Vikram S. Adve | a21cf20 | 2001-07-21 12:42:19 +0000 | [diff] [blame] | 1 | // $Id$ |
| 2 | //*************************************************************************** |
| 3 | // File: |
| 4 | // SparcInstrSelection.cpp |
| 5 | // |
| 6 | // Purpose: |
| 7 | // |
| 8 | // History: |
| 9 | // 7/02/01 - Vikram Adve - Created |
| 10 | //*************************************************************************** |
| 11 | |
| 12 | |
| 13 | //************************** System Include Files **************************/ |
| 14 | |
| 15 | #include <assert.h> |
| 16 | |
| 17 | //*************************** User Include Files ***************************/ |
| 18 | |
| 19 | #include "llvm/Type.h" |
| 20 | #include "llvm/DerivedTypes.h" |
| 21 | #include "llvm/SymbolTable.h" |
| 22 | #include "llvm/Value.h" |
| 23 | #include "llvm/Instruction.h" |
| 24 | #include "llvm/InstrTypes.h" |
| 25 | #include "llvm/iTerminators.h" |
| 26 | #include "llvm/iMemory.h" |
| 27 | #include "llvm/iOther.h" |
| 28 | #include "llvm/BasicBlock.h" |
| 29 | #include "llvm/Method.h" |
| 30 | #include "llvm/ConstPoolVals.h" |
| 31 | #include "llvm/LLC/CompileContext.h" |
Chris Lattner | 7e583cf | 2001-07-21 20:58:30 +0000 | [diff] [blame^] | 32 | #include "llvm/CodeGen/Sparc.h" |
| 33 | #include "llvm/CodeGen/MachineInstr.h" |
| 34 | #include "llvm/CodeGen/InstrForest.h" |
| 35 | #include "llvm/CodeGen/InstrSelection.h" |
Vikram S. Adve | a21cf20 | 2001-07-21 12:42:19 +0000 | [diff] [blame] | 36 | |
| 37 | |
| 38 | //******************** Internal Data Declarations ************************/ |
| 39 | |
| 40 | // to be used later |
| 41 | struct BranchPattern { |
| 42 | bool flipCondition; // should the sense of the test be reversed |
| 43 | BasicBlock* targetBB; // which basic block to branch to |
| 44 | MachineInstr* extraBranch; // if neither branch is fall-through, then this |
| 45 | // BA must be inserted after the cond'l one |
| 46 | }; |
| 47 | |
| 48 | //************************* Forward Declarations ***************************/ |
| 49 | |
| 50 | |
| 51 | static MachineOpCode ChooseBprInstruction (const InstructionNode* instrNode); |
| 52 | |
| 53 | static MachineOpCode ChooseBccInstruction (const InstructionNode* instrNode, |
| 54 | bool& isFPBranch); |
| 55 | |
| 56 | static MachineOpCode ChooseBpccInstruction (const InstructionNode* instrNode, |
| 57 | const BinaryOperator* setCCInstr); |
| 58 | |
| 59 | static MachineOpCode ChooseBfpccInstruction (const InstructionNode* instrNode, |
| 60 | const BinaryOperator* setCCInstr); |
| 61 | |
| 62 | static MachineOpCode ChooseConvertToFloatInstr(const InstructionNode* instrNode, |
| 63 | const Type* opType); |
| 64 | |
| 65 | static MachineOpCode ChooseConvertToIntInstr (const InstructionNode* instrNode, |
| 66 | const Type* opType); |
| 67 | |
| 68 | static MachineOpCode ChooseAddInstruction (const InstructionNode* instrNode); |
| 69 | |
| 70 | static MachineOpCode ChooseSubInstruction (const InstructionNode* instrNode); |
| 71 | |
| 72 | static MachineOpCode ChooseFcmpInstruction (const InstructionNode* instrNode); |
| 73 | |
| 74 | static MachineOpCode ChooseMulInstruction (const InstructionNode* instrNode, |
| 75 | bool checkCasts); |
| 76 | |
| 77 | static MachineOpCode ChooseDivInstruction (const InstructionNode* instrNode); |
| 78 | |
| 79 | static MachineOpCode ChooseLoadInstruction (const Type* resultType); |
| 80 | |
| 81 | static MachineOpCode ChooseStoreInstruction (const Type* valueType); |
| 82 | |
| 83 | static void SetOperandsForMemInstr (MachineInstr* minstr, |
| 84 | const InstructionNode* vmInstrNode, |
| 85 | const TargetMachine& targetMachine); |
| 86 | |
| 87 | static void SetMemOperands_Internal (MachineInstr* minstr, |
| 88 | const InstructionNode* vmInstrNode, |
| 89 | Value* ptrVal, |
| 90 | Value* arrayOffsetVal, |
| 91 | const vector<ConstPoolVal*>& idxVec, |
| 92 | const TargetMachine& targetMachine); |
| 93 | |
| 94 | static unsigned FixConstantOperands(const InstructionNode* vmInstrNode, |
| 95 | MachineInstr** mvec, |
| 96 | unsigned numInstr, |
| 97 | TargetMachine& targetMachine); |
| 98 | |
| 99 | static unsigned InsertLoadConstInstructions(unsigned loadConstFlags, |
| 100 | const InstructionNode* vmInstrNode, |
| 101 | MachineInstr** mvec, |
| 102 | unsigned numInstr); |
| 103 | |
| 104 | static MachineInstr* MakeOneLoadConstInstr(Instruction* vmInstr, |
| 105 | Value* val); |
| 106 | |
| 107 | |
| 108 | //******************* Externally Visible Functions *************************/ |
| 109 | |
| 110 | |
| 111 | //------------------------------------------------------------------------ |
| 112 | // External Function: ThisIsAChainRule |
| 113 | // |
| 114 | // Purpose: |
| 115 | // Check if a given BURG rule is a chain rule. |
| 116 | //------------------------------------------------------------------------ |
| 117 | |
| 118 | extern bool |
| 119 | ThisIsAChainRule(int eruleno) |
| 120 | { |
| 121 | switch(eruleno) |
| 122 | { |
| 123 | case 111: // stmt: reg |
| 124 | case 112: // stmt: boolconst |
| 125 | case 113: // stmt: bool |
| 126 | case 121: |
| 127 | case 122: |
| 128 | case 123: |
| 129 | case 124: |
| 130 | case 125: |
| 131 | case 126: |
| 132 | case 127: |
| 133 | case 128: |
| 134 | case 129: |
| 135 | case 130: |
| 136 | case 131: |
| 137 | case 132: |
| 138 | case 153: return true; break; |
| 139 | |
| 140 | default: return false; break; |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | //------------------------------------------------------------------------ |
| 145 | // External Function: GetInstructionsByRule |
| 146 | // |
| 147 | // Purpose: |
| 148 | // Choose machine instructions for the SPARC according to the |
| 149 | // patterns chosen by the BURG-generated parser. |
| 150 | //------------------------------------------------------------------------ |
| 151 | |
| 152 | unsigned |
| 153 | GetInstructionsByRule(InstructionNode* subtreeRoot, |
| 154 | int ruleForNode, |
| 155 | short* nts, |
| 156 | CompileContext& ccontext, |
| 157 | MachineInstr** mvec) |
| 158 | { |
| 159 | int numInstr = 1; // initialize for common case |
| 160 | bool checkCast = false; // initialize here to use fall-through |
| 161 | Value *leftVal, *rightVal; |
| 162 | const Type* opType; |
| 163 | int nextRule; |
| 164 | BranchPattern brPattern; |
| 165 | |
| 166 | mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety |
| 167 | |
| 168 | switch(ruleForNode) { |
| 169 | case 1: // stmt: Ret |
| 170 | case 2: // stmt: RetValue(reg) |
| 171 | // NOTE: Prepass of register allocation is responsible |
| 172 | // for moving return value to appropriate register. |
| 173 | // Mark the return-address register as a hidden virtual reg. |
| 174 | { |
| 175 | Instruction* returnReg = new TmpInstruction(Instruction::UserOp1, |
| 176 | subtreeRoot->getInstruction(), NULL); |
| 177 | subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg); |
| 178 | |
| 179 | mvec[0] = new MachineInstr(RETURN); |
| 180 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, returnReg); |
