blob: 4ce6291eeff1aaa052bfbc99a007455843ca3d4f [file] [log] [blame]
Vikram S. Advea21cf202001-07-21 12:42:19 +00001// $Id$
2//***************************************************************************
3// File:
4// SparcInstrSelection.cpp
5//
6// Purpose:
7//
8// History:
9// 7/02/01 - Vikram Adve - Created
10//***************************************************************************
11
Vikram S. Advea21cf202001-07-21 12:42:19 +000012#include "llvm/Type.h"
13#include "llvm/DerivedTypes.h"
14#include "llvm/SymbolTable.h"
15#include "llvm/Value.h"
16#include "llvm/Instruction.h"
17#include "llvm/InstrTypes.h"
18#include "llvm/iTerminators.h"
19#include "llvm/iMemory.h"
20#include "llvm/iOther.h"
21#include "llvm/BasicBlock.h"
22#include "llvm/Method.h"
23#include "llvm/ConstPoolVals.h"
Chris Lattner7e583cf2001-07-21 20:58:30 +000024#include "llvm/CodeGen/Sparc.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/InstrForest.h"
27#include "llvm/CodeGen/InstrSelection.h"
Vikram S. Advea21cf202001-07-21 12:42:19 +000028
29
30//******************** Internal Data Declarations ************************/
31
32// to be used later
33struct BranchPattern {
34 bool flipCondition; // should the sense of the test be reversed
35 BasicBlock* targetBB; // which basic block to branch to
36 MachineInstr* extraBranch; // if neither branch is fall-through, then this
37 // BA must be inserted after the cond'l one
38};
39
40//************************* Forward Declarations ***************************/
41
42
Vikram S. Adve4f231662001-07-28 04:15:15 +000043static MachineOpCode ChooseBprInstruction (const InstructionNode* instrNode);
Vikram S. Advea21cf202001-07-21 12:42:19 +000044
Vikram S. Adve4f231662001-07-28 04:15:15 +000045static MachineOpCode ChooseBccInstruction (const InstructionNode* instrNode,
46 bool& isFPBranch);
Vikram S. Advea21cf202001-07-21 12:42:19 +000047
Vikram S. Adve4f231662001-07-28 04:15:15 +000048static MachineOpCode ChooseBpccInstruction (const InstructionNode* instrNode,
49 const BinaryOperator* setCCInst);
Vikram S. Advea21cf202001-07-21 12:42:19 +000050
Vikram S. Adve4f231662001-07-28 04:15:15 +000051static MachineOpCode ChooseBFpccInstruction (const InstructionNode* instrNode,
52 const BinaryOperator* setCCInst);
Vikram S. Advea21cf202001-07-21 12:42:19 +000053
Vikram S. Adve4f231662001-07-28 04:15:15 +000054static MachineOpCode ChooseMovFpccInstruction(const InstructionNode*);
55
56static MachineOpCode ChooseMovpccAfterSub (const InstructionNode* instrNode,
57 bool& mustClearReg,
58 int& valueToMove);
59
60static MachineOpCode ChooseConvertToFloatInstr(const InstructionNode*,
Chris Lattner51a9ad92001-07-21 22:57:05 +000061 const Type* opType);
Vikram S. Advea21cf202001-07-21 12:42:19 +000062
Vikram S. Adve4f231662001-07-28 04:15:15 +000063static MachineOpCode ChooseConvertToIntInstr(const InstructionNode* instrNode,
64 const Type* opType);
Vikram S. Advea21cf202001-07-21 12:42:19 +000065
Vikram S. Adve4f231662001-07-28 04:15:15 +000066static MachineOpCode ChooseAddInstruction (const InstructionNode* instrNode);
Vikram S. Advea21cf202001-07-21 12:42:19 +000067
Vikram S. Adve4f231662001-07-28 04:15:15 +000068static MachineOpCode ChooseSubInstruction (const InstructionNode* instrNode);
Vikram S. Advea21cf202001-07-21 12:42:19 +000069
Vikram S. Adve4f231662001-07-28 04:15:15 +000070static MachineOpCode ChooseFcmpInstruction (const InstructionNode* instrNode);
Vikram S. Advea21cf202001-07-21 12:42:19 +000071
Vikram S. Adve4f231662001-07-28 04:15:15 +000072static MachineOpCode ChooseMulInstruction (const InstructionNode* instrNode,
73 bool checkCasts);
Vikram S. Advea21cf202001-07-21 12:42:19 +000074
Vikram S. Adve4f231662001-07-28 04:15:15 +000075static MachineOpCode ChooseDivInstruction (const InstructionNode* instrNode);
Vikram S. Advea21cf202001-07-21 12:42:19 +000076
Vikram S. Adve4f231662001-07-28 04:15:15 +000077static MachineOpCode ChooseLoadInstruction (const Type* resultType);
Vikram S. Advea21cf202001-07-21 12:42:19 +000078
Vikram S. Adve4f231662001-07-28 04:15:15 +000079static MachineOpCode ChooseStoreInstruction (const Type* valueType);
Vikram S. Advea21cf202001-07-21 12:42:19 +000080
Vikram S. Adve4f231662001-07-28 04:15:15 +000081static void SetOperandsForMemInstr(MachineInstr* minstr,
Vikram S. Advea21cf202001-07-21 12:42:19 +000082 const InstructionNode* vmInstrNode,
Vikram S. Adve4f231662001-07-28 04:15:15 +000083 const TargetMachine& target);
Vikram S. Advea21cf202001-07-21 12:42:19 +000084
85static void SetMemOperands_Internal (MachineInstr* minstr,
86 const InstructionNode* vmInstrNode,
87 Value* ptrVal,
88 Value* arrayOffsetVal,
89 const vector<ConstPoolVal*>& idxVec,
Vikram S. Adve4f231662001-07-28 04:15:15 +000090 const TargetMachine& target);
Vikram S. Advea21cf202001-07-21 12:42:19 +000091
92static unsigned FixConstantOperands(const InstructionNode* vmInstrNode,
Vikram S. Adve4f231662001-07-28 04:15:15 +000093 MachineInstr** mvec,
94 unsigned numInstr,
95 TargetMachine& target);
Vikram S. Advea21cf202001-07-21 12:42:19 +000096
97static unsigned InsertLoadConstInstructions(unsigned loadConstFlags,
98 const InstructionNode* vmInstrNode,
99 MachineInstr** mvec,
100 unsigned numInstr);
101
102static MachineInstr* MakeOneLoadConstInstr(Instruction* vmInstr,
Vikram S. Adve4f231662001-07-28 04:15:15 +0000103 Value* val,
104 TmpInstruction*& tmpReg);
105
106static void ForwardOperand (InstructionNode* treeNode,
107 InstructionNode* parent,
108 int operandNum);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000109
110
111//******************* Externally Visible Functions *************************/
112
113
114//------------------------------------------------------------------------
115// External Function: ThisIsAChainRule
116//
117// Purpose:
118// Check if a given BURG rule is a chain rule.
119//------------------------------------------------------------------------
120
121extern bool
122ThisIsAChainRule(int eruleno)
123{
124 switch(eruleno)
125 {
126 case 111: // stmt: reg
127 case 112: // stmt: boolconst
128 case 113: // stmt: bool
129 case 121:
130 case 122:
131 case 123:
132 case 124:
133 case 125:
134 case 126:
135 case 127:
136 case 128:
137 case 129:
138 case 130:
139 case 131:
140 case 132:
141 case 153: return true; break;
142
143 default: return false; break;
144 }
145}
146
147//------------------------------------------------------------------------
148// External Function: GetInstructionsByRule
149//
150// Purpose:
151// Choose machine instructions for the SPARC according to the
152// patterns chosen by the BURG-generated parser.
