blob: d0f43928c300f6b4941ba581e7e32a34f225f980 [file] [log] [blame]
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001//===- InstCombineMulDivRem.cpp -------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11// srem, urem, frem.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
Duncan Sands82fdab32010-12-21 14:00:22 +000016#include "llvm/Analysis/InstructionSimplify.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000017#include "llvm/IR/IntrinsicInst.h"
Chris Lattnerd12c27c2010-01-05 06:09:35 +000018#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
Chris Lattner1add46d2011-05-22 18:18:41 +000022
23/// simplifyValueKnownNonZero - The specific integer value is used in a context
24/// where it is known to be non-zero. If this allows us to simplify the
25/// computation, do so and return the new operand, otherwise return null.
26static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
27 // If V has multiple uses, then we would have to do more analysis to determine
28 // if this is safe. For example, the use could be in dynamically unreached
29 // code.
30 if (!V->hasOneUse()) return 0;
31
Chris Lattner613f1a32011-05-23 00:32:19 +000032 bool MadeChange = false;
33
Chris Lattner1add46d2011-05-22 18:18:41 +000034 // ((1 << A) >>u B) --> (1 << (A-B))
35 // Because V cannot be zero, we know that B is less than A.
Chris Lattner6083bb92011-05-23 00:09:55 +000036 Value *A = 0, *B = 0, *PowerOf2 = 0;
37 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
Chris Lattner1add46d2011-05-22 18:18:41 +000038 m_Value(B))) &&
39 // The "1" can be any value known to be a power of 2.
Rafael Espindoladbaa2372012-12-13 03:37:24 +000040 isKnownToBeAPowerOfTwo(PowerOf2)) {
Benjamin Kramera9390a42011-09-27 20:39:19 +000041 A = IC.Builder->CreateSub(A, B);
Chris Lattner6083bb92011-05-23 00:09:55 +000042 return IC.Builder->CreateShl(PowerOf2, A);
Chris Lattner1add46d2011-05-22 18:18:41 +000043 }
44
Chris Lattner613f1a32011-05-23 00:32:19 +000045 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
46 // inexact. Similarly for <<.
47 if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
Rafael Espindoladbaa2372012-12-13 03:37:24 +000048 if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) {
Chris Lattner613f1a32011-05-23 00:32:19 +000049 // We know that this is an exact/nuw shift and that the input is a
50 // non-zero context as well.
51 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
52 I->setOperand(0, V2);
53 MadeChange = true;
54 }
55
56 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
57 I->setIsExact();
58 MadeChange = true;
59 }
60
61 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
62 I->setHasNoUnsignedWrap();
63 MadeChange = true;
64 }
65 }
66
Chris Lattner6c9b8d32011-05-22 18:26:48 +000067 // TODO: Lots more we could do here:
Chris Lattner6c9b8d32011-05-22 18:26:48 +000068 // If V is a phi node, we can call this on each of its operands.
69 // "select cond, X, 0" can simplify to "X".
70
Chris Lattner613f1a32011-05-23 00:32:19 +000071 return MadeChange ? V : 0;
Chris Lattner1add46d2011-05-22 18:18:41 +000072}
73
74
Chris Lattnerd12c27c2010-01-05 06:09:35 +000075/// MultiplyOverflows - True if the multiply can not be expressed in an int
76/// this size.
