera0141b92007-07-15 20:42:37 +00006555 }
Chris Lattner01deb9d2007-04-03 17:43:25 +00006556
6557 case Instruction::SDiv:
6558 case Instruction::UDiv:
6559 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6560 // Fold this div into the comparison, producing a range check.
6561 // Determine, based on the divide type, what the range is being
6562 // checked. If there is an overflow on the low or high side, remember
6563 // it, otherwise compute the range [low, hi) bounding the new value.
6564 // See: InsertRangeTest above for the kinds of replacements possible.
Chris Lattner562ef782007-06-20 23:46:26 +00006565 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6566 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6567 DivRHS))
6568 return R;
Chris Lattner01deb9d2007-04-03 17:43:25 +00006569 break;
Nick Lewycky5be29202008-02-03 16:33:09 +00006570
6571 case Instruction::Add:
6572 // Fold: icmp pred (add, X, C1), C2
6573
6574 if (!ICI.isEquality()) {
6575 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6576 if (!LHSC) break;
6577 const APInt &LHSV = LHSC->getValue();
6578
6579 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6580 .subtract(LHSV);
6581
6582 if (ICI.isSignedPredicate()) {
6583 if (CR.getLower().isSignBit()) {
6584 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6585 ConstantInt::get(CR.getUpper()));
6586 } else if (CR.getUpper().isSignBit()) {
6587 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6588 ConstantInt::get(CR.getLower()));
6589 }
6590 } else {
6591 if (CR.getLower().isMinValue()) {
6592 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6593 ConstantInt::get(CR.getUpper()));
6594 } else if (CR.getUpper().isMinValue()) {
6595 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6596 ConstantInt::get(CR.getLower()));
6597 }
6598 }
6599 }
6600 break;
Chris Lattner01deb9d2007-04-03 17:43:25 +00006601 }
6602
6603 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6604 if (ICI.isEquality()) {
6605 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6606
6607 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6608 // the second operand is a constant, simplify a bit.
6609 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6610 switch (BO->getOpcode()) {
6611 case Instruction::SRem:
6612 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6613 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6614 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6615 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6616 Instruction *NewRem =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006617 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Chris Lattner01deb9d2007-04-03 17:43:25 +00006618 BO->getName());
6619 InsertNewInstBefore(NewRem, ICI);
6620 return new ICmpInst(ICI.getPredicate(), NewRem,
6621 Constant::getNullValue(BO->getType()));
6622 }
6623 }
6624 break;
6625 case Instruction::Add:
6626 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6627 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6628 if (BO->hasOneUse())
6629 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6630 Subtract(RHS, BOp1C));
6631 } else if (RHSV == 0) {
6632 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6633 // efficiently invertible, or if the add has just this one use.
6634 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6635
6636 if (Value *NegVal = dyn_castNegVal(BOp1))
6637 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6638 else if (Value *NegVal = dyn_castNegVal(BOp0))
6639 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6640 else if (BO->hasOneUse()) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006641 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Chris Lattner01deb9d2007-04-03 17:43:25 +00006642 InsertNewInstBefore(Neg, ICI);
6643 Neg->takeName(BO);
6644 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6645 }
6646 }
6647 break;
6648 case Instruction::Xor:
6649 // For the xor case, we can xor two constants together, eliminating
6650 // the explicit xor.
6651 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6652 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6653 ConstantExpr::getXor(RHS, BOC));
6654
6655 // FALLTHROUGH
6656 case Instruction::Sub:
6657 // Replace (([sub|xor] A, B) != 0) with (A != B)
6658 if (RHSV == 0)
6659 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6660 BO->getOperand(1));
6661 break;
6662
6663 case Instruction::Or:
6664 // If bits are being or'd in that are not present in the constant we
6665 // are comparing against, then the comparison could never succeed!
6666 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6667 Constant *NotCI = ConstantExpr::getNot(RHS);
6668 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6669 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6670 isICMP_NE));
6671 }
6672 break;
6673
6674 case Instruction::And:
6675 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6676 // If bits are being compared against that are and'd out, then the
6677 // comparison can never succeed!
6678 if ((RHSV & ~BOC->getValue()) != 0)
6679 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6680 isICMP_NE));
6681
6682 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6683 if (RHS == BOC && RHSV.isPowerOf2())
6684 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6685 ICmpInst::ICMP_NE, LHSI,
6686 Constant::getNullValue(RHS->getType()));
6687
6688 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattner833f25d2008-06-02 01:29:46 +00006689 if (BOC->getValue().isSignBit()) {
Chris Lattner01deb9d2007-04-03 17:43:25 +00006690 Value *X = BO->getOperand(0);
6691 Constant *Zero = Constant::getNullValue(X->getType());
6692 ICmpInst::Predicate pred = isICMP_NE ?
6693 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6694 return new ICmpInst(pred, X, Zero);
6695 }
6696
6697 // ((X & ~7) == 0) --> X < 8
6698 if (RHSV == 0 && isHighOnes(BOC)) {
6699 Value *X = BO->getOperand(0);
6700 Constant *NegX = ConstantExpr::getNeg(BOC);
6701 ICmpInst::Predicate pred = isICMP_NE ?
6702 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6703 return new ICmpInst(pred, X, NegX);
6704 }
6705 }
6706 default: break;
6707 }
6708 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6709 // Handle icmp {eq|ne} <intrinsic>, intcst.
6710 if (II->getIntrinsicID() == Intrinsic::bswap) {
6711 AddToWorkList(II);
6712 ICI.setOperand(0, II->getOperand(1));
6713 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6714 return &ICI;
6715 }
6716 }
6717 } else { // Not a ICMP_EQ/ICMP_NE
Chris Lattnere34e9a22007-04-14 23:32:02 +00006718 // If the LHS is a cast from an integral value of the same size,
6719 // then since we know the RHS is a constant, try to simlify.
Chris Lattner01deb9d2007-04-03 17:43:25 +00006720 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6721 Value *CastOp = Cast->getOperand(0);
6722 const Type *SrcTy = CastOp->getType();
6723 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6724 if (SrcTy->isInteger() &&
6725 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6726 // If this is an unsigned comparison, try to make the comparison use
6727 // smaller constant values.
6728 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6729 // X u< 128 => X s> -1
6730 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6731 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6732 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6733 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6734 // X u> 127 => X s< 0
6735 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6736 Constant::getNullValue(SrcTy));
6737 }
6738 }
6739 }
6740 }
6741 return 0;
6742}
6743
6744/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6745/// We only handle extending casts so far.
6746///
Reid Spencere4d87aa2006-12-23 06:05:41 +00006747Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6748 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
Reid Spencer3da59db2006-11-27 01:05:10 +00006749 Value *LHSCIOp = LHSCI->getOperand(0);
6750 const Type *SrcTy = LHSCIOp->getType();
Reid Spencere4d87aa2006-12-23 06:05:41 +00006751 const Type *DestTy = LHSCI->getType();
Chris Lattner484d3cf2005-04-24 06:59:08 +00006752 Value *RHSCIOp;
6753
Chris Lattner8c756c12007-05-05 22:41:33 +00006754 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6755 // integer type is the same size as the pointer type.
6756 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6757 getTargetData().getPointerSizeInBits() ==
6758 cast<IntegerType>(DestTy)->getBitWidth()) {
6759 Value *RHSOp = 0;
6760 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
Chris Lattner6f6f5122007-05-06 07:24:03 +00006761 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
Chris Lattner8c756c12007-05-05 22:41:33 +00006762 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6763 RHSOp = RHSC->getOperand(0);
6764 // If the pointer types don't match, insert a bitcast.
6765 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner6d0339d2008-01-13 22:23:22 +00006766 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Chris Lattner8c756c12007-05-05 22:41:33 +00006767 }
6768
6769 if (RHSOp)
6770 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6771 }
6772
6773 // The code below only handles extension cast instructions, so far.
6774 // Enforce this.
Reid Spencere4d87aa2006-12-23 06:05:41 +00006775 if (LHSCI->getOpcode() != Instruction::ZExt &&
6776 LHSCI->getOpcode() != Instruction::SExt)
Chris Lattnerb352fa52005-01-17 03:20:02 +00006777 return 0;
6778
Reid Spencere4d87aa2006-12-23 06:05:41 +00006779 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6780 bool isSignedCmp = ICI.isSignedPredicate();
Chris Lattner484d3cf2005-04-24 06:59:08 +00006781
Reid Spencere4d87aa2006-12-23 06:05:41 +00006782 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
Chris Lattner484d3cf2005-04-24 06:59:08 +00006783 // Not an extension from the same type?
6784 RHSCIOp = CI->getOperand(0);
Reid Spencere4d87aa2006-12-23 06:05:41 +00006785 if (RHSCIOp->getType() != LHSCIOp->getType())
6786 return 0;
Chris Lattnera5c5e772007-01-13 23:11:38 +00006787
Nick Lewycky4189a532008-01-28 03:48:02 +00006788 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Chris Lattnera5c5e772007-01-13 23:11:38 +00006789 // and the other is a zext), then we can't handle this.
6790 if (CI->getOpcode() != LHSCI->getOpcode())
6791 return 0;
6792
Nick Lewycky4189a532008-01-28 03:48:02 +00006793 // Deal with equality cases early.
6794 if (ICI.isEquality())
6795 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6796
6797 // A signed comparison of sign extended values simplifies into a
6798 // signed comparison.
6799 if (isSignedCmp && isSignedExt)
6800 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6801
6802 // The other three cases all fold into an unsigned comparison.
6803 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Reid Spencer6731d5c2004-11-28 21:31:15 +00006804 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00006805
Reid Spencere4d87aa2006-12-23 06:05:41 +00006806 // If we aren't dealing with a constant on the RHS, exit early
6807 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6808 if (!CI)
6809 return 0;
6810
6811 // Compute the constant that would happen if we truncated to SrcTy then
6812 // reextended to DestTy.
6813 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6814 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6815
6816 // If the re-extended constant didn't change...
6817 if (Res2 == CI) {
6818 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6819 // For example, we might have:
6820 // %A = sext short %X to uint
6821 // %B = icmp ugt uint %A, 1330
6822 // It is incorrect to transform this into
6823 // %B = icmp ugt short %X, 1330
6824 // because %A may have negative value.
6825 //
Chris Lattnerf2991842008-07-11 04:09:09 +00006826 // However, we allow this when the compare is EQ/NE, because they are
6827 // signless.
6828 if (isSignedExt == isSignedCmp || ICI.isEquality())
Reid Spencere4d87aa2006-12-23 06:05:41 +00006829 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
Chris Lattnerf2991842008-07-11 04:09:09 +00006830 return 0;
Reid Spencere4d87aa2006-12-23 06:05:41 +00006831 }
6832
6833 // The re-extended constant changed so the constant cannot be represented
6834 // in the shorter type. Consequently, we cannot emit a simple comparison.
6835
6836 // First, handle some easy cases. We know the result cannot be equal at this
6837 // point so handle the ICI.isEquality() cases
6838 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006839 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
Reid Spencere4d87aa2006-12-23 06:05:41 +00006840 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006841 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
Reid Spencere4d87aa2006-12-23 06:05:41 +00006842
6843 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6844 // should have been folded away previously and not enter in here.
6845 Value *Result;
6846 if (isSignedCmp) {
6847 // We're performing a signed comparison.
Reid Spencer0460fb32007-03-22 20:36:03 +00006848 if (cast<ConstantInt>(CI)->getValue().isNegative())
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006849 Result = ConstantInt::getFalse(); // X < (small) --> false
Reid Spencere4d87aa2006-12-23 06:05:41 +00006850 else
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006851 Result = ConstantInt::getTrue(); // X < (large) --> true
Reid Spencere4d87aa2006-12-23 06:05:41 +00006852 } else {
6853 // We're performing an unsigned comparison.
6854 if (isSignedExt) {
6855 // We're performing an unsigned comp with a sign extended value.
6856 // This is true if the input is >= 0. [aka >s -1]
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006857 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
Reid Spencere4d87aa2006-12-23 06:05:41 +00006858 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6859 NegOne, ICI.getName()), ICI);
6860 } else {
6861 // Unsigned extend & unsigned compare -> always true.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006862 Result = ConstantInt::getTrue();
Reid Spencere4d87aa2006-12-23 06:05:41 +00006863 }
6864 }
6865
6866 // Finally, return the value computed.
6867 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
Chris Lattnerf2991842008-07-11 04:09:09 +00006868 ICI.getPredicate() == ICmpInst::ICMP_SLT)
Reid Spencere4d87aa2006-12-23 06:05:41 +00006869 return ReplaceInstUsesWith(ICI, Result);
Chris Lattnerf2991842008-07-11 04:09:09 +00006870
6871 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6872 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6873 "ICmp should be folded!");
6874 if (Constant *CI = dyn_cast<Constant>(Result))
6875 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6876 return BinaryOperator::CreateNot(Result);
Chris Lattner484d3cf2005-04-24 06:59:08 +00006877}
Chris Lattner3f5b8772002-05-06 16:14:14 +00006878
Reid Spencer832254e2007-02-02 02:16:23 +00006879Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6880 return commonShiftTransforms(I);
6881}
6882
6883Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6884 return commonShiftTransforms(I);
6885}
6886
6887Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattner348f6652007-12-06 01:59:46 +00006888 if (Instruction *R = commonShiftTransforms(I))
6889 return R;
6890
6891 Value *Op0 = I.getOperand(0);
6892
6893 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6894 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6895 if (CSI->isAllOnesValue())
6896 return ReplaceInstUsesWith(I, CSI);
6897
6898 // See if we can turn a signed shr into an unsigned shr.
Nate Begeman5bc1ea02008-07-29 15:49:41 +00006899 if (!isa<VectorType>(I.getType()) &&
6900 MaskedValueIsZero(Op0,
Chris Lattner348f6652007-12-06 01:59:46 +00006901 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006902 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattner348f6652007-12-06 01:59:46 +00006903
6904 return 0;
Reid Spencer832254e2007-02-02 02:16:23 +00006905}
6906
6907Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6908 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
Chris Lattner7e708292002-06-25 16:13:24 +00006909 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00006910
6911 // shl X, 0 == X and shr X, 0 == X
6912 // shl 0, X == 0 and shr 0, X == 0
Reid Spencer832254e2007-02-02 02:16:23 +00006913 if (Op1 == Constant::getNullValue(Op1->getType()) ||
Chris Lattner233f7dc2002-08-12 21:17:25 +00006914 Op0 == Constant::getNullValue(Op0->getType()))
6915 return ReplaceInstUsesWith(I, Op0);
Chris Lattner8d6bbdb2006-02-12 08:07:37 +00006916
Reid Spencere4d87aa2006-12-23 06:05:41 +00006917 if (isa<UndefValue>(Op0)) {
6918 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
Chris Lattner79a564c2004-10-16 23:28:04 +00006919 return ReplaceInstUsesWith(I, Op0);
Reid Spencere4d87aa2006-12-23 06:05:41 +00006920 else // undef << X -> 0, undef >>u X -> 0
Chris Lattnere87597f2004-10-16 18:11:37 +00006921 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6922 }
6923 if (isa<UndefValue>(Op1)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00006924 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6925 return ReplaceInstUsesWith(I, Op0);
6926 else // X << undef, X >>u undef -> 0
Chris Lattnere87597f2004-10-16 18:11:37 +00006927 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnere87597f2004-10-16 18:11:37 +00006928 }
6929
Chris Lattner2eefe512004-04-09 19:05:30 +00006930 // Try to fold constant and into select arguments.
6931 if (isa<Constant>(Op0))
6932 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner6e7ba452005-01-01 16:22:27 +00006933 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00006934 return R;
6935
Reid Spencerb83eb642006-10-20 07:07:24 +00006936 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
Reid Spencerc5b206b2006-12-31 05:48:39 +00006937 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6938 return Res;
Chris Lattner4d5542c2006-01-06 07:12:35 +00006939 return 0;
6940}
6941
Reid Spencerb83eb642006-10-20 07:07:24 +00006942Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
Reid Spencer832254e2007-02-02 02:16:23 +00006943 BinaryOperator &I) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00006944 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner4d5542c2006-01-06 07:12:35 +00006945
Chris Lattner8d6bbdb2006-02-12 08:07:37 +00006946 // See if we can simplify any instructions used by the instruction whose sole
6947 // purpose is to compute bits we don't care about.
Reid Spencerb35ae032007-03-23 18:46:34 +00006948 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6949 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6950 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
Chris Lattner8d6bbdb2006-02-12 08:07:37 +00006951 KnownZero, KnownOne))
6952 return &I;
6953
Chris Lattner4d5542c2006-01-06 07:12:35 +00006954 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6955 // of a signed value.
6956 //
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00006957 if (Op1->uge(TypeBits)) {
Chris Lattner0737c242007-02-02 05:29:55 +00006958 if (I.getOpcode() != Instruction::AShr)
Chris Lattner4d5542c2006-01-06 07:12:35 +00006959 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6960 else {
Chris Lattner0737c242007-02-02 05:29:55 +00006961 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
Chris Lattner4d5542c2006-01-06 07:12:35 +00006962 return &I;
Chris Lattner8adac752004-02-23 20:30:06 +00006963 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00006964 }
6965
6966 // ((X*C1) << C2) == (X * (C1 << C2))
6967 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
6968 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
6969 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006970 return BinaryOperator::CreateMul(BO->getOperand(0),
Chris Lattner4d5542c2006-01-06 07:12:35 +00006971 ConstantExpr::getShl(BOOp, Op1));
6972
6973 // Try to fold constant and into select arguments.
6974 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
6975 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6976 return R;
6977 if (isa<PHINode>(Op0))
6978 if (Instruction *NV = FoldOpIntoPhi(I))
6979 return NV;
6980
Chris Lattner8999dd32007-12-22 09:07:47 +00006981 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
6982 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
6983 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
6984 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
6985 // place. Don't try to do this transformation in this case. Also, we
6986 // require that the input operand is a shift-by-constant so that we have
6987 // confidence that the shifts will get folded together. We could do this
6988 // xform in more cases, but it is unlikely to be profitable.
6989 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
6990 isa<ConstantInt>(TrOp->getOperand(1))) {
6991 // Okay, we'll do this xform. Make the shift of shift.
6992 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greif7cbd8a32008-05-16 19:29:10 +00006993 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattner8999dd32007-12-22 09:07:47 +00006994 I.getName());
6995 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
6996
6997 // For logical shifts, the truncation has the effect of making the high
6998 // part of the register be zeros. Emulate this by inserting an AND to
6999 // clear the top bits as needed. This 'and' will usually be zapped by
7000 // other xforms later if dead.
7001 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
7002 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
7003 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
7004
7005 // The mask we constructed says what the trunc would do if occurring
7006 // between the shifts. We want to know the effect *after* the second
7007 // shift. We know that it is a logical shift by a constant, so adjust the
7008 // mask as appropriate.
7009 if (I.getOpcode() == Instruction::Shl)
7010 MaskV <<= Op1->getZExtValue();
7011 else {
7012 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
7013 MaskV = MaskV.lshr(Op1->getZExtValue());
7014 }
7015
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007016 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattner8999dd32007-12-22 09:07:47 +00007017 TI->getName());
7018 InsertNewInstBefore(And, I); // shift1 & 0x00FF
7019
7020 // Return the value truncated to the interesting size.
7021 return new TruncInst(And, I.getType());
7022 }
7023 }
7024
Chris Lattner4d5542c2006-01-06 07:12:35 +00007025 if (Op0->hasOneUse()) {
Chris Lattner4d5542c2006-01-06 07:12:35 +00007026 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
7027 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7028 Value *V1, *V2;
7029 ConstantInt *CC;
7030 switch (Op0BO->getOpcode()) {
Chris Lattner11021cb2005-09-18 05:12:10 +00007031 default: break;
7032 case Instruction::Add:
7033 case Instruction::And:
7034 case Instruction::Or:
Reid Spencera07cb7d2007-02-02 14:41:37 +00007035 case Instruction::Xor: {
Chris Lattner11021cb2005-09-18 05:12:10 +00007036 // These operators commute.
7037 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner150f12a2005-09-18 06:30:59 +00007038 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
Chris Lattnercb504b92008-11-16 05:38:51 +00007039 match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007040 Instruction *YS = BinaryOperator::CreateShl(
Chris Lattner4d5542c2006-01-06 07:12:35 +00007041 Op0BO->getOperand(0), Op1,
Chris Lattner150f12a2005-09-18 06:30:59 +00007042 Op0BO->getName());
7043 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner9a4cacb2006-02-09 07:41:14 +00007044 Instruction *X =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007045 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Chris Lattner9a4cacb2006-02-09 07:41:14 +00007046 Op0BO->getOperand(1)->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00007047 InsertNewInstBefore(X, I); // (X + (Y << C))
Zhou Sheng302748d2007-03-30 17:20:39 +00007048 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007049 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Zhou Sheng90b96812007-03-30 05:45:18 +00007050 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
Chris Lattner150f12a2005-09-18 06:30:59 +00007051 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00007052
Chris Lattner150f12a2005-09-18 06:30:59 +00007053 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
Reid Spencera07cb7d2007-02-02 14:41:37 +00007054 Value *Op0BOOp1 = Op0BO->getOperand(1);
Chris Lattner3c698492007-03-05 00:11:19 +00007055 if (isLeftShift && Op0BOOp1->hasOneUse() &&
Reid Spencera07cb7d2007-02-02 14:41:37 +00007056 match(Op0BOOp1,
Chris Lattnercb504b92008-11-16 05:38:51 +00007057 m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
7058 m_ConstantInt(CC))) &&
7059 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007060 Instruction *YS = BinaryOperator::CreateShl(
Reid Spencer832254e2007-02-02 02:16:23 +00007061 Op0BO->getOperand(0), Op1,
7062 Op0BO->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00007063 InsertNewInstBefore(YS, I); // (Y << C)
7064 Instruction *XM =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007065 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner150f12a2005-09-18 06:30:59 +00007066 V1->getName()+".mask");
7067 InsertNewInstBefore(XM, I); // X & (CC << C)
7068
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007069 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Chris Lattner150f12a2005-09-18 06:30:59 +00007070 }
Reid Spencera07cb7d2007-02-02 14:41:37 +00007071 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00007072
Reid Spencera07cb7d2007-02-02 14:41:37 +00007073 // FALL THROUGH.
7074 case Instruction::Sub: {
Chris Lattner11021cb2005-09-18 05:12:10 +00007075 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner150f12a2005-09-18 06:30:59 +00007076 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
Chris Lattnercb504b92008-11-16 05:38:51 +00007077 match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007078 Instruction *YS = BinaryOperator::CreateShl(
Reid Spencer832254e2007-02-02 02:16:23 +00007079 Op0BO->getOperand(1), Op1,
7080 Op0BO->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00007081 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner9a4cacb2006-02-09 07:41:14 +00007082 Instruction *X =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007083 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Chris Lattner9a4cacb2006-02-09 07:41:14 +00007084 Op0BO->getOperand(0)->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00007085 InsertNewInstBefore(X, I); // (X + (Y << C))
Zhou Sheng302748d2007-03-30 17:20:39 +00007086 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007087 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Zhou Sheng90b96812007-03-30 05:45:18 +00007088 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
Chris Lattner150f12a2005-09-18 06:30:59 +00007089 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00007090
Chris Lattner13d4ab42006-05-31 21:14:00 +00007091 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
Chris Lattner150f12a2005-09-18 06:30:59 +00007092 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
7093 match(Op0BO->getOperand(0),
7094 m_And(m_Shr(m_Value(V1), m_Value(V2)),
Chris Lattner4d5542c2006-01-06 07:12:35 +00007095 m_ConstantInt(CC))) && V2 == Op1 &&
Chris Lattner9a4cacb2006-02-09 07:41:14 +00007096 cast<BinaryOperator>(Op0BO->getOperand(0))
7097 ->getOperand(0)->hasOneUse()) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007098 Instruction *YS = BinaryOperator::CreateShl(
Reid Spencer832254e2007-02-02 02:16:23 +00007099 Op0BO->getOperand(1), Op1,
7100 Op0BO->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00007101 InsertNewInstBefore(YS, I); // (Y << C)
7102 Instruction *XM =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007103 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner150f12a2005-09-18 06:30:59 +00007104 V1->getName()+".mask");
7105 InsertNewInstBefore(XM, I); // X & (CC << C)
7106
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007107 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Chris Lattner150f12a2005-09-18 06:30:59 +00007108 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00007109
Chris Lattner11021cb2005-09-18 05:12:10 +00007110 break;
Reid Spencera07cb7d2007-02-02 14:41:37 +00007111 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00007112 }
7113
7114
7115 // If the operand is an bitwise operator with a constant RHS, and the
7116 // shift is the only use, we can pull it out of the shift.
7117 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
7118 bool isValid = true; // Valid only for And, Or, Xor
7119 bool highBitSet = false; // Transform if high bit of constant set?
7120
7121 switch (Op0BO->getOpcode()) {
Chris Lattnerdf17af12003-08-12 21:53:41 +00007122 default: isValid = false; break; // Do not perform transform!
Chris Lattner1f7e1602004-10-08 03:46:20 +00007123 case Instruction::Add:
7124 isValid = isLeftShift;
7125 break;
Chris Lattnerdf17af12003-08-12 21:53:41 +00007126 case Instruction::Or:
7127 case Instruction::Xor:
7128 highBitSet = false;
7129 break;
7130 case Instruction::And:
7131 highBitSet = true;
7132 break;
Chris Lattner4d5542c2006-01-06 07:12:35 +00007133 }
7134
7135 // If this is a signed shift right, and the high bit is modified
7136 // by the logical operation, do not perform the transformation.
7137 // The highBitSet boolean indicates the value of the high bit of
7138 // the constant which would cause it to be modified for this
7139 // operation.
7140 //
Chris Lattnerc95ba442007-12-06 06:25:04 +00007141 if (isValid && I.getOpcode() == Instruction::AShr)
Zhou Shenge9e03f62007-03-28 15:02:20 +00007142 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Chris Lattner4d5542c2006-01-06 07:12:35 +00007143
7144 if (isValid) {
7145 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
7146
7147 Instruction *NewShift =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007148 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Chris Lattner4d5542c2006-01-06 07:12:35 +00007149 InsertNewInstBefore(NewShift, I);
Chris Lattner6934a042007-02-11 01:23:03 +00007150 NewShift->takeName(Op0BO);
Chris Lattner4d5542c2006-01-06 07:12:35 +00007151
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007152 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Chris Lattner4d5542c2006-01-06 07:12:35 +00007153 NewRHS);
7154 }
7155 }
7156 }
7157 }
7158
Chris Lattnerad0124c2006-01-06 07:52:12 +00007159 // Find out if this is a shift of a shift by a constant.
Reid Spencer832254e2007-02-02 02:16:23 +00007160 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
7161 if (ShiftOp && !ShiftOp->isShift())
7162 ShiftOp = 0;
Chris Lattnerad0124c2006-01-06 07:52:12 +00007163
Reid Spencerb83eb642006-10-20 07:07:24 +00007164 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
Reid Spencerb83eb642006-10-20 07:07:24 +00007165 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +00007166 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
7167 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
Chris Lattnerb87056f2007-02-05 00:57:54 +00007168 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
7169 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
7170 Value *X = ShiftOp->getOperand(0);
Chris Lattnerad0124c2006-01-06 07:52:12 +00007171
Zhou Sheng4351c642007-04-02 08:20:41 +00007172 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
Reid Spencerb35ae032007-03-23 18:46:34 +00007173 if (AmtSum > TypeBits)
7174 AmtSum = TypeBits;
Chris Lattnerb87056f2007-02-05 00:57:54 +00007175
7176 const IntegerType *Ty = cast<IntegerType>(I.getType());
7177
7178 // Check for (X << c1) << c2 and (X >> c1) >> c2
Chris Lattner7f3da2d2007-02-03 23:28:07 +00007179 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007180 return BinaryOperator::Create(I.getOpcode(), X,
Chris Lattnerb87056f2007-02-05 00:57:54 +00007181 ConstantInt::get(Ty, AmtSum));
7182 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
7183 I.getOpcode() == Instruction::AShr) {
7184 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007185 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Chris Lattnerb87056f2007-02-05 00:57:54 +00007186 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
7187 I.getOpcode() == Instruction::LShr) {
7188 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
7189 Instruction *Shift =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007190 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Chris Lattnerb87056f2007-02-05 00:57:54 +00007191 InsertNewInstBefore(Shift, I);
7192
Zhou Shenge9e03f62007-03-28 15:02:20 +00007193 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007194 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Chris Lattnerad0124c2006-01-06 07:52:12 +00007195 }
7196
Chris Lattnerb87056f2007-02-05 00:57:54 +00007197 // Okay, if we get here, one shift must be left, and the other shift must be
7198 // right. See if the amounts are equal.
7199 if (ShiftAmt1 == ShiftAmt2) {
7200 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
7201 if (I.getOpcode() == Instruction::Shl) {
Reid Spencer55702aa2007-03-25 21:11:44 +00007202 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007203 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Chris Lattnerb87056f2007-02-05 00:57:54 +00007204 }
7205 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
7206 if (I.getOpcode() == Instruction::LShr) {
Zhou Sheng3a507fd2007-04-01 17:13:37 +00007207 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007208 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Chris Lattnerb87056f2007-02-05 00:57:54 +00007209 }
7210 // We can simplify ((X << C) >>s C) into a trunc + sext.
7211 // NOTE: we could do this for any C, but that would make 'unusual' integer
7212 // types. For now, just stick to ones well-supported by the code
7213 // generators.
7214 const Type *SExtType = 0;
7215 switch (Ty->getBitWidth() - ShiftAmt1) {
Zhou Shenge9e03f62007-03-28 15:02:20 +00007216 case 1 :
7217 case 8 :
7218 case 16 :
7219 case 32 :
7220 case 64 :
7221 case 128:
7222 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
7223 break;
Chris Lattnerb87056f2007-02-05 00:57:54 +00007224 default: break;
7225 }
7226 if (SExtType) {
7227 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
7228 InsertNewInstBefore(NewTrunc, I);
7229 return new SExtInst(NewTrunc, Ty);
7230 }
7231 // Otherwise, we can't handle it yet.
7232 } else if (ShiftAmt1 < ShiftAmt2) {
Zhou Sheng4351c642007-04-02 08:20:41 +00007233 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
Chris Lattnerad0124c2006-01-06 07:52:12 +00007234
Chris Lattnerb0b991a2007-02-05 05:57:49 +00007235 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
Chris Lattnerb87056f2007-02-05 00:57:54 +00007236 if (I.getOpcode() == Instruction::Shl) {
7237 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7238 ShiftOp->getOpcode() == Instruction::AShr);
Chris Lattnere8d56c52006-01-07 01:32:28 +00007239 Instruction *Shift =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007240 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Chris Lattnere8d56c52006-01-07 01:32:28 +00007241 InsertNewInstBefore(Shift, I);
7242
Reid Spencer55702aa2007-03-25 21:11:44 +00007243 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007244 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Chris Lattnerad0124c2006-01-06 07:52:12 +00007245 }
Chris Lattnerb87056f2007-02-05 00:57:54 +00007246
Chris Lattnerb0b991a2007-02-05 05:57:49 +00007247 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
Chris Lattnerb87056f2007-02-05 00:57:54 +00007248 if (I.getOpcode() == Instruction::LShr) {
7249 assert(ShiftOp->getOpcode() == Instruction::Shl);
7250 Instruction *Shift =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007251 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Chris Lattnerb87056f2007-02-05 00:57:54 +00007252 InsertNewInstBefore(Shift, I);
Chris Lattnerad0124c2006-01-06 07:52:12 +00007253
Reid Spencerd5e30f02007-03-26 17:18:58 +00007254 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007255 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Chris Lattner11021cb2005-09-18 05:12:10 +00007256 }
Chris Lattnerb87056f2007-02-05 00:57:54 +00007257
7258 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
7259 } else {
7260 assert(ShiftAmt2 < ShiftAmt1);
Zhou Sheng4351c642007-04-02 08:20:41 +00007261 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
Chris Lattnerb87056f2007-02-05 00:57:54 +00007262
Chris Lattnerb0b991a2007-02-05 05:57:49 +00007263 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
Chris Lattnerb87056f2007-02-05 00:57:54 +00007264 if (I.getOpcode() == Instruction::Shl) {
7265 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7266 ShiftOp->getOpcode() == Instruction::AShr);
7267 Instruction *Shift =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007268 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Chris Lattnerb87056f2007-02-05 00:57:54 +00007269 ConstantInt::get(Ty, ShiftDiff));
7270 InsertNewInstBefore(Shift, I);
7271
Reid Spencer55702aa2007-03-25 21:11:44 +00007272 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007273 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Chris Lattnerb87056f2007-02-05 00:57:54 +00007274 }
7275
Chris Lattnerb0b991a2007-02-05 05:57:49 +00007276 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
Chris Lattnerb87056f2007-02-05 00:57:54 +00007277 if (I.getOpcode() == Instruction::LShr) {
7278 assert(ShiftOp->getOpcode() == Instruction::Shl);
7279 Instruction *Shift =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007280 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Chris Lattnerb87056f2007-02-05 00:57:54 +00007281 InsertNewInstBefore(Shift, I);
7282
Reid Spencer68d27cf2007-03-26 23:45:51 +00007283 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007284 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Chris Lattnerb87056f2007-02-05 00:57:54 +00007285 }
7286
7287 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
Chris Lattner6e7ba452005-01-01 16:22:27 +00007288 }
Chris Lattnerad0124c2006-01-06 07:52:12 +00007289 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00007290 return 0;
7291}
7292
Chris Lattnera1be5662002-05-02 17:06:02 +00007293
Chris Lattnercfd65102005-10-29 04:36:15 +00007294/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
7295/// expression. If so, decompose it, returning some value X, such that Val is
7296/// X*Scale+Offset.
7297///
7298static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
Jeff Cohen86796be2007-04-04 16:58:57 +00007299 int &Offset) {
Reid Spencerc5b206b2006-12-31 05:48:39 +00007300 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
Reid Spencerb83eb642006-10-20 07:07:24 +00007301 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
Reid Spencerc5b206b2006-12-31 05:48:39 +00007302 Offset = CI->getZExtValue();
Chris Lattner6a94de22007-10-12 05:30:59 +00007303 Scale = 0;
Reid Spencerc5b206b2006-12-31 05:48:39 +00007304 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattner6a94de22007-10-12 05:30:59 +00007305 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
7306 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
7307 if (I->getOpcode() == Instruction::Shl) {
7308 // This is a value scaled by '1 << the shift amt'.
7309 Scale = 1U << RHS->getZExtValue();
7310 Offset = 0;
7311 return I->getOperand(0);
7312 } else if (I->getOpcode() == Instruction::Mul) {
7313 // This value is scaled by 'RHS'.
7314 Scale = RHS->getZExtValue();
7315 Offset = 0;
7316 return I->getOperand(0);
7317 } else if (I->getOpcode() == Instruction::Add) {
7318 // We have X+C. Check to see if we really have (X*C2)+C1,
7319 // where C1 is divisible by C2.
7320 unsigned SubScale;
7321 Value *SubVal =
7322 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
7323 Offset += RHS->getZExtValue();
7324 Scale = SubScale;
7325 return SubVal;
Chris Lattnercfd65102005-10-29 04:36:15 +00007326 }
7327 }
7328 }
7329
7330 // Otherwise, we can't look past this.
7331 Scale = 1;
7332 Offset = 0;
7333 return Val;
7334}
7335
7336
Chris Lattnerb3f83972005-10-24 06:03:58 +00007337/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
7338/// try to eliminate the cast by moving the type information into the alloc.