153//------------------------------------------------------------------------
154
155unsigned
156GetInstructionsByRule(InstructionNode* subtreeRoot,
157 int ruleForNode,
158 short* nts,
Vikram S. Adve4f231662001-07-28 04:15:15 +0000159 TargetMachine &target,
Vikram S. Advea21cf202001-07-21 12:42:19 +0000160 MachineInstr** mvec)
161{
162 int numInstr = 1; // initialize for common case
163 bool checkCast = false; // initialize here to use fall-through
164 Value *leftVal, *rightVal;
165 const Type* opType;
166 int nextRule;
Vikram S. Adve4f231662001-07-28 04:15:15 +0000167 int forwardOperandNum = -1;
Vikram S. Advea21cf202001-07-21 12:42:19 +0000168 BranchPattern brPattern;
Vikram S. Adve4f231662001-07-28 04:15:15 +0000169 int64_t s0 = 0; // variables holding zero to avoid
170 uint64_t u0 = 0; // overloading ambiguities below
Vikram S. Advea21cf202001-07-21 12:42:19 +0000171
172 mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety
173
174 switch(ruleForNode) {
175 case 1: // stmt: Ret
176 case 2: // stmt: RetValue(reg)
177 // NOTE: Prepass of register allocation is responsible
178 // for moving return value to appropriate register.
179 // Mark the return-address register as a hidden virtual reg.
180 {
181 Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
182 subtreeRoot->getInstruction(), NULL);
183 subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg);
184
185 mvec[0] = new MachineInstr(RETURN);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000186 mvec[0]->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,returnReg);
187 mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, s0);
188
189 returnReg->addMachineInstruction(mvec[0]);
190
Vikram S. Advea21cf202001-07-21 12:42:19 +0000191 mvec[numInstr++] = new MachineInstr(NOP); // delay slot
192 break;
193 }
194
195 case 3: // stmt: Store(reg,reg)
196 case 4: // stmt: Store(reg,ptrreg)
197 mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType()));
Vikram S. Adve4f231662001-07-28 04:15:15 +0000198 SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000199 break;
200
201 case 5: // stmt: BrUncond
202 mvec[0] = new MachineInstr(BA);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000203 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*)NULL);
204 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
Vikram S. Advea21cf202001-07-21 12:42:19 +0000205 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
206
207 mvec[numInstr++] = new MachineInstr(NOP); // delay slot
208 break;
209
210 case 6: // stmt: BrCond(boolconst)
211 // boolconst => boolean was computed with `%b = setCC type reg1 constant'
212 // If the constant is ZERO, we can use the branch-on-integer-register
213 // instructions and avoid the SUBcc instruction entirely.
214 // Otherwise this is just the same as case 5, so just fall through.
215 {
216 InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
217 assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode);
218 ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
Vikram S. Adve4f231662001-07-28 04:15:15 +0000219 bool isValidConst;
Vikram S. Advea21cf202001-07-21 12:42:19 +0000220
221 if (constVal->getType()->isIntegral()
Vikram S. Adve4f231662001-07-28 04:15:15 +0000222 && GetConstantValueAsSignedInt(constVal, isValidConst) == 0
223 && isValidConst)
Vikram S. Advea21cf202001-07-21 12:42:19 +0000224 {
Vikram S. Adve4f231662001-07-28 04:15:15 +0000225 // That constant ia a zero after all...
Vikram S. Advea21cf202001-07-21 12:42:19 +0000226 // Use the left child of the setCC instruction as the first argument!
227 mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
Vikram S. Adve4f231662001-07-28 04:15:15 +0000228 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
Vikram S. Advea21cf202001-07-21 12:42:19 +0000229 subtreeRoot->leftChild()->leftChild()->getValue());
230 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
231 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
232
Vikram S. Adve4f231662001-07-28 04:15:15 +0000233 // delay slot
234 mvec[numInstr++] = new MachineInstr(NOP);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000235
Vikram S. Adve4f231662001-07-28 04:15:15 +0000236 // false branch
237 mvec[numInstr++] = new MachineInstr(BA);
238 mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
239 (Value*) NULL);
240 mvec[numInstr-1]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
Vikram S. Advea21cf202001-07-21 12:42:19 +0000241 break;
242 }
243 // ELSE FALL THROUGH
244 }
245
246 case 7: // stmt: BrCond(bool)
247 // bool => boolean was computed with `%b = setcc type reg1 reg2'
248 // Need to check whether the type was a FP, signed int or unsigned int,
Vikram S. Adve4f231662001-07-28 04:15:15 +0000249 // and check the branching condition in order to choose the branch to use.
Vikram S. Advea21cf202001-07-21 12:42:19 +0000250 //
251 {
252 bool isFPBranch;
253 mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch));
Vikram S. Adve4f231662001-07-28 04:15:15 +0000254 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
255 subtreeRoot->leftChild()->getValue());
256 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
Vikram S. Advea21cf202001-07-21 12:42:19 +0000257 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
258
Vikram S. Adve4f231662001-07-28 04:15:15 +0000259 // delay slot
260 mvec[numInstr++] = new MachineInstr(NOP);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000261
Vikram S. Adve4f231662001-07-28 04:15:15 +0000262 // false branch
263 mvec[numInstr++] = new MachineInstr(BA);
264 mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
265 (Value*) NULL);
266 mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
267 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
Vikram S. Advea21cf202001-07-21 12:42:19 +0000268 break;
269 }
Vikram S. Adve4f231662001-07-28 04:15:15 +0000270
Vikram S. Advea21cf202001-07-21 12:42:19 +0000271 case 8: // stmt: BrCond(boolreg)
272 // bool => boolean is stored in an existing register.
273 // Just use the branch-on-integer-register instruction!
274 //
275 mvec[0] = new MachineInstr(BRNZ);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000276 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
277 subtreeRoot->leftChild()->getValue());
Vikram S. Advea21cf202001-07-21 12:42:19 +0000278 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
279 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
280 mvec[numInstr++] = new MachineInstr(NOP); // delay slot
281 break;
282
283 case 9: // stmt: Switch(reg)
284 assert(0 && "*** SWITCH instruction is not implemented yet.");
285 numInstr = 0;
286 break;
287
288 case 10: // reg: VRegList(reg, reg)
289 assert(0 && "VRegList should never be the topmost non-chain rule");
290 break;
291
292 case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0
293 mvec[0] = new MachineInstr(XNOR);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000294 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
Vikram S. Advea21cf202001-07-21 12:42:19 +0000295 subtreeRoot->leftChild()->getValue());
296 mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000297 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Advea21cf202001-07-21 12:42:19 +0000298 subtreeRoot->getValue());
299 break;
300
301 case 22: // reg: ToBoolTy(reg):
302 opType = subtreeRoot->leftChild()->getValue()->getType();
303 assert(opType->isIntegral() || opType == Type::BoolTy);
304 numInstr = 0;
Vikram S. Adve4f231662001-07-28 04:15:15 +0000305 forwardOperandNum = 0;
Vikram S. Advea21cf202001-07-21 12:42:19 +0000306 break;
307
308 case 23: // reg: ToUByteTy(reg)
309 case 25: // reg: ToUShortTy(reg)
310 case 27: // reg: ToUIntTy(reg)
311 case 29: // reg: ToULongTy(reg)
312 opType = subtreeRoot->leftChild()->getValue()->getType();
313 assert(opType->isIntegral() || opType == Type::BoolTy);
314 numInstr = 0;
Vikram S. Adve4f231662001-07-28 04:15:15 +0000315 forwardOperandNum = 0;
Vikram S. Advea21cf202001-07-21 12:42:19 +0000316 break;
317
318 case 24: // reg: ToSByteTy(reg)
319 case 26: // reg: ToShortTy(reg)
320 case 28: // reg: ToIntTy(reg)
321 case 30: // reg: ToLongTy(reg)
322 opType = subtreeRoot->leftChild()->getValue()->getType();
323 if (opType->isIntegral() || opType == Type::BoolTy)
Vikram S. Adve4f231662001-07-28 04:15:15 +0000324 {
325 numInstr = 0;
326 forwardOperandNum = 0;
327 }
Vikram S. Advea21cf202001-07-21 12:42:19 +0000328 else
329 {
330 mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType));
Vikram S. Adve4f231662001-07-28 04:15:15 +0000331 Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000332 }
333 break;
334
335 case 31: // reg: ToFloatTy(reg):
336 case 32: // reg: ToDoubleTy(reg):
337
338 // If this instruction has a parent (a user) in the tree
339 // and the user is translated as an FsMULd instruction,
340 // then the cast is unnecessary. So check that first.
341 // In the future, we'll want to do the same for the FdMULq instruction,
342 // so do the check here instead of only for ToFloatTy(reg).