| 181 | mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, |
| 182 | (int64_t) 0); |
| 183 | |
| 184 | mvec[numInstr++] = new MachineInstr(NOP); // delay slot |
| 185 | break; |
| 186 | } |
| 187 | |
| 188 | case 3: // stmt: Store(reg,reg) |
| 189 | case 4: // stmt: Store(reg,ptrreg) |
| 190 | mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType())); |
| 191 | SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 192 | break; |
| 193 | |
| 194 | case 5: // stmt: BrUncond |
| 195 | mvec[0] = new MachineInstr(BA); |
| 196 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, |
| 197 | ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); |
| 198 | |
| 199 | mvec[numInstr++] = new MachineInstr(NOP); // delay slot |
| 200 | break; |
| 201 | |
| 202 | case 6: // stmt: BrCond(boolconst) |
| 203 | // boolconst => boolean was computed with `%b = setCC type reg1 constant' |
| 204 | // If the constant is ZERO, we can use the branch-on-integer-register |
| 205 | // instructions and avoid the SUBcc instruction entirely. |
| 206 | // Otherwise this is just the same as case 5, so just fall through. |
| 207 | { |
| 208 | InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild(); |
| 209 | assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode); |
| 210 | ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue(); |
| 211 | |
| 212 | if (constVal->getType()->isIntegral() |
| 213 | && ((constVal->getType()->isSigned() |
| 214 | && ((ConstPoolSInt*) constVal)->getValue()==0) |
| 215 | || (constVal->getType()->isUnsigned() |
| 216 | && ((ConstPoolUInt*) constVal)->getValue()== 0))) |
| 217 | { |
| 218 | // Whew! Ok, that was zero after all... |
| 219 | // Use the left child of the setCC instruction as the first argument! |
| 220 | mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot)); |
| 221 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, |
| 222 | subtreeRoot->leftChild()->leftChild()->getValue()); |
| 223 | mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, |
| 224 | ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); |
| 225 | |
| 226 | mvec[numInstr++] = new MachineInstr(NOP); // delay slot |
| 227 | |
| 228 | mvec[numInstr++] = new MachineInstr(BA); // false branch |
| 229 | mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); |
| 230 | break; |
| 231 | } |
| 232 | // ELSE FALL THROUGH |
| 233 | } |
| 234 | |
| 235 | case 7: // stmt: BrCond(bool) |
| 236 | // bool => boolean was computed with `%b = setcc type reg1 reg2' |
| 237 | // Need to check whether the type was a FP, signed int or unsigned int, |
| 238 | // nad check the branching condition in order to choose the branch to use. |
| 239 | // Also, for FP branches, an extra operand specifies which FCCn reg to use. |
| 240 | // |
| 241 | { |
| 242 | bool isFPBranch; |
| 243 | mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch)); |
| 244 | |
| 245 | int opNum = 0; |
| 246 | if (isFPBranch) |
| 247 | mvec[0]->SetMachineOperand(opNum++, MachineOperand::MO_CCRegister, |
| 248 | subtreeRoot->leftChild()->getValue()); |
| 249 | |
| 250 | mvec[0]->SetMachineOperand(opNum, MachineOperand::MO_PCRelativeDisp, |
| 251 | ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); |
| 252 | |
| 253 | mvec[numInstr++] = new MachineInstr(NOP); // delay slot |
| 254 | |
| 255 | mvec[numInstr++] = new MachineInstr(BA); // false branch |
| 256 | mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); |
| 257 | break; |
| 258 | } |
| 259 | |
| 260 | case 8: // stmt: BrCond(boolreg) |
| 261 | // bool => boolean is stored in an existing register. |
| 262 | // Just use the branch-on-integer-register instruction! |
| 263 | // |
| 264 | mvec[0] = new MachineInstr(BRNZ); |
| 265 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, |
| 266 | subtreeRoot->leftChild()->getValue()); |
| 267 | mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, |
| 268 | ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); |
| 269 | mvec[numInstr++] = new MachineInstr(NOP); // delay slot |
| 270 | break; |
| 271 | |
| 272 | case 9: // stmt: Switch(reg) |
| 273 | assert(0 && "*** SWITCH instruction is not implemented yet."); |
| 274 | numInstr = 0; |
| 275 | break; |
| 276 | |
| 277 | case 10: // reg: VRegList(reg, reg) |
| 278 | assert(0 && "VRegList should never be the topmost non-chain rule"); |
| 279 | break; |
| 280 | |
| 281 | case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0 |
| 282 | mvec[0] = new MachineInstr(XNOR); |
| 283 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, |
| 284 | subtreeRoot->leftChild()->getValue()); |
| 285 | mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); |
| 286 | mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, |
| 287 | subtreeRoot->getValue()); |
| 288 | break; |
| 289 | |
| 290 | case 22: // reg: ToBoolTy(reg): |
| 291 | opType = subtreeRoot->leftChild()->getValue()->getType(); |
| 292 | assert(opType->isIntegral() || opType == Type::BoolTy); |
| 293 | numInstr = 0; |
| 294 | break; |
| 295 | |
| 296 | case 23: // reg: ToUByteTy(reg) |
| 297 | case 25: // reg: ToUShortTy(reg) |
| 298 | case 27: // reg: ToUIntTy(reg) |
| 299 | case 29: // reg: ToULongTy(reg) |
| 300 | opType = subtreeRoot->leftChild()->getValue()->getType(); |
| 301 | assert(opType->isIntegral() || opType == Type::BoolTy); |
| 302 | numInstr = 0; |
| 303 | break; |
| 304 | |
| 305 | case 24: // reg: ToSByteTy(reg) |
| 306 | case 26: // reg: ToShortTy(reg) |
| 307 | case 28: // reg: ToIntTy(reg) |
| 308 | case 30: // reg: ToLongTy(reg) |
| 309 | opType = subtreeRoot->leftChild()->getValue()->getType(); |
| 310 | if (opType->isIntegral() || opType == Type::BoolTy) |
| 311 | numInstr = 0; |
| 312 | else |
| 313 | { |
| 314 | mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType)); |
| 315 | Set2OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 316 | } |
| 317 | break; |
| 318 | |
| 319 | case 31: // reg: ToFloatTy(reg): |
| 320 | case 32: // reg: ToDoubleTy(reg): |
| 321 | |
| 322 | // If this instruction has a parent (a user) in the tree |
| 323 | // and the user is translated as an FsMULd instruction, |
| 324 | // then the cast is unnecessary. So check that first. |
| 325 | // In the future, we'll want to do the same for the FdMULq instruction, |
| 326 | // so do the check here instead of only for ToFloatTy(reg). |
| 327 | // |
| 328 | if (subtreeRoot->parent() != NULL && |
| 329 | ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD) |
| 330 | { |
| 331 | numInstr = 0; |
| 332 | } |
| 333 | else |
| 334 | { |
| 335 | opType = subtreeRoot->leftChild()->getValue()->getType(); |
| 336 | mvec[0] = new MachineInstr(ChooseConvertToFloatInstr(subtreeRoot, opType)); |
| 337 | Set2OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 338 | } |
| 339 | break; |
| 340 | |
| 341 | case 19: // reg: ToArrayTy(reg): |
| 342 | case 20: // reg: ToPointerTy(reg): |
| 343 | numInstr = 0; |
| 344 | break; |
| 345 | |
| 346 | case 33: // reg: Add(reg, reg) |