Chris Lattnerd3e28342007-04-27 17:44:50 +00007339Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
Chris Lattnerb3f83972005-10-24 06:03:58 +00007340 AllocationInst &AI) {
Chris Lattnerd3e28342007-04-27 17:44:50 +00007341 const PointerType *PTy = cast<PointerType>(CI.getType());
Chris Lattnerb3f83972005-10-24 06:03:58 +00007342
Chris Lattnerb53c2382005-10-24 06:22:12 +00007343 // Remove any uses of AI that are dead.
7344 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
Chris Lattner535014f2007-02-15 22:52:10 +00007345
Chris Lattnerb53c2382005-10-24 06:22:12 +00007346 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
7347 Instruction *User = cast<Instruction>(*UI++);
7348 if (isInstructionTriviallyDead(User)) {
7349 while (UI != E && *UI == User)
7350 ++UI; // If this instruction uses AI more than once, don't break UI.
7351
Chris Lattnerb53c2382005-10-24 06:22:12 +00007352 ++NumDeadInst;
Bill Wendlingb7427032006-11-26 09:46:52 +00007353 DOUT << "IC: DCE: " << *User;
Chris Lattnerf22a5c62007-03-02 19:59:19 +00007354 EraseInstFromFunction(*User);
Chris Lattnerb53c2382005-10-24 06:22:12 +00007355 }
7356 }
7357
Chris Lattnerb3f83972005-10-24 06:03:58 +00007358 // Get the type really allocated and the type casted to.
7359 const Type *AllocElTy = AI.getAllocatedType();
7360 const Type *CastElTy = PTy->getElementType();
7361 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
Chris Lattner18e78bb2005-10-24 06:26:18 +00007362
Chris Lattnerd2b7cec2007-02-14 05:52:17 +00007363 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
7364 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
Chris Lattner18e78bb2005-10-24 06:26:18 +00007365 if (CastElTyAlign < AllocElTyAlign) return 0;
7366
Chris Lattner39387a52005-10-24 06:35:18 +00007367 // If the allocation has multiple uses, only promote it if we are strictly
7368 // increasing the alignment of the resultant allocation. If we keep it the
7369 // same, we open the door to infinite loops of various kinds.
7370 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
7371
Duncan Sands514ab342007-11-01 20:53:16 +00007372 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
7373 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Chris Lattner0ddac2a2005-10-27 05:53:56 +00007374 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
Chris Lattner18e78bb2005-10-24 06:26:18 +00007375
Chris Lattner455fcc82005-10-29 03:19:53 +00007376 // See if we can satisfy the modulus by pulling a scale out of the array
7377 // size argument.
Jeff Cohen86796be2007-04-04 16:58:57 +00007378 unsigned ArraySizeScale;
7379 int ArrayOffset;
Chris Lattnercfd65102005-10-29 04:36:15 +00007380 Value *NumElements = // See if the array size is a decomposable linear expr.
7381 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
7382
Chris Lattner455fcc82005-10-29 03:19:53 +00007383 // If we can now satisfy the modulus, by using a non-1 scale, we really can
7384 // do the xform.
Chris Lattnercfd65102005-10-29 04:36:15 +00007385 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
7386 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
Chris Lattner8142b0a2005-10-27 06:12:00 +00007387
Chris Lattner455fcc82005-10-29 03:19:53 +00007388 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
7389 Value *Amt = 0;
7390 if (Scale == 1) {
7391 Amt = NumElements;
7392 } else {
Reid Spencerb83eb642006-10-20 07:07:24 +00007393 // If the allocation size is constant, form a constant mul expression
Reid Spencerc5b206b2006-12-31 05:48:39 +00007394 Amt = ConstantInt::get(Type::Int32Ty, Scale);
7395 if (isa<ConstantInt>(NumElements))
Zhou Sheng4a1822a2007-04-02 13:45:30 +00007396 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
Reid Spencerb83eb642006-10-20 07:07:24 +00007397 // otherwise multiply the amount and the number of elements
Chris Lattner455fcc82005-10-29 03:19:53 +00007398 else if (Scale != 1) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007399 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Chris Lattner455fcc82005-10-29 03:19:53 +00007400 Amt = InsertNewInstBefore(Tmp, AI);
Chris Lattner8142b0a2005-10-27 06:12:00 +00007401 }
Chris Lattner0ddac2a2005-10-27 05:53:56 +00007402 }
7403
Jeff Cohen86796be2007-04-04 16:58:57 +00007404 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7405 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007406 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Chris Lattnercfd65102005-10-29 04:36:15 +00007407 Amt = InsertNewInstBefore(Tmp, AI);
7408 }
7409
Chris Lattnerb3f83972005-10-24 06:03:58 +00007410 AllocationInst *New;
7411 if (isa<MallocInst>(AI))
Chris Lattner6934a042007-02-11 01:23:03 +00007412 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
Chris Lattnerb3f83972005-10-24 06:03:58 +00007413 else
Chris Lattner6934a042007-02-11 01:23:03 +00007414 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
Chris Lattnerb3f83972005-10-24 06:03:58 +00007415 InsertNewInstBefore(New, AI);
Chris Lattner6934a042007-02-11 01:23:03 +00007416 New->takeName(&AI);
Chris Lattner39387a52005-10-24 06:35:18 +00007417
7418 // If the allocation has multiple uses, insert a cast and change all things
7419 // that used it to use the new cast. This will also hack on CI, but it will
7420 // die soon.
7421 if (!AI.hasOneUse()) {
7422 AddUsesToWorkList(AI);
Reid Spencer3da59db2006-11-27 01:05:10 +00007423 // New is the allocation instruction, pointer typed. AI is the original
7424 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7425 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
Chris Lattner39387a52005-10-24 06:35:18 +00007426 InsertNewInstBefore(NewCast, AI);
7427 AI.replaceAllUsesWith(NewCast);
7428 }
Chris Lattnerb3f83972005-10-24 06:03:58 +00007429 return ReplaceInstUsesWith(CI, New);
7430}
7431
Chris Lattner70074e02006-05-13 02:06:03 +00007432/// CanEvaluateInDifferentType - Return true if we can take the specified value
Chris Lattnerc739cd62007-03-03 05:27:34 +00007433/// and return it as type Ty without inserting any new casts and without
7434/// changing the computed value. This is used by code that tries to decide
7435/// whether promoting or shrinking integer operations to wider or smaller types
7436/// will allow us to eliminate a truncate or extend.
7437///
7438/// This is a truncation operation if Ty is smaller than V->getType(), or an
7439/// extension operation if Ty is larger.
Chris Lattner8114b712008-06-18 04:00:49 +00007440///
7441/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7442/// should return true if trunc(V) can be computed by computing V in the smaller
7443/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7444/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7445/// efficiently truncated.
7446///
7447/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7448/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7449/// the final result.
Dan Gohmaneee962e2008-04-10 18:43:06 +00007450bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7451 unsigned CastOpc,
7452 int &NumCastsRemoved) {
Chris Lattnerc739cd62007-03-03 05:27:34 +00007453 // We can always evaluate constants in another type.
7454 if (isa<ConstantInt>(V))
7455 return true;
Chris Lattner70074e02006-05-13 02:06:03 +00007456
7457 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerc739cd62007-03-03 05:27:34 +00007458 if (!I) return false;
7459
7460 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
Chris Lattner70074e02006-05-13 02:06:03 +00007461
Chris Lattner951626b2007-08-02 06:11:14 +00007462 // If this is an extension or truncate, we can often eliminate it.
7463 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7464 // If this is a cast from the destination type, we can trivially eliminate
7465 // it, and this will remove a cast overall.
7466 if (I->getOperand(0)->getType() == Ty) {
7467 // If the first operand is itself a cast, and is eliminable, do not count
7468 // this as an eliminable cast. We would prefer to eliminate those two
7469 // casts first.
Chris Lattner8114b712008-06-18 04:00:49 +00007470 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
Chris Lattner951626b2007-08-02 06:11:14 +00007471 ++NumCastsRemoved;
7472 return true;
7473 }
7474 }
7475
7476 // We can't extend or shrink something that has multiple uses: doing so would
7477 // require duplicating the instruction in general, which isn't profitable.
7478 if (!I->hasOneUse()) return false;
7479
Chris Lattner70074e02006-05-13 02:06:03 +00007480 switch (I->getOpcode()) {
Chris Lattnerc739cd62007-03-03 05:27:34 +00007481 case Instruction::Add:
7482 case Instruction::Sub:
Nick Lewyckyb8cd6a42008-07-05 21:19:34 +00007483 case Instruction::Mul:
Chris Lattner70074e02006-05-13 02:06:03 +00007484 case Instruction::And:
7485 case Instruction::Or:
7486 case Instruction::Xor:
7487 // These operators can all arbitrarily be extended or truncated.
Chris Lattner951626b2007-08-02 06:11:14 +00007488 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7489 NumCastsRemoved) &&
7490 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7491 NumCastsRemoved);
Chris Lattnerc739cd62007-03-03 05:27:34 +00007492
Chris Lattner46b96052006-11-29 07:18:39 +00007493 case Instruction::Shl:
Chris Lattnerc739cd62007-03-03 05:27:34 +00007494 // If we are truncating the result of this SHL, and if it's a shift of a
7495 // constant amount, we can always perform a SHL in a smaller type.
7496 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
Zhou Sheng302748d2007-03-30 17:20:39 +00007497 uint32_t BitWidth = Ty->getBitWidth();
7498 if (BitWidth < OrigTy->getBitWidth() &&
7499 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattner951626b2007-08-02 06:11:14 +00007500 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7501 NumCastsRemoved);
Chris Lattnerc739cd62007-03-03 05:27:34 +00007502 }
7503 break;
7504 case Instruction::LShr:
Chris Lattnerc739cd62007-03-03 05:27:34 +00007505 // If this is a truncate of a logical shr, we can truncate it to a smaller
7506 // lshr iff we know that the bits we would otherwise be shifting in are
7507 // already zeros.
7508 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
Zhou Sheng302748d2007-03-30 17:20:39 +00007509 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7510 uint32_t BitWidth = Ty->getBitWidth();
7511 if (BitWidth < OrigBitWidth &&
Chris Lattnerc739cd62007-03-03 05:27:34 +00007512 MaskedValueIsZero(I->getOperand(0),
Zhou Sheng302748d2007-03-30 17:20:39 +00007513 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7514 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattner951626b2007-08-02 06:11:14 +00007515 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7516 NumCastsRemoved);
Chris Lattnerc739cd62007-03-03 05:27:34 +00007517 }
7518 }
Chris Lattner46b96052006-11-29 07:18:39 +00007519 break;
Reid Spencer3da59db2006-11-27 01:05:10 +00007520 case Instruction::ZExt:
7521 case Instruction::SExt:
Chris Lattner951626b2007-08-02 06:11:14 +00007522 case Instruction::Trunc:
7523 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner5543a852007-08-02 17:23:38 +00007524 // can safely replace it. Note that replacing it does not reduce the number
7525 // of casts in the input.
7526 if (I->getOpcode() == CastOpc)
Chris Lattner70074e02006-05-13 02:06:03 +00007527 return true;
Reid Spencer3da59db2006-11-27 01:05:10 +00007528 break;
Nick Lewyckyb8cd6a42008-07-05 21:19:34 +00007529 case Instruction::Select: {
7530 SelectInst *SI = cast<SelectInst>(I);
7531 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
7532 NumCastsRemoved) &&
7533 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
7534 NumCastsRemoved);
7535 }
Chris Lattner8114b712008-06-18 04:00:49 +00007536 case Instruction::PHI: {
7537 // We can change a phi if we can change all operands.
7538 PHINode *PN = cast<PHINode>(I);
7539 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7540 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
7541 NumCastsRemoved))
7542 return false;
7543 return true;
7544 }
Reid Spencer3da59db2006-11-27 01:05:10 +00007545 default:
Chris Lattner70074e02006-05-13 02:06:03 +00007546 // TODO: Can handle more cases here.
7547 break;
7548 }
7549
7550 return false;
7551}
7552
7553/// EvaluateInDifferentType - Given an expression that
7554/// CanEvaluateInDifferentType returns true for, actually insert the code to
7555/// evaluate the expression.
Reid Spencerc55b2432006-12-13 18:21:21 +00007556Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
Chris Lattnerc739cd62007-03-03 05:27:34 +00007557 bool isSigned) {
Chris Lattner70074e02006-05-13 02:06:03 +00007558 if (Constant *C = dyn_cast<Constant>(V))
Reid Spencerc55b2432006-12-13 18:21:21 +00007559 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
Chris Lattner70074e02006-05-13 02:06:03 +00007560
7561 // Otherwise, it must be an instruction.
7562 Instruction *I = cast<Instruction>(V);
Chris Lattner01859e82006-05-20 23:14:03 +00007563 Instruction *Res = 0;
Chris Lattner70074e02006-05-13 02:06:03 +00007564 switch (I->getOpcode()) {
Chris Lattnerc739cd62007-03-03 05:27:34 +00007565 case Instruction::Add:
7566 case Instruction::Sub:
Nick Lewyckye6b0c002008-01-22 05:08:48 +00007567 case Instruction::Mul:
Chris Lattner70074e02006-05-13 02:06:03 +00007568 case Instruction::And:
7569 case Instruction::Or:
Chris Lattnerc739cd62007-03-03 05:27:34 +00007570 case Instruction::Xor:
Chris Lattner46b96052006-11-29 07:18:39 +00007571 case Instruction::AShr:
7572 case Instruction::LShr:
7573 case Instruction::Shl: {
Reid Spencerc55b2432006-12-13 18:21:21 +00007574 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
Chris Lattnerc739cd62007-03-03 05:27:34 +00007575 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007576 Res = BinaryOperator::Create((Instruction::BinaryOps)I->getOpcode(),
Chris Lattner8114b712008-06-18 04:00:49 +00007577 LHS, RHS);
Chris Lattner46b96052006-11-29 07:18:39 +00007578 break;
7579 }
Reid Spencer3da59db2006-11-27 01:05:10 +00007580 case Instruction::Trunc:
7581 case Instruction::ZExt:
7582 case Instruction::SExt:
Reid Spencer3da59db2006-11-27 01:05:10 +00007583 // If the source type of the cast is the type we're trying for then we can
Chris Lattner951626b2007-08-02 06:11:14 +00007584 // just return the source. There's no need to insert it because it is not
7585 // new.
Chris Lattner70074e02006-05-13 02:06:03 +00007586 if (I->getOperand(0)->getType() == Ty)
7587 return I->getOperand(0);
7588
Chris Lattner8114b712008-06-18 04:00:49 +00007589 // Otherwise, must be the same type of cast, so just reinsert a new one.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007590 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattner8114b712008-06-18 04:00:49 +00007591 Ty);
Chris Lattner951626b2007-08-02 06:11:14 +00007592 break;
Nick Lewyckyb8cd6a42008-07-05 21:19:34 +00007593 case Instruction::Select: {
7594 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7595 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7596 Res = SelectInst::Create(I->getOperand(0), True, False);
7597 break;
7598 }
Chris Lattner8114b712008-06-18 04:00:49 +00007599 case Instruction::PHI: {
7600 PHINode *OPN = cast<PHINode>(I);
7601 PHINode *NPN = PHINode::Create(Ty);
7602 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
7603 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
7604 NPN->addIncoming(V, OPN->getIncomingBlock(i));
7605 }
7606 Res = NPN;
7607 break;
7608 }
Reid Spencer3da59db2006-11-27 01:05:10 +00007609 default:
Chris Lattner70074e02006-05-13 02:06:03 +00007610 // TODO: Can handle more cases here.
7611 assert(0 && "Unreachable!");
7612 break;
7613 }
7614
Chris Lattner8114b712008-06-18 04:00:49 +00007615 Res->takeName(I);
Chris Lattner70074e02006-05-13 02:06:03 +00007616 return InsertNewInstBefore(Res, *I);
7617}
7618
Reid Spencer3da59db2006-11-27 01:05:10 +00007619/// @brief Implement the transforms common to all CastInst visitors.
7620Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
Chris Lattner79d35b32003-06-23 21:59:52 +00007621 Value *Src = CI.getOperand(0);
7622
Dan Gohman23d9d272007-05-11 21:10:54 +00007623 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
Reid Spencer3da59db2006-11-27 01:05:10 +00007624 // eliminate it now.
Chris Lattner6e7ba452005-01-01 16:22:27 +00007625 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
Reid Spencer3da59db2006-11-27 01:05:10 +00007626 if (Instruction::CastOps opc =
7627 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7628 // The first cast (CSrc) is eliminable so we need to fix up or replace
7629 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007630 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Chris Lattner8fd217c2002-08-02 20:00:25 +00007631 }
7632 }
Chris Lattnera710ddc2004-05-25 04:29:21 +00007633
Reid Spencer3da59db2006-11-27 01:05:10 +00007634 // If we are casting a select then fold the cast into the select
Chris Lattner6e7ba452005-01-01 16:22:27 +00007635 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7636 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7637 return NV;
Reid Spencer3da59db2006-11-27 01:05:10 +00007638
7639 // If we are casting a PHI then fold the cast into the PHI
Chris Lattner4e998b22004-09-29 05:07:12 +00007640 if (isa<PHINode>(Src))
7641 if (Instruction *NV = FoldOpIntoPhi(CI))
7642 return NV;
Chris Lattner9fb92132006-04-12 18:09:35 +00007643
Reid Spencer3da59db2006-11-27 01:05:10 +00007644 return 0;
7645}
7646
Chris Lattnerd3e28342007-04-27 17:44:50 +00007647/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7648Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7649 Value *Src = CI.getOperand(0);
7650
Chris Lattnerd3e28342007-04-27 17:44:50 +00007651 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
Chris Lattner9bc14642007-04-28 00:57:34 +00007652 // If casting the result of a getelementptr instruction with no offset, turn
7653 // this into a cast of the original pointer!
Chris Lattnerd3e28342007-04-27 17:44:50 +00007654 if (GEP->hasAllZeroIndices()) {
7655 // Changing the cast operand is usually not a good idea but it is safe
7656 // here because the pointer operand is being replaced with another
7657 // pointer operand so the opcode doesn't need to change.
Chris Lattner9bc14642007-04-28 00:57:34 +00007658 AddToWorkList(GEP);
Chris Lattnerd3e28342007-04-27 17:44:50 +00007659 CI.setOperand(0, GEP->getOperand(0));
7660 return &CI;
7661 }
Chris Lattner9bc14642007-04-28 00:57:34 +00007662
7663 // If the GEP has a single use, and the base pointer is a bitcast, and the
7664 // GEP computes a constant offset, see if we can convert these three
7665 // instructions into fewer. This typically happens with unions and other
7666 // non-type-safe code.
7667 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7668 if (GEP->hasAllConstantIndices()) {
7669 // We are guaranteed to get a constant from EmitGEPOffset.
7670 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7671 int64_t Offset = OffsetV->getSExtValue();
7672
7673 // Get the base pointer input of the bitcast, and the type it points to.
7674 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7675 const Type *GEPIdxTy =
7676 cast<PointerType>(OrigBase->getType())->getElementType();
7677 if (GEPIdxTy->isSized()) {
7678 SmallVector<Value*, 8> NewIndices;
7679
Chris Lattnerc42e2262007-05-05 01:59:31 +00007680 // Start with the index over the outer type. Note that the type size
7681 // might be zero (even if the offset isn't zero) if the indexed type
7682 // is something like [0 x {int, int}]
Chris Lattner9bc14642007-04-28 00:57:34 +00007683 const Type *IntPtrTy = TD->getIntPtrType();
Chris Lattnerc42e2262007-05-05 01:59:31 +00007684 int64_t FirstIdx = 0;
Duncan Sands514ab342007-11-01 20:53:16 +00007685 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Chris Lattnerc42e2262007-05-05 01:59:31 +00007686 FirstIdx = Offset/TySize;
7687 Offset %= TySize;
Chris Lattner9bc14642007-04-28 00:57:34 +00007688
Chris Lattnerc42e2262007-05-05 01:59:31 +00007689 // Handle silly modulus not returning values values [0..TySize).
7690 if (Offset < 0) {
7691 --FirstIdx;
7692 Offset += TySize;
7693 assert(Offset >= 0);
7694 }
Chris Lattnerd717c182007-05-05 22:32:24 +00007695 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
Chris Lattner9bc14642007-04-28 00:57:34 +00007696 }
7697
7698 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
Chris Lattner9bc14642007-04-28 00:57:34 +00007699
7700 // Index into the types. If we fail, set OrigBase to null.
7701 while (Offset) {
7702 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7703 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattner6b6aef82007-05-15 00:16:00 +00007704 if (Offset < (int64_t)SL->getSizeInBytes()) {
7705 unsigned Elt = SL->getElementContainingOffset(Offset);
7706 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
Chris Lattner9bc14642007-04-28 00:57:34 +00007707
Chris Lattner6b6aef82007-05-15 00:16:00 +00007708 Offset -= SL->getElementOffset(Elt);
7709 GEPIdxTy = STy->getElementType(Elt);
7710 } else {
7711 // Otherwise, we can't index into this, bail out.
7712 Offset = 0;
7713 OrigBase = 0;
7714 }
Chris Lattner9bc14642007-04-28 00:57:34 +00007715 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7716 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sands514ab342007-11-01 20:53:16 +00007717 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Chris Lattner6b6aef82007-05-15 00:16:00 +00007718 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7719 Offset %= EltSize;
7720 } else {
7721 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7722 }
Chris Lattner9bc14642007-04-28 00:57:34 +00007723 GEPIdxTy = STy->getElementType();
7724 } else {
7725 // Otherwise, we can't index into this, bail out.
7726 Offset = 0;
7727 OrigBase = 0;
7728 }
7729 }
7730 if (OrigBase) {
7731 // If we were able to index down into an element, create the GEP
7732 // and bitcast the result. This eliminates one bitcast, potentially
7733 // two.
Gabor Greif051a9502008-04-06 20:25:17 +00007734 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7735 NewIndices.begin(),
7736 NewIndices.end(), "");
Chris Lattner9bc14642007-04-28 00:57:34 +00007737 InsertNewInstBefore(NGEP, CI);
7738 NGEP->takeName(GEP);
7739
Chris Lattner9bc14642007-04-28 00:57:34 +00007740 if (isa<BitCastInst>(CI))
7741 return new BitCastInst(NGEP, CI.getType());
7742 assert(isa<PtrToIntInst>(CI));
7743 return new PtrToIntInst(NGEP, CI.getType());
7744 }
7745 }
7746 }
7747 }
Chris Lattnerd3e28342007-04-27 17:44:50 +00007748 }
7749
7750 return commonCastTransforms(CI);
7751}
7752
7753
7754
Chris Lattnerc739cd62007-03-03 05:27:34 +00007755/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7756/// integer types. This function implements the common transforms for all those
Reid Spencer3da59db2006-11-27 01:05:10 +00007757/// cases.
7758/// @brief Implement the transforms common to CastInst with integer operands
7759Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7760 if (Instruction *Result = commonCastTransforms(CI))
7761 return Result;
7762
7763 Value *Src = CI.getOperand(0);
7764 const Type *SrcTy = Src->getType();
7765 const Type *DestTy = CI.getType();
Zhou Sheng4351c642007-04-02 08:20:41 +00007766 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7767 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
Reid Spencer3da59db2006-11-27 01:05:10 +00007768
Reid Spencer3da59db2006-11-27 01:05:10 +00007769 // See if we can simplify any instructions used by the LHS whose sole
7770 // purpose is to compute bits we don't care about.
Reid Spencerad6676e2007-03-22 20:56:53 +00007771 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7772 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
Reid Spencer3da59db2006-11-27 01:05:10 +00007773 KnownZero, KnownOne))
7774 return &CI;
7775
7776 // If the source isn't an instruction or has more than one use then we
7777 // can't do anything more.
Reid Spencere4d87aa2006-12-23 06:05:41 +00007778 Instruction *SrcI = dyn_cast<Instruction>(Src);
7779 if (!SrcI || !Src->hasOneUse())
Reid Spencer3da59db2006-11-27 01:05:10 +00007780 return 0;
7781
Chris Lattnerc739cd62007-03-03 05:27:34 +00007782 // Attempt to propagate the cast into the instruction for int->int casts.
Reid Spencer3da59db2006-11-27 01:05:10 +00007783 int NumCastsRemoved = 0;
Chris Lattnerc739cd62007-03-03 05:27:34 +00007784 if (!isa<BitCastInst>(CI) &&
7785 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattner951626b2007-08-02 06:11:14 +00007786 CI.getOpcode(), NumCastsRemoved)) {
Reid Spencer3da59db2006-11-27 01:05:10 +00007787 // If this cast is a truncate, evaluting in a different type always
Chris Lattner951626b2007-08-02 06:11:14 +00007788 // eliminates the cast, so it is always a win. If this is a zero-extension,
7789 // we need to do an AND to maintain the clear top-part of the computation,
7790 // so we require that the input have eliminated at least one cast. If this
7791 // is a sign extension, we insert two new casts (to do the extension) so we
Reid Spencer3da59db2006-11-27 01:05:10 +00007792 // require that two casts have been eliminated.
Chris Lattnerc739cd62007-03-03 05:27:34 +00007793 bool DoXForm;
7794 switch (CI.getOpcode()) {
7795 default:
7796 // All the others use floating point so we shouldn't actually
7797 // get here because of the check above.
7798 assert(0 && "Unknown cast type");
7799 case Instruction::Trunc:
7800 DoXForm = true;
7801 break;
7802 case Instruction::ZExt:
7803 DoXForm = NumCastsRemoved >= 1;
7804 break;
7805 case Instruction::SExt:
7806 DoXForm = NumCastsRemoved >= 2;
7807 break;
Reid Spencer3da59db2006-11-27 01:05:10 +00007808 }
7809
7810 if (DoXForm) {
Reid Spencerc55b2432006-12-13 18:21:21 +00007811 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7812 CI.getOpcode() == Instruction::SExt);
Reid Spencer3da59db2006-11-27 01:05:10 +00007813 assert(Res->getType() == DestTy);
7814 switch (CI.getOpcode()) {
7815 default: assert(0 && "Unknown cast type!");
7816 case Instruction::Trunc:
7817 case Instruction::BitCast:
7818 // Just replace this cast with the result.
7819 return ReplaceInstUsesWith(CI, Res);
7820 case Instruction::ZExt: {
7821 // We need to emit an AND to clear the high bits.
7822 assert(SrcBitSize < DestBitSize && "Not a zext?");
Chris Lattnercd1d6d52007-04-02 05:48:58 +00007823 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7824 SrcBitSize));
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007825 return BinaryOperator::CreateAnd(Res, C);
Reid Spencer3da59db2006-11-27 01:05:10 +00007826 }
7827 case Instruction::SExt:
7828 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007829 return CastInst::Create(Instruction::SExt,
Reid Spencer17212df2006-12-12 09:18:51 +00007830 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7831 CI), DestTy);
Reid Spencer3da59db2006-11-27 01:05:10 +00007832 }
7833 }
7834 }
7835
7836 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7837 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7838
7839 switch (SrcI->getOpcode()) {
7840 case Instruction::Add:
7841 case Instruction::Mul:
7842 case Instruction::And:
7843 case Instruction::Or:
7844 case Instruction::Xor:
Chris Lattner01deb9d2007-04-03 17:43:25 +00007845 // If we are discarding information, rewrite.
Reid Spencer3da59db2006-11-27 01:05:10 +00007846 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7847 // Don't insert two casts if they cannot be eliminated. We allow
7848 // two casts to be inserted if the sizes are the same. This could
7849 // only be converting signedness, which is a noop.
7850 if (DestBitSize == SrcBitSize ||
Reid Spencere4d87aa2006-12-23 06:05:41 +00007851 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7852 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
Reid Spencer7eb76382006-12-13 17:19:09 +00007853 Instruction::CastOps opcode = CI.getOpcode();
Reid Spencer17212df2006-12-12 09:18:51 +00007854 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7855 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007856 return BinaryOperator::Create(
Reid Spencer17212df2006-12-12 09:18:51 +00007857 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
Reid Spencer3da59db2006-11-27 01:05:10 +00007858 }
7859 }
7860
7861 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7862 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7863 SrcI->getOpcode() == Instruction::Xor &&
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00007864 Op1 == ConstantInt::getTrue() &&
Reid Spencere4d87aa2006-12-23 06:05:41 +00007865 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
Reid Spencer17212df2006-12-12 09:18:51 +00007866 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007867 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Reid Spencer3da59db2006-11-27 01:05:10 +00007868 }
7869 break;
7870 case Instruction::SDiv:
7871 case Instruction::UDiv:
7872 case Instruction::SRem:
7873 case Instruction::URem:
7874 // If we are just changing the sign, rewrite.
7875 if (DestBitSize == SrcBitSize) {
7876 // Don't insert two casts if they cannot be eliminated. We allow
7877 // two casts to be inserted if the sizes are the same. This could
7878 // only be converting signedness, which is a noop.
Reid Spencere4d87aa2006-12-23 06:05:41 +00007879 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7880 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
Reid Spencer17212df2006-12-12 09:18:51 +00007881 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
7882 Op0, DestTy, SrcI);
7883 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
7884 Op1, DestTy, SrcI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007885 return BinaryOperator::Create(
Reid Spencer3da59db2006-11-27 01:05:10 +00007886 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7887 }
7888 }
7889 break;
7890
7891 case Instruction::Shl:
7892 // Allow changing the sign of the source operand. Do not allow
7893 // changing the size of the shift, UNLESS the shift amount is a
7894 // constant. We must not change variable sized shifts to a smaller
7895 // size, because it is undefined to shift more bits out than exist
7896 // in the value.
7897 if (DestBitSize == SrcBitSize ||
7898 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
Reid Spencer17212df2006-12-12 09:18:51 +00007899 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7900 Instruction::BitCast : Instruction::Trunc);
7901 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
Reid Spencer832254e2007-02-02 02:16:23 +00007902 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007903 return BinaryOperator::CreateShl(Op0c, Op1c);
Reid Spencer3da59db2006-11-27 01:05:10 +00007904 }
7905 break;
7906 case Instruction::AShr:
7907 // If this is a signed shr, and if all bits shifted in are about to be
7908 // truncated off, turn it into an unsigned shr to allow greater
7909 // simplifications.
7910 if (DestBitSize < SrcBitSize &&
7911 isa<ConstantInt>(Op1)) {
Zhou Sheng302748d2007-03-30 17:20:39 +00007912 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
Reid Spencer3da59db2006-11-27 01:05:10 +00007913 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7914 // Insert the new logical shift right.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007915 return BinaryOperator::CreateLShr(Op0, Op1);
Reid Spencer3da59db2006-11-27 01:05:10 +00007916 }
7917 }
7918 break;
Reid Spencer3da59db2006-11-27 01:05:10 +00007919 }
7920 return 0;
7921}
7922
Chris Lattner8a9f5712007-04-11 06:57:46 +00007923Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007924 if (Instruction *Result = commonIntCastTransforms(CI))
7925 return Result;
7926
7927 Value *Src = CI.getOperand(0);
7928 const Type *Ty = CI.getType();
Zhou Sheng4351c642007-04-02 08:20:41 +00007929 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7930 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007931
7932 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7933 switch (SrcI->getOpcode()) {
7934 default: break;
7935 case Instruction::LShr:
7936 // We can shrink lshr to something smaller if we know the bits shifted in
7937 // are already zeros.
7938 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
Zhou Sheng302748d2007-03-30 17:20:39 +00007939 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007940
7941 // Get a mask for the bits shifting in.
Zhou Shenge82fca02007-03-28 09:19:01 +00007942 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
Reid Spencer17212df2006-12-12 09:18:51 +00007943 Value* SrcIOp0 = SrcI->getOperand(0);
7944 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007945 if (ShAmt >= DestBitWidth) // All zeros.
7946 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7947
7948 // Okay, we can shrink this. Truncate the input, then return a new
7949 // shift.
Reid Spencer832254e2007-02-02 02:16:23 +00007950 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7951 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7952 Ty, CI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007953 return BinaryOperator::CreateLShr(V1, V2);
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007954 }
Chris Lattnere13ab2a2006-12-05 01:26:29 +00007955 } else { // This is a variable shr.
7956
7957 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7958 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7959 // loop-invariant and CSE'd.
Reid Spencer4fe16d62007-01-11 18:21:29 +00007960 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
Chris Lattnere13ab2a2006-12-05 01:26:29 +00007961 Value *One = ConstantInt::get(SrcI->getType(), 1);
7962
Reid Spencer832254e2007-02-02 02:16:23 +00007963 Value *V = InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007964 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Reid Spencer832254e2007-02-02 02:16:23 +00007965 "tmp"), CI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007966 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Chris Lattnere13ab2a2006-12-05 01:26:29 +00007967 SrcI->getOperand(0),
7968 "tmp"), CI);
7969 Value *Zero = Constant::getNullValue(V->getType());
Reid Spencere4d87aa2006-12-23 06:05:41 +00007970 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
Chris Lattnere13ab2a2006-12-05 01:26:29 +00007971 }
Chris Lattner6aa5eb12006-11-29 07:04:07 +00007972 }
7973 break;
7974 }
7975 }
7976
7977 return 0;
Reid Spencer3da59db2006-11-27 01:05:10 +00007978}
7979
Evan Chengb98a10e2008-03-24 00:21:34 +00007980/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
7981/// in order to eliminate the icmp.
7982Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
7983 bool DoXform) {
7984 // If we are just checking for a icmp eq of a single bit and zext'ing it
7985 // to an integer, then shift the bit to the appropriate place and then
7986 // cast to integer to avoid the comparison.
7987 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7988 const APInt &Op1CV = Op1C->getValue();
7989
7990 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
7991 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
7992 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7993 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
7994 if (!DoXform) return ICI;
7995
7996 Value *In = ICI->getOperand(0);
7997 Value *Sh = ConstantInt::get(In->getType(),
7998 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00007999 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chengb98a10e2008-03-24 00:21:34 +00008000 In->getName()+".lobit"),
8001 CI);
8002 if (In->getType() != CI.getType())
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008003 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chengb98a10e2008-03-24 00:21:34 +00008004 false/*ZExt*/, "tmp", &CI);
8005
8006 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
8007 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008008 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chengb98a10e2008-03-24 00:21:34 +00008009 In->getName()+".not"),
8010 CI);
8011 }
8012
8013 return ReplaceInstUsesWith(CI, In);
8014 }
8015
8016
8017
8018 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
8019 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8020 // zext (X == 1) to i32 --> X iff X has only the low bit set.
8021 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
8022 // zext (X != 0) to i32 --> X iff X has only the low bit set.
8023 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
8024 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
8025 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8026 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
8027 // This only works for EQ and NE
8028 ICI->isEquality()) {
8029 // If Op1C some other power of two, convert:
8030 uint32_t BitWidth = Op1C->getType()->getBitWidth();
8031 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8032 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
8033 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
8034
8035 APInt KnownZeroMask(~KnownZero);
8036 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
8037 if (!DoXform) return ICI;
8038
8039 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
8040 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
8041 // (X&4) == 2 --> false
8042 // (X&4) != 2 --> true
8043 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
8044 Res = ConstantExpr::getZExt(Res, CI.getType());
8045 return ReplaceInstUsesWith(CI, Res);
8046 }
8047
8048 uint32_t ShiftAmt = KnownZeroMask.logBase2();
8049 Value *In = ICI->getOperand(0);
8050 if (ShiftAmt) {
8051 // Perform a logical shr by shiftamt.
8052 // Insert the shift to put the result in the low bit.