343 //
344 if (subtreeRoot->parent() != NULL &&
345 ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
346 {
347 numInstr = 0;
Vikram S. Adve4f231662001-07-28 04:15:15 +0000348 forwardOperandNum = 0;
Vikram S. Advea21cf202001-07-21 12:42:19 +0000349 }
350 else
351 {
352 opType = subtreeRoot->leftChild()->getValue()->getType();
353 mvec[0] = new MachineInstr(ChooseConvertToFloatInstr(subtreeRoot, opType));
Vikram S. Adve4f231662001-07-28 04:15:15 +0000354 Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000355 }
356 break;
357
358 case 19: // reg: ToArrayTy(reg):
359 case 20: // reg: ToPointerTy(reg):
360 numInstr = 0;
Vikram S. Adve4f231662001-07-28 04:15:15 +0000361 forwardOperandNum = 0;
Vikram S. Advea21cf202001-07-21 12:42:19 +0000362 break;
363
364 case 33: // reg: Add(reg, reg)
365 mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
Vikram S. Adve4f231662001-07-28 04:15:15 +0000366 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000367 break;
368
369 case 34: // reg: Sub(reg, reg)
370 mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
Vikram S. Adve4f231662001-07-28 04:15:15 +0000371 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000372 break;
373
374 case 135: // reg: Mul(todouble, todouble)
375 checkCast = true;
376 // FALL THROUGH
377
378 case 35: // reg: Mul(reg, reg)
379 mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast));
Vikram S. Adve4f231662001-07-28 04:15:15 +0000380 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000381 break;
382
383 case 36: // reg: Div(reg, reg)
384 mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot));
Vikram S. Adve4f231662001-07-28 04:15:15 +0000385 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000386 break;
387
388 case 37: // reg: Rem(reg, reg)
389 assert(0 && "REM instruction unimplemented for the SPARC.");
390 break;
391
392 case 38: // reg: And(reg, reg)
393 mvec[0] = new MachineInstr(AND);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000394 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000395 break;
396
397 case 138: // reg: And(reg, not)
398 mvec[0] = new MachineInstr(ANDN);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000399 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000400 break;
401
402 case 39: // reg: Or(reg, reg)
403 mvec[0] = new MachineInstr(ORN);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000404 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000405 break;
406
407 case 139: // reg: Or(reg, not)
408 mvec[0] = new MachineInstr(ORN);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000409 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000410 break;
411
412 case 40: // reg: Xor(reg, reg)
413 mvec[0] = new MachineInstr(XOR);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000414 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000415 break;
416
417 case 140: // reg: Xor(reg, not)
418 mvec[0] = new MachineInstr(XNOR);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000419 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000420 break;
421
422 case 41: // boolconst: SetCC(reg, Constant)
423 // Check if this is an integer comparison, and
424 // there is a parent, and the parent decided to use
425 // a branch-on-integer-register instead of branch-on-condition-code.
426 // If so, the SUBcc instruction is not required.
427 // (However, we must still check for constants to be loaded from
428 // the constant pool so that such a load can be associated with
429 // this instruction.)
430 //
Vikram S. Adve4f231662001-07-28 04:15:15 +0000431 // Otherwise this is just the same as case 42, so just fall through.
Vikram S. Advea21cf202001-07-21 12:42:19 +0000432 //
433 if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
434 subtreeRoot->parent() != NULL)
435 {
436 InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
437 assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode);
438 const vector<MachineInstr*>&
439 minstrVec = parentNode->getInstruction()->getMachineInstrVec();
440 MachineOpCode parentOpCode;
Vikram S. Adve4f231662001-07-28 04:15:15 +0000441 if (parentNode->getInstruction()->getOpcode() == Instruction::Br &&
Vikram S. Advea21cf202001-07-21 12:42:19 +0000442 (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
443 parentOpCode <= BRGEZ)
444 {
Vikram S. Adve4f231662001-07-28 04:15:15 +0000445 numInstr = 0; // don't forward the operand!
Vikram S. Advea21cf202001-07-21 12:42:19 +0000446 break;
447 }
448 }
449 // ELSE FALL THROUGH
450
451 case 42: // bool: SetCC(reg, reg):
Vikram S. Adve4f231662001-07-28 04:15:15 +0000452 {
453 // If result of the SetCC is only used for a branch, we can
454 // discard the result. otherwise, it must go into an integer register.
455 // Note that the user may or may not be in the same tree, so we have
456 // to follow SSA def-use edges here, not BURG tree edges.
457 //
458 Instruction* result = subtreeRoot->getInstruction();
459 Value* firstUse = (Value*) * result->use_begin();
460 bool discardResult =
461 (result->use_size() == 1
462 && firstUse->getValueType() == Value::InstructionVal
463 && ((Instruction*) firstUse)->getOpcode() == Instruction::Br);
464
465 bool mustClearReg;
466 int valueToMove;
467 MachineOpCode movOpCode;
468
Vikram S. Advea21cf202001-07-21 12:42:19 +0000469 if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral())
470 {
Vikram S. Adve4f231662001-07-28 04:15:15 +0000471 // integer condition: destination should be %g0 or integer register
472 // if result must be saved but condition is not SetEQ then we need
473 // a separate instruction to compute the bool result, so discard
474 // result of SUBcc instruction anyway.
475 //
Vikram S. Advea21cf202001-07-21 12:42:19 +0000476 mvec[0] = new MachineInstr(SUBcc);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000477 Set3OperandsFromInstr(mvec[0], subtreeRoot, target, discardResult);
478
479 if (discardResult)
480 {// mark the "result" operand as being a CC register
481 mvec[0]->SetMachineOperand(2, MachineOperand::MO_CCRegister,
482 subtreeRoot->getValue());
483 }
484 else
485 { // recompute bool if needed, using the integer condition codes
486 if (result->getOpcode() == Instruction::SetNE)
487 discardResult = true;
488 else
489 movOpCode =
490 ChooseMovpccAfterSub(subtreeRoot, mustClearReg, valueToMove);
491 }
Vikram S. Advea21cf202001-07-21 12:42:19 +0000492 }
493 else
494 {
Vikram S. Adve4f231662001-07-28 04:15:15 +0000495 // FP condition: dest of FCMP should be some FCCn register
Vikram S. Advea21cf202001-07-21 12:42:19 +0000496 mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
Vikram S. Advea21cf202001-07-21 12:42:19 +0000497 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
Vikram S. Adve4f231662001-07-28 04:15:15 +0000498 subtreeRoot->getValue());
499 mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
500 subtreeRoot->leftChild()->getValue());
501 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
502 subtreeRoot->rightChild()->getValue());
503
504 if (!discardResult)
505 {// recompute bool using the FP condition codes
506 mustClearReg = true;
507 valueToMove = 1;
508 movOpCode = ChooseMovFpccInstruction(subtreeRoot);
509 }
510 }
511
512 if (!discardResult)
513 {
514 if (mustClearReg)
515 {// Unconditionally set register to 0
516 int n = numInstr++;
517 mvec[n] = new MachineInstr(SETHI);
518 mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,s0);
519 mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
520 subtreeRoot->getValue());
521 }
522
523 // Now conditionally move `valueToMove' (0 or 1) into the register
524 int n = numInstr++;
525 mvec[n] = new MachineInstr(movOpCode);
526 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
527 subtreeRoot->getValue());
528 mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
529 valueToMove);
530 mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
531 subtreeRoot->getValue());
Vikram S. Advea21cf202001-07-21 12:42:19 +0000532 }
533 break;
Vikram S. Adve4f231662001-07-28 04:15:15 +0000534 }
535
Vikram S. Advea21cf202001-07-21 12:42:19 +0000536 case 43: // boolreg: VReg
537 numInstr = 0;
538 break;
539
540 case 51: // reg: Load(reg)
541 case 52: // reg: Load(ptrreg)
542 case 53: // reg: LoadIdx(reg,reg)
543 case 54: // reg: LoadIdx(ptrreg,reg)
544 mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType()));
Vikram S. Adve4f231662001-07-28 04:15:15 +0000545 SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000546 break;
547
548 case 55: // reg: GetElemPtr(reg)
549 case 56: // reg: GetElemPtrIdx(reg,reg)
550 if (subtreeRoot->parent() != NULL)
551 {
552 // Check if the parent was an array access.
553 // If so, we still need to generate this instruction.