77static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
78 uint32_t W = C1->getBitWidth();
79 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
80 if (sign) {
Jay Foad40f8f622010-12-07 08:25:19 +000081 LHSExt = LHSExt.sext(W * 2);
82 RHSExt = RHSExt.sext(W * 2);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000083 } else {
Jay Foad40f8f622010-12-07 08:25:19 +000084 LHSExt = LHSExt.zext(W * 2);
85 RHSExt = RHSExt.zext(W * 2);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000086 }
87
88 APInt MulExt = LHSExt * RHSExt;
89
90 if (!sign)
91 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
92
93 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
94 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
95 return MulExt.slt(Min) || MulExt.sgt(Max);
96}
97
98Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Duncan Sands096aa792010-11-13 15:10:37 +000099 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000100 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
101
Duncan Sands82fdab32010-12-21 14:00:22 +0000102 if (Value *V = SimplifyMulInst(Op0, Op1, TD))
103 return ReplaceInstUsesWith(I, V);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000104
Duncan Sands37bf92b2010-12-22 13:36:08 +0000105 if (Value *V = SimplifyUsingDistributiveLaws(I))
106 return ReplaceInstUsesWith(I, V);
107
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000108 if (match(Op1, m_AllOnes())) // X * -1 == 0 - X
109 return BinaryOperator::CreateNeg(Op0, I.getName());
110
111 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
112
113 // ((X << C1)*C2) == (X * (C2 << C1))
114 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
115 if (SI->getOpcode() == Instruction::Shl)
116 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
117 return BinaryOperator::CreateMul(SI->getOperand(0),
118 ConstantExpr::getShl(CI, ShOp));
119
120 const APInt &Val = CI->getValue();
121 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
122 Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
123 BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
124 if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
125 if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
126 return Shl;
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000127 }
128
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000129 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
130 { Value *X; ConstantInt *C1;
131 if (Op0->hasOneUse() &&
132 match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
Benjamin Kramera9390a42011-09-27 20:39:19 +0000133 Value *Add = Builder->CreateMul(X, CI);
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000134 return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000135 }
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000136 }
Stuart Hastingsacbf1072011-05-30 20:00:33 +0000137
Stuart Hastingsf1002822011-06-01 16:42:47 +0000138 // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
139 // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
140 // The "* (2**n)" thus becomes a potential shifting opportunity.
Stuart Hastingsacbf1072011-05-30 20:00:33 +0000141 {
142 const APInt & Val = CI->getValue();
143 const APInt &PosVal = Val.abs();
144 if (Val.isNegative() && PosVal.isPowerOf2()) {
Stuart Hastingsf1002822011-06-01 16:42:47 +0000145 Value *X = 0, *Y = 0;
146 if (Op0->hasOneUse()) {
147 ConstantInt *C1;
148 Value *Sub = 0;
149 if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
150 Sub = Builder->CreateSub(X, Y, "suba");
151 else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
152 Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
153 if (Sub)
154 return
155 BinaryOperator::CreateMul(Sub,
156 ConstantInt::get(Y->getType(), PosVal));
Stuart Hastingsacbf1072011-05-30 20:00:33 +0000157 }
158 }
159 }
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000160 }
161
162 // Simplify mul instructions with a constant RHS.
163 if (isa<Constant>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000164 // Try to fold constant mul into select arguments.
165 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
166 if (Instruction *R = FoldOpIntoSelect(I, SI))
167 return R;
168
169 if (isa<PHINode>(Op0))
170 if (Instruction *NV = FoldOpIntoPhi(I))
171 return NV;
172 }
173
174 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
175 if (Value *Op1v = dyn_castNegVal(Op1))
176 return BinaryOperator::CreateMul(Op0v, Op1v);
177
178 // (X / Y) * Y = X - (X % Y)
179 // (X / Y) * -Y = (X % Y) - X
180 {
181 Value *Op1C = Op1;
182 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
183 if (!BO ||
184 (BO->getOpcode() != Instruction::UDiv &&
185 BO->getOpcode() != Instruction::SDiv)) {
186 Op1C = Op0;
187 BO = dyn_cast<BinaryOperator>(Op1);
188 }
189 Value *Neg = dyn_castNegVal(Op1C);
190 if (BO && BO->hasOneUse() &&
191 (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
192 (BO->getOpcode() == Instruction::UDiv ||
193 BO->getOpcode() == Instruction::SDiv)) {
194 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
195
Chris Lattner35bda892011-02-06 21:44:57 +0000196 // If the division is exact, X % Y is zero, so we end up with X or -X.
197 if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000198 if (SDiv->isExact()) {
199 if (Op1BO == Op1C)
200 return ReplaceInstUsesWith(I, Op0BO);
201 return BinaryOperator::CreateNeg(Op0BO);
202 }
203
204 Value *Rem;
205 if (BO->getOpcode() == Instruction::UDiv)
206 Rem = Builder->CreateURem(Op0BO, Op1BO);
207 else
208 Rem = Builder->CreateSRem(Op0BO, Op1BO);
209 Rem->takeName(BO);
210
211 if (Op1BO == Op1C)
212 return BinaryOperator::CreateSub(Op0BO, Rem);
213 return BinaryOperator::CreateSub(Rem, Op0BO);
214 }
215 }
216
217 /// i1 mul -> i1 and.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000218 if (I.getType()->isIntegerTy(1))
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000219 return BinaryOperator::CreateAnd(Op0, Op1);
220
221 // X*(1 << Y) --> X << Y
222 // (1 << Y)*X --> X << Y
223 {
224 Value *Y;
225 if (match(Op0, m_Shl(m_One(), m_Value(Y))))
226 return BinaryOperator::CreateShl(Op1, Y);
227 if (match(Op1, m_Shl(m_One(), m_Value(Y))))
228 return BinaryOperator::CreateShl(Op0, Y);
229 }
230
231 // If one of the operands of the multiply is a cast from a boolean value, then
232 // we know the bool is either zero or one, so this is a 'masking' multiply.