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008053 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chengb98a10e2008-03-24 00:21:34 +00008054 ConstantInt::get(In->getType(), ShiftAmt),
8055 In->getName()+".lobit"), CI);
8056 }
8057
8058 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
8059 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008060 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chengb98a10e2008-03-24 00:21:34 +00008061 InsertNewInstBefore(cast<Instruction>(In), CI);
8062 }
8063
8064 if (CI.getType() == In->getType())
8065 return ReplaceInstUsesWith(CI, In);
8066 else
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008067 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chengb98a10e2008-03-24 00:21:34 +00008068 }
8069 }
8070 }
8071
8072 return 0;
8073}
8074
Chris Lattner8a9f5712007-04-11 06:57:46 +00008075Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
Reid Spencer3da59db2006-11-27 01:05:10 +00008076 // If one of the common conversion will work ..
8077 if (Instruction *Result = commonIntCastTransforms(CI))
8078 return Result;
8079
8080 Value *Src = CI.getOperand(0);
8081
8082 // If this is a cast of a cast
8083 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
Reid Spencer3da59db2006-11-27 01:05:10 +00008084 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
8085 // types and if the sizes are just right we can convert this into a logical
8086 // 'and' which will be much cheaper than the pair of casts.
8087 if (isa<TruncInst>(CSrc)) {
8088 // Get the sizes of the types involved
8089 Value *A = CSrc->getOperand(0);
Zhou Sheng4351c642007-04-02 08:20:41 +00008090 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
8091 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
8092 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
Reid Spencer3da59db2006-11-27 01:05:10 +00008093 // If we're actually extending zero bits and the trunc is a no-op
8094 if (MidSize < DstSize && SrcSize == DstSize) {
8095 // Replace both of the casts with an And of the type mask.
Zhou Shenge82fca02007-03-28 09:19:01 +00008096 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
Reid Spencerad6676e2007-03-22 20:56:53 +00008097 Constant *AndConst = ConstantInt::get(AndValue);
Reid Spencer3da59db2006-11-27 01:05:10 +00008098 Instruction *And =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008099 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Reid Spencer3da59db2006-11-27 01:05:10 +00008100 // Unfortunately, if the type changed, we need to cast it back.
8101 if (And->getType() != CI.getType()) {
8102 And->setName(CSrc->getName()+".mask");
8103 InsertNewInstBefore(And, CI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008104 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Reid Spencer3da59db2006-11-27 01:05:10 +00008105 }
8106 return And;
8107 }
8108 }
8109 }
8110
Evan Chengb98a10e2008-03-24 00:21:34 +00008111 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
8112 return transformZExtICmp(ICI, CI);
Chris Lattnera2e2c9b2007-04-11 06:53:04 +00008113
Evan Chengb98a10e2008-03-24 00:21:34 +00008114 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
8115 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
8116 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
8117 // of the (zext icmp) will be transformed.
8118 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
8119 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
8120 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
8121 (transformZExtICmp(LHS, CI, false) ||
8122 transformZExtICmp(RHS, CI, false))) {
8123 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
8124 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008125 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Chris Lattner66bc3252007-04-11 05:45:39 +00008126 }
Evan Chengb98a10e2008-03-24 00:21:34 +00008127 }
8128
Reid Spencer3da59db2006-11-27 01:05:10 +00008129 return 0;
8130}
8131
Chris Lattner8a9f5712007-04-11 06:57:46 +00008132Instruction *InstCombiner::visitSExt(SExtInst &CI) {
Chris Lattnerba417832007-04-11 06:12:58 +00008133 if (Instruction *I = commonIntCastTransforms(CI))
8134 return I;
8135
Chris Lattner8a9f5712007-04-11 06:57:46 +00008136 Value *Src = CI.getOperand(0);
8137
Dan Gohman1975d032008-10-30 20:40:10 +00008138 // Canonicalize sign-extend from i1 to a select.
8139 if (Src->getType() == Type::Int1Ty)
8140 return SelectInst::Create(Src,
8141 ConstantInt::getAllOnesValue(CI.getType()),
8142 Constant::getNullValue(CI.getType()));
Dan Gohmanf35c8822008-05-20 21:01:12 +00008143
8144 // See if the value being truncated is already sign extended. If so, just
8145 // eliminate the trunc/sext pair.
8146 if (getOpcode(Src) == Instruction::Trunc) {
8147 Value *Op = cast<User>(Src)->getOperand(0);
8148 unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth();
8149 unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth();
8150 unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth();
8151 unsigned NumSignBits = ComputeNumSignBits(Op);
8152
8153 if (OpBits == DestBits) {
8154 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8155 // bits, it is already ready.
8156 if (NumSignBits > DestBits-MidBits)
8157 return ReplaceInstUsesWith(CI, Op);
8158 } else if (OpBits < DestBits) {
8159 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8160 // bits, just sext from i32.
8161 if (NumSignBits > OpBits-MidBits)
8162 return new SExtInst(Op, CI.getType(), "tmp");
8163 } else {
8164 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8165 // bits, just truncate to i32.
8166 if (NumSignBits > OpBits-MidBits)
8167 return new TruncInst(Op, CI.getType(), "tmp");
8168 }
8169 }
Chris Lattner46bbad22008-08-06 07:35:52 +00008170
8171 // If the input is a shl/ashr pair of a same constant, then this is a sign
8172 // extension from a smaller value. If we could trust arbitrary bitwidth
8173 // integers, we could turn this into a truncate to the smaller bit and then
8174 // use a sext for the whole extension. Since we don't, look deeper and check
8175 // for a truncate. If the source and dest are the same type, eliminate the
8176 // trunc and extend and just do shifts. For example, turn:
8177 // %a = trunc i32 %i to i8
8178 // %b = shl i8 %a, 6
8179 // %c = ashr i8 %b, 6
8180 // %d = sext i8 %c to i32
8181 // into:
8182 // %a = shl i32 %i, 30
8183 // %d = ashr i32 %a, 30
8184 Value *A = 0;
8185 ConstantInt *BA = 0, *CA = 0;
8186 if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
8187 m_ConstantInt(CA))) &&
8188 BA == CA && isa<TruncInst>(A)) {
8189 Value *I = cast<TruncInst>(A)->getOperand(0);
8190 if (I->getType() == CI.getType()) {
8191 unsigned MidSize = Src->getType()->getPrimitiveSizeInBits();
8192 unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits();
8193 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
8194 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
8195 I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
8196 CI.getName()), CI);
8197 return BinaryOperator::CreateAShr(I, ShAmtV);
8198 }
8199 }
8200
Chris Lattnerba417832007-04-11 06:12:58 +00008201 return 0;
Reid Spencer3da59db2006-11-27 01:05:10 +00008202}
8203
Chris Lattnerb7530652008-01-27 05:29:54 +00008204/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
8205/// in the specified FP type without changing its value.
Chris Lattner02a260a2008-04-20 00:41:09 +00008206static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Dale Johannesen23a98552008-10-09 23:00:39 +00008207 bool losesInfo;
Chris Lattnerb7530652008-01-27 05:29:54 +00008208 APFloat F = CFP->getValueAPF();
Dale Johannesen23a98552008-10-09 23:00:39 +00008209 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
8210 if (!losesInfo)
Chris Lattner02a260a2008-04-20 00:41:09 +00008211 return ConstantFP::get(F);
Chris Lattnerb7530652008-01-27 05:29:54 +00008212 return 0;
8213}
8214
8215/// LookThroughFPExtensions - If this is an fp extension instruction, look
8216/// through it until we get the source value.
8217static Value *LookThroughFPExtensions(Value *V) {
8218 if (Instruction *I = dyn_cast<Instruction>(V))
8219 if (I->getOpcode() == Instruction::FPExt)
8220 return LookThroughFPExtensions(I->getOperand(0));
8221
8222 // If this value is a constant, return the constant in the smallest FP type
8223 // that can accurately represent it. This allows us to turn
8224 // (float)((double)X+2.0) into x+2.0f.
8225 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
8226 if (CFP->getType() == Type::PPC_FP128Ty)
8227 return V; // No constant folding of this.
8228 // See if the value can be truncated to float and then reextended.
Chris Lattner02a260a2008-04-20 00:41:09 +00008229 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerb7530652008-01-27 05:29:54 +00008230 return V;
8231 if (CFP->getType() == Type::DoubleTy)
8232 return V; // Won't shrink.
Chris Lattner02a260a2008-04-20 00:41:09 +00008233 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerb7530652008-01-27 05:29:54 +00008234 return V;
8235 // Don't try to shrink to various long double types.
8236 }
8237
8238 return V;
8239}
8240
8241Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
8242 if (Instruction *I = commonCastTransforms(CI))
8243 return I;
8244
8245 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
8246 // smaller than the destination type, we can eliminate the truncate by doing
8247 // the add as the smaller type. This applies to add/sub/mul/div as well as
8248 // many builtins (sqrt, etc).
8249 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
8250 if (OpI && OpI->hasOneUse()) {
8251 switch (OpI->getOpcode()) {
8252 default: break;
8253 case Instruction::Add:
8254 case Instruction::Sub:
8255 case Instruction::Mul:
8256 case Instruction::FDiv:
8257 case Instruction::FRem:
8258 const Type *SrcTy = OpI->getType();
8259 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
8260 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
8261 if (LHSTrunc->getType() != SrcTy &&
8262 RHSTrunc->getType() != SrcTy) {
8263 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
8264 // If the source types were both smaller than the destination type of
8265 // the cast, do this xform.
8266 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
8267 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
8268 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
8269 CI.getType(), CI);
8270 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
8271 CI.getType(), CI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008272 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerb7530652008-01-27 05:29:54 +00008273 }
8274 }
8275 break;
8276 }
8277 }
8278 return 0;
Reid Spencer3da59db2006-11-27 01:05:10 +00008279}
8280
8281Instruction *InstCombiner::visitFPExt(CastInst &CI) {
8282 return commonCastTransforms(CI);
8283}
8284
Chris Lattner0c7a9a02008-05-19 20:25:04 +00008285Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Chris Lattner5af5f462008-08-06 05:13:06 +00008286 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8287 if (OpI == 0)
8288 return commonCastTransforms(FI);
8289
8290 // fptoui(uitofp(X)) --> X
8291 // fptoui(sitofp(X)) --> X
8292 // This is safe if the intermediate type has enough bits in its mantissa to
8293 // accurately represent all values of X. For example, do not do this with
8294 // i64->float->i64. This is also safe for sitofp case, because any negative
8295 // 'X' value would cause an undefined result for the fptoui.
8296 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8297 OpI->getOperand(0)->getType() == FI.getType() &&
8298 (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
8299 OpI->getType()->getFPMantissaWidth())
8300 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattner0c7a9a02008-05-19 20:25:04 +00008301
8302 return commonCastTransforms(FI);
Reid Spencer3da59db2006-11-27 01:05:10 +00008303}
8304
Chris Lattner0c7a9a02008-05-19 20:25:04 +00008305Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Chris Lattner5af5f462008-08-06 05:13:06 +00008306 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8307 if (OpI == 0)
8308 return commonCastTransforms(FI);
8309
8310 // fptosi(sitofp(X)) --> X
8311 // fptosi(uitofp(X)) --> X
8312 // This is safe if the intermediate type has enough bits in its mantissa to
8313 // accurately represent all values of X. For example, do not do this with
8314 // i64->float->i64. This is also safe for sitofp case, because any negative
8315 // 'X' value would cause an undefined result for the fptoui.
8316 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8317 OpI->getOperand(0)->getType() == FI.getType() &&
8318 (int)FI.getType()->getPrimitiveSizeInBits() <=
8319 OpI->getType()->getFPMantissaWidth())
8320 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattner0c7a9a02008-05-19 20:25:04 +00008321
8322 return commonCastTransforms(FI);
Reid Spencer3da59db2006-11-27 01:05:10 +00008323}
8324
8325Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
8326 return commonCastTransforms(CI);
8327}
8328
8329Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
8330 return commonCastTransforms(CI);
8331}
8332
8333Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
Chris Lattnerd3e28342007-04-27 17:44:50 +00008334 return commonPointerCastTransforms(CI);
Reid Spencer3da59db2006-11-27 01:05:10 +00008335}
8336
Chris Lattnerf9d9e452008-01-08 07:23:51 +00008337Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
8338 if (Instruction *I = commonCastTransforms(CI))
8339 return I;
8340
8341 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
8342 if (!DestPointee->isSized()) return 0;
8343
8344 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
8345 ConstantInt *Cst;
8346 Value *X;
8347 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
8348 m_ConstantInt(Cst)))) {
8349 // If the source and destination operands have the same type, see if this
8350 // is a single-index GEP.
8351 if (X->getType() == CI.getType()) {
8352 // Get the size of the pointee type.
Bill Wendlingb9d4f8d2008-03-14 05:12:19 +00008353 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattnerf9d9e452008-01-08 07:23:51 +00008354
8355 // Convert the constant to intptr type.
8356 APInt Offset = Cst->getValue();
8357 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8358
8359 // If Offset is evenly divisible by Size, we can do this xform.
8360 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8361 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greif051a9502008-04-06 20:25:17 +00008362 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattnerf9d9e452008-01-08 07:23:51 +00008363 }
8364 }
8365 // TODO: Could handle other cases, e.g. where add is indexing into field of
8366 // struct etc.
8367 } else if (CI.getOperand(0)->hasOneUse() &&
8368 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
8369 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
8370 // "inttoptr+GEP" instead of "add+intptr".
8371
8372 // Get the size of the pointee type.
8373 uint64_t Size = TD->getABITypeSize(DestPointee);
8374
8375 // Convert the constant to intptr type.
8376 APInt Offset = Cst->getValue();
8377 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8378
8379 // If Offset is evenly divisible by Size, we can do this xform.
8380 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8381 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
8382
8383 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
8384 "tmp"), CI);
Gabor Greif051a9502008-04-06 20:25:17 +00008385 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattnerf9d9e452008-01-08 07:23:51 +00008386 }
8387 }
8388 return 0;
Reid Spencer3da59db2006-11-27 01:05:10 +00008389}
8390
Chris Lattnerd3e28342007-04-27 17:44:50 +00008391Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
Reid Spencer3da59db2006-11-27 01:05:10 +00008392 // If the operands are integer typed then apply the integer transforms,
8393 // otherwise just apply the common ones.
8394 Value *Src = CI.getOperand(0);
8395 const Type *SrcTy = Src->getType();
8396 const Type *DestTy = CI.getType();
8397
Chris Lattner42a75512007-01-15 02:27:26 +00008398 if (SrcTy->isInteger() && DestTy->isInteger()) {
Reid Spencer3da59db2006-11-27 01:05:10 +00008399 if (Instruction *Result = commonIntCastTransforms(CI))
8400 return Result;
Chris Lattnerd3e28342007-04-27 17:44:50 +00008401 } else if (isa<PointerType>(SrcTy)) {
8402 if (Instruction *I = commonPointerCastTransforms(CI))
8403 return I;
Reid Spencer3da59db2006-11-27 01:05:10 +00008404 } else {
8405 if (Instruction *Result = commonCastTransforms(CI))
8406 return Result;
8407 }
8408
8409
8410 // Get rid of casts from one type to the same type. These are useless and can
8411 // be replaced by the operand.
8412 if (DestTy == Src->getType())
8413 return ReplaceInstUsesWith(CI, Src);
8414
Reid Spencer3da59db2006-11-27 01:05:10 +00008415 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
Chris Lattnerd3e28342007-04-27 17:44:50 +00008416 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
8417 const Type *DstElTy = DstPTy->getElementType();
8418 const Type *SrcElTy = SrcPTy->getElementType();
8419
Nate Begeman83ad90a2008-03-31 00:22:16 +00008420 // If the address spaces don't match, don't eliminate the bitcast, which is
8421 // required for changing types.
8422 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
8423 return 0;
8424
Chris Lattnerd3e28342007-04-27 17:44:50 +00008425 // If we are casting a malloc or alloca to a pointer to a type of the same
8426 // size, rewrite the allocation instruction to allocate the "right" type.
8427 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
8428 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
8429 return V;
8430
Chris Lattnerd717c182007-05-05 22:32:24 +00008431 // If the source and destination are pointers, and this cast is equivalent
8432 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
Chris Lattnerd3e28342007-04-27 17:44:50 +00008433 // This can enhance SROA and other transforms that want type-safe pointers.
8434 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
8435 unsigned NumZeros = 0;
8436 while (SrcElTy != DstElTy &&
8437 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
8438 SrcElTy->getNumContainedTypes() /* not "{}" */) {
8439 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
8440 ++NumZeros;
8441 }
Chris Lattner4e998b22004-09-29 05:07:12 +00008442
Chris Lattnerd3e28342007-04-27 17:44:50 +00008443 // If we found a path from the src to dest, create the getelementptr now.
8444 if (SrcElTy == DstElTy) {
8445 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greif051a9502008-04-06 20:25:17 +00008446 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
8447 ((Instruction*) NULL));
Chris Lattner9fb92132006-04-12 18:09:35 +00008448 }
Reid Spencer3da59db2006-11-27 01:05:10 +00008449 }
Chris Lattner24c8e382003-07-24 17:35:25 +00008450
Reid Spencer3da59db2006-11-27 01:05:10 +00008451 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
8452 if (SVI->hasOneUse()) {
8453 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8454 // a bitconvert to a vector with the same # elts.
Reid Spencer9d6565a2007-02-15 02:26:10 +00008455 if (isa<VectorType>(DestTy) &&
Mon P Wangaeb06d22008-11-10 04:46:22 +00008456 cast<VectorType>(DestTy)->getNumElements() ==
8457 SVI->getType()->getNumElements() &&
8458 SVI->getType()->getNumElements() ==
8459 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
Reid Spencer3da59db2006-11-27 01:05:10 +00008460 CastInst *Tmp;
8461 // If either of the operands is a cast from CI.getType(), then
8462 // evaluating the shuffle in the casted destination's type will allow
8463 // us to eliminate at least one cast.
8464 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
8465 Tmp->getOperand(0)->getType() == DestTy) ||
8466 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
8467 Tmp->getOperand(0)->getType() == DestTy)) {
Reid Spencer17212df2006-12-12 09:18:51 +00008468 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
8469 SVI->getOperand(0), DestTy, &CI);
8470 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
8471 SVI->getOperand(1), DestTy, &CI);
Reid Spencer3da59db2006-11-27 01:05:10 +00008472 // Return a new shuffle vector. Use the same element ID's, as we
8473 // know the vector types match #elts.
8474 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
Chris Lattner01575b72006-05-25 23:24:33 +00008475 }
8476 }
8477 }
8478 }
Chris Lattnerdd841ae2002-04-18 17:39:14 +00008479 return 0;
Chris Lattner8a2a3112001-12-14 16:52:21 +00008480}
8481
Chris Lattnere576b912004-04-09 23:46:01 +00008482/// GetSelectFoldableOperands - We want to turn code that looks like this:
8483/// %C = or %A, %B
8484/// %D = select %cond, %C, %A
8485/// into:
8486/// %C = select %cond, %B, 0
8487/// %D = or %A, %C
8488///
8489/// Assuming that the specified instruction is an operand to the select, return
8490/// a bitmask indicating which operands of this instruction are foldable if they
8491/// equal the other incoming value of the select.
8492///
8493static unsigned GetSelectFoldableOperands(Instruction *I) {
8494 switch (I->getOpcode()) {
8495 case Instruction::Add:
8496 case Instruction::Mul:
8497 case Instruction::And:
8498 case Instruction::Or:
8499 case Instruction::Xor:
8500 return 3; // Can fold through either operand.
8501 case Instruction::Sub: // Can only fold on the amount subtracted.
8502 case Instruction::Shl: // Can only fold on the shift amount.
Reid Spencer3822ff52006-11-08 06:47:33 +00008503 case Instruction::LShr:
8504 case Instruction::AShr:
Misha Brukmanfd939082005-04-21 23:48:37 +00008505 return 1;
Chris Lattnere576b912004-04-09 23:46:01 +00008506 default:
8507 return 0; // Cannot fold
8508 }
8509}
8510
8511/// GetSelectFoldableConstant - For the same transformation as the previous
8512/// function, return the identity constant that goes into the select.
8513static Constant *GetSelectFoldableConstant(Instruction *I) {
8514 switch (I->getOpcode()) {
8515 default: assert(0 && "This cannot happen!"); abort();
8516 case Instruction::Add:
8517 case Instruction::Sub:
8518 case Instruction::Or:
8519 case Instruction::Xor:
Chris Lattnere576b912004-04-09 23:46:01 +00008520 case Instruction::Shl:
Reid Spencer3822ff52006-11-08 06:47:33 +00008521 case Instruction::LShr:
8522 case Instruction::AShr:
Reid Spencer832254e2007-02-02 02:16:23 +00008523 return Constant::getNullValue(I->getType());
Chris Lattnere576b912004-04-09 23:46:01 +00008524 case Instruction::And:
Chris Lattner7cbe2eb2007-06-15 06:23:19 +00008525 return Constant::getAllOnesValue(I->getType());
Chris Lattnere576b912004-04-09 23:46:01 +00008526 case Instruction::Mul:
8527 return ConstantInt::get(I->getType(), 1);
8528 }
8529}
8530
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008531/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8532/// have the same opcode and only one use each. Try to simplify this.
8533Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8534 Instruction *FI) {
8535 if (TI->getNumOperands() == 1) {
8536 // If this is a non-volatile load or a cast from the same type,
8537 // merge.
Reid Spencer3da59db2006-11-27 01:05:10 +00008538 if (TI->isCast()) {
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008539 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8540 return 0;
8541 } else {
8542 return 0; // unknown unary op.
8543 }
Misha Brukmanfd939082005-04-21 23:48:37 +00008544
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008545 // Fold this by inserting a select from the input values.
Gabor Greif051a9502008-04-06 20:25:17 +00008546 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8547 FI->getOperand(0), SI.getName()+".v");
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008548 InsertNewInstBefore(NewSI, SI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008549 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Reid Spencer3da59db2006-11-27 01:05:10 +00008550 TI->getType());
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008551 }
8552
Reid Spencer832254e2007-02-02 02:16:23 +00008553 // Only handle binary operators here.
8554 if (!isa<BinaryOperator>(TI))
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008555 return 0;
8556
8557 // Figure out if the operations have any operands in common.
8558 Value *MatchOp, *OtherOpT, *OtherOpF;
8559 bool MatchIsOpZero;
8560 if (TI->getOperand(0) == FI->getOperand(0)) {
8561 MatchOp = TI->getOperand(0);
8562 OtherOpT = TI->getOperand(1);
8563 OtherOpF = FI->getOperand(1);
8564 MatchIsOpZero = true;
8565 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8566 MatchOp = TI->getOperand(1);
8567 OtherOpT = TI->getOperand(0);
8568 OtherOpF = FI->getOperand(0);
8569 MatchIsOpZero = false;
8570 } else if (!TI->isCommutative()) {
8571 return 0;
8572 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8573 MatchOp = TI->getOperand(0);
8574 OtherOpT = TI->getOperand(1);
8575 OtherOpF = FI->getOperand(0);
8576 MatchIsOpZero = true;
8577 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8578 MatchOp = TI->getOperand(1);
8579 OtherOpT = TI->getOperand(0);
8580 OtherOpF = FI->getOperand(1);
8581 MatchIsOpZero = true;
8582 } else {
8583 return 0;
8584 }
8585
8586 // If we reach here, they do have operations in common.
Gabor Greif051a9502008-04-06 20:25:17 +00008587 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8588 OtherOpF, SI.getName()+".v");
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008589 InsertNewInstBefore(NewSI, SI);
8590
8591 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8592 if (MatchIsOpZero)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008593 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008594 else
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008595 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008596 }
Reid Spencera07cb7d2007-02-02 14:41:37 +00008597 assert(0 && "Shouldn't get here");
8598 return 0;
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008599}
8600
Dan Gohman81b28ce2008-09-16 18:46:06 +00008601/// visitSelectInstWithICmp - Visit a SelectInst that has an
8602/// ICmpInst as its first operand.
8603///
8604Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
8605 ICmpInst *ICI) {
8606 bool Changed = false;
8607 ICmpInst::Predicate Pred = ICI->getPredicate();
8608 Value *CmpLHS = ICI->getOperand(0);
8609 Value *CmpRHS = ICI->getOperand(1);
8610 Value *TrueVal = SI.getTrueValue();
8611 Value *FalseVal = SI.getFalseValue();
8612
8613 // Check cases where the comparison is with a constant that
8614 // can be adjusted to fit the min/max idiom. We may edit ICI in
8615 // place here, so make sure the select is the only user.
8616 if (ICI->hasOneUse())
Dan Gohman1975d032008-10-30 20:40:10 +00008617 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
Dan Gohman81b28ce2008-09-16 18:46:06 +00008618 switch (Pred) {
8619 default: break;
8620 case ICmpInst::ICMP_ULT:
8621 case ICmpInst::ICMP_SLT: {
8622 // X < MIN ? T : F --> F
8623 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
8624 return ReplaceInstUsesWith(SI, FalseVal);
8625 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
8626 Constant *AdjustedRHS = SubOne(CI);
8627 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8628 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8629 Pred = ICmpInst::getSwappedPredicate(Pred);
8630 CmpRHS = AdjustedRHS;
8631 std::swap(FalseVal, TrueVal);
8632 ICI->setPredicate(Pred);
8633 ICI->setOperand(1, CmpRHS);
8634 SI.setOperand(1, TrueVal);
8635 SI.setOperand(2, FalseVal);
8636 Changed = true;
8637 }
8638 break;
8639 }
8640 case ICmpInst::ICMP_UGT:
8641 case ICmpInst::ICMP_SGT: {
8642 // X > MAX ? T : F --> F
8643 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
8644 return ReplaceInstUsesWith(SI, FalseVal);
8645 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
8646 Constant *AdjustedRHS = AddOne(CI);
8647 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8648 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8649 Pred = ICmpInst::getSwappedPredicate(Pred);
8650 CmpRHS = AdjustedRHS;
8651 std::swap(FalseVal, TrueVal);
8652 ICI->setPredicate(Pred);
8653 ICI->setOperand(1, CmpRHS);
8654 SI.setOperand(1, TrueVal);
8655 SI.setOperand(2, FalseVal);
8656 Changed = true;
8657 }
8658 break;
8659 }
8660 }
8661
Dan Gohman1975d032008-10-30 20:40:10 +00008662 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
8663 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
Chris Lattnercb504b92008-11-16 05:38:51 +00008664 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
8665 if (match(TrueVal, m_ConstantInt(-1)) &&
8666 match(FalseVal, m_ConstantInt(0)))
8667 Pred = ICI->getPredicate();
8668 else if (match(TrueVal, m_ConstantInt(0)) &&
8669 match(FalseVal, m_ConstantInt(-1)))
8670 Pred = CmpInst::getInversePredicate(ICI->getPredicate());
8671
Dan Gohman1975d032008-10-30 20:40:10 +00008672 if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
8673 // If we are just checking for a icmp eq of a single bit and zext'ing it
8674 // to an integer, then shift the bit to the appropriate place and then
8675 // cast to integer to avoid the comparison.
8676 const APInt &Op1CV = CI->getValue();
8677
8678 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
8679 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
8680 if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
Chris Lattnercb504b92008-11-16 05:38:51 +00008681 (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
Dan Gohman1975d032008-10-30 20:40:10 +00008682 Value *In = ICI->getOperand(0);
8683 Value *Sh = ConstantInt::get(In->getType(),
8684 In->getType()->getPrimitiveSizeInBits()-1);
8685 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
8686 In->getName()+".lobit"),
8687 *ICI);
Dan Gohman21440ac2008-11-02 00:17:33 +00008688 if (In->getType() != SI.getType())
8689 In = CastInst::CreateIntegerCast(In, SI.getType(),
Dan Gohman1975d032008-10-30 20:40:10 +00008690 true/*SExt*/, "tmp", ICI);
8691
8692 if (Pred == ICmpInst::ICMP_SGT)
8693 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
8694 In->getName()+".not"), *ICI);
8695
8696 return ReplaceInstUsesWith(SI, In);
8697 }
8698 }
8699 }
8700
Dan Gohman81b28ce2008-09-16 18:46:06 +00008701 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
8702 // Transform (X == Y) ? X : Y -> Y
8703 if (Pred == ICmpInst::ICMP_EQ)
8704 return ReplaceInstUsesWith(SI, FalseVal);
8705 // Transform (X != Y) ? X : Y -> X
8706 if (Pred == ICmpInst::ICMP_NE)
8707 return ReplaceInstUsesWith(SI, TrueVal);
8708 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8709
8710 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
8711 // Transform (X == Y) ? Y : X -> X
8712 if (Pred == ICmpInst::ICMP_EQ)
8713 return ReplaceInstUsesWith(SI, FalseVal);
8714 // Transform (X != Y) ? Y : X -> Y
8715 if (Pred == ICmpInst::ICMP_NE)
8716 return ReplaceInstUsesWith(SI, TrueVal);
8717 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8718 }
8719
8720 /// NOTE: if we wanted to, this is where to detect integer ABS
8721
8722 return Changed ? &SI : 0;
8723}
8724
Chris Lattner3d69f462004-03-12 05:52:32 +00008725Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Chris Lattnerc32b30a2004-03-30 19:37:13 +00008726 Value *CondVal = SI.getCondition();
8727 Value *TrueVal = SI.getTrueValue();
8728 Value *FalseVal = SI.getFalseValue();
8729
8730 // select true, X, Y -> X
8731 // select false, X, Y -> Y
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00008732 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
Reid Spencer579dca12007-01-12 04:24:46 +00008733 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
Chris Lattnerc32b30a2004-03-30 19:37:13 +00008734
8735 // select C, X, X -> X
8736 if (TrueVal == FalseVal)
8737 return ReplaceInstUsesWith(SI, TrueVal);
8738
Chris Lattnere87597f2004-10-16 18:11:37 +00008739 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8740 return ReplaceInstUsesWith(SI, FalseVal);
8741 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8742 return ReplaceInstUsesWith(SI, TrueVal);
8743 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8744 if (isa<Constant>(TrueVal))
8745 return ReplaceInstUsesWith(SI, TrueVal);
8746 else
8747 return ReplaceInstUsesWith(SI, FalseVal);
8748 }
8749
Reid Spencer4fe16d62007-01-11 18:21:29 +00008750 if (SI.getType() == Type::Int1Ty) {
Reid Spencera54b7cb2007-01-12 07:05:14 +00008751 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
Reid Spencer579dca12007-01-12 04:24:46 +00008752 if (C->getZExtValue()) {
Chris Lattner0c199a72004-04-08 04:43:23 +00008753 // Change: A = select B, true, C --> A = or B, C
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008754 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00008755 } else {
8756 // Change: A = select B, false, C --> A = and !B, C
8757 Value *NotCond =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008758 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Chris Lattner0c199a72004-04-08 04:43:23 +00008759 "not."+CondVal->getName()), SI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008760 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00008761 }
Reid Spencera54b7cb2007-01-12 07:05:14 +00008762 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
Reid Spencer579dca12007-01-12 04:24:46 +00008763 if (C->getZExtValue() == false) {
Chris Lattner0c199a72004-04-08 04:43:23 +00008764 // Change: A = select B, C, false --> A = and B, C
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008765 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00008766 } else {
8767 // Change: A = select B, C, true --> A = or !B, C
8768 Value *NotCond =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008769 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Chris Lattner0c199a72004-04-08 04:43:23 +00008770 "not."+CondVal->getName()), SI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008771 return BinaryOperator::CreateOr(NotCond, TrueVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00008772 }
8773 }
Chris Lattnercfa59752007-11-25 21:27:53 +00008774
8775 // select a, b, a -> a&b
8776 // select a, a, b -> a|b
8777 if (CondVal == TrueVal)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008778 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattnercfa59752007-11-25 21:27:53 +00008779 else if (CondVal == FalseVal)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008780 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00008781 }
Chris Lattner0c199a72004-04-08 04:43:23 +00008782
Chris Lattner2eefe512004-04-09 19:05:30 +00008783 // Selecting between two integer constants?
8784 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8785 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
Chris Lattnerba417832007-04-11 06:12:58 +00008786 // select C, 1, 0 -> zext C to int
Reid Spencer2ec619a2007-03-23 21:24:59 +00008787 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008788 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Reid Spencer2ec619a2007-03-23 21:24:59 +00008789 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
Chris Lattnerba417832007-04-11 06:12:58 +00008790 // select C, 0, 1 -> zext !C to int
Chris Lattner2eefe512004-04-09 19:05:30 +00008791 Value *NotCond =
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008792 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Chris Lattner82e14fe2004-04-09 18:19:44 +00008793 "not."+CondVal->getName()), SI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008794 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Chris Lattner82e14fe2004-04-09 18:19:44 +00008795 }
Chris Lattnerba417832007-04-11 06:12:58 +00008796
8797 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
Chris Lattner457dd822004-06-09 07:59:58 +00008798
Reid Spencere4d87aa2006-12-23 06:05:41 +00008799 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
Chris Lattnerb8456462006-09-20 04:44:59 +00008800
Reid Spencere4d87aa2006-12-23 06:05:41 +00008801 // (x <s 0) ? -1 : 0 -> ashr x, 31
Reid Spencer2ec619a2007-03-23 21:24:59 +00008802 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
Chris Lattnerb8456462006-09-20 04:44:59 +00008803 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
Chris Lattnerba417832007-04-11 06:12:58 +00008804 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
Chris Lattnerb8456462006-09-20 04:44:59 +00008805 // The comparison constant and the result are not neccessarily the
Reid Spencer3da59db2006-11-27 01:05:10 +00008806 // same width. Make an all-ones value by inserting a AShr.
Chris Lattnerb8456462006-09-20 04:44:59 +00008807 Value *X = IC->getOperand(0);
Zhou Sheng4351c642007-04-02 08:20:41 +00008808 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
Reid Spencer832254e2007-02-02 02:16:23 +00008809 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008810 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Reid Spencer832254e2007-02-02 02:16:23 +00008811 ShAmt, "ones");
Chris Lattnerb8456462006-09-20 04:44:59 +00008812 InsertNewInstBefore(SRA, SI);
8813
Reid Spencer3da59db2006-11-27 01:05:10 +00008814 // Finally, convert to the type of the select RHS. We figure out
8815 // if this requires a SExt, Trunc or BitCast based on the sizes.
8816 Instruction::CastOps opc = Instruction::BitCast;
Zhou Sheng4351c642007-04-02 08:20:41 +00008817 uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
8818 uint32_t SISize = SI.getType()->getPrimitiveSizeInBits();
Reid Spencer3da59db2006-11-27 01:05:10 +00008819 if (SRASize < SISize)
8820 opc = Instruction::SExt;
8821 else if (SRASize > SISize)
8822 opc = Instruction::Trunc;
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008823 return CastInst::Create(opc, SRA, SI.getType());
Chris Lattnerb8456462006-09-20 04:44:59 +00008824 }
8825 }
8826
8827
8828 // If one of the constants is zero (we know they can't both be) and we
Chris Lattnerba417832007-04-11 06:12:58 +00008829 // have an icmp instruction with zero, and we have an 'and' with the
Chris Lattnerb8456462006-09-20 04:44:59 +00008830 // non-constant value, eliminate this whole mess. This corresponds to
8831 // cases like this: ((X & 27) ? 27 : 0)
Reid Spencer2ec619a2007-03-23 21:24:59 +00008832 if (TrueValC->isZero() || FalseValC->isZero())
Chris Lattner65b72ba2006-09-18 04:22:48 +00008833 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
Chris Lattner457dd822004-06-09 07:59:58 +00008834 cast<Constant>(IC->getOperand(1))->isNullValue())
8835 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8836 if (ICA->getOpcode() == Instruction::And &&
Misha Brukmanfd939082005-04-21 23:48:37 +00008837 isa<ConstantInt>(ICA->getOperand(1)) &&
8838 (ICA->getOperand(1) == TrueValC ||
8839 ICA->getOperand(1) == FalseValC) &&
Chris Lattner457dd822004-06-09 07:59:58 +00008840 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8841 // Okay, now we know that everything is set up, we just don't
Reid Spencere4d87aa2006-12-23 06:05:41 +00008842 // know whether we have a icmp_ne or icmp_eq and whether the
8843 // true or false val is the zero.