| 347 | mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot)); |
| 348 | Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 349 | break; |
| 350 | |
| 351 | case 34: // reg: Sub(reg, reg) |
| 352 | mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot)); |
| 353 | Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 354 | break; |
| 355 | |
| 356 | case 135: // reg: Mul(todouble, todouble) |
| 357 | checkCast = true; |
| 358 | // FALL THROUGH |
| 359 | |
| 360 | case 35: // reg: Mul(reg, reg) |
| 361 | mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast)); |
| 362 | Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 363 | break; |
| 364 | |
| 365 | case 36: // reg: Div(reg, reg) |
| 366 | mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot)); |
| 367 | Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 368 | break; |
| 369 | |
| 370 | case 37: // reg: Rem(reg, reg) |
| 371 | assert(0 && "REM instruction unimplemented for the SPARC."); |
| 372 | break; |
| 373 | |
| 374 | case 38: // reg: And(reg, reg) |
| 375 | mvec[0] = new MachineInstr(AND); |
| 376 | Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 377 | break; |
| 378 | |
| 379 | case 138: // reg: And(reg, not) |
| 380 | mvec[0] = new MachineInstr(ANDN); |
| 381 | Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 382 | break; |
| 383 | |
| 384 | case 39: // reg: Or(reg, reg) |
| 385 | mvec[0] = new MachineInstr(ORN); |
| 386 | Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 387 | break; |
| 388 | |
| 389 | case 139: // reg: Or(reg, not) |
| 390 | mvec[0] = new MachineInstr(ORN); |
| 391 | Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 392 | break; |
| 393 | |
| 394 | case 40: // reg: Xor(reg, reg) |
| 395 | mvec[0] = new MachineInstr(XOR); |
| 396 | Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 397 | break; |
| 398 | |
| 399 | case 140: // reg: Xor(reg, not) |
| 400 | mvec[0] = new MachineInstr(XNOR); |
| 401 | Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 402 | break; |
| 403 | |
| 404 | case 41: // boolconst: SetCC(reg, Constant) |
| 405 | // Check if this is an integer comparison, and |
| 406 | // there is a parent, and the parent decided to use |
| 407 | // a branch-on-integer-register instead of branch-on-condition-code. |
| 408 | // If so, the SUBcc instruction is not required. |
| 409 | // (However, we must still check for constants to be loaded from |
| 410 | // the constant pool so that such a load can be associated with |
| 411 | // this instruction.) |
| 412 | // |
| 413 | // Otherwise this is just the same as case 7, so just fall through. |
| 414 | // |
| 415 | if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() && |
| 416 | subtreeRoot->parent() != NULL) |
| 417 | { |
| 418 | InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent(); |
| 419 | assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode); |
| 420 | const vector<MachineInstr*>& |
| 421 | minstrVec = parentNode->getInstruction()->getMachineInstrVec(); |
| 422 | MachineOpCode parentOpCode; |
| 423 | if (minstrVec.size() == 1 && |
| 424 | (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ && |
| 425 | parentOpCode <= BRGEZ) |
| 426 | { |
| 427 | numInstr = 0; |
| 428 | break; |
| 429 | } |
| 430 | } |
| 431 | // ELSE FALL THROUGH |
| 432 | |
| 433 | case 42: // bool: SetCC(reg, reg): |
| 434 | if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral()) |
| 435 | { |
| 436 | // integer condition: destination should be %g0 |
| 437 | mvec[0] = new MachineInstr(SUBcc); |
| 438 | Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget(), |
| 439 | /*canDiscardResult*/ true); |
| 440 | } |
| 441 | else |
| 442 | { |
| 443 | // FP condition: dest should be a FCCn register chosen by reg-alloc |
| 444 | mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot)); |
| 445 | |
| 446 | leftVal = subtreeRoot->leftChild()->getValue(); |
| 447 | rightVal = subtreeRoot->rightChild()->getValue(); |
| 448 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, |
| 449 | subtreeRoot->getValue()); |
| 450 | mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, leftVal); |
| 451 | mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, rightVal); |
| 452 | } |
| 453 | break; |
| 454 | |
| 455 | case 43: // boolreg: VReg |
| 456 | numInstr = 0; |
| 457 | break; |
| 458 | |
| 459 | case 51: // reg: Load(reg) |
| 460 | case 52: // reg: Load(ptrreg) |
| 461 | case 53: // reg: LoadIdx(reg,reg) |
| 462 | case 54: // reg: LoadIdx(ptrreg,reg) |
| 463 | mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType())); |
| 464 | SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 465 | break; |
| 466 | |
| 467 | case 55: // reg: GetElemPtr(reg) |
| 468 | case 56: // reg: GetElemPtrIdx(reg,reg) |
| 469 | if (subtreeRoot->parent() != NULL) |
| 470 | { |
| 471 | // Check if the parent was an array access. |
| 472 | // If so, we still need to generate this instruction. |
| 473 | MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction(); |
| 474 | const PointerType* ptrType = |
| 475 | (const PointerType*) memInst->getPtrOperand()->getType(); |
| 476 | if (! ptrType->getValueType()->isArrayType()) |
| 477 | {// we don't need a separate instr |
| 478 | numInstr = 0; |
| 479 | break; |
| 480 | } |
| 481 | } |
| 482 | // else in all other cases we need to a separate ADD instruction |
| 483 | mvec[0] = new MachineInstr(ADD); |
| 484 | SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 485 | break; |
| 486 | |
| 487 | case 57: // reg: Alloca: Implement as 2 instructions: |
| 488 | // sub %sp, tmp -> %sp |
| 489 | { // add %sp, 0 -> result |
| 490 | Instruction* instr = subtreeRoot->getInstruction(); |
| 491 | const PointerType* instrType = (const PointerType*) instr->getType(); |
| 492 | assert(instrType->isPointerType()); |
| 493 | int tsize = (int) ccontext.getTarget().findOptimalStorageSize( |
| 494 | instrType->getValueType()); |
| 495 | if (tsize == 0) |
| 496 | { |
| 497 | numInstr = 0; |
| 498 | break; |
| 499 | } |
| 500 | //else go on to create the instructions needed... |
| 501 | |
| 502 | // Create a temporary Value to hold the constant type-size |
| 503 | ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize); |
| 504 | ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool(); |
| 505 | if (cpool.find(valueForTSize) == 0) |
| 506 | cpool.insert(valueForTSize); |
| 507 | |
| 508 | // Instruction 1: sub %sp, tsize -> %sp |
| 509 | // tsize is always constant, but it may have to be put into a |
| 510 | // register if it doesn't fit in the immediate field. |
| 511 | // |
| 512 | mvec[0] = new MachineInstr(SUB); |
| 513 | mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| 514 | mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, valueForTSize); |
| 515 | mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| 516 | |
| 517 | // Instruction 2: add %sp, 0 -> result |
| 518 | numInstr++; |
| 519 | mvec[1] = new MachineInstr(ADD); |
| 520 | mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| 521 | mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); |