554 MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction();
555 const PointerType* ptrType =
556 (const PointerType*) memInst->getPtrOperand()->getType();
557 if (! ptrType->getValueType()->isArrayType())
558 {// we don't need a separate instr
Vikram S. Adve4f231662001-07-28 04:15:15 +0000559 numInstr = 0; // don't forward operand!
Vikram S. Advea21cf202001-07-21 12:42:19 +0000560 break;
561 }
562 }
563 // else in all other cases we need to a separate ADD instruction
564 mvec[0] = new MachineInstr(ADD);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000565 SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000566 break;
567
568 case 57: // reg: Alloca: Implement as 2 instructions:
569 // sub %sp, tmp -> %sp
570 { // add %sp, 0 -> result
571 Instruction* instr = subtreeRoot->getInstruction();
572 const PointerType* instrType = (const PointerType*) instr->getType();
573 assert(instrType->isPointerType());
Vikram S. Adve4f231662001-07-28 04:15:15 +0000574 int tsize = (int) target.findOptimalStorageSize(instrType->getValueType());
575 assert(tsize != 0 && "Just to check when this can happen");
576 // if (tsize == 0)
577 // {
578 // numInstr = 0;
579 // break;
580 // }
Vikram S. Advea21cf202001-07-21 12:42:19 +0000581 //else go on to create the instructions needed...
582
583 // Create a temporary Value to hold the constant type-size
584 ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize);
585 ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool();
586 if (cpool.find(valueForTSize) == 0)
587 cpool.insert(valueForTSize);
588
589 // Instruction 1: sub %sp, tsize -> %sp
590 // tsize is always constant, but it may have to be put into a
591 // register if it doesn't fit in the immediate field.
592 //
593 mvec[0] = new MachineInstr(SUB);
594 mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000595 mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000596 mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
597
598 // Instruction 2: add %sp, 0 -> result
599 numInstr++;
600 mvec[1] = new MachineInstr(ADD);
601 mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
602 mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000603 mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000604 break;
605 }
606
607 case 58: // reg: Alloca(reg): Implement as 3 instructions:
608 // mul num, typeSz -> tmp
609 // sub %sp, tmp -> %sp
610 { // add %sp, 0 -> result
611 Instruction* instr = subtreeRoot->getInstruction();
612 const PointerType* instrType = (const PointerType*) instr->getType();
613 assert(instrType->isPointerType() &&
614 instrType->getValueType()->isArrayType());
615 const Type* eltType =
616 ((ArrayType*) instrType->getValueType())->getElementType();
Vikram S. Adve4f231662001-07-28 04:15:15 +0000617 int tsize = (int) target.findOptimalStorageSize(eltType);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000618
Vikram S. Adve4f231662001-07-28 04:15:15 +0000619 assert(tsize != 0 && "Just to check when this can happen");
620 // if (tsize == 0)
621 // {
622 // numInstr = 0;
623 // break;
624 // }
Vikram S. Advea21cf202001-07-21 12:42:19 +0000625 //else go on to create the instructions needed...
626
627 // Create a temporary Value to hold the constant type-size
628 ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize);
629 ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool();
630 if (cpool.find(valueForTSize) == 0)
631 cpool.insert(valueForTSize);
632
633 // Create a temporary value to hold `tmp'
634 Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
635 subtreeRoot->leftChild()->getValue(),
636 NULL /*could insert tsize here*/);
637 subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
638
639 // Instruction 1: mul numElements, typeSize -> tmp
640 mvec[0] = new MachineInstr(MULX);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000641 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
Vikram S. Advea21cf202001-07-21 12:42:19 +0000642 subtreeRoot->leftChild()->getValue());
Vikram S. Adve4f231662001-07-28 04:15:15 +0000643 mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize);
644 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,tmpInstr);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000645
Vikram S. Adve4f231662001-07-28 04:15:15 +0000646 tmpInstr->addMachineInstruction(mvec[0]);
647
Vikram S. Advea21cf202001-07-21 12:42:19 +0000648 // Instruction 2: sub %sp, tmp -> %sp
649 numInstr++;
650 mvec[1] = new MachineInstr(SUB);
651 mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000652 mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,tmpInstr);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000653 mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
654
655 // Instruction 3: add %sp, 0 -> result
656 numInstr++;
657 mvec[2] = new MachineInstr(ADD);
658 mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
659 mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000660 mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000661 break;
662 }
663
664 case 61: // reg: Call
665 // Generate a call-indirect (i.e., JMPL) for now to expose
666 // the potential need for registers. If an absolute address
667 // is available, replace this with a CALL instruction.
668 // Mark both the indirection register and the return-address
669 { // register as hidden virtual registers.
670
Vikram S. Adve4f231662001-07-28 04:15:15 +0000671 Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1,
Vikram S. Advea21cf202001-07-21 12:42:19 +0000672 ((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000673 Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1,
674 subtreeRoot->getValue(), NULL);
675 subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(jmpAddrReg);
676 subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(retAddrReg);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000677
678 mvec[0] = new MachineInstr(JMPL);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000679 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, jmpAddrReg);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000680 mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
681 (int64_t) 0);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000682 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, retAddrReg);
683
684 // NOTE: jmpAddrReg will be loaded by a different instruction generated
685 // by the final code generator, so we just mark the CALL instruction
686 // as computing that value.
687 // The retAddrReg is actually computed by the CALL instruction.
688 //
689 jmpAddrReg->addMachineInstruction(mvec[0]);
690 retAddrReg->addMachineInstruction(mvec[0]);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000691
692 mvec[numInstr++] = new MachineInstr(NOP); // delay slot
693 break;
694 }
695
696 case 62: // reg: Shl(reg, reg)
697 opType = subtreeRoot->leftChild()->getValue()->getType();
698 assert(opType->isIntegral() || opType == Type::BoolTy);
699 mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
Vikram S. Adve4f231662001-07-28 04:15:15 +0000700 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000701 break;
702
703 case 63: // reg: Shr(reg, reg)
704 opType = subtreeRoot->leftChild()->getValue()->getType();
705 assert(opType->isIntegral() || opType == Type::BoolTy);
706 mvec[0] = new MachineInstr((opType->isSigned()
707 ? ((opType == Type::LongTy)? SRAX : SRA)
708 : ((opType == Type::LongTy)? SRLX : SRL)));
Vikram S. Adve4f231662001-07-28 04:15:15 +0000709 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000710 break;
711
712 case 71: // reg: VReg
713 case 72: // reg: Constant
Vikram S. Adve4f231662001-07-28 04:15:15 +0000714 numInstr = 0; // don't forward the value
Vikram S. Advea21cf202001-07-21 12:42:19 +0000715 break;
716
717 case 111: // stmt: reg
718 case 112: // stmt: boolconst
719 case 113: // stmt: bool
720 case 121:
721 case 122:
722 case 123:
723 case 124:
724 case 125:
725 case 126:
726 case 127:
727 case 128:
728 case 129:
729 case 130:
730 case 131:
731 case 132:
732 case 153:
733 //
734 // These are all chain rules, which have a single nonterminal on the RHS.
735 // Get the rule that matches the RHS non-terminal and use that instead.
736 //
737 assert(ThisIsAChainRule(ruleForNode));
738 assert(nts[0] && ! nts[1]
739 && "A chain rule should have only one RHS non-terminal!");
740 nextRule = burm_rule(subtreeRoot->getBasicNode()->state, nts[0]);
741 nts = burm_nts[nextRule];
Vikram S. Adve4f231662001-07-28 04:15:15 +0000742 numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000743 break;
744
745 default:
Vikram S. Adve4f231662001-07-28 04:15:15 +0000746 assert(0 && "Unrecognized BURG rule");
Vikram S. Advea21cf202001-07-21 12:42:19 +0000747 numInstr = 0;
748 break;
749 }
750
Vikram S. Adve4f231662001-07-28 04:15:15 +0000751 if (forwardOperandNum >= 0)
752 { // We did not generate a machine instruction but need to use operand.
753 // If user is in the same tree, replace Value in its machine operand.
754 // If not, insert a copy instruction which should get coalesced away
755 // by register allocation.