Reid Spencer2ec619a2007-03-23 21:24:59 +00008844 bool ShouldNotVal = !TrueValC->isZero();
Reid Spencere4d87aa2006-12-23 06:05:41 +00008845 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
Chris Lattner457dd822004-06-09 07:59:58 +00008846 Value *V = ICA;
8847 if (ShouldNotVal)
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008848 V = InsertNewInstBefore(BinaryOperator::Create(
Chris Lattner457dd822004-06-09 07:59:58 +00008849 Instruction::Xor, V, ICA->getOperand(1)), SI);
8850 return ReplaceInstUsesWith(SI, V);
8851 }
Chris Lattnerb8456462006-09-20 04:44:59 +00008852 }
Chris Lattnerc32b30a2004-03-30 19:37:13 +00008853 }
Chris Lattnerd76956d2004-04-10 22:21:27 +00008854
8855 // See if we are selecting two values based on a comparison of the two values.
Reid Spencere4d87aa2006-12-23 06:05:41 +00008856 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8857 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
Chris Lattnerd76956d2004-04-10 22:21:27 +00008858 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen5a2174f2007-10-03 17:45:27 +00008859 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8860 // This is not safe in general for floating point:
8861 // consider X== -0, Y== +0.
8862 // It becomes safe if either operand is a nonzero constant.
8863 ConstantFP *CFPt, *CFPf;
8864 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8865 !CFPt->getValueAPF().isZero()) ||
8866 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8867 !CFPf->getValueAPF().isZero()))
Chris Lattnerd76956d2004-04-10 22:21:27 +00008868 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen5a2174f2007-10-03 17:45:27 +00008869 }
Chris Lattnerd76956d2004-04-10 22:21:27 +00008870 // Transform (X != Y) ? X : Y -> X
Reid Spencere4d87aa2006-12-23 06:05:41 +00008871 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
Chris Lattnerd76956d2004-04-10 22:21:27 +00008872 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman81b28ce2008-09-16 18:46:06 +00008873 // NOTE: if we wanted to, this is where to detect MIN/MAX
Chris Lattnerd76956d2004-04-10 22:21:27 +00008874
Reid Spencere4d87aa2006-12-23 06:05:41 +00008875 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
Chris Lattnerd76956d2004-04-10 22:21:27 +00008876 // Transform (X == Y) ? Y : X -> X
Dale Johannesen5a2174f2007-10-03 17:45:27 +00008877 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8878 // This is not safe in general for floating point:
8879 // consider X== -0, Y== +0.
8880 // It becomes safe if either operand is a nonzero constant.
8881 ConstantFP *CFPt, *CFPf;
8882 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8883 !CFPt->getValueAPF().isZero()) ||
8884 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8885 !CFPf->getValueAPF().isZero()))
8886 return ReplaceInstUsesWith(SI, FalseVal);
8887 }
Chris Lattnerd76956d2004-04-10 22:21:27 +00008888 // Transform (X != Y) ? Y : X -> Y
Reid Spencere4d87aa2006-12-23 06:05:41 +00008889 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8890 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman81b28ce2008-09-16 18:46:06 +00008891 // NOTE: if we wanted to, this is where to detect MIN/MAX
Reid Spencere4d87aa2006-12-23 06:05:41 +00008892 }
Dan Gohman81b28ce2008-09-16 18:46:06 +00008893 // NOTE: if we wanted to, this is where to detect ABS
Reid Spencere4d87aa2006-12-23 06:05:41 +00008894 }
8895
8896 // See if we are selecting two values based on a comparison of the two values.
Dan Gohman81b28ce2008-09-16 18:46:06 +00008897 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
8898 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
8899 return Result;
Misha Brukmanfd939082005-04-21 23:48:37 +00008900
Chris Lattner87875da2005-01-13 22:52:24 +00008901 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8902 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8903 if (TI->hasOneUse() && FI->hasOneUse()) {
Chris Lattner87875da2005-01-13 22:52:24 +00008904 Instruction *AddOp = 0, *SubOp = 0;
8905
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00008906 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8907 if (TI->getOpcode() == FI->getOpcode())
8908 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8909 return IV;
8910
8911 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8912 // even legal for FP.
Chris Lattner87875da2005-01-13 22:52:24 +00008913 if (TI->getOpcode() == Instruction::Sub &&
8914 FI->getOpcode() == Instruction::Add) {
8915 AddOp = FI; SubOp = TI;
8916 } else if (FI->getOpcode() == Instruction::Sub &&
8917 TI->getOpcode() == Instruction::Add) {
8918 AddOp = TI; SubOp = FI;
8919 }
8920
8921 if (AddOp) {
8922 Value *OtherAddOp = 0;
8923 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8924 OtherAddOp = AddOp->getOperand(1);
8925 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8926 OtherAddOp = AddOp->getOperand(0);
8927 }
8928
8929 if (OtherAddOp) {
Chris Lattner97f37a42006-02-24 18:05:58 +00008930 // So at this point we know we have (Y -> OtherAddOp):
8931 // select C, (add X, Y), (sub X, Z)
8932 Value *NegVal; // Compute -Z
8933 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8934 NegVal = ConstantExpr::getNeg(C);
8935 } else {
8936 NegVal = InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008937 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Chris Lattner87875da2005-01-13 22:52:24 +00008938 }
Chris Lattner97f37a42006-02-24 18:05:58 +00008939
8940 Value *NewTrueOp = OtherAddOp;
8941 Value *NewFalseOp = NegVal;
8942 if (AddOp != TI)
8943 std::swap(NewTrueOp, NewFalseOp);
8944 Instruction *NewSel =
Gabor Greifb1dbcd82008-05-15 10:04:30 +00008945 SelectInst::Create(CondVal, NewTrueOp,
8946 NewFalseOp, SI.getName() + ".p");
Chris Lattner97f37a42006-02-24 18:05:58 +00008947
8948 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008949 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Chris Lattner87875da2005-01-13 22:52:24 +00008950 }
8951 }
8952 }
Misha Brukmanfd939082005-04-21 23:48:37 +00008953
Chris Lattnere576b912004-04-09 23:46:01 +00008954 // See if we can fold the select into one of our operands.
Chris Lattner42a75512007-01-15 02:27:26 +00008955 if (SI.getType()->isInteger()) {
Chris Lattnere576b912004-04-09 23:46:01 +00008956 // See the comment above GetSelectFoldableOperands for a description of the
8957 // transformation we are doing here.
8958 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8959 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8960 !isa<Constant>(FalseVal))
8961 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8962 unsigned OpToFold = 0;
8963 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
8964 OpToFold = 1;
8965 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
8966 OpToFold = 2;
8967 }
8968
8969 if (OpToFold) {
8970 Constant *C = GetSelectFoldableConstant(TVI);
Chris Lattnere576b912004-04-09 23:46:01 +00008971 Instruction *NewSel =
Gabor Greifb1dbcd82008-05-15 10:04:30 +00008972 SelectInst::Create(SI.getCondition(),
8973 TVI->getOperand(2-OpToFold), C);
Chris Lattnere576b912004-04-09 23:46:01 +00008974 InsertNewInstBefore(NewSel, SI);
Chris Lattner6934a042007-02-11 01:23:03 +00008975 NewSel->takeName(TVI);
Chris Lattnere576b912004-04-09 23:46:01 +00008976 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00008977 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Chris Lattnere576b912004-04-09 23:46:01 +00008978 else {
8979 assert(0 && "Unknown instruction!!");
8980 }
8981 }
8982 }
Chris Lattnera96879a2004-09-29 17:40:11 +00008983
Chris Lattnere576b912004-04-09 23:46:01 +00008984 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
8985 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
8986 !isa<Constant>(TrueVal))
8987 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
8988 unsigned OpToFold = 0;
8989 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
8990 OpToFold = 1;
8991 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
8992 OpToFold = 2;
8993 }
8994
8995 if (OpToFold) {
8996 Constant *C = GetSelectFoldableConstant(FVI);
Chris Lattnere576b912004-04-09 23:46:01 +00008997 Instruction *NewSel =
Gabor Greifb1dbcd82008-05-15 10:04:30 +00008998 SelectInst::Create(SI.getCondition(), C,
8999 FVI->getOperand(2-OpToFold));
Chris Lattnere576b912004-04-09 23:46:01 +00009000 InsertNewInstBefore(NewSel, SI);
Chris Lattner6934a042007-02-11 01:23:03 +00009001 NewSel->takeName(FVI);
Chris Lattnere576b912004-04-09 23:46:01 +00009002 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00009003 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Reid Spencer832254e2007-02-02 02:16:23 +00009004 else
Chris Lattnere576b912004-04-09 23:46:01 +00009005 assert(0 && "Unknown instruction!!");
Chris Lattnere576b912004-04-09 23:46:01 +00009006 }
9007 }
9008 }
Chris Lattnera1df33c2005-04-24 07:30:14 +00009009
9010 if (BinaryOperator::isNot(CondVal)) {
9011 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
9012 SI.setOperand(1, FalseVal);
9013 SI.setOperand(2, TrueVal);
9014 return &SI;
9015 }
9016
Chris Lattner3d69f462004-03-12 05:52:32 +00009017 return 0;
9018}
9019
Dan Gohmaneee962e2008-04-10 18:43:06 +00009020/// EnforceKnownAlignment - If the specified pointer points to an object that
9021/// we control, modify the object's alignment to PrefAlign. This isn't
9022/// often possible though. If alignment is important, a more reliable approach
9023/// is to simply align all global variables and allocation instructions to
9024/// their preferred alignment from the beginning.
9025///
9026static unsigned EnforceKnownAlignment(Value *V,
9027 unsigned Align, unsigned PrefAlign) {
Chris Lattnerf2369f22007-08-09 19:05:49 +00009028
Dan Gohmaneee962e2008-04-10 18:43:06 +00009029 User *U = dyn_cast<User>(V);
9030 if (!U) return Align;
9031
9032 switch (getOpcode(U)) {
9033 default: break;
9034 case Instruction::BitCast:
9035 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
9036 case Instruction::GetElementPtr: {
Chris Lattner95a959d2006-03-06 20:18:44 +00009037 // If all indexes are zero, it is just the alignment of the base pointer.
9038 bool AllZeroOperands = true;
Gabor Greif52ed3632008-06-12 21:51:29 +00009039 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
Gabor Greif177dd3f2008-06-12 21:37:33 +00009040 if (!isa<Constant>(*i) ||
9041 !cast<Constant>(*i)->isNullValue()) {
Chris Lattner95a959d2006-03-06 20:18:44 +00009042 AllZeroOperands = false;
9043 break;
9044 }
Chris Lattnerf2369f22007-08-09 19:05:49 +00009045
9046 if (AllZeroOperands) {
9047 // Treat this like a bitcast.
Dan Gohmaneee962e2008-04-10 18:43:06 +00009048 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattnerf2369f22007-08-09 19:05:49 +00009049 }
Dan Gohmaneee962e2008-04-10 18:43:06 +00009050 break;
Chris Lattner95a959d2006-03-06 20:18:44 +00009051 }
Dan Gohmaneee962e2008-04-10 18:43:06 +00009052 }
9053
9054 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
9055 // If there is a large requested alignment and we can, bump up the alignment
9056 // of the global.
9057 if (!GV->isDeclaration()) {
9058 GV->setAlignment(PrefAlign);
9059 Align = PrefAlign;
9060 }
9061 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
9062 // If there is a requested alignment and if this is an alloca, round up. We
9063 // don't do this for malloc, because some systems can't respect the request.
9064 if (isa<AllocaInst>(AI)) {
9065 AI->setAlignment(PrefAlign);
9066 Align = PrefAlign;
9067 }
9068 }
9069
9070 return Align;
9071}
9072
9073/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
9074/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
9075/// and it is more than the alignment of the ultimate object, see if we can
9076/// increase the alignment of the ultimate object, making this check succeed.
9077unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
9078 unsigned PrefAlign) {
9079 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
9080 sizeof(PrefAlign) * CHAR_BIT;
9081 APInt Mask = APInt::getAllOnesValue(BitWidth);
9082 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
9083 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
9084 unsigned TrailZ = KnownZero.countTrailingOnes();
9085 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
9086
9087 if (PrefAlign > Align)
9088 Align = EnforceKnownAlignment(V, Align, PrefAlign);
9089
9090 // We don't need to make any adjustment.
9091 return Align;
Chris Lattner95a959d2006-03-06 20:18:44 +00009092}
9093
Chris Lattnerf497b022008-01-13 23:50:23 +00009094Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohmaneee962e2008-04-10 18:43:06 +00009095 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
9096 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattnerf497b022008-01-13 23:50:23 +00009097 unsigned MinAlign = std::min(DstAlign, SrcAlign);
9098 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
9099
9100 if (CopyAlign < MinAlign) {
9101 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
9102 return MI;
9103 }
9104
9105 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
9106 // load/store.
9107 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
9108 if (MemOpLength == 0) return 0;
9109
Chris Lattner37ac6082008-01-14 00:28:35 +00009110 // Source and destination pointer types are always "i8*" for intrinsic. See
9111 // if the size is something we can handle with a single primitive load/store.
9112 // A single load+store correctly handles overlapping memory in the memmove
9113 // case.
Chris Lattnerf497b022008-01-13 23:50:23 +00009114 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner69ea9d22008-04-30 06:39:11 +00009115 if (Size == 0) return MI; // Delete this mem transfer.
9116
9117 if (Size > 8 || (Size&(Size-1)))
Chris Lattner37ac6082008-01-14 00:28:35 +00009118 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattnerf497b022008-01-13 23:50:23 +00009119
Chris Lattner37ac6082008-01-14 00:28:35 +00009120 // Use an integer load+store unless we can find something better.
Chris Lattnerf497b022008-01-13 23:50:23 +00009121 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattner37ac6082008-01-14 00:28:35 +00009122
9123 // Memcpy forces the use of i8* for the source and destination. That means
9124 // that if you're using memcpy to move one double around, you'll get a cast
9125 // from double* to i8*. We'd much rather use a double load+store rather than
9126 // an i64 load+store, here because this improves the odds that the source or
9127 // dest address will be promotable. See if we can find a better type than the
9128 // integer datatype.
9129 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
9130 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
9131 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
9132 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
9133 // down through these levels if so.
Dan Gohman8f8e2692008-05-23 01:52:21 +00009134 while (!SrcETy->isSingleValueType()) {
Chris Lattner37ac6082008-01-14 00:28:35 +00009135 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
9136 if (STy->getNumElements() == 1)
9137 SrcETy = STy->getElementType(0);
9138 else
9139 break;
9140 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
9141 if (ATy->getNumElements() == 1)
9142 SrcETy = ATy->getElementType();
9143 else
9144 break;
9145 } else
9146 break;
9147 }
9148
Dan Gohman8f8e2692008-05-23 01:52:21 +00009149 if (SrcETy->isSingleValueType())
Chris Lattner37ac6082008-01-14 00:28:35 +00009150 NewPtrTy = PointerType::getUnqual(SrcETy);
9151 }
9152 }
9153
9154
Chris Lattnerf497b022008-01-13 23:50:23 +00009155 // If the memcpy/memmove provides better alignment info than we can
9156 // infer, use it.
9157 SrcAlign = std::max(SrcAlign, CopyAlign);
9158 DstAlign = std::max(DstAlign, CopyAlign);
9159
9160 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
9161 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattner37ac6082008-01-14 00:28:35 +00009162 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
9163 InsertNewInstBefore(L, *MI);
9164 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
9165
9166 // Set the size of the copy to 0, it will be deleted on the next iteration.
9167 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
9168 return MI;
Chris Lattnerf497b022008-01-13 23:50:23 +00009169}
Chris Lattner3d69f462004-03-12 05:52:32 +00009170
Chris Lattner69ea9d22008-04-30 06:39:11 +00009171Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
9172 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
9173 if (MI->getAlignment()->getZExtValue() < Alignment) {
9174 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
9175 return MI;
9176 }
9177
9178 // Extract the length and alignment and fill if they are constant.
9179 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
9180 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
9181 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
9182 return 0;
9183 uint64_t Len = LenC->getZExtValue();
9184 Alignment = MI->getAlignment()->getZExtValue();
9185
9186 // If the length is zero, this is a no-op
9187 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
9188
9189 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
9190 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
9191 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
9192
9193 Value *Dest = MI->getDest();
9194 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
9195
9196 // Alignment 0 is identity for alignment 1 for memset, but not store.
9197 if (Alignment == 0) Alignment = 1;
9198
9199 // Extract the fill value and store.
9200 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
9201 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
9202 Alignment), *MI);
9203
9204 // Set the size of the copy to 0, it will be deleted on the next iteration.
9205 MI->setLength(Constant::getNullValue(LenC->getType()));
9206 return MI;
9207 }
9208
9209 return 0;
9210}
9211
9212
Chris Lattner8b0ea312006-01-13 20:11:04 +00009213/// visitCallInst - CallInst simplification. This mostly only handles folding
9214/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
9215/// the heavy lifting.
9216///
Chris Lattner9fe38862003-06-19 17:00:31 +00009217Instruction *InstCombiner::visitCallInst(CallInst &CI) {
Chris Lattner8b0ea312006-01-13 20:11:04 +00009218 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
9219 if (!II) return visitCallSite(&CI);
9220
Chris Lattner7bcc0e72004-02-28 05:22:00 +00009221 // Intrinsics cannot occur in an invoke, so handle them here instead of in
9222 // visitCallSite.
Chris Lattner8b0ea312006-01-13 20:11:04 +00009223 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
Chris Lattner35b9e482004-10-12 04:52:52 +00009224 bool Changed = false;
9225
9226 // memmove/cpy/set of zero bytes is a noop.
9227 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
9228 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
9229
Chris Lattner35b9e482004-10-12 04:52:52 +00009230 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
Reid Spencerb83eb642006-10-20 07:07:24 +00009231 if (CI->getZExtValue() == 1) {
Chris Lattner35b9e482004-10-12 04:52:52 +00009232 // Replace the instruction with just byte operations. We would
9233 // transform other cases to loads/stores, but we don't know if
9234 // alignment is sufficient.
9235 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +00009236 }
9237
Chris Lattner35b9e482004-10-12 04:52:52 +00009238 // If we have a memmove and the source operation is a constant global,
9239 // then the source and dest pointers can't alias, so we can change this
9240 // into a call to memcpy.
Chris Lattnerf497b022008-01-13 23:50:23 +00009241 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Chris Lattner35b9e482004-10-12 04:52:52 +00009242 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
9243 if (GVSrc->isConstant()) {
9244 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner824b9582008-11-21 16:42:48 +00009245 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
9246 const Type *Tys[1];
9247 Tys[0] = CI.getOperand(3)->getType();
9248 CI.setOperand(0,
9249 Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
Chris Lattner35b9e482004-10-12 04:52:52 +00009250 Changed = true;
9251 }
Chris Lattnera935db82008-05-28 05:30:41 +00009252
9253 // memmove(x,x,size) -> noop.
9254 if (MMI->getSource() == MMI->getDest())
9255 return EraseInstFromFunction(CI);
Chris Lattner95a959d2006-03-06 20:18:44 +00009256 }
Chris Lattner35b9e482004-10-12 04:52:52 +00009257
Chris Lattner95a959d2006-03-06 20:18:44 +00009258 // If we can determine a pointer alignment that is bigger than currently
9259 // set, update the alignment.
9260 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattnerf497b022008-01-13 23:50:23 +00009261 if (Instruction *I = SimplifyMemTransfer(MI))
9262 return I;
Chris Lattner69ea9d22008-04-30 06:39:11 +00009263 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
9264 if (Instruction *I = SimplifyMemSet(MSI))
9265 return I;
Chris Lattner95a959d2006-03-06 20:18:44 +00009266 }
9267
Chris Lattner8b0ea312006-01-13 20:11:04 +00009268 if (Changed) return II;
Chris Lattner0521e3c2008-06-18 04:33:20 +00009269 }
9270
9271 switch (II->getIntrinsicID()) {
9272 default: break;
9273 case Intrinsic::bswap:
9274 // bswap(bswap(x)) -> x
9275 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
9276 if (Operand->getIntrinsicID() == Intrinsic::bswap)
9277 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
9278 break;
9279 case Intrinsic::ppc_altivec_lvx:
9280 case Intrinsic::ppc_altivec_lvxl:
9281 case Intrinsic::x86_sse_loadu_ps:
9282 case Intrinsic::x86_sse2_loadu_pd:
9283 case Intrinsic::x86_sse2_loadu_dq:
9284 // Turn PPC lvx -> load if the pointer is known aligned.
9285 // Turn X86 loadups -> load if the pointer is known aligned.
9286 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9287 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
9288 PointerType::getUnqual(II->getType()),
9289 CI);
9290 return new LoadInst(Ptr);
Chris Lattner867b99f2006-10-05 06:55:50 +00009291 }
Chris Lattner0521e3c2008-06-18 04:33:20 +00009292 break;
9293 case Intrinsic::ppc_altivec_stvx:
9294 case Intrinsic::ppc_altivec_stvxl:
9295 // Turn stvx -> store if the pointer is known aligned.
9296 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
9297 const Type *OpPtrTy =
9298 PointerType::getUnqual(II->getOperand(1)->getType());
9299 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
9300 return new StoreInst(II->getOperand(1), Ptr);
9301 }
9302 break;
9303 case Intrinsic::x86_sse_storeu_ps:
9304 case Intrinsic::x86_sse2_storeu_pd:
9305 case Intrinsic::x86_sse2_storeu_dq:
Chris Lattner0521e3c2008-06-18 04:33:20 +00009306 // Turn X86 storeu -> store if the pointer is known aligned.
9307 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9308 const Type *OpPtrTy =
9309 PointerType::getUnqual(II->getOperand(2)->getType());
9310 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
9311 return new StoreInst(II->getOperand(2), Ptr);
9312 }
9313 break;
9314
9315 case Intrinsic::x86_sse_cvttss2si: {
9316 // These intrinsics only demands the 0th element of its input vector. If
9317 // we can simplify the input based on that, do so now.
9318 uint64_t UndefElts;
9319 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
9320 UndefElts)) {
9321 II->setOperand(1, V);
9322 return II;
9323 }
9324 break;
9325 }
9326
9327 case Intrinsic::ppc_altivec_vperm:
9328 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
9329 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
9330 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Chris Lattner867b99f2006-10-05 06:55:50 +00009331
Chris Lattner0521e3c2008-06-18 04:33:20 +00009332 // Check that all of the elements are integer constants or undefs.
9333 bool AllEltsOk = true;
9334 for (unsigned i = 0; i != 16; ++i) {
9335 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
9336 !isa<UndefValue>(Mask->getOperand(i))) {
9337 AllEltsOk = false;
9338 break;
9339 }
9340 }
9341
9342 if (AllEltsOk) {
9343 // Cast the input vectors to byte vectors.
9344 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
9345 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
9346 Value *Result = UndefValue::get(Op0->getType());
Chris Lattnere2ed0572006-04-06 19:19:17 +00009347
Chris Lattner0521e3c2008-06-18 04:33:20 +00009348 // Only extract each element once.
9349 Value *ExtractedElts[32];
9350 memset(ExtractedElts, 0, sizeof(ExtractedElts));
9351
Chris Lattnere2ed0572006-04-06 19:19:17 +00009352 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner0521e3c2008-06-18 04:33:20 +00009353 if (isa<UndefValue>(Mask->getOperand(i)))
9354 continue;
9355 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
9356 Idx &= 31; // Match the hardware behavior.
9357
9358 if (ExtractedElts[Idx] == 0) {
9359 Instruction *Elt =
9360 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
9361 InsertNewInstBefore(Elt, CI);
9362 ExtractedElts[Idx] = Elt;
Chris Lattnere2ed0572006-04-06 19:19:17 +00009363 }
Chris Lattnere2ed0572006-04-06 19:19:17 +00009364
Chris Lattner0521e3c2008-06-18 04:33:20 +00009365 // Insert this value into the result vector.
9366 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
9367 i, "tmp");
9368 InsertNewInstBefore(cast<Instruction>(Result), CI);
Chris Lattnere2ed0572006-04-06 19:19:17 +00009369 }
Chris Lattner0521e3c2008-06-18 04:33:20 +00009370 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Chris Lattnere2ed0572006-04-06 19:19:17 +00009371 }
Chris Lattner0521e3c2008-06-18 04:33:20 +00009372 }
9373 break;
Chris Lattnere2ed0572006-04-06 19:19:17 +00009374
Chris Lattner0521e3c2008-06-18 04:33:20 +00009375 case Intrinsic::stackrestore: {
9376 // If the save is right next to the restore, remove the restore. This can
9377 // happen when variable allocas are DCE'd.
9378 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
9379 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
9380 BasicBlock::iterator BI = SS;
9381 if (&*++BI == II)
9382 return EraseInstFromFunction(CI);
Chris Lattnera728ddc2006-01-13 21:28:09 +00009383 }
Chris Lattner0521e3c2008-06-18 04:33:20 +00009384 }
9385
9386 // Scan down this block to see if there is another stack restore in the
9387 // same block without an intervening call/alloca.
9388 BasicBlock::iterator BI = II;
9389 TerminatorInst *TI = II->getParent()->getTerminator();
9390 bool CannotRemove = false;
9391 for (++BI; &*BI != TI; ++BI) {
9392 if (isa<AllocaInst>(BI)) {
9393 CannotRemove = true;
9394 break;
9395 }
Chris Lattneraa0bf522008-06-25 05:59:28 +00009396 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
9397 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
9398 // If there is a stackrestore below this one, remove this one.
9399 if (II->getIntrinsicID() == Intrinsic::stackrestore)
9400 return EraseInstFromFunction(CI);
9401 // Otherwise, ignore the intrinsic.
9402 } else {
9403 // If we found a non-intrinsic call, we can't remove the stack
9404 // restore.
Chris Lattnerbf1d8a72008-02-18 06:12:38 +00009405 CannotRemove = true;
9406 break;
9407 }
Chris Lattner0521e3c2008-06-18 04:33:20 +00009408 }
Chris Lattnera728ddc2006-01-13 21:28:09 +00009409 }
Chris Lattner0521e3c2008-06-18 04:33:20 +00009410
9411 // If the stack restore is in a return/unwind block and if there are no
9412 // allocas or calls between the restore and the return, nuke the restore.
9413 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
9414 return EraseInstFromFunction(CI);
9415 break;
9416 }
Chris Lattner35b9e482004-10-12 04:52:52 +00009417 }
9418
Chris Lattner8b0ea312006-01-13 20:11:04 +00009419 return visitCallSite(II);
Chris Lattner9fe38862003-06-19 17:00:31 +00009420}
9421
9422// InvokeInst simplification
9423//
9424Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
Chris Lattnera44d8a22003-10-07 22:32:43 +00009425 return visitCallSite(&II);
Chris Lattner9fe38862003-06-19 17:00:31 +00009426}
9427
Dale Johannesenda30ccb2008-04-25 21:16:07 +00009428/// isSafeToEliminateVarargsCast - If this cast does not affect the value
9429/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen1f530a52008-04-23 18:34:37 +00009430static bool isSafeToEliminateVarargsCast(const CallSite CS,
9431 const CastInst * const CI,
9432 const TargetData * const TD,
9433 const int ix) {
9434 if (!CI->isLosslessCast())
9435 return false;
9436
9437 // The size of ByVal arguments is derived from the type, so we
9438 // can't change to a type with a different size. If the size were
9439 // passed explicitly we could avoid this check.
Devang Patel05988662008-09-25 21:00:45 +00009440 if (!CS.paramHasAttr(ix, Attribute::ByVal))
Dale Johannesen1f530a52008-04-23 18:34:37 +00009441 return true;
9442
9443 const Type* SrcTy =
9444 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
9445 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
9446 if (!SrcTy->isSized() || !DstTy->isSized())
9447 return false;
9448 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
9449 return false;
9450 return true;
9451}
9452
Chris Lattnera44d8a22003-10-07 22:32:43 +00009453// visitCallSite - Improvements for call and invoke instructions.
9454//
9455Instruction *InstCombiner::visitCallSite(CallSite CS) {
Chris Lattner6c266db2003-10-07 22:54:13 +00009456 bool Changed = false;
9457
9458 // If the callee is a constexpr cast of a function, attempt to move the cast
9459 // to the arguments of the call/invoke.
Chris Lattnera44d8a22003-10-07 22:32:43 +00009460 if (transformConstExprCastCall(CS)) return 0;
9461
Chris Lattner6c266db2003-10-07 22:54:13 +00009462 Value *Callee = CS.getCalledValue();
Chris Lattnere87597f2004-10-16 18:11:37 +00009463
Chris Lattner08b22ec2005-05-13 07:09:09 +00009464 if (Function *CalleeF = dyn_cast<Function>(Callee))
9465 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
9466 Instruction *OldCall = CS.getInstruction();
9467 // If the call and callee calling conventions don't match, this call must
9468 // be unreachable, as the call is undefined.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00009469 new StoreInst(ConstantInt::getTrue(),
Christopher Lamb43ad6b32007-12-17 01:12:55 +00009470 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
9471 OldCall);
Chris Lattner08b22ec2005-05-13 07:09:09 +00009472 if (!OldCall->use_empty())
9473 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
9474 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
9475 return EraseInstFromFunction(*OldCall);
9476 return 0;
9477 }
9478
Chris Lattner17be6352004-10-18 02:59:09 +00009479 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
9480 // This instruction is not reachable, just remove it. We insert a store to
9481 // undef so that we know that this code is not reachable, despite the fact
9482 // that we can't modify the CFG here.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00009483 new StoreInst(ConstantInt::getTrue(),
Christopher Lamb43ad6b32007-12-17 01:12:55 +00009484 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Chris Lattner17be6352004-10-18 02:59:09 +00009485 CS.getInstruction());
9486
9487 if (!CS.getInstruction()->use_empty())
9488 CS.getInstruction()->
9489 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
9490
9491 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
9492 // Don't break the CFG, insert a dummy cond branch.
Gabor Greif051a9502008-04-06 20:25:17 +00009493 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
9494 ConstantInt::getTrue(), II);
Chris Lattnere87597f2004-10-16 18:11:37 +00009495 }
Chris Lattner17be6352004-10-18 02:59:09 +00009496 return EraseInstFromFunction(*CS.getInstruction());
9497 }
Chris Lattnere87597f2004-10-16 18:11:37 +00009498
Duncan Sandscdb6d922007-09-17 10:26:40 +00009499 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
9500 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
9501 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
9502 return transformCallThroughTrampoline(CS);
9503
Chris Lattner6c266db2003-10-07 22:54:13 +00009504 const PointerType *PTy = cast<PointerType>(Callee->getType());
9505 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9506 if (FTy->isVarArg()) {
Dale Johannesen63e7eb42008-04-23 01:03:05 +00009507 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Chris Lattner6c266db2003-10-07 22:54:13 +00009508 // See if we can optimize any arguments passed through the varargs area of
9509 // the call.
9510 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen1f530a52008-04-23 18:34:37 +00009511 E = CS.arg_end(); I != E; ++I, ++ix) {
9512 CastInst *CI = dyn_cast<CastInst>(*I);
9513 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
9514 *I = CI->getOperand(0);
9515 Changed = true;
Chris Lattner6c266db2003-10-07 22:54:13 +00009516 }
Dale Johannesen1f530a52008-04-23 18:34:37 +00009517 }
Chris Lattner6c266db2003-10-07 22:54:13 +00009518 }
Misha Brukmanfd939082005-04-21 23:48:37 +00009519
Duncan Sandsf0c33542007-12-19 21:13:37 +00009520 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sandsece2c042007-12-16 15:51:49 +00009521 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sandsf0c33542007-12-19 21:13:37 +00009522 CS.setDoesNotThrow();
Duncan Sandsece2c042007-12-16 15:51:49 +00009523 Changed = true;
9524 }
9525
Chris Lattner6c266db2003-10-07 22:54:13 +00009526 return Changed ? CS.getInstruction() : 0;
Chris Lattnera44d8a22003-10-07 22:32:43 +00009527}
9528
Chris Lattner9fe38862003-06-19 17:00:31 +00009529// transformConstExprCastCall - If the callee is a constexpr cast of a function,
9530// attempt to move the cast to the arguments of the call/invoke.
9531//
9532bool InstCombiner::transformConstExprCastCall(CallSite CS) {
9533 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
9534 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
Reid Spencer3da59db2006-11-27 01:05:10 +00009535 if (CE->getOpcode() != Instruction::BitCast ||
9536 !isa<Function>(CE->getOperand(0)))
Chris Lattner9fe38862003-06-19 17:00:31 +00009537 return false;
Reid Spencer8863f182004-07-18 00:38:32 +00009538 Function *Callee = cast<Function>(CE->getOperand(0));
Chris Lattner9fe38862003-06-19 17:00:31 +00009539 Instruction *Caller = CS.getInstruction();
Devang Patel05988662008-09-25 21:00:45 +00009540 const AttrListPtr &CallerPAL = CS.getAttributes();
Chris Lattner9fe38862003-06-19 17:00:31 +00009541
9542 // Okay, this is a cast from a function to a different type. Unless doing so
9543 // would cause a type conversion of one of our arguments, change this call to
9544 // be a direct call with arguments casted to the appropriate types.
9545 //
9546 const FunctionType *FT = Callee->getFunctionType();
9547 const Type *OldRetTy = Caller->getType();
Duncan Sandsf413cdf2008-06-01 07:38:42 +00009548 const Type *NewRetTy = FT->getReturnType();
Chris Lattner9fe38862003-06-19 17:00:31 +00009549
Duncan Sandsf413cdf2008-06-01 07:38:42 +00009550 if (isa<StructType>(NewRetTy))
Devang Patel75e6f022008-03-11 18:04:06 +00009551 return false; // TODO: Handle multiple return values.
9552
Chris Lattnerf78616b2004-01-14 06:06:08 +00009553 // Check to see if we are changing the return type...
Duncan Sandsf413cdf2008-06-01 07:38:42 +00009554 if (OldRetTy != NewRetTy) {
Bill Wendlinga6c31122008-05-14 22:45:20 +00009555 if (Callee->isDeclaration() &&
Duncan Sandsf413cdf2008-06-01 07:38:42 +00009556 // Conversion is ok if changing from one pointer type to another or from
9557 // a pointer to an integer of the same size.
9558 !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
Duncan Sands34b176a2008-06-17 15:55:30 +00009559 (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
Chris Lattnerec479922007-01-06 02:09:32 +00009560 return false; // Cannot transform this return value.
Chris Lattnerf78616b2004-01-14 06:06:08 +00009561
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00009562 if (!Caller->use_empty() &&
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00009563 // void -> non-void is handled specially
Duncan Sandsf413cdf2008-06-01 07:38:42 +00009564 NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00009565 return false; // Cannot transform this return value.
9566
Chris Lattner58d74912008-03-12 17:45:29 +00009567 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Devang Patel19c87462008-09-26 22:53:05 +00009568 Attributes RAttrs = CallerPAL.getRetAttributes();
Devang Patel05988662008-09-25 21:00:45 +00009569 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
Duncan Sands6c3470e2008-01-07 17:16:06 +00009570 return false; // Attribute not compatible with transformed value.
9571 }
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009572
Chris Lattnerf78616b2004-01-14 06:06:08 +00009573 // If the callsite is an invoke instruction, and the return value is used by
9574 // a PHI node in a successor, we cannot change the return type of the call
9575 // because there is no place to put the cast instruction (without breaking
9576 // the critical edge). Bail out in this case.