| 522 | mvec[1]->SetMachineOperand(2, MachineOperand::MO_Register, instr); |
| 523 | break; |
| 524 | } |
| 525 | |
| 526 | case 58: // reg: Alloca(reg): Implement as 3 instructions: |
| 527 | // mul num, typeSz -> tmp |
| 528 | // sub %sp, tmp -> %sp |
| 529 | { // add %sp, 0 -> result |
| 530 | Instruction* instr = subtreeRoot->getInstruction(); |
| 531 | const PointerType* instrType = (const PointerType*) instr->getType(); |
| 532 | assert(instrType->isPointerType() && |
| 533 | instrType->getValueType()->isArrayType()); |
| 534 | const Type* eltType = |
| 535 | ((ArrayType*) instrType->getValueType())->getElementType(); |
| 536 | int tsize = (int) ccontext.getTarget().findOptimalStorageSize(eltType); |
| 537 | |
| 538 | if (tsize == 0) |
| 539 | { |
| 540 | numInstr = 0; |
| 541 | break; |
| 542 | } |
| 543 | //else go on to create the instructions needed... |
| 544 | |
| 545 | // Create a temporary Value to hold the constant type-size |
| 546 | ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize); |
| 547 | ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool(); |
| 548 | if (cpool.find(valueForTSize) == 0) |
| 549 | cpool.insert(valueForTSize); |
| 550 | |
| 551 | // Create a temporary value to hold `tmp' |
| 552 | Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1, |
| 553 | subtreeRoot->leftChild()->getValue(), |
| 554 | NULL /*could insert tsize here*/); |
| 555 | subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr); |
| 556 | |
| 557 | // Instruction 1: mul numElements, typeSize -> tmp |
| 558 | mvec[0] = new MachineInstr(MULX); |
| 559 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, |
| 560 | subtreeRoot->leftChild()->getValue()); |
| 561 | mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, valueForTSize); |
| 562 | mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, tmpInstr); |
| 563 | |
| 564 | // Instruction 2: sub %sp, tmp -> %sp |
| 565 | numInstr++; |
| 566 | mvec[1] = new MachineInstr(SUB); |
| 567 | mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| 568 | mvec[1]->SetMachineOperand(1, MachineOperand::MO_Register, tmpInstr); |
| 569 | mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| 570 | |
| 571 | // Instruction 3: add %sp, 0 -> result |
| 572 | numInstr++; |
| 573 | mvec[2] = new MachineInstr(ADD); |
| 574 | mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| 575 | mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); |
| 576 | mvec[2]->SetMachineOperand(2, MachineOperand::MO_Register, instr); |
| 577 | break; |
| 578 | } |
| 579 | |
| 580 | case 61: // reg: Call |
| 581 | // Generate a call-indirect (i.e., JMPL) for now to expose |
| 582 | // the potential need for registers. If an absolute address |
| 583 | // is available, replace this with a CALL instruction. |
| 584 | // Mark both the indirection register and the return-address |
| 585 | { // register as hidden virtual registers. |
| 586 | |
| 587 | Instruction* targetReg = new TmpInstruction(Instruction::UserOp1, |
| 588 | ((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL); |
| 589 | Instruction* returnReg = new TmpInstruction(Instruction::UserOp1, |
| 590 | subtreeRoot->getValue(), NULL); |
| 591 | subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(targetReg); |
| 592 | subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg); |
| 593 | |
| 594 | mvec[0] = new MachineInstr(JMPL); |
| 595 | mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, targetReg); |
| 596 | mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, |
| 597 | (int64_t) 0); |
| 598 | mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, returnReg); |
| 599 | |
| 600 | mvec[numInstr++] = new MachineInstr(NOP); // delay slot |
| 601 | break; |
| 602 | } |
| 603 | |
| 604 | case 62: // reg: Shl(reg, reg) |
| 605 | opType = subtreeRoot->leftChild()->getValue()->getType(); |
| 606 | assert(opType->isIntegral() || opType == Type::BoolTy); |
| 607 | mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL); |
| 608 | Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 609 | break; |
| 610 | |
| 611 | case 63: // reg: Shr(reg, reg) |
| 612 | opType = subtreeRoot->leftChild()->getValue()->getType(); |
| 613 | assert(opType->isIntegral() || opType == Type::BoolTy); |
| 614 | mvec[0] = new MachineInstr((opType->isSigned() |
| 615 | ? ((opType == Type::LongTy)? SRAX : SRA) |
| 616 | : ((opType == Type::LongTy)? SRLX : SRL))); |
| 617 | Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| 618 | break; |
| 619 | |
| 620 | case 71: // reg: VReg |
| 621 | case 72: // reg: Constant |
| 622 | numInstr = 0; |
| 623 | break; |
| 624 | |
| 625 | case 111: // stmt: reg |
| 626 | case 112: // stmt: boolconst |
| 627 | case 113: // stmt: bool |
| 628 | case 121: |
| 629 | case 122: |
| 630 | case 123: |
| 631 | case 124: |
| 632 | case 125: |
| 633 | case 126: |
| 634 | case 127: |
| 635 | case 128: |
| 636 | case 129: |
| 637 | case 130: |
| 638 | case 131: |
| 639 | case 132: |
| 640 | case 153: |
| 641 | // |
| 642 | // These are all chain rules, which have a single nonterminal on the RHS. |
| 643 | // Get the rule that matches the RHS non-terminal and use that instead. |
| 644 | // |
| 645 | assert(ThisIsAChainRule(ruleForNode)); |
| 646 | assert(nts[0] && ! nts[1] |
| 647 | && "A chain rule should have only one RHS non-terminal!"); |
| 648 | nextRule = burm_rule(subtreeRoot->getBasicNode()->state, nts[0]); |
| 649 | nts = burm_nts[nextRule]; |
| 650 | numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,ccontext,mvec); |
| 651 | break; |
| 652 | |
| 653 | default: |
| 654 | numInstr = 0; |
| 655 | break; |
| 656 | } |
| 657 | |
| 658 | numInstr = |
| 659 | FixConstantOperands(subtreeRoot, mvec, numInstr, ccontext.getTarget()); |
| 660 | |
| 661 | return numInstr; |
| 662 | } |
| 663 | |
| 664 | |
| 665 | //--------------------------------------------------------------------------- |
| 666 | // Private helper routines for SPARC instruction selection. |
| 667 | //--------------------------------------------------------------------------- |
| 668 | |
| 669 | |
| 670 | static MachineOpCode |
| 671 | ChooseBprInstruction(const InstructionNode* instrNode) |
| 672 | { |
| 673 | MachineOpCode opCode; |
| 674 | |
| 675 | Instruction* setCCInstr = |
| 676 | ((InstructionNode*) instrNode->leftChild())->getInstruction(); |
| 677 | |
| 678 | switch(setCCInstr->getOpcode()) |
| 679 | { |
| 680 | case Instruction::SetEQ: opCode = BRZ; break; |
| 681 | case Instruction::SetNE: opCode = BRNZ; break; |
| 682 | case Instruction::SetLE: opCode = BRLEZ; break; |
| 683 | case Instruction::SetGE: opCode = BRGEZ; break; |
| 684 | case Instruction::SetLT: opCode = BRLZ; break; |
| 685 | case Instruction::SetGT: opCode = BRGZ; break; |
| 686 | default: |
| 687 | assert(0 && "Unrecognized VM instruction!"); |
| 688 | opCode = INVALID_OPCODE; |
| 689 | break; |
| 690 | } |
| 691 | |
| 692 | return opCode; |
| 693 | } |
| 694 | |
| 695 | |
| 696 | static MachineOpCode |