756 if (subtreeRoot->parent() != NULL)
757 ForwardOperand(subtreeRoot, (InstructionNode*) subtreeRoot->parent(),
758 forwardOperandNum);
759 else
760 {
761 int n = numInstr++;
762 mvec[n] = new MachineInstr(ADD);
763 mvec[n]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
764 subtreeRoot->getInstruction()->getOperand(forwardOperandNum));
765 mvec[n]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
766 mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
767 subtreeRoot->getInstruction());
768 }
769 }
770
771 if (! ThisIsAChainRule(ruleForNode))
772 numInstr = FixConstantOperands(subtreeRoot, mvec, numInstr, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000773
774 return numInstr;
775}
776
777
778//---------------------------------------------------------------------------
779// Private helper routines for SPARC instruction selection.
780//---------------------------------------------------------------------------
781
782
783static MachineOpCode
784ChooseBprInstruction(const InstructionNode* instrNode)
785{
786 MachineOpCode opCode;
787
788 Instruction* setCCInstr =
789 ((InstructionNode*) instrNode->leftChild())->getInstruction();
790
791 switch(setCCInstr->getOpcode())
792 {
793 case Instruction::SetEQ: opCode = BRZ; break;
794 case Instruction::SetNE: opCode = BRNZ; break;
795 case Instruction::SetLE: opCode = BRLEZ; break;
796 case Instruction::SetGE: opCode = BRGEZ; break;
797 case Instruction::SetLT: opCode = BRLZ; break;
798 case Instruction::SetGT: opCode = BRGZ; break;
799 default:
800 assert(0 && "Unrecognized VM instruction!");
801 opCode = INVALID_OPCODE;
802 break;
803 }
804
805 return opCode;
806}
807
808
809static MachineOpCode
810ChooseBccInstruction(const InstructionNode* instrNode,
811 bool& isFPBranch)
812{
813 InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
814 BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
815 const Type* setCCType = setCCInstr->getOperand(0)->getType();
816
817 isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy);
818
819 if (isFPBranch)
Vikram S. Adve4f231662001-07-28 04:15:15 +0000820 return ChooseBFpccInstruction(instrNode, setCCInstr);
Vikram S. Advea21cf202001-07-21 12:42:19 +0000821 else
822 return ChooseBpccInstruction(instrNode, setCCInstr);
823}
824
825
826static MachineOpCode
827ChooseBpccInstruction(const InstructionNode* instrNode,
828 const BinaryOperator* setCCInstr)
829{
830 MachineOpCode opCode = INVALID_OPCODE;
831
832 bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
833
834 if (isSigned)
835 {
836 switch(setCCInstr->getOpcode())
837 {
838 case Instruction::SetEQ: opCode = BE; break;
839 case Instruction::SetNE: opCode = BNE; break;
840 case Instruction::SetLE: opCode = BLE; break;
841 case Instruction::SetGE: opCode = BGE; break;
842 case Instruction::SetLT: opCode = BL; break;
843 case Instruction::SetGT: opCode = BG; break;
844 default:
845 assert(0 && "Unrecognized VM instruction!");
846 break;
847 }
848 }
849 else
850 {
851 switch(setCCInstr->getOpcode())
852 {
853 case Instruction::SetEQ: opCode = BE; break;
854 case Instruction::SetNE: opCode = BNE; break;
855 case Instruction::SetLE: opCode = BLEU; break;
856 case Instruction::SetGE: opCode = BCC; break;
857 case Instruction::SetLT: opCode = BCS; break;
858 case Instruction::SetGT: opCode = BGU; break;
859 default:
860 assert(0 && "Unrecognized VM instruction!");
861 break;
862 }
863 }
864
865 return opCode;
866}
867
868static MachineOpCode
Vikram S. Adve4f231662001-07-28 04:15:15 +0000869ChooseBFpccInstruction(const InstructionNode* instrNode,
Vikram S. Advea21cf202001-07-21 12:42:19 +0000870 const BinaryOperator* setCCInstr)
871{
872 MachineOpCode opCode = INVALID_OPCODE;
873
874 switch(setCCInstr->getOpcode())
875 {
876 case Instruction::SetEQ: opCode = FBE; break;
877 case Instruction::SetNE: opCode = FBNE; break;
878 case Instruction::SetLE: opCode = FBLE; break;
879 case Instruction::SetGE: opCode = FBGE; break;
880 case Instruction::SetLT: opCode = FBL; break;
881 case Instruction::SetGT: opCode = FBG; break;
882 default:
883 assert(0 && "Unrecognized VM instruction!");
884 break;
885 }
886
887 return opCode;
888}
889
Vikram S. Adve4f231662001-07-28 04:15:15 +0000890
Vikram S. Advea21cf202001-07-21 12:42:19 +0000891static MachineOpCode
Vikram S. Adve4f231662001-07-28 04:15:15 +0000892ChooseMovFpccInstruction(const InstructionNode* instrNode)
893{
894 MachineOpCode opCode = INVALID_OPCODE;
895
896 switch(instrNode->getInstruction()->getOpcode())
897 {
898 case Instruction::SetEQ: opCode = MOVFE; break;
899 case Instruction::SetNE: opCode = MOVFNE; break;
900 case Instruction::SetLE: opCode = MOVFLE; break;
901 case Instruction::SetGE: opCode = MOVFGE; break;
902 case Instruction::SetLT: opCode = MOVFL; break;
903 case Instruction::SetGT: opCode = MOVFG; break;
904 default:
905 assert(0 && "Unrecognized VM instruction!");
906 break;
907 }
908
909 return opCode;
910}
911
912
913// Assumes that SUBcc v1, v2 -> v3 has been executed.
914// In most cases, we want to clear v3 and then follow it by instruction
915// MOVcc 1 -> v3.
916// Set mustClearReg=false if v3 need not be cleared before conditional move.
917// Set valueToMove=0 if we want to conditionally move 0 instead of 1
918// (i.e., we want to test inverse of a condition)
919//
920//
921static MachineOpCode
922ChooseMovpccAfterSub(const InstructionNode* instrNode,
923 bool& mustClearReg,
924 int& valueToMove)
925{
926 MachineOpCode opCode = INVALID_OPCODE;
927 mustClearReg = true;
928 valueToMove = 1;
929
930 switch(instrNode->getInstruction()->getOpcode())
931 {
932 case Instruction::SetEQ: opCode = MOVNE; mustClearReg = false;
933 valueToMove = 0; break;
934 case Instruction::SetLE: opCode = MOVLE; break;
935 case Instruction::SetGE: opCode = MOVGE; break;
936 case Instruction::SetLT: opCode = MOVL; break;
937 case Instruction::SetGT: opCode = MOVG; break;
938
939 case Instruction::SetNE: assert(0 && "No move required!");
940
941 default:
942 assert(0 && "Unrecognized VM instruction!");
943 break;
944 }
945
946 return opCode;
947}
948
949
950static MachineOpCode
Vikram S. Advea21cf202001-07-21 12:42:19 +0000951ChooseConvertToFloatInstr(const InstructionNode* instrNode,
952 const Type* opType)
953{
954 MachineOpCode opCode = INVALID_OPCODE;
955
956 switch(instrNode->getOpLabel())
957 {
958 case ToFloatTy:
959 if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
960 opCode = FITOS;
961 else if (opType == Type::LongTy)
962 opCode = FXTOS;
963 else if (opType == Type::DoubleTy)
964 opCode = FDTOS;
965 else
966 assert(0 && "Cannot convert this type to FLOAT on SPARC");
967 break;
968
969 case ToDoubleTy:
970 if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
971 opCode = FITOD;
972 else if (opType == Type::LongTy)
973 opCode = FXTOD;
974 else if (opType == Type::FloatTy)
975 opCode = FSTOD;
976 else
977 assert(0 && "Cannot convert this type to DOUBLE on SPARC");
978 break;
979
980 default:
981 break;
982 }
983
984 return opCode;
985}
986
987static MachineOpCode
988ChooseConvertToIntInstr(const InstructionNode* instrNode,
989 const Type* opType)
990{
991 MachineOpCode opCode = INVALID_OPCODE;;
992
993 int instrType = (int) instrNode->getOpLabel();
994
995 if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
996 {
997 switch (opType->getPrimitiveID())
998 {
999 case Type::FloatTyID: opCode = FSTOI; break;
1000 case Type::DoubleTyID: opCode = FDTOI; break;
1001 default:
1002 assert(0 && "Non-numeric non-bool type cannot be converted to Int");
1003 break;
1004 }
1005 }
1006 else if (instrType == ToLongTy)