9577 if (!Caller->use_empty())
9578 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
9579 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
9580 UI != E; ++UI)
9581 if (PHINode *PN = dyn_cast<PHINode>(*UI))
9582 if (PN->getParent() == II->getNormalDest() ||
Chris Lattneraeb2a1d2004-02-08 21:44:31 +00009583 PN->getParent() == II->getUnwindDest())
Chris Lattnerf78616b2004-01-14 06:06:08 +00009584 return false;
9585 }
Chris Lattner9fe38862003-06-19 17:00:31 +00009586
9587 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
9588 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
Misha Brukmanfd939082005-04-21 23:48:37 +00009589
Chris Lattner9fe38862003-06-19 17:00:31 +00009590 CallSite::arg_iterator AI = CS.arg_begin();
9591 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
9592 const Type *ParamTy = FT->getParamType(i);
Andrew Lenharthb8e604c2006-06-28 01:01:52 +00009593 const Type *ActTy = (*AI)->getType();
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00009594
9595 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009596 return false; // Cannot transform this parameter value.
9597
Devang Patel19c87462008-09-26 22:53:05 +00009598 if (CallerPAL.getParamAttributes(i + 1)
9599 & Attribute::typeIncompatible(ParamTy))
Chris Lattner58d74912008-03-12 17:45:29 +00009600 return false; // Attribute not compatible with transformed value.
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00009601
Duncan Sandsf413cdf2008-06-01 07:38:42 +00009602 // Converting from one pointer type to another or between a pointer and an
9603 // integer of the same size is safe even if we do not have a body.
Chris Lattnerec479922007-01-06 02:09:32 +00009604 bool isConvertible = ActTy == ParamTy ||
Duncan Sandsf413cdf2008-06-01 07:38:42 +00009605 ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
9606 (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
Reid Spencer5cbf9852007-01-30 20:08:39 +00009607 if (Callee->isDeclaration() && !isConvertible) return false;
Chris Lattner9fe38862003-06-19 17:00:31 +00009608 }
9609
9610 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
Reid Spencer5cbf9852007-01-30 20:08:39 +00009611 Callee->isDeclaration())
Chris Lattner58d74912008-03-12 17:45:29 +00009612 return false; // Do not delete arguments unless we have a function body.
Chris Lattner9fe38862003-06-19 17:00:31 +00009613
Chris Lattner58d74912008-03-12 17:45:29 +00009614 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
9615 !CallerPAL.isEmpty())
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009616 // In this case we have more arguments than the new function type, but we
Duncan Sandse1e520f2008-01-13 08:02:44 +00009617 // won't be dropping them. Check that these extra arguments have attributes
9618 // that are compatible with being a vararg call argument.
Chris Lattner58d74912008-03-12 17:45:29 +00009619 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
9620 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sandse1e520f2008-01-13 08:02:44 +00009621 break;
Devang Pateleaf42ab2008-09-23 23:03:40 +00009622 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Devang Patel05988662008-09-25 21:00:45 +00009623 if (PAttrs & Attribute::VarArgsIncompatible)
Duncan Sandse1e520f2008-01-13 08:02:44 +00009624 return false;
9625 }
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009626
Chris Lattner9fe38862003-06-19 17:00:31 +00009627 // Okay, we decided that this is a safe thing to do: go ahead and start
9628 // inserting cast instructions as necessary...
9629 std::vector<Value*> Args;
9630 Args.reserve(NumActualArgs);
Devang Patel05988662008-09-25 21:00:45 +00009631 SmallVector<AttributeWithIndex, 8> attrVec;
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009632 attrVec.reserve(NumCommonArgs);
9633
9634 // Get any return attributes.
Devang Patel19c87462008-09-26 22:53:05 +00009635 Attributes RAttrs = CallerPAL.getRetAttributes();
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009636
9637 // If the return value is not being used, the type may not be compatible
9638 // with the existing attributes. Wipe out any problematic attributes.
Devang Patel05988662008-09-25 21:00:45 +00009639 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009640
9641 // Add the new return attributes.
9642 if (RAttrs)
Devang Patel05988662008-09-25 21:00:45 +00009643 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
Chris Lattner9fe38862003-06-19 17:00:31 +00009644
9645 AI = CS.arg_begin();
9646 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9647 const Type *ParamTy = FT->getParamType(i);
9648 if ((*AI)->getType() == ParamTy) {
9649 Args.push_back(*AI);
9650 } else {
Reid Spencer8a903db2006-12-18 08:47:13 +00009651 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
Reid Spencerc5b206b2006-12-31 05:48:39 +00009652 false, ParamTy, false);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00009653 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Reid Spencer3da59db2006-11-27 01:05:10 +00009654 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
Chris Lattner9fe38862003-06-19 17:00:31 +00009655 }
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009656
9657 // Add any parameter attributes.
Devang Patel19c87462008-09-26 22:53:05 +00009658 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Patel05988662008-09-25 21:00:45 +00009659 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Chris Lattner9fe38862003-06-19 17:00:31 +00009660 }
9661
9662 // If the function takes more arguments than the call was taking, add them
9663 // now...
9664 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9665 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9666
9667 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00009668 if (FT->getNumParams() < NumActualArgs) {
Chris Lattner9fe38862003-06-19 17:00:31 +00009669 if (!FT->isVarArg()) {
Bill Wendlinge8156192006-12-07 01:30:32 +00009670 cerr << "WARNING: While resolving call to function '"
9671 << Callee->getName() << "' arguments were dropped!\n";
Chris Lattner9fe38862003-06-19 17:00:31 +00009672 } else {
9673 // Add all of the arguments in their promoted form to the arg list...
9674 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9675 const Type *PTy = getPromotedType((*AI)->getType());
9676 if (PTy != (*AI)->getType()) {
9677 // Must promote to pass through va_arg area!
Reid Spencerc5b206b2006-12-31 05:48:39 +00009678 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9679 PTy, false);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00009680 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Chris Lattner9fe38862003-06-19 17:00:31 +00009681 InsertNewInstBefore(Cast, *Caller);
9682 Args.push_back(Cast);
9683 } else {
9684 Args.push_back(*AI);
9685 }
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009686
Duncan Sandse1e520f2008-01-13 08:02:44 +00009687 // Add any parameter attributes.
Devang Patel19c87462008-09-26 22:53:05 +00009688 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Patel05988662008-09-25 21:00:45 +00009689 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Duncan Sandse1e520f2008-01-13 08:02:44 +00009690 }
Chris Lattner9fe38862003-06-19 17:00:31 +00009691 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +00009692 }
Chris Lattner9fe38862003-06-19 17:00:31 +00009693
Devang Patel19c87462008-09-26 22:53:05 +00009694 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
9695 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
9696
Duncan Sandsf413cdf2008-06-01 07:38:42 +00009697 if (NewRetTy == Type::VoidTy)
Chris Lattner6934a042007-02-11 01:23:03 +00009698 Caller->setName(""); // Void type should not have a name.
Chris Lattner9fe38862003-06-19 17:00:31 +00009699
Devang Patel05988662008-09-25 21:00:45 +00009700 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsad9a9e12008-01-06 18:27:01 +00009701
Chris Lattner9fe38862003-06-19 17:00:31 +00009702 Instruction *NC;
9703 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greif051a9502008-04-06 20:25:17 +00009704 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb1dbcd82008-05-15 10:04:30 +00009705 Args.begin(), Args.end(),
9706 Caller->getName(), Caller);
Reid Spencered3fa852007-07-30 19:53:57 +00009707 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Devang Patel05988662008-09-25 21:00:45 +00009708 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
Chris Lattner9fe38862003-06-19 17:00:31 +00009709 } else {
Gabor Greif051a9502008-04-06 20:25:17 +00009710 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9711 Caller->getName(), Caller);
Duncan Sandsdc024672007-11-27 13:23:08 +00009712 CallInst *CI = cast<CallInst>(Caller);
9713 if (CI->isTailCall())
Chris Lattnera9e92112005-05-06 06:48:21 +00009714 cast<CallInst>(NC)->setTailCall();
Duncan Sandsdc024672007-11-27 13:23:08 +00009715 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Devang Patel05988662008-09-25 21:00:45 +00009716 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
Chris Lattner9fe38862003-06-19 17:00:31 +00009717 }
9718
Chris Lattner6934a042007-02-11 01:23:03 +00009719 // Insert a cast of the return type as necessary.
Chris Lattner9fe38862003-06-19 17:00:31 +00009720 Value *NV = NC;
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00009721 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Chris Lattner9fe38862003-06-19 17:00:31 +00009722 if (NV->getType() != Type::VoidTy) {
Reid Spencerc5b206b2006-12-31 05:48:39 +00009723 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sandsa9d0c9d2008-01-06 10:12:28 +00009724 OldRetTy, false);
Gabor Greif7cbd8a32008-05-16 19:29:10 +00009725 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Chris Lattnerbb609042003-10-30 00:46:41 +00009726
9727 // If this is an invoke instruction, we should insert it after the first
9728 // non-phi, instruction in the normal successor block.
9729 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Dan Gohman02dea8b2008-05-23 21:05:58 +00009730 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
Chris Lattnerbb609042003-10-30 00:46:41 +00009731 InsertNewInstBefore(NC, *I);
9732 } else {
9733 // Otherwise, it's a call, just insert cast right after the call instr
9734 InsertNewInstBefore(NC, *Caller);
9735 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +00009736 AddUsersToWorkList(*Caller);
Chris Lattner9fe38862003-06-19 17:00:31 +00009737 } else {
Chris Lattnerc30bda72004-10-17 21:22:38 +00009738 NV = UndefValue::get(Caller->getType());
Chris Lattner9fe38862003-06-19 17:00:31 +00009739 }
9740 }
9741
9742 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9743 Caller->replaceAllUsesWith(NV);
Chris Lattnerf22a5c62007-03-02 19:59:19 +00009744 Caller->eraseFromParent();
Chris Lattnerdbab3862007-03-02 21:28:56 +00009745 RemoveFromWorkList(Caller);
Chris Lattner9fe38862003-06-19 17:00:31 +00009746 return true;
9747}
9748
Duncan Sandscdb6d922007-09-17 10:26:40 +00009749// transformCallThroughTrampoline - Turn a call to a function created by the
9750// init_trampoline intrinsic into a direct call to the underlying function.
9751//
9752Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9753 Value *Callee = CS.getCalledValue();
9754 const PointerType *PTy = cast<PointerType>(Callee->getType());
9755 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Devang Patel05988662008-09-25 21:00:45 +00009756 const AttrListPtr &Attrs = CS.getAttributes();
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009757
9758 // If the call already has the 'nest' attribute somewhere then give up -
9759 // otherwise 'nest' would occur twice after splicing in the chain.
Devang Patel05988662008-09-25 21:00:45 +00009760 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009761 return 0;
Duncan Sandscdb6d922007-09-17 10:26:40 +00009762
9763 IntrinsicInst *Tramp =
9764 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9765
Anton Korobeynikov0b12ecf2008-05-07 22:54:15 +00009766 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sandscdb6d922007-09-17 10:26:40 +00009767 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9768 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9769
Devang Patel05988662008-09-25 21:00:45 +00009770 const AttrListPtr &NestAttrs = NestF->getAttributes();
Chris Lattner58d74912008-03-12 17:45:29 +00009771 if (!NestAttrs.isEmpty()) {
Duncan Sandscdb6d922007-09-17 10:26:40 +00009772 unsigned NestIdx = 1;
9773 const Type *NestTy = 0;
Devang Patel05988662008-09-25 21:00:45 +00009774 Attributes NestAttr = Attribute::None;
Duncan Sandscdb6d922007-09-17 10:26:40 +00009775
9776 // Look for a parameter marked with the 'nest' attribute.
9777 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9778 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Devang Patel05988662008-09-25 21:00:45 +00009779 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
Duncan Sandscdb6d922007-09-17 10:26:40 +00009780 // Record the parameter type and any other attributes.
9781 NestTy = *I;
Devang Patel19c87462008-09-26 22:53:05 +00009782 NestAttr = NestAttrs.getParamAttributes(NestIdx);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009783 break;
9784 }
9785
9786 if (NestTy) {
9787 Instruction *Caller = CS.getInstruction();
9788 std::vector<Value*> NewArgs;
9789 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9790
Devang Patel05988662008-09-25 21:00:45 +00009791 SmallVector<AttributeWithIndex, 8> NewAttrs;
Chris Lattner58d74912008-03-12 17:45:29 +00009792 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009793
Duncan Sandscdb6d922007-09-17 10:26:40 +00009794 // Insert the nest argument into the call argument list, which may
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009795 // mean appending it. Likewise for attributes.
9796
Devang Patel19c87462008-09-26 22:53:05 +00009797 // Add any result attributes.
9798 if (Attributes Attr = Attrs.getRetAttributes())
Devang Patel05988662008-09-25 21:00:45 +00009799 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009800
Duncan Sandscdb6d922007-09-17 10:26:40 +00009801 {
9802 unsigned Idx = 1;
9803 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9804 do {
9805 if (Idx == NestIdx) {
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009806 // Add the chain argument and attributes.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009807 Value *NestVal = Tramp->getOperand(3);
9808 if (NestVal->getType() != NestTy)
9809 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9810 NewArgs.push_back(NestVal);
Devang Patel05988662008-09-25 21:00:45 +00009811 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
Duncan Sandscdb6d922007-09-17 10:26:40 +00009812 }
9813
9814 if (I == E)
9815 break;
9816
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009817 // Add the original argument and attributes.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009818 NewArgs.push_back(*I);
Devang Patel19c87462008-09-26 22:53:05 +00009819 if (Attributes Attr = Attrs.getParamAttributes(Idx))
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009820 NewAttrs.push_back
Devang Patel05988662008-09-25 21:00:45 +00009821 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sandscdb6d922007-09-17 10:26:40 +00009822
9823 ++Idx, ++I;
9824 } while (1);
9825 }
9826
Devang Patel19c87462008-09-26 22:53:05 +00009827 // Add any function attributes.
9828 if (Attributes Attr = Attrs.getFnAttributes())
9829 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
9830
Duncan Sandscdb6d922007-09-17 10:26:40 +00009831 // The trampoline may have been bitcast to a bogus type (FTy).
9832 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009833 // with the chain parameter inserted.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009834
Duncan Sandscdb6d922007-09-17 10:26:40 +00009835 std::vector<const Type*> NewTypes;
Duncan Sandscdb6d922007-09-17 10:26:40 +00009836 NewTypes.reserve(FTy->getNumParams()+1);
9837
Duncan Sandscdb6d922007-09-17 10:26:40 +00009838 // Insert the chain's type into the list of parameter types, which may
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009839 // mean appending it.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009840 {
9841 unsigned Idx = 1;
9842 FunctionType::param_iterator I = FTy->param_begin(),
9843 E = FTy->param_end();
9844
9845 do {
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009846 if (Idx == NestIdx)
9847 // Add the chain's type.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009848 NewTypes.push_back(NestTy);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009849
9850 if (I == E)
9851 break;
9852
Duncan Sandsb0c9b932008-01-14 19:52:09 +00009853 // Add the original type.
Duncan Sandscdb6d922007-09-17 10:26:40 +00009854 NewTypes.push_back(*I);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009855
9856 ++Idx, ++I;
9857 } while (1);
9858 }
9859
9860 // Replace the trampoline call with a direct call. Let the generic
9861 // code sort out any function type mismatches.
9862 FunctionType *NewFTy =
Duncan Sandsdc024672007-11-27 13:23:08 +00009863 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lamb43ad6b32007-12-17 01:12:55 +00009864 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9865 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Devang Patel05988662008-09-25 21:00:45 +00009866 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sandscdb6d922007-09-17 10:26:40 +00009867
9868 Instruction *NewCaller;
9869 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greif051a9502008-04-06 20:25:17 +00009870 NewCaller = InvokeInst::Create(NewCallee,
9871 II->getNormalDest(), II->getUnwindDest(),
9872 NewArgs.begin(), NewArgs.end(),
9873 Caller->getName(), Caller);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009874 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Devang Patel05988662008-09-25 21:00:45 +00009875 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009876 } else {
Gabor Greif051a9502008-04-06 20:25:17 +00009877 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9878 Caller->getName(), Caller);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009879 if (cast<CallInst>(Caller)->isTailCall())
9880 cast<CallInst>(NewCaller)->setTailCall();
9881 cast<CallInst>(NewCaller)->
9882 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Devang Patel05988662008-09-25 21:00:45 +00009883 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sandscdb6d922007-09-17 10:26:40 +00009884 }
9885 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9886 Caller->replaceAllUsesWith(NewCaller);
9887 Caller->eraseFromParent();
9888 RemoveFromWorkList(Caller);
9889 return 0;
9890 }
9891 }
9892
9893 // Replace the trampoline call with a direct call. Since there is no 'nest'
9894 // parameter, there is no need to adjust the argument list. Let the generic
9895 // code sort out any function type mismatches.
9896 Constant *NewCallee =
9897 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9898 CS.setCalledFunction(NewCallee);
9899 return CS.getInstruction();
9900}
9901
Chris Lattner7da52b22006-11-01 04:51:18 +00009902/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9903/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9904/// and a single binop.
9905Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9906 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
Reid Spencer832254e2007-02-02 02:16:23 +00009907 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
9908 isa<CmpInst>(FirstInst));
Chris Lattner7da52b22006-11-01 04:51:18 +00009909 unsigned Opc = FirstInst->getOpcode();
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009910 Value *LHSVal = FirstInst->getOperand(0);
9911 Value *RHSVal = FirstInst->getOperand(1);
9912
9913 const Type *LHSType = LHSVal->getType();
9914 const Type *RHSType = RHSVal->getType();
Chris Lattner7da52b22006-11-01 04:51:18 +00009915
9916 // Scan to see if all operands are the same opcode, all have one use, and all
9917 // kill their operands (i.e. the operands have one use).
Chris Lattnera90a24c2006-11-01 04:55:47 +00009918 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
Chris Lattner7da52b22006-11-01 04:51:18 +00009919 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
Chris Lattnera90a24c2006-11-01 04:55:47 +00009920 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
Reid Spencere4d87aa2006-12-23 06:05:41 +00009921 // Verify type of the LHS matches so we don't fold cmp's of different
Chris Lattner9c080502006-11-01 07:43:41 +00009922 // types or GEP's with different index types.
9923 I->getOperand(0)->getType() != LHSType ||
9924 I->getOperand(1)->getType() != RHSType)
Chris Lattner7da52b22006-11-01 04:51:18 +00009925 return 0;
Reid Spencere4d87aa2006-12-23 06:05:41 +00009926
9927 // If they are CmpInst instructions, check their predicates
9928 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9929 if (cast<CmpInst>(I)->getPredicate() !=
9930 cast<CmpInst>(FirstInst)->getPredicate())
9931 return 0;
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009932
9933 // Keep track of which operand needs a phi node.
9934 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9935 if (I->getOperand(1) != RHSVal) RHSVal = 0;
Chris Lattner7da52b22006-11-01 04:51:18 +00009936 }
9937
Chris Lattner53738a42006-11-08 19:42:28 +00009938 // Otherwise, this is safe to transform, determine if it is profitable.
9939
9940 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
9941 // Indexes are often folded into load/store instructions, so we don't want to
9942 // hide them behind a phi.
9943 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
9944 return 0;
9945
Chris Lattner7da52b22006-11-01 04:51:18 +00009946 Value *InLHS = FirstInst->getOperand(0);
Chris Lattner7da52b22006-11-01 04:51:18 +00009947 Value *InRHS = FirstInst->getOperand(1);
Chris Lattner53738a42006-11-08 19:42:28 +00009948 PHINode *NewLHS = 0, *NewRHS = 0;
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009949 if (LHSVal == 0) {
Gabor Greifb1dbcd82008-05-15 10:04:30 +00009950 NewLHS = PHINode::Create(LHSType,
9951 FirstInst->getOperand(0)->getName() + ".pn");
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009952 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9953 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
Chris Lattner9c080502006-11-01 07:43:41 +00009954 InsertNewInstBefore(NewLHS, PN);
9955 LHSVal = NewLHS;
9956 }
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009957
9958 if (RHSVal == 0) {
Gabor Greifb1dbcd82008-05-15 10:04:30 +00009959 NewRHS = PHINode::Create(RHSType,
9960 FirstInst->getOperand(1)->getName() + ".pn");
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009961 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9962 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
Chris Lattner9c080502006-11-01 07:43:41 +00009963 InsertNewInstBefore(NewRHS, PN);
9964 RHSVal = NewRHS;
9965 }
9966
Chris Lattnerf6fd94d2006-11-08 19:29:23 +00009967 // Add all operands to the new PHIs.
9968 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9969 if (NewLHS) {
9970 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9971 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
9972 }
9973 if (NewRHS) {
9974 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
9975 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
9976 }
9977 }
9978
Chris Lattner7da52b22006-11-01 04:51:18 +00009979 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00009980 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Reid Spencere4d87aa2006-12-23 06:05:41 +00009981 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greif7cbd8a32008-05-16 19:29:10 +00009982 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
Reid Spencere4d87aa2006-12-23 06:05:41 +00009983 RHSVal);
Chris Lattner9c080502006-11-01 07:43:41 +00009984 else {
9985 assert(isa<GetElementPtrInst>(FirstInst));
Gabor Greif051a9502008-04-06 20:25:17 +00009986 return GetElementPtrInst::Create(LHSVal, RHSVal);
Chris Lattner9c080502006-11-01 07:43:41 +00009987 }
Chris Lattner7da52b22006-11-01 04:51:18 +00009988}
9989
Chris Lattner76c73142006-11-01 07:13:54 +00009990/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
9991/// of the block that defines it. This means that it must be obvious the value
9992/// of the load is not changed from the point of the load to the end of the
9993/// block it is in.
Chris Lattnerfd905ca2007-02-01 22:30:07 +00009994///
9995/// Finally, it is safe, but not profitable, to sink a load targetting a
9996/// non-address-taken alloca. Doing so will cause us to not promote the alloca
9997/// to a register.
Chris Lattner76c73142006-11-01 07:13:54 +00009998static bool isSafeToSinkLoad(LoadInst *L) {
9999 BasicBlock::iterator BBI = L, E = L->getParent()->end();
10000
10001 for (++BBI; BBI != E; ++BBI)
10002 if (BBI->mayWriteToMemory())
10003 return false;
Chris Lattnerfd905ca2007-02-01 22:30:07 +000010004
10005 // Check for non-address taken alloca. If not address-taken already, it isn't
10006 // profitable to do this xform.
10007 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
10008 bool isAddressTaken = false;
10009 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
10010 UI != E; ++UI) {
10011 if (isa<LoadInst>(UI)) continue;
10012 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
10013 // If storing TO the alloca, then the address isn't taken.
10014 if (SI->getOperand(1) == AI) continue;
10015 }
10016 isAddressTaken = true;
10017 break;
10018 }
10019
10020 if (!isAddressTaken)
10021 return false;
10022 }
10023
Chris Lattner76c73142006-11-01 07:13:54 +000010024 return true;
10025}
10026
Chris Lattner9fe38862003-06-19 17:00:31 +000010027
Chris Lattnerbac32862004-11-14 19:13:23 +000010028// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
10029// operator and they all are only used by the PHI, PHI together their
10030// inputs, and do the operation once, to the result of the PHI.
10031Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
10032 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
10033
10034 // Scan the instruction, looking for input operations that can be folded away.
10035 // If all input operands to the phi are the same instruction (e.g. a cast from
10036 // the same type or "+42") we can pull the operation through the PHI, reducing
10037 // code size and simplifying code.
10038 Constant *ConstantOp = 0;
10039 const Type *CastSrcTy = 0;
Chris Lattner76c73142006-11-01 07:13:54 +000010040 bool isVolatile = false;
Chris Lattnerbac32862004-11-14 19:13:23 +000010041 if (isa<CastInst>(FirstInst)) {
10042 CastSrcTy = FirstInst->getOperand(0)->getType();
Reid Spencer832254e2007-02-02 02:16:23 +000010043 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +000010044 // Can fold binop, compare or shift here if the RHS is a constant,
10045 // otherwise call FoldPHIArgBinOpIntoPHI.
Chris Lattnerbac32862004-11-14 19:13:23 +000010046 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
Chris Lattner7da52b22006-11-01 04:51:18 +000010047 if (ConstantOp == 0)
10048 return FoldPHIArgBinOpIntoPHI(PN);
Chris Lattner76c73142006-11-01 07:13:54 +000010049 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
10050 isVolatile = LI->isVolatile();
10051 // We can't sink the load if the loaded value could be modified between the
10052 // load and the PHI.
10053 if (LI->getParent() != PN.getIncomingBlock(0) ||
10054 !isSafeToSinkLoad(LI))
10055 return 0;
Chris Lattner71042962008-07-08 17:18:32 +000010056
10057 // If the PHI is of volatile loads and the load block has multiple
10058 // successors, sinking it would remove a load of the volatile value from
10059 // the path through the other successor.
10060 if (isVolatile &&
10061 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10062 return 0;
10063
Chris Lattner9c080502006-11-01 07:43:41 +000010064 } else if (isa<GetElementPtrInst>(FirstInst)) {
Chris Lattner53738a42006-11-08 19:42:28 +000010065 if (FirstInst->getNumOperands() == 2)
Chris Lattner9c080502006-11-01 07:43:41 +000010066 return FoldPHIArgBinOpIntoPHI(PN);
10067 // Can't handle general GEPs yet.
10068 return 0;
Chris Lattnerbac32862004-11-14 19:13:23 +000010069 } else {
10070 return 0; // Cannot fold this operation.
10071 }
10072
10073 // Check to see if all arguments are the same operation.
10074 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10075 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
10076 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
Reid Spencere4d87aa2006-12-23 06:05:41 +000010077 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
Chris Lattnerbac32862004-11-14 19:13:23 +000010078 return 0;
10079 if (CastSrcTy) {
10080 if (I->getOperand(0)->getType() != CastSrcTy)
10081 return 0; // Cast operation must match.
Chris Lattner76c73142006-11-01 07:13:54 +000010082 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Reid Spencere4d87aa2006-12-23 06:05:41 +000010083 // We can't sink the load if the loaded value could be modified between
10084 // the load and the PHI.
Chris Lattner76c73142006-11-01 07:13:54 +000010085 if (LI->isVolatile() != isVolatile ||
10086 LI->getParent() != PN.getIncomingBlock(i) ||
10087 !isSafeToSinkLoad(LI))
10088 return 0;
Chris Lattner40700fe2008-04-29 17:28:22 +000010089
Chris Lattner71042962008-07-08 17:18:32 +000010090 // If the PHI is of volatile loads and the load block has multiple
10091 // successors, sinking it would remove a load of the volatile value from
10092 // the path through the other successor.
Chris Lattner40700fe2008-04-29 17:28:22 +000010093 if (isVolatile &&
10094 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10095 return 0;
10096
10097
Chris Lattnerbac32862004-11-14 19:13:23 +000010098 } else if (I->getOperand(1) != ConstantOp) {
10099 return 0;
10100 }
10101 }
10102
10103 // Okay, they are all the same operation. Create a new PHI node of the
10104 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greif051a9502008-04-06 20:25:17 +000010105 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
10106 PN.getName()+".in");
Chris Lattner55517062005-01-29 00:39:08 +000010107 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
Chris Lattnerb5893442004-11-14 19:29:34 +000010108
10109 Value *InVal = FirstInst->getOperand(0);
10110 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
Chris Lattnerbac32862004-11-14 19:13:23 +000010111
10112 // Add all operands to the new PHI.
Chris Lattnerb5893442004-11-14 19:29:34 +000010113 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10114 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
10115 if (NewInVal != InVal)
10116 InVal = 0;
10117 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
10118 }
10119
10120 Value *PhiVal;
10121 if (InVal) {
10122 // The new PHI unions all of the same values together. This is really
10123 // common, so we handle it intelligently here for compile-time speed.
10124 PhiVal = InVal;
10125 delete NewPN;
10126 } else {
10127 InsertNewInstBefore(NewPN, PN);
10128 PhiVal = NewPN;
10129 }
Misha Brukmanfd939082005-04-21 23:48:37 +000010130
Chris Lattnerbac32862004-11-14 19:13:23 +000010131 // Insert and return the new operation.
Reid Spencer3da59db2006-11-27 01:05:10 +000010132 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greif7cbd8a32008-05-16 19:29:10 +000010133 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattner54545ac2008-04-29 17:13:43 +000010134 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greif7cbd8a32008-05-16 19:29:10 +000010135 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattner54545ac2008-04-29 17:13:43 +000010136 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greif7cbd8a32008-05-16 19:29:10 +000010137 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Reid Spencere4d87aa2006-12-23 06:05:41 +000010138 PhiVal, ConstantOp);
Chris Lattner54545ac2008-04-29 17:13:43 +000010139 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
10140
10141 // If this was a volatile load that we are merging, make sure to loop through
10142 // and mark all the input loads as non-volatile. If we don't do this, we will
10143 // insert a new volatile load and the old ones will not be deletable.
10144 if (isVolatile)
10145 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
10146 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
10147
10148 return new LoadInst(PhiVal, "", isVolatile);
Chris Lattnerbac32862004-11-14 19:13:23 +000010149}
Chris Lattnera1be5662002-05-02 17:06:02 +000010150
Chris Lattnera3fd1c52005-01-17 05:10:15 +000010151/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
10152/// that is dead.
Chris Lattner0e5444b2007-03-26 20:40:50 +000010153static bool DeadPHICycle(PHINode *PN,
10154 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
Chris Lattnera3fd1c52005-01-17 05:10:15 +000010155 if (PN->use_empty()) return true;
10156 if (!PN->hasOneUse()) return false;
10157
10158 // Remember this node, and if we find the cycle, return.
Chris Lattner0e5444b2007-03-26 20:40:50 +000010159 if (!PotentiallyDeadPHIs.insert(PN))
Chris Lattnera3fd1c52005-01-17 05:10:15 +000010160 return true;
Chris Lattner92103de2007-08-28 04:23:55 +000010161
10162 // Don't scan crazily complex things.
10163 if (PotentiallyDeadPHIs.size() == 16)
10164 return false;
Chris Lattnera3fd1c52005-01-17 05:10:15 +000010165
10166 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
10167 return DeadPHICycle(PU, PotentiallyDeadPHIs);
Misha Brukmanfd939082005-04-21 23:48:37 +000010168
Chris Lattnera3fd1c52005-01-17 05:10:15 +000010169 return false;
10170}
10171
Chris Lattnercf5008a2007-11-06 21:52:06 +000010172/// PHIsEqualValue - Return true if this phi node is always equal to
10173/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
10174/// z = some value; x = phi (y, z); y = phi (x, z)
10175static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
10176 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
10177 // See if we already saw this PHI node.
10178 if (!ValueEqualPHIs.insert(PN))
10179 return true;
10180
10181 // Don't scan crazily complex things.
10182 if (ValueEqualPHIs.size() == 16)
10183 return false;
10184
10185 // Scan the operands to see if they are either phi nodes or are equal to
10186 // the value.
10187 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
10188 Value *Op = PN->getIncomingValue(i);
10189 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
10190 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
10191 return false;
10192 } else if (Op != NonPhiInVal)
10193 return false;
10194 }
10195
10196 return true;
10197}
10198
10199
Chris Lattner473945d2002-05-06 18:06:38 +000010200// PHINode simplification
10201//
Chris Lattner7e708292002-06-25 16:13:24 +000010202Instruction *InstCombiner::visitPHINode(PHINode &PN) {
Owen Andersonb64ab872006-07-10 22:15:25 +000010203 // If LCSSA is around, don't mess with Phi nodes
Chris Lattnerf964f322007-03-04 04:27:24 +000010204 if (MustPreserveLCSSA) return 0;
Owen Andersond1b78a12006-07-10 19:03:49 +000010205
Owen Anderson7e057142006-07-10 22:03:18 +000010206 if (Value *V = PN.hasConstantValue())
10207 return ReplaceInstUsesWith(PN, V);
10208
Owen Anderson7e057142006-07-10 22:03:18 +000010209 // If all PHI operands are the same operation, pull them through the PHI,
10210 // reducing code size.
10211 if (isa<Instruction>(PN.getIncomingValue(0)) &&
10212 PN.getIncomingValue(0)->hasOneUse())
10213 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
10214 return Result;
10215
10216 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
10217 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
10218 // PHI)... break the cycle.
Chris Lattnerff9f13a2007-01-15 07:30:06 +000010219 if (PN.hasOneUse()) {
10220 Instruction *PHIUser = cast<Instruction>(PN.use_back());
10221 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
Chris Lattner0e5444b2007-03-26 20:40:50 +000010222 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
Owen Anderson7e057142006-07-10 22:03:18 +000010223 PotentiallyDeadPHIs.insert(&PN);
10224 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
10225 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10226 }
Chris Lattnerff9f13a2007-01-15 07:30:06 +000010227
10228 // If this phi has a single use, and if that use just computes a value for
10229 // the next iteration of a loop, delete the phi. This occurs with unused
10230 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
10231 // common case here is good because the only other things that catch this
10232 // are induction variable analysis (sometimes) and ADCE, which is only run
10233 // late.
10234 if (PHIUser->hasOneUse() &&
10235 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
10236 PHIUser->use_back() == &PN) {
10237 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10238 }
10239 }
Owen Anderson7e057142006-07-10 22:03:18 +000010240
Chris Lattnercf5008a2007-11-06 21:52:06 +000010241 // We sometimes end up with phi cycles that non-obviously end up being the
10242 // same value, for example:
10243 // z = some value; x = phi (y, z); y = phi (x, z)
10244 // where the phi nodes don't necessarily need to be in the same block. Do a
10245 // quick check to see if the PHI node only contains a single non-phi value, if
10246 // so, scan to see if the phi cycle is actually equal to that value.
10247 {
10248 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
10249 // Scan for the first non-phi operand.
10250 while (InValNo != NumOperandVals &&
10251 isa<PHINode>(PN.getIncomingValue(InValNo)))
10252 ++InValNo;
10253
10254 if (InValNo != NumOperandVals) {
10255 Value *NonPhiInVal = PN.getOperand(InValNo);
10256
10257 // Scan the rest of the operands to see if there are any conflicts, if so
10258 // there is no need to recursively scan other phis.
10259 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
10260 Value *OpVal = PN.getIncomingValue(InValNo);
10261 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
10262 break;
10263 }
10264
10265 // If we scanned over all operands, then we have one unique value plus
10266 // phi values. Scan PHI nodes to see if they all merge in each other or
10267 // the value.
10268 if (InValNo == NumOperandVals) {
10269 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
10270 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
10271 return ReplaceInstUsesWith(PN, NonPhiInVal);
10272 }
10273 }
10274 }
Chris Lattner60921c92003-12-19 05:58:40 +000010275 return 0;
Chris Lattner473945d2002-05-06 18:06:38 +000010276}
10277
Reid Spencer17212df2006-12-12 09:18:51 +000010278static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
10279 Instruction *InsertPoint,
10280 InstCombiner *IC) {
Reid Spencerabaa8ca2007-01-08 16:32:00 +000010281 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
10282 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
Reid Spencer17212df2006-12-12 09:18:51 +000010283 // We must cast correctly to the pointer type. Ensure that we
10284 // sign extend the integer value if it is smaller as this is
10285 // used for address computation.
10286 Instruction::CastOps opcode =
10287 (VTySize < PtrSize ? Instruction::SExt :
10288 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
10289 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
Chris Lattner28977af2004-04-05 01:30:19 +000010290}
10291
Chris Lattnera1be5662002-05-02 17:06:02 +000010292
Chris Lattner7e708292002-06-25 16:13:24 +000010293Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattner620ce142004-05-07 22:09:22 +000010294 Value *PtrOp = GEP.getOperand(0);
Chris Lattner9bc14642007-04-28 00:57:34 +000010295 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
Chris Lattner7e708292002-06-25 16:13:24 +000010296 // If so, eliminate the noop.