| 697 | ChooseBccInstruction(const InstructionNode* instrNode, |
| 698 | bool& isFPBranch) |
| 699 | { |
| 700 | InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild(); |
| 701 | BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction(); |
| 702 | const Type* setCCType = setCCInstr->getOperand(0)->getType(); |
| 703 | |
| 704 | isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy); |
| 705 | |
| 706 | if (isFPBranch) |
| 707 | return ChooseBfpccInstruction(instrNode, setCCInstr); |
| 708 | else |
| 709 | return ChooseBpccInstruction(instrNode, setCCInstr); |
| 710 | } |
| 711 | |
| 712 | |
| 713 | static MachineOpCode |
| 714 | ChooseBpccInstruction(const InstructionNode* instrNode, |
| 715 | const BinaryOperator* setCCInstr) |
| 716 | { |
| 717 | MachineOpCode opCode = INVALID_OPCODE; |
| 718 | |
| 719 | bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned(); |
| 720 | |
| 721 | if (isSigned) |
| 722 | { |
| 723 | switch(setCCInstr->getOpcode()) |
| 724 | { |
| 725 | case Instruction::SetEQ: opCode = BE; break; |
| 726 | case Instruction::SetNE: opCode = BNE; break; |
| 727 | case Instruction::SetLE: opCode = BLE; break; |
| 728 | case Instruction::SetGE: opCode = BGE; break; |
| 729 | case Instruction::SetLT: opCode = BL; break; |
| 730 | case Instruction::SetGT: opCode = BG; break; |
| 731 | default: |
| 732 | assert(0 && "Unrecognized VM instruction!"); |
| 733 | break; |
| 734 | } |
| 735 | } |
| 736 | else |
| 737 | { |
| 738 | switch(setCCInstr->getOpcode()) |
| 739 | { |
| 740 | case Instruction::SetEQ: opCode = BE; break; |
| 741 | case Instruction::SetNE: opCode = BNE; break; |
| 742 | case Instruction::SetLE: opCode = BLEU; break; |
| 743 | case Instruction::SetGE: opCode = BCC; break; |
| 744 | case Instruction::SetLT: opCode = BCS; break; |
| 745 | case Instruction::SetGT: opCode = BGU; break; |
| 746 | default: |
| 747 | assert(0 && "Unrecognized VM instruction!"); |
| 748 | break; |
| 749 | } |
| 750 | } |
| 751 | |
| 752 | return opCode; |
| 753 | } |
| 754 | |
| 755 | static MachineOpCode |
| 756 | ChooseBfpccInstruction(const InstructionNode* instrNode, |
| 757 | const BinaryOperator* setCCInstr) |
| 758 | { |
| 759 | MachineOpCode opCode = INVALID_OPCODE; |
| 760 | |
| 761 | switch(setCCInstr->getOpcode()) |
| 762 | { |
| 763 | case Instruction::SetEQ: opCode = FBE; break; |
| 764 | case Instruction::SetNE: opCode = FBNE; break; |
| 765 | case Instruction::SetLE: opCode = FBLE; break; |
| 766 | case Instruction::SetGE: opCode = FBGE; break; |
| 767 | case Instruction::SetLT: opCode = FBL; break; |
| 768 | case Instruction::SetGT: opCode = FBG; break; |
| 769 | default: |
| 770 | assert(0 && "Unrecognized VM instruction!"); |
| 771 | break; |
| 772 | } |
| 773 | |
| 774 | return opCode; |
| 775 | } |
| 776 | |
| 777 | static MachineOpCode |
| 778 | ChooseConvertToFloatInstr(const InstructionNode* instrNode, |
| 779 | const Type* opType) |
| 780 | { |
| 781 | MachineOpCode opCode = INVALID_OPCODE; |
| 782 | |
| 783 | switch(instrNode->getOpLabel()) |
| 784 | { |
| 785 | case ToFloatTy: |
| 786 | if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy) |
| 787 | opCode = FITOS; |
| 788 | else if (opType == Type::LongTy) |
| 789 | opCode = FXTOS; |
| 790 | else if (opType == Type::DoubleTy) |
| 791 | opCode = FDTOS; |
| 792 | else |
| 793 | assert(0 && "Cannot convert this type to FLOAT on SPARC"); |
| 794 | break; |
| 795 | |
| 796 | case ToDoubleTy: |
| 797 | if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy) |
| 798 | opCode = FITOD; |
| 799 | else if (opType == Type::LongTy) |
| 800 | opCode = FXTOD; |
| 801 | else if (opType == Type::FloatTy) |
| 802 | opCode = FSTOD; |
| 803 | else |
| 804 | assert(0 && "Cannot convert this type to DOUBLE on SPARC"); |
| 805 | break; |
| 806 | |
| 807 | default: |
| 808 | break; |
| 809 | } |
| 810 | |
| 811 | return opCode; |
| 812 | } |
| 813 | |
| 814 | static MachineOpCode |
| 815 | ChooseConvertToIntInstr(const InstructionNode* instrNode, |
| 816 | const Type* opType) |
| 817 | { |
| 818 | MachineOpCode opCode = INVALID_OPCODE;; |
| 819 | |
| 820 | int instrType = (int) instrNode->getOpLabel(); |
| 821 | |
| 822 | if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy) |
| 823 | { |
| 824 | switch (opType->getPrimitiveID()) |
| 825 | { |
| 826 | case Type::FloatTyID: opCode = FSTOI; break; |
| 827 | case Type::DoubleTyID: opCode = FDTOI; break; |
| 828 | default: |
| 829 | assert(0 && "Non-numeric non-bool type cannot be converted to Int"); |
| 830 | break; |
| 831 | } |
| 832 | } |
| 833 | else if (instrType == ToLongTy) |
| 834 | { |
| 835 | switch (opType->getPrimitiveID()) |
| 836 | { |
| 837 | case Type::FloatTyID: opCode = FSTOX; break; |
| 838 | case Type::DoubleTyID: opCode = FDTOX; break; |
| 839 | default: |
| 840 | assert(0 && "Non-numeric non-bool type cannot be converted to Long"); |
| 841 | break; |
| 842 | } |
| 843 | } |
| 844 | else |
| 845 | assert(0 && "Should not get here, Mo!"); |
| 846 | |
| 847 | return opCode; |
| 848 | } |
| 849 | |
| 850 | |
| 851 | static MachineOpCode |
| 852 | ChooseAddInstruction(const InstructionNode* instrNode) |
| 853 | { |
| 854 | MachineOpCode opCode = INVALID_OPCODE; |
| 855 | |
| 856 | const Type* resultType = instrNode->getInstruction()->getType(); |
| 857 | |
| 858 | if (resultType->isIntegral() || |
| 859 | resultType->isPointerType() || |
| 860 | resultType->isMethodType() || |
| 861 | resultType->isLabelType()) |
| 862 | { |
| 863 | opCode = ADD; |
| 864 | } |
| 865 | else |
| 866 | { |
| 867 | Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); |
| 868 | switch(operand->getType()->getPrimitiveID()) |
| 869 | { |
| 870 | case Type::FloatTyID: opCode = FADDS; break; |
| 871 | case Type::DoubleTyID: opCode = FADDD; break; |
| 872 | default: assert(0 && "Invalid type for ADD instruction"); break; |
| 873 | } |
| 874 | } |
| 875 | |
| 876 | return opCode; |
| 877 | } |
| 878 | |
| 879 | static MachineOpCode |
| 880 | ChooseSubInstruction(const InstructionNode* instrNode) |
| 881 | { |
| 882 | MachineOpCode opCode = INVALID_OPCODE; |
| 883 | |
| 884 | const Type* resultType = instrNode->getInstruction()->getType(); |
| 885 | |
| 886 | if (resultType->isIntegral() || |
| 887 | resultType->isPointerType()) |
| 888 | { |
| 889 | opCode = SUB; |
| 890 | } |
| 891 | else |
| 892 | { |
| 893 | Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); |
| 894 | switch(operand->getType()->getPrimitiveID()) |
| 895 | { |
| 896 | case Type::FloatTyID: opCode = FSUBS; break; |
| 897 | case Type::DoubleTyID: opCode = FSUBD; break; |
| 898 | default: assert(0 && "Invalid type for SUB instruction"); break; |
| 899 | } |
| 900 | } |
| 901 | |
| 902 | return opCode; |
| 903 | } |
| 904 | |
| 905 | |
| 906 | static MachineOpCode |
| 907 | ChooseFcmpInstruction(const InstructionNode* instrNode) |
| 908 | { |
| 909 | MachineOpCode opCode = INVALID_OPCODE; |
| 910 | |
| 911 | Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); |
| 912 | switch(operand->getType()->getPrimitiveID()) |