1007 {
1008 switch (opType->getPrimitiveID())
1009 {
1010 case Type::FloatTyID: opCode = FSTOX; break;
1011 case Type::DoubleTyID: opCode = FDTOX; break;
1012 default:
1013 assert(0 && "Non-numeric non-bool type cannot be converted to Long");
1014 break;
1015 }
1016 }
1017 else
1018 assert(0 && "Should not get here, Mo!");
1019
1020 return opCode;
1021}
1022
1023
1024static MachineOpCode
1025ChooseAddInstruction(const InstructionNode* instrNode)
1026{
1027 MachineOpCode opCode = INVALID_OPCODE;
1028
1029 const Type* resultType = instrNode->getInstruction()->getType();
1030
1031 if (resultType->isIntegral() ||
1032 resultType->isPointerType() ||
1033 resultType->isMethodType() ||
1034 resultType->isLabelType())
1035 {
1036 opCode = ADD;
1037 }
1038 else
1039 {
1040 Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
1041 switch(operand->getType()->getPrimitiveID())
1042 {
1043 case Type::FloatTyID: opCode = FADDS; break;
1044 case Type::DoubleTyID: opCode = FADDD; break;
1045 default: assert(0 && "Invalid type for ADD instruction"); break;
1046 }
1047 }
1048
1049 return opCode;
1050}
1051
1052static MachineOpCode
1053ChooseSubInstruction(const InstructionNode* instrNode)
1054{
1055 MachineOpCode opCode = INVALID_OPCODE;
1056
1057 const Type* resultType = instrNode->getInstruction()->getType();
1058
1059 if (resultType->isIntegral() ||
1060 resultType->isPointerType())
1061 {
1062 opCode = SUB;
1063 }
1064 else
1065 {
1066 Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
1067 switch(operand->getType()->getPrimitiveID())
1068 {
1069 case Type::FloatTyID: opCode = FSUBS; break;
1070 case Type::DoubleTyID: opCode = FSUBD; break;
1071 default: assert(0 && "Invalid type for SUB instruction"); break;
1072 }
1073 }
1074
1075 return opCode;
1076}
1077
1078
1079static MachineOpCode
1080ChooseFcmpInstruction(const InstructionNode* instrNode)
1081{
1082 MachineOpCode opCode = INVALID_OPCODE;
1083
1084 Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
1085 switch(operand->getType()->getPrimitiveID())
1086 {
1087 case Type::FloatTyID: opCode = FCMPS; break;
1088 case Type::DoubleTyID: opCode = FCMPD; break;
1089 default: assert(0 && "Invalid type for ADD instruction"); break;
1090 }
1091
1092 return opCode;
1093}
1094
1095
1096static MachineOpCode
1097ChooseMulInstruction(const InstructionNode* instrNode,
1098 bool checkCasts)
1099{
1100 MachineOpCode opCode = INVALID_OPCODE;
1101
1102 if (checkCasts)
1103 {
1104 // Assume that leftArg and rightArg are both cast instructions.
1105 //
1106 InstrTreeNode* leftArg = instrNode->leftChild();
1107 InstrTreeNode* rightArg = instrNode->rightChild();
1108 InstrTreeNode* leftArgArg = leftArg->leftChild();
1109 InstrTreeNode* rightArgArg = rightArg->leftChild();
1110 assert(leftArg->getValue()->getType() ==rightArg->getValue()->getType());
1111
1112 // If both arguments are floats cast to double, use FsMULd
1113 if (leftArg->getValue()->getType() == Type::DoubleTy &&
1114 leftArgArg->getValue()->getType() == Type::FloatTy &&
1115 rightArgArg->getValue()->getType() == Type::FloatTy)
1116 {
1117 return opCode = FSMULD;
1118 }
1119 // else fall through and use the regular multiply instructions
1120 }
1121
1122 const Type* resultType = instrNode->getInstruction()->getType();
1123
1124 if (resultType->isIntegral())
1125 {
1126 opCode = MULX;
1127 }
1128 else
1129 {
1130 switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID())
1131 {
1132 case Type::FloatTyID: opCode = FMULS; break;
1133 case Type::DoubleTyID: opCode = FMULD; break;
1134 default: assert(0 && "Invalid type for MUL instruction"); break;
1135 }
1136 }
1137
1138 return opCode;
1139}
1140
1141
1142static MachineOpCode
1143ChooseDivInstruction(const InstructionNode* instrNode)
1144{
1145 MachineOpCode opCode = INVALID_OPCODE;
1146
1147 const Type* resultType = instrNode->getInstruction()->getType();
1148
1149 if (resultType->isIntegral())
1150 {
1151 opCode = resultType->isSigned()? SDIVX : UDIVX;
1152 }
1153 else
1154 {
1155 Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
1156 switch(operand->getType()->getPrimitiveID())
1157 {
1158 case Type::FloatTyID: opCode = FDIVS; break;
1159 case Type::DoubleTyID: opCode = FDIVD; break;
1160 default: assert(0 && "Invalid type for DIV instruction"); break;
1161 }
1162 }
1163
1164 return opCode;
1165}
1166
1167
1168static MachineOpCode
1169ChooseLoadInstruction(const Type* resultType)
1170{
1171 MachineOpCode opCode = INVALID_OPCODE;
1172
1173 switch (resultType->getPrimitiveID())
1174 {
1175 case Type::BoolTyID: opCode = LDUB; break;
1176 case Type::UByteTyID: opCode = LDUB; break;
1177 case Type::SByteTyID: opCode = LDSB; break;
1178 case Type::UShortTyID: opCode = LDUH; break;
1179 case Type::ShortTyID: opCode = LDSH; break;
1180 case Type::UIntTyID: opCode = LDUW; break;
1181 case Type::IntTyID: opCode = LDSW; break;
1182 case Type::ULongTyID:
1183 case Type::LongTyID: opCode = LDX; break;
1184 case Type::FloatTyID: opCode = LD; break;
1185 case Type::DoubleTyID: opCode = LDD; break;
1186 default: assert(0 && "Invalid type for Load instruction"); break;
1187 }
1188
1189 return opCode;
1190}
1191
1192
1193static MachineOpCode
1194ChooseStoreInstruction(const Type* valueType)
1195{
1196 MachineOpCode opCode = INVALID_OPCODE;
1197
1198 switch (valueType->getPrimitiveID())
1199 {
1200 case Type::BoolTyID:
1201 case Type::UByteTyID:
1202 case Type::SByteTyID: opCode = STB; break;
1203 case Type::UShortTyID:
1204 case Type::ShortTyID: opCode = STH; break;
1205 case Type::UIntTyID:
1206 case Type::IntTyID: opCode = STW; break;
1207 case Type::ULongTyID:
1208 case Type::LongTyID: opCode = STX; break;
1209 case Type::FloatTyID: opCode = ST; break;
1210 case Type::DoubleTyID: opCode = STD; break;
1211 default: assert(0 && "Invalid type for Store instruction"); break;
1212 }
1213
1214 return opCode;
1215}
1216
1217
1218//------------------------------------------------------------------------
1219// Function SetOperandsForMemInstr
1220//
1221// Choose addressing mode for the given load or store instruction.
1222// Use [reg+reg] if it is an indexed reference, and the index offset is
1223// not a constant or if it cannot fit in the offset field.
1224// Use [reg+offset] in all other cases.
1225//
1226// This assumes that all array refs are "lowered" to one of these forms:
1227// %x = load (subarray*) ptr, constant ; single constant offset
1228// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
1229// Generally, this should happen via strength reduction + LICM.
1230// Also, strength reduction should take care of using the same register for
1231// the loop index variable and an array index, when that is profitable.
1232//------------------------------------------------------------------------
1233
1234static void
1235SetOperandsForMemInstr(MachineInstr* minstr,
1236 const InstructionNode* vmInstrNode,
Vikram S. Adve4f231662001-07-28 04:15:15 +00001237 const TargetMachine& target)
Vikram S. Advea21cf202001-07-21 12:42:19 +00001238{
1239 MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
1240
1241 // Variables to hold the index vector, ptr value, and offset value.
1242 // The major work here is to extract these for all 3 instruction types
1243 // and then call the common function SetMemOperands_Internal().
1244 //
1245 const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec();
1246 vector<ConstPoolVal*>* newIdxVec = NULL;
1247 Value* ptrVal;
1248 Value* arrayOffsetVal = NULL;
1249
1250 // Test if a GetElemPtr instruction is being folded into this mem instrn.