Chris Lattnerc6bd1952004-02-22 05:25:17 +000010297 if (GEP.getNumOperands() == 1)
Chris Lattner620ce142004-05-07 22:09:22 +000010298 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattnerc6bd1952004-02-22 05:25:17 +000010299
Chris Lattnere87597f2004-10-16 18:11:37 +000010300 if (isa<UndefValue>(GEP.getOperand(0)))
10301 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
10302
Chris Lattnerc6bd1952004-02-22 05:25:17 +000010303 bool HasZeroPointerIndex = false;
10304 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
10305 HasZeroPointerIndex = C->isNullValue();
10306
10307 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
Chris Lattner620ce142004-05-07 22:09:22 +000010308 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattnera1be5662002-05-02 17:06:02 +000010309
Chris Lattner28977af2004-04-05 01:30:19 +000010310 // Eliminate unneeded casts for indices.
10311 bool MadeChange = false;
Chris Lattnerdb9654e2007-03-25 20:43:09 +000010312
Chris Lattnercb69a4e2004-04-07 18:38:20 +000010313 gep_type_iterator GTI = gep_type_begin(GEP);
Gabor Greif177dd3f2008-06-12 21:37:33 +000010314 for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
10315 i != e; ++i, ++GTI) {
Chris Lattnercb69a4e2004-04-07 18:38:20 +000010316 if (isa<SequentialType>(*GTI)) {
Gabor Greif177dd3f2008-06-12 21:37:33 +000010317 if (CastInst *CI = dyn_cast<CastInst>(*i)) {
Chris Lattner76b7a062007-01-15 07:02:54 +000010318 if (CI->getOpcode() == Instruction::ZExt ||
10319 CI->getOpcode() == Instruction::SExt) {
10320 const Type *SrcTy = CI->getOperand(0)->getType();
10321 // We can eliminate a cast from i32 to i64 iff the target
10322 // is a 32-bit pointer target.
10323 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
10324 MadeChange = true;
Gabor Greif177dd3f2008-06-12 21:37:33 +000010325 *i = CI->getOperand(0);
Chris Lattner28977af2004-04-05 01:30:19 +000010326 }
10327 }
10328 }
Chris Lattnercb69a4e2004-04-07 18:38:20 +000010329 // If we are using a wider index than needed for this platform, shrink it
Dan Gohman4f833d42008-09-11 23:06:38 +000010330 // to what we need. If narrower, sign-extend it to what we need.
10331 // If the incoming value needs a cast instruction,
Chris Lattnercb69a4e2004-04-07 18:38:20 +000010332 // insert it. This explicit cast can make subsequent optimizations more
10333 // obvious.
Gabor Greif177dd3f2008-06-12 21:37:33 +000010334 Value *Op = *i;
Anton Korobeynikov07e6e562008-02-20 11:26:25 +000010335 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Chris Lattner4f1134e2004-04-17 18:16:10 +000010336 if (Constant *C = dyn_cast<Constant>(Op)) {
Gabor Greif177dd3f2008-06-12 21:37:33 +000010337 *i = ConstantExpr::getTrunc(C, TD->getIntPtrType());
Chris Lattner4f1134e2004-04-17 18:16:10 +000010338 MadeChange = true;
10339 } else {
Reid Spencer17212df2006-12-12 09:18:51 +000010340 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
10341 GEP);
Gabor Greif177dd3f2008-06-12 21:37:33 +000010342 *i = Op;
Chris Lattnercb69a4e2004-04-07 18:38:20 +000010343 MadeChange = true;
10344 }
Dan Gohman4f833d42008-09-11 23:06:38 +000010345 } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
10346 if (Constant *C = dyn_cast<Constant>(Op)) {
10347 *i = ConstantExpr::getSExt(C, TD->getIntPtrType());
10348 MadeChange = true;
10349 } else {
10350 Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
10351 GEP);
10352 *i = Op;
10353 MadeChange = true;
10354 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +000010355 }
Chris Lattner28977af2004-04-05 01:30:19 +000010356 }
Chris Lattnerdb9654e2007-03-25 20:43:09 +000010357 }
Chris Lattner28977af2004-04-05 01:30:19 +000010358 if (MadeChange) return &GEP;
10359
Chris Lattnerdb9654e2007-03-25 20:43:09 +000010360 // If this GEP instruction doesn't move the pointer, and if the input operand
10361 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
10362 // real input to the dest type.
Chris Lattner6a94de22007-10-12 05:30:59 +000010363 if (GEP.hasAllZeroIndices()) {
10364 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
10365 // If the bitcast is of an allocation, and the allocation will be
10366 // converted to match the type of the cast, don't touch this.
10367 if (isa<AllocationInst>(BCI->getOperand(0))) {
10368 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattnera79dd432007-10-12 18:05:47 +000010369 if (Instruction *I = visitBitCast(*BCI)) {
10370 if (I != BCI) {
10371 I->takeName(BCI);
10372 BCI->getParent()->getInstList().insert(BCI, I);
10373 ReplaceInstUsesWith(*BCI, I);
10374 }
Chris Lattner6a94de22007-10-12 05:30:59 +000010375 return &GEP;
Chris Lattnera79dd432007-10-12 18:05:47 +000010376 }
Chris Lattner6a94de22007-10-12 05:30:59 +000010377 }
10378 return new BitCastInst(BCI->getOperand(0), GEP.getType());
10379 }
10380 }
10381
Chris Lattner90ac28c2002-08-02 19:29:35 +000010382 // Combine Indices - If the source pointer to this getelementptr instruction
10383 // is a getelementptr instruction, combine the indices of the two
10384 // getelementptr instructions into a single instruction.
10385 //
Chris Lattner72588fc2007-02-15 22:48:32 +000010386 SmallVector<Value*, 8> SrcGEPOperands;
Chris Lattner574da9b2005-01-13 20:14:25 +000010387 if (User *Src = dyn_castGetElementPtr(PtrOp))
Chris Lattner72588fc2007-02-15 22:48:32 +000010388 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
Chris Lattnerebd985c2004-03-25 22:59:29 +000010389
10390 if (!SrcGEPOperands.empty()) {
Chris Lattner620ce142004-05-07 22:09:22 +000010391 // Note that if our source is a gep chain itself that we wait for that
10392 // chain to be resolved before we perform this transformation. This
10393 // avoids us creating a TON of code in some cases.
10394 //
10395 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
10396 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
10397 return 0; // Wait until our source is folded to completion.
10398
Chris Lattner72588fc2007-02-15 22:48:32 +000010399 SmallVector<Value*, 8> Indices;
Chris Lattner620ce142004-05-07 22:09:22 +000010400
10401 // Find out whether the last index in the source GEP is a sequential idx.
10402 bool EndsWithSequential = false;
10403 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
10404 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
Chris Lattnerbe97b4e2004-05-08 22:41:42 +000010405 EndsWithSequential = !isa<StructType>(*I);
Misha Brukmanfd939082005-04-21 23:48:37 +000010406
Chris Lattner90ac28c2002-08-02 19:29:35 +000010407 // Can we combine the two pointer arithmetics offsets?
Chris Lattner620ce142004-05-07 22:09:22 +000010408 if (EndsWithSequential) {
Chris Lattnerdecd0812003-03-05 22:33:14 +000010409 // Replace: gep (gep %P, long B), long A, ...
10410 // With: T = long A+B; gep %P, T, ...
10411 //
Chris Lattner620ce142004-05-07 22:09:22 +000010412 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
Chris Lattner28977af2004-04-05 01:30:19 +000010413 if (SO1 == Constant::getNullValue(SO1->getType())) {
10414 Sum = GO1;
10415 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
10416 Sum = SO1;
10417 } else {
10418 // If they aren't the same type, convert both to an integer of the
10419 // target's pointer size.
10420 if (SO1->getType() != GO1->getType()) {
10421 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
Reid Spencer17212df2006-12-12 09:18:51 +000010422 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
Chris Lattner28977af2004-04-05 01:30:19 +000010423 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
Reid Spencer17212df2006-12-12 09:18:51 +000010424 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
Chris Lattner28977af2004-04-05 01:30:19 +000010425 } else {
Duncan Sands514ab342007-11-01 20:53:16 +000010426 unsigned PS = TD->getPointerSizeInBits();
10427 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Chris Lattner28977af2004-04-05 01:30:19 +000010428 // Convert GO1 to SO1's type.
Reid Spencer17212df2006-12-12 09:18:51 +000010429 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
Chris Lattner28977af2004-04-05 01:30:19 +000010430
Duncan Sands514ab342007-11-01 20:53:16 +000010431 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Chris Lattner28977af2004-04-05 01:30:19 +000010432 // Convert SO1 to GO1's type.
Reid Spencer17212df2006-12-12 09:18:51 +000010433 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
Chris Lattner28977af2004-04-05 01:30:19 +000010434 } else {
10435 const Type *PT = TD->getIntPtrType();
Reid Spencer17212df2006-12-12 09:18:51 +000010436 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
10437 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
Chris Lattner28977af2004-04-05 01:30:19 +000010438 }
10439 }
10440 }
Chris Lattner620ce142004-05-07 22:09:22 +000010441 if (isa<Constant>(SO1) && isa<Constant>(GO1))
10442 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
10443 else {
Gabor Greif7cbd8a32008-05-16 19:29:10 +000010444 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Chris Lattner48595f12004-06-10 02:07:29 +000010445 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
Chris Lattner620ce142004-05-07 22:09:22 +000010446 }
Chris Lattner28977af2004-04-05 01:30:19 +000010447 }
Chris Lattner620ce142004-05-07 22:09:22 +000010448
10449 // Recycle the GEP we already have if possible.
10450 if (SrcGEPOperands.size() == 2) {
10451 GEP.setOperand(0, SrcGEPOperands[0]);
10452 GEP.setOperand(1, Sum);
10453 return &GEP;
10454 } else {
10455 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10456 SrcGEPOperands.end()-1);
10457 Indices.push_back(Sum);
10458 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
10459 }
Misha Brukmanfd939082005-04-21 23:48:37 +000010460 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner28977af2004-04-05 01:30:19 +000010461 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Misha Brukmanfd939082005-04-21 23:48:37 +000010462 SrcGEPOperands.size() != 1) {
Chris Lattner90ac28c2002-08-02 19:29:35 +000010463 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattnerebd985c2004-03-25 22:59:29 +000010464 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10465 SrcGEPOperands.end());
Chris Lattner90ac28c2002-08-02 19:29:35 +000010466 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
10467 }
10468
10469 if (!Indices.empty())
Gabor Greif051a9502008-04-06 20:25:17 +000010470 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
10471 Indices.end(), GEP.getName());
Chris Lattner9b761232002-08-17 22:21:59 +000010472
Chris Lattner620ce142004-05-07 22:09:22 +000010473 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
Chris Lattner9b761232002-08-17 22:21:59 +000010474 // GEP of global variable. If all of the indices for this GEP are
10475 // constants, we can promote this to a constexpr instead of an instruction.
10476
10477 // Scan for nonconstants...
Chris Lattner55eb1c42007-01-31 04:40:53 +000010478 SmallVector<Constant*, 8> Indices;
Chris Lattner9b761232002-08-17 22:21:59 +000010479 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
10480 for (; I != E && isa<Constant>(*I); ++I)
10481 Indices.push_back(cast<Constant>(*I));
10482
10483 if (I == E) { // If they are all constants...
Chris Lattner55eb1c42007-01-31 04:40:53 +000010484 Constant *CE = ConstantExpr::getGetElementPtr(GV,
10485 &Indices[0],Indices.size());
Chris Lattner9b761232002-08-17 22:21:59 +000010486
10487 // Replace all uses of the GEP with the new constexpr...
10488 return ReplaceInstUsesWith(GEP, CE);
10489 }
Reid Spencer3da59db2006-11-27 01:05:10 +000010490 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
Chris Lattnereed48272005-09-13 00:40:14 +000010491 if (!isa<PointerType>(X->getType())) {
10492 // Not interesting. Source pointer must be a cast from pointer.
10493 } else if (HasZeroPointerIndex) {
Wojciech Matyjewiczed223252007-12-12 15:21:32 +000010494 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
10495 // into : GEP [10 x i8]* X, i32 0, ...
Chris Lattnereed48272005-09-13 00:40:14 +000010496 //
10497 // This occurs when the program declares an array extern like "int X[];"
10498 //
10499 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
10500 const PointerType *XTy = cast<PointerType>(X->getType());
10501 if (const ArrayType *XATy =
10502 dyn_cast<ArrayType>(XTy->getElementType()))
10503 if (const ArrayType *CATy =
10504 dyn_cast<ArrayType>(CPTy->getElementType()))
10505 if (CATy->getElementType() == XATy->getElementType()) {
10506 // At this point, we know that the cast source type is a pointer
10507 // to an array of the same type as the destination pointer
10508 // array. Because the array type is never stepped over (there
10509 // is a leading zero) we can fold the cast into this GEP.
10510 GEP.setOperand(0, X);
10511 return &GEP;
10512 }
10513 } else if (GEP.getNumOperands() == 2) {
10514 // Transform things like:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +000010515 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
10516 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Chris Lattnereed48272005-09-13 00:40:14 +000010517 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
10518 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
10519 if (isa<ArrayType>(SrcElTy) &&
Duncan Sands514ab342007-11-01 20:53:16 +000010520 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
10521 TD->getABITypeSize(ResElTy)) {
David Greeneb8f74792007-09-04 15:46:09 +000010522 Value *Idx[2];
10523 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10524 Idx[1] = GEP.getOperand(1);
Chris Lattnereed48272005-09-13 00:40:14 +000010525 Value *V = InsertNewInstBefore(
Gabor Greif051a9502008-04-06 20:25:17 +000010526 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Reid Spencer3da59db2006-11-27 01:05:10 +000010527 // V and GEP are both pointer types --> BitCast
10528 return new BitCastInst(V, GEP.getType());
Chris Lattnerc6bd1952004-02-22 05:25:17 +000010529 }
Chris Lattner7835cdd2005-09-13 18:36:04 +000010530
10531 // Transform things like:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +000010532 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Chris Lattner7835cdd2005-09-13 18:36:04 +000010533 // (where tmp = 8*tmp2) into:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +000010534 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Chris Lattner7835cdd2005-09-13 18:36:04 +000010535
Wojciech Matyjewiczed223252007-12-12 15:21:32 +000010536 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Chris Lattner7835cdd2005-09-13 18:36:04 +000010537 uint64_t ArrayEltSize =
Duncan Sands514ab342007-11-01 20:53:16 +000010538 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Chris Lattner7835cdd2005-09-13 18:36:04 +000010539
10540 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
10541 // allow either a mul, shift, or constant here.
10542 Value *NewIdx = 0;
10543 ConstantInt *Scale = 0;
10544 if (ArrayEltSize == 1) {
10545 NewIdx = GEP.getOperand(1);
10546 Scale = ConstantInt::get(NewIdx->getType(), 1);
10547 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
Chris Lattner6e2f8432005-09-14 17:32:56 +000010548 NewIdx = ConstantInt::get(CI->getType(), 1);
Chris Lattner7835cdd2005-09-13 18:36:04 +000010549 Scale = CI;
10550 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
10551 if (Inst->getOpcode() == Instruction::Shl &&
10552 isa<ConstantInt>(Inst->getOperand(1))) {
Zhou Sheng0e2d3ac2007-03-30 09:29:48 +000010553 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
10554 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
10555 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
Chris Lattner7835cdd2005-09-13 18:36:04 +000010556 NewIdx = Inst->getOperand(0);
10557 } else if (Inst->getOpcode() == Instruction::Mul &&
10558 isa<ConstantInt>(Inst->getOperand(1))) {
10559 Scale = cast<ConstantInt>(Inst->getOperand(1));
10560 NewIdx = Inst->getOperand(0);
10561 }
10562 }
Wojciech Matyjewiczed223252007-12-12 15:21:32 +000010563
Chris Lattner7835cdd2005-09-13 18:36:04 +000010564 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewiczed223252007-12-12 15:21:32 +000010565 // out, perform the transformation. Note, we don't know whether Scale is
10566 // signed or not. We'll use unsigned version of division/modulo
10567 // operation after making sure Scale doesn't have the sign bit set.
10568 if (Scale && Scale->getSExtValue() >= 0LL &&
10569 Scale->getZExtValue() % ArrayEltSize == 0) {
10570 Scale = ConstantInt::get(Scale->getType(),
10571 Scale->getZExtValue() / ArrayEltSize);
Reid Spencerb83eb642006-10-20 07:07:24 +000010572 if (Scale->getZExtValue() != 1) {
Reid Spencer17212df2006-12-12 09:18:51 +000010573 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewiczed223252007-12-12 15:21:32 +000010574 false /*ZExt*/);
Gabor Greif7cbd8a32008-05-16 19:29:10 +000010575 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Chris Lattner7835cdd2005-09-13 18:36:04 +000010576 NewIdx = InsertNewInstBefore(Sc, GEP);
10577 }
10578
10579 // Insert the new GEP instruction.
David Greeneb8f74792007-09-04 15:46:09 +000010580 Value *Idx[2];
10581 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10582 Idx[1] = NewIdx;
Reid Spencer3da59db2006-11-27 01:05:10 +000010583 Instruction *NewGEP =
Gabor Greif051a9502008-04-06 20:25:17 +000010584 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Reid Spencer3da59db2006-11-27 01:05:10 +000010585 NewGEP = InsertNewInstBefore(NewGEP, GEP);
10586 // The NewGEP must be pointer typed, so must the old one -> BitCast
10587 return new BitCastInst(NewGEP, GEP.getType());
Chris Lattner7835cdd2005-09-13 18:36:04 +000010588 }
10589 }
Chris Lattnerc6bd1952004-02-22 05:25:17 +000010590 }
Chris Lattner8a2a3112001-12-14 16:52:21 +000010591 }
10592
Chris Lattner8a2a3112001-12-14 16:52:21 +000010593 return 0;
10594}
10595
Chris Lattner0864acf2002-11-04 16:18:53 +000010596Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
10597 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov07e6e562008-02-20 11:26:25 +000010598 if (AI.isArrayAllocation()) { // Check C != 1
Reid Spencerb83eb642006-10-20 07:07:24 +000010599 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
10600 const Type *NewTy =
10601 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
Chris Lattner0006bd72002-11-09 00:49:43 +000010602 AllocationInst *New = 0;
Chris Lattner0864acf2002-11-04 16:18:53 +000010603
10604 // Create and insert the replacement instruction...
10605 if (isa<MallocInst>(AI))
Nate Begeman14b05292005-11-05 09:21:28 +000010606 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattner0006bd72002-11-09 00:49:43 +000010607 else {
10608 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
Nate Begeman14b05292005-11-05 09:21:28 +000010609 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattner0006bd72002-11-09 00:49:43 +000010610 }
Chris Lattner7c881df2004-03-19 06:08:10 +000010611
10612 InsertNewInstBefore(New, AI);
Misha Brukmanfd939082005-04-21 23:48:37 +000010613
Chris Lattner0864acf2002-11-04 16:18:53 +000010614 // Scan to the end of the allocation instructions, to skip over a block of
10615 // allocas if possible...
10616 //
10617 BasicBlock::iterator It = New;
10618 while (isa<AllocationInst>(*It)) ++It;
10619
10620 // Now that I is pointing to the first non-allocation-inst in the block,
10621 // insert our getelementptr instruction...
10622 //
Reid Spencerc5b206b2006-12-31 05:48:39 +000010623 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greeneb8f74792007-09-04 15:46:09 +000010624 Value *Idx[2];
10625 Idx[0] = NullIdx;
10626 Idx[1] = NullIdx;
Gabor Greif051a9502008-04-06 20:25:17 +000010627 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
10628 New->getName()+".sub", It);
Chris Lattner0864acf2002-11-04 16:18:53 +000010629
10630 // Now make everything use the getelementptr instead of the original
10631 // allocation.
Chris Lattner7c881df2004-03-19 06:08:10 +000010632 return ReplaceInstUsesWith(AI, V);
Chris Lattnere87597f2004-10-16 18:11:37 +000010633 } else if (isa<UndefValue>(AI.getArraySize())) {
10634 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
Chris Lattner0864acf2002-11-04 16:18:53 +000010635 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +000010636 }
Chris Lattner7c881df2004-03-19 06:08:10 +000010637
10638 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
10639 // Note that we only do this for alloca's, because malloc should allocate and
10640 // return a unique pointer, even for a zero byte allocation.
Misha Brukmanfd939082005-04-21 23:48:37 +000010641 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sands514ab342007-11-01 20:53:16 +000010642 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Chris Lattner7c881df2004-03-19 06:08:10 +000010643 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10644
Chris Lattner0864acf2002-11-04 16:18:53 +000010645 return 0;
10646}
10647
Chris Lattner67b1e1b2003-12-07 01:24:23 +000010648Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
10649 Value *Op = FI.getOperand(0);
10650
Chris Lattner17be6352004-10-18 02:59:09 +000010651 // free undef -> unreachable.
10652 if (isa<UndefValue>(Op)) {
10653 // Insert a new store to null because we cannot modify the CFG here.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +000010654 new StoreInst(ConstantInt::getTrue(),
Christopher Lamb43ad6b32007-12-17 01:12:55 +000010655 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Chris Lattner17be6352004-10-18 02:59:09 +000010656 return EraseInstFromFunction(FI);
10657 }
Chris Lattner6fe55412007-04-14 00:20:02 +000010658
Chris Lattner6160e852004-02-28 04:57:37 +000010659 // If we have 'free null' delete the instruction. This can happen in stl code
10660 // when lots of inlining happens.
Chris Lattner17be6352004-10-18 02:59:09 +000010661 if (isa<ConstantPointerNull>(Op))
Chris Lattner7bcc0e72004-02-28 05:22:00 +000010662 return EraseInstFromFunction(FI);
Chris Lattner6fe55412007-04-14 00:20:02 +000010663
10664 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10665 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10666 FI.setOperand(0, CI->getOperand(0));
10667 return &FI;
10668 }
10669
10670 // Change free (gep X, 0,0,0,0) into free(X)
10671 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10672 if (GEPI->hasAllZeroIndices()) {
10673 AddToWorkList(GEPI);
10674 FI.setOperand(0, GEPI->getOperand(0));
10675 return &FI;
10676 }
10677 }
10678
10679 // Change free(malloc) into nothing, if the malloc has a single use.
10680 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10681 if (MI->hasOneUse()) {
10682 EraseInstFromFunction(FI);
10683 return EraseInstFromFunction(*MI);
10684 }
Chris Lattner6160e852004-02-28 04:57:37 +000010685
Chris Lattner67b1e1b2003-12-07 01:24:23 +000010686 return 0;
10687}
10688
10689
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010690/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patel99db6ad2007-10-18 19:52:32 +000010691static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling587c01d2008-02-26 10:53:30 +000010692 const TargetData *TD) {
Chris Lattnerb89e0712004-07-13 01:49:43 +000010693 User *CI = cast<User>(LI.getOperand(0));
Chris Lattnerf9527852005-01-31 04:50:46 +000010694 Value *CastOp = CI->getOperand(0);
Chris Lattnerb89e0712004-07-13 01:49:43 +000010695
Devang Patel99db6ad2007-10-18 19:52:32 +000010696 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10697 // Instead of loading constant c string, use corresponding integer value
10698 // directly if string length is small enough.
Evan Cheng0ff39b32008-06-30 07:31:25 +000010699 std::string Str;
10700 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
Devang Patel99db6ad2007-10-18 19:52:32 +000010701 unsigned len = Str.length();
10702 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10703 unsigned numBits = Ty->getPrimitiveSizeInBits();
10704 // Replace LI with immediate integer store.
10705 if ((numBits >> 3) == len + 1) {
Bill Wendling587c01d2008-02-26 10:53:30 +000010706 APInt StrVal(numBits, 0);
10707 APInt SingleChar(numBits, 0);
10708 if (TD->isLittleEndian()) {
10709 for (signed i = len-1; i >= 0; i--) {
10710 SingleChar = (uint64_t) Str[i];
10711 StrVal = (StrVal << 8) | SingleChar;
10712 }
10713 } else {
10714 for (unsigned i = 0; i < len; i++) {
10715 SingleChar = (uint64_t) Str[i];
10716 StrVal = (StrVal << 8) | SingleChar;
10717 }
10718 // Append NULL at the end.
10719 SingleChar = 0;
10720 StrVal = (StrVal << 8) | SingleChar;
10721 }
10722 Value *NL = ConstantInt::get(StrVal);
10723 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patel99db6ad2007-10-18 19:52:32 +000010724 }
10725 }
10726 }
10727
Chris Lattnerb89e0712004-07-13 01:49:43 +000010728 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
Chris Lattnerf9527852005-01-31 04:50:46 +000010729 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
Chris Lattnerb89e0712004-07-13 01:49:43 +000010730 const Type *SrcPTy = SrcTy->getElementType();
Chris Lattnerf9527852005-01-31 04:50:46 +000010731
Reid Spencer42230162007-01-22 05:51:25 +000010732 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
Reid Spencer9d6565a2007-02-15 02:26:10 +000010733 isa<VectorType>(DestPTy)) {
Chris Lattnerf9527852005-01-31 04:50:46 +000010734 // If the source is an array, the code below will not succeed. Check to
10735 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10736 // constants.
10737 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10738 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10739 if (ASrcTy->getNumElements() != 0) {
Chris Lattner55eb1c42007-01-31 04:40:53 +000010740 Value *Idxs[2];
10741 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10742 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
Chris Lattnerf9527852005-01-31 04:50:46 +000010743 SrcTy = cast<PointerType>(CastOp->getType());
10744 SrcPTy = SrcTy->getElementType();
10745 }
10746
Reid Spencer42230162007-01-22 05:51:25 +000010747 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
Reid Spencer9d6565a2007-02-15 02:26:10 +000010748 isa<VectorType>(SrcPTy)) &&
Chris Lattnerb1515fe2005-03-29 06:37:47 +000010749 // Do not allow turning this into a load of an integer, which is then
10750 // casted to a pointer, this pessimizes pointer analysis a lot.
10751 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
Reid Spencer42230162007-01-22 05:51:25 +000010752 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10753 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
Misha Brukmanfd939082005-04-21 23:48:37 +000010754
Chris Lattnerf9527852005-01-31 04:50:46 +000010755 // Okay, we are casting from one integer or pointer type to another of
10756 // the same size. Instead of casting the pointer before the load, cast
10757 // the result of the loaded value.
10758 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10759 CI->getName(),
10760 LI.isVolatile()),LI);
10761 // Now cast the result of the load.
Reid Spencerd977d862006-12-12 23:36:14 +000010762 return new BitCastInst(NewLoad, LI.getType());
Chris Lattnerf9527852005-01-31 04:50:46 +000010763 }
Chris Lattnerb89e0712004-07-13 01:49:43 +000010764 }
10765 }
10766 return 0;
10767}
10768
Chris Lattnerc10aced2004-09-19 18:43:46 +000010769/// isSafeToLoadUnconditionally - Return true if we know that executing a load
Chris Lattner8a375202004-09-19 19:18:10 +000010770/// from this value cannot trap. If it is not obviously safe to load from the
10771/// specified pointer, we do a quick local scan of the basic block containing
10772/// ScanFrom, to determine if the address is already accessed.
10773static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands892c7e42007-09-19 10:10:31 +000010774 // If it is an alloca it is always safe to load from.
10775 if (isa<AllocaInst>(V)) return true;
10776
Duncan Sands46318cd2007-09-19 10:25:38 +000010777 // If it is a global variable it is mostly safe to load from.
Duncan Sands892c7e42007-09-19 10:10:31 +000010778 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sands46318cd2007-09-19 10:25:38 +000010779 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands892c7e42007-09-19 10:10:31 +000010780 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Chris Lattner8a375202004-09-19 19:18:10 +000010781
10782 // Otherwise, be a little bit agressive by scanning the local block where we
10783 // want to check to see if the pointer is already being loaded or stored
Alkis Evlogimenos7b6ec602004-09-20 06:42:58 +000010784 // from/to. If so, the previous load or store would have already trapped,
10785 // so there is no harm doing an extra load (also, CSE will later eliminate
10786 // the load entirely).
Chris Lattner8a375202004-09-19 19:18:10 +000010787 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10788
Alkis Evlogimenos7b6ec602004-09-20 06:42:58 +000010789 while (BBI != E) {
Chris Lattner8a375202004-09-19 19:18:10 +000010790 --BBI;
10791
Chris Lattner2de3fec2008-06-20 05:12:56 +000010792 // If we see a free or a call (which might do a free) the pointer could be
10793 // marked invalid.
10794 if (isa<FreeInst>(BBI) || isa<CallInst>(BBI))
10795 return false;
10796
Chris Lattner8a375202004-09-19 19:18:10 +000010797 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10798 if (LI->getOperand(0) == V) return true;
Chris Lattner2de3fec2008-06-20 05:12:56 +000010799 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Chris Lattner8a375202004-09-19 19:18:10 +000010800 if (SI->getOperand(1) == V) return true;
Chris Lattner2de3fec2008-06-20 05:12:56 +000010801 }
Misha Brukmanfd939082005-04-21 23:48:37 +000010802
Alkis Evlogimenos7b6ec602004-09-20 06:42:58 +000010803 }
Chris Lattner8a375202004-09-19 19:18:10 +000010804 return false;
Chris Lattnerc10aced2004-09-19 18:43:46 +000010805}
10806
Chris Lattner833b8a42003-06-26 05:06:25 +000010807Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10808 Value *Op = LI.getOperand(0);
Chris Lattner5f16a132004-01-12 04:13:56 +000010809
Dan Gohman9941f742007-07-20 16:34:21 +000010810 // Attempt to improve the alignment.
Dan Gohmaneee962e2008-04-10 18:43:06 +000010811 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10812 if (KnownAlign >
10813 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10814 LI.getAlignment()))
Dan Gohman9941f742007-07-20 16:34:21 +000010815 LI.setAlignment(KnownAlign);
10816
Chris Lattner37366c12005-05-01 04:24:53 +000010817 // load (cast X) --> cast (load X) iff safe
Reid Spencer3ed469c2006-11-02 20:25:50 +000010818 if (isa<CastInst>(Op))
Devang Patel99db6ad2007-10-18 19:52:32 +000010819 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Chris Lattner37366c12005-05-01 04:24:53 +000010820 return Res;
10821
10822 // None of the following transforms are legal for volatile loads.
10823 if (LI.isVolatile()) return 0;
Chris Lattner62f254d2005-09-12 22:00:15 +000010824
Dan Gohman2276a7b2008-10-15 23:19:35 +000010825 // Do really simple store-to-load forwarding and load CSE, to catch cases
10826 // where there are several consequtive memory accesses to the same location,
10827 // separated by a few arithmetic operations.
10828 BasicBlock::iterator BBI = &LI;
Chris Lattner4aebaee2008-11-27 08:56:30 +000010829 if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
10830 return ReplaceInstUsesWith(LI, AvailableVal);
Chris Lattner37366c12005-05-01 04:24:53 +000010831
Christopher Lambb15147e2007-12-29 07:56:53 +000010832 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10833 const Value *GEPI0 = GEPI->getOperand(0);
10834 // TODO: Consider a target hook for valid address spaces for this xform.
10835 if (isa<ConstantPointerNull>(GEPI0) &&
10836 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Chris Lattner37366c12005-05-01 04:24:53 +000010837 // Insert a new store to null instruction before the load to indicate
10838 // that this code is not reachable. We do this instead of inserting
10839 // an unreachable instruction directly because we cannot modify the
10840 // CFG.
10841 new StoreInst(UndefValue::get(LI.getType()),
10842 Constant::getNullValue(Op->getType()), &LI);
10843 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10844 }
Christopher Lambb15147e2007-12-29 07:56:53 +000010845 }
Chris Lattner37366c12005-05-01 04:24:53 +000010846
Chris Lattnere87597f2004-10-16 18:11:37 +000010847 if (Constant *C = dyn_cast<Constant>(Op)) {
Chris Lattner37366c12005-05-01 04:24:53 +000010848 // load null/undef -> undef
Christopher Lambb15147e2007-12-29 07:56:53 +000010849 // TODO: Consider a target hook for valid address spaces for this xform.
10850 if (isa<UndefValue>(C) || (C->isNullValue() &&
10851 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Chris Lattner17be6352004-10-18 02:59:09 +000010852 // Insert a new store to null instruction before the load to indicate that
10853 // this code is not reachable. We do this instead of inserting an
10854 // unreachable instruction directly because we cannot modify the CFG.
Chris Lattner37366c12005-05-01 04:24:53 +000010855 new StoreInst(UndefValue::get(LI.getType()),
10856 Constant::getNullValue(Op->getType()), &LI);
Chris Lattnere87597f2004-10-16 18:11:37 +000010857 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
Chris Lattner17be6352004-10-18 02:59:09 +000010858 }
Chris Lattner833b8a42003-06-26 05:06:25 +000010859
Chris Lattnere87597f2004-10-16 18:11:37 +000010860 // Instcombine load (constant global) into the value loaded.
10861 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
Reid Spencer5cbf9852007-01-30 20:08:39 +000010862 if (GV->isConstant() && !GV->isDeclaration())
Chris Lattnere87597f2004-10-16 18:11:37 +000010863 return ReplaceInstUsesWith(LI, GV->getInitializer());
Misha Brukmanfd939082005-04-21 23:48:37 +000010864
Chris Lattnere87597f2004-10-16 18:11:37 +000010865 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov07e6e562008-02-20 11:26:25 +000010866 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Chris Lattnere87597f2004-10-16 18:11:37 +000010867 if (CE->getOpcode() == Instruction::GetElementPtr) {
10868 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
Reid Spencer5cbf9852007-01-30 20:08:39 +000010869 if (GV->isConstant() && !GV->isDeclaration())
Chris Lattner363f2a22005-09-26 05:28:06 +000010870 if (Constant *V =
10871 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
Chris Lattnere87597f2004-10-16 18:11:37 +000010872 return ReplaceInstUsesWith(LI, V);
Chris Lattner37366c12005-05-01 04:24:53 +000010873 if (CE->getOperand(0)->isNullValue()) {
10874 // Insert a new store to null instruction before the load to indicate
10875 // that this code is not reachable. We do this instead of inserting
10876 // an unreachable instruction directly because we cannot modify the
10877 // CFG.
10878 new StoreInst(UndefValue::get(LI.getType()),
10879 Constant::getNullValue(Op->getType()), &LI);
10880 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10881 }
10882
Reid Spencer3da59db2006-11-27 01:05:10 +000010883 } else if (CE->isCast()) {
Devang Patel99db6ad2007-10-18 19:52:32 +000010884 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Chris Lattnere87597f2004-10-16 18:11:37 +000010885 return Res;
10886 }
Anton Korobeynikov07e6e562008-02-20 11:26:25 +000010887 }
Chris Lattnere87597f2004-10-16 18:11:37 +000010888 }
Chris Lattner8d2e8882007-08-11 18:48:48 +000010889
10890 // If this load comes from anywhere in a constant global, and if the global
10891 // is all undef or zero, we know what it loads.
Duncan Sands5d0392c2008-10-01 15:25:41 +000010892 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
Chris Lattner8d2e8882007-08-11 18:48:48 +000010893 if (GV->isConstant() && GV->hasInitializer()) {
10894 if (GV->getInitializer()->isNullValue())
10895 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10896 else if (isa<UndefValue>(GV->getInitializer()))
10897 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10898 }
10899 }
Chris Lattnerf499eac2004-04-08 20:39:49 +000010900
Chris Lattner37366c12005-05-01 04:24:53 +000010901 if (Op->hasOneUse()) {
Chris Lattnerc10aced2004-09-19 18:43:46 +000010902 // Change select and PHI nodes to select values instead of addresses: this
10903 // helps alias analysis out a lot, allows many others simplifications, and
10904 // exposes redundancy in the code.