233 // X * Y (where Y is 0 or 1) -> X & (0-Y)
Duncan Sands1df98592010-02-16 11:11:14 +0000234 if (!I.getType()->isVectorTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000235 // -2 is "-1 << 1" so it is all bits set except the low one.
236 APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
237
238 Value *BoolCast = 0, *OtherOp = 0;
239 if (MaskedValueIsZero(Op0, Negative2))
240 BoolCast = Op0, OtherOp = Op1;
241 else if (MaskedValueIsZero(Op1, Negative2))
242 BoolCast = Op1, OtherOp = Op0;
243
244 if (BoolCast) {
245 Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
Benjamin Kramera9390a42011-09-27 20:39:19 +0000246 BoolCast);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000247 return BinaryOperator::CreateAnd(V, OtherOp);
248 }
249 }
250
251 return Changed ? &I : 0;
252}
253
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000254//
255// Detect pattern:
256//
257// log2(Y*0.5)
258//
259// And check for corresponding fast math flags
260//
261
262static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
Pedro Artigasef2ef3e2012-11-30 22:47:15 +0000263
264 if (!Op->hasOneUse())
265 return;
266
267 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
268 if (!II)
269 return;
270 if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
271 return;
272 Log2 = II;
273
274 Value *OpLog2Of = II->getArgOperand(0);
275 if (!OpLog2Of->hasOneUse())
276 return;
277
278 Instruction *I = dyn_cast<Instruction>(OpLog2Of);
279 if (!I)
280 return;
281 if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
282 return;
283
284 ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0));
285 if (CFP && CFP->isExactlyValue(0.5)) {
286 Y = I->getOperand(1);
287 return;
288 }
289 CFP = dyn_cast<ConstantFP>(I->getOperand(1));
290 if (CFP && CFP->isExactlyValue(0.5))
291 Y = I->getOperand(0);
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000292}
293
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000294/// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
295/// true iff the given value is FMul or FDiv with one and only one operand
296/// being a normal constant (i.e. not Zero/NaN/Infinity).
297static bool isFMulOrFDivWithConstant(Value *V) {
298 Instruction *I = dyn_cast<Instruction>(V);
299 if (!I || (I->getOpcode() != Instruction::FMul &&
Shuxin Yangf2797312013-01-07 22:41:28 +0000300 I->getOpcode() != Instruction::FDiv))
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000301 return false;
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000302
303 ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
304 ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
305
306 if (C0 && C1)
307 return false;
308
309 return (C0 && C0->getValueAPF().isNormal()) ||
310 (C1 && C1->getValueAPF().isNormal());
311}
312
313static bool isNormalFp(const ConstantFP *C) {
314 const APFloat &Flt = C->getValueAPF();
315 return Flt.isNormal() && !Flt.isDenormal();
316}
317
318/// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
319/// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
320/// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
321/// This function is to simplify "FMulOrDiv * C" and returns the
322/// resulting expression. Note that this function could return NULL in
323/// case the constants cannot be folded into a normal floating-point.