| 913 | { |
| 914 | case Type::FloatTyID: opCode = FCMPS; break; |
| 915 | case Type::DoubleTyID: opCode = FCMPD; break; |
| 916 | default: assert(0 && "Invalid type for ADD instruction"); break; |
| 917 | } |
| 918 | |
| 919 | return opCode; |
| 920 | } |
| 921 | |
| 922 | |
| 923 | static MachineOpCode |
| 924 | ChooseMulInstruction(const InstructionNode* instrNode, |
| 925 | bool checkCasts) |
| 926 | { |
| 927 | MachineOpCode opCode = INVALID_OPCODE; |
| 928 | |
| 929 | if (checkCasts) |
| 930 | { |
| 931 | // Assume that leftArg and rightArg are both cast instructions. |
| 932 | // |
| 933 | InstrTreeNode* leftArg = instrNode->leftChild(); |
| 934 | InstrTreeNode* rightArg = instrNode->rightChild(); |
| 935 | InstrTreeNode* leftArgArg = leftArg->leftChild(); |
| 936 | InstrTreeNode* rightArgArg = rightArg->leftChild(); |
| 937 | assert(leftArg->getValue()->getType() ==rightArg->getValue()->getType()); |
| 938 | |
| 939 | // If both arguments are floats cast to double, use FsMULd |
| 940 | if (leftArg->getValue()->getType() == Type::DoubleTy && |
| 941 | leftArgArg->getValue()->getType() == Type::FloatTy && |
| 942 | rightArgArg->getValue()->getType() == Type::FloatTy) |
| 943 | { |
| 944 | return opCode = FSMULD; |
| 945 | } |
| 946 | // else fall through and use the regular multiply instructions |
| 947 | } |
| 948 | |
| 949 | const Type* resultType = instrNode->getInstruction()->getType(); |
| 950 | |
| 951 | if (resultType->isIntegral()) |
| 952 | { |
| 953 | opCode = MULX; |
| 954 | } |
| 955 | else |
| 956 | { |
| 957 | switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID()) |
| 958 | { |
| 959 | case Type::FloatTyID: opCode = FMULS; break; |
| 960 | case Type::DoubleTyID: opCode = FMULD; break; |
| 961 | default: assert(0 && "Invalid type for MUL instruction"); break; |
| 962 | } |
| 963 | } |
| 964 | |
| 965 | return opCode; |
| 966 | } |
| 967 | |
| 968 | |
| 969 | static MachineOpCode |
| 970 | ChooseDivInstruction(const InstructionNode* instrNode) |
| 971 | { |
| 972 | MachineOpCode opCode = INVALID_OPCODE; |
| 973 | |
| 974 | const Type* resultType = instrNode->getInstruction()->getType(); |
| 975 | |
| 976 | if (resultType->isIntegral()) |
| 977 | { |
| 978 | opCode = resultType->isSigned()? SDIVX : UDIVX; |
| 979 | } |
| 980 | else |
| 981 | { |
| 982 | Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); |
| 983 | switch(operand->getType()->getPrimitiveID()) |
| 984 | { |
| 985 | case Type::FloatTyID: opCode = FDIVS; break; |
| 986 | case Type::DoubleTyID: opCode = FDIVD; break; |
| 987 | default: assert(0 && "Invalid type for DIV instruction"); break; |
| 988 | } |
| 989 | } |
| 990 | |
| 991 | return opCode; |
| 992 | } |
| 993 | |
| 994 | |
| 995 | static MachineOpCode |
| 996 | ChooseLoadInstruction(const Type* resultType) |
| 997 | { |
| 998 | MachineOpCode opCode = INVALID_OPCODE; |
| 999 | |
| 1000 | switch (resultType->getPrimitiveID()) |
| 1001 | { |
| 1002 | case Type::BoolTyID: opCode = LDUB; break; |
| 1003 | case Type::UByteTyID: opCode = LDUB; break; |
| 1004 | case Type::SByteTyID: opCode = LDSB; break; |
| 1005 | case Type::UShortTyID: opCode = LDUH; break; |
| 1006 | case Type::ShortTyID: opCode = LDSH; break; |
| 1007 | case Type::UIntTyID: opCode = LDUW; break; |
| 1008 | case Type::IntTyID: opCode = LDSW; break; |
| 1009 | case Type::ULongTyID: |
| 1010 | case Type::LongTyID: opCode = LDX; break; |
| 1011 | case Type::FloatTyID: opCode = LD; break; |
| 1012 | case Type::DoubleTyID: opCode = LDD; break; |
| 1013 | default: assert(0 && "Invalid type for Load instruction"); break; |
| 1014 | } |
| 1015 | |
| 1016 | return opCode; |
| 1017 | } |
| 1018 | |
| 1019 | |
| 1020 | static MachineOpCode |
| 1021 | ChooseStoreInstruction(const Type* valueType) |
| 1022 | { |
| 1023 | MachineOpCode opCode = INVALID_OPCODE; |
| 1024 | |
| 1025 | switch (valueType->getPrimitiveID()) |
| 1026 | { |
| 1027 | case Type::BoolTyID: |
| 1028 | case Type::UByteTyID: |
| 1029 | case Type::SByteTyID: opCode = STB; break; |
| 1030 | case Type::UShortTyID: |
| 1031 | case Type::ShortTyID: opCode = STH; break; |
| 1032 | case Type::UIntTyID: |
| 1033 | case Type::IntTyID: opCode = STW; break; |
| 1034 | case Type::ULongTyID: |
| 1035 | case Type::LongTyID: opCode = STX; break; |
| 1036 | case Type::FloatTyID: opCode = ST; break; |
| 1037 | case Type::DoubleTyID: opCode = STD; break; |
| 1038 | default: assert(0 && "Invalid type for Store instruction"); break; |
| 1039 | } |
| 1040 | |
| 1041 | return opCode; |
| 1042 | } |
| 1043 | |
| 1044 | |
| 1045 | //------------------------------------------------------------------------ |
| 1046 | // Function SetOperandsForMemInstr |
| 1047 | // |
| 1048 | // Choose addressing mode for the given load or store instruction. |
| 1049 | // Use [reg+reg] if it is an indexed reference, and the index offset is |
| 1050 | // not a constant or if it cannot fit in the offset field. |
| 1051 | // Use [reg+offset] in all other cases. |
| 1052 | // |
| 1053 | // This assumes that all array refs are "lowered" to one of these forms: |
| 1054 | // %x = load (subarray*) ptr, constant ; single constant offset |
| 1055 | // %x = load (subarray*) ptr, offsetVal ; single non-constant offset |
| 1056 | // Generally, this should happen via strength reduction + LICM. |
| 1057 | // Also, strength reduction should take care of using the same register for |
| 1058 | // the loop index variable and an array index, when that is profitable. |
| 1059 | //------------------------------------------------------------------------ |
| 1060 | |
| 1061 | static void |
| 1062 | SetOperandsForMemInstr(MachineInstr* minstr, |
| 1063 | const InstructionNode* vmInstrNode, |
| 1064 | const TargetMachine& targetMachine) |
| 1065 | { |
| 1066 | MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction(); |
| 1067 | |
| 1068 | // Variables to hold the index vector, ptr value, and offset value. |
| 1069 | // The major work here is to extract these for all 3 instruction types |
| 1070 | // and then call the common function SetMemOperands_Internal(). |
| 1071 | // |
| 1072 | const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec(); |
| 1073 | vector<ConstPoolVal*>* newIdxVec = NULL; |
| 1074 | Value* ptrVal; |
| 1075 | Value* arrayOffsetVal = NULL; |
| 1076 | |
| 1077 | // Test if a GetElemPtr instruction is being folded into this mem instrn. |
| 1078 | // If so, it will be in the left child for Load and GetElemPtr, |
| 1079 | // and in the right child for Store instructions. |
| 1080 | // |
| 1081 | InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store |
| 1082 | ? vmInstrNode->rightChild() |
| 1083 | : vmInstrNode->leftChild()); |
| 1084 | |
| 1085 | if (ptrChild->getOpLabel() == Instruction::GetElementPtr || |
| 1086 | ptrChild->getOpLabel() == GetElemPtrIdx) |
| 1087 | { |
| 1088 | // There is a GetElemPtr instruction and there may be a chain of |
| 1089 | // more than one. Use the pointer value of the last one in the chain. |