10905 //
10906 // Note that we cannot do the transformation unless we know that the
10907 // introduced loads cannot trap! Something like this is valid as long as
10908 // the condition is always false: load (select bool %C, int* null, int* %G),
10909 // but it would not be valid if we transformed it to load from null
10910 // unconditionally.
10911 //
10912 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
10913 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
Chris Lattner8a375202004-09-19 19:18:10 +000010914 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
10915 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
Chris Lattnerc10aced2004-09-19 18:43:46 +000010916 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
Chris Lattner79f0c8e2004-09-20 10:15:10 +000010917 SI->getOperand(1)->getName()+".val"), LI);
Chris Lattnerc10aced2004-09-19 18:43:46 +000010918 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
Chris Lattner79f0c8e2004-09-20 10:15:10 +000010919 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greif051a9502008-04-06 20:25:17 +000010920 return SelectInst::Create(SI->getCondition(), V1, V2);
Chris Lattnerc10aced2004-09-19 18:43:46 +000010921 }
10922
Chris Lattner684fe212004-09-23 15:46:00 +000010923 // load (select (cond, null, P)) -> load P
10924 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
10925 if (C->isNullValue()) {
10926 LI.setOperand(0, SI->getOperand(2));
10927 return &LI;
10928 }
10929
10930 // load (select (cond, P, null)) -> load P
10931 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
10932 if (C->isNullValue()) {
10933 LI.setOperand(0, SI->getOperand(1));
10934 return &LI;
10935 }
Chris Lattnerc10aced2004-09-19 18:43:46 +000010936 }
10937 }
Chris Lattner833b8a42003-06-26 05:06:25 +000010938 return 0;
10939}
10940
Reid Spencer55af2b52007-01-19 21:20:31 +000010941/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010942/// when possible.
10943static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
10944 User *CI = cast<User>(SI.getOperand(1));
10945 Value *CastOp = CI->getOperand(0);
10946
10947 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10948 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10949 const Type *SrcPTy = SrcTy->getElementType();
10950
Reid Spencer42230162007-01-22 05:51:25 +000010951 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010952 // If the source is an array, the code below will not succeed. Check to
10953 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10954 // constants.
10955 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10956 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10957 if (ASrcTy->getNumElements() != 0) {
Chris Lattner55eb1c42007-01-31 04:40:53 +000010958 Value* Idxs[2];
10959 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10960 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010961 SrcTy = cast<PointerType>(CastOp->getType());
10962 SrcPTy = SrcTy->getElementType();
10963 }
10964
Reid Spencer67f827c2007-01-20 23:35:48 +000010965 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
10966 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10967 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010968
10969 // Okay, we are casting from one integer or pointer type to another of
Reid Spencer75153962007-01-18 18:54:33 +000010970 // the same size. Instead of casting the pointer before
10971 // the store, cast the value to be stored.
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010972 Value *NewCast;
Reid Spencerd977d862006-12-12 23:36:14 +000010973 Value *SIOp0 = SI.getOperand(0);
Reid Spencer75153962007-01-18 18:54:33 +000010974 Instruction::CastOps opcode = Instruction::BitCast;
10975 const Type* CastSrcTy = SIOp0->getType();
10976 const Type* CastDstTy = SrcPTy;
10977 if (isa<PointerType>(CastDstTy)) {
10978 if (CastSrcTy->isInteger())
Reid Spencerd977d862006-12-12 23:36:14 +000010979 opcode = Instruction::IntToPtr;
Reid Spencer67f827c2007-01-20 23:35:48 +000010980 } else if (isa<IntegerType>(CastDstTy)) {
Reid Spencerc55b2432006-12-13 18:21:21 +000010981 if (isa<PointerType>(SIOp0->getType()))
Reid Spencerd977d862006-12-12 23:36:14 +000010982 opcode = Instruction::PtrToInt;
10983 }
10984 if (Constant *C = dyn_cast<Constant>(SIOp0))
Reid Spencer75153962007-01-18 18:54:33 +000010985 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010986 else
Reid Spencer3da59db2006-11-27 01:05:10 +000010987 NewCast = IC.InsertNewInstBefore(
Gabor Greif7cbd8a32008-05-16 19:29:10 +000010988 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Reid Spencer75153962007-01-18 18:54:33 +000010989 SI);
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000010990 return new StoreInst(NewCast, CastOp);
10991 }
10992 }
10993 }
10994 return 0;
10995}
10996
Chris Lattner4aebaee2008-11-27 08:56:30 +000010997/// equivalentAddressValues - Test if A and B will obviously have the same
10998/// value. This includes recognizing that %t0 and %t1 will have the same
10999/// value in code like this:
11000/// %t0 = getelementptr @a, 0, 3
11001/// store i32 0, i32* %t0
11002/// %t1 = getelementptr @a, 0, 3
11003/// %t2 = load i32* %t1
11004///
11005static bool equivalentAddressValues(Value *A, Value *B) {
11006 // Test if the values are trivially equivalent.
11007 if (A == B) return true;
11008
11009 // Test if the values come form identical arithmetic instructions.
11010 if (isa<BinaryOperator>(A) ||
11011 isa<CastInst>(A) ||
11012 isa<PHINode>(A) ||
11013 isa<GetElementPtrInst>(A))
11014 if (Instruction *BI = dyn_cast<Instruction>(B))
11015 if (cast<Instruction>(A)->isIdenticalTo(BI))
11016 return true;
11017
11018 // Otherwise they may not be equivalent.
11019 return false;
11020}
11021
Chris Lattner2f503e62005-01-31 05:36:43 +000011022Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
11023 Value *Val = SI.getOperand(0);
11024 Value *Ptr = SI.getOperand(1);
11025
11026 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
Chris Lattner9ca96412006-02-08 03:25:32 +000011027 EraseInstFromFunction(SI);
Chris Lattner2f503e62005-01-31 05:36:43 +000011028 ++NumCombined;
11029 return 0;
11030 }
Chris Lattner836692d2007-01-15 06:51:56 +000011031
11032 // If the RHS is an alloca with a single use, zapify the store, making the
11033 // alloca dead.
Chris Lattnercea1fdd2008-04-29 04:58:38 +000011034 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Chris Lattner836692d2007-01-15 06:51:56 +000011035 if (isa<AllocaInst>(Ptr)) {
11036 EraseInstFromFunction(SI);
11037 ++NumCombined;
11038 return 0;
11039 }
11040
11041 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
11042 if (isa<AllocaInst>(GEP->getOperand(0)) &&
11043 GEP->getOperand(0)->hasOneUse()) {
11044 EraseInstFromFunction(SI);
11045 ++NumCombined;
11046 return 0;
11047 }
11048 }
Chris Lattner2f503e62005-01-31 05:36:43 +000011049
Dan Gohman9941f742007-07-20 16:34:21 +000011050 // Attempt to improve the alignment.
Dan Gohmaneee962e2008-04-10 18:43:06 +000011051 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
11052 if (KnownAlign >
11053 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
11054 SI.getAlignment()))
Dan Gohman9941f742007-07-20 16:34:21 +000011055 SI.setAlignment(KnownAlign);
11056
Chris Lattner9ca96412006-02-08 03:25:32 +000011057 // Do really simple DSE, to catch cases where there are several consequtive
11058 // stores to the same location, separated by a few arithmetic operations. This
11059 // situation often occurs with bitfield accesses.
11060 BasicBlock::iterator BBI = &SI;
11061 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
11062 --ScanInsts) {
11063 --BBI;
11064
11065 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
11066 // Prev store isn't volatile, and stores to the same location?
Chris Lattner4aebaee2008-11-27 08:56:30 +000011067 if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
11068 SI.getOperand(1))) {
Chris Lattner9ca96412006-02-08 03:25:32 +000011069 ++NumDeadStore;
11070 ++BBI;
11071 EraseInstFromFunction(*PrevSI);
11072 continue;
11073 }
11074 break;
11075 }
11076
Chris Lattnerb4db97f2006-05-26 19:19:20 +000011077 // If this is a load, we have to stop. However, if the loaded value is from
11078 // the pointer we're loading and is producing the pointer we're storing,
11079 // then *this* store is dead (X = load P; store X -> P).
11080 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Dan Gohman2276a7b2008-10-15 23:19:35 +000011081 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
11082 !SI.isVolatile()) {
Chris Lattnerb4db97f2006-05-26 19:19:20 +000011083 EraseInstFromFunction(SI);
11084 ++NumCombined;
11085 return 0;
11086 }
11087 // Otherwise, this is a load from some other location. Stores before it
11088 // may not be dead.
11089 break;
11090 }
11091
Chris Lattner9ca96412006-02-08 03:25:32 +000011092 // Don't skip over loads or things that can modify memory.
Chris Lattner0ef546e2008-05-08 17:20:30 +000011093 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Chris Lattner9ca96412006-02-08 03:25:32 +000011094 break;
11095 }
11096
11097
11098 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
Chris Lattner2f503e62005-01-31 05:36:43 +000011099
11100 // store X, null -> turns into 'unreachable' in SimplifyCFG
11101 if (isa<ConstantPointerNull>(Ptr)) {
11102 if (!isa<UndefValue>(Val)) {
11103 SI.setOperand(0, UndefValue::get(Val->getType()));
11104 if (Instruction *U = dyn_cast<Instruction>(Val))
Chris Lattnerdbab3862007-03-02 21:28:56 +000011105 AddToWorkList(U); // Dropped a use.
Chris Lattner2f503e62005-01-31 05:36:43 +000011106 ++NumCombined;
11107 }
11108 return 0; // Do not modify these!
11109 }
11110
11111 // store undef, Ptr -> noop
11112 if (isa<UndefValue>(Val)) {
Chris Lattner9ca96412006-02-08 03:25:32 +000011113 EraseInstFromFunction(SI);
Chris Lattner2f503e62005-01-31 05:36:43 +000011114 ++NumCombined;
11115 return 0;
11116 }
11117
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000011118 // If the pointer destination is a cast, see if we can fold the cast into the
11119 // source instead.
Reid Spencer3ed469c2006-11-02 20:25:50 +000011120 if (isa<CastInst>(Ptr))
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000011121 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11122 return Res;
11123 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
Reid Spencer3da59db2006-11-27 01:05:10 +000011124 if (CE->isCast())
Chris Lattnerfcfe33a2005-01-31 05:51:45 +000011125 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11126 return Res;
11127
Chris Lattner408902b2005-09-12 23:23:25 +000011128
11129 // If this store is the last instruction in the basic block, and if the block
11130 // ends with an unconditional branch, try to move it to the successor block.
Chris Lattner9ca96412006-02-08 03:25:32 +000011131 BBI = &SI; ++BBI;
Chris Lattner408902b2005-09-12 23:23:25 +000011132 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
Chris Lattner3284d1f2007-04-15 00:07:55 +000011133 if (BI->isUnconditional())
11134 if (SimplifyStoreAtEndOfBlock(SI))
11135 return 0; // xform done!
Chris Lattner408902b2005-09-12 23:23:25 +000011136
Chris Lattner2f503e62005-01-31 05:36:43 +000011137 return 0;
11138}
11139
Chris Lattner3284d1f2007-04-15 00:07:55 +000011140/// SimplifyStoreAtEndOfBlock - Turn things like:
11141/// if () { *P = v1; } else { *P = v2 }
11142/// into a phi node with a store in the successor.
11143///
Chris Lattner31755a02007-04-15 01:02:18 +000011144/// Simplify things like:
11145/// *P = v1; if () { *P = v2; }
11146/// into a phi node with a store in the successor.
11147///
Chris Lattner3284d1f2007-04-15 00:07:55 +000011148bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
11149 BasicBlock *StoreBB = SI.getParent();
11150
11151 // Check to see if the successor block has exactly two incoming edges. If
11152 // so, see if the other predecessor contains a store to the same location.
11153 // if so, insert a PHI node (if needed) and move the stores down.
Chris Lattner31755a02007-04-15 01:02:18 +000011154 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
Chris Lattner3284d1f2007-04-15 00:07:55 +000011155
11156 // Determine whether Dest has exactly two predecessors and, if so, compute
11157 // the other predecessor.
Chris Lattner31755a02007-04-15 01:02:18 +000011158 pred_iterator PI = pred_begin(DestBB);
11159 BasicBlock *OtherBB = 0;
Chris Lattner3284d1f2007-04-15 00:07:55 +000011160 if (*PI != StoreBB)
Chris Lattner31755a02007-04-15 01:02:18 +000011161 OtherBB = *PI;
Chris Lattner3284d1f2007-04-15 00:07:55 +000011162 ++PI;
Chris Lattner31755a02007-04-15 01:02:18 +000011163 if (PI == pred_end(DestBB))
Chris Lattner3284d1f2007-04-15 00:07:55 +000011164 return false;
11165
11166 if (*PI != StoreBB) {
Chris Lattner31755a02007-04-15 01:02:18 +000011167 if (OtherBB)
Chris Lattner3284d1f2007-04-15 00:07:55 +000011168 return false;
Chris Lattner31755a02007-04-15 01:02:18 +000011169 OtherBB = *PI;
Chris Lattner3284d1f2007-04-15 00:07:55 +000011170 }
Chris Lattner31755a02007-04-15 01:02:18 +000011171 if (++PI != pred_end(DestBB))
Chris Lattner3284d1f2007-04-15 00:07:55 +000011172 return false;
Eli Friedman66fe80a2008-06-13 21:17:49 +000011173
11174 // Bail out if all the relevant blocks aren't distinct (this can happen,
11175 // for example, if SI is in an infinite loop)
11176 if (StoreBB == DestBB || OtherBB == DestBB)
11177 return false;
11178
Chris Lattner31755a02007-04-15 01:02:18 +000011179 // Verify that the other block ends in a branch and is not otherwise empty.
11180 BasicBlock::iterator BBI = OtherBB->getTerminator();
Chris Lattner3284d1f2007-04-15 00:07:55 +000011181 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
Chris Lattner31755a02007-04-15 01:02:18 +000011182 if (!OtherBr || BBI == OtherBB->begin())
Chris Lattner3284d1f2007-04-15 00:07:55 +000011183 return false;
11184
Chris Lattner31755a02007-04-15 01:02:18 +000011185 // If the other block ends in an unconditional branch, check for the 'if then
11186 // else' case. there is an instruction before the branch.
11187 StoreInst *OtherStore = 0;
11188 if (OtherBr->isUnconditional()) {
11189 // If this isn't a store, or isn't a store to the same location, bail out.
11190 --BBI;
11191 OtherStore = dyn_cast<StoreInst>(BBI);
11192 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
11193 return false;
11194 } else {
Chris Lattnerd717c182007-05-05 22:32:24 +000011195 // Otherwise, the other block ended with a conditional branch. If one of the
Chris Lattner31755a02007-04-15 01:02:18 +000011196 // destinations is StoreBB, then we have the if/then case.
11197 if (OtherBr->getSuccessor(0) != StoreBB &&
11198 OtherBr->getSuccessor(1) != StoreBB)
11199 return false;
11200
11201 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
Chris Lattnerd717c182007-05-05 22:32:24 +000011202 // if/then triangle. See if there is a store to the same ptr as SI that
11203 // lives in OtherBB.
Chris Lattner31755a02007-04-15 01:02:18 +000011204 for (;; --BBI) {
11205 // Check to see if we find the matching store.
11206 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
11207 if (OtherStore->getOperand(1) != SI.getOperand(1))
11208 return false;
11209 break;
11210 }
Eli Friedman6903a242008-06-13 22:02:12 +000011211 // If we find something that may be using or overwriting the stored
11212 // value, or if we run out of instructions, we can't do the xform.
11213 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
Chris Lattner31755a02007-04-15 01:02:18 +000011214 BBI == OtherBB->begin())
11215 return false;
11216 }
11217
11218 // In order to eliminate the store in OtherBr, we have to
Eli Friedman6903a242008-06-13 22:02:12 +000011219 // make sure nothing reads or overwrites the stored value in
11220 // StoreBB.
Chris Lattner31755a02007-04-15 01:02:18 +000011221 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
11222 // FIXME: This should really be AA driven.
Eli Friedman6903a242008-06-13 22:02:12 +000011223 if (I->mayReadFromMemory() || I->mayWriteToMemory())
Chris Lattner31755a02007-04-15 01:02:18 +000011224 return false;
11225 }
11226 }
Chris Lattner3284d1f2007-04-15 00:07:55 +000011227
Chris Lattner31755a02007-04-15 01:02:18 +000011228 // Insert a PHI node now if we need it.
Chris Lattner3284d1f2007-04-15 00:07:55 +000011229 Value *MergedVal = OtherStore->getOperand(0);
11230 if (MergedVal != SI.getOperand(0)) {
Gabor Greif051a9502008-04-06 20:25:17 +000011231 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Chris Lattner3284d1f2007-04-15 00:07:55 +000011232 PN->reserveOperandSpace(2);
11233 PN->addIncoming(SI.getOperand(0), SI.getParent());
Chris Lattner31755a02007-04-15 01:02:18 +000011234 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
11235 MergedVal = InsertNewInstBefore(PN, DestBB->front());
Chris Lattner3284d1f2007-04-15 00:07:55 +000011236 }
11237
11238 // Advance to a place where it is safe to insert the new store and
11239 // insert it.
Dan Gohman02dea8b2008-05-23 21:05:58 +000011240 BBI = DestBB->getFirstNonPHI();
Chris Lattner3284d1f2007-04-15 00:07:55 +000011241 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
11242 OtherStore->isVolatile()), *BBI);
11243
11244 // Nuke the old stores.
11245 EraseInstFromFunction(SI);
11246 EraseInstFromFunction(*OtherStore);
11247 ++NumCombined;
11248 return true;
11249}
11250
Chris Lattner2f503e62005-01-31 05:36:43 +000011251
Chris Lattnerc4d10eb2003-06-04 04:46:00 +000011252Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
11253 // Change br (not X), label True, label False to: br X, label False, True
Reid Spencer4b828e62005-06-18 17:37:34 +000011254 Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +000011255 BasicBlock *TrueDest;
11256 BasicBlock *FalseDest;
11257 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
11258 !isa<Constant>(X)) {
11259 // Swap Destinations and condition...
11260 BI.setCondition(X);
11261 BI.setSuccessor(0, FalseDest);
11262 BI.setSuccessor(1, TrueDest);
11263 return &BI;
11264 }
11265
Reid Spencere4d87aa2006-12-23 06:05:41 +000011266 // Cannonicalize fcmp_one -> fcmp_oeq
11267 FCmpInst::Predicate FPred; Value *Y;
11268 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
11269 TrueDest, FalseDest)))
11270 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
11271 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
11272 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
Reid Spencere4d87aa2006-12-23 06:05:41 +000011273 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
Chris Lattner6934a042007-02-11 01:23:03 +000011274 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
11275 NewSCC->takeName(I);
Reid Spencere4d87aa2006-12-23 06:05:41 +000011276 // Swap Destinations and condition...
11277 BI.setCondition(NewSCC);
11278 BI.setSuccessor(0, FalseDest);
11279 BI.setSuccessor(1, TrueDest);
Chris Lattnerdbab3862007-03-02 21:28:56 +000011280 RemoveFromWorkList(I);
Chris Lattner6934a042007-02-11 01:23:03 +000011281 I->eraseFromParent();
Chris Lattnerdbab3862007-03-02 21:28:56 +000011282 AddToWorkList(NewSCC);
Reid Spencere4d87aa2006-12-23 06:05:41 +000011283 return &BI;
11284 }
11285
11286 // Cannonicalize icmp_ne -> icmp_eq
11287 ICmpInst::Predicate IPred;
11288 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
11289 TrueDest, FalseDest)))
11290 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
11291 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
11292 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
11293 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
Reid Spencere4d87aa2006-12-23 06:05:41 +000011294 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
Chris Lattner6934a042007-02-11 01:23:03 +000011295 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
11296 NewSCC->takeName(I);
Chris Lattner40f5d702003-06-04 05:10:11 +000011297 // Swap Destinations and condition...
Chris Lattneracd1f0f2004-07-30 07:50:03 +000011298 BI.setCondition(NewSCC);
Chris Lattner40f5d702003-06-04 05:10:11 +000011299 BI.setSuccessor(0, FalseDest);
11300 BI.setSuccessor(1, TrueDest);
Chris Lattnerdbab3862007-03-02 21:28:56 +000011301 RemoveFromWorkList(I);
Chris Lattner6934a042007-02-11 01:23:03 +000011302 I->eraseFromParent();;
Chris Lattnerdbab3862007-03-02 21:28:56 +000011303 AddToWorkList(NewSCC);
Chris Lattner40f5d702003-06-04 05:10:11 +000011304 return &BI;
11305 }
Misha Brukmanfd939082005-04-21 23:48:37 +000011306
Chris Lattnerc4d10eb2003-06-04 04:46:00 +000011307 return 0;
11308}
Chris Lattner0864acf2002-11-04 16:18:53 +000011309
Chris Lattner46238a62004-07-03 00:26:11 +000011310Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
11311 Value *Cond = SI.getCondition();
11312 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
11313 if (I->getOpcode() == Instruction::Add)
11314 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
11315 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
11316 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
Chris Lattnere87597f2004-10-16 18:11:37 +000011317 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
Chris Lattner46238a62004-07-03 00:26:11 +000011318 AddRHS));
11319 SI.setOperand(0, I->getOperand(0));
Chris Lattnerdbab3862007-03-02 21:28:56 +000011320 AddToWorkList(I);
Chris Lattner46238a62004-07-03 00:26:11 +000011321 return &SI;
11322 }
11323 }
11324 return 0;
11325}
11326
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +000011327Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +000011328 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +000011329
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +000011330 if (!EV.hasIndices())
11331 return ReplaceInstUsesWith(EV, Agg);
11332
11333 if (Constant *C = dyn_cast<Constant>(Agg)) {
11334 if (isa<UndefValue>(C))
11335 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
11336
11337 if (isa<ConstantAggregateZero>(C))
11338 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
11339
11340 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
11341 // Extract the element indexed by the first index out of the constant
11342 Value *V = C->getOperand(*EV.idx_begin());
11343 if (EV.getNumIndices() > 1)
11344 // Extract the remaining indices out of the constant indexed by the
11345 // first index
11346 return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
11347 else
11348 return ReplaceInstUsesWith(EV, V);
11349 }
11350 return 0; // Can't handle other constants
11351 }
11352 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
11353 // We're extracting from an insertvalue instruction, compare the indices
11354 const unsigned *exti, *exte, *insi, *inse;
11355 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
11356 exte = EV.idx_end(), inse = IV->idx_end();
11357 exti != exte && insi != inse;
11358 ++exti, ++insi) {
11359 if (*insi != *exti)
11360 // The insert and extract both reference distinctly different elements.
11361 // This means the extract is not influenced by the insert, and we can
11362 // replace the aggregate operand of the extract with the aggregate
11363 // operand of the insert. i.e., replace
11364 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11365 // %E = extractvalue { i32, { i32 } } %I, 0
11366 // with
11367 // %E = extractvalue { i32, { i32 } } %A, 0
11368 return ExtractValueInst::Create(IV->getAggregateOperand(),
11369 EV.idx_begin(), EV.idx_end());
11370 }
11371 if (exti == exte && insi == inse)
11372 // Both iterators are at the end: Index lists are identical. Replace
11373 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11374 // %C = extractvalue { i32, { i32 } } %B, 1, 0
11375 // with "i32 42"
11376 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
11377 if (exti == exte) {
11378 // The extract list is a prefix of the insert list. i.e. replace
11379 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11380 // %E = extractvalue { i32, { i32 } } %I, 1
11381 // with
11382 // %X = extractvalue { i32, { i32 } } %A, 1
11383 // %E = insertvalue { i32 } %X, i32 42, 0
11384 // by switching the order of the insert and extract (though the
11385 // insertvalue should be left in, since it may have other uses).
11386 Value *NewEV = InsertNewInstBefore(
11387 ExtractValueInst::Create(IV->getAggregateOperand(),
11388 EV.idx_begin(), EV.idx_end()),
11389 EV);
11390 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
11391 insi, inse);
11392 }
11393 if (insi == inse)
11394 // The insert list is a prefix of the extract list
11395 // We can simply remove the common indices from the extract and make it
11396 // operate on the inserted value instead of the insertvalue result.
11397 // i.e., replace
11398 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11399 // %E = extractvalue { i32, { i32 } } %I, 1, 0
11400 // with
11401 // %E extractvalue { i32 } { i32 42 }, 0
11402 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
11403 exti, exte);
11404 }
11405 // Can't simplify extracts from other values. Note that nested extracts are
11406 // already simplified implicitely by the above (extract ( extract (insert) )
11407 // will be translated into extract ( insert ( extract ) ) first and then just
11408 // the value inserted, if appropriate).
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +000011409 return 0;
11410}
11411
Chris Lattner220b0cf2006-03-05 00:22:33 +000011412/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
11413/// is to leave as a vector operation.
11414static bool CheapToScalarize(Value *V, bool isConstant) {
11415 if (isa<ConstantAggregateZero>(V))
11416 return true;
Reid Spencer9d6565a2007-02-15 02:26:10 +000011417 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
Chris Lattner220b0cf2006-03-05 00:22:33 +000011418 if (isConstant) return true;
11419 // If all elts are the same, we can extract.
11420 Constant *Op0 = C->getOperand(0);
11421 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11422 if (C->getOperand(i) != Op0)
11423 return false;
11424 return true;
11425 }
11426 Instruction *I = dyn_cast<Instruction>(V);
11427 if (!I) return false;
11428
11429 // Insert element gets simplified to the inserted element or is deleted if
11430 // this is constant idx extract element and its a constant idx insertelt.
11431 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
11432 isa<ConstantInt>(I->getOperand(2)))
11433 return true;
11434 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
11435 return true;
11436 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
11437 if (BO->hasOneUse() &&
11438 (CheapToScalarize(BO->getOperand(0), isConstant) ||
11439 CheapToScalarize(BO->getOperand(1), isConstant)))
11440 return true;
Reid Spencere4d87aa2006-12-23 06:05:41 +000011441 if (CmpInst *CI = dyn_cast<CmpInst>(I))
11442 if (CI->hasOneUse() &&
11443 (CheapToScalarize(CI->getOperand(0), isConstant) ||
11444 CheapToScalarize(CI->getOperand(1), isConstant)))
11445 return true;
Chris Lattner220b0cf2006-03-05 00:22:33 +000011446
11447 return false;
11448}
11449
Chris Lattnerd2b7cec2007-02-14 05:52:17 +000011450/// Read and decode a shufflevector mask.
11451///
11452/// It turns undef elements into values that are larger than the number of
11453/// elements in the input.
Chris Lattner863bcff2006-05-25 23:48:38 +000011454static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
11455 unsigned NElts = SVI->getType()->getNumElements();
11456 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
11457 return std::vector<unsigned>(NElts, 0);
11458 if (isa<UndefValue>(SVI->getOperand(2)))
11459 return std::vector<unsigned>(NElts, 2*NElts);
11460
11461 std::vector<unsigned> Result;
Reid Spencer9d6565a2007-02-15 02:26:10 +000011462 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Gabor Greif177dd3f2008-06-12 21:37:33 +000011463 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
11464 if (isa<UndefValue>(*i))
Chris Lattner863bcff2006-05-25 23:48:38 +000011465 Result.push_back(NElts*2); // undef -> 8
11466 else
Gabor Greif177dd3f2008-06-12 21:37:33 +000011467 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
Chris Lattner863bcff2006-05-25 23:48:38 +000011468 return Result;
11469}
11470
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011471/// FindScalarElement - Given a vector and an element number, see if the scalar
11472/// value is already around as a register, for example if it were inserted then
11473/// extracted from the vector.
11474static Value *FindScalarElement(Value *V, unsigned EltNo) {
Reid Spencer9d6565a2007-02-15 02:26:10 +000011475 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
11476 const VectorType *PTy = cast<VectorType>(V->getType());
Chris Lattner389a6f52006-04-10 23:06:36 +000011477 unsigned Width = PTy->getNumElements();
11478 if (EltNo >= Width) // Out of range access.
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011479 return UndefValue::get(PTy->getElementType());
11480
11481 if (isa<UndefValue>(V))
11482 return UndefValue::get(PTy->getElementType());
11483 else if (isa<ConstantAggregateZero>(V))
11484 return Constant::getNullValue(PTy->getElementType());
Reid Spencer9d6565a2007-02-15 02:26:10 +000011485 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011486 return CP->getOperand(EltNo);
11487 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
11488 // If this is an insert to a variable element, we don't know what it is.
Reid Spencerb83eb642006-10-20 07:07:24 +000011489 if (!isa<ConstantInt>(III->getOperand(2)))
11490 return 0;
11491 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011492
11493 // If this is an insert to the element we are looking for, return the
11494 // inserted value.
Reid Spencerb83eb642006-10-20 07:07:24 +000011495 if (EltNo == IIElt)
11496 return III->getOperand(1);
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011497
11498 // Otherwise, the insertelement doesn't modify the value, recurse on its
11499 // vector input.
11500 return FindScalarElement(III->getOperand(0), EltNo);
Chris Lattner389a6f52006-04-10 23:06:36 +000011501 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
Mon P Wangaeb06d22008-11-10 04:46:22 +000011502 unsigned LHSWidth =
11503 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
Chris Lattner863bcff2006-05-25 23:48:38 +000011504 unsigned InEl = getShuffleMask(SVI)[EltNo];
Mon P Wangaeb06d22008-11-10 04:46:22 +000011505 if (InEl < LHSWidth)
Chris Lattner863bcff2006-05-25 23:48:38 +000011506 return FindScalarElement(SVI->getOperand(0), InEl);
Mon P Wangaeb06d22008-11-10 04:46:22 +000011507 else if (InEl < LHSWidth*2)
11508 return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
Chris Lattner863bcff2006-05-25 23:48:38 +000011509 else
11510 return UndefValue::get(PTy->getElementType());
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011511 }
11512
11513 // Otherwise, we don't know.
11514 return 0;
11515}
11516
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011517Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Dan Gohman07a96762007-07-16 14:29:03 +000011518 // If vector val is undef, replace extract with scalar undef.
Chris Lattner1f13c882006-03-31 18:25:14 +000011519 if (isa<UndefValue>(EI.getOperand(0)))
11520 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11521
Dan Gohman07a96762007-07-16 14:29:03 +000011522 // If vector val is constant 0, replace extract with scalar 0.
Chris Lattner1f13c882006-03-31 18:25:14 +000011523 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
11524 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
11525
Reid Spencer9d6565a2007-02-15 02:26:10 +000011526 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Matthijs Kooijmanb4d6a5a2008-06-11 09:00:12 +000011527 // If vector val is constant with all elements the same, replace EI with
11528 // that element. When the elements are not identical, we cannot replace yet
11529 // (we do that below, but only when the index is constant).
Chris Lattner220b0cf2006-03-05 00:22:33 +000011530 Constant *op0 = C->getOperand(0);
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011531 for (unsigned i = 1; i < C->getNumOperands(); ++i)
Chris Lattner220b0cf2006-03-05 00:22:33 +000011532 if (C->getOperand(i) != op0) {
11533 op0 = 0;
11534 break;
11535 }
11536 if (op0)
11537 return ReplaceInstUsesWith(EI, op0);
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011538 }
Chris Lattner220b0cf2006-03-05 00:22:33 +000011539
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011540 // If extracting a specified index from the vector, see if we can recursively
11541 // find a previously computed scalar that was inserted into the vector.
Reid Spencerb83eb642006-10-20 07:07:24 +000011542 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
Chris Lattner85464092007-04-09 01:37:55 +000011543 unsigned IndexVal = IdxC->getZExtValue();
11544 unsigned VectorWidth =
11545 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
11546
11547 // If this is extracting an invalid index, turn this into undef, to avoid
11548 // crashing the code below.
11549 if (IndexVal >= VectorWidth)
11550 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11551
Chris Lattner867b99f2006-10-05 06:55:50 +000011552 // This instruction only demands the single element from the input vector.
11553 // If the input vector has a single use, simplify it based on this use
11554 // property.
Chris Lattner85464092007-04-09 01:37:55 +000011555 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
Chris Lattner867b99f2006-10-05 06:55:50 +000011556 uint64_t UndefElts;
11557 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
Reid Spencerb83eb642006-10-20 07:07:24 +000011558 1 << IndexVal,
Chris Lattner867b99f2006-10-05 06:55:50 +000011559 UndefElts)) {
11560 EI.setOperand(0, V);
11561 return &EI;
11562 }
11563 }
11564
Reid Spencerb83eb642006-10-20 07:07:24 +000011565 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011566 return ReplaceInstUsesWith(EI, Elt);
Chris Lattnerb7300fa2007-04-14 23:02:14 +000011567
11568 // If the this extractelement is directly using a bitcast from a vector of
11569 // the same number of elements, see if we can find the source element from
11570 // it. In this case, we will end up needing to bitcast the scalars.
11571 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
11572 if (const VectorType *VT =
11573 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
11574 if (VT->getNumElements() == VectorWidth)
11575 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
11576 return new BitCastInst(Elt, EI.getType());
11577 }
Chris Lattner389a6f52006-04-10 23:06:36 +000011578 }
Chris Lattner6e6b0da2006-03-31 23:01:56 +000011579
Chris Lattner73fa49d2006-05-25 22:53:38 +000011580 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011581 if (I->hasOneUse()) {
11582 // Push extractelement into predecessor operation if legal and
11583 // profitable to do so
11584 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
Chris Lattner220b0cf2006-03-05 00:22:33 +000011585 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
11586 if (CheapToScalarize(BO, isConstantElt)) {
11587 ExtractElementInst *newEI0 =
11588 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
11589 EI.getName()+".lhs");
11590 ExtractElementInst *newEI1 =
11591 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
11592 EI.getName()+".rhs");
11593 InsertNewInstBefore(newEI0, EI);
11594 InsertNewInstBefore(newEI1, EI);
Gabor Greif7cbd8a32008-05-16 19:29:10 +000011595 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Chris Lattner220b0cf2006-03-05 00:22:33 +000011596 }
Reid Spencer3ed469c2006-11-02 20:25:50 +000011597 } else if (isa<LoadInst>(I)) {
Christopher Lamb43ad6b32007-12-17 01:12:55 +000011598 unsigned AS =
11599 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner6d0339d2008-01-13 22:23:22 +000011600 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
11601 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb1dbcd82008-05-15 10:04:30 +000011602 GetElementPtrInst *GEP =
11603 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011604 InsertNewInstBefore(GEP, EI);
11605 return new LoadInst(GEP);
Chris Lattner73fa49d2006-05-25 22:53:38 +000011606 }
11607 }
11608 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
11609 // Extracting the inserted element?
11610 if (IE->getOperand(2) == EI.getOperand(1))
11611 return ReplaceInstUsesWith(EI, IE->getOperand(1));
11612 // If the inserted and extracted elements are constants, they must not
11613 // be the same value, extract from the pre-inserted value instead.
11614 if (isa<Constant>(IE->getOperand(2)) &&
11615 isa<Constant>(EI.getOperand(1))) {
11616 AddUsesToWorkList(EI);
11617 EI.setOperand(0, IE->getOperand(0));
11618 return &EI;
11619 }
11620 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
11621 // If this is extracting an element from a shufflevector, figure out where
11622 // it came from and extract from the appropriate input element instead.