324///
Shuxin Yangf2797312013-01-07 22:41:28 +0000325Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
326 Instruction *InsertBefore) {
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000327 assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
328
329 Value *Opnd0 = FMulOrDiv->getOperand(0);
330 Value *Opnd1 = FMulOrDiv->getOperand(1);
331
332 ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
333 ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
334
335 BinaryOperator *R = 0;
336
337 // (X * C0) * C => X * (C0*C)
338 if (FMulOrDiv->getOpcode() == Instruction::FMul) {
339 Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
340 if (isNormalFp(cast<ConstantFP>(F)))
341 R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
342 } else {
343 if (C0) {
344 // (C0 / X) * C => (C0 * C) / X
345 ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C));
346 if (isNormalFp(F))
347 R = BinaryOperator::CreateFDiv(F, Opnd1);
348 } else {
349 // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
350 ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1));
351 if (isNormalFp(F)) {
352 R = BinaryOperator::CreateFMul(Opnd0, F);
353 } else {
354 // (X / C1) * C => X / (C1/C)
355 Constant *F = ConstantExpr::getFDiv(C1, C);
356 if (isNormalFp(cast<ConstantFP>(F)))
357 R = BinaryOperator::CreateFDiv(Opnd0, F);
358 }
359 }
360 }
361
362 if (R) {
363 R->setHasUnsafeAlgebra(true);
364 InsertNewInstWith(R, *InsertBefore);
365 }
366
367 return R;
368}
369
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000370Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
Duncan Sands096aa792010-11-13 15:10:37 +0000371 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000372 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
373
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000374 if (isa<Constant>(Op0))
375 std::swap(Op0, Op1);
376
Michael Ilsemanc244f382012-12-12 00:28:32 +0000377 if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD))
378 return ReplaceInstUsesWith(I, V);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000379
Michael Ilsemanc244f382012-12-12 00:28:32 +0000380 // Simplify mul instructions with a constant RHS.
381 if (isa<Constant>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000382 // Try to fold constant mul into select arguments.
383 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
384 if (Instruction *R = FoldOpIntoSelect(I, SI))
385 return R;
386
387 if (isa<PHINode>(Op0))
388 if (Instruction *NV = FoldOpIntoPhi(I))
389 return NV;
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000390
391 ConstantFP *C = dyn_cast<ConstantFP>(Op1);
392 if (C && I.hasUnsafeAlgebra() && C->getValueAPF().isNormal()) {
393 // Let MDC denote an expression in one of these forms:
394 // X * C, C/X, X/C, where C is a constant.
395 //
396 // Try to simplify "MDC * Constant"
397 if (isFMulOrFDivWithConstant(Op0)) {
398 Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I);
399 if (V)
400 return ReplaceInstUsesWith(I, V);
401 }
402
403 // (MDC +/- C1) * C2 => (MDC * C2) +/- (C1 * C2)
404 Instruction *FAddSub = dyn_cast<Instruction>(Op0);
405 if (FAddSub &&
406 (FAddSub->getOpcode() == Instruction::FAdd ||
407 FAddSub->getOpcode() == Instruction::FSub)) {
408 Value *Opnd0 = FAddSub->getOperand(0);
409 Value *Opnd1 = FAddSub->getOperand(1);
410 ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
411 ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
412 bool Swap = false;
413 if (C0) {
Shuxin Yangf2797312013-01-07 22:41:28 +0000414 std::swap(C0, C1);
415 std::swap(Opnd0, Opnd1);
416 Swap = true;
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000417 }
418
419 if (C1 && C1->getValueAPF().isNormal() &&
420 isFMulOrFDivWithConstant(Opnd0)) {
421 Value *M0 = ConstantExpr::getFMul(C1, C);
422 Value *M1 = isNormalFp(cast<ConstantFP>(M0)) ?
423 foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
424 0;
425 if (M0 && M1) {
426 if (Swap && FAddSub->getOpcode() == Instruction::FSub)
427 std::swap(M0, M1);