| 1090 | // Fold the index vectors from the entire chain and from the mem |
| 1091 | // instruction into one single index vector. |
| 1092 | // Finally, we never fold for an array instruction so make that NULL. |
| 1093 | |
| 1094 | newIdxVec = new vector<ConstPoolVal*>; |
| 1095 | ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec); |
| 1096 | |
| 1097 | newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end()); |
| 1098 | idxVec = newIdxVec; |
| 1099 | |
| 1100 | assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType() |
| 1101 | && "GetElemPtr cannot be folded into array refs in selection"); |
| 1102 | } |
| 1103 | else |
| 1104 | { |
| 1105 | // There is no GetElemPtr instruction. |
| 1106 | // Use the pointer value and the index vector from the Mem instruction. |
| 1107 | // If it is an array reference, get the array offset value. |
| 1108 | // |
| 1109 | ptrVal = memInst->getPtrOperand(); |
| 1110 | |
| 1111 | const Type* opType = |
| 1112 | ((const PointerType*) ptrVal->getType())->getValueType(); |
| 1113 | if (opType->isArrayType()) |
| 1114 | { |
| 1115 | assert((memInst->getNumOperands() |
| 1116 | == (unsigned) 1 + memInst->getFirstOffsetIdx()) |
| 1117 | && "Array refs must be lowered before Instruction Selection"); |
| 1118 | |
| 1119 | arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx()); |
| 1120 | } |
| 1121 | } |
| 1122 | |
| 1123 | SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal, |
| 1124 | *idxVec, targetMachine); |
| 1125 | |
| 1126 | if (newIdxVec != NULL) |
| 1127 | delete newIdxVec; |
| 1128 | } |
| 1129 | |
| 1130 | |
| 1131 | static void |
| 1132 | SetMemOperands_Internal(MachineInstr* minstr, |
| 1133 | const InstructionNode* vmInstrNode, |
| 1134 | Value* ptrVal, |
| 1135 | Value* arrayOffsetVal, |
| 1136 | const vector<ConstPoolVal*>& idxVec, |
| 1137 | const TargetMachine& targetMachine) |
| 1138 | { |
| 1139 | MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction(); |
| 1140 | |
| 1141 | // Initialize so we default to storing the offset in a register. |
| 1142 | int64_t smallConstOffset; |
| 1143 | Value* valueForRegOffset = NULL; |
| 1144 | MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_Register; |
| 1145 | |
| 1146 | // Check if there is an index vector and if so, if it translates to |
| 1147 | // a small enough constant to fit in the immediate-offset field. |
| 1148 | // |
| 1149 | if (idxVec.size() > 0) |
| 1150 | { |
| 1151 | bool isConstantOffset = false; |
| 1152 | unsigned offset; |
| 1153 | |
| 1154 | const PointerType* ptrType = (PointerType*) ptrVal->getType(); |
| 1155 | |
| 1156 | if (ptrType->getValueType()->isStructType()) |
| 1157 | { |
| 1158 | // the offset is always constant for structs |
| 1159 | isConstantOffset = true; |
| 1160 | |
| 1161 | // Compute the offset value using the index vector |
| 1162 | offset = MemAccessInst::getIndexedOfsetForTarget(ptrType, |
| 1163 | idxVec, targetMachine); |
| 1164 | } |
| 1165 | else |
| 1166 | { |
| 1167 | // It must be an array ref. Check if the offset is a constant, |
| 1168 | // and that the indexing has been lowered to a single offset. |
| 1169 | // |
| 1170 | assert(ptrType->getValueType()->isArrayType()); |
| 1171 | assert(arrayOffsetVal != NULL |
| 1172 | && "Expect to be given Value* for array offsets"); |
| 1173 | |
| 1174 | if (arrayOffsetVal->getValueType() == Value::ConstantVal) |
| 1175 | { |
| 1176 | isConstantOffset = true; // always constant for structs |
| 1177 | assert(arrayOffsetVal->getType()->isIntegral()); |
| 1178 | offset = (arrayOffsetVal->getType()->isSigned()) |
| 1179 | ? ((ConstPoolSInt*) arrayOffsetVal)->getValue() |
| 1180 | : (int64_t) ((ConstPoolUInt*) arrayOffsetVal)->getValue(); |
| 1181 | } |
| 1182 | else |
| 1183 | { |
| 1184 | valueForRegOffset = arrayOffsetVal; |
| 1185 | } |
| 1186 | } |
| 1187 | |
| 1188 | if (isConstantOffset) |
| 1189 | { |
| 1190 | // create a virtual register for the constant |
| 1191 | valueForRegOffset = new ConstPoolSInt(Type::IntTy, offset); |
| 1192 | } |
| 1193 | } |
| 1194 | else |
| 1195 | { |
| 1196 | offsetOpType = MachineOperand::MO_SignExtendedImmed; |
| 1197 | smallConstOffset = 0; |
| 1198 | } |
| 1199 | |
| 1200 | // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR |
| 1201 | // It is the left child in the instruction tree in all cases. |
| 1202 | Value* leftVal = vmInstrNode->leftChild()->getValue(); |
| 1203 | minstr->SetMachineOperand(0, MachineOperand::MO_Register, leftVal); |
| 1204 | |
| 1205 | // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR |
| 1206 | // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR |
| 1207 | // |
| 1208 | unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1; |
| 1209 | if (offsetOpType == MachineOperand::MO_Register) |
| 1210 | { |
| 1211 | assert(valueForRegOffset != NULL); |
| 1212 | minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset); |
| 1213 | } |
| 1214 | else |
| 1215 | minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset); |
| 1216 | |
| 1217 | if (memInst->getOpcode() == Instruction::Store) |
| 1218 | minstr->SetMachineOperand(1, MachineOperand::MO_Register, ptrVal); |
| 1219 | else |
| 1220 | minstr->SetMachineOperand(2, MachineOperand::MO_Register, |
| 1221 | vmInstrNode->getValue()); |
| 1222 | } |
| 1223 | |
| 1224 | |
| 1225 | // Create one or two load instructions to load constants from the |
| 1226 | // constant pool. The first instructions is stored in instrA; |
| 1227 | // the second (if any) in instrB. |
| 1228 | // |
| 1229 | static unsigned |
| 1230 | FixConstantOperands(const InstructionNode* vmInstrNode, |
| 1231 | MachineInstr** mvec, |
| 1232 | unsigned numInstr, |
| 1233 | TargetMachine& targetMachine) |
| 1234 | { |
| 1235 | static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR]; |
| 1236 | |
| 1237 | unsigned numNew = 0; |
| 1238 | Instruction* vmInstr = vmInstrNode->getInstruction(); |
| 1239 | |
| 1240 | for (unsigned i=0; i < numInstr; i++) |
| 1241 | { |
| 1242 | MachineInstr* minstr = mvec[i]; |
| 1243 | const MachineInstrInfo& instrInfo = |
| 1244 | targetMachine.machineInstrInfo[minstr->getOpCode()]; |
| 1245 | |
| 1246 | for (unsigned op=0; op < instrInfo.numOperands; op++) |
| 1247 | { |
| 1248 | const MachineOperand& mop = minstr->getOperand(op); |
| 1249 | Value* opValue = mop.value; |
| 1250 | |
| 1251 | // skip the result position and any other positions already |
| 1252 | // marked as not a virtual register |
| 1253 | if (instrInfo.resultPos == (int) op || |
| 1254 | opValue == NULL || |
| 1255 | ! (mop.machineOperandType == MachineOperand::MO_Register && |
| 1256 | mop.vregType == MachineOperand::MO_VirtualReg)) |
| 1257 | { |
| 1258 | break; |
| 1259 | } |
| 1260 | |
| 1261 | if (opValue->getValueType() == Value::ConstantVal) |
| 1262 | { |
| 1263 | MachineOperand::VirtualRegisterType vregType; |
| 1264 | unsigned int machineRegNum; |
| 1265 | int64_t immedValue; |
| 1266 | MachineOperand::MachineOperandType opType = |
| 1267 | ChooseRegOrImmed(opValue, minstr->getOpCode(), targetMachine, |