Reid Spencerb83eb642006-10-20 07:07:24 +000011623 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11624 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
Chris Lattner863bcff2006-05-25 23:48:38 +000011625 Value *Src;
Mon P Wangaeb06d22008-11-10 04:46:22 +000011626 unsigned LHSWidth =
11627 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
11628
11629 if (SrcIdx < LHSWidth)
Chris Lattner863bcff2006-05-25 23:48:38 +000011630 Src = SVI->getOperand(0);
Mon P Wangaeb06d22008-11-10 04:46:22 +000011631 else if (SrcIdx < LHSWidth*2) {
11632 SrcIdx -= LHSWidth;
Chris Lattner863bcff2006-05-25 23:48:38 +000011633 Src = SVI->getOperand(1);
11634 } else {
11635 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
Chris Lattnerdf084ff2006-03-30 22:02:40 +000011636 }
Chris Lattner867b99f2006-10-05 06:55:50 +000011637 return new ExtractElementInst(Src, SrcIdx);
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011638 }
11639 }
Chris Lattner73fa49d2006-05-25 22:53:38 +000011640 }
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011641 return 0;
11642}
11643
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011644/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
11645/// elements from either LHS or RHS, return the shuffle mask and true.
11646/// Otherwise, return false.
11647static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
11648 std::vector<Constant*> &Mask) {
11649 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
11650 "Invalid CollectSingleShuffleElements");
Reid Spencer9d6565a2007-02-15 02:26:10 +000011651 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011652
11653 if (isa<UndefValue>(V)) {
Reid Spencerc5b206b2006-12-31 05:48:39 +000011654 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011655 return true;
11656 } else if (V == LHS) {
11657 for (unsigned i = 0; i != NumElts; ++i)
Reid Spencerc5b206b2006-12-31 05:48:39 +000011658 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011659 return true;
11660 } else if (V == RHS) {
11661 for (unsigned i = 0; i != NumElts; ++i)
Reid Spencerc5b206b2006-12-31 05:48:39 +000011662 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011663 return true;
11664 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11665 // If this is an insert of an extract from some other vector, include it.
11666 Value *VecOp = IEI->getOperand(0);
11667 Value *ScalarOp = IEI->getOperand(1);
11668 Value *IdxOp = IEI->getOperand(2);
11669
Chris Lattnerd929f062006-04-27 21:14:21 +000011670 if (!isa<ConstantInt>(IdxOp))
11671 return false;
Reid Spencerb83eb642006-10-20 07:07:24 +000011672 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
Chris Lattnerd929f062006-04-27 21:14:21 +000011673
11674 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
11675 // Okay, we can handle this if the vector we are insertinting into is
11676 // transitively ok.
11677 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11678 // If so, update the mask to reflect the inserted undef.
Reid Spencerc5b206b2006-12-31 05:48:39 +000011679 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
Chris Lattnerd929f062006-04-27 21:14:21 +000011680 return true;
11681 }
11682 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
11683 if (isa<ConstantInt>(EI->getOperand(1)) &&
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011684 EI->getOperand(0)->getType() == V->getType()) {
11685 unsigned ExtractedIdx =
Reid Spencerb83eb642006-10-20 07:07:24 +000011686 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011687
11688 // This must be extracting from either LHS or RHS.
11689 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
11690 // Okay, we can handle this if the vector we are insertinting into is
11691 // transitively ok.
11692 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11693 // If so, update the mask to reflect the inserted value.
11694 if (EI->getOperand(0) == LHS) {
Mon P Wang4f5ca2c2008-08-20 02:23:25 +000011695 Mask[InsertedIdx % NumElts] =
Reid Spencerc5b206b2006-12-31 05:48:39 +000011696 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011697 } else {
11698 assert(EI->getOperand(0) == RHS);
Mon P Wang4f5ca2c2008-08-20 02:23:25 +000011699 Mask[InsertedIdx % NumElts] =
Reid Spencerc5b206b2006-12-31 05:48:39 +000011700 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011701
11702 }
11703 return true;
11704 }
11705 }
11706 }
11707 }
11708 }
11709 // TODO: Handle shufflevector here!
11710
11711 return false;
11712}
11713
11714/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
11715/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
11716/// that computes V and the LHS value of the shuffle.
Chris Lattnerefb47352006-04-15 01:39:45 +000011717static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011718 Value *&RHS) {
Reid Spencer9d6565a2007-02-15 02:26:10 +000011719 assert(isa<VectorType>(V->getType()) &&
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011720 (RHS == 0 || V->getType() == RHS->getType()) &&
Chris Lattnerefb47352006-04-15 01:39:45 +000011721 "Invalid shuffle!");
Reid Spencer9d6565a2007-02-15 02:26:10 +000011722 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
Chris Lattnerefb47352006-04-15 01:39:45 +000011723
11724 if (isa<UndefValue>(V)) {
Reid Spencerc5b206b2006-12-31 05:48:39 +000011725 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
Chris Lattnerefb47352006-04-15 01:39:45 +000011726 return V;
11727 } else if (isa<ConstantAggregateZero>(V)) {
Reid Spencerc5b206b2006-12-31 05:48:39 +000011728 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
Chris Lattnerefb47352006-04-15 01:39:45 +000011729 return V;
11730 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11731 // If this is an insert of an extract from some other vector, include it.
11732 Value *VecOp = IEI->getOperand(0);
11733 Value *ScalarOp = IEI->getOperand(1);
11734 Value *IdxOp = IEI->getOperand(2);
11735
11736 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11737 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11738 EI->getOperand(0)->getType() == V->getType()) {
11739 unsigned ExtractedIdx =
Reid Spencerb83eb642006-10-20 07:07:24 +000011740 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11741 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
Chris Lattnerefb47352006-04-15 01:39:45 +000011742
11743 // Either the extracted from or inserted into vector must be RHSVec,
11744 // otherwise we'd end up with a shuffle of three inputs.
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011745 if (EI->getOperand(0) == RHS || RHS == 0) {
11746 RHS = EI->getOperand(0);
11747 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Mon P Wang4f5ca2c2008-08-20 02:23:25 +000011748 Mask[InsertedIdx % NumElts] =
Reid Spencerc5b206b2006-12-31 05:48:39 +000011749 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
Chris Lattnerefb47352006-04-15 01:39:45 +000011750 return V;
11751 }
11752
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011753 if (VecOp == RHS) {
11754 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
Chris Lattnerefb47352006-04-15 01:39:45 +000011755 // Everything but the extracted element is replaced with the RHS.
11756 for (unsigned i = 0; i != NumElts; ++i) {
11757 if (i != InsertedIdx)
Reid Spencerc5b206b2006-12-31 05:48:39 +000011758 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
Chris Lattnerefb47352006-04-15 01:39:45 +000011759 }
11760 return V;
11761 }
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011762
11763 // If this insertelement is a chain that comes from exactly these two
11764 // vectors, return the vector and the effective shuffle.
11765 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11766 return EI->getOperand(0);
11767
Chris Lattnerefb47352006-04-15 01:39:45 +000011768 }
11769 }
11770 }
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011771 // TODO: Handle shufflevector here!
Chris Lattnerefb47352006-04-15 01:39:45 +000011772
11773 // Otherwise, can't do anything fancy. Return an identity vector.
11774 for (unsigned i = 0; i != NumElts; ++i)
Reid Spencerc5b206b2006-12-31 05:48:39 +000011775 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
Chris Lattnerefb47352006-04-15 01:39:45 +000011776 return V;
11777}
11778
11779Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11780 Value *VecOp = IE.getOperand(0);
11781 Value *ScalarOp = IE.getOperand(1);
11782 Value *IdxOp = IE.getOperand(2);
11783
Chris Lattner599ded12007-04-09 01:11:16 +000011784 // Inserting an undef or into an undefined place, remove this.
11785 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11786 ReplaceInstUsesWith(IE, VecOp);
11787
Chris Lattnerefb47352006-04-15 01:39:45 +000011788 // If the inserted element was extracted from some other vector, and if the
11789 // indexes are constant, try to turn this into a shufflevector operation.
11790 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11791 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11792 EI->getOperand(0)->getType() == IE.getType()) {
11793 unsigned NumVectorElts = IE.getType()->getNumElements();
Chris Lattnere34e9a22007-04-14 23:32:02 +000011794 unsigned ExtractedIdx =
11795 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
Reid Spencerb83eb642006-10-20 07:07:24 +000011796 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
Chris Lattnerefb47352006-04-15 01:39:45 +000011797
11798 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11799 return ReplaceInstUsesWith(IE, VecOp);
11800
11801 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11802 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11803
11804 // If we are extracting a value from a vector, then inserting it right
11805 // back into the same place, just use the input vector.
11806 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11807 return ReplaceInstUsesWith(IE, VecOp);
11808
11809 // We could theoretically do this for ANY input. However, doing so could
11810 // turn chains of insertelement instructions into a chain of shufflevector
11811 // instructions, and right now we do not merge shufflevectors. As such,
11812 // only do this in a situation where it is clear that there is benefit.
11813 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11814 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11815 // the values of VecOp, except then one read from EIOp0.
11816 // Build a new shuffle mask.
11817 std::vector<Constant*> Mask;
11818 if (isa<UndefValue>(VecOp))
Reid Spencerc5b206b2006-12-31 05:48:39 +000011819 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
Chris Lattnerefb47352006-04-15 01:39:45 +000011820 else {
11821 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
Reid Spencerc5b206b2006-12-31 05:48:39 +000011822 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
Chris Lattnerefb47352006-04-15 01:39:45 +000011823 NumVectorElts));
11824 }
Reid Spencerc5b206b2006-12-31 05:48:39 +000011825 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
Chris Lattnerefb47352006-04-15 01:39:45 +000011826 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
Reid Spencer9d6565a2007-02-15 02:26:10 +000011827 ConstantVector::get(Mask));
Chris Lattnerefb47352006-04-15 01:39:45 +000011828 }
11829
11830 // If this insertelement isn't used by some other insertelement, turn it
11831 // (and any insertelements it points to), into one big shuffle.
11832 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11833 std::vector<Constant*> Mask;
Chris Lattner7f6cc0c2006-04-16 00:51:47 +000011834 Value *RHS = 0;
11835 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11836 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11837 // We now have a shuffle of LHS, RHS, Mask.
Reid Spencer9d6565a2007-02-15 02:26:10 +000011838 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
Chris Lattnerefb47352006-04-15 01:39:45 +000011839 }
11840 }
11841 }
11842
11843 return 0;
11844}
11845
11846
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011847Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11848 Value *LHS = SVI.getOperand(0);
11849 Value *RHS = SVI.getOperand(1);
Chris Lattner863bcff2006-05-25 23:48:38 +000011850 std::vector<unsigned> Mask = getShuffleMask(&SVI);
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011851
11852 bool MadeChange = false;
Mon P Wangaeb06d22008-11-10 04:46:22 +000011853
Chris Lattner867b99f2006-10-05 06:55:50 +000011854 // Undefined shuffle mask -> undefined value.
Chris Lattner863bcff2006-05-25 23:48:38 +000011855 if (isa<UndefValue>(SVI.getOperand(2)))
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011856 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
Dan Gohman488fbfc2008-09-09 18:11:14 +000011857
11858 uint64_t UndefElts;
11859 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
Mon P Wangaeb06d22008-11-10 04:46:22 +000011860
11861 if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
11862 return 0;
11863
Dan Gohman488fbfc2008-09-09 18:11:14 +000011864 uint64_t AllOnesEltMask = ~0ULL >> (64-VWidth);
11865 if (VWidth <= 64 &&
Dan Gohman3139ff82008-09-11 22:47:57 +000011866 SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
11867 LHS = SVI.getOperand(0);
11868 RHS = SVI.getOperand(1);
Dan Gohman488fbfc2008-09-09 18:11:14 +000011869 MadeChange = true;
Dan Gohman3139ff82008-09-11 22:47:57 +000011870 }
Chris Lattnerefb47352006-04-15 01:39:45 +000011871
Chris Lattner863bcff2006-05-25 23:48:38 +000011872 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11873 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11874 if (LHS == RHS || isa<UndefValue>(LHS)) {
11875 if (isa<UndefValue>(LHS) && LHS == RHS) {
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011876 // shuffle(undef,undef,mask) -> undef.
11877 return ReplaceInstUsesWith(SVI, LHS);
11878 }
11879
Chris Lattner863bcff2006-05-25 23:48:38 +000011880 // Remap any references to RHS to use LHS.
11881 std::vector<Constant*> Elts;
11882 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
Chris Lattner7b2e27922006-05-26 00:29:06 +000011883 if (Mask[i] >= 2*e)
Reid Spencerc5b206b2006-12-31 05:48:39 +000011884 Elts.push_back(UndefValue::get(Type::Int32Ty));
Chris Lattner7b2e27922006-05-26 00:29:06 +000011885 else {
11886 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
Dan Gohman4ce96272008-08-06 18:17:32 +000011887 (Mask[i] < e && isa<UndefValue>(LHS))) {
Chris Lattner7b2e27922006-05-26 00:29:06 +000011888 Mask[i] = 2*e; // Turn into undef.
Dan Gohman4ce96272008-08-06 18:17:32 +000011889 Elts.push_back(UndefValue::get(Type::Int32Ty));
11890 } else {
Mon P Wang4f5ca2c2008-08-20 02:23:25 +000011891 Mask[i] = Mask[i] % e; // Force to LHS.
Dan Gohman4ce96272008-08-06 18:17:32 +000011892 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11893 }
Chris Lattner7b2e27922006-05-26 00:29:06 +000011894 }
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011895 }
Chris Lattner863bcff2006-05-25 23:48:38 +000011896 SVI.setOperand(0, SVI.getOperand(1));
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011897 SVI.setOperand(1, UndefValue::get(RHS->getType()));
Reid Spencer9d6565a2007-02-15 02:26:10 +000011898 SVI.setOperand(2, ConstantVector::get(Elts));
Chris Lattner7b2e27922006-05-26 00:29:06 +000011899 LHS = SVI.getOperand(0);
11900 RHS = SVI.getOperand(1);
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011901 MadeChange = true;
11902 }
11903
Chris Lattner7b2e27922006-05-26 00:29:06 +000011904 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
Chris Lattner863bcff2006-05-25 23:48:38 +000011905 bool isLHSID = true, isRHSID = true;
Chris Lattner706126d2006-04-16 00:03:56 +000011906
Chris Lattner863bcff2006-05-25 23:48:38 +000011907 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11908 if (Mask[i] >= e*2) continue; // Ignore undef values.
11909 // Is this an identity shuffle of the LHS value?
11910 isLHSID &= (Mask[i] == i);
11911
11912 // Is this an identity shuffle of the RHS value?
11913 isRHSID &= (Mask[i]-e == i);
Chris Lattner706126d2006-04-16 00:03:56 +000011914 }
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011915
Chris Lattner863bcff2006-05-25 23:48:38 +000011916 // Eliminate identity shuffles.
11917 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
11918 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011919
Chris Lattner7b2e27922006-05-26 00:29:06 +000011920 // If the LHS is a shufflevector itself, see if we can combine it with this
11921 // one without producing an unusual shuffle. Here we are really conservative:
11922 // we are absolutely afraid of producing a shuffle mask not in the input
11923 // program, because the code gen may not be smart enough to turn a merged
11924 // shuffle into two specific shuffles: it may produce worse code. As such,
11925 // we only merge two shuffles if the result is one of the two input shuffle
11926 // masks. In this case, merging the shuffles just removes one instruction,
11927 // which we know is safe. This is good for things like turning:
11928 // (splat(splat)) -> splat.
11929 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
11930 if (isa<UndefValue>(RHS)) {
11931 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
11932
11933 std::vector<unsigned> NewMask;
11934 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
11935 if (Mask[i] >= 2*e)
11936 NewMask.push_back(2*e);
11937 else
11938 NewMask.push_back(LHSMask[Mask[i]]);
11939
11940 // If the result mask is equal to the src shuffle or this shuffle mask, do
11941 // the replacement.
11942 if (NewMask == LHSMask || NewMask == Mask) {
11943 std::vector<Constant*> Elts;
11944 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
11945 if (NewMask[i] >= e*2) {
Reid Spencerc5b206b2006-12-31 05:48:39 +000011946 Elts.push_back(UndefValue::get(Type::Int32Ty));
Chris Lattner7b2e27922006-05-26 00:29:06 +000011947 } else {
Reid Spencerc5b206b2006-12-31 05:48:39 +000011948 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
Chris Lattner7b2e27922006-05-26 00:29:06 +000011949 }
11950 }
11951 return new ShuffleVectorInst(LHSSVI->getOperand(0),
11952 LHSSVI->getOperand(1),
Reid Spencer9d6565a2007-02-15 02:26:10 +000011953 ConstantVector::get(Elts));
Chris Lattner7b2e27922006-05-26 00:29:06 +000011954 }
11955 }
11956 }
Chris Lattnerc5eff442007-01-30 22:32:46 +000011957
Chris Lattnera844fc4c2006-04-10 22:45:52 +000011958 return MadeChange ? &SVI : 0;
11959}
11960
11961
Robert Bocchino1d7456d2006-01-13 22:48:06 +000011962
Chris Lattnerea1c4542004-12-08 23:43:58 +000011963
11964/// TryToSinkInstruction - Try to move the specified instruction from its
11965/// current block into the beginning of DestBlock, which can only happen if it's
11966/// safe to move the instruction past all of the instructions between it and the
11967/// end of its block.
11968static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
11969 assert(I->hasOneUse() && "Invariants didn't hold!");
11970
Chris Lattner108e9022005-10-27 17:13:11 +000011971 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnerbfc538c2008-05-09 15:07:33 +000011972 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
11973 return false;
Misha Brukmanfd939082005-04-21 23:48:37 +000011974
Chris Lattnerea1c4542004-12-08 23:43:58 +000011975 // Do not sink alloca instructions out of the entry block.
Dan Gohmanecb7a772007-03-22 16:38:57 +000011976 if (isa<AllocaInst>(I) && I->getParent() ==
11977 &DestBlock->getParent()->getEntryBlock())
Chris Lattnerea1c4542004-12-08 23:43:58 +000011978 return false;
11979
Chris Lattner96a52a62004-12-09 07:14:34 +000011980 // We can only sink load instructions if there is nothing between the load and
11981 // the end of block that could change the value.
Chris Lattner2539e332008-05-08 17:37:37 +000011982 if (I->mayReadFromMemory()) {
11983 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Chris Lattner96a52a62004-12-09 07:14:34 +000011984 Scan != E; ++Scan)
11985 if (Scan->mayWriteToMemory())
11986 return false;
Chris Lattner96a52a62004-12-09 07:14:34 +000011987 }
Chris Lattnerea1c4542004-12-08 23:43:58 +000011988
Dan Gohman02dea8b2008-05-23 21:05:58 +000011989 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
Chris Lattnerea1c4542004-12-08 23:43:58 +000011990
Chris Lattner4bc5f802005-08-08 19:11:57 +000011991 I->moveBefore(InsertPos);
Chris Lattnerea1c4542004-12-08 23:43:58 +000011992 ++NumSunkInst;
11993 return true;
11994}
11995
Chris Lattnerf4f5a772006-05-10 19:00:36 +000011996
11997/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
11998/// all reachable code to the worklist.
11999///
12000/// This has a couple of tricks to make the code faster and more powerful. In
12001/// particular, we constant fold and DCE instructions as we go, to avoid adding
12002/// them to the worklist (this significantly speeds up instcombine on code where
12003/// many instructions are dead or constant). Additionally, if we find a branch
12004/// whose condition is a known constant, we only visit the reachable successors.
12005///
12006static void AddReachableCodeToWorklist(BasicBlock *BB,
Chris Lattner1f87a582007-02-15 19:41:52 +000012007 SmallPtrSet<BasicBlock*, 64> &Visited,
Chris Lattnerdbab3862007-03-02 21:28:56 +000012008 InstCombiner &IC,
Chris Lattner8c8c66a2006-05-11 17:11:52 +000012009 const TargetData *TD) {
Chris Lattner2806dff2008-08-15 04:03:01 +000012010 SmallVector<BasicBlock*, 256> Worklist;
Chris Lattner2c7718a2007-03-23 19:17:18 +000012011 Worklist.push_back(BB);
Chris Lattnerf4f5a772006-05-10 19:00:36 +000012012
Chris Lattner2c7718a2007-03-23 19:17:18 +000012013 while (!Worklist.empty()) {
12014 BB = Worklist.back();
12015 Worklist.pop_back();
12016
12017 // We have now visited this block! If we've already been here, ignore it.
12018 if (!Visited.insert(BB)) continue;
Devang Patel7fe1dec2008-11-19 18:56:50 +000012019
12020 DbgInfoIntrinsic *DBI_Prev = NULL;
Chris Lattner2c7718a2007-03-23 19:17:18 +000012021 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
12022 Instruction *Inst = BBI++;
Chris Lattnerf4f5a772006-05-10 19:00:36 +000012023
Chris Lattner2c7718a2007-03-23 19:17:18 +000012024 // DCE instruction if trivially dead.
12025 if (isInstructionTriviallyDead(Inst)) {
12026 ++NumDeadInst;
12027 DOUT << "IC: DCE: " << *Inst;
12028 Inst->eraseFromParent();
12029 continue;
12030 }
12031
12032 // ConstantProp instruction if trivially constant.
12033 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
12034 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
12035 Inst->replaceAllUsesWith(C);
12036 ++NumConstProp;
12037 Inst->eraseFromParent();
12038 continue;
12039 }
Chris Lattner3ccc6bc2007-07-20 22:06:41 +000012040
Devang Patel7fe1dec2008-11-19 18:56:50 +000012041 // If there are two consecutive llvm.dbg.stoppoint calls then
12042 // it is likely that the optimizer deleted code in between these
12043 // two intrinsics.
12044 DbgInfoIntrinsic *DBI_Next = dyn_cast<DbgInfoIntrinsic>(Inst);
12045 if (DBI_Next) {
12046 if (DBI_Prev
12047 && DBI_Prev->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint
12048 && DBI_Next->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint) {
12049 IC.RemoveFromWorkList(DBI_Prev);
12050 DBI_Prev->eraseFromParent();
12051 }
12052 DBI_Prev = DBI_Next;
12053 }
12054
Chris Lattner2c7718a2007-03-23 19:17:18 +000012055 IC.AddToWorkList(Inst);
Chris Lattnerf4f5a772006-05-10 19:00:36 +000012056 }
Chris Lattner2c7718a2007-03-23 19:17:18 +000012057
12058 // Recursively visit successors. If this is a branch or switch on a
12059 // constant, only visit the reachable successor.
12060 TerminatorInst *TI = BB->getTerminator();
12061 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
12062 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
12063 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewycky91436992008-03-09 08:50:23 +000012064 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewycky280a6e62008-04-25 16:53:59 +000012065 Worklist.push_back(ReachableBB);
Chris Lattner2c7718a2007-03-23 19:17:18 +000012066 continue;
12067 }
12068 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
12069 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
12070 // See if this is an explicit destination.
12071 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
12072 if (SI->getCaseValue(i) == Cond) {
Nick Lewycky91436992008-03-09 08:50:23 +000012073 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewycky280a6e62008-04-25 16:53:59 +000012074 Worklist.push_back(ReachableBB);
Chris Lattner2c7718a2007-03-23 19:17:18 +000012075 continue;
12076 }
12077
12078 // Otherwise it is the default destination.
12079 Worklist.push_back(SI->getSuccessor(0));
12080 continue;
12081 }
12082 }
12083
12084 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
12085 Worklist.push_back(TI->getSuccessor(i));
Chris Lattnerf4f5a772006-05-10 19:00:36 +000012086 }
Chris Lattnerf4f5a772006-05-10 19:00:36 +000012087}
12088
Chris Lattnerec9c3582007-03-03 02:04:50 +000012089bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
Chris Lattnerdd841ae2002-04-18 17:39:14 +000012090 bool Changed = false;
Chris Lattnerbc61e662003-11-02 05:57:39 +000012091 TD = &getAnalysis<TargetData>();
Chris Lattnerec9c3582007-03-03 02:04:50 +000012092
12093 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
12094 << F.getNameStr() << "\n");
Chris Lattner8a2a3112001-12-14 16:52:21 +000012095
Chris Lattnerb3d59702005-07-07 20:40:38 +000012096 {
Chris Lattnerf4f5a772006-05-10 19:00:36 +000012097 // Do a depth-first traversal of the function, populate the worklist with
12098 // the reachable instructions. Ignore blocks that are not reachable. Keep
12099 // track of which blocks we visit.
Chris Lattner1f87a582007-02-15 19:41:52 +000012100 SmallPtrSet<BasicBlock*, 64> Visited;
Chris Lattnerdbab3862007-03-02 21:28:56 +000012101 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
Jeff Cohen00b168892005-07-27 06:12:32 +000012102
Chris Lattnerb3d59702005-07-07 20:40:38 +000012103 // Do a quick scan over the function. If we find any blocks that are
12104 // unreachable, remove any instructions inside of them. This prevents
12105 // the instcombine code from having to deal with some bad special cases.
12106 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
12107 if (!Visited.count(BB)) {
12108 Instruction *Term = BB->getTerminator();
12109 while (Term != BB->begin()) { // Remove instrs bottom-up
12110 BasicBlock::iterator I = Term; --I;
Chris Lattner6ffe5512004-04-27 15:13:33 +000012111
Bill Wendlingb7427032006-11-26 09:46:52 +000012112 DOUT << "IC: DCE: " << *I;
Chris Lattnerb3d59702005-07-07 20:40:38 +000012113 ++NumDeadInst;
12114
12115 if (!I->use_empty())
12116 I->replaceAllUsesWith(UndefValue::get(I->getType()));
12117 I->eraseFromParent();
12118 }
12119 }
12120 }
Chris Lattner8a2a3112001-12-14 16:52:21 +000012121
Chris Lattnerdbab3862007-03-02 21:28:56 +000012122 while (!Worklist.empty()) {
12123 Instruction *I = RemoveOneFromWorkList();
12124 if (I == 0) continue; // skip null values.
Chris Lattner8a2a3112001-12-14 16:52:21 +000012125
Chris Lattner8c8c66a2006-05-11 17:11:52 +000012126 // Check to see if we can DCE the instruction.
Chris Lattner62b14df2002-09-02 04:59:56 +000012127 if (isInstructionTriviallyDead(I)) {
Chris Lattner8c8c66a2006-05-11 17:11:52 +000012128 // Add operands to the worklist.
Chris Lattner4bb7c022003-10-06 17:11:01 +000012129 if (I->getNumOperands() < 4)
Chris Lattner7bcc0e72004-02-28 05:22:00 +000012130 AddUsesToWorkList(*I);
Chris Lattner62b14df2002-09-02 04:59:56 +000012131 ++NumDeadInst;
Chris Lattner4bb7c022003-10-06 17:11:01 +000012132
Bill Wendlingb7427032006-11-26 09:46:52 +000012133 DOUT << "IC: DCE: " << *I;
Chris Lattnerad5fec12005-01-28 19:32:01 +000012134
12135 I->eraseFromParent();
Chris Lattnerdbab3862007-03-02 21:28:56 +000012136 RemoveFromWorkList(I);
Chris Lattner4bb7c022003-10-06 17:11:01 +000012137 continue;
12138 }
Chris Lattner62b14df2002-09-02 04:59:56 +000012139
Chris Lattner8c8c66a2006-05-11 17:11:52 +000012140 // Instruction isn't dead, see if we can constant propagate it.
Chris Lattner0a19ffa2007-01-30 23:16:15 +000012141 if (Constant *C = ConstantFoldInstruction(I, TD)) {
Bill Wendlingb7427032006-11-26 09:46:52 +000012142 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
Chris Lattnerad5fec12005-01-28 19:32:01 +000012143
Chris Lattner8c8c66a2006-05-11 17:11:52 +000012144 // Add operands to the worklist.
Chris Lattner7bcc0e72004-02-28 05:22:00 +000012145 AddUsesToWorkList(*I);
Chris Lattnerc736d562002-12-05 22:41:53 +000012146 ReplaceInstUsesWith(*I, C);
12147
Chris Lattner62b14df2002-09-02 04:59:56 +000012148 ++NumConstProp;
Chris Lattnerf4f5a772006-05-10 19:00:36 +000012149 I->eraseFromParent();
Chris Lattnerdbab3862007-03-02 21:28:56 +000012150 RemoveFromWorkList(I);
Chris Lattner4bb7c022003-10-06 17:11:01 +000012151 continue;
Chris Lattner62b14df2002-09-02 04:59:56 +000012152 }
Chris Lattner4bb7c022003-10-06 17:11:01 +000012153
Nick Lewycky3dfd7bf2008-05-25 20:56:15 +000012154 if (TD && I->getType()->getTypeID() == Type::VoidTyID) {
12155 // See if we can constant fold its operands.
12156 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
12157 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) {
12158 if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
12159 i->set(NewC);
12160 }
12161 }
12162 }
12163
Chris Lattnerea1c4542004-12-08 23:43:58 +000012164 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohmanfc74abf2008-07-23 00:34:11 +000012165 if (I->hasOneUse()) {
Chris Lattnerea1c4542004-12-08 23:43:58 +000012166 BasicBlock *BB = I->getParent();
12167 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
12168 if (UserParent != BB) {
12169 bool UserIsSuccessor = false;
12170 // See if the user is one of our successors.
12171 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
12172 if (*SI == UserParent) {
12173 UserIsSuccessor = true;
12174 break;
12175 }
12176
12177 // If the user is one of our immediate successors, and if that successor
12178 // only has us as a predecessors (we'd have to split the critical edge
12179 // otherwise), we can keep going.
12180 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
12181 next(pred_begin(UserParent)) == pred_end(UserParent))
12182 // Okay, the CFG is simple enough, try to sink this instruction.
12183 Changed |= TryToSinkInstruction(I, UserParent);
12184 }
12185 }
12186
Chris Lattner8a2a3112001-12-14 16:52:21 +000012187 // Now that we have an instruction, try combining it to simplify it...
Reid Spencera9b81012007-03-26 17:44:01 +000012188#ifndef NDEBUG
12189 std::string OrigI;
12190#endif
12191 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
Chris Lattner90ac28c2002-08-02 19:29:35 +000012192 if (Instruction *Result = visit(*I)) {
Chris Lattner3dec1f22002-05-10 15:38:35 +000012193 ++NumCombined;
Chris Lattnerdd841ae2002-04-18 17:39:14 +000012194 // Should we replace the old instruction with a new one?
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +000012195 if (Result != I) {
Bill Wendlingb7427032006-11-26 09:46:52 +000012196 DOUT << "IC: Old = " << *I
12197 << " New = " << *Result;
Chris Lattner0cea42a2004-03-13 23:54:27 +000012198
Chris Lattnerf523d062004-06-09 05:08:07 +000012199 // Everything uses the new instruction now.
12200 I->replaceAllUsesWith(Result);
12201
12202 // Push the new instruction and any users onto the worklist.
Chris Lattnerdbab3862007-03-02 21:28:56 +000012203 AddToWorkList(Result);
Chris Lattnerf523d062004-06-09 05:08:07 +000012204 AddUsersToWorkList(*Result);
Chris Lattner4bb7c022003-10-06 17:11:01 +000012205
Chris Lattner6934a042007-02-11 01:23:03 +000012206 // Move the name to the new instruction first.
12207 Result->takeName(I);
Chris Lattner4bb7c022003-10-06 17:11:01 +000012208
12209 // Insert the new instruction into the basic block...
12210 BasicBlock *InstParent = I->getParent();
Chris Lattnerbac32862004-11-14 19:13:23 +000012211 BasicBlock::iterator InsertPos = I;
12212
12213 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
12214 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
12215 ++InsertPos;
12216
12217 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattner4bb7c022003-10-06 17:11:01 +000012218
Chris Lattner00d51312004-05-01 23:27:23 +000012219 // Make sure that we reprocess all operands now that we reduced their
12220 // use counts.
Chris Lattnerdbab3862007-03-02 21:28:56 +000012221 AddUsesToWorkList(*I);
Chris Lattner216d4d82004-05-01 23:19:52 +000012222
Chris Lattnerf523d062004-06-09 05:08:07 +000012223 // Instructions can end up on the worklist more than once. Make sure
12224 // we do not process an instruction that has been deleted.
Chris Lattnerdbab3862007-03-02 21:28:56 +000012225 RemoveFromWorkList(I);
Chris Lattner4bb7c022003-10-06 17:11:01 +000012226
12227 // Erase the old instruction.
12228 InstParent->getInstList().erase(I);
Chris Lattner7e708292002-06-25 16:13:24 +000012229 } else {
Evan Chengc7baf682007-03-27 16:44:48 +000012230#ifndef NDEBUG
Reid Spencera9b81012007-03-26 17:44:01 +000012231 DOUT << "IC: Mod = " << OrigI
12232 << " New = " << *I;
Evan Chengc7baf682007-03-27 16:44:48 +000012233#endif
Chris Lattner0cea42a2004-03-13 23:54:27 +000012234
Chris Lattner90ac28c2002-08-02 19:29:35 +000012235 // If the instruction was modified, it's possible that it is now dead.
12236 // if so, remove it.
Chris Lattner00d51312004-05-01 23:27:23 +000012237 if (isInstructionTriviallyDead(I)) {
12238 // Make sure we process all operands now that we are reducing their
12239 // use counts.
Chris Lattnerec9c3582007-03-03 02:04:50 +000012240 AddUsesToWorkList(*I);
Misha Brukmanfd939082005-04-21 23:48:37 +000012241
Chris Lattner00d51312004-05-01 23:27:23 +000012242 // Instructions may end up in the worklist more than once. Erase all
Robert Bocchino1d7456d2006-01-13 22:48:06 +000012243 // occurrences of this instruction.
Chris Lattnerdbab3862007-03-02 21:28:56 +000012244 RemoveFromWorkList(I);
Chris Lattner2f503e62005-01-31 05:36:43 +000012245 I->eraseFromParent();
Chris Lattnerf523d062004-06-09 05:08:07 +000012246 } else {
Chris Lattnerec9c3582007-03-03 02:04:50 +000012247 AddToWorkList(I);
12248 AddUsersToWorkList(*I);
Chris Lattner90ac28c2002-08-02 19:29:35 +000012249 }
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +000012250 }
Chris Lattnerdd841ae2002-04-18 17:39:14 +000012251 Changed = true;
Chris Lattner8a2a3112001-12-14 16:52:21 +000012252 }
12253 }
12254
Chris Lattnerec9c3582007-03-03 02:04:50 +000012255 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnera9ff5eb2007-08-05 08:47:58 +000012256
12257 // Do an explicit clear, this shrinks the map if needed.
12258 WorklistMap.clear();
Chris Lattnerdd841ae2002-04-18 17:39:14 +000012259 return Changed;
Chris Lattnerbd0ef772002-02-26 21:46:54 +000012260}
12261
Chris Lattnerec9c3582007-03-03 02:04:50 +000012262
12263bool InstCombiner::runOnFunction(Function &F) {
Chris Lattnerf964f322007-03-04 04:27:24 +000012264 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
12265
Chris Lattnerec9c3582007-03-03 02:04:50 +000012266 bool EverMadeChange = false;
12267
12268 // Iterate while there is work to do.
12269 unsigned Iteration = 0;
Bill Wendlinga6c31122008-05-14 22:45:20 +000012270 while (DoOneIteration(F, Iteration++))
Chris Lattnerec9c3582007-03-03 02:04:50 +000012271 EverMadeChange = true;
12272 return EverMadeChange;
12273}
12274
Brian Gaeke96d4bf72004-07-27 17:43:21 +000012275FunctionPass *llvm::createInstructionCombiningPass() {
Chris Lattnerdd841ae2002-04-18 17:39:14 +000012276 return new InstCombiner();
Chris Lattnerbd0ef772002-02-26 21:46:54 +000012277}
Brian Gaeked0fde302003-11-11 22:41:34 +000012278
Chris Lattnerb8cd4d32008-08-11 22:06:05 +000012279