428
429 Value *R = (FAddSub->getOpcode() == Instruction::FAdd) ?
430 BinaryOperator::CreateFAdd(M0, M1) :
431 BinaryOperator::CreateFSub(M0, M1);
432 Instruction *RI = cast<Instruction>(R);
433 RI->setHasUnsafeAlgebra(true);
434 return RI;
435 }
436 }
437 }
438 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000439 }
440
441 if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
442 if (Value *Op1v = dyn_castFNegVal(Op1))
443 return BinaryOperator::CreateFMul(Op0v, Op1v);
444
Pedro Artigas84030dc2012-11-30 19:09:41 +0000445 // Under unsafe algebra do:
446 // X * log2(0.5*Y) = X*log2(Y) - X
447 if (I.hasUnsafeAlgebra()) {
448 Value *OpX = NULL;
449 Value *OpY = NULL;
450 IntrinsicInst *Log2;
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000451 detectLog2OfHalf(Op0, OpY, Log2);
452 if (OpY) {
453 OpX = Op1;
454 } else {
455 detectLog2OfHalf(Op1, OpY, Log2);
456 if (OpY) {
457 OpX = Op0;
Pedro Artigas84030dc2012-11-30 19:09:41 +0000458 }
459 }
460 // if pattern detected emit alternate sequence
461 if (OpX && OpY) {
462 Log2->setArgOperand(0, OpY);
463 Value *FMulVal = Builder->CreateFMul(OpX, Log2);
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000464 Instruction *FMul = cast<Instruction>(FMulVal);
Pedro Artigas84030dc2012-11-30 19:09:41 +0000465 FMul->copyFastMathFlags(Log2);
466 Instruction *FSub = BinaryOperator::CreateFSub(FMulVal, OpX);
467 FSub->copyFastMathFlags(Log2);
468 return FSub;
469 }
470 }
471
Shuxin Yanga5ed0312012-12-14 18:46:06 +0000472 // X * cond ? 1.0 : 0.0 => cond ? X : 0.0
473 if (I.hasNoNaNs() && I.hasNoSignedZeros()) {
474 Value *V0 = I.getOperand(0);
475 Value *V1 = I.getOperand(1);
476 Value *Cond, *SLHS, *SRHS;
477 bool Match = false;
478
479 if (match(V0, m_Select(m_Value(Cond), m_Value(SLHS), m_Value(SRHS)))) {
480 Match = true;
481 } else if (match(V1, m_Select(m_Value(Cond), m_Value(SLHS),
482 m_Value(SRHS)))) {
483 Match = true;
484 std::swap(V0, V1);
485 }
486
487 if (Match) {
488 ConstantFP *C0 = dyn_cast<ConstantFP>(SLHS);
489 ConstantFP *C1 = dyn_cast<ConstantFP>(SRHS);
490
491 if (C0 && C1 &&
492 ((C0->isZero() && C1->isExactlyValue(1.0)) ||
493 (C1->isZero() && C0->isExactlyValue(1.0)))) {
494 Value *T;
495 if (C0->isZero())
496 T = Builder->CreateSelect(Cond, SLHS, V1);
497 else
498 T = Builder->CreateSelect(Cond, V1, SRHS);
499 return ReplaceInstUsesWith(I, T);
500 }
501 }
502 }
503
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000504 return Changed ? &I : 0;
505}
506
507/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
508/// instruction.
509bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
510 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
511
512 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
513 int NonNullOperand = -1;
514 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
515 if (ST->isNullValue())
516 NonNullOperand = 2;
517 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
518 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
519 if (ST->isNullValue())
520 NonNullOperand = 1;
521
522 if (NonNullOperand == -1)
523 return false;
524
525 Value *SelectCond = SI->getOperand(0);
526
527 // Change the div/rem to use 'Y' instead of the select.
528 I.setOperand(1, SI->getOperand(NonNullOperand));
529
530 // Okay, we know we replace the operand of the div/rem with 'Y' with no
531 // problem. However, the select, or the condition of the select may have
532 // multiple uses. Based on our knowledge that the operand must be non-zero,
533 // propagate the known value for the select into other uses of it, and
534 // propagate a known value of the condition into its other users.
535
536 // If the select and condition only have a single use, don't bother with this,
537 // early exit.
538 if (SI->use_empty() && SelectCond->hasOneUse())
539 return true;
540
541 // Scan the current block backward, looking for other uses of SI.
542 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
543
544 while (BBI != BBFront) {
545 --BBI;
546 // If we found a call to a function, we can't assume it will return, so
547 // information from below it cannot be propagated above it.
548 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
549 break;
550
551 // Replace uses of the select or its condition with the known values.
552 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
553 I != E; ++I) {
554 if (*I == SI) {
555 *I = SI->getOperand(NonNullOperand);
556 Worklist.Add(BBI);
557 } else if (*I == SelectCond) {
558 *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
559 ConstantInt::getFalse(BBI->getContext());
560 Worklist.Add(BBI);
561 }
562 }
563
564 // If we past the instruction, quit looking for it.
565 if (&*BBI == SI)
566 SI = 0;
567 if (&*BBI == SelectCond)
568 SelectCond = 0;
569
570 // If we ran out of things to eliminate, break out of the loop.
571 if (SelectCond == 0 && SI == 0)
572 break;
573
574 }
575 return true;
576}
577
578
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000579/// This function implements the transforms common to both integer division
580/// instructions (udiv and sdiv). It is called by the visitors to those integer
581/// division instructions.