| 1268 | /*canUseImmed*/ (op == 1), |
| 1269 | vregType, machineRegNum, immedValue); |
| 1270 | |
| 1271 | if (opType == MachineOperand::MO_Register) |
| 1272 | { |
| 1273 | if (vregType == MachineOperand::MO_MachineReg) |
| 1274 | minstr->SetMachineOperand(op, machineRegNum); |
| 1275 | else |
| 1276 | { // value is constant and must be loaded into a register |
| 1277 | loadConstVec[numNew++] = |
| 1278 | MakeOneLoadConstInstr(vmInstr, opValue); |
| 1279 | } |
| 1280 | } |
| 1281 | else |
| 1282 | minstr->SetMachineOperand(op, opType, immedValue); |
| 1283 | } |
| 1284 | |
| 1285 | #if 0 |
| 1286 | // Either put the constant in the immediate field or |
| 1287 | // create an instruction to "put" it in a register. |
| 1288 | // Check first if it is 0 and then just use %g0. |
| 1289 | // |
| 1290 | |
| 1291 | bool isValidConstant; |
| 1292 | int64_t intValue = GetConstantValueAsSignedInt(opValue, |
| 1293 | isValidConstant); |
| 1294 | if (intValue == 0 && targetMachine.zeroRegNum >= 0) |
| 1295 | {// put it in register %g0 |
| 1296 | minstr->SetMachineOperand(op, targetMachine.zeroRegNum); |
| 1297 | } |
| 1298 | else if (op == 1 && |
| 1299 | instrInfo.constantFitsInImmedField(intValue)) |
| 1300 | {// put it in the immediate field |
| 1301 | MachineOperand::MachineOperandType opType = |
| 1302 | (opValue->getType()->isSigned() |
| 1303 | ? MachineOperand::MO_SignExtendedImmed |
| 1304 | : MachineOperand::MO_UnextendedImmed); |
| 1305 | |
| 1306 | minstr->SetMachineOperand(op, opType, intValue); |
| 1307 | } |
| 1308 | else |
| 1309 | {// create an instruction to "put" the value in a register. |
| 1310 | loadConstVec[numNew++] = |
| 1311 | MakeOneLoadConstInstr(vmInstr, opValue); |
| 1312 | } |
| 1313 | #endif |
| 1314 | } |
| 1315 | } |
| 1316 | |
| 1317 | if (numNew > 0) |
| 1318 | { |
| 1319 | // Insert the new instructions *before* the old ones by moving |
| 1320 | // the old ones over `numNew' positions (last-to-first, of course!). |
| 1321 | // |
| 1322 | for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--) |
| 1323 | mvec[i+numNew] = mvec[i]; |
| 1324 | |
| 1325 | for (unsigned i=0; i < numNew; i++) |
| 1326 | mvec[i] = loadConstVec[i]; |
| 1327 | } |
| 1328 | |
| 1329 | return (numInstr + numNew); |
| 1330 | } |
| 1331 | |
| 1332 | |
| 1333 | // Create one or two load instructions to load constants from the |
| 1334 | // constant pool. The first instructions is stored in instrA; |
| 1335 | // the second (if any) in instrB. |
| 1336 | // |
| 1337 | static unsigned |
| 1338 | InsertLoadConstInstructions(unsigned loadConstFlags, |
| 1339 | const InstructionNode* vmInstrNode, |
| 1340 | MachineInstr** mvec, |
| 1341 | unsigned numInstr) |
| 1342 | { |
| 1343 | MachineInstr *instrA = NULL, *instrB = NULL; |
| 1344 | |
| 1345 | unsigned numNew = 0; |
| 1346 | |
| 1347 | if (loadConstFlags & 0x01) |
| 1348 | { |
| 1349 | instrA = MakeOneLoadConstInstr(vmInstrNode->getInstruction(), |
| 1350 | vmInstrNode->leftChild()->getValue()); |
| 1351 | numNew++; |
| 1352 | } |
| 1353 | |
| 1354 | if (loadConstFlags & 0x02) |
| 1355 | { |
| 1356 | instrB = MakeOneLoadConstInstr(vmInstrNode->getInstruction(), |
| 1357 | vmInstrNode->rightChild()->getValue()); |
| 1358 | numNew++; |
| 1359 | } |
| 1360 | |
| 1361 | // Now insert the new instructions *before* the old ones by |
| 1362 | // moving the old ones over `numNew' positions (last-to-first, of course!). |
| 1363 | // |
| 1364 | for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--) |
| 1365 | mvec[i+numNew] = mvec[i]; |
| 1366 | |
| 1367 | unsigned whichNew = 0; |
| 1368 | if (instrA != NULL) |
| 1369 | mvec[whichNew++] = instrA; |
| 1370 | if (instrB != NULL) |
| 1371 | mvec[whichNew++] = instrB; |
| 1372 | assert(whichNew == numNew); |
| 1373 | |
| 1374 | return numInstr + numNew; |
| 1375 | } |
| 1376 | |
| 1377 | |
| 1378 | static MachineInstr* |
| 1379 | MakeOneLoadConstInstr(Instruction* vmInstr, |
| 1380 | Value* val) |
| 1381 | { |
| 1382 | assert(val->getValueType() == Value::ConstantVal); |
| 1383 | |
| 1384 | MachineInstr* minstr; |
| 1385 | |
| 1386 | // Use a "set" instruction for known constants that can go in an integer reg. |
| 1387 | // Use a "load" instruction for all other constants, in particular, |
| 1388 | // floating point constants. |
| 1389 | // |
| 1390 | const Type* valType = val->getType(); |
| 1391 | if (valType->isIntegral() || |
| 1392 | valType->isPointerType() || |
| 1393 | valType == Type::BoolTy) |
| 1394 | { |
| 1395 | bool isValidConstant; |
| 1396 | if (val->getType()->isSigned()) |
| 1397 | { |
| 1398 | minstr = new MachineInstr(SETSW); |
| 1399 | minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, |
| 1400 | GetSignedIntConstantValue(val, isValidConstant)); |
| 1401 | } |
| 1402 | else |
| 1403 | { |
| 1404 | minstr = new MachineInstr(SETUW); |
| 1405 | minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, |
| 1406 | GetUnsignedIntConstantValue(val, isValidConstant)); |
| 1407 | } |
| 1408 | minstr->SetMachineOperand(1, MachineOperand::MO_Register, val); |
| 1409 | assert(isValidConstant && "Unrecognized constant"); |
| 1410 | } |
| 1411 | else |
| 1412 | { |
| 1413 | assert(valType == Type::FloatTy || |
| 1414 | valType == Type::DoubleTy); |
| 1415 | |
| 1416 | int64_t zeroOffset = 0; // to avoid overloading ambiguity with (Value*) 0 |
| 1417 | |
| 1418 | // Make a Load instruction, and make `val' both the ptr value *and* |
| 1419 | // the result value, and set the offset field to 0. Final code |
| 1420 | // generation will have to generate the base+offset for the constant. |
| 1421 | // |
| 1422 | minstr = new MachineInstr(ChooseLoadInstruction(val->getType())); |
| 1423 | minstr->SetMachineOperand(0, MachineOperand::MO_Register, val); |
| 1424 | minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, |
| 1425 | zeroOffset); |
| 1426 | minstr->SetMachineOperand(2, MachineOperand::MO_Register, val); |
| 1427 | |
| 1428 | } |
| 1429 | |
| 1430 | Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1, val, NULL); |
| 1431 | vmInstr->getMachineInstrVec().addTempValue(tmpInstr); |
| 1432 | |
| 1433 | return minstr; |
| 1434 | } |
| 1435 | |
| 1436 | |
| 1437 | // This function is currently unused and incomplete but will be |
| 1438 | // used if we have a linear layout of basic blocks in LLVM code. |
| 1439 | // It decides which branch should fall-through, and whether an |
| 1440 | // extra unconditional branch is needed (when neither falls through). |
| 1441 | // |
| 1442 | void |
| 1443 | ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern) |
| 1444 | { |
| 1445 | BranchInst* brInstr = (BranchInst*) vmInstr; |
| 1446 | |
| 1447 | brPattern.flipCondition = false; |
| 1448 | brPattern.targetBB = brInstr->getSuccessor(0); |
| 1449 | brPattern.extraBranch = NULL; |
| 1450 | |
| 1451 | assert(brInstr->getNumSuccessors() > 1 && |
| 1452 | "Unnecessary analysis for unconditional branch"); |
| 1453 | |
| 1454 | assert(0 && "Fold branches in peephole optimization"); |
| 1455 | } |
| 1456 | |