1251 // If so, it will be in the left child for Load and GetElemPtr,
1252 // and in the right child for Store instructions.
1253 //
1254 InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
1255 ? vmInstrNode->rightChild()
1256 : vmInstrNode->leftChild());
1257
1258 if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
1259 ptrChild->getOpLabel() == GetElemPtrIdx)
1260 {
1261 // There is a GetElemPtr instruction and there may be a chain of
1262 // more than one. Use the pointer value of the last one in the chain.
1263 // Fold the index vectors from the entire chain and from the mem
1264 // instruction into one single index vector.
1265 // Finally, we never fold for an array instruction so make that NULL.
1266
1267 newIdxVec = new vector<ConstPoolVal*>;
1268 ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
1269
1270 newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
1271 idxVec = newIdxVec;
1272
1273 assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
1274 && "GetElemPtr cannot be folded into array refs in selection");
1275 }
1276 else
1277 {
1278 // There is no GetElemPtr instruction.
1279 // Use the pointer value and the index vector from the Mem instruction.
1280 // If it is an array reference, get the array offset value.
1281 //
1282 ptrVal = memInst->getPtrOperand();
1283
1284 const Type* opType =
1285 ((const PointerType*) ptrVal->getType())->getValueType();
1286 if (opType->isArrayType())
1287 {
1288 assert((memInst->getNumOperands()
1289 == (unsigned) 1 + memInst->getFirstOffsetIdx())
1290 && "Array refs must be lowered before Instruction Selection");
1291
1292 arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
1293 }
1294 }
1295
1296 SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
Vikram S. Adve4f231662001-07-28 04:15:15 +00001297 *idxVec, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +00001298
1299 if (newIdxVec != NULL)
1300 delete newIdxVec;
1301}
1302
1303
1304static void
1305SetMemOperands_Internal(MachineInstr* minstr,
1306 const InstructionNode* vmInstrNode,
1307 Value* ptrVal,
1308 Value* arrayOffsetVal,
1309 const vector<ConstPoolVal*>& idxVec,
Vikram S. Adve4f231662001-07-28 04:15:15 +00001310 const TargetMachine& target)
Vikram S. Advea21cf202001-07-21 12:42:19 +00001311{
1312 MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
1313
1314 // Initialize so we default to storing the offset in a register.
1315 int64_t smallConstOffset;
1316 Value* valueForRegOffset = NULL;
Vikram S. Adve4f231662001-07-28 04:15:15 +00001317 MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister;
Vikram S. Advea21cf202001-07-21 12:42:19 +00001318
1319 // Check if there is an index vector and if so, if it translates to
1320 // a small enough constant to fit in the immediate-offset field.
1321 //
1322 if (idxVec.size() > 0)
1323 {
1324 bool isConstantOffset = false;
1325 unsigned offset;
1326
1327 const PointerType* ptrType = (PointerType*) ptrVal->getType();
1328
1329 if (ptrType->getValueType()->isStructType())
1330 {
1331 // the offset is always constant for structs
1332 isConstantOffset = true;
1333
1334 // Compute the offset value using the index vector
1335 offset = MemAccessInst::getIndexedOfsetForTarget(ptrType,
Vikram S. Adve4f231662001-07-28 04:15:15 +00001336 idxVec, target);
Vikram S. Advea21cf202001-07-21 12:42:19 +00001337 }
1338 else
1339 {
1340 // It must be an array ref. Check if the offset is a constant,
1341 // and that the indexing has been lowered to a single offset.
1342 //
1343 assert(ptrType->getValueType()->isArrayType());
1344 assert(arrayOffsetVal != NULL
1345 && "Expect to be given Value* for array offsets");
1346
1347 if (arrayOffsetVal->getValueType() == Value::ConstantVal)
1348 {
1349 isConstantOffset = true; // always constant for structs
1350 assert(arrayOffsetVal->getType()->isIntegral());
1351 offset = (arrayOffsetVal->getType()->isSigned())
1352 ? ((ConstPoolSInt*) arrayOffsetVal)->getValue()
1353 : (int64_t) ((ConstPoolUInt*) arrayOffsetVal)->getValue();
1354 }
1355 else
1356 {
1357 valueForRegOffset = arrayOffsetVal;
1358 }
1359 }
1360
1361 if (isConstantOffset)
1362 {
1363 // create a virtual register for the constant
1364 valueForRegOffset = new ConstPoolSInt(Type::IntTy, offset);
1365 }
1366 }
1367 else
1368 {
1369 offsetOpType = MachineOperand::MO_SignExtendedImmed;
1370 smallConstOffset = 0;
1371 }
1372
1373 // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
1374 // It is the left child in the instruction tree in all cases.
1375 Value* leftVal = vmInstrNode->leftChild()->getValue();
Vikram S. Adve4f231662001-07-28 04:15:15 +00001376 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal);
Vikram S. Advea21cf202001-07-21 12:42:19 +00001377
1378 // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
1379 // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
1380 //
1381 unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
Vikram S. Adve4f231662001-07-28 04:15:15 +00001382 if (offsetOpType == MachineOperand::MO_VirtualRegister)
Vikram S. Advea21cf202001-07-21 12:42:19 +00001383 {
1384 assert(valueForRegOffset != NULL);
1385 minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset);
1386 }
1387 else
1388 minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
1389
1390 if (memInst->getOpcode() == Instruction::Store)
Vikram S. Adve4f231662001-07-28 04:15:15 +00001391 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal);
Vikram S. Advea21cf202001-07-21 12:42:19 +00001392 else
Vikram S. Adve4f231662001-07-28 04:15:15 +00001393 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Advea21cf202001-07-21 12:42:19 +00001394 vmInstrNode->getValue());
1395}
1396
1397
Vikram S. Adve4f231662001-07-28 04:15:15 +00001398// Special handling for constant operands:
1399// -- if the constant is 0, use the hardwired 0 register, if any
1400// -- if the constant fits in the IMMEDIATE field, use that field
1401// -- else insert instructions to put the constant into a register, either
1402// directly or by loading explicitly from the constant pool.
1403//
Vikram S. Advea21cf202001-07-21 12:42:19 +00001404static unsigned
1405FixConstantOperands(const InstructionNode* vmInstrNode,
1406 MachineInstr** mvec,
1407 unsigned numInstr,
Vikram S. Adve4f231662001-07-28 04:15:15 +00001408 TargetMachine& target)
Vikram S. Advea21cf202001-07-21 12:42:19 +00001409{
1410 static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR];
1411
1412 unsigned numNew = 0;
1413 Instruction* vmInstr = vmInstrNode->getInstruction();
1414
1415 for (unsigned i=0; i < numInstr; i++)
1416 {
1417 MachineInstr* minstr = mvec[i];
Vikram S. Adve4f231662001-07-28 04:15:15 +00001418 const MachineInstrDescriptor& instrDesc =
1419 target.getInstrInfo().getDescriptor(minstr->getOpCode());
Vikram S. Advea21cf202001-07-21 12:42:19 +00001420
Vikram S. Adve4f231662001-07-28 04:15:15 +00001421 for (unsigned op=0; op < instrDesc.numOperands; op++)
Vikram S. Advea21cf202001-07-21 12:42:19 +00001422 {
1423 const MachineOperand& mop = minstr->getOperand(op);
Vikram S. Advea21cf202001-07-21 12:42:19 +00001424
Vikram S. Adve4f231662001-07-28 04:15:15 +00001425 // skip the result position (for efficiency below) and any other
1426 // positions already marked as not a virtual register
1427 if (instrDesc.resultPos == (int) op ||
1428 mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
1429 mop.getVRegValue() == NULL)
Vikram S. Advea21cf202001-07-21 12:42:19 +00001430 {
1431 break;
1432 }
1433
Vikram S. Adve4f231662001-07-28 04:15:15 +00001434 Value* opValue = mop.getVRegValue();
1435
Vikram S. Advea21cf202001-07-21 12:42:19 +00001436 if (opValue->getValueType() == Value::ConstantVal)
1437 {
Vikram S. Advea21cf202001-07-21 12:42:19 +00001438 unsigned int machineRegNum;
1439 int64_t immedValue;
1440 MachineOperand::MachineOperandType opType =
Vikram S. Adve4f231662001-07-28 04:15:15 +00001441 ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
Vikram S. Advea21cf202001-07-21 12:42:19 +00001442 /*canUseImmed*/ (op == 1),
Vikram S. Adve4f231662001-07-28 04:15:15 +00001443 machineRegNum, immedValue);
Vikram S. Advea21cf202001-07-21 12:42:19 +00001444
Vikram S. Adve4f231662001-07-28 04:15:15 +00001445 if (opType == MachineOperand::MO_MachineRegister)
1446 minstr->SetMachineOperand(op, machineRegNum);
1447 else if (opType == MachineOperand::MO_VirtualRegister)
Vikram S. Advea21cf202001-07-21 12:42:19 +00001448 {
Vikram S. Adve4f231662001-07-28 04:15:15 +00001449 // value is constant and must be loaded into a register
1450 TmpInstruction* tmpReg;
1451 loadConstVec[numNew++] =
1452 MakeOneLoadConstInstr(vmInstr, opValue, tmpReg);
1453 minstr->SetMachineOperand(op, opType, tmpReg);
Vikram S. Advea21cf202001-07-21 12:42:19 +00001454 }
1455 else
1456 minstr->SetMachineOperand(op, opType, immedValue);
1457 }
Vikram S. Advea21cf202001-07-21 12:42:19 +00001458 }
1459 }
1460
1461 if (numNew > 0)
1462 {
1463 // Insert the new instructions *before* the old ones by moving
1464 // the old ones over `numNew' positions (last-to-first, of course!).