582/// @brief Common integer divide transforms
583Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
584 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
585
Chris Lattner1add46d2011-05-22 18:18:41 +0000586 // The RHS is known non-zero.
587 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
588 I.setOperand(1, V);
589 return &I;
590 }
591
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000592 // Handle cases involving: [su]div X, (select Cond, Y, Z)
593 // This does not apply for fdiv.
594 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
595 return &I;
596
597 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000598 // (X / C1) / C2 -> X / (C1*C2)
599 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
600 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
601 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
602 if (MultiplyOverflows(RHS, LHSRHS,
603 I.getOpcode()==Instruction::SDiv))
604 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000605 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
606 ConstantExpr::getMul(RHS, LHSRHS));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000607 }
608
609 if (!RHS->isZero()) { // avoid X udiv 0
610 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
611 if (Instruction *R = FoldOpIntoSelect(I, SI))
612 return R;
613 if (isa<PHINode>(Op0))
614 if (Instruction *NV = FoldOpIntoPhi(I))
615 return NV;
616 }
617 }
618
Benjamin Kramer23b02cd2011-04-30 18:16:00 +0000619 // See if we can fold away this div instruction.
620 if (SimplifyDemandedInstructionBits(I))
621 return &I;
622
Duncan Sands593faa52011-01-28 16:51:11 +0000623 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
624 Value *X = 0, *Z = 0;
625 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
626 bool isSigned = I.getOpcode() == Instruction::SDiv;
627 if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
628 (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
629 return BinaryOperator::Create(I.getOpcode(), X, Op1);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000630 }
631
632 return 0;
633}
634
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000635/// dyn_castZExtVal - Checks if V is a zext or constant that can
636/// be truncated to Ty without losing bits.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000637static Value *dyn_castZExtVal(Value *V, Type *Ty) {
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000638 if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
639 if (Z->getSrcTy() == Ty)
640 return Z->getOperand(0);
641 } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
642 if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
643 return ConstantExpr::getTrunc(C, Ty);
644 }
645 return 0;
646}
647
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000648Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
649 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
650
Duncan Sands593faa52011-01-28 16:51:11 +0000651 if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
652 return ReplaceInstUsesWith(I, V);
653
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000654 // Handle the integer div common cases
655 if (Instruction *Common = commonIDivTransforms(I))
656 return Common;
Pete Coopera29fc802011-11-07 23:04:49 +0000657
658 {
Owen Anderson5b396202010-01-17 06:49:03 +0000659 // X udiv 2^C -> X >> C
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000660 // Check to see if this is an unsigned division with an exact power of 2,
661 // if so, convert to a right shift.
Pete Coopera29fc802011-11-07 23:04:49 +0000662 const APInt *C;
663 if (match(Op1, m_Power2(C))) {
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000664 BinaryOperator *LShr =
Pete Coopera29fc802011-11-07 23:04:49 +0000665 BinaryOperator::CreateLShr(Op0,
666 ConstantInt::get(Op0->getType(),
667 C->logBase2()));
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000668 if (I.isExact()) LShr->setIsExact();
669 return LShr;
670 }
Pete Coopera29fc802011-11-07 23:04:49 +0000671 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000672
Pete Coopera29fc802011-11-07 23:04:49 +0000673 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000674 // X udiv C, where C >= signbit
675 if (C->getValue().isNegative()) {
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000676 Value *IC = Builder->CreateICmpULT(Op0, C);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000677 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
678 ConstantInt::get(I.getType(), 1));
679 }
680 }
681
Benjamin Kramerc81fe9c2012-08-30 15:07:40 +0000682 // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
Nadav Rotema694e2a2012-08-28 12:23:22 +0000683 if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
Benjamin Krameraac7c652012-08-28 13:08:13 +0000684 Value *X;
685 ConstantInt *C1;
686 if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) {
Benjamin Kramer37dca632012-08-28 13:59:23 +0000687 APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1));
Benjamin Krameraac7c652012-08-28 13:08:13 +0000688 return BinaryOperator::CreateUDiv(X, Builder->getInt(NC));
Nadav Rotem9753f0b2012-08-28 10:01:43 +0000689 }
690 }
691
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000692 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000693 { const APInt *CI; Value *N;
Evan Cheng2a5422b2012-06-21 22:52:49 +0000694 if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) ||
695 match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) {
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000696 if (*CI != 1)
Benjamin Kramere5bd3cf2012-09-21 16:26:41 +0000697 N = Builder->CreateAdd(N,
698 ConstantInt::get(N->getType(), CI->logBase2()));
Evan Cheng2a5422b2012-06-21 22:52:49 +0000699 if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
700 N = Builder->CreateZExt(N, Z->getDestTy());
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000701 if (I.isExact())
702 return BinaryOperator::CreateExactLShr(Op0, N);
703 return BinaryOperator::CreateLShr(Op0, N);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000704 }
705 }
706
707 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
708 // where C1&C2 are powers of two.
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000709 { Value *Cond; const APInt *C1, *C2;
710 if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
711 // Construct the "on true" case of the select
712 Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
713 I.isExact());
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000714
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000715 // Construct the "on false" case of the select
716 Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
717 I.isExact());
718
719 // construct the select instruction and return it.
720 return SelectInst::Create(Cond, TSI, FSI);
721 }
722 }
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000723
724 // (zext A) udiv (zext B) --> zext (A udiv B)
725 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
726 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
727 return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
728 I.isExact()),
729 I.getType());
730
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000731 return 0;
732}
733
734Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
735 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
736
Duncan Sands593faa52011-01-28 16:51:11 +0000737 if (Value *V = SimplifySDivInst(Op0, Op1, TD))
738 return ReplaceInstUsesWith(I, V);
739
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000740 // Handle the integer div common cases
741 if (Instruction *Common = commonIDivTransforms(I))
742 return Common;
743
744 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
745 // sdiv X, -1 == -X
746 if (RHS->isAllOnesValue())
747 return BinaryOperator::CreateNeg(Op0);
748
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000749 // sdiv X, C --> ashr exact X, log2(C)
750 if (I.isExact() && RHS->getValue().isNonNegative() &&
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000751 RHS->getValue().isPowerOf2()) {
752 Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
753 RHS->getValue().exactLogBase2());
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000754 return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000755 }
756
757 // -X/C --> X/-C provided the negation doesn't overflow.
758 if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000759 if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000760 return BinaryOperator::CreateSDiv(Sub->getOperand(1),
761 ConstantExpr::getNeg(RHS));
762 }
763
764 // If the sign bits of both operands are zero (i.e. we can prove they are
765 // unsigned inputs), turn this into a udiv.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000766 if (I.getType()->isIntegerTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000767 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
768 if (MaskedValueIsZero(Op0, Mask)) {
769 if (MaskedValueIsZero(Op1, Mask)) {
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000770 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000771 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
772 }
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000773
774 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000775 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
776 // Safe because the only negative value (1 << Y) can take on is
777 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
778 // the sign bit set.
779 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
780 }
781 }
782 }
783
784 return 0;
785}
786
Frits van Bommel31726c12011-01-29 17:50:27 +0000787Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
788 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
789
790 if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
791 return ReplaceInstUsesWith(I, V);
792
Benjamin Kramer54673962011-03-30 15:42:35 +0000793 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
794 const APFloat &Op1F = Op1C->getValueAPF();
795
796 // If the divisor has an exact multiplicative inverse we can turn the fdiv
797 // into a cheaper fmul.
798 APFloat Reciprocal(Op1F.getSemantics());
799 if (Op1F.getExactInverse(&Reciprocal)) {
800 ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal);
801 return BinaryOperator::CreateFMul(Op0, RFP);
802 }
803 }
804
Frits van Bommel31726c12011-01-29 17:50:27 +0000805 return 0;
806}
807
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000808/// This function implements the transforms common to both integer remainder
809/// instructions (urem and srem). It is called by the visitors to those integer
810/// remainder instructions.
811/// @brief Common integer remainder transforms
812Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
813 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
814
Chris Lattner1add46d2011-05-22 18:18:41 +0000815 // The RHS is known non-zero.
816 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
817 I.setOperand(1, V);
818 return &I;
819 }
820
Duncan Sandsf24ed772011-05-02 16:27:02 +0000821 // Handle cases involving: rem X, (select Cond, Y, Z)
822 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
823 return &I;
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000824
Duncan Sands00676a62011-05-02 18:41:29 +0000825 if (isa<ConstantInt>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000826 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
827 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
828 if (Instruction *R = FoldOpIntoSelect(I, SI))
829 return R;
830 } else if (isa<PHINode>(Op0I)) {
831 if (Instruction *NV = FoldOpIntoPhi(I))
832 return NV;
833 }
834
835 // See if we can fold away this rem instruction.