1465 //
1466 for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--)
1467 mvec[i+numNew] = mvec[i];
1468
1469 for (unsigned i=0; i < numNew; i++)
1470 mvec[i] = loadConstVec[i];
1471 }
1472
1473 return (numInstr + numNew);
1474}
1475
1476
Vikram S. Adve4f231662001-07-28 04:15:15 +00001477#if 0
Vikram S. Advea21cf202001-07-21 12:42:19 +00001478// Create one or two load instructions to load constants from the
1479// constant pool. The first instructions is stored in instrA;
1480// the second (if any) in instrB.
1481//
1482static unsigned
1483InsertLoadConstInstructions(unsigned loadConstFlags,
1484 const InstructionNode* vmInstrNode,
1485 MachineInstr** mvec,
1486 unsigned numInstr)
1487{
1488 MachineInstr *instrA = NULL, *instrB = NULL;
1489
1490 unsigned numNew = 0;
1491
1492 if (loadConstFlags & 0x01)
1493 {
1494 instrA = MakeOneLoadConstInstr(vmInstrNode->getInstruction(),
1495 vmInstrNode->leftChild()->getValue());
1496 numNew++;
1497 }
1498
1499 if (loadConstFlags & 0x02)
1500 {
1501 instrB = MakeOneLoadConstInstr(vmInstrNode->getInstruction(),
1502 vmInstrNode->rightChild()->getValue());
1503 numNew++;
1504 }
1505
1506 // Now insert the new instructions *before* the old ones by
1507 // moving the old ones over `numNew' positions (last-to-first, of course!).
1508 //
1509 for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--)
1510 mvec[i+numNew] = mvec[i];
1511
1512 unsigned whichNew = 0;
1513 if (instrA != NULL)
1514 mvec[whichNew++] = instrA;
1515 if (instrB != NULL)
1516 mvec[whichNew++] = instrB;
1517 assert(whichNew == numNew);
1518
1519 return numInstr + numNew;
1520}
Vikram S. Adve4f231662001-07-28 04:15:15 +00001521#endif
Vikram S. Advea21cf202001-07-21 12:42:19 +00001522
1523
1524static MachineInstr*
1525MakeOneLoadConstInstr(Instruction* vmInstr,
Vikram S. Adve4f231662001-07-28 04:15:15 +00001526 Value* val,
1527 TmpInstruction*& tmpReg)
Vikram S. Advea21cf202001-07-21 12:42:19 +00001528{
1529 assert(val->getValueType() == Value::ConstantVal);
1530
1531 MachineInstr* minstr;
1532
Vikram S. Adve4f231662001-07-28 04:15:15 +00001533 // Create a TmpInstruction to mark the hidden register used for the constant
1534 tmpReg = new TmpInstruction(Instruction::UserOp1, val, NULL);
1535 vmInstr->getMachineInstrVec().addTempValue(tmpReg);
1536
Vikram S. Advea21cf202001-07-21 12:42:19 +00001537 // Use a "set" instruction for known constants that can go in an integer reg.
1538 // Use a "load" instruction for all other constants, in particular,
1539 // floating point constants.
1540 //
1541 const Type* valType = val->getType();
1542 if (valType->isIntegral() ||
1543 valType->isPointerType() ||
1544 valType == Type::BoolTy)
1545 {
1546 bool isValidConstant;
1547 if (val->getType()->isSigned())
1548 {
1549 minstr = new MachineInstr(SETSW);
1550 minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed,
1551 GetSignedIntConstantValue(val, isValidConstant));
1552 }
1553 else
1554 {
1555 minstr = new MachineInstr(SETUW);
1556 minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed,
1557 GetUnsignedIntConstantValue(val, isValidConstant));
1558 }
Vikram S. Adve4f231662001-07-28 04:15:15 +00001559 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, tmpReg);
Vikram S. Advea21cf202001-07-21 12:42:19 +00001560 assert(isValidConstant && "Unrecognized constant");
1561 }
1562 else
1563 {
1564 assert(valType == Type::FloatTy ||
1565 valType == Type::DoubleTy);
1566
1567 int64_t zeroOffset = 0; // to avoid overloading ambiguity with (Value*) 0
1568
1569 // Make a Load instruction, and make `val' both the ptr value *and*
1570 // the result value, and set the offset field to 0. Final code
1571 // generation will have to generate the base+offset for the constant.
1572 //
1573 minstr = new MachineInstr(ChooseLoadInstruction(val->getType()));
Vikram S. Adve4f231662001-07-28 04:15:15 +00001574 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, val);
Vikram S. Advea21cf202001-07-21 12:42:19 +00001575 minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
1576 zeroOffset);
Vikram S. Adve4f231662001-07-28 04:15:15 +00001577 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, tmpReg);
Vikram S. Advea21cf202001-07-21 12:42:19 +00001578 }
1579
Vikram S. Adve4f231662001-07-28 04:15:15 +00001580 tmpReg->addMachineInstruction(minstr);
Vikram S. Advea21cf202001-07-21 12:42:19 +00001581
1582 return minstr;
1583}
1584
Vikram S. Adve4f231662001-07-28 04:15:15 +00001585//
1586// Substitute operand `operandNum' of the instruction in node `treeNode'
1587// in place the use(s) of that instruction in node `parent'.
1588//
1589static void
1590ForwardOperand(InstructionNode* treeNode,
1591 InstructionNode* parent,
1592 int operandNum)
1593{
1594 Instruction* unusedOp = treeNode->getInstruction();
1595 Value* fwdOp = unusedOp->getOperand(operandNum);
1596 Instruction* userInstr = parent->getInstruction();
1597 MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec();
1598 for (unsigned i=0, N=mvec.size(); i < N; i++)
1599 {
1600 MachineInstr* minstr = mvec[i];
1601 for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; i++)
1602 {
1603 const MachineOperand& mop = minstr->getOperand(i);
1604 if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
1605 mop.getVRegValue() == unusedOp)
1606 {
1607 minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister,
1608 fwdOp);
1609 }
1610 }
1611 }
1612}
1613
Vikram S. Advea21cf202001-07-21 12:42:19 +00001614
1615// This function is currently unused and incomplete but will be
1616// used if we have a linear layout of basic blocks in LLVM code.
1617// It decides which branch should fall-through, and whether an
1618// extra unconditional branch is needed (when neither falls through).
1619//
1620void
1621ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
1622{
1623 BranchInst* brInstr = (BranchInst*) vmInstr;
1624
1625 brPattern.flipCondition = false;
1626 brPattern.targetBB = brInstr->getSuccessor(0);
1627 brPattern.extraBranch = NULL;
1628
1629 assert(brInstr->getNumSuccessors() > 1 &&
1630 "Unnecessary analysis for unconditional branch");
1631
1632 assert(0 && "Fold branches in peephole optimization");
1633}
1634