836 if (SimplifyDemandedInstructionBits(I))
837 return &I;
838 }
839 }
840
841 return 0;
842}
843
844Instruction *InstCombiner::visitURem(BinaryOperator &I) {
845 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
846
Duncan Sandsf24ed772011-05-02 16:27:02 +0000847 if (Value *V = SimplifyURemInst(Op0, Op1, TD))
848 return ReplaceInstUsesWith(I, V);
849
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000850 if (Instruction *common = commonIRemTransforms(I))
851 return common;
852
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000853 // X urem C^2 -> X and C-1
854 { const APInt *C;
855 if (match(Op1, m_Power2(C)))
856 return BinaryOperator::CreateAnd(Op0,
857 ConstantInt::get(I.getType(), *C-1));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000858 }
859
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000860 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
861 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
862 Constant *N1 = Constant::getAllOnesValue(I.getType());
Benjamin Kramera9390a42011-09-27 20:39:19 +0000863 Value *Add = Builder->CreateAdd(Op1, N1);
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000864 return BinaryOperator::CreateAnd(Op0, Add);
865 }
866
867 // urem X, (select Cond, 2^C1, 2^C2) -->
868 // select Cond, (and X, C1-1), (and X, C2-1)
869 // when C1&C2 are powers of two.
870 { Value *Cond; const APInt *C1, *C2;
871 if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
872 Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t");
873 Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f");
874 return SelectInst::Create(Cond, TrueAnd, FalseAnd);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000875 }
876 }
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000877
878 // (zext A) urem (zext B) --> zext (A urem B)
879 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
880 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
881 return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
882 I.getType());
883
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000884 return 0;
885}
886
887Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
888 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
889
Duncan Sandsf24ed772011-05-02 16:27:02 +0000890 if (Value *V = SimplifySRemInst(Op0, Op1, TD))
891 return ReplaceInstUsesWith(I, V);
892
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000893 // Handle the integer rem common cases
894 if (Instruction *Common = commonIRemTransforms(I))
895 return Common;
896
897 if (Value *RHSNeg = dyn_castNegVal(Op1))
898 if (!isa<Constant>(RHSNeg) ||
899 (isa<ConstantInt>(RHSNeg) &&
900 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
901 // X % -Y -> X % Y
902 Worklist.AddValue(I.getOperand(1));
903 I.setOperand(1, RHSNeg);
904 return &I;
905 }
906
907 // If the sign bits of both operands are zero (i.e. we can prove they are
908 // unsigned inputs), turn this into a urem.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000909 if (I.getType()->isIntegerTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000910 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
911 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000912 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000913 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
914 }
915 }
916
917 // If it's a constant vector, flip any negative values positive.
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000918 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
919 Constant *C = cast<Constant>(Op1);
920 unsigned VWidth = C->getType()->getVectorNumElements();
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000921
922 bool hasNegative = false;
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000923 bool hasMissing = false;
924 for (unsigned i = 0; i != VWidth; ++i) {
925 Constant *Elt = C->getAggregateElement(i);
926 if (Elt == 0) {
927 hasMissing = true;
928 break;
929 }
930
931 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000932 if (RHS->isNegative())
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000933 hasNegative = true;
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000934 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000935
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000936 if (hasNegative && !hasMissing) {
Chris Lattner4ca829e2012-01-25 06:02:56 +0000937 SmallVector<Constant *, 16> Elts(VWidth);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000938 for (unsigned i = 0; i != VWidth; ++i) {
Chris Lattner7302d802012-02-06 21:56:39 +0000939 Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000940 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000941 if (RHS->isNegative())
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000942 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000943 }
944 }
945
946 Constant *NewRHSV = ConstantVector::get(Elts);
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000947 if (NewRHSV != C) { // Don't loop on -MININT
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000948 Worklist.AddValue(I.getOperand(1));
949 I.setOperand(1, NewRHSV);
950 return &I;
951 }
952 }
953 }
954
955 return 0;
956}
957
958Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
Duncan Sandsf24ed772011-05-02 16:27:02 +0000959 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000960
Duncan Sandsf24ed772011-05-02 16:27:02 +0000961 if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
962 return ReplaceInstUsesWith(I, V);
963
964 // Handle cases involving: rem X, (select Cond, Y, Z)
965 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
966 return &I;
967
968 return 0;